
University of New Hampshire
University of New Hampshire Scholars' Repository

Honors Theses and Capstones Student Scholarship

Spring 2013

NASA Magnetospheric MultiScale Mission
TableSat 1C
Joshua Chabot
University of New Hampshire - Main Campus, joshchab@gmail.com

Joseph Kelley
University of New Hampshire - Main Campus, jkrunner@gmail.com

Michael Johnson
University of New Hampshire - Main Campus, mj21181@gmail.com

Follow this and additional works at: https://scholars.unh.edu/honors

Part of the Navigation, Guidance, Control and Dynamics Commons

This Senior Honors Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository.
It has been accepted for inclusion in Honors Theses and Capstones by an authorized administrator of University of New Hampshire Scholars'
Repository. For more information, please contact nicole.hentz@unh.edu.

Recommended Citation
Chabot, Joshua; Kelley, Joseph; and Johnson, Michael, "NASA Magnetospheric MultiScale Mission TableSat 1C" (2013). Honors
Theses and Capstones. 121.
https://scholars.unh.edu/honors/121

https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fhonors%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/honors?utm_source=scholars.unh.edu%2Fhonors%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fhonors%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/honors?utm_source=scholars.unh.edu%2Fhonors%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/226?utm_source=scholars.unh.edu%2Fhonors%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/honors/121?utm_source=scholars.unh.edu%2Fhonors%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu


NASA MAGNETOSPHERIC MULTISCALE MISSION TABLESAT 1C

Joshua A. Chabot∗, Joseph J. Kelley†, Michael A. Johnson‡,
and May-Win L. Thein§

INTRODUCTION

NASA’s Magnetospheric Multiscale (MMS) mission is a Solar Terrestrial Probes Program that
is expected to launch in 2014. The objective of this mission is to study the interaction between
the Sun’s solar winds and the Earth’s magnetosphere. The MMS mission is a constellation mission
consisting of four spin-stabilized spacecraft that must maintain a tetrahedral formation of varying
dimensions to obtain 4-D structures (3-D space and time) of fundamental plasma phenomena.1

Each spacecraft has six major instrumentation booms: four flexible 60 m Spin-plane Double Probe
(SDP) booms with thicknesses of just under 2 mm, and two rigid 12.5 m Axial Double Probe
(ADP) booms.3 A scaled image of the MMS spacecraft is shown in Figure 1 illustrating the boom
configuration. The SDP booms are of primary focus because of their extreme length and flexibility,
and hence their influence on the overall dynamics of the MMS spacecraft. As such, there is much
interest in analyzing the spacecraft dynamics under spin rate and nutation control.

The Advanced Controls Lab (ACL) at the University of New Hampshire has constructed a series
of table top experimental test beds (TableSats) for MMS spacecraft dynamics, control, and flexible
structure analysis. TableSat I, the first generation of TableSats, are limited 3-DOF rotation (full spin
and limited nutation) test beds. TableSat IC is the latest design iteration in the TableSat I family
and incorporates design changes and updated technologies to more closely mimic MMS spacecraft
characteristics. To study the effects of spin rate and nutation control on the experimental spacecraft
bus and flexible booms, a PID controller is implemented on TableSat IC using sensor feedback from
an on-board Inertial Measurement Unit (IMU).

∗Undergraduate Student of Mechanical Engineering at the University of New Hampshire
†Undergraduate Student of Mechanical Engineering at the University of New Hampshire
‡Undergraduate Student of Mechanical Engineering at the University of New Hampshire
§Associate Professor of Mechanical Engineering at the University of New Hampshire

1



Figure 1: Scaled rendering of MMS spacecraft highlighting the extreme length of the SDP booms

EXPERIMENTAL TEST BED

The TableSat IC test bed shown in Figure 2 was designed to simulate the attitude dynamics of the
actual MMS mission spacecraft. To accomplish this, TableSat IC sits atop a spherical air bearing
that allows the platform to move with three degrees of rotational freedom with essential no friction.
Additionally, the center of gravity and center of rotation of the test bed can be aligned such that
torque from gravity is negated, in effect mimicking a weightless body.

Figure 2: MMS TableSat IC experimental test bed on air bearing stand

Thin aluminum booms protrude from the circumference of the test platform, simulating the flexi-
ble MMS spacecraft SDP booms. However, the flexible booms on TableSat IC have a higher natural
frequency (0.95 Hz) than those found on the actual MMS spacecraft (0.15 Hz) and can only oscil-
late in the xy-plane due to the geometry of the aluminum sheet metal. The low natural frequency of
the 60 m MMS SDP booms is impractical to duplicate in this earthbound setup. In addition to the

2



flexible SDP booms, a single carbon-fiber boom protrudes axially from the test bed, simulating an
ADP boom.

A high pressure nitrogen propulsion system is currently used to actuate the test bed and simulate
the thrusters present on the actual MMS spacecraft. However, the majority of the results presented
in this report were recorded using the previous CO2-based system. Six thrust nozzles are situated
around the circumference of the test platform and are directed to control nutation and rotation ac-
cordingly – four of the thrusters are oriented downwards to control nutation about the x and y axes
and two of the thrusters are directed tangentially to provide rotation about the z-axis. This propul-
sion system is highlighted in Figure 3 where the top cover of the test bed is transparent. A central
cannister contains nitrogen gas at 3000 PSI that is used to propel the test bed. This high pressure ni-
trogen is regulated to approximately 15 PSIG using two regulators and is monitored via an on-board
pressure transducer. Flow to these thrust nozzles is controlled via solenoid valves and an 84 MHz
Arduino Due microcontroller. The microcontroller regulates the attitude and body rates of the test
bed with a PID-based negative feedback control algorithm that receives attitude quaternion and body
rate measurements from the IMU. The IMU is composed of a 3-axis magnetometer, accelerometer,
and gyroscope and provides body rate and quaternion attitude information.

Figure 3: MMS TableSat IC propulsion system shown under clear top

THEORETICAL MODEL AND PID CONTROL DESIGN

Before implementing the experimental PID controller on TableSat IC, the system is first theo-
retically simulated assuming the test bed is a rigid body with constant mass and that it operates in
a frictionless environment. A negative feedback PID control scheme is implemented as shown in
Figure 4:

3



ω

q

ΣT

TableSat 1C

Equations of Motion

Desired

Body Rates

[0 0 .3]

Desired

Attitude

[1 0 0 0]

Actual

State

Actuators

Dynamics

PID

Controller

Error

Calculation

Figure 4: TableSat IC and PID controller simulation block diagram using PID control

In this simulation, the rotational dynamics of TableSat IC are governed by

ΣT = Iω̇ + ω × (Iω) (1)

where ΣT is the vector of actuator torques, I is the moment of inertia tensor, and ω is the angular
velocity vector with respect to the inertial frame.2 The moment of inertia tensor of the test platform
is theoretically calculated using 3D CAD software and measured mass properties of the components.
Unit quaternions were used to represent the attitude of TableSat IC, as given by

q̇ =
1

2
ω′ ⊗ q, (2)

where ω′ = [0 ωT ]T is the quaternion representation of the angular velocity vector provided by
Eq. (8) and q is the attitude quaternion defined by

q = q0 + q = q0 + q1i + q2j + q3k. (3)

Here, q0 is the scalar component and q is the vector component of the quaternion.1 Body rate errors
provided by Equation (8) are calculated such that:

ωe = ωd − ωm (4)

where ωe is the body rate error, ωd is the desired body rate, and ωm is the measured body rate.
Additionally, attitude quaternion error is given by

qe = qd ⊗ q∗m (5)

where qe is the error quaternion, qd is the desired quaternion state, and qm is the measured quaternion
state. Only the vector component of the attitude quaternion is used in this PID controller because
the scalar component is a redundant term. With the error state defined by e = [qe ωe]T , the PID
control law is given by

T (t) = Kpe(t) + Ki

∫ t

0
e(τ) dτ + Kdė(t) (6)

where Kp, Ki, and Kd are proportional, integral, and derivative gain matrices, respectively.

4



Pulse-width modulation, with a pulse period of 0.1 s, is used to provide variable thrust to the test
bed. The thruster dynamics of the system are also included in the analytical simulation, and are
modeled as providing a first-order thrust response with an initial reaction delay. The thruster delay
time and the response time constant were experimentally found to be 12 ms and 4 ms, respectively,
at 15 PSIG operating pressure.

The PID controller gain matrices of Equation (6) are manually tuned until a desired spin rate of
2 rad/s about the z-axis and an attitude of qd = [1 0 0 0]T were achieved, given an initial attitude
quaternion of q0 = [0.98 0.11 0.15 0.11]T (ω0 = [15◦ 15◦ 15◦]T ). These PID gains are detailed
in Tables 1, 2, and 3. A spin rate of 2 rad/s is chosen for TableSat IC because of the difficulties
associated with controlling the 0.3 rad/s spin rate that is needed on the actual MMS satellites. As
can be seen from the results shown in Figure 5, the simulated TableSat IC achieves the desired state
in approximately 5 s with minimal control effort, evidenced by the low thruster PWM duty cycle.

Table 1: PID Gains for Roll Actuator

q1 q2 q3 ωx ωy ωz

KP -15 0 0 10 0 0

KI 0 0 0 0 0 0

KD 10 0 0 0 0 0

Table 2: PID Gains for Pitch Actuator

q1 q2 q3 ωx ωy ωz

KP 0 -15 0 0 10 0

KI 0 0 0 0 0 0

KD 0 10 0 0 0 0

Table 3: PID Gains for Yaw Actuator

q1 q2 q3 ωx ωy ωz

KP 0 0 0 0 0 15

KI 0 0 0 0 0 0

KD 0 0 0 0 0 3

5



Figure 5: Simulated body rate and attitude response of PID controlled TableSat IC
with thruster duty cycle. ωd = [0 0 1]T , qd = [1 0 0 0]T

6



EXPERIMENTAL PID CONTROLLER

The flight software of the TableSat IC Model is written in C++ for the Arduino platform. The
Arduino platform was selected because it is an open platform with a large number of libraries, has a
large community, and is supported by a wide range of microprocessors. Object oriented design was
used for the flight software. In addition to simplifying the design of the software, the object oriented
model closely mimics the Matlab Simulink Blocks that the theoretical model of the controller uses.

To validate that the flight software is functioning correctly, two different methods were used.
The first method was to create unit tests that verify the code is working as expected. The second
method was to create a Simulink function block that executes the C++ code inside the Simulink
simulation. The first method tests the logic of the flight software and ensures that the controller
code is calculating the correct values while the control algorithm executes. The second method tests
the control algorithm by executing the control algorithm inside the simulation and allows the output
to be compared against the theoretical controller output.

Several different methods were investigated for the unit testing. Ideally the unit testing would be
performed while the code runs on the Arduino microprocessor. That way the code would be tested
while running on the platform that it was intended for, eliminating any possible differences between
the software’s performance while running on the computer it was developed on and the intended
platform. It also eliminates any potential differences in how the compiler generates the byte code
for the Arduino and how the development computer’s compiler generates its byte code. There is
an Arduino library for unit testing that reports the results of the tests out of the serial line. This
option was investigated, but ultimately we decided not to use it. The Arduino has a limited amount
of RAM. Some of the smaller models only have 2000 bytes, and the Arduino Mega that we used
only has 8000. The limited amount of memory limited how much information the unit tests could
output because the message strings need to be stored in the Arduino’s memory. Having a verbose
output quickly limited the size of the tests, and on the other hand if no information was reported
about why tests failed the tests could be large but would be of limited usefulness. We decided to
use the Google C++ Unit Testing framework for our unit tests. It is a powerful library with more
features than the Arduino unit testing library. It is also simple to set up and use and running on the
development computer instead of the Arduino allowed the tests to be written faster without having
to worry about memory constraints.

The Simulink function block is still a work in progress, but once completed it will allow any
algorithms that are implemented on the Arduino to be tested and validated by the simulation. Since
Simulink, the development computer, and the Arduino all depend on different libraries there are
various #ifdef statements that include different libraries depending on what has been defined using
#define. That way the same code that is running on the Arduino will be the same code tested by
Simulink and the unit tests. One challenge to implementing the Simulink function block has been
the timing needed for the time based integration and differentiation. Since the simulation is running
on a different simulation time scale and not in real time, the Integration and Differentiation classes
need to be altered to use the simulation time.

As for the flight software itself, the code has a hierarchy of objects that abstract away trivial
tasks so that the controller object needs only to worry about important higher level tasks. On the
lowest level there is an Arduino Matrix Math library that contains a set of functions that perform
matrix operations on multidimensional arrays. We created a wrapper class called “Matrix” for this
Matrix Math library that handles all of the memory allocation for a matrix and implements many

7



commonly used matrix functions. This wrapper class also overloads many common operators so
that the matrix objects are recognized as special data types. For example, with Matrix A and Matrix
B, A * B would perform matrix multiplication. By creating this wrapper class it helps to ensure that
there are no memory leaks by handling all of the memory internally to the class. For further details
please refer to the Appendix.

The classes “Quaternion” and “SpinRate” are both special types of matrix objects. These objects
contain the functions for dealing with the attitude and body rates of the experimental controller.
The Quaternion class also overloads the operators dealing with special quaternion operations. A
State class has both a Quaternion and a SpinRate as fields. This object holds all of the information
associated with a certain state to the controller. These classes are not specific to any one controller
and can be reused when other algorithms are implemented. There is a Modulator class that takes
output from the controller and uses these values to perform pulse width modulation on the thrusters
to produce the desired output torque.

The PID class is the class that implements the PID controller itself. It deals with the gains, the
algorithm, and storing persistent values needed in future iterations. The class has an Integrator and
Differentiator class as fields. These classes deal with integrating and differentiating the states used
in the algorithm. Please see the Appendix for further details.

Currently in order to change control algorithms different classes need to be included. We intend
to change this using C++’s inheritance features so that the code uses a generic controller class. The
specific control algorithm implementations will be child classes of the generic controller class. This
way new flight software does not need to be loaded onto the Arduino when we need to test a new
algorithm.

EXPERIMENTAL PID CONTROLLER RESULTS

Spin Rate Control

Spin rate control is tested at desired spin rates of 0.3, 2, and 10 rad/s, both with and without the
SDP booms. The 0.3 rad/s spin rate – the spin rate of the actual MMS spacecraft – cannot accurately
be achieved because the thruster system cannot produce the necessary thrust precision, as can be
seen in Figure 6.

Due to the inaccuracies inherent with slower spin rates, higher angular rates of 2 and 10 rad/s
are examined. As can be seen from the results shown in Figures 7 and 8, the response times of
the test bed under spin rate control for 2 and 10 rad/s are approximately 1 and 10 s, respectively.
Once steady-state was achieved, the spin rates for each of these trials oscillate about the setpoint by
approximately ±0.2 rad/s.

Next, the same desired spin rates are tested with the SDP booms removed from the test bed to
examine the effects of the flexible bodies on spin rate. These results can be seen in Figures 9 and
10. The response time for the spin rate tests without the SDP booms prove to be much faster than
those with the SDP booms, partially due to reduced drag effects. The low natural frequency of the
SDP booms also plays a role in the spin rate response of the system, as can be seen by the oscillation
occurring in the transient portion of the response that is not present in the boomless responses. The
frequency of this oscillation is approximately 1 Hz, which corresponds to the natural frequency of
the SDP booms, and is especially noticeable in Figure 8.

8



Figure 6: 0.3 rad/s spin rate control displaying insufficient thruster resolution

Figure 7: Spin rate control of 2 rad/s with SDP booms
P = 10, I = 1, and D = 5

9



Figure 8: Spin rate control of 10 rad/s with SDP booms
P = 15, I = -0.15, and D = 5

Figure 9: 2 rad/s. P = 1, I = 0, D = 0

10



Figure 10: 10 rad/s. P = 1, I = 1, D = 1

Attitude Control

Nutation control is independently implemented on TableSat IC, with the center of gravity below
the point of rotation to create a self-stabilizing system. The free nutation response of the system is
measured and compared against the controlled response to examine the effectiveness of the nutation
controller. This comparison can be seen in Figures 11 and 12.

Figure 11: Nutation free response of self-stabilizing system

The free response takes approximately 140 s to damp to a magnitude of ±0.015 rad (±0.86◦),
whereas the controlled response achieves this magnitude in only about 15 s. At steady-state, the
controlled response continues to oscillate instead of damping out due to error introduced by the
test bed’s own thrusters. As mentioned previously, the thrusters are only capable of producing a
certain minimum torque. Therefore, if the thrust needed is smaller than this minimum, the thruster

11



Figure 12: Nutation control of self-stabilizing system

produces further error that the controller will attempt to compensate for. This causes a controlled
oscillation about the set point.

Next, attitude control is examined with the setpoint at a non-zero nutation angle. This produces a
constant external torque on the system, in turn forcing the platform away from the setpoint. For this
test, the desired roll and pitch are 0 and -0.15 rad (−8.6◦), respectively. As can be seen in Figure
13, the platform achieves steady-state in under a second, but continues oscillates about the setpoint.

Figure 13: Nutation control of self-stabilizing system with setpoint not at equilibrium
Px, Py = 5, Ix, Iy = 0, Dx, Dy = 1

The final nutation test is performed by raising the center of gravity of the test platform creating a
less stable system. The location of the center of gravity of the test bed is manipulated by adding and
subtracting spacers between the air bearing and the platform. These spacers effectively change the
location of the center of rotation of the test bed relative the center of mass. The free and controlled
response of this system from a disturbance torque can be seen in Figures 14 and 15. Compared

12



to the stable system, the frequency of oscillation is much lower and takes significantly longer to
settle. The controlled attitude response of the neutrally stable system achieves steady-state after
approximately 4 s. At this point, it oscillates about the setpoint because it is extremely sensitive to
torques caused by the thrusters and sloshing propellant.

Figure 14: Nutation free response of self-stabilizing system

Figure 15: Nutation control of self-stabilizing system

LQR CONTROLLER DESIGN

To implement a Linear Quadratic Regulator (LQR) control algorithm on TableSat 1C, the space-
craft equations of motion are linearized using a first-order Taylor series approximation and put into
state space form. The first-order Taylor series approximation is given by

13



P (x) = f(a) +Df(a)(x − a) (7)

where P is the first-order linear approximation of the multivariable function f and a is the vector
about which the function is linearized. Once in state space form, the state space matrices are used
to calculate an LQR gain matrix that controls the linearized system.

Linearization

To begin, the dynamic equations of motion of a spacecraft given by Equation 8 may be rewritten
as

ω̇ = I−1 (Iω × ω + M) (8)

where M is the vector of external moments, I is the moment of inertia tensor, and ω is the vector
of angular rates. With more detail, Equation 8 is

ω̇x

ω̇y

ω̇z

 =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

−1Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 ωx

ωy

ωz

×

ωx

ωy

ωz

 +

Mx

My

Mz

 (9)

Applying the Taylor series approximation described by Equation 7 to Equation 8 about the point
a = [ωx = 0 ωy = 0 ωz = ω0]

T produces

ω̇ = I−1

ω0

 Iyx (Iyy − Izz) 2Iyz
(Izz − Ixx) −Ixy −2Ixz

−Iyz Ixz 0

ω +

M1 − Iyz ω
2
0

M2 + Ixy ω
2
0

M3

 (10)

Attitude Linearization

In addition to the spacecraft dynamics, the quaternion kinematic equations of motion of a space-
craft given by Equation 2 are also linearized. In more detail, Equation 2 is given by


q̇0
q̇1
q̇2
q̇3

 =
1

2


0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0



q0
q1
q2
q3

 . (11)

However, because q0 and q3 represent the yaw of the spacecraft and because the yaw is continually
changing under spin rate control, these elements will not be directly controlled and can therefore
be set to zero. Applying the Taylor series approximation given by Equation 7 to Equation 11 about
a = [q1 = p1 q2 = p2 ωx = 0 ωy = 0 ωz = ω0]

T produces

14



q̇ =
1

2




0 0 0 0 −p1 −p2 0
0 0 ω0 0 0 0 p2
0 −ω0 0 0 0 0 −p1
0 0 0 0 −p2 p1 0





0
q1
q2
0
ωx

ωy

ωz


+


0

−p2ω0

p1ω0

0




(12)

State Space Representation

Finally, to implement LQR control the linearized equations of motion must be put into state space
form, which is given by

ẋ(t) = Ax(t) + Bu(t) (13)

where x is the state vector, A is the state matrix, u is the input vector, and B is the input matrix.
Combining and arranging the linear equations given by Equations 10 and 12 produces

x =



0
q1
q2
0
ωx

ωy

ωz

1



for a state array. Note that an eighth state was added to the system to include the constants produced
by Equations 10 and 12. The remaining state space components are defined as:

A =



0

0

0

0

0

0

0

0

0

0

−ω0

0

0

0

0

0

0

ω0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

ω0I
−1(

−1
2p1

0

0

−1
2p2

Iyx

(Izz − Ixx)

−Iyz
0

−1
2p2

0

0
1
2p1

(Iyy − Izz)

−Ixy
−Ixz

0

0
1
2p2

−1
2p1

0

2Iyz

−2Ixz

0

0

)

0

−1
2p2ω0

1
2p1ω0

0

−Iyzω2
0

Ixyω
2
0

0

0


,

15



B =



0 0 0

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

0 0 0


, u =

M1

M2

M3



The A and B are then used to calculate the LQR gain matrix after suitable Q and R matrices are
chosen.

16



CONCLUSION

The chosen analytical PID gains differ from those found for the experimental platform. The
difficulty in controlling the nutation and spin rate of the test bed comes from three major sources:
uncertainties in the inertia tensor, uncertainties in the thruster force, and angular velocity noise from
the gyroscope.

Uncertainties in the inertia tensor stem from the fact that the moments of inertia of the test bed are
theoretically calculated and not physically measured. Additionally, as the test platform expels pro-
pellant, its mass changes, therefore changing the inertia tensor. With these uncertainties in inertia,
the center of gravity is difficult to align with the center of rotation, introducing unwanted external
torques on the platform that the controller may not be able to overcome. The new nitrogen-based
propulsion system will reduce uncertainties in the inertia tensor due to the fact that the nitrogen tank
is more symmetric and thanks to the fact that nitrogen won’t slosh like the liquid CO2 does.

The phase change of the CO2 propellant introduces further uncertainty in that it causes pressure
fluctuations in the system, and therefore, fluctuations in the force produced by the nozzles despite
the use of regulators. This issue is no longer a major problem since upgrading to a high pressure
nitrogen system, which does not have the inherent phase change.

Finally, noise in the angular velocity measurements made introducing derivative gains difficult.
A low pass filter is applied to the gyroscope in an attempt to reduce this noise but is not sufficient
for full attitude control. A more advanced filter is needed to reduce these adverse effects.

ACKNOWLEDGMENTS

Funding for this work was granted by NASA Goddard Space Flight Center’s Magnetospheric
MultiScale (MMS) mission through the Flight Dynamics Analysis Branch of the NASA Goddard
Space Flight Center, the New Hampshire Space Grant Consortium, and the Hamel Center for Under-
graduate Research at the University of New Hampshire. Special acknowledgments go to Josephine
San (Former NASA MMS Attitude Control Systems Lead), Sam Placanica (NASA MMS Attitude
Control Systems Lead), Dean Tsai (NASA MMS Attitude Control Systems Member and Aerospace
Engineer), and all other members of the NASA MMS Attitude Control Systems Group. Addition-
ally, special acknowledgments are extended to Dan Couture, Joe Jourdain, Sheldon Parent, and Bob
Champlin for their assistance and advice on this project and to Tom Gross and Robin Reed at NiPro
Optics for their help and generosity in obtaining a precision mirror.

REFERENCES
[1] B. Jenkins, Accelerometer Calibration for NASA’s Magnetospheric MultiScale Mission Spacecraft.

Durham: University of New Hampshire, 2011.
[2] M. Kaplan, Modern Spacecraft Dynamics and Controls. New York: Wiley, 2nd ed., 1989.
[3] N.Mushaweh, An Observer-Based Attitude and Nutation Control and Flexible Dynamic Analysis for the

NASA Magnetospheric Multiscale Mission. Durham: University of New Hampshire, 2007.
[4] B. Wie, Space Vehicle Dynamics and Control. Reston: American Institute of Aeronautics and Astronau-

tics, 1998.
[5] J. R. Wertz, Spacecraft Attitude Determination and Control. Dordrecht: Reidel, 1978.
[6] T. Roemer, N. Aubut, W. Holmes, J. Chabot, A. Jenkins, M. Johnson, and M. L. Thein, “Using the

Magnetospheric MultiScale (MMS) TableSat IB for the Analysis of Attitude Control and Flexible Boom
Dynamics for MMS Mission Spacecraft,” Advances in Astronautical Sciences, AAS 12-244, pp. 2115-24.

17


	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Spring 2013

	NASA Magnetospheric MultiScale Mission TableSat 1C
	Joshua Chabot
	Joseph Kelley
	Michael Johnson
	Recommended Citation


	Introduction
	Experimental Test Bed
	Theoretical Model and PID Control Design
	Experimental PID Controller
	Experimental PID Controller Results
	Spin Rate Control
	Attitude Control

	LQR Controller Design
	Linearization
	Attitude Linearization
	State Space Representation

	Conclusion
	Acknowledgments

