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research article 

Using Mathematics to Gain Insights into Biology: An Application in 

Respiratory Mechanics 
 

—William Matern (Editors: Stephen Dunn and Clia Goodwin) 

Mathematical biologists try to describe biological phenomena quantitatively using mathematics. This is done by 

developing and analyzing mathematical models, which are sets of mathematical equations that describe the 

behavior of a biological system.  Depending on their form, certain mathematical models are used to obtain very 

detailed and accurate predictions in biological phenomena, while others are employed to gain insights into the 

link between morphogenic (structural) form and biological function.  Both types of models have numerous and 

important applications. 

Mathematical biology is a very broad field. Anyone who has ever tried to use 

mathematics to predict how a population of humans or fish changes over time, 

the chances that a newborn will be color-blind if one of the parents is color-

blind, or the concentrations of calcium and potassium ions in a neuron has 

engaged in mathematical biology.  

Mathematical biology is also a very old field, at least in some aspects. For 

example, population modeling has been performed for hundreds of years. 

 Today, however, the field is rapidly growing, owing largely to the rise of 

computer power.  With the advent of advanced computational capability 

afforded by modern computers, mathematical biologists can create and utilize 

sophisticated mathematical models that would be too complex to be amenable 

to hand calculations. 

Understanding biology using mathematics provides an important complement 

to experimental approaches.  Often, mathematical models can be used to model 

an experiment that cannot be realized in the lab. Whereas lab experiments are 

often done in vivo or in vitro (depending on whether the environment of the 

experiment is being controlled), experiments using only mathematical models (and a computer) are said to be 

done in silico. In silico experiments can be detailed and cheap alternatives to traditional lab experiments. 

However, it is crucial that any in silico experiment be validated via tests conducted in vivo or in vitro. 

Since the fall of 2010, I’ve been involved in mathematical biology research being performed by Dr. Greg Chini 

of the Department of Mechanical Engineering and the College of Engineering and Physical Sciences (CEPS) 

Program in Integrated Applied Mathematics. Currently, I’m a senior majoring in mechanical engineering.  The 

goal of our research is to create a mathematical model that can be used to study the mechanical behavior of wet, 

deformable lung tissue.  Although solutions to our model must be obtained using appropriate computer 

algorithms, the modeling effort is directed toward gaining qualitative insights regarding robust behaviors rather 

than making detailed, quantitatively accurate predictions.  I was awarded a Summer Undergraduate Research 

The author working at his computer. 



Fellowship (SURF) to pursue this research on the UNH campus over summer 2011 and have continued this 

project in partial fulfillment of my senior thesis requirement. Our research is still ongoing.   

The Role of Thin Liquid Films in Lung Mechanics 

Lung mechanics research is often motivated by lung pathologies. According to the World Health Organization, 

diseases of the lower respiratory system constitute the fifth leading cause of human death. Many of these 

diseases impact the overall mechanical function of the lungs.  For example, emphysema leads to a loss of 

elasticity and breakdown of connective tissue.  Infant Respiratory Distress Syndrome (IRDS) is a condition in 

which a substance that reduces the energy required to expand the lungs is not produced, as often occurs in 

prematurely born infants.  IRDS can be fatal.  By gaining insights into the mechanics of lungs and how various 

diseases reduce lung function, we hope to inform clinicians and other medical specialists who might then be 

able to suggest treatments for restoring normal function. 

Interestingly, it has been shown in numerous experiments that the (usually) thin layer of liquid that lines the 

lung airways and other tissues plays a primary role in how mammals breathe (Halliday). In particular, if the 

surface tension of these liquids is suppressed, then the lungs require far less energy to inflate. Conversely, if the 

surface tension of the fluid is high, then the mammal will not be able to expand its lungs properly. In the late 

1950s researchers found that when a certain substance, called a surfactant, is absent from the lungs, surface 

tensions are much greater (Halliday).  (Surfactants are also present in, for example, cleaning detergents.)  In 

mammals, this surfactant, which reduces the surface tension of the liquid, is naturally produced by specialized 

cells in the lungs. 

In humans, these cells usually become active by week 24 of pregnancy, but a normal level of surfactant is not 

reached until around week 34 (Bissinger).  Thus, the earlier a human infant is born, the less surfactant will have 

been produced; and the chance that breathing complications will develop and result in IRDS is increased.  

Fortunately, methods have been developed to treat infants with breathing difficulties.  Often, a human-made 

surfactant, usually derived from bovine lung surfactant, is added to the infant’s lungs (Bissinger). In many cases 

this eliminates the danger to the infant. Though these methods are empirically effective, a well-founded theory 

to explain in detail how the mechanics of the lungs are affected by the addition of surfactant is lacking.  Some 

open questions include:  How much surfactant should medical staff add? Which of the numerous proposed 

surfactants is best to use?   How does the surfactant flow through the bifurcating airways into regions in which 

the air sacs are collapsed?  How is airway re-opening achieved?  Theoretical investigation of lung mechanics 

aims to shed light on these and other related questions. 

Creating the Mathematical Model 

Mathematical modeling cannot be completely reduced to a recipe or algorithm but remains, at least in part, an 

art.  The formulation of an appropriate model depends heavily on the nature of the information being sought, 

e.g., qualitative versus quantitative or mechanistic understanding versus statistical description, and requires the 

retention of certain elements, the omission of others, and the approximation of still others. 

In developing a mathematical model of the lung mechanics, Dr. Chini and I were motivated by the desire to 

address a fundamental question concerning human respiratory mechanics:  how is the overall behavior of the 

lung, as would be manifested on machines in a clinician’s office, connected to the mechanical behavior of the 

lung microstructure, which is on scales less than the thickness of a human hair?  We were particularly interested 

in retaining key ingredients relating to geometrical, elastic, and liquid film (surface tension) properties of the 

lung. 



For information about the geometry of the lungs, we referred 

to anatomy journals and texts. For the behavior of the tissue, 

we relied on models supplied by researchers based on 

laboratory experiments. We idealized the aqueous liquid film 

as a “Newtonian” incompressible fluid, as commonly assumed 

for watery liquids.  Finally, given these assumptions about 

tissue, liquid film, and geometrical properties, we expressed in 

mathematical form the fundamental laws of nature—

specifically, Newton’s second law of conservation of mass 

and momentum— to obtain a mathematical model describing 

the response of the system to imposed external forces. 

The structure of mammalian lungs has been described in detail 

by physiologists, providing an accurate picture of how the 

lungs look, down to a microscopic level.  Figure 1 shows a 

picture of an actual cross-section of lung tissue in a mammal. 

 The lungs consist of a system of flexible tubes, or airways, 

that repeatedly branch out from one large tube (the trachea) to 

form smaller and smaller tubes The openings formed by the 

connecting tissue, which in three-dimension look like tiny 

balloons of air, are called alveoli. Eventually each of these 

tiny tubes is capped by a raspberry-like cluster of alveoli.  

During inspiration, the alveoli stretch out like a million tiny 

balloons and then deflate during exhalation.  (Figure 2)  

Although commonly described as balloons, alveoli are more 

accurately represented as interconnected polyhedrons. In fact, 

the detailed topology of the alveolar surface is exceedingly 

complex and difficult to describe mathematically. Including 

every detail in a mathematical model is neither feasible nor 

desirable, and some simplifications must be made. Therefore, 

for our model, we simplified the geometry of the alveoli into a 

two-dimensional system of hexagonal air sacs defined by 

simple straight connective tissue. (Figure 3) This 

simplification is a reasonable approximation of the cross-

section of lung tissue and consequently can still capture many 

of the details of the inflating alveoli.  

Researchers have used a variety of “constitutive” equations to 

describe the mechanical, i.e., stress/deformation, properties of 

alveolar tissue. We are comparing how these different 

representations of alveolar elasticity affect the results of our 

model of alveolar mechanics. To model the liquid that lines 

the alveolar tissue, we referred to a special branch of fluid 

mechanics called lubrication theory, according to which the 

governing equations of mass and momentum conservation can 

be combined and greatly simplified. Lubrication theory is apt 

for thin liquid films, and we used it to describe the flow of 

alveolar liquid driven by motion of the lung tissue and by 

surface tension-induced, or capillary, pressure gradients within 

the film. 

Figure 3: A mathematical diagram of a two-

dimensional network of alveoli, which simplifies 

the real geometry of figure 1. 

Figure 1 (top): A cross-section of a real mammalian 

lung. 

(www.technion.ac.il/~mdcourse/274203/lect13.html) 

 

Figure 2 (bottom): The connective tissue of the 

alveoli as seen with an electron microscope. Note 

that the tissue is far from smooth and therefore 

difficult to describe mathematically. (European Lung 

Foundation) 

 



 Dr. Chini and I proceeded with the analysis by focusing on a single wall, or septum, of an alveolus. The 

diagram in Figure 4 shows a simplified system of the wall of an alveolus and its liquid film as the lung expands 

and contracts. By understanding how a single alveolar septum behaves, we can then begin to investigate how a 

large network of septa and alveoli responds to forces or displacements imposed at the boundaries of the 

network. Of prime importance is finding the conditions under which the alveoli will fully collapse. Under these 

conditions, termed atelectasis, the alveoli are difficult to re-inflate and respiratory distress can ensue. If the 

conditions for onset of atelectasis can be found theoretically, then this may help chemists and medical 

researchers design improved surfactant treatments.  

As noted previously, it is important to validate the mathematical model with experimental results. A common 

experiment performed on mammalian lungs is to monitor how the pressure (P) and volume (V) of air within the 

lungs change on inspiration and 

exhalation. This data is often 

conveniently expressed as a graph 

depicting P-V curves, and they are 

specific to a lung. We hope that in its 

final form the mathematical model 

we develop can be used to predict —

and understand—these curves based 

only on the geometry of the lungs 

and measureable properties of the 

connective tissue and surfactant. If 

the results of the mathematical model 

are sufficiently similar to the results 

from experimental data, then this will 

confirm our analysis.  

 

However, at present, we are far from 

being able to obtain in silico results 

that are comparable to those from an 

in vivo experiment. 

 

Research Challenges 

It is the rule rather than the exception that research investigations are fraught with unforeseen obstacles. In our 

project, we were able to write down a mathematical model describing how the liquid surfactant and a single 

wall of an alveolus move and deform when these components interact. However, the resulting equations were 

very complicated and could not be solved exactly analytically. Therefore, as has become common in various 

science and engineering disciplines, we sought approximate solutions to the equations. Owing to the number of 

calculations required to find the approximate solutions, we programmed a computer to automate the 

computations. There are numerous methods for finding numerical approximations to the solutions of various 

equations; the entire field of numerical analysis was developed to create and analyze these methods. 

Nevertheless, despite implementing five different numerical algorithms, we have not been able to obtain 

reasonable approximate solutions to our mathematical model. While the computer program operates properly, 

the approximations that it outputs are not close to the true solution.  

An obvious question is: How can we judge a numerical approximation to be incorrect without knowing what the 

“true” solution is? The answer is that the computer-generated solution lacks some of the properties we expect to 

see in the true solution. Specifically, we expect the surface of the liquid film to be relatively smooth, but we 

observe that in the approximate solutions, it is jagged. Some of the difficulties seem to stem from the disparate 

Figure 4: A diagram of the wall of an alveolus. A liquid film rests on the wall. The 

film is described by a height (H), and the position along the wall (substrate) is 

described by the length variable (s). (t) represents the time elapsed during 

expansion and contraction of the wall. 



response times of the solid tissue and liquid film to imposed displacements as well as to the strongly nonlinear 

dynamics of the hybrid solid/liquid system. We are hopeful that our present attempts to find an approximate 

solution will be successful. 

Future Directions 

Once we have a working method for obtaining numerical solutions to our mathematical model, we aim to 

extend the model to encompass a network of walls connected to each other as shown in Figure 3.  This network 

model should exhibit many similar mechanical phenomena as are expected to occur in actual lungs.  With the 

appropriate choice of parameters, such as the length of the alveolar septa and the viscosity of the liquid film, as 

informed by experimental results, we hope that by investigating different scenarios in our model we can 

predict—at least qualitatively—what would happen in the real lungs under those same conditions. 

For example, we plan to consider the impact of different surfactants on surface tension levels.  We will run our 

computer program to estimate how much the tissue network dynamics change when surfactants of different 

strengths are used.  From these results, we will seek a relationship between surface tension and the probability 

of atelectasis.  We are also interested in understanding how the mechanics of the lungs change in diseased 

states.  For example, we plan to modify by adjusting the parameter value controlling the tissue stiffness to 

mimic the effects of an emphysematic lung.  A related change can be implemented to model the effects of cystic 

fibrosis.  The goal of producing these “diseased state” models is to understand in detail how the mechanics of 

diseased lungs differ from those of healthy lungs and to identify potential ways to restore normal behavior.  

The Future Promises of Mathematical Biology  

The potential positive impacts of mathematical biology research are immense.   One goal is to create models 

that can be widely used.  A famous example of a mathematical model based on experimentation is the one 

derived by Hodgkin-Huxley for which Hodgkin and Huxley won the Nobel Prize in physiology in 1963. It is 

widely used to predict how electric current travels through the membranes of nerve cells. The model was 

developed by doing numerous experiments on large nerve cells found in squids. The large size of these nerve 

cells was the key to the development of the model because the two researchers could connect measurement 

instruments directly to the individual cells. From the data they collected, they were able to develop a 

mathematical model that could accurately predict the electrical properties of these nerve cells. Due to the 

similarity between the squid nerve cells and the nerve cells of other organisms, this model is often applied to the 

study of nerve cells in many species. 

The Hodgkin-Huxley model illustrates a particular mathematical model widely used by biologists and 

biomedical researchers.  This model was derived from experimental data and is thus an accurate representation 

of real life.  Many other mathematical models for phenomena in biology have been created similarly.  These 

include models for the chemical reactions occurring within cells (systems biology), electrical models of cells in 

the heart for studying defibrillation, and models for diabetes (Yi et al.; Boutayeb and Chetouani).  In our 

research, we combine a number of already developed mathematical models to make predictions about data. 

Each of these models is derived by a researcher from experimental data. 

The reach of mathematical biology has grown tremendously owing to the rise in readily available high-

performance computational resources.  Many mathematical models (including our own) require that a huge 

number of equations be solved repeatedly, which was impossible to do with early computers.  However, 

improvements in both computer hardware and numerical algorithms have enabled solutions to many 

mathematical models to be obtained that would not have been possible even five years ago.  Indeed, having 

powerful computers available allows for more accurate predictions, and many problems that were once too hard 

for the previous generation of computers can now be solved. 



Accurate mathematical models allow for a precise understanding of biological phenomena.  This precision 

opens the door to a new kind of bioengineering where prototype designs can be evaluated in detail before the 

prototypes are manufactured.  These prototypes could be of artificial organs, new pharmaceuticals, or even 

completely novel organisms.  The ability to design effectively these prototypes would constitute a major 

scientific advance and perhaps lead to breakthroughs in industrial processes, biofuel production, and the 

treatment of disease.  It’s exciting to think ahead to what might be accomplished in the next fifty years. 

I would like to thank my mentor, Dr. Greg Chini, for getting me involved in this research and providing advice 

throughout the project. Thank you to the Hamel Center for Undergraduate Research for funding me over 

summer 2011 to pursue this project.  
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