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Pure Science and So Much More: Particle Detector Development in France

—Sam Meehan (Edited by Kristin Brodeur

While it is easy to understand how advances in the applied sciences will benef

question the practical role of fundamental science research and the need to invest money in such research.

However, I learned firsthand the importance of such efforts while working with a new type of particle detector 

called the Micromegas detector. Fundamental physics research like this contributes to the development of new 

technologies that can be used for pragmatic applications in medicine and other fields. For instance, knowledge 

of the proton and its interactions with matt

therapy for cancer patients. In the future, the Micromegas 

detectors may be used in medical imaging. With 

applications like these, it is easy to see why research at 

the fundamental level is necessary not only for the noble 

pursuit of knowledge but to help society advance in the 

twenty–first century.  

With this in mind, in summer 2008 I received funding 

from the International Research Opportunities Program 

(IROP) at the University of New Hampshire to conduct 

research at the Commissariat á l’Energie Atomique 

(CEA) laboratory in Saclay, France, a suburb near Paris.

My objective was to study Micromesh Gaseous Structure 

particle detectors, commonly referred to as Micromegas 

detectors, which were first invented at the CEA in the 

1990s. 

CLAS12 : The Bigger Picture 

Particle detectors come in a wide variety of designs, and all are used to de

interaction; for my research we studied the interaction between an electron and a proton. When a group of 

particle detectors is installed in conjunction with a magnet, the resulting device is called a spectrometer, whic

can be used to filter particles and study only those of interest.

Continuous Electron Beam Accelerator Facility Large Acceptance Spectrometer (CLAS12) international 

collaboration, a fundamental science research in

Virginia, of which the CEA in Saclay is a part. There, the installation of Micromegas detectors will allow for 

experiments using electron beams of energies up to 12GeV (giga electron volts). This

an electron after being accelerated through a 12 billion volt electric potential, and is the source of the name 

CLAS12. 
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While it is easy to understand how advances in the applied sciences will benefit society, people sometimes 

question the practical role of fundamental science research and the need to invest money in such research.

However, I learned firsthand the importance of such efforts while working with a new type of particle detector 

he Micromegas detector. Fundamental physics research like this contributes to the development of new 

technologies that can be used for pragmatic applications in medicine and other fields. For instance, knowledge 

of the proton and its interactions with matter has allowed for the development of a much safer form of radiation 

therapy for cancer patients. In the future, the Micromegas 

detectors may be used in medical imaging. With 

applications like these, it is easy to see why research at 

is necessary not only for the noble 

pursuit of knowledge but to help society advance in the 

08 I received funding 

from the International Research Opportunities Program 

(IROP) at the University of New Hampshire to conduct 

research at the Commissariat á l’Energie Atomique 

(CEA) laboratory in Saclay, France, a suburb near Paris.  

study Micromesh Gaseous Structure 

particle detectors, commonly referred to as Micromegas 

detectors, which were first invented at the CEA in the 

Particle detectors come in a wide variety of designs, and all are used to determine information about a physical 

interaction; for my research we studied the interaction between an electron and a proton. When a group of 

particle detectors is installed in conjunction with a magnet, the resulting device is called a spectrometer, whic

can be used to filter particles and study only those of interest.  Such a spectrometer is the focus of the 

Continuous Electron Beam Accelerator Facility Large Acceptance Spectrometer (CLAS12) international 

collaboration, a fundamental science research initiative underway at Jefferson Laboratories in Newport News, 

Virginia, of which the CEA in Saclay is a part. There, the installation of Micromegas detectors will allow for 

experiments using electron beams of energies up to 12GeV (giga electron volts). This is equal to the energy of 

an electron after being accelerated through a 12 billion volt electric potential, and is the source of the name 

A well–deserved break: Sam Meehan visited the 

Colosseum in Rome after completing his research in 

France. 
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One of the benefits of using a large acceptance spectrometer is that it allows us to study particles in a greater 

area around their interaction point.  Moreover, by increasing the energy of the electrons used, theories can be 

tested on a wide range of parameters, allowing for exploration of new phenomena that may exist only at higher 

energies. A primary aim of this international collaboration of physicists, engineers, and students at Jefferson 

Lab is to study the substructure of the proton.  Empirical measurements necessary for studying the proton 

substructure require the use of very accurate detector systems. By including Micromegas detectors in the inner 

tracking system of the spectrometer, more accurate measurements may be taken. 

To ensure proper operation of these detectors in CLAS12, we must understand how they behave.  My research 

focused on the lateral drift of electrons in the Micromegas detector when under the influence of a magnetic 

field.  My goal in conducting this research and spending time in France was twofold.  First, I hoped to 

contribute to the development of technologies with practical implications beyond fundamental science.  Second, 

I hoped to gain a more global perspective by immersing myself in a culture so different from my own.  

It Does What? How Micromegas Detectors Work  

When installed in the spectrometer, the Micromegas detectors will form a multilayer system that allows 

physicists to reconstruct the trajectory of a particle thereby providing information about the initial interaction 

that occurs in the experiment (Fig. 1).  Each Micromegas detector within this layered system is itself a 

multilayer gas–filled particle detector with a typical construction as shown in Figures 2 and 3. 

 

 

 

 

 

 

 

 

 

 

 

TOP LEFT: Fig. 1 – Micromegas detector set up for 

use in CLAS12.  Three layers of detectors will allow 

for the mapping of the particle trajectory. (2)  

 

TOP RIGHT: Fig. 2 – Micromegas detector 

prototype after bending.  

 

LEFT: Fig. 3 – Close up cross section of 

Micromegas detector showing electrons in the 

amplification gap. (1)  

 



A Micromegas detector is comprised of two thin metal sheets, or electrodes, that create an electric field and are 

separated by very fine wire micromesh. The space between the two sheets is filled with a special gas mixture 

that optimizes the detector’s ability to determine a particle’s location, the energy deposited by a particle, and the 

time of a particle’s detection. The space above the micromesh is called the conversion gap, and the space below 

it is called the amplification region. 

When an energetic particle (e.g. proton, neutron, photon) passes through the detector, a force is created between 

the particle and the electrons in the gas.  This force rips the electrons, usually five to ten of them, away from the 

gas atoms in the conversion gap.  In our experiment, the energetic particles were photons emitted by a laser. 

 

The freed electrons then drift through the micromesh into the 

amplification region.  Because the distance between the micromesh and 

bottom metal sheet is much smaller, a very high electric field exists. 

This amplifies the free electrons, creating thousands of electrons that 

deposit themselves on metal strips running parallel to each other on the 

bottom metal sheet. After the electrons land on the metals strips, a 

voltage signal is sent to computers which analyze the signal to 

determine the particle’s position. 

However, it must be taken into consideration that the high magnetic 

field in the conversion gap forces the electrons to drift laterally along 

the detector before crossing the micromesh.  This means that the 

electrons, which represent the position where the original particle passes 

through the detector, are detected away from where the particle actually 

crosses the detector.  Simulations previously performed at CERN 

(Conseil Européen pour la Recherche Nucléaire) show the drifting 

distance to be quite large (Fig. 4). 

My study aimed to characterize this drifting and determine a way to minimize its effect on determining the 

position of the incident particle. 

Espresso and Lasers: My Study 

After spending a few days learning how these detectors work, I began testing them in different magnetic fields. 

 My days in the lab were filled with long hours taking data and trying to find a balance between understanding 

the French scientists around me and the science in front of me.  They were also filled with the necessary breaks 

for espresso, taken religiously after lunch and at least once, if not twice or more, in the afternoon. With each 

labored conversation over the strong brew, my proficiency in the French language slowly grew. By the last few 

days of the summer, I was able to communicate with my fellow scientists entirely in French. 

 

I set out to characterize the lateral drift of electrons by 

using a parameter called the Lorentz angle (Fig. 5).  I 

used a smaller detector prototype designed to 

exaggerate the electron drifting in order to improve the 

accuracy of the Lorentz angle measurements. This 

prototype was placed in a 1.5 Tesla (T) magnetic field, 

and although this is not as high as the field used in 

CLAS12, it provides a reliable preliminary indicator as 

to how the detector will operate in the 5T magnetic 

field. 

Fig. 4 – Data from CERN simulations 

under normal laboratory conditions in 

CLAS12. (3)  

 

Fig. 5 – Experimental setup used to study the 

Lorentz angle. (4)  

 



We designed two experiments to determine the dependence of the Lorentz angle on different factors.  In the first 

experiment, we set the strength of the electric field between the metal sheets to a constant value and varied the 

magnetic field.  In the second experiment, we set the magnetic field to a constant value and varied the strength 

of the electric field. 

We focused a laser on the detector to simulate incident energetic particles. With no magnetic field, the detector 

functioned as expected and the electrons drifted toward the mesh in the vicinity of where they were first created. 

When the magnetic field was turned on, the electrons drifted by a certain Lorentz angle and were detected at a 

point away from where the energetic particle originally passed into the detector. 

                 

 

 

 

 

 

 

 

 

To determine the Lorentz angle, we used data from the readout electronics to calculate the position of the 

voltage spike, which represents the location where the photons entered the detector. We also determined the 

center of the broader distribution of voltage spikes that appears next to the initial spike and represents the 

electrons’ positions as they drifted across the detector (Fig. 5). We used the distance between these two 

positions to calculate the Lorentz angle.  

In the first experiment, conducted under a constant electric field, a higher magnetic field caused a larger Lorentz 

angle. As the magnetic field increased from 0.2T to 1.3T, the electrons experienced a stronger lateral force and 

were pushed farther across the detector as they drifted to the strips (Fig. 7). 

In the second experiment, conducted under a constant magnetic field, we reduced the window of time the 

electrons had to drift laterally by increasing the drift voltage and thereby creating a higher electric field (Fig. 8). 

As a result, a smaller Lorentz angle was produced. 

Although the magnetic field (1.5T) used in this experiment was not high enough to empirically understand what 

will happen in the CLAS12 environment (5T), it is important to note that the data and simulations were 

LEFT: Fig. 6 – Example of data output from Micromegas detector 

electronics. Seen here is the sharp peak from the laser (left) and the 

drifted electrons (right) (5) 

 

BOTTOM LEFT: Fig. 7 – Plot showing observed Lorentz angle versus 

strength of the magnetic field.  In this test, the electric field in the drifting 

region is constant. 

 
BOTTOM RIGHT: Fig. 8 – Plot showing observed Lorentz angle versus 

drift voltage.  In this plot, there are two runs of experimental data and 

one of simulated data superimposed in different colors.  In these 

experiments, the magnetic field strength was constant. 

 



consistent with previous simulations conducted at CERN.  These data suggest that the simulations adequately 

model the behavior of the detector and that one may decrease the Lorentz angle in high magnetic fields by 

increasing the drift voltage.  Indeed, recent tests performed at   Virginia’s Jefferson Laboratories in a high 

magnetic field have confirmed that the Lorentz angle can be successfully minimized to about 15 to 20 degrees 

by increasing the drift voltage.  

Outside the Lab 

Apart from research, my summer brought a wealth of cultural experiences.  I discovered a true French culture 

separate from the stereotyped ideas held by many Americans.  First, I discovered that the French are not a rude 

and exclusive people.  On many occasions, I found myself engaged in conversation with Parisians I met while 

going about my daily activities. One night, while making dinner in my dorm, I spoke with a French student. 

Upon learning I was American he exclaimed, “Americain! C’est cool!” and insisted we speak English.  This 

seemed to be a habit of many Parisians I met, and despite my attempts to learn French, it was sometimes 

difficult to practice my language skills.  However, to my surprise, near the end of the summer I became quite 

good at holding a conversation, and on a trip to Spain I actually spoke with a man from the Middle East in our 

only common language: French. 

Although my previously held opinion of the French people changed dramatically during my stay, I was pleased 

to find that my preconceptions of French food and drink were confirmed and in many cases exceeded. Every 

day for me was a new adventure in cuisine, even in the dining hall at the CEA.  Some days, as when I tried 

boudin (French blood sausage) and andouillete (sausage from pig intestines), my palette felt bewildered and 

lost.  Other times, when I dined on a Nutella–filled crepe or steaming escargots in garlic butter with a glass of 

Bordeaux, I was in heaven.  The coffee was a special treat for me, and something I discovered the French take 

very seriously.  My mentor, Jacques Ball, said it best by describing American coffee as “a warm brown liquid 

that bears a slight resemblance.” 

The everyday lifestyle in France was new to me.  Relaxed and sincere, the French truly know how to savor all 

of life.  They take time to enjoy the simpler things, whether that may be going to the market on a Sunday 

afternoon or playing football (which was not always a relaxed venture given that half of those playing imagined 

themselves as players of their favorite club).  No matter the situation, I always found plenty of smiles and 

something new to discover. 

Beyond Pure Science 

This project was multifaceted in its purpose and went beyond the research that was being performed.  As 

science advances in the twenty–first century, the sheer size of experiments will require international 

collaborative efforts.  This project introduced me to what it means to be part of a global community and to 

practice fundamental science research with a group of diverse individuals.  It can be difficult with most 

fundamental research to find direct applications for new knowledge, but my study shows great potential in 

several seemingly unrelated fields.  

The first of these is in obtaining a more fundamental understanding of the proton, which is necessary for further 

development of proton radiation therapy for cancer treatment.  As opposed to conventional radiation therapy, 

which often uses x–rays, protons can be controlled in such a way that they deposit their energy at a more precise 

location, thus causing less collateral damage to tissue surrounding the cancer.  Another area where my research 

may be applied is in the development of the Micromegas detectors themselves.  Because these detectors can be 

shaped into a variety of geometric configurations, such as a cylinder, they may be used in medical imaging 

technologies that could encompass entire extremities, such as a head cap to image the brain. Although my 

research was fundamental in nature, it reaches beyond pure academic pursuits and holds much promise for 

producing knowledge and technologies with great benefits to society. 



I would like to extend my infinite gratitude to all those who worked with me and on my behalf to make this 

project possible: The Hamel Center for Undergraduate Research and International Research Opportunities 

Program for giving me this opportunity; Dr. Maurik Holtrop (UNH) and Dr. Jacques Ball (CEA) for mentoring 

me with so much more than just science along the way; and to Dr. Franck Sabatie, Dr. Marouan El Yakoubi, 

Dr. Herve Moutard, and Piotr Konczykowski for everything while at the CEA.   
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A physics major from Chazy, New York, senior Samuel Meehan has spent the last four years at the University 

of New Hampshire seeking opportunities to expand his knowledge of the world. From late May through early 

August 2008, Sam lived in France while he researched particle detectors. The research, funded by the 

International Research Opportunities Program (IROP), was designed to complement research being done for 

his Honors thesis project. “By doing this, it helped me to find a unique type of satisfaction by balancing being a 

student and learning from others with being a researcher and discovering for myself,” he said of the 

experience. 

 

After graduating in May 2009 with a Bachelor of Science in physics and a minor in applied mathematics with 

an honors designation from the University Honors Program, Sam plans to attend graduate school. Ultimately, 

Sam aspires to become a physics professor. “I have always loved learning and discovering and showing others 

the interesting aspects of nature through teaching them what I know,” he said. “I have realized that the more I 

learn, the less I know and [more] I want to discover.” 
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