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Abstract 

 

 Survival of cancer cells is influenced by a variety of factors, including physical elements 

such as keratin filaments. We know HeLa cells containing or lacking keratin 8/18 intermediate 

filaments (K+ and K- cells, respectively) are more sensitive to the death-inducing effects of Fas 

agonist compared to the cytokines tumor necrosis factor alpha (TNF-α) or TNF-related 

apoptosis-inducing ligand. Additionally, K- cells are more sensitive to Fas-induced death than 

K+ as shown by previous studies using mitochondrial activity and caspase activation assays. In 

the current study we tested the hypothesis that keratin filaments associate with the mitogen 

activated protein kinase (MAPK) cascade to protect cells from Fas-induced death. To do this, K+ 

and K- cells were exposed to Fas agonist in the absence or presence of human epidermal growth 

factor (EGF) (known to stimulate MAPK) and then downstream phosphorylation of extracellular 

signal-regulated kinase (pERK) was measured. Fas agonist reduced pERK expression in both 

cell types (~32% less pERK compared to non-EGF-treated controls, n= 3 expts.).  Conversely, 

EGF (50ng/ml) reversed this outcome, but again did so equally in K+ and K- cells. Intriguingly, 

K- cells were more responsive to EGF stimulation alone than K+ cells, regardless of EGF dose 

(pERK ~27% higher in K- than K+ cells, n= 3 expts.).  The results suggest keratin 8/18 filaments 

do associate with the MAPK cascade to influence cell survival. Supported by the Hamel Center 

for Undergraduate Research (AB) and the COLSA Karabelas Fund (DHT). 
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Introduction 

 

Cervical Cancer 

Cancer cell persistence can be attributed to any number of various factors. Infection by 

viruses, for example, causes changes in genotype that can disrupt cellular mechanisms triggering 

apoptosis. Many mechanisms exist to cause cancer, but some are more common than others. 

Cervical cancer remains the second most common cancer among females worldwide (20). The 

incidence rate varies by country, from 2 percent of women affected in the United States to as 

high as 50 percent of women affected in Guinea 
10

. On average, 500,000 women develop cervical 

cancer annually, of which 99 percent arise from infection by the human papillomavirus, or HPV 

20, 18, 25
. Over 40 different strains of HPV exist that infect the genital areas of men and women 

18
.  

Infected tissues include, but are not limited to, the cervix, vagina, penis, and rectum 
18

. In 

particular, HPV strains 16 and 18 are especially high-risk because they cause approximately 70 

percent of all cervical cancers 
18, 25

. Although 90 percent of HPV infections are generally 

resolved by attack from the body’s immune system, HPV 16 and 18 are especially persistent and 

can result in cervical cancer 
18

. 

HeLa Cells as a Research Subject 

 Among the more widely-known types of HPV-infected cells associated with cervical 

cancer, HeLa cells (derived from the cervical tumor of Ms. Henrietta Lacks in 1951) have been 

extensively studied 
27

. The HeLa cell line, infected with HPV strain 18, is a particularly 

aggressive cancer cell and continues to thrive in laboratories worldwide today 
24, 27

. 
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 The HeLa cells used in the current project consist of two readily apparent phenotypes: 

cells that express cytokeratin 8/18 (K8/18) intermediate filaments and cells that do not. Although 

these filaments are known to provide structural integrity to cells, in recent years it has been 

demonstrated that they also prevent apoptosis 
9, 28

. 

Cytokeratin Intermediate Filaments 

 Cytokeratin 8/18 filaments are expressed in a multitude of epithelial organs. The proteins 

are essential structural components of epithelial cells that form a network of filaments within the 

cytoplasm 
12

. They help cells resist external pressures, maintain normal mitochondrial function, 

and regulate cellular functions such as mitosis, apoptosis, and cell signaling 
12, 14

. Because of 

their varied functions within the cell, cytokeratin filaments are suspected to play an integral role 

in cancer development 
7, 14, 17

. 

 Although the components of cytokeratins are highly conserved across species, they 

generally consist of at least 20 different gene products which can be arranged into a relatively 

acidic, Type I group (cytokeratins 9 through 20) and a neutral–basic, Type II group (cytokeratins 

1 through 8) 
14, 17

. Cytokeratins exist as heterodimers in a 1:1 ratio of acidic and neutral-basic 

proteins, which then form filamentous polymers, such as cytokeratin 8/18 
14, 17

.  Expression of 

these proteins is cell-specific and can be influenced by the degree of cell differentiation. For 

instance, as cancer cells become less differentiated, cytokeratin expression is often a useful 

diagnostic measure to identify carcinomas from other non-metastatic tumors 
7
. 
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Effects of ERKs and Cytokeratins on Apoptosis 

The ability of K8/18 filaments to interfere with immune-mediated apoptosis is considered 

one mechanism contributing to the development of epithelial cell carcinomas 
23

.  The K8/18 

filaments may prevent apoptosis through a variety of cellular mechanisms, including the 

upregulation of growth/differentiation pathways that counteract the effects of immune attack 
19, 6, 

21
.  Based upon previous work by others in which K8/18 filaments provided a protective effect in 

epithelial cells, we postulate that K8/18 filaments provide analogous protection from cytokine-

mediated apoptosis in cervical cancer cells. 

The extrinsic pathway of apoptosis in cells is predicated on the actions of cytokines such 

as Fas ligand to activate initiator and executor caspases within the cell, which in turn provoke 

cell death 
11, 32

. In Fas ligand-induced apoptosis, Fas ligand binds to its receptor to activate the 

Fas-associated death domain protein (FADD), that activates downstream proteins including 

caspase 8, and executor caspases 3 and 7 
11, 32

. Caspases 3 and 7 initiate apoptosis downstream 

along with Smac/DIABLO and other downstream pro-apoptotic proteins 
11, 15, 29

.  

The mechanisms by which K8/18 filaments promote anti-apoptotic effects within cell are 

not entirely clear, but may include activation of the MAP kinase cascade to overcome Fas-

induced death-signaling. The scaffolding provided by K8/18 filaments supports activation of 

Raf-1, the first kinase in the MAP kinase cascade 
29

. Raf-1 activates MEK 1/2, which then 

activates ERK 1/2 through phosphorylation 
29

. The collective actions of phosphorylated ERK 

lead to upregulated cell growth and differentiation downstream 
22, 6, 21

, which could counteract 

apoptotic events. 
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Previous Research 

 Decreased expression of phosphorylated extracellular-regulated kinases in HeLa cells 

renders them more sensitive to cytokine-induced apoptosis 
30

. Conversely, increased levels of 

phosphorylated ERK protect cells by suppressing caspase activation and subsequent apoptosis 

when exposed to these same cytokines 
30

. 

 To investigate this phenomenon further, an experiment was conducted in spring 2013 to 

determine if cytokeratin 8/18 filament expression in HeLa cells affects caspase activation after 

the cells are exposed to cytokines. Cultures of HeLa cells possessing and lacking cytokeratin 

8/18 filaments (K+ and K- cells) were grown in 96-well plates for dose-response experiments 

involving several different cytokines.  The cells were treated with TNF-α, TRAIL, or Fas agonist 

to determine the dose and type of cytokine most effective at inducing apoptosis.  The cytokines 

TNF-α and TRAIL had essentially no effect on the two phenotypes, failing to induce caspase 

activity above non-cytokine-treated controls.   However, Fas agonist did induce caspase activity 

in the cells, and K+ HeLa cells were more resistant to Fas-induced apoptosis than K- HeLa cells, 

as expected.  

Immunodetection of ERK in K+ and K- HeLa cells 

 Following the above-described cytokine dose-response experiments, a subsequent 

experiment was conducted to determine the effect of K8/18 filaments on MAPK activation by 

measuring relative ERK expression. An initial set of samples collected in the summer 2013 

indicated that ERK expression was present for both K+ and K- cells. Phosphorylated ERK 

expression was highest in K- cells treated with hEGF, but other treatment conditions did not 

appear to yield higher amounts of pERK for either phenotype. Unfortunately, subsequent 
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attempts to analyze ERK expression failed to provide consistent results. Explanations for the 

inconsistencies include inaccurate protein loading during electrophoresis, unsuitable antibody 

incubation solutions, and possibly other factors interfering with secondary antibody detection.   

 To address these problems, a standardized protocol was devised, and immunodetection 

experiments were repeated in fall 2013
 3, 21

. In this run of western blots, the background was 

reduced and quantification of bands showed that K- cells exposed to hEGF exhibited greater 

ERK expression than any other treatment condition. We expected K+ cells to express greater 

amounts of ERK when treated with Fas agonist compared to K- cells treated with the same 

cytokine, but similar ERK expression was exhibited by both phenotypes after treatment with Fas 

agonist. Furthermore, pERK/totERK expression was inconsistent for K+ and K- negative control 

conditions, which indicates that conclusions cannot be drawn from these results alone due to the 

inconsistency of our control conditions. 

 In summary, there was no difference in ERK 1/2 expression between K+ and K- 

phenotypes, especially following treatment with Fas agonist.  In fact the only indication that 

K8/18 filaments influenced MAPK activation in the HeLa cells in the current experiments stems 

from finding that hEGF-stimulated  ERK 1/2 expression is greater in K- cells than K+ cells. This 

finding and inconsistencies in our control conditions necessitated that we repeat these 

experiments using alternate detection methods to determine if higher ERK 1/2 expression in  K- 

cells following Fas agonist treatment was a result of inaccurate immunodetection or actual 

differences in ERK expression between the two phenotypes following Fas agonist treatment. 

 The above inconsistencies in methods and findings prompted us to repeat the Fas agonist 

and hEGF experiments using an alternative, in-cell western immunofluorescent assay for 

immunodetection 
1, 2, 4, 21

. The rationale was that during western blot immunodetection, protein 
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loss occurs at many stages; including lysate transfer from culture plate to microfuge tube, 

removal of cell debris following centrifugation, and protein transfer from gel to PVDF 

membrane 
21

.  Any one of these losses could confound potential differences in protein detection 

between K+ and K- cell preps. The in-cell western assay, alternatively, offers more quantitative 

results with less protein loss 
21

. Thus, additional experiments were conducted using this format 

for protein detection. Again, we hypothesized that K8/18 filaments promote anti-apoptotic 

effects within HeLa cells by activation of the MAPK cascade to overcome Fas-induced death-

signaling.  Measurement of phosphorylated extracellular-regulated kinases (pERK) was used as 

an indication of MAP kinase activation. 

Expected Outcomes and Interpretations 

 The results of the in-cell western assays could partly determine if the western blotting 

experiments performed in summer 2013 were an anomaly or if they provide further evidence to 

reject the current hypothesis. In-cell western assays were anticipated to show elevated 

phosphorylated ERK 1/2 expression in K+ compared to K- HeLa cells, especially under 

conditions of Fas agonist treatment. An additional hope was that in-cell western assays would 

provide a more quantitative measure of ERK expression than traditional western blotting 

methods. 
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Materials and Methods 

 

Western Blot Immunodetection 

 Two different HeLa strains, K+ and K- cells, were grown under sterile culture conditions. 

At 70 percent confluency, the cells were trypsinized and passaged into 6-well plates at a seeding 

concentration of 80,000 cells per mL until confluency of 70 percent or greater was again 

achieved. At this point the cultures were then treated with human epidermal growth factor 

(hEGF) as a positive control, Fas ligand as the experimental variable, or vehicle as the negative 

control (Appendix I). Following a 10 minute incubation period, the treatments were rinsed and 

removed from the cells. The cells were then scraped from the bottom of the wells in lysis buffer, 

lysed with a 28 gauge needle, and transferred into centrifuge tubes. After centrifugation the 

supernatant (containing proteins such as pERK) was separated from the cell debris in the pellet   

Protein concentration of the supernatant was measured and the remaining sample was mixed 

with 5X or 2X Sample Buffer, Heated, and frozen at -80°C until further use (see detail-Appendix 

II). 

 Once samples were prepared as described above, they were loaded into polyacrylamide 

gels for protein separation via electrophoresis. Following size separation via electrophoresis, the 

proteins in the gel were transferred to a polyvinylidene fluoride (PVDF) membrane (Appendix 

III). Following transfer, the membrane was incubated overnight at 4C with primary antibodies 

that bind to phosphorylated ERK 1/2 and total ERK, and then probed with fluorescent secondary 

antibodies Dylight 680 and Dylight 800 for a half hour (Appendix IV).  A LI-COR Odyssey 

infra-red imaging system was used to detect secondary antibodies at 700 nm and 800 nm 
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wavelengths. Protein content was quantified using Image Studio Lite software and MS Excel 

software aided in generation of statistical data and graphs. 

In-Cell Western Immunodetection 

In-cell western immunodetection was also performed using K+ and K- strains of HeLa 

cells. Three in-cell western assays were performed with treatments added in triplicate for each 

individual experiment. The HeLa cells were first grown as previously described prior to seeding 

in 96-well plates. At 70 percent confluency, the cells were treated with increasing doses of hEGF 

and without or with Fas agonist. The concentrations used were 5, 10, and 50 ng/mL EGF, 1 

µg/mL Fas agonist, and 50 ng/mL hEGF plus1 µg/mL Fas agonist (Appendix V). Within 10 

minutes of treatment, the cells were rinsed and then fixed with 100% methanol in preparation for 

in-cell western assay (Appendix VI). Briefly, the fixative was removed and the wells were 

blotted dry. Subsequently the wells were rinsed three times for 5 minutes each with tris-buffered 

saline (TBS), blocked for one hour with blocking buffer and then incubated with ERK 1/2 and 

total ERK primary antibodies The plate was incubated overnight at 4°C. 

Following primary antibody incubation, the wells were rinsed three times for 5 minutes 

each with TBS and then fluorochrome-conjugated secondary antibody was added to the plate and 

incubated for one hour at room temperature in the dark (Appendix VI). The plate was again 

rinsed three times for 5 minutes each with TBS and then scanned with a LiCor Odyssey infra-red 

imaging system at 700 and 800 nm wavelengths to visualize phosphorylated ERK and total ERK 

proteins. Proteins were quantified using Image Studio Lite software and MS Excel software 

helped generate statistical data and graphs. 
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Results 

 

 The western blot immunodetection showed markedly increased pERK expression in K- 

HeLa cells compared to K+ HeLa cells, especially under control and EGF-stimulated conditions 

(Figures 1 and 2). For both K+ and K- cells, Fas agonist-induced pERK expression was 

comparable (Figure 2).  

 Subsequent experiments using in-cell western assays revealed similar trends to the above. 

That is, K- HeLa cells exhibited higher pERK expression than K+ HeLa cells, but only in 

response to hEGF stimulation (Figures 3 and 4). Expression of pERK was again similar between 

K+ and K- HeLa cells following Fas agonist treatment but was less than that observed for control 

or hEGF treatment conditions (Figure 4). The combination treatment of Fas agonist and hEGF 

restored pERK expression in both cell types to pretreatment levels (Figure 4).  Additionally, the 

overall relative expression of pERK by in-cell western assay was less than that observed by 

traditional western immunoblot analysis (Figures 1 and 3). 
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Discussion 

 

 Cytokeratin 8/18 18 filaments protect cells against cytokine-induced death, but their role 

in HeLa cervical cancer cells remains unclear. The current study confirmed that Fas agonist is 

more potent in killing K- HeLa cell than other cytokines, including TNF and TRAIL 
28

.  

Moreover, although the activation of the MAP kinase pathway is implicated, it does not appear 

to play a direct role in cytokeratin-mediated protection as reported previously in another cell 

model 
13, 19, 26

. Similar expression of phosphorylated ERK was observed in both K+ and K- HeLa 

cells following exposure to Fas agonist, indicating little to no effect of cytokeratin filaments on 

the MAP kinase pathway. Alternatively, other signaling pathways, such as the PI3K/Akt 

pathway, may be the primary anti-apoptotic pathway activated by cytokeratin filament in HeLa 

and other types of epithelial cells following Fas agonist treatment 
5
. Future experiments that 

focus on PI3K/Akt pathway may reveal that K8/18 expression counteracts Fas-mediated 

apoptosis through mechanisms anticipated of the MAP kinase pathway.  

 Regardless of the above observations, clear evidence that differences in pERK expression 

exist between K+ and K- HeLa cells was presented.  More specifically, using hEGF as a positive 

control treatment for phosphorylated ERK expression, we determined that 5 ng/mL of hEGF 

elicits much greater expression of pERK in K- than K+ cells 
8, 31

. The results suggest that 

cytokeratin filaments may actually impair the MAP kinase pathway in some manner that is not 

decipherable from the current experiments. Repeating these experiments and directly 

determining the relationship between the cytokeratin filaments and MAP kinase is one possible 

direction for future research. Using a cytokine other than Fas agonist or a growth factor related to 
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but not hEGF might also help discern whether the K8/18 filaments inhibit some novel aspect of 

the MAP kinase pathway. 

  Fas agonist treatment, known to induce cell death in K- HeLa cells, combined with 

hEGF negated the effects of Fas agonist alone on pERK expression. This indicates that the 

effects of Fas activation are possibly counteracted by cytokeratin filaments and additional 

pathways beyond MAPK than previously hypothesized. Sarcomas, for example, have been 

shown to avoid Fas ligand-induced apoptosis by stimulating secretion of EGF 
16

. While it is 

currently unclear whether HeLa cells utilize hEGF to avoid Fas-induced apoptosis, perhaps 

future experiments could focus on this phenomenon. 

 Overall, the results of the current experiments did not support the hypothesis that K8/18 

filaments protect HeLa cells from Fas-mediated apoptosis through activation of the MAP kinase 

pathway. Instead, we suggest these cells are protected by another mechanism, possibly activation 

of the PI3K/Akt pathway, or perhaps some yet undiscovered mechanism that ensures the 

metastatic potential of this cervical cancer cell. 
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Figures  

 

 

Figure 1: Representative immunoblot for the detection of phosphorylated ERK 1/2 (pERK; red 

bands) and total ERK (totERK; green bands) in K- HeLa cell lysates.  Note higher expression of 

pERK in EGF-treated samples.  Quantification of pERK expression relative to totERK in K+ vs. 

K- cells for the three experiments is depicted below.  

 

 

Figure 2. Effects of Fas agonist (1ug/ml) and EGF (5ng/ml) on phosphorylated ERK (pERK) and 

total ERK (totERK) expression in K+ and K- HeLa cells. K+ cells had less pERK expression 

compared to K- cells, especially under control and EGF-stimulated conditions.  Treatments in 

each experiment were performed in duplicate, and the experiment was repeated three times.  

Different letters denote differences among treatment groups (p< 0.05).  
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Figure 3: Representative In-Cell Western assay for phosphorylated ERK 1/2 and total ERK 

expression in K+ and K- HeLa cells. Phosphorylated ERK 1/2 proteins detected as red; total 

ERK expression detected as green. Quantification of pERK expression relative to totERK in K+ 

vs. K- cells for the three experiments is depicted below.  
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Figure 4. Effects of Fas agonist (1ug/ml) and EGF (50ng/ml) on phosphorylated ERK (pERK) 

and total ERK (totERK) expression in K+ and K- HeLa cells. Relative in-cell expression of 

pERK was similar in K+ and K- cells, was impaired by Fas agonist, but rebounded in response to 

EGF stimulation (50ng/ml). Treatments were performed in duplicate, and the experiment was 

repeated three times. Different letters denote differences among treatment groups (p< 0.05). 
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Appendix I 

 

Treatment Diagram for 6-well Culture Plates 

 

 

The positive control denotes EGF (epidermal growth factor) in 5 ng/mL concentration. Fas 

agonist treatment is 1 ug/mL. 
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Appendix II 

 

HeLa Lysate Protocol (Preparing K+ and K- Lysates for Fluorescent Western 

Detection of pERK and total ERK) 

Materials: 

rhEGF 

Fas ligand 

HeLa cells grown to 70% (or greater) confluence in 6-well plate 

Ice-cold PBS 

Ice-cold lysis buffer-- 10 mM Tris-HCl; 1 mM EGTA; 100 mM NaCl; 1% Triton X; 0.5% Nonidet P-40, 

pH 7.4 

 

Directions: 

1.) Aspirate conditioned medium from 6-well plate and replace with fresh medium. 

2.) Add FasL (1 ug/mL concentration) and rhEGF (5 ng/mL concentration) in 10 uL spike to 

appropriate wells. 

3.) Incubate plate at 37°C and 5% CO2 for 10 minutes. 

4.) At the end of 10 minutes, rinse cells with ice-cold PBS (non-sterile). 

5.) Add 500ul/well ice-cold lysis buffer containing protease inhibitor (10 uL/mL) and phosphatase 

inhibitor (10 uL/mL) cocktails to wells. 

6.) Scrape cells from wells, concentrating lysate into small volume and aspirate into microfuge tubes 

7.)  Further lyse cells by passaging through a 28-gauge needle. 

8.) Centrifuge lysates briefly (pulse spin microfuge) to ensure a pellet forms. 

9.) Sonicate (vortex) samples for 15 seconds each. 

10.) Perform BCA assay to determine protein concentration. 

11.) Centrifuge samples for 5 minutes at 13,000 x g to pellet cell debris. 

12.) Denature proteins by heating samples at 100°C for 5 minutes. 

13.) For low protein concentration, add 1 part 5X sample buffer to 4 parts sample. For high protein 

concentration, add equal amount of 1X sample buffer to sample. 

14.)  Store in freezer at -80°C until use. 

 

SDS-PAGE: 

Total protein (25-30 uL) was separated by 10% sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) and electrically transferred (75 V for 2 hours) to polyvinylidene fluoride 

(PVDF) membranes (Immobilon-FL, Millipore, Billerica, MA). See Western Blotting Protocol for further 

details. 
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Appendix III 

Western Blotting Protocol 
(Adopted from Yao Lab’s “Odyssey Western Blotting”) 

Amanda Berger 

 

Electrophoresis: 

1. Prepare acrylamide gel according to directions located next to chemical hood (if those are 

not available, follow Gel Casting Protocol from 5/14/13). 

2. Remove comb carefully from gel to ensure that wells don’t break. 

3. Lubricate the grey insulators on the electrophoresis chamber to ensure a good seal. 

4. Remove gel from gel caster and clip onto electrophoresis chamber. 

5. Pour tank buffer into the middle of the chamber to test if the apparatus is leaking. Once it 

has been determined that the seal is good, pour buffer into the bottom of the chamber; do 

not put buffer in between empty plate and chamber. 

6. Load samples (20 uL/well) onto gel carefully; do not use the two outer wells on both 

sides of gel. 

7. Attach the cover and plug in the electrodes. Turn on the power source and adjust settings 

for use. Run the gel at max voltage (all the way clockwise) and current at 20 for one hour. 

 

Gel Transfer: 

1. Cut the PVDF membrane and blotting papers (6) to the size of the gel. 

2. Incubate the PVDF membrane in 100% methanol for 5 minutes. 

3. Next, incubate the PVDF membrane in Towbin transfer buffer for 5 minutes. 

4. When the gel is finished running, remove the gel carefully from the cassette and measure 

it. Cut off one corner of the gel and place the gel in Towbin transfer buffer. Shake the gel 

in buffer for 5 minutes. 

 

Preparation of the Gel Sandwich and Protein Transfer: 

1. Tape a mylar mask in place on the mesh screen in the transfer unit. 

2. Dip a piece of blotting paper in the transfer buffer until it is just wet; place this paper over 

the mylar mask. Ensure that the blotting paper is larger than the hole in the mylar mask. 

3. Use a test tube to remove any air bubbles between the paper and transfer unit. 

4. Repeat steps 2 and 3 with two more pieces of blotting paper. 

5. Place the membrane on the blotting paper and remove any air bubbles. 

6. Carefully place the gel on the membrane; try not to readjust its position as proteins may 

transfer as soon as the gel is placed. Remove any air bubbles. 

7. Dip and place 3 more blotting papers on the sandwich. Remove air bubbles as the blotting 

papers are added. The sandwich should be as follows: 3 blotting papers; 1 membrane; 1 

gel; 3 blotting papers. 

8. Put the cover on the apparatus and plug in the electrodes to the power source. 

9. Set the voltage all the way clockwise (max) and the current to 36 and run for 45 minutes. 
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Appendix IV 

Immunodetection Protocol 

(After protein transfer to membrane) 

Amanda Berger 

 

Materials: 

 

Blocking Buffer: For 50 mL, add 2.5 g nonfat dry milk to 50 mL TBS 

TBST: For 1 L, add 1 mL Tween 20 to 1000 mL TBS 

Primary Antibody Dilution Buffer: 10 mL TBST, 0.5 g BSA, 5 uL phospho-p44/42 MAPK (ERK 1/2) 

rabbit mAB, and 5 uL p44/42 MAP Kinase (Total ERK) mouse mAb (1:2,000 dilution) 

Secondary Antibody Dilution Buffer: 20 mL TBST, 1 g nonfat dry milk, 1 uL Dylight 800 (anti-Total 

ERK, 1:20,000 dilution), and 1.5 uL Dylight 680 (anti-ERK 1/2, 1:15,000 dilution) 

 

1. Following protein transfer (from Western Blotting Protocol), rinse the PVDF membrane 

in 100% methanol for 1 minute. 

2. Discard methanol and rinse the membrane with water. 

3. Discard water and rinse the membrane in 1xTBS for 2 minutes and leave the membrane 

in TBS until further steps (never let the membrane DRY!) 

4. Place the membrane in 30 mL Blocking Buffer (TBS with nonfat dry milk) for 1 hour at 

room temperature with gentle shaking. 

5. Dilute the primary antibodies as suggested on the product sheet into 10 mL of primary 

antibody buffer with Tween-20. Add this buffer to the membrane and incubate at 4°C 

overnight with gentle shaking. 

6. Pour off primary antibody dilution buffer (recover buffer; do not discard). 

7. Wash the membrane in 1xTBST 3 times for 5 minutes each with gentle shaking at room 

temperature. 

8. Pour off 1xTBST and add 20 mL secondary antibody diluted as suggested on the product 

sheet. 

9. Incubate the membrane in the Western Blot cylinder for ½ hour in the dark at room 

temperature. (Make sure to protect the membrane from light from now on.) 

10. Wash the membrane with 1xTBST 3 times for 5 minutes each in the dark at room 

temperature. 

11. The membrane should be kept wet until read on the LiCor Odyssey machine. 

12. The membrane can now be dried and stored in between blotting papers in tin foil in the 

fridge. 
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Appendix V 

Treatment Diagram for 96-well Culture Plates 

 

 

One 96-well plate yields two trials under ideal conditions. CK 8/18 control wells were not treated 

with cytokine nor growth factor. 
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Appendix VI 

In-Cell Western Protocol (adapted 1/14/14) 
Amanda Berger 

 

Culture and Treatment: 

K+ and K- HeLa cells were cultured until 70-80% confluent.  Cells were treated with 5 ng/mL EGF, 10 

ng/mL EGF, 50 ng/mL EGF, 1 ug/mL Fas agonist (CH11), and 50 ng/mL EGF + 1 ug/mL Fas for non-

control conditions. Following treatment, cells were incubated for 10 minutes in incubator (95% humidity, 

37°C, 5% CO2). Immediately after treatment, cells were fixed and permeabilized. 

Fixation and permeabilization: 

Cells were fixed and permeabilized with 100% methanol (50 uL/well).  Growth medium was removed 

from the microplate by inversion on a paper towel then immediately fixed and permeabilized for 10 

minutes at room temperature with gentle shaking with 50 uL ice-cold methanol per well (methanol added 

down the sides of the wells to avoid cell detachment).  Methanol was removed from the plate by inversion 

on a paper towel then rinsed three times for 5 minutes with gentle shaking with 1X PBS (100 uL/well). 

In-Cell Western 

Cells were blocked for one hour at room temperature with 50 uL blocking buffer (1X PBS / 5% normal 

goat serum / 0.3% Triton X-100) per well.  After blocking buffer, cells were washed 3 times (5 minutes) 

with 1X PBS. Cells were probed overnight at 4C with 50 uL/well primary antibody cocktail against 

Phospho-p44/42 MAPK (ERK 1/2, Cell Signaling Technology, Danvers, MA) diluted 1:200 and p44/42 

MAP Kinase (L34F12, Cell Signaling Technology, Danvers, MA) in antibody dilution buffer (1X PBS / 

1% BSA / 0.3% Triton X-100). Control wells were probed with K18 (CY90, Sigma Aldrich, St. Louis, 

MO) diluted 1:800 and β-Actin (13E5, Cell Signaling Technology, Danvers, MA) diluted 1:200 in 

antibody dilution buffer (1X PBS / 1% BSA / 0.3% Triton X-100) to ensure appropriate K 8/18 

expression in the two phenotypes. Following three washes for 5 minutes with PBS, cells were incubated 

for 1 hour at room temperature in the dark with a cocktail of flurochrome-conjugated anti-mouse and anti-

rabbit secondary antibodies (anti-mouse DyLight 800 and anti-rabbit DyLight 680, Cell Signaling 

Technology, Danvers, MA) diluted 1:2000 and 1:1000, respectively, in antibody dilution buffer.  

Following three washes with PBS, the microplate was scanned using the LI-COR® Odyssey® Classic 

Infrared Imaging Scanner to detect and quantify K18 expression relative to β-Actin (LI-COR®, Lincoln, 

NE). 
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Appendix VII: Undergraduate Research Conference Poster 
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