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The Pleiotropic Effects of Beneficial Mutations in Adapted Escherichia coli Populations 

Brian Van Dam 

Abstract: 

Mutations that improve fitness in one environment can often be beneficial, deleterious, or 

neutral in alternative environments. When a single mutation effects fitness in multiple 

environments, it is said to be a pleiotropic, which can have important consequences for niche 

specialization, niche expansion, speciation, and even extinction in the face of environmental 

change. While previous studies have revealed that pleiotropy is nearly universal, the role of 

adaptive history in the spectrum of pleiotropic effects has yet to undergo detailed experimental 

observation. Using experimental evolution we gathered beneficial mutations in a previously 

adapted strain of Escherichia coli growing in the same common substrate over hundreds of 

generations. We then tested the effects of these mutations in multiple alternative environments 

and compared their fitness to the ancestor. We found that the magnitude of the effects correlates 

positively with the similarity of resources to glucose, indicating that selective history has an 

influence in the distribution of beneficial mutations. These findings broaden our understanding 

of the effects of history on pleiotropy, and may provide answers into how evolution in a constant 

environment influences ecological niche formation and constraint. 

  



Introduction: 

 Beneficial mutations with multiple (or pleiotropic) effects in alternative environments are 

not clearly understood, despite the fact that a broad research base suggests that it is nearly 

universal (Ostrowski et al, 2005). The challenges of predicting such mutations and their 

consequences in a range of selective environments are numerous. Moreover, the data that does 

exist has led to contradicting modes of thought, with many declaring the relationship to be 

primarily antagonistic (citation here), while others find evidence that beneficial mutations 

typically generate positive pleiotropy (Otto 2004; Ostrowski et al, 2008).  

Depending on the direction of pleiotropy, the ramifications for ecological stratification 

and speciation range widely. Positive pleiotropy would most likely orient a population towards 

the development of a broad ecological niche, known as a niche-generalist, whereas antagonism 

would likely result in a niche-specialist. In addition, the adaptive history and the methods of 

mutation collection or assessment inherent in the generation of pleiotropic mutations, particularly 

in long-term evolutions, may modify subsequent adaptive outcomes, further complicating 

interpretations of pleiotropic effects (Leiby and Marx, 2014).  

 The question of adaptive history influencing the distribution and effect of mutations can 

be ideally answered by bringing evolution into the lab and relatively quickly playing out its 

traditionally slow march under controlled conditions. Previous studies have already touched 

upon the effects of history on adaptation in Escherichia coli, with prior growth in glucose 

resulting in fitness variability in maltose (Travisano et al, 1995) and long-term growth in a 

minimal glucose environment caused wide-spread reduction in resource catabolism (Cooper and 

Lenski 2000). However, these developments did not identify the nature (beneficial, neutral, or 

deleterious) of the mutations that garnered the observed effects: the experimental evolutionary 



model used by the abovementioned sources was used to generate mutations of unknown quality 

and quantity, as did Ostrowski et al in their assay of alternative environments (Ostrowski et al, 

2005). By strictly gathering single, beneficial mutations with smaller, total fitness effects within 

pre-adapted populations over a short term-evolution, the effects of these rare mutations can be 

more accurately parsed out in alternative environments. 

 Bacterial populations are ideal candidates for experimental evolution because they have 

low generation times and large population sizes allowing for rapid mutation collection during an 

evolution. Ease of lab-based culture techniques and non-growing storage at -80°C also allows for 

reliable comparisons between evolved populations and the ancestor, a crucial consideration for 

mutation analysis. E. coli is an obvious choice for use in answering a question such as this, with 

a long history of being harnessed in the field of evolutionary biology, most notably in Richard 

Lenski’s Long-Term Experimental Evolution (LTEE) project (Lenski, 1990). More specifically, 

E. coli B REL 1206 (henceforth REL 1206) is an optimal choice for goals chosen for this study. 

REL 1206 is an evolved version of the progenitor of E. coli strain REL 606 used to begin the 

LTEE, with two thousand generations and five mutations already accumulated prior to this study. 

Strain REL606 is notable in that it has been completely purged of plasmids and bacteriophages, 

preventing any sharing of genetic information between individuals in a population. This 

effectively removes the possibility of sexual recombination from the scope of the experiment. 

 Pleiotropic effects can be assessed in any number of selective, alternative environments, 

ranging from temperature to catabolic substrates. By analyzing the beneficial mutations acquired 

in an evolution in a common substrate, such as glucose, against a panel of alternative sugar 

environments, the patterns of pleiotropy can be observed. It is likely that growth in a single, 

selective environment for an extended period will generate beneficial mutations that will drive 



adaptation towards specialization, rather than generalization, and that antagonistic pleiotropy will 

be more prominent in populations exposed to substrates dissimilar to the original, common 

substrate. Here, we explored the pleiotropic effects of glucose-adapted mutants in four 

environments after generating individual, beneficial mutations in a short-term evolution. We 

predict that evolution in a single catabolic substrate will generate mutations with beneficial, 

direct effects in that environment, but will have increasing antagonistic effects as the relatedness 

to glucose decreases.   

Materials and Methods 

Experimental Evolution 

 This study requires the steady growth of bacterial populations in a constant environment 

in order to quickly produce isolated, beneficial mutations for later analysis in alternative 

environments. The progenitor for the experimental populations used in this study was E. coli 

REL 1206, a clone isolated following two thousand generations of evolution in glucose at 37°C, 

which had concurrently acquired five separate mutations (Lenski 1991).  This progenitor was 

modified for the purposes of this evolution and following fitness assays to express different, 

fluorescent markers: Yellow Fluorescent Protein or Cyan Fluorescent Protein (CFP or YFP). E. 

coli marked with YFP experience a positive fitness effect of approximately 1%, requiring 

correction factors for proper analysis. Each variant, hereafter known as REL 1206 CFP and 1206 

YFP, was isolated from -80°C frozen culture on Luria Broth media plates and a single colony 

picked from each isolated variant to serve as the ancestor for the opposing, marked lines.  

 Before beginning the evolution, the isolated 1206 CFP and YFP colonies were grown in 5 

mL Luria Broth at 37°C in 13x100 mm glass culture tubes rotating in a roller drum. After 24 hrs. 



50 μL of each culture was diluted in Phosphate Buffered Saline and pipetted into 18 13x100 mm 

glass culture tubes (36 tubes total) with 5 mL of Davis Minimal Media (25 μL/mL of glucose). 

Twelve of the DM replicates received culture diluted 10-2 in PBS while 6 replicates received 

culture diluted 10-4. After 24 hrs. of growth at 37°C, 25 μL of each culture was added to 5 mL of  

DM25 in 13x100 mm glass culture tubes, for a total of 18 tubes with equal parts 1206 CFP and 

YFP, with the corresponding dilutions. Tubes were vortexed at medium agitation for twice for 1 

sec before culture was pipetted from the previous day’s culture tubes, after culture had been 

pipetted into dilution tubes, and again after culture had been added to fresh culture tubes. The 

populations were transferred on a 24 hr. basis for a total of 61 days.. Controls of purely CFP and 

YFP cultures were maintained and transferred in parallel to the evolving populations. 

Approximately every 10 days, 1.47 mL of each population culture was mixed with 0.13 mL of 

glycerol and stored at -80°C. 

Tracking Relative Frequency  

  To determine the nature of the shifting ratio of the oppositely marked E. coli growing in 

co-culture, the populations were diluted and submitted to high-throughput sampling. On Day 0 

and every 3-4 days until the termination of the evolution, the frequency of the evolving 

population was measured via flow cytometry utilizing a Guave easy-Cyte 8HT flow cytometer 

and InCyte software analysis (Millipore Inc.). Pertinent setting configurations are as follows: 

Forward Scatter Gain-79.48; Side Scatter- 4.97; Green Laser- 304.44; Threshold- 33; Blue 

Laser- Active; Flow Rate- 0.24 μL/sec.  Two hundred microliters of each co-culture and controls 

were pipetted into a 96-well plate, with a blank and calibrating controls of YFP and CFP cultures 

included. The cultures were diluted to 10-2 ½ in filter sterilized PBS, then submitted to flow 



cytometry analysis. Five thousand events were read from each replicate, with cell concentrations 

typically in the range of 300-400 cells/μL.  

Beneficial Mutant Isolation 

 To isolate suspected single, beneficial mutations, variations in the trend of YFP:CFP 

frequencies were observed and pure colonies picked and then frozen. To accomplish this 

isolation, the co-cultures of samples featuring an observable change in the population ratio for 

two contiguous days were quadrant streaked on Davis Minimal Media glucose (25μg/mL) plates. 

After growing at 37°C for 24 hrs. approximately half of eight random colonies were picked and 

diluted 10-4 in PBS, and then submitted to flow cytometry analysis. The colony corresponding to 

the appropriate marker were inoculated in 5 mL Luria Broth in 13x100 mm glass tubes and 

grown in a roller drum at 37°C for 24 hrs. After incubation, 1470 μL of culture was mixed with 

130 μL glycerol and stored at -80°C. After colonies had been isolated, the population was either 

stopped or continued for another 7-10 days, when then the isolation procedure repeated, in cases 

where the population shift was less substantial. 

Fitness Assays        

 To compare the relative fitness of the acquired beneficial mutants to that of the ancestor 

in glucose and in multiple, alternative environments, fitness assays were conducted on the 

gathered mutants. Frozen mutants were inoculated in 5 mL Luria Broth and grown in roller 

drums at 37°C for 24 hrs. Fifty microliters of culture were then pipetted into 5 mL PBS (10-2 

dilution) and then 50 μL diluent was pipetted into 5 mL Davis Minimal Media containing 25 

μg/mL of substrate (glucose, maltose, n-acetylglucosamine, or lactose), and then grown for 24 

hrs. at 37°C. After incubation, four replicates of 25 μL of mutant and 25 μl of oppositely marked 



ancestor were combined in 5 mL DM substrate and incubated, while 100 μL each were pipetted 

into a 96-well plate (with blank and pure marker culture controls) for a Day 0 initial flow 

cytometry analysis, as described above. Fifty microliters of culture were transferred on Day 1 

and Day 2, with a final flow cytometry analysis (200 μL of co-culture, this time) on Day 3.  

Statistical Analysis 

 Data collected after flow cytometer assays was organized via Millipore’s proprietary 

InCyte software onboard the flow cytometer. All data analysis was achieved using Microsoft 

Excel’s spreadsheet and charting processes. Relative fitness values for the evolved mutants vs. 

the ancestor were calculated using 𝑊 = ln𝑤𝑓𝑑0 × 102𝑤𝑖ln𝑛𝑓(𝑑3 × 102)𝑛𝑖 where W is the 

fitness of the evolved mutant relative to the ancestor; w and n is the frequency of the mutant and 

ancestor, respectively; and i and f are initial (D0) and final (D3) frequencies respective to the 

mutant or ancestor (Lenski et al, 1991). 

Data Corrections 

 Frequency corrections for the marked lineages versus the ancestor were completed using 

the equations 𝐶𝐹𝐵 = 𝐵𝑓 − ((𝐴𝑓 − 𝐵𝑓 × 𝐵𝐶𝐹) × 𝐴𝐶𝐹) + ((𝐵𝑓 − (𝐴𝑓 × 𝐴𝐶𝐹)) × 𝐵𝑓) 

and 𝐶𝐹𝐴 = 𝐴𝑓 − ((𝐵𝑓 − 𝐴𝑓 × 𝐴𝐶𝐹)× 𝐵𝐶𝐹) + ((𝐴𝑓 − (𝐵𝑓 × 𝐵𝐶𝐹)) × 𝐴𝑓) where CFA/B 

is the corrected frequency for the marked, beneficial mutant /ancestral competitor; Bf is the 

mutant frequency; Af is the ancestral frequency; BCF is the correction factor for beneficial mutant 

frequencies; ACF is the correction factor for the ancestral frequencies. Correction factors were 

found for CFP (𝑌𝐹𝑃𝐹𝑟𝑒𝑞. 𝐶𝐹𝑃𝐹𝑟𝑒𝑞. ) and      YFP ( 𝐶𝐹𝑃𝐹𝑟𝑒𝑞𝑌𝐹𝑃𝐹𝑟𝑒𝑞. ). 

 

Results 



Experimental Evolution-derived Beneficial Mutations 

 A total of eighteen lineages of E. coli REL 1206 generated nine distinct disturbances in 

the marked populations, after sixty one days and up to eight hundred generations of growth.  

Consistent decreases in YFP frequency during flow cytometry analysis was an indicator for the 

presence of a beneficial mutation appearing in the oppositely marked CFP population and rising 

to fixation. Figure 1 shows the growth curves of the low Ne populations, with mutants isolated at 

450 and 650-725 generations. Figure 2 depicts similar growth curves for some of the high Ne 

populations (data not shown for isolated mutants). The populations evolved in Figure 2 showed 

no decline in YFP frequency until the last fifty generations or so, where all twelve lineages 

began to decline in parallel. High Ne mutants experienced noticeable YFP decline during their 

evolution. 

Four of these mutants were derived from the low Ne replicates, while the other five 

mutants were derived from high Ne replicates. Of these nine confirmed mutants, one mutant 

gathered from a high Ne lineage was discarded from further experimentation after fitness assays 

(discussed below) in glucose and maltose achieved relative fitness effects that were identical to 

the control. This left a collection of eight working beneficial mutations for further competition 

and analysis in alternative environments.  

Fitness Effects in Glucose 

 After the completion of the experimental evolution, the collected beneficial mutants were 

competed against the ancestral REL1206 strain in the historical glucose environment. Figure 3 

shows the distribution of fitness effects in the adaptive glucose environment, as well as the three 



alternative substrates. Direct fitness effects in glucose ranged from 0 to ~2.5%, with total sample 

effects tightly clustered together (each sample deviated within ≤ 1%).  

Fitness Effects in Alternative Environments  

After fitness effects were analyzed in the adaptive environment, identical analyses were 

carried out in three alternative substrates: N-acetyl-d-glucosamine, maltose, and lactose. 

Competition in NAG yielded a slightly more distributed range of effects, achieving a maximum 

3% fitness effect, with all mutants featuring greater fitness than the ancestor. Alternatively, 

lineages grown in maltose experienced both positive and negative fitness effects. Four of the 

eight lineages featured positive fitness effects, maximizing with 1206CFP14 at ~5%, while two 

of the lineages had evidence of negative effects, at most showing a 2% decline in fitness. Two of 

the remaining mutants had non-significant effects in maltose. 

The fitness effects observed in lactose were similar to those noted in maltose, in that 

effects were distributed both positively and negatively: the magnitude and distribution of those 

effects, however, were much more sizeable. Beneficial mutants competed against their ancestor 

in lactose achieved a 44% spread of effect, measured from the most negative to the most 

positive. Four of the eight mutants produced significant, positive fitness effects, with the highest, 

1206CFP14, 22% above the ancestral baseline. Conversely, the other four mutants produced 

significant negative fitness effects, with 1206YFP7 (the most negative mutant fitness detected) at 

22% below the ancestral standard. Given the separation between the maximal and minimal data 

points in the lactose competition, discerning the extent to which these extreme data-points are 

actually observed effects or the result of error. However, taking these two out-sized values out 

still leaves large fitness effects: 1206CFP13 and 1206YFP14 have fitness effects of 7% above 



and ~6.5% below the fitness ancestor, respectively, which are still the largest effects surveyed in 

any of the four separate competitions. 

Discussion 

 This study sought to bring a deeper level of understanding to the behavior of beneficial 

mutations collected in pre-adapted populations of E. coli. Pre-adapted E. coli lineages were 

evolved for up to eight hundred generations in a selective glucose environment to generate 

qualitatively beneficial mutations. These mutants were then competed against the pre-evolution 

ancestor in several alternative substrates to identify the direction and magnitude of their 

pleiotropic effects. Due to the growth history in glucose, mutations derived from REL 1206 

lineages after continued evolution in the same substrate were expected to lead towards 

antagonistic pleiotropy in non-glucose environments. Prior studies have identified both 

specialization and tendencies towards generalist behaviors in evolved E. coli populations, the 

story remains in complete. 

 The data collected suggests, with a small degree of variation, that beneficial mutations 

acquired after evolution in a glucose medium bestow generally positive fitness effects in 

alternative environments (Fig. 4). All mutants in N-acetyl-d-glucosamine, most mutants tested in 

maltose and half the mutants grown in lactose were significantly more fit than their ancestral 

competitors. Most mutants exhibiting positive fitness effects averaged 1-3% better than the 

ancestor, with some exceptions reaching spanning 4-7% increases in fitness (three mutants 

grown in lactose and two maltose-grown mutants). 

NAG was the only substrate that every mutant surveyed experienced significantly higher 

relative fitness, averaging ~1% better than the ancestor. NAG is structurally the least similar to 



glucose of all the observed carbohydrates. NAG is an amide formation of glucosamine and acetic 

acid, and is a major constituent of bacterial and fungal cell walls.  The other two substrates are 

simple dimers of common sugars: maltose is composed of a glucose dimer while lactose is a 

glucose-galactose unit. With that in mind, prior studies have found NAG, among other sugars 

that also utilize the phosphoenol phosphatase-phosphotransferase (PEP-PTS) translocation 

system, to have positive fitness effects when used as a growth medium for glucose-derived 

mutations (Ostrowski, 2005; Travisano and Lenski, 2000).  

Additionally, NAG is taken into the cytosol via the phosphate transferase system and it is 

here that mutations would most likely have the largest effect. Mutations affecting the rate or 

efficiency of glucose uptake via the PTS pathway may have indirect effects on other PTS-based 

sugars. Glucose and NAG actually share the same PTS pathway, transported into the cytosol 

from the periplasmic space by PEP-PTS enzyme II. Moreover, maltose is transported across the 

inner membrane by the malX permease system, which shares ~35% of its amino acid sequence 

with the glucose and NAG EII enzyme, indicating a strong likelihood for pleiotropic effects 

(Reidl and Boos, 1991). Due to the overall interconnectedness of the PTS and non-PTS 

regulatory systems, mutations collected in a glucose background have a strong potential for 

alteration of non-PTS expression and function (Travisano and Lenski, 2000).  

Examples of negative fitness effects were most observed in lactose-competed mutants, 

specifically 1206CFP14 and 1206YFP7 through 14. These mutants generated the most negative 

fitness effects in the entirety of the experiment with one mutant causing a 22% decline in fitness 

compared to the ancestor, and others decreasing fitness by 8-10%.  All other mutants grown in 

lactose exhibited high levels of positive pleiotropy, much higher than the other substrates. 

Lactose is the most different of the assayed substrates, transported from the periplasm to the 



cytosol via lactose permease, the second gene (lacY) on the lac operon, where the dimer is 

hydrolyzed to galactose and glucose by β-galactosidase (Abramson et al, 2003). Lactose 

metabolism is completely separate from the other three substrates until the dimer’s hydrolysis. 

However, galactose utilization requires a complex conversion to glucose using three separate 

proteins, known as the Leloir pathway, and a mutation directly affecting PTS-related sugars 

wouldn’t be pinpointed until tested in a distinct lactose environment (Frey 1996). 

These large-magnitude effects observed in lactose are similar to observations made by 

Ostrowski et al during related glucose evolution and competitions in five alternative 

environments: lactose most resembled the competition in melibiose, which experienced highly 

antagonistic effects, with most replicates seeing up to a 35% loss in fitness, and at most 10% 

gains in fitness over the ancestor. These beneficial mutations acquired in a pre-adapted 

background, when grown in lactose, seem to donate fitness effects on a level similar to mutations 

gathered in a naïve genotype (REL 1206 vs. REL 606), although the both positive and negative 

distribution in the pre-adapted lactose competitions are greater than the naïve competitions 

observed in other studies (Ostrowski et al, 2005). 

Future studies involving these collected mutations should continue further competitions 

in more carbon substrates, and should contain examples of non-sugar substrates to ascertain as 

wide a variety of environmental effects as possible. Also, matched environment comparisons of 

pre-adapted and the naïve genotypes should be executed so as to determine the differences in 

indirect effects. Furthermore, to understand the genetic basis of the beneficial mutations gathered 

in these pre-adapted lineages, these mutations must be detected, identified, and their actual 

expression determined. To do this, Illumina re-sequencing of the mutant lines and subsequent 

data analysis will identify possible mutation sites against the E. coli B REL 1206 reference 



genome, and then confirmed by Sanger re-sequencing. A lower cost alternative to genetic re-

sequencing is vectorette PCR, which would be especially useful for verifying insertion 

mutations, as these are the best documented mutation class with fitness effects (Schneider and 

Lenksi, 2004; Cooper et al, 2001). Given their documented effects in alternative environments, 

pinpointing these beneficial mutations in genes responsible for the translocation of sugars across 

the inner and outer membranes, and their regulatory mechanisms, is highly likely.   

The pattern of pleiotropic effects associated with beneficial mutations does not appear to 

be directed towards antagonistic relationships in alternative environments. Rather, the indirect 

effects of beneficial mutations gathered in a pre-adapted genotype, generally trend towards 

positive pleiotropic mechanisms, and that these mutations are loosely dependent on th e 

similarity of the alternative environment to that upon which the mutations were collected. The 

effects of pleiotropy remain difficult to determine, and even more difficult to predict. The 

findings brought forward by these evolutions and competitions curiously do not seem to support 

the prior assumption that adaptation to a single selective environment would induce a trend 

towards specialization over generalization in evolved lineages. These are curious results for an 

ongoing investigation that promises to provide more answers to the pleiotropic question. 

 

 

 

References 

Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S. 2003. Structure and 

mechanism of the lactose permease of Escherichia coli. Science. 1;301(5633):610-5. 

Cooper, V. S., and R. E. Lenski. 2000. The population genetics of ecological specialization in 

evolving Escherichia coli populations. Nature 407:736-739. 



Cooper VS, Schneider D, Blot M, Lenski RE, Ge E. 2001. Mechanisms Causing Rapid and 

Parallel Losses of Ribose Catabolism in Evolving Populations of Escherichia coli B 183:2834–

2841. 

Frey P a. 1996. The Leloir pathway: a mechanistic imperative for three enzymes to change the 

stereochemical configuration of a single carbon in galactose. FASEB J. 10:461–70. 

Leiby, N., & Marx, C. J. (2014). Metabolic Erosion Primarily Through Mutation Accumulation, 

and Not Tradeoffs, Drives Limited Evolution of Substrate Specificity in Escherichia coli. 

PLoS Biology, 12(2), e1001789. doi:10.1371/journal.pbio.1001789 

Lenski, R. E., Rose, M. R., Simpson, S. C., Tadler, S. C., Naturalist, T. A., & Dec, N. (1991). 

Long-Term Experimental Evolution in Escherichia coli. I. Adaptation and Divergence 

During 2, 000 Generations, 138(6), 1315–1341. 

Ostrowski EA, Rozen DE, Lenski RE. Pleiotropic effects of beneficial mutations in Escherichia 

coli. Evolution Int J Org Evolution. 2005 Nov;59(11):2343-52. 

Ostrowski EA, Woods RJ, Lenski RE. The genetic basis of parallel and divergent phenotypic 

responses in evolving populations of Escherichia coli. Proc Biol Sci. 2008 Feb 7;275(1632):277-

84. 

Otto SP. Two steps forward, one step back: the pleiotropic effects of favored genes. Proc R Soc 

Lond B Biol Sci. 2004;271:705-14. 

Reidl J, Boos W. 1991. The malX malY operon of Escherichia coli encodes a novel enzyme II of 

the phosphotransferase system recognizing glucose and maltose and an enzyme abolishing 

the endogenous induction of the maltose system. J. Bacteriol. 173:4862–76. 

Schneider D, Lenski RE. Dynamics of insertion sequence elements during experimental 

evolution of bacteria. Res Microbiol. 2004 Jun;155(5):319-27. 

Travisano M, Lenski RE. 2000. Long-Term Experimental Evolution in Escherichia coli. IV. 

Targets of Selection and the Specificity of Adaptation. Genetics 143:15–26. 

Travisano, M., F. Vasi, and R. E. Lenski. 1995. Long-term experimental evolution in Escherichia 

coli. III. Variation among replicate populations in correlated responses to novel environments. 

Evolution 49:189-200. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures: 



Y
F

P
 F

re
q

u
en

cy

Generations

100%

0%

*

 

Figure 1: Low Ne experimental evolution frequency curve featuring YFP ratios over eight hundred generations. 

YFP frequency is the ratio of YFP-marked REL 1206 cells growing in relation to CFP-marked REL 1206 cells. The 

six shaded curves represent the separate, low Ne populations. Asterisked curves represent lineages selected for 

competitions in alternative environments: REL 1206CFP13, REL 1206CFP14, and REL 1206CFP17. 

Figure 2: High Ne experimental evolution growth curve featuring YFP ratios over four hundred generations. YFP 

frequency is the ratio of YFP-marked REL 1206 cells growing in relation to CFP-marked REL 1206 cells. The 

twelve shaded curves represent the separate, high Ne populations. The asterisked curve represents REL 1206YFP7, 

which was selected for competition in alternative environments. 
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Figure 3: Average relative fitness effects of evolved REL 1206 beneficial mutants after competitions in a familiar 

glucose and three alternative environments: N-acetyl-d-glucosamine (NAG), maltose, and lactose. Relative fitness 

of the beneficial mutants to the ancestor calculated via 𝑊 = ln𝑤𝑓𝑑0 × 102𝑤𝑖ln𝑛𝑓(𝑑3 × 102)𝑛𝑖  where W is the fitness 

of the evolved mutant relative to the ancestor; w and n is the frequency of the mutant and ancestor, respectively; 

and i and f are initial (D0) and final (D3) frequencies respective to the mutant or ancestor (Lenski et al, 1991). 

Each environment data point is a separate lineage made up of the average of four replicates, with the control for 

each represented by the dashed line, with 95% confidence calculated for n=32.  

Figure 4: Distribution of the pleiotropic effects of beneficial mutants in four catabolic substrates: glucose, 

maltose, n-acetyl-d-glucosamine (NAG), and lactose. Columns represent averages of four replicates per mutant. 

Error bars describe standard deviation. 
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