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Malaria parasites and their consequences 
 

 

INTRODUCTION 
 

 
 

Importance of parasites 
 

 
 

The  human  population  living  nowadays  in  the 

planet is approximately 7,000 millions of people 

(George  2009).  This  figure  is  increasing  each 

minute with the number of births taking place in 

the whole world (330 new babies / minute) (Cohen 

2003). However, these data become insignificant if 

we  compare  them  with  the  number  of  parasite 

living   in   the   Earth.   Every   living   organism, 

including humans, has at least one parasite that 

lives inside or on it, and many have far more. 

For instance, some frog species may harbor a 

dozen species of parasites, including nematodes 

in their ears, filarial worms in their veins, and 

flukes in their kidneys (Lees 1962). 

Additionally, a bird can carry on its feathers 

more than 30 different species of mites (Jovani 

and  Blanco  2000).  Concerning  humans,  one 

third of the population is infected by the bacteria 

causing tuberculosis (Mycobacterium tuberculosis) 

(Álvarez et al. 2009) and around 300-500 million 

of people get the infection by Plasmodium spp. 

each  year  (Gardner  et  al.  2002).  Taking  into 

account  the  broad  presence  of  parasites  in  the 

Earth, it is logical to think that humans, despite 

having colonised the whole word, are not the most 

widespread  organism  in  the  planet.  In  fact,  the 

most ubiquitous organisms all over the world are 

parasites, as they do not infect only humans but 

also  the  rest  of  animal  species,  plants,  fungus, 

bacteria and viruses (Bush et al. 2001). 

Similarly to the rest of vertebrates, birds 

coexist with a great number of parasites (Clayton 

and Moore 1997). Parasites may  exert a strong 

selection pressure in birds, determining life 

histories of their avian hosts. For example, the 

Hamilton and Zuk hypothesis posits that sexual 

ornaments are indicators of parasite and disease 

resistance (Hamilton and Zuk 1982) demonstrating 

the role of parasites provoke in the mate choice of 

birds. Therefore, due to the intense selection that 

parasites may exert on their avian hosts, the 

relationships found between birds and their 

parasites are an increased source of knowledge for 

evolutionary science (Loye and Zuk 1991). As a 

consequence, the number of studies exploring this 

host-parasite relationship in birds has increased in 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the last twenty years (Figure 1). 
 

Figure 1. Increase in number of articles published 

within the framework of “avian host-parasite” over 

the period 1960 – 2014. The figure is based on a 

literature search in the ISI-Web of Science 

(Thomson, December 2014). 

Avian malaria and related haemosporidian 

are one of the most studied bird parasites (e.g. 

Garamszegi 2011; Howe et al. 2012; Podmokła et 

al. 2014). They are diverse and abundant 

organisms infecting several hundred species of 

birds in almost all continents (Van Riper III et al. 

1986; Valkiūnas 2005). As a consequence of the 

infection, haemosporidian parasites may provoke 

detrimental effects on their avian hosts affecting 

survival  (Van  Riper  III  et  al.  1986;  Valkiūnas 
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2005), diminishing host body condition (Merino et 

al. 2000; Valkiūnas et al. 2006) and decreasing 

reproductive success (Merilä and Andersson 1999; 

Asghar et al. 2011). Within the suborder 

Haemosporina, the genera Plasmodium, 

Haemoproteus and Leucocytozoon are the most 

abundant avian parasites. Their life cycle is quite 

complex, involving both sexual and asexual stages. 

Their transmission from infected to uninfected 

hosts usually involves the presence of arthropod 

vectors. These vectors are different among the 

three genera: blood-sucking mosquitoes are the 

main vectors of avian Plasmodium, whereas biting 

midges and hippoboscid flies are the vectors of 

Haemoproteus and simuliid flies transmit 

Leucocytozoon (Valkiūnas 2005). 

Despite the large number of researches 

focused on haemosporidians parasites in recent 

years, there is still limited knowledge on many 

different issues concerning host-parasite 

interaction. i) For example, several studies have 

shown a relationship between parasite infection 

and the behaviour of their hosts (see review in 

Moore 2002), but the link between haemosporidian 

parasites and the escape behaviour of their avian 

hosts remains unknown. ii) Moreover, no study has 

previously experimentally tested the effect that 

malaria parasite may provoke in the escape 

behaviour of their avian host. iii) Furthermore, 

despite the ability of Plasmodium relictum 

lineages to be present in almost all continents 

(Snow et al. 2005; Palinauskas et al. 2007) and 

their invasiveness in many island avifauna (Van 

Riper III et al. 1986; Howe et al. 2012), no study 

has shown the presence of the malaria lineage P. 

relictum SGS1 infecting birds in mainland 

Americas.  Other issued needing a deeper analysis 

is the identification and detection of essential 

genes involved in the life cycle of avian malaria. 

Although some of these essential genes have been 

analyzed (Escalante and Ayala 1994), there is still 

a significant number of crucial genes that have not 

been detected. iv) For instance, the chitinase gene, 

a critical gene allowing to malaria parasite 

trespassing the midgut of the mosquito (Tsai et al. 

2001; Li et al. 2004), has not been identify in one 

of the most widespread and harmful avian malaria 

parasite, P. relictum. v) Similarly, the MSP1 gene, 

required for allowing the entrance of the malaria 

parasite to the red blood cell (Gerold et al. 1996) 

has been scarcely used for epidemiological studies 

of birds  (Hellgren et al. 2014). vi) Finally, the 

number of studies that have correlated the effects 

of haemosporidian infection on feather grow rate 

are still limited, and they are mainly focus on one 

single species (e.g. Marzal et al. 2013a, Marzal et 

al. 2013b). 

These issues constitute the main research 

core of this thesis. Next each of these aims of 

studies will be briefly introduced. 

 
 

Blood parasites and bird escape behaviour 
 

 
 

The first means of avoidance of predation is 

fleeing, as reflected by flight initiation distance in 

birds when a predator is approaching (Hediger 

1934; Blumstein et al. 2006). But once a bird is 

already captured by a predator, a suite of different 

behaviours are usually performed by the birds in 

order to escape from the hunter (Møller et al. 

2011). Among others, escape behaviour includes 

the intensity with which a captured individual 

wriggles to escape, biting, loosing feathers, 

displaying    alarm    and    distress    calls,    and 
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maintaining a tonic immobility as a behaviour akin 

to feigning death (Møller et al. 2006). 

Parasites may affect different aspects of 

host behaviour in ways to increase their own 

fitness (Moore  2002;  Schmid-Hempel 2011).  In 

this sense, the behavioural manipulation 

hypothesis posits that manipulation of host 

behaviour by parasites must confer fitness benefits 

to the parasite, usually by achieving higher 

transmission success than conspecifics that are 

unable to modify their host behaviour (Lefèvre et 

al. 2008; Poulin 2010). For instance, it has been 

shown that Plasmodium gallinaceum is able to 

increase the biting rate of its mosquito vector 

Aedes aegypti, leading to an increase in its 

transmission success (Koella et al. 2002). Also, 

Cornet et al. (2013) experimentally demonstrated 

that infected birds attracted a significantly higher 

number of vectors than uninfected ones. Results 

from these studies suggest that malaria parasites 

may manipulate the behaviour of their invertebrate 

hosts (vectors) to increase their own transmission. 

However, whether haemosporidian parasites may 

influence behaviour of their bird hosts is largely 

unknown (Dunn et al. 2011; Garcia-Longoria et al. 

2014). With this aim, in chapter I the relationship 

between haemosporidian infection and the escape 

behaviour of different species of birds will be 

explored. In addition, the effects of malaria 

infection on the escape behaviour of house 

sparrows will be experimentally studied in chapter 

II. 

Plasmodium relictum SGS1 as invasive malaria 

species in South America 

 
 
In last centuries, many species have been 

successfully introduced and become invaders in 

many parts of the world (Hatcher and Dunn 2011). 

Malaria and related haemosporidian parasites have 

also been introduced in different areas of the 

world. Plasmodium relictum is among the most 

invasive species of avian malaria, being 

responsible of mass mortality and even extinctions 

of many native bird species worldwide after its 

introduction outside its native range (Van Riper III 

et al. 1986; Valkiūnas 2005). As a consequence, 

the International Union for Conservation of Nature 

(IUCN) classifies avian malaria P. relictum to be 

among the 100 of the world’s worst invasive alien 

species (Lowe et al. 2000). 

The application of modern molecular 

methodologies based on DNA sequencing has 

allowed the identification of different DNA 

lineages linked to different morphospecies of avian 

haemosporidians (Bensch et al. 2000; Bensch et al. 

2009). For example, based on partial sequences of 

the cytochrome b gene, GRW4 and SGS1 are two 

lineages of morphospecies Plasmodium relictum 

with different distribution areas. While P. relictum 

lineage SGS1 is a widespread and actively 

transmitted parasite lineage in Europe, Africa and 

Asia (Palinauskas et al. 2007), the geographical 

range of P. relictum lineage GRW4 includes New 

Zealand, Africa, Asia and the Americas (Beadell et 

al. 2006; Marzal et al. 2011). Both sister parasites 

lineages might easily switch to new hosts and 

invade new areas (Beadell et al. 2006; Hellgren et 

al. 2009). Therefore, it becomes crucial to identify 

the   geographical   distribution   of   P.   relictum 
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lineages and their infection prevalence in birds. 

With this aim, the presence of SGS1 in 

Neotropical birds from two different areas of Peru 

will be analyzed in chapter III. 

 
 

Identification and characterization of chitinase 

gene in Plasmodium relictum 

 
 

Arthropod vectors develop a protective peritrophic 

membrane (PM) around their midgut after each 

blood meal (Sieber et al. 1991). This membrane 

may act as a barrier blocking the penetration of 

blood parasites and thus not allowing them to 

spread to other organs (Ghosh et al. 2000). Hence, 

malaria parasites should overcome this barrier 

(PM) in order to complete their life cycle. The 

mechanism that allows malaria parasites to go 

through the PM of their vectors is well known. For 

example, Plasmodium ookinete has been shown to 

be able to cross this barrier by secreting a chitinase 

allowing them to trespass the PM (Tsai et al. 2001; 

Kadota et al. 2004; Li et al. 2004). Therefore, the 

secretion of chitinase is an essential step in the 

completion of the life cycle of malaria parasites. 

The diversity and structure of chitinase 

gene has been well studies in rodent, primate and 

human malaria (Li et al. 2005). Plasmodium 

gallinaceum has been the primary model for 

studies related with chitinase function in avian 

malaria (Sieber et al. 1991; Shahabuddin et al. 

1993). However, this species mainly affect poultry 

species, and it is not the most common malaria 

parasite in wild birds. Plasmodium relictum is the 

most widespread and harmful avian malaria 

parasite (Bensch et al. 2009). However, no study 

has searched for the presence and identification of 

the  structure  of  chitinase  gene  in  this  malaria 

species. With this aim, the presence, structure and 

genetic variability of the gene encoding for 

chitinase will be analyzed in chapter IV in the two 

most widespread lineages of P. relictum (SGS1 

and GRW4). 

 
 

Detection of MSP1 gene in house martins 

infected by P. relictum 

 
 

The merozoite surface protein 1 (MSP1) is 

essential for malaria parasite in the erythrocyte 

invasion process. During erythrocytic schizogony 

(merogony), MPS1 is anchored to the parasites’ 

cell membrane allowing the entrance of  the 

malaria parasite to the red blood cell (Gerold et al. 

1996). Because its high variability this gene has 

been used to infer the structure and 

phylogeograhpy in populations of primates 

(Noranate et al. 2009; Kang et al. 2012; Pacheco et 

al. 2012; Tanabe et al. 2013). Similarly, Hellgren 

et al. (2013) identified the avian MSP1 gene, 

allowing futures studies to detect this gene in birds 

infected with P. relictum lineages (SGS1 and 

GRW4). 

The global distribution of MSP1 allele in 

Plasmodium relictum lineages has been recently 

shown (Hellgren et al. 2015). This finding allows 

future studies to explore the genetic variation of 

these lineages among different populations of 

birds. Because migratory movements in birds may 

facilitate the spread of blood parasites (Santiago- 

Alarcon et al.  2013),  migratory  birds can  carry 

lineages of Plasmodium parasite to new areas 

facilitating the spread of the disease. The house 

martin (Delichon urbica) is a well-know migratory 

passerine. This species migrates  from Africa to 

Europe  every  spring  to  breed.  Once  bred  is 
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complete, adult house martins and new-born 

individuals travel back to their African wintering 

quarters (Cramp and Perrins 1994). Plasmodium 

relictum SGS1 and GRW4 are widespread 

parasites. SGS1 can be found in some African and 

European resident bird species (Hellgren et al. 

2009). In addition, GRW4 has been detected in 

some New Zealand, Africa, Asia and America 

resident species (Beadell et al. 2006; Marzal et al. 

2011). Thus, GRW4 and SGS1 can be found in 

almost all continents. Despite previous  studies 

have shown that house martins may be infected 

with SGS1 (Marzal et al. 2008), the area where 

this species catch the infection remains unknown. 

Because house martins are exposed to both African 

and European parasite fauna, the infection by P. 

relictum could take place in one, another or both 

areas. In chapter V it will be analysed the diversity 

of MSP1 in order to shed light on  the malaria 

infection of the house martins and thus 

determining where do house martins get the 

infection by P. relictum. 

 
 

Feather grow rate and malaria parasites 
 

 
 

Feathers are essential for flight, but they can also 

provide streamlining, insulation, camouflage, 

waterproofing and may act as sexual traits 

involved in female mate choice (Proctor and 

Lynch 1994). Daily activities such as rubbing, 

preening and dust bathing all subject feathers to 

physical abrasion that causes wear in the plumage 

(Butler and Johnson 2004). As damage 

accumulates, the functional properties of feathers 

are compromised, and hence birds must replace 

them in order to maintain plumage functions in a 

process named moult. During moult period birds 

may suffer from a higher exposition to predators 

(Lind 2001), a reduction on its flight performance 

(Williams and Swaddle 2003) and a decrease in 

thermoregulation (Ginn and Melville 1983). 

Hence, natural selection should favour the 

regeneration of feathers as rapidly as possible. 

However, moult requires a significant investment 

of energy such as changes in nutritional demands 

(Klaassen 1995; Murphy 1996) or reallocation of 

resources among organs and functions (Murphy 

and Taruscio 1995; Murphy 1996; Nava et al. 

2001). Because resources are usually limited, the 

rate of feather growth during moult can be affected 

by factors such as body condition, nutritional 

status, physiological stress and diseases 

(DesRochers et al. 2009; Moreno-Rueda 2010; 

Vágási et al. 2012). 

 
Although some  studies have  shown  that 

blood parasite infection are linked with moulting 

(Morales et al. 2007; Tarello 2007, but also see 

Allander and Sundberg 1997), the negative 

correlation between malaria parasites infection and 

feather growth rate has only been shown in a 

migratory species (Marzal et al. 2013b; Marzal et 

al. 2013a). In chapter VI it will be explored 

whether haemosporidian infection may affect 

feather growth rate in the resident house sparrow 

Passer domesticus. Moreover, this negative 

relationship will be also experimentally tested in 

captivity to assess whether malaria parasites 

decrease feather growth rate of their hosts by 

breaking up any correlation with potentially 

confounding variables. 
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AIM OF THE THESIS 
 
 

The general goal of this thesis was to obtain a 

better understanding of the consequences of 

haemosporidian parasites infection in birds, 

combining different sources such as observational, 

experimental and molecular data. Although along 

this thesis malaria parasites (Plasmodium) was the 

main focus, others haemosporidians genera 

(Haemoproteus and Leucocytozoon) were also 

analyzed. 

Specifically, six aspects of host-parasites 

interactions were analyzed. The main objectives of 

the thesis can be listed as follows: 

1. To analyze the relationship between 

haemosporidians parasite prevalence and 

escape behaviour in different species of 

birds (chapter I). 

 
 

2. To experimentally test whether malaria 

parasite may provoke any alteration in the 

escape behaviour of house sparrows 

(chapter II). 

 
 

3. To examine the prevalence and genetic 

characterization of avian malaria and 

related haemosporidian parasites in 

Neotropical birds from two different 

regions of Peru (chapter III). 

 
 

4. To identify the gene encoding for the 

chitinase in one of the most widespread 

and harmful avian malaria parasite 

(Plasmodium relictum) (chapter IV). 

 
 

5. To detect the merozoite surface proteine 1 

(MSP1)  in  Plasmodium  relictum  (SGS1 

and GRW4 lineages) infecting house 

martins with the aim  to identify the 

potential areas of transmission (chapter 

V). 

 
 

6. To explore whether malaria parasites may 

affect feather growth rate in the resident 

house sparrow under natural and 

experimental conditions (chapter VI). 

 
 
 

MATERIAL AND METHODS 
 
 

Study species 
 
 

In Chapter I, an extended data set was used in 

order to estimate the relationship between 

haemosporidians parasites and escape behaviour. 

The analyses on the relationships between the 

escape behaviour of the hosts and the blood 

parasite infection were carried out in 85 

Passeriform species. 

House sparrows are one of the most 

widespread and ubiquitous bird species (Summers- 

Smith 1988). Moreover, this species shows high 

prevalence and diversity of haemosporidians 

parasites, being one of the most parasitized 

passerine species (Marzal et al. 2011; MalAvi 11- 

09-2014; Bensch et al. 2009). Hence, a 

considerable number of studies have chosen this 

bird species as a model for blood parasites studies 

 Lima et al. 2010; Loiseau et al. 2011; Coon 

and Martin 2014). Because the distribution and the 

high parasite prevalence shown by this species, 

house sparrows were used to explore the 

relationship between Plasmodium prevalence and 

escape behaviour (chapter II) and to test the effect 

of malaria parasite in both feather grow rate and 
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condition  assessments (chapter VI). 
 

 
 

Figure  2:  A male  house  sparrow  in  its  natural 

habitat. 

 
 

The house martin is a migratory species 

from the Hirundinidae family (Cramp and Perrins 

1994). House martins show a high fidelity to their 

area of hatching and nesting. This feature makes 

them the perfect avian model in order to determine 

the effect of malaria parasite in their range of 

survival among time. Because of the 

aforementioned characteristics, this model species 

was used to explore the infection dynamics 

between Europe and Africa (chapter III). 

 
 

Figure 3: House martins feeding in their natural 

habitat. 

Areas of study 
 

 
 

The information on escape  behavior  (chapter I) 

was derived from a previous study of extensive 

capture of birds during 2008–2012 in Denmark, 

Sweden, and Ukraine. Breeding birds were studied 

in Northern Jutland, Denmark and Chernobyl 

(51°16’N, 30°13’W) Ukraine, while non-breeding 

birds were studied during migration in Northern 

Jutland, Denmark and at Ottenby Bird Observatory 

(55°11’N, 23°56’W). 

House sparrows were captured from a 

population placed at the university campus of 

Badajoz (38°52’N, 6°58’W), southwest Spain. 

Experimental studies (chapter II and chapter VI) 

were carried out in the aviaries of  the 

Experimental Garden in the University of 

Extremadura. 

Neotropical species studied in chapter IV 

were captured from different areas of Peru: 

Pantanos de Villa wetland Reserve, a RAMSAR 

protected area in the south of Lima including a 

complex of lagoons, pools and marsh areas of 

Pacific coast (12°12’S, 76°59’W; 10 masl), and 

Huánuco region, located between the eastern slope 

of the Andes Mountain Range and the Amazon 

plain (9°55’S, 76°14’W; 1894 masl). 

 
Samples from house martins were obtained 

from a colony of in the surroundings of Badajoz 

(38°52′N, 7°05′W), south-western Spain (chapter 

V). 

 
 

Behavioural variables (chapter I and II) 
 

 
 

Six aspects of escape behaviour were assessed 

before the bird was ringed and released. Several of 
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these variables have been related to susceptibility 

to predation by cats and hawks (Møller et al. 

2011). These six behavioural variables were 

defined as follows: 

(1) Wriggle score. This variable scored how 

much the bird struggled while being held 

in a hand (a score of 0—no movement, 

1—moves rarely, 2—moves regularly, but 

not always, 3—moves continuously). 

Individuals that wriggle more may more 

readily escape from a predator compared 

to individuals that stay calm. 

 
(2) Biting. Whether the bird did not bite, it 

was given a score of 0, and if it did a score 

of 1. It is presume that a higher frequency 

of biting entails an elevated probability of 

escape from a predator because the 

predator loses its grip when re-directing its 

attention towards the biting prey. 

 
(3) Feather loss. While the bird was handled, 

if it lost feathers it was given a score of 1, 

or 0 if it did not. Feather loss may result in 

predators losing their grip of  a prey 

(Møller et al. 2006). 

 
(4) Distress call. This variable is also called 

fear scream. While the bird was handled, if 

it gave a fear scream (a score of 1) or not 

(a score of 0). Birds giving fear screams 

attract the attention of secondary predators 

thereby increasing the probability of 

escape once captured (Högstedt 1983; 

Møller and Nielsen 2010). 

 
(5) Tonic immobility. At the end of the above 

procedure the bird was placed, just before 

it was released, in the right hand on its 

back on the flat left hand. When the bird 

was lying still, the right hand was removed 

and the time until the bird righted itself 

and flew away was recorded. Tonic 

immobility is a standard measure of fear in 

poultry research with both environmental 

and genetic components (Hoagland 1928; 

Jones 1986; Boissy 1995; Forkman et al. 

2007). More recently, Edelaar et al. (2012) 

showed that tonic immobility is related to 

personality and anti-predation behaviour 

because it is a measure of boldness toward 

predators. The longer time a bird stays, the 

higher its level of fear. Tonic immobility 

has a strongly bimodal distribution, with 

most individuals having tonic immobility 

of 0–5 s, but some 10–20% having 25–30 

s as shown by (Møller et al. 2011). 

 
(6) Alarm call. This variable measures 

whether the bird gave an alarm call (a 

score of 1) or not (a score of 0) when it 

departed. It has been suggested that the 

function of this call is to distract the 

predator or to warn conspecifics (Charnov 

and Krebs 1975; Platzen and Magrath 

2004). 

 
 

Molecular detection and sequencing of blood 

parasite infections (chapter I – VI) 

 
 

In order to analyse the prevalence and genetic 

diversity of avian haemosporidian parasites, one 

microcapillary of blood (70 μl) was obtained from 

the brachial vein of each individual and stored in 

500 μl of SET buffer (0.15 M NaCl, 0.05 Tris, 

0.001 M EDTA, pH 8.0) until DNA extraction. 
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Haemosporidian parasites (Plasmodium 

spp. and Haemoproteus spp.) were detected from 

blood samples using molecular methods (Bensch 

et al. 2000; Waldenström et al. 2004). DNA from 

the avian blood samples were extracted in the lab 

using the standard 

phenol/chloroform/isoamylalcohol method 

(Sambrook et al. 2002). Diluted genomic DNA (25 

ng/µl) was used  as a template in a polymerase 

chain reaction (PCR) assay for detection of the 

parasites using nested PCR-protocols described by 

Waldenström et al. (2004). The amplification was 

evaluated by running 2.5 μl of the final PCR on a 

2% agarose gel. All PCR experiments contained 

one negative control for every eight samples. In 

the very few cases of negative controls showing 

signs of amplification (never more than faint bands 

in agarose gels), the whole PCR-batch was run 

again to make sure that all positives were true. All 

positive amplifications were precipitated and 

sequenced in order to identify the species and 

lineage in each infection. The obtained sequences 

were edited, aligned and compared in a sequenced 

matrix using the program Bioedit (Hall 1999). 

Once P. relictum (SGS1 and GRW4 lineages) 

species were detected, a set of primers developed 

by Hellgren et al. (2013) were used in order to find 

out the MSP1 gene (chapter V). Similarly, samples 

from individuals infected with P. relictum (SGS1 

and GRW4 lineages) were used in order to identify 

the chitinase gen (chapter IV). 

 
 
Measurement of the feather grow rate (chapter 

VI) 

 
 
With the aim to assess the feather growth rate, the 

right  outermost  tail  feather  was  plucked  from 

individuals. Feathers were stored in dry paper 

envelopes until laboratory analyses. The number of 

growth bars and the length of the right outermost 

rectrix feather were measured in a gel 

documentation system in the laboratory following 

the instructions from Shawkey et al. (2003). Once 

contrast and resolution were optimized, a digital 

image of the feather was obtained. The number of 

growth bars and the length of rectrix minus the 

calamus were measured using ImageJ software 

(Abràmoff et al. 2004). Feather grow rate for each 

individual was estimated by dividing the number 

of growth bars and the length of the right 

outermost rectrix feather. 

 
 
Experimental treatments to reduce malaria 

infection (chapter II) 

 
 
With the aim to reduce malaria infection, 

individuals were medicated with a combined 

treatment. Each bird of treatment group were sub- 

cutaneously injected with 0.02 mg of Primaquine + 

1.4 mg of Chloroquine diluted in 0.2 ml of saline 

solution (Remple 2004) and control individuals (N 

= 40) were injected with 0.2 ml phosphate buffered 

saline (PBS). A Malarone™ treatment were also 

provide with fixed – dose combination of 250 mg 

of atovaquone and 100 mg of proguanil 

hydrochloride to individuals of the treatment group 

(Palinauskas et al. 2009). The same quantity of 

water was provided in the dispensers of the control 

group, but without Malarone. The experiment was 

run over 2 months. 
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Experimental inoculation of malaria infection 

(chapter VI) 

 
 

Natural infected birds were kept as donors for the 

experiment. Infected group (N = 10), was 

experimentally infected by intramuscularly 

inoculation of 250 uL of malaria infected blood 

mixture (100 uL blood from infected house 

sparrow donor, 25 uL 3.7 % sodium citrate, 125 

uL 0.9% buffered saline) in the pectoral muscle 

(Palinauskas et al. 2008). Control group (N = 8), 

was inoculated with 250 uL of PBS. 
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MAIN RESULTS AND CONCLUSIONS 
 
 

1. Host escape behaviour and blood parasite 

infections in birds 

 
 

Intense escape behavior was positively related to 

prevalence of infection with Haemoproteus and 

Leucocytozoon, whereas that was not the case for 

Plasmodium. Species emitting more frequently 

fear screams and struggling more when held in a 

hand showed higher prevalence of Haemoproteus 

and Leucocytozoon (Fig. 4). These results suggest 

that species with a higher intensity of escape 

behaviour have higher prevalence of blood 

parasites showing that there is a correlation 

between escape behaviour and blood parasite 

infection. 

 

 

 
 
 
 

 

Figure 4. Proportion of individuals giving a fear scream in different species of birds in relation to prevalence 

of Haemoproteus. The line is the linear regression line. 
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2. Do malaria parasites manipulate the 

escape behaviour of their avian hosts? An 

experimental study 

 

 

The prevalence of malaria infection was reduced in 

infected individuals treated with primaquine and 

chloroquine. Once the infection was cleared, the 

biting rate of these medicated sparrows 

significantly decreased. Additionally, these birds 

also spent more time in tonic immobility before 

flying away (Fig. 5). These outcomes imply that 

the experimental reduction of malaria parasites 

provoked a decrease in the intensity of escape 

behaviour, suggesting that malaria parasites may 

manipulate the escape behaviour of their avian 

hosts. Therefore, malaria parasite could increase 

the likelihood of individuals escaping from 

predators, but also would benefit the parasite by 

increasing its transmission opportunities. 

 
 

Figure 5. Escape behaviour before and after the 

treatment in infected house sparrows. (A) Biting 

individual house sarrows (%) in control and 

experimental groups before and after the anti- 

malaria treatment. (B) Mean tonic immobility 

(seconds) in control and experimental groups of 

house sparrows before and after anti-malaria 

treatment. 

 

 

(A) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(B) 
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3. Invasive  avian  malaria  as  an  emerging 

parasitic disease in native birds of Peru 

 
 

The overall prevalence of avian malaria and 

related haemosporidian found in Neotropical birds 

was 32.4%. 12 out of 18 native bird species were 

infected with haemosporidian parasites. The 

pathogen    Plasmodium    relictum    SGS1    was 

widespread and the most prevalent parasite found 

(39 % of the total infections), infecting eight host 

species in both localities (Table 1). As far as we 

know, this is the first report of this invasive 

pathogen in the mainland Americas, thus 

representing a possible menace to over one-third of 

all bird species in the world. 

 
 

Lineage 
 

Genus 
 

GenBank# Prevalence of total infection 

(%) 

 

Localities 
 

N alternative host 

BAEBIC02 P AF465555 15.15 HUAN 1 

CHLOP01 H JQ764618 18.18 HUAN 1 

PHPAT01 P EF153642 3.03 HUAN 1 

PYERY01 H AY172842 3.03 HUAN 1 

SERCIN01 H KF482344 3.03 HUAN 1 

SGS1 P AF495571 39.40 HUAN, PV 8 

STTA17H H JN819389 9.09 HUAN, PV 2 

TACHURIS01 P KF482356 3.03 PV 1 

TROGLODY01 P KF482358 3.03 PV 1 

ZOCAP01 H KF482358 3.03 HUAN 1 

 
Table 1. Lineage names, parasite genus (H Haemoproteus, P Plasmodium), GenBank accession numbers, 

prevalence of total infection, localities where have been sampled (Huan Huanuco, PV Pantanos de Villa) and 

number of alternative host where each blood parasite cyt b lineage was found. 
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4. Molecular identification of the chitinase 

genes in Plasmodium relictum 

 
 

Chitinase gene was identified in two mitochondrial 

lineages of Plasmodium relictum (SGS1 and 

GRW4). These mitochondrial lineages showed 

both the long (PrCHT1) and the short (PrCHT2) 

copy of the chitinase gene (Fig. 6). The genetic 

differences found in the long copy of the chitinase 

gene between SGS1 and GRW4 were higher than 

the difference observed for the cytochrome b gene. 

Because of this high variability, the chitinase gene 

can be used for epidemiological studies of malaria 

 
 
 
 

parasite, similarly to previous studies (Hellgren et 

al. 2014). This gene can provide new information 

about the distribution and dynamics infection of 

these two cytochrome b lineages among 

populations. Moreover, the identification of both 

copies in P. relictum sheds light on the 

phylogenetic relationship of the chitinase gene in 

the genus Plasmodium, supporting the hypothesis 

that avian malaria parasites are the antecessor of 

mammal malaria parasites. 

 
 

 

Figure 6. Maximum likelihood consensus phylogeny using midpoint rooting of the translated CHT1 (long 

copy) gene and CHT2 (short copy) from 10 different malaria species.  Numbers in branches represent 

bootstrap values based on 200 iterations. 
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5. Detection of the merozoite surface protein 

1 (msp1) gene in house martins 

 
 

Three juvenile house martins were infected by 

Plasmodium relictum SGS1. All these 

juveniles were infected with MSP1 allele 

Pr2 (Fig. 7), thus showing that this allele 

in actively transmitted in Europe. This is 

the first report showing an active 

transmission of avian malaria parasites in 

house martins in Europe. Moreover, most 

of the adult house martins infected with 

SGS1 also showed the same MSP1 allele 

than  juveniles  (Pr2).  Additionally,  two 

 
 
 
 

adult house martins were infected with 

MSP1 alleles Pr1 (SGS1) and Pr4 

(GRW4), but these alleles were not found 

infecting juvenile house martins (Fig. 7). 

These findings suggest that most of the 

house martin population may get the 

infection by SGS1 on Europe, although we 

cannot discard that SGS1 Pr2 could also be 

transmitted in Africa. All these results 

show that house martins are exposed to 

two different parasite fauna of P. relictum. 

 
 

Figure 7. Phylogenetic relationship between all the MSP1_b14 alleles detected to date (Hellgren et al. 2015) 

and number of individuals (adults or juveniles) infected by these alleles. * and § represent confirmed active 

transmission in Africa and Europe, respectively (Hellgren et al. 2015). 
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6. Malaria infection may affect negatively 

feather growth rate in the ubiquitous 

sparrow 

 

 

Malaria parasite (Plasmodium relictum) was 

identified as a factor provoking a decrease in 

feather grow rate in both natural-infected and 

experimental-infected individuals (Fig. 8). These 

outcomes demonstrate the negative effects of 

malaria parasites on the feather growth rate of 

house sparrows under natural and experimental 

conditions. 

 
 
Figure 8. Differences in feather grow rate between 

natural-infected and non infected house sparrows 

(A) and between experimental-infected and control 

house sparrows (B). 

 

 
(B) 

 
 
 
 
 
 
 

(A) 
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infections in birds 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Feet, why do I want if I have wings to fly 

Frida Kahlo 



 

Un comportamiento activo o arriesgado puede conllevar un mayor contacto con depredadores 

así como encuentros más frecuentes con vectores de parásitos sanguíneos mediante la 

exploración de diferentes hábitats. De esta manera, creemos que el comportamiento anti- 

depredador, conocido como comportamiento de escape, llevado a cabo por el ave cuando ha 

sido capturada por un humano estaría correlacionado con el riego de infecciones parásitas, 

donde especies más audaces mostrarían más parásitos que especies menos propensas al riesgo. 

En este estudio comprobamos si especies con una mayor intensidad de comportamiento de 

escape tendrían mayor prevalencia de parásitos sanguíneos, en concreto haemosporidios. 

Encontramos que el comportamiento de escape estuvo relacionado de manera intermedia y 

positiva con la prevalencia de infección de Haemoproteus y Leucocytozoon, sin embargo en el 

caso del género más virulento Plasmodium no encontramos ninguna relación. Especies que 

visitaban mayor número de hábitats mostraron una mayor prevalencia de parásitos sanguíneos 

que especies que se visitaban un menor número de hábitats. Además, algunas variables del 

comportamiento de escape estuvieron correlacionadas de manera intermedia con la exploración 

de hábitats y con el hecho de ser coloniales. No encontramos ningún patrón de correlación entre 

la mayoría de las variables comportamentales y la distancia de iniciación al vuelo, otro 

comportamiento anti-depredador muy común. De esta manera, el comportamiento que se 

muestra cuando el depredador se está acercando o cuando el ave está capturada por un humano 

representan diferentes ejes de comportamiento anti-depredador. Estos resultados concuerdan 

con la hipótesis de que el comportamiento de escape está relacionado con el riesgo de infección 

de parásitos sanguíneos mediado parcialmente por el efecto que puede causar el visitar un 

mayor número de hábitats. 

 
 
Palabras clave: parásitos sanguíneos, colonial, comportamiento de escape, grito de alarma, 

innovación en la alimentación, hábitat, interacción hospedador-parásito, depredación. 
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Active and risk-taking behavior may bring animals into contact with predators but can also result in frequent encounters with parasites 
and vectors via the exploration of risky or diverse habitats. Therefore, we predicted that antipredator behavior, here measured as 
escape behavior when captured by a human, would correlate with risk of parasite infection at the interspecific level with bolder spe- 
cies having more parasites than risk-averse species. Here we tested whether species with more active escape behavior also tended to 
have high prevalence of blood parasites, specifically hemosporidian parasites. Focusing on effect sizes we found that escape behavior 
was intermediately and positively related to prevalence of infection with Haemoproteus and Leucocytozoon, whereas that was not the 
case for the more virulent Plasmodium. Species that were habitat generalists and hence encountered a greater diversity of habitats 
had higher prevalence of blood parasites than specialists. In addition, some components of escape behavior were correlated at an 
intermediate magnitude with habitat exploration, as reflected by the relative frequency of feeding innovations, and coloniality. We 
failed to find considerable patterns of correlations between most of the behavioral variables and flight initiation distance, another com- 
monly used antipredator behavior. Therefore, behavioral responses to an approaching predator and to being caught by a human likely 
represent 2 independent axes of antipredator behavior that do not evolve in concert. These findings are consistent with the hypothesis 
that escape behavior is related to risk of infection with blood parasites partially mediated by the effect of habitat generalism. 

 

Key words: blood parasite, coloniality, escape behavior, fear scream, feeding innovation, habitat, host-parasite interaction, 

predation. 
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IntroductIon 

Behavioral traits often vary considerably both between and within 

individuals (Bell et al. 2009), determining whether an individual 

ends up as a prey or survivor. Antipredator behavior is highly 

consistent in the presence of a predator across time and contexts 

(Dammhahn and Almeling 2012). Numerous studies have dem- 

onstrated that predators impose important selection pressures on 

prey (Endler 1986; Clinchy et al. 2004; Roulin and Wink 2004). 

The first means of avoidance of predation is fleeing when a preda- 

tor is approaching, as reflected by flight initiation distance in birds 

(Hediger 1934; Blumstein 2006). The second means of avoidance 

of predation includes a suite of escape behaviors that are used once 

captured by a predator (Møller et al. 2011). Such escape behaviors 

include the intensity with which a captured individual wriggles to 

escape, whether an individual bites or not, whether it loses feathers 

(Møller et al. 2006), limbs, or a tail and thereby manages to escape, 
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whether it emits alarm or distress calls (Högstedt 1983; Møller and 

Nielsen 2010), and the duration of tonic immobility that can be 

considered a behavior akin to feigning death. For example, prey 

individuals may elicit loud and piercing fear screams that may be 

directed either to other predators or to conspecifics thereby facili- 

tating escape (Högstedt 1983). Møller et al. (2011) demonstrated 

that individuals particularly susceptible to predation showed higher 

tonic immobility and wriggled more when a human captured 

them. Such escape behavior has been related to susceptibility to 

predation, implying that the use of antipredator behavior could 

increase the probability of escape from a predator once captured 

(Møller et al. 2011). The different components of escape behavior 

albeit species specific are mostly independent of each other, and 

they are generally not related to flight initiation distance (Hediger 

1934; Blumstein 2006). 

Parasites constitute another major cause of mortality in addi- 

tion to predation. It has been demonstrated that the presence of 

predators may interact indirectly with parasites, causing stress to 

birds and reducing immune function of  the host. Navarro et al. 
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(2004), for example, showed that predators caused a reduction in 

T-cell-mediated immune response in house sparrows, Passer domes- 

ticus, probably because individuals exposed to predators suffered 

stress-mediated reductions in immune function. Therefore, individ- 

uals or species exposed to predation had a reduced ability to cope 

with infection as revealed by an increase in the prevalence and the 

intensity of blood parasites. Moreover, Møller and Nielsen (2007) 

showed that species with high parasite loads were worse at escap- 

ing from predators. This reveals a potential underlying mechanism 

that links predation to prevalence of blood parasites. We studied 

hemosporidian parasites (Plasmodium, Leucocytozoon, and Haemoproteus) 

that are widespread and harmful (Valkiūnas 2005) infecting squa- 

mate reptiles, turtles, birds, and mammals and using at least 7 

families of dipteran vectors (Levine 1988; Martinsen et al. 2008). 

Hemosporidian parasites have important effects on the life his- 

tory of hosts by reducing survival (Dawson and Bortolotti 2000; 

Breman 2001; Valkiūnas 2005), body condition (Valkiūnas et al. 

2006; Palinauskas et al. 2008), and reproductive success (Merino 

et al. 2000; MacDougall-Shackleton et al. 2002; Marzal et al. 2005; 

Tomás et al. 2007). Hence, a considerable number of studies have 

focused on the effects of these protozoans in birds (Hellgren et al. 

2009; Dimitrov et al. 2010; Garamszegi 2011; Lachish et al. 2011; 

Mostowy and Engelstädter 2011; Cornet et al. 2013). These blood 

parasites show a complex life cycle, where the presence of a vec- 

tor transmitting the infection is required (Valkiūnas 2005). The 

wide distribution of these blood parasites also implies the pres- 

ence of vectors (biting midges, louse flies, black flies, and a large 

number of mosquito species) transmitting the disease (Levine 1988; 

Valkiūnas 2005; Martinsen et al. 2008). The vector life cycle is very 

sensitive to changes in weather conditions (Patz and Olson 2006). 

The abundance and diversity of these vectors vary among habitats 

depending mainly on weather (Wood et al. 2007; Paaijmans et al. 

2009; Garamszegi 2011). Moreover, ecological conditions can play 

an important role in affecting the prevalence of blood parasites if 

migration causes stress and hence stress-induced immunosuppres- 

sion (Waldenström et al. 2002). Alternatively, migration results in 

hosts encountering a greater diversity of habitats with a greater 

diversity of parasites, as we have argued for habitat selection here. 

Finally, there is a positive correlation between group size and preva- 

lence of blood parasites (Rifkin et al. 2012). Hence, habitat choice, 

migratory behavior, and coloniality could affect prevalence of 

blood parasites. 

Species that move between different habitats can be considered 

habitat generalists, whereas species restricted to one or a few habi- 

tats are considered habitat specialists, with the former taking higher 

risks when visiting novel habitats than the latter remaining in the 

same habitat (Belliure et al. 2000). If each habitat has a nonzero 

probability of harboring a parasite, individuals that are frequenting 

several habitats will experience an elevated probability of acquir- 

ing more parasites than individuals that remain in a single habitat. 

Specialists may also be able to defend themselves against parasites 

once infected, while that may be the case less frequently for gener- 

alists because the defense against 1 type of parasite may not be effi- 

cient against another. Thus, host species that are habitat generalists 

may more readily encounter a vector infected by blood parasites 

than habitat specialists, and bolder individuals may differ in risky 

behavior from more fearful individuals. Bold individuals that more 

actively explore their environment may more readily come into 

contact with infectious stages of parasites or vectors that transmit 

parasites (Wilson et al. 1993; Moore 2002; Barber and Dingemanse 

2010; Boyer et al. 2010). Thus, behavior of  hosts may play an 

important role in determining whether an individual becomes 

infected or not. Furthermore, species with higher loads of blood 

parasites more frequently exploit different kinds of resources than 

less infected species and hence have a larger feeding innovation 

rate (Garamszegi et al. 2007). If escape behavior is the underlying 

mechanism that causes certain individuals to visit a larger number 

of habitats and become exposed more frequently to parasites, we 

might expect an association between this antipredator behavior and 

risk of parasitism. 

The objective of this study was to test whether species with high 

prevalence of blood parasites differed in escape behavior from spe- 

cies with low prevalence. This objective rests on 2 nonexclusive 

hypotheses: 1) Predators impose parallel selection on both parasite 

load (affecting immune defenses indirectly) and escape behavior, 

causing a correlation between escape behavior and parasitic load, 

and 2) habitat generalists with pronounced escape behavior (e.g., 

higher frequency of biting or vigorous wriggle) are more exposed to 

vector-transmitted parasites than habitat specialists, thereby caus- 

ing differences in prevalence of blood parasites. We also expect 

that escape behavior differs among species because species occupy 

different niches and are at risk from different types of predators 

because their  hunting and  prey  handling strategies  vary  among 

niches. Firstly we tested if escape behavior was related to flight ini- 

tiation distance, with the aim to determine whether they represent 

different components of antipredator behavior. Secondly we tested 

if prevalence of blood parasites in different host species is related 

to differences in escape behavior taking habitat generalism, habitat 

choice, migration, and coloniality into account. A positive correla- 

tion between prevalence of blood parasites and a high intensity of 

escape behavior would be consistent with the hypothesis that differ- 

ences in ranging behavior cause differences in prevalence. Similarly, 

if there were a correlation between prevalence of  blood parasites 

and habitat, we would expect that differences in vector abundance 

could cause differences in prevalence. Moreover, a correlation 

between migration or coloniality and prevalence of blood parasites 

would be expected when behavioral variables were controlled statis- 

tically. Sol et al. (2005) showed that the frequency of feeding inno- 

vations is positively related to invasiveness, suggesting a connection 

between feeding innovation rate and habitat exploration. Thirdly 

we tested whether intensity of escape behavior was correlated with 

habitat exploration through cognitive abilities as reflected by the 

relative frequency of feeding innovations. Previous studies have 

shown that colonial breeders may experience higher risks of preda- 

tion (Marchant and Higgins 1993; Dall and Griffith 2014), and as a 

result such species should show higher intensity of escape behavior 

(Sims et al. 2008; Sorace and Gustin 2009;Ibáñez-Alamo and Soler 

2010; Møller and Ibáñez-Alamo 2012). Lastly 4), we tested whether 

intensity of escape behavior was correlated with coloniality. 

 
 
MaterIals and Methods 

Behavioral variables 
 

Information on escape behavior was derived from a previous study 

of extensive capture of birds during 2010–2012 in Denmark, 

Sweden, and Ukraine, see Møller et al. (2011) for study sites, tim- 

ing, and extent of sampling and permits. It is common in compara- 

tive analyses to include data obtained in already published studies. 

Birds were exclusively captured for the study presented in Møller 

et al. (2011), and no additional captures were made for the present 

study. In this study (Møller et al. 2011), 6 aspects of escape behavior 
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were assessed before the bird was ringed and released. Several of 

these variables have been related to  susceptibility  to  predation  by 

cats and hawks (Møller et al. 2011). These 6 behavioral variables 

were defined as follows: 

 
(1) Wriggle score. We scored how much the bird struggled while 

being held in a hand (a score of 0—no movement, 1—moves 

rarely, 2—moves regularly, but not always, 3—moves continu- 

ously). Individuals that wriggle more may more readily escape 

from a predator compared with individuals that stay calm. 

(2) Biting. Whether the bird did not bite, when we held our right- 

hand index finger in front of the beak, we gave a score of 0, 

and if it did a score of 1. We presume that a higher frequency 

of biting entails an elevated probability of escape from a pred- 

ator because the predator looses its grip when redirecting its 

attention toward the biting prey. 

(3) Feather loss. While the bird was handled, if it lost feathers we 

gave a score of 1, or 0 if it did not. Feather loss may result in 

predators loosing their grip of a prey (Møller et al. 2006). 

(4) Distress call. This variable is also called fear scream. While the 

bird was handled, if it gave a fear scream (a score of 1) or 

not (a score of 0). Subsequently, we use the term fear scream 

for this variable. Birds giving fear screams attract the atten- 

tion of secondary predators thereby increasing the probability 

of escape once captured (Högstedt 1983; Møller and Nielsen 

2010). 

(5) Tonic immobility. At the end of the above procedure we 

placed the bird, just before it was released, with our right hand 

on its back on our flat left hand. When the bird was lying still, 

we removed the right hand and recorded the time until the 

bird righted itself and flew away. We allowed tonic immobil- 

ity up to 30 s, and if the bird had not left yet, we terminated 

the trial. Tonic immobility is a standard measure of fear in 

poultry research with both environmental and genetic com- 

ponents (Hoagland 1928; Jones 1986; Boissy 1995; Forkman 

et al. 2007). More recently, Edelaar et al. (2012) showed that 

tonic immobility is related to personality and antipredation 

behavior because it is a measure of boldness toward predators. 

The longer time a bird stays, the higher its level of fear. Tonic 

immobility has a strongly bimodal distribution, with most indi- 

viduals having tonic immobility of 0–5 s, but some 10–20% 

having 25–30 s as shown by Møller et al. (2011). 

(6) Alarm call. When the bird departed from our hand whether 

it gave an alarm call (a score of 1) or not (a score of 0). It has 

been suggested that the function of this call is to distract the 

predator or to warn conspecifics (Charnov and Krebs 1975; 

Platzen and Magrath 2004). 
 

We recorded body mass using a Pesola spring balance (accuracy 

0.1 g) and included this variable in all models to account for the fact 

that larger individuals have a larger body surface and hence may 

encounter more vectors transmitting blood parasites (Valkiūnas 

1987). 
 

Flight initiation distance 

We used a database on flight initiation distances in birds collected by 

A.P.M. during 2006–2012 (Møller 2008a). In brief, A.P.M. walked 

at a normal speed toward the individual bird, once a bird had been 

located with a pair of binoculars, while recording the number of 

steps between where A.P.M. was at the moment of birds’ takeoff 

and the position of  the bird. The number of  steps approximately 

equals the distance in meters (Møller 2008b), and it is strongly cor- 

related with the measured distance using a Nikon Forestry 550 hyp- 

someter (Møller AP, unpublished data). The distance at which the 

individual took flight was recorded as the flight initiation distance, 

while the starting distance was defined as the distance from where 

A.P.M. started walking toward the bird to the position of the bird. 

The height above ground was recorded to the nearest meter. While 

recording these flight initiation distances, A.P.M. also  recorded 

date, time of day, and sex if possible, A.P.M. recorded in total 

2298 individuals belonging to 44 bird species. Further details and 

cross-validation of these data among seasons, years, countries, and 

observers have already been reported elsewhere (Møller 2008b). 

 
Feeding innovation rate 

With the aim to test whether habitat exploration through cognitive 

abilities is related to escape behavior, we used an estimate of feed- 

ing innovations based on an exhaustive survey of 30 years (1970– 

2000) of short note sections of 65 generalist ornithology journals 

covering 6 regions of the world done by L. Lefebvre and cowork- 

ers (Lefebvre et al. 1997; Nicolakakis and Lefebvre 2000). Because 

there may be more reports of feeding innovations available for 

intensely studied species, we estimated research effort by using the 

number of studies published since 1972 on each species as cited in 

the ISI Web of Science (http://apps.webofknowledge.com/) . 

 
Prevalence of blood parasites 

We used extensive data on prevalence of infection by Haemoproteus, 

Leucocytozoon, and Plasmodium relying on analyses of blood smears as 

reported in the literature combining information from Peirce (1981) 

and Scheuerlein and Ricklefs (2004). In addition, we used informa- 

tion fromMerilä et al. (1995), Sol et al. (2000), Merino et al. (2002), 

Navarro et al. (2004), and Møller AP and Merino S (unpublished 

data). Based on these data, we calculated for each bird species 3 

proportions: The proportion of individuals infected by Haemoproteus, 

Leucocytozoon, and Plasmodium. Then we used these 3 proportions in 

the subsequent analyses. Finally, we recorded the number of indi- 

viduals examined for each host species. This extensive dataset pro- 

vided us with information for a total of 18 429 individual juvenile 

and adult hosts tested for the presence of blood parasites based on 

blood smears. We did not include nestlings because blood parasites 

are typically only present in the blood stream in juvenile and adult 

hosts (Valkiūnas 1991). 

 
Habitat variables 

We used 2 variables to quantify effects of habitat, relying on Møller 

and Garamszegi (2012). The first variable, which reflects habitat 

complexity, was scored as 0 for grassland, 1 for shrub, and 2 for 

trees for the main breeding habitat, assuming that more complex 

habitats result in greater exposure to vectors of blood parasites 

(Tella et al. 1999). The second variable, which reflects habitat gen- 

eralism, was the total number of  predefined breeding habitats for 

all species as reported by Cramp and Perrins (1977–1994). Cramp 

and Perrins (1977–1994) provide an extensive list of habitat catego- 

ries predefined and used consistently throughout the handbook to 

describe breeding habitats. Therefore, a similar procedure was used 

to describe breeding habitats of all species. We skimmed the breed- 

ing habitat sections of all species for these habitat terms and simply 

added these to obtain a combined habitat score, for which larger 

values implied a higher degree of habitat generalism. The dataset is 

reported in Supplementary Table A1. 

http://apps.webofknowledge.com/
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Migratory behavior and coloniality 

Migration was scored as 0 for resident species, when the breeding 

and the winter distribution overlapped and 1 for migratory species. 

Coloniality was scored as 0 for solitary species and 1 for colonial 

species during the breeding season, when individuals defended 

small nest site territories and otherwise shared foraging habitats, 

as reported by Cramp and Perrins (1977–1994). The dataset is 

reported in Supplementary Table A1. 

 
Statistical procedures 

First, we determined the reliability and independence of our vari- 

ables, testing whether the different components of escape behav- 

ior were repeatable and correlated with each other by calculating 

Pearson product-moment correlation coefficients. Similarly, we used 

Pearson product-moment correlation to test the relationship among 

all the variables that were included in our multivariate analysis. 

Flight initiation distance represents another well-studied compo- 

nent of  antipredator behavior in the precapture phase of an inter- 

action between a prey individual and a potential predator (Hediger 

1934; Blumstein 2006). With the aim to determine whether flight 

initiation distance and escape behavior represent different axes of 

antipredator behavior, we tested whether these 2 variables were 

correlated. We estimated relative feeding innovation rate indepen- 

dent of research effort by using research effort as a covariate in the 

statistical models with feeding innovation as the response variable. 

All analyses were carried out for 85 avian host species by taking 

into account the statistical dependence of the data due to similarity 

caused by common phylogenetic descent. 

We calculated repeatability of behavioral variables within  spe- 

cies.  We  estimated   consistency   in   behavior   among   individuals 

of the same species using the intraclass correlation coefficient. 

Repeatability is  the variance  between subjects  relative to  the total 

variance (e.g., between-species  variance  and  residual  variance  due 

to within-species variance) (Garamszegi et al. 2009). This measure- 

ment was calculated following the study by Bell et al. (2009). 

We calculated the mean value for each escape behavioral vari- 

able for each species and recorded the number of individuals on 

which this estimate was based. We treated all variables as continu- 

ous because binary variables can be treated as dummy variables 

(Sokal and Rohlf 2005) and intermediate states make biological 

sense. Tonic immobility, flight initiation distance, frequency of 

feeding innovations, research effort, and body mass were log trans- 

formed before analyses. Prevalence was arcsine-square-root trans- 

formed to satisfy requirements for normality. 

With the aim  to  determine  if  the  6  behavioral  variables  could 

be entered in the analyses with no problems of collinearity, we 

conducted a principal component analysis on these variables using 

the correlation matrix and a varimax rotation. Eigen values for the 

first 3 components were 2.14, 1.09, and 0.97 accounting for 35.7%, 

18.2%, and 16.2% of  the variance, respectively. 

Closely related species may have more similar behavior than 

species that are more distantly related due to common phyloge- 

netic descent rather than convergence (Harvey and Pagel 1991). 

Therefore, analysis of data for multiple species requires statistical 

control for this phylogenetic component because it violates assump- 

tions about independence of data. The phylogenetic relationship 

among host species was based on a composite supertree of most 

species of birds reported by Davis (2008) (Electronic Supplementary 

Material Figure A1). The phylogeny was constructed using the pro- 

gram Mesquite 2.75 (Maddison and Maddison 2011). 

We analyzed the relationship between prevalence of the three 

genera of blood parasites as response variables and 6 escape 

behaviors, body mass, habitat variables, migration, and colonial- 

ity as predictors. Additionally, we tested for a correlation between 

behavioral variables and the frequency of feeding innovations 

where the logarithm of research effort was used as a covariate and 

the feeding innovation rates as a predictor for prevalence of blood 

parasites. We also tested for correlations between coloniality dur- 

ing the breading season and escape behavior where coloniality was 

treated as a continuous variable. All statistical analyses were carried 

out with the program R-2.15 (R Development Core Team 2011) 

using linear models while taking phylogenetic nonindependence of 

data points into account relying on phylogenetic generalized least- 

square models (PGLS) where the phylogenetic relationship was 

taken into account using the R packages geiger (Harmon et al. 2009) 

and caper (Orme et al. 2012). The strength and type of the phylo- 

genetic signal in the residual matrix of the model can be accounted 

for by adjusting branch lengths (λ) (Freckleton et al. 2002). These 

transformations can be optimized to find the maximum likelihood 

transformation given the data and the model. To adjust for the het- 

erogeneity in sampling effort across species (see Garamszegi and 

Møller 2010), we weighted each model by the underlying within- 

species sample size with the aim to make use of all the data rela- 

tive to the precision of the estimates (Paradis 2011). Normality, 

homoscedasticity, and independence of residuals were verified. 

Previous studies have criticized the use of Bonferroni correc- 

tion of multiple statistical tests (Moran 2003; Nakagawa 2004; 

Garamszegi 2006; Garamszegi et al. 2009) because it could 

increase the  risk of committing Type  II  errors (Nakagawa  and 

Cuthill 2007). Nakagawa (2004) suggested that effect sizes and 

confidence intervals (CIs) reliably reveal the biological importance 

of results. Hence, we applied the effect size approach (based on 

Pearson’s product-moment correlation coefficient r and its CI) to 

deal with the fact that we tested our predictions with a large num- 

ber of variables that may raise issues about multiple testing that 

may severely affect P value–based interpretations in a null hypoth- 

esis testing framework. To calculate effect sizes, we used t of the 

particular effect in the model (where t = slope estimate/SE of the 

slope) and the corresponding df to calculate r and standard errors 

(based on r) to approximate the  corresponding  CIs  (Nakagawa 

and Cuthill 2007). CIs (95%) are presented as lower/upper limits. 

For demonstrative purposes, we also present significance levels. In 

behavioral studies, the following benchmark is used for interpreta- 

tions: r ≈ 0.1 is a small effect, r ≈ 0.3 is a intermediate effect, and 

r ≈ 0.5 is a strong effect (Cohen 1988; Møller and Jennions 2002). 

The magnitude of effects in biological studies is typically interme- 

diate accounting for 5–7% of the variance, thus being equivalent 

of effect sizes of 0.22–0.26 (Møller and Jennions 2002). 
 

Ethical note 

There was no animal experimentation involved in this study 

because all data were derived from a literature survey. Hence the 

study complied with all legal ethical requirements in the countries 

of residence of the 3 authors. 

 
results 

Mean values, standard errors (SE), and range of escape behav- 

ior variables are reported in Table 1. We also report repeatabili- 

ties based on multiple measures among individuals within species 

that are consistent within each variable. None of  the components 
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Table 1 

Summary statistics for escape behavior among species of birds and within-species repeatability (R) 
 

Variable Mean SE Range CV F R (SE) 

 
Wriggle 1.067 0.042 0–3 215 13.94 0.220 (0.006) 

Biting 0.292 0.034 0–1 628 54.83 0.540 (0.008) 
Feather loss 0.135 0.023 0–1 942 31.18 0.395 (0.007) 
Tonic immobility (s) 11.631 0.495 0–30 231 5.65 0.092 (0.003) 
Fear scream 0.145 0.019 0–1 723 12.65 0.202 (0.005) 
Alarm call 0.248 0.024 0–1 537 14.71 0.230 (0.006) 

 
CV indicates coefficient of  variation. df  for the F values are 97, 4405. 

 

of escape behavior were correlated across species with flight initia- 

tion distance with a magnitude that hardly reached intermediate 

effect size in models that also included body mass as a predictor 

variable (wriggle: r = 0.075, 95% CI: −0.140/0.283, P = 0.46; 

biting: r = 0.199, 95% CI: 0.014/0.395, P = 0.006; feather loss: 

r = 0.048, 95% CI: −0.166/0.258, P = 0.14; tonic immobility: 

r = 0.042, 95% CI: −0.172/0.253, P = 0.67; alarm call: r = 0.094, 

95% CI: −0.121/0.301, P = 0.35; fear scream: r = 0.087, 95% CI: 

−0.128/0.294, P = 0.39). Therefore, escape behavior mostly rep- 

resented different components of antipredator behavior other than 

flight initiation distance. 

The escape behavior variables were only  weakly  correlated  with 

each other (the  largest  Pearson  product-moment  correlation  coef- 

ficient was r = 0.35  between  wriggle  and  fear  scream;  all  others 

had |r| < 0.26).  Analyses  based  on  principal  component  analysis 

of behavioral variables provided qualitatively similar results, and, 

therefore, we only present the analyses based  on  the  individual 

behavioral  variables  for  transparency.  Habitat,  migration,   coloni- 

ality, and 6 behavioral variables were  also  weakly  correlated  with 

each other (the 2 largest Pearson product-moment correlation coef- 

ficients were r = 0.39  between  feather  loss  and  habitat  complexity 

and r = 0.38 between fear  scream  and  habitat  complexity;  all  other 

had |r| < 0.29) implying that both behavioral and  habitat  variables 

could be entered in the analyses without serious  problems  of  collin- 

earity (Harmon et al. 2008). We calculated the correlation among 

Haemoproteus, Plasmodium, and Leucocytozoon. The 3 genera were 

weakly correlated with each other  (the  largest  Pearson  product- 

moment correlation coefficient was r  =  0.36  between  Plasmodium 

and Haemoproteus; all others had |r| < 0.09);  thus,  we  can  reason- 

ably  assume  that  they  are  independent. 

Fear scream and habitat generalism were correlated with preva- 

lence of Haemoproteus with an intermediate effect size accompanied 

by a rather broad and positive range of  CIs. The biological inter- 

pretation of this effect is that species with a higher prevalence of 

Haemoproteus likely occupy more different habitats than species with a 

lower prevalence of infection by Haemoproteus (Table 2). We detected 

an effect size that showed an intermediate relationship between 

fear scream and prevalence of Haemoproteus. Therefore, from the 

current data, we concluded that species with high prevalence of 

Haemoproteus are very likely to have a higher fraction of individu- 

als giving fear screams than species with lower prevalence (Table 2; 

Figure 1). Components of escape behavior and habitat generalism 

were correlated with prevalence of infection by Leucocytozoon with 

an effect size and CIs that imply a positive association: Species with 

a higher prevalence of Leucocytozoon were found in several differ- 

ent habitats than species with a lower prevalence of Leucocytozoon 

(Table 2; Figure 2). The intensity of wriggle showed intermediate 

effects in relation to prevalence of Leucocytozoon. Accordingly, species 

with high prevalence of Leucocytozoon wriggled more while being 

held in a hand (Table 2). The effect size range for the frequency 

of feather loss indicated that it is likely to decrease with increasing 

prevalence, as expected (Table 2). Species with a higher prevalence 

of infection by Plasmodium were found in several different habi- 

tats than species with a lower prevalence of Plasmodium (Table 2). 

We found an intermediate effect size for the relationship between 

Plasmodium and habitat complexity with a confidence range showing 

that species with a higher prevalence of Plasmodium were found in 

habitats with a greater complexity (Table 2). None of the 6 escape 

behavioral variables were correlated with the prevalence of infec- 

tion by Plasmodium with a magnitude and CI that could have biolog- 

ical relevance (Table 2). However, there was a positive correlation 

between log body mass and prevalence of infection by Haemoproteus, 

Leucocytozoon, and Plasmodium, in the expected direction (Table 2). 

The relative frequency  of  feeding  innovations  was  correlated 

by intermediate effect sizes with the frequency of biting and tonic 

immobility, with a positive and negative association, respectively 

(Table 3). However, the frequency of feeding innovations is unlikely 

to be an important predictor of blood parasite prevalence in mod- 

els that included body mass, escape behavior as predictors, and 

research effort as a covariate (Leucocytozoon: r = −0.024, 95% CI: 

−0.237/0.188, t = −0.23, P = 0.82; Haemoproteus: r = −0.060, 95% 

CI: −0.270/0.153, t = −0.56, P = 0.58; Plasmodium: r = −0.165, 

95% CI: −0.367/0.047, t = −1.55, P = 0.13). Hence, we did not 

include feeding innovation in the multivariate analyses due to feed- 

ing innovation not being an important predictor of prevalence of 

blood parasites. 

Coloniality was positively correlated with an intermediate effect 

size with tonic immobility (Table 4), with colonial species taking less 

time to right themselves and fly away than solitary species. 

In most of our statistical analyses, we found a value of lambda 

(λ) larger than 0, but smaller than 0.085, which indicates that these 

correlations are hardly influenced by the phylogenetic relationships 

among the bird species analyzed in this study. 

Predictors including escape behavior and body mass in the same 

statistical model on prevalence of blood parasites resulted in effect 

sizes for feeding innovations that are far from being biologically 

important (Supplementary Table A2). Hence escape behavior and 

feeding innovation rate seemed to be independent of each other. 
 

 
dIscussIon 

In this study of escape behavior of 85 species of birds, we found 

effect sizes that suggest 2 considerable,  positive  relationships 

between  antipredator  behavior  and  prevalence  of  blood   para- 

sites. These relationships could be estimated  with  a  CI  that  cov- 

ered small to intermediate effects that we interpret as biologically 

meaningful (sensu Møller and Jennions 2002). Therefore, we  con- 

clude that 1) bird species with a higher species-specific prevalence 
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Factor Value SE t Effect size Lower Upper P 

Haemoproteus 

Alarm call 

 
0.091 

 
0.065 

 
1.38 

 
0.155 

 
−0.071 

 
0.366 

 
0.170 

Biting 0.077 0.048 1.58 0.177 −0.048 0.385 0.117 
Wriggle −0.065 0.031 −1.65 0.184 −0.041 0.392 0.091 
Feather loss 0.095 0.067 1.41 0.158 −0.068 0.368 0.161 
Fear scream 0.120 0.059 2.37 0.261 0.039 0.458 0.016 
log Tonic 

immobility  (s) 
log Mass (g) 

0.038 
 

0.136 

0.040 
 

0.057 

0.95 
 

2.34 

0.107 
 

0.257 

−0.119 
 

0.035 

0.323 
 

0.454 

0.341 
 

0.021 
Habitat 

complexity 
Habitat 

−0.004 
 

0.014 

0.033 
 

0.006 

−0.13 
 

2.34 

0.015 
 

0.257 

−0.209 
 

0.035 

0.238 
 

0.454 

0.891 
 

0.022 
generalism 

Migration 
 

0.071 
 

0.064 
 

1.11 
 

0.125 
 
−0.102 

 
0.339 

 
0.269 

Coloniality 
λ = 0.021, residual SE 

−0.097 
= 0.083, df = 73 

0.099 −0.97 0.109 −0.118 0.325 0.331 

Leucocytozoon 
Alarm call 

 
0.047 

 
0.051 

 
0.93 

 
0.105 

 
−0.121 

 
0.321 

 
0.354 

Biting 0.042 0.038 1.11 0.125 −0.102 0.339 0.267 
Wriggle 0.073 0.024 2.96 0.319 0.102 0.507 0.004 
Feather loss −0.081 0.033 −2.12 0.234 0.011 0.435 0.041 
Fear scream 0.014 0.062 0.23 0.026 −0.199 0.248 0.813 
log Tonic 

immobility  (s) 
log Mass (g) 

0.016 
 

0.127 

0.031 
 

0.043 

0.51 
 

2.94 

0.058 
 

0.317 

−0.168 
 

0.100 

0.278 
 

0.505 

0.605 
 

0.004 
Habitat 

complexity 
Habitat 

0.036 
 

0.014 

0.025 
 

0.004 

1.41 
 

3.07 

0.158 
 

0.330 

−0.068 
 

0.114 

0.368 
 

0.515 

0.161 
 

0.003 
generalism 

Migration 
 

−0.061 
 

0.049 
 

1.24 
 

0.139 
 
−0.087 

 
0.352 

 
0.216 

Coloniality 
λ = 0.059, residual SE 

0.031 
= 0.063, df = 73 

0.077 0.40 0.045 −0.181 0.266 0.687 

Plasmodium 
Alarm call 

 
−0.089 

 
0.074 

 
−1.20 

 
−0.135 

 
−0.348 

 
0.091 

 
0.231 

Biting 0.032 0.028 1.13 0.127 −0.099 0.341 0.260 
Wriggle −0.027 0.018 −1.46 −0.164 −0.374 0.062 0.147 
Feather loss 0.016 0.039 0.41 0.046 −0.179 0.267 0.682 
Fear scream 0.007 0.047 0.16 0.018 −0.206 0.241 0.869 
log Tonic 

immobility  (s) 
log Mass (g) 

0.004 
 

0.065 

0.023 
 

0.032 

0.19 
 

1.99 

0.021 
 

0.221 

−0.203 
 

0.002 

0.243 
 

0.424 

0.849 
 

0.049 
Habitat 0.072 0.023 2.01 0.223 0.001 0.425 0.041 

Habitat 

generalism 
0.067 0.027 2.10 0.232 0.008 0.433 0.038 

Migration −0.001 0.037 −0.01 −0.001 −0.224 0.223 0.999 
Coloniality −0.019 0.058 −0.33 −0.037 −0.258 0.188 0.735 

 

García-Longoria et al. 
 

 

Table 2 

Infection by Haemoproteus, Leucocytozoon, and Plasmodium in relation to escape behavior, migration, coloniality, habitat 

complexity, and habitat generalism (number of breeding habitats) 
 

95% CIs 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

complexity 

 
 
 

λ = 0.081, residual SE = 0.048, df = 73 

 
Test statistics refer to linear estimates and their standard errors, and the associated P values in phylogenetic analyses weighted by sample size. Effect sizes (r) are 
Pearson product-moment correlation coefficients with their 95% CIs. Effect sizes differing from zero are shown in bold. 
Effect size conventions: r = 0.10, small effect; r = 0.30, medium effect; and r = 0.50, large effect (Cohen 1988). 

 

of Haemoproteus had a higher fraction of individuals emitting fear 

scream than species with fewer infected individuals; and 2) bird spe- 

cies infected by Leucocytozoon tended to wriggle more when held in a 

hand. In contrast, we failed to detect strong relationships between 

prevalence of infection by Plasmodium and escape behavior. The 

effect sizes and the associated CIs for correlations between blood 

parasite prevalence and habitat generalism indicated that preva- 

lence of the 3 genera of blood parasites was higher in species that 

were habitat generalists. Additionally, species with greater habitat 

complexity showed higher prevalence of Plasmodium. These asso- 

ciations were unlikely to be caused by a greater extent of habitat 

exploration as reflected by the relative frequency of feeding inno- 

vations although innovations were more frequent in species that 

were commonly biting and showed high rates of tonic immobil- 

ity. Furthermore, coloniality was correlated with tonic immobility. 

Below, we discuss the biological meaning of these effects. 

Escape behavior constitutes a suite of antipredator behavior 

directed at escape from a predator once captured (Møller et  al. 

2011). Bird species with more individuals emitting fear screams and 

struggling more when held in a hand showed higher prevalence of 

Haemoproteus and Leucocytozoon. These components of escape behav- 

ior  are  related  to  susceptibility  to  predation.  Högstedt  (1983)  and 
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Figure 1 

Proportion of individuals giving a fear scream in different species of birds in relation to prevalence of Haemoproteus. The lines are the linear regression lines. 
 

 
 

 
 

Figure 2 

Breeding habitat diversity in different species of birds in relation to prevalence of Leucocytozoon. The line is the linear regression line. 
 

 

Møller et al. (2010) found that the probability to attract secondary 

predators increased if birds emitted fear screams when handled. 

Furthermore, wriggle score was positively related to susceptibility 

to predation by cats and hawks (Møller et al. 2011), with birds wrig- 

gling more having higher probability of escape. These results sug- 

gest that species with a higher intensity of escape behavior have 

higher prevalence of blood parasites, as predicted. Additionally, 

it has been shown that individuals faced with predators have a 

higher probability of infection with blood parasites than individu- 

als encountering an innocuous control like a pigeon (Navarro et al. 

2004). Navarro et al. (2004) found that an increase in predation risk 

resulted in a higher probability of infection, and we found a corre- 

lation between escape behavior and prevalence of blood parasites. 

Thus, we can deduce that species with increased prevalence will 

also exhibit higher levels of escape behavior and risk of predation. 

Infection by Plasmodium was not correlated with escape behavior 

in contrast to what was observed for the other 2 genera of blood 

parasites. This difference among genera of avian blood parasites 

could be due to Hemosporidian life cycles differing among genera 

(Valkiūnas 2005). Plasmodium can cause host death, and Plasmodium 

is responsible for particularly severe outbreaks of  malaria in 

domestic birds (Garnham 1980; Huchzermeyer 1993). Therefore, 

Plasmodium may eliminate a larger fraction of infected indi- 

viduals before they are caught and scored with respect to escape 

behavior, and this may explain  the  results  of  our  study  concern- 

ing Plasmodium. In contrast,Møller and Nielsen (2007) found that 

infection with Plasmodium was associated with elevated susceptibility 

to predation by 2 species of hawks. These 2 effects may result in 

an unreliable prevalence of Plasmodium due to the elimination of 

infected individuals by predators. Bird species with higher  preva- 

lence of Plasmodium, Haemoproteus, and Leucocytozoon were found in a 

larger number of breeding habitats than species with lower preva- 

lence. This result is consistent with the hypothesis that habitat gen- 

eralists more readily encounter vectors infected by blood parasites 

than habitat specialists.Møller and Garamszegi  (2012)  have  shown 

that individuals with  a  greater  variance  in  antipredator  defense 

as reflected by  flight  initiation  distance  exploit  a  greater  diversity 

of breeding habitats. Thus, species composed of individuals with 

bolder behavior and higher degrees of  habitat generalism may have 

a higher  prevalence of blood  parasites.  Moreover, species  inhabit- 

ing habitats with a greater complexity showed a higher prevalence 

of Plasmodium. However, we should  be  cautious  when  interpret- 

ing these results because the mortality caused  by  hemosporidians 

may lead to undersampling of infected individuals in field studies 

(Valkiūnas 1993). Thus, there are reasons to assume that a greater 

diversity of habitats results in more encounters  with  vectors  of 

blood parasites. However, we cannot  determine  from  our  correla- 

tive  analyses  whether  a  higher  prevalence  in  a  given  host  species 
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Table 3 

Frequency of feeding innovations in relation to escape behavior 
 

 95% CIs  

Behavioral variable Value SE t Effect size Lower Upper P 

log Research effort 0.967 0.022 4.39 0.454 0.255 0.617 <0.001 
Alarm call 0.142 0.077 1.96 0.222 −0.004 0.426 0.053 
Biting 0.146 0.054 2.69 0.298 0.078 0.491 0.008 
Wriggle −0.005 0.035 −0.01 −0001 −0.226 0.224 0.998 
Feather loss 0.101 0.070 1.44 0.165 −0.063 0.376 0.152 
Fear scream −0.008 0.084 −0.09 −0.011 −0.235 0.215 0.922 
log Tonic immobility (s) −2.244 0.040 −6.08 −0.577 −0.710 −0.404 <0.001 
log Mass (g) 0.040 0.077 0.52 0.060 −0.167 0.282 0.602 

λ = 0.868, residual SE = 0.154, df = 76 

 
Test statistics refer to linear estimates and their standard errors, and the associated effect sizes (r) are Pearson product-moment correlation coefficients with their 
95% CIs. Effect sizes differing from zero are shown in bold. 
Effect size conventions: r = 0.10, small effect; r = 0.30, medium effect; and r = 0.50, large effect (Cohen 1988). 

 
Table 4 

Coloniality in relation to escape behavior and blood parasite prevalence 
 

 95% CIs  

Behavioral variable Value SE t Effect size Lower Upper P 

Biting 0.053 0.056 0.94 0.108 −0.123 0.328 0.347 
Alarm call −0.095 0.077 −1.23 0.141 −0.091 0.358 0.221 
Fear scream 0.004 0.085 0.04 0.004 −0.224 0.232 0.961 
Feather loss −0.003 0.068 −0.04 0.004 −0.224 0.232 0.961 
log Tonic immobility (s) −0.102 0.042 −2.41 0.269 0.043 0.468 0.018 
log Mass (g) 0.006 0.066 0.09 0.010 −0.219 0.238 0.928 
Wriggle −0.065 0.040 −1.62 0.185 −0.045 0.396 0.107 

λ = 0.100, residual SE = 0.098, df = 74 

 
Test statistics refer to linear estimates and their standard errors, and the associated effect sizes (r) are Pearson product-moment correlation coefficients with their 
95% CIs. Effect sizes differing from zero are shown in bold. 
Effect size conventions: r = 0.10, small effect; r = 0.30, medium effect; and r = 0.50, large effect (Cohen 1988). 

 
is due to a greater intensity of escape behavior resulting in expo- 

sure to different habitats or whether species with high prevalence 

frequent many different habitats because they display a higher 

intensity of antipredator behavior. We cannot propose any partic- 

ular causal scenario based on our results, and further experimen- 

tal approaches would be needed to clarify the causal relationship 

among the 3 correlated variables. 

We have shown that species with a higher prevalence of blood 

parasites more often gave fear screams and struggled more when 

held in a hand. It is possible that such escape behavior causes a 

higher encounter rate with vectors resulting in higher prevalence 

of blood parasites. It would be interesting to know if prevalence of 

blood parasites affects escape behavior, or escape behavior affects 

prevalence. Many blood parasites rely on a change in behavior of 

their hosts in order to complete their life cycle (Webster et al. 1994). 

No studies have so far suggested that Plasmodium, Haemoproteus, and 

Leucocytozoon provoke changes in escape behavior although Dunn 

et al. (2011) suggested that Plasmodium and Leucocytozoon could have 

a broader effect on behavior than previously assumed. Habitat 

generalists could have a higher probability of encountering vec- 

tors infected with blood parasites simply because they range more 

widely and hence experience a greater risk of infection. This 

hypothesis should be tested experimentally with the aim to clarify 

the direction of the causal relationship between these traits. 

We explicitly tested whether the relative rate of feeding innova- 

tions, a trait that also has been found to be positively correlated 

with blood parasitism (Garamszegi et al. 2007), predicted escape 

behavior. We found some evidence consistent with this hypothesis. 

Indeed both the proportion of individuals  biting  and  the  dura- 

tion of tonic immobility were correlated with feeding innovations. 

These findings suggest that the correlation between escape behav- 

ior and the relative rate of feeding innovations could have a cogni- 

tive basis as shown by correlations with relative brain size (Lefebvre 

et al. 1997; Nicolakakis and Lefebvre 2000). However, a consider- 

able number of behavioral variables vary independently of inno- 

vation, and thus, the patterns we found in relation to parasitism 

cannot be fully attributed to interspecific differences in cognition 

mediating escape behavior. 

It has  been hypothesized  that migratory  species would  show 

higher prevalence of blood parasites due to such species visiting 

a larger number of habitats and being exposed to a more diverse 

parasite fauna (Bennett and Fallis 1960; Greiner et al. 1975; 

Waldenström et al. 2002; Møller and Szép 2011). Accordingly, 

immune function of migratory species appears to be stronger than 

in residents (Møller et al. 2004; Møller and Erritzøe 2008; Møller 

and Szép 2011). However, we failed to detect any relationship 

between migratory habits and prevalence of blood parasites. 

There is generally a positive correlation  between  group  size 

and parasitism (Alexander 1974; Rifkin et al. 2012). Colonial spe- 

cies should have higher probabilities of getting infected by blood 

parasites due to efficient horizontal transmission. However, none 

of the 3 genera of blood parasite was related to coloniality during 
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the breeding  season. However,  we found  a  negative correlation 

between coloniality and escape behavior, with colonial species hav- 

ing shorter tonic immobility than solitary species. These results 

agree with studies suggesting that colonial breeders may experi- 

ence higher predation risks than solitary species (Marchant and 

Higgins 1993; Dall and Griffith 2014). This suggests that varia- 

tion in tonic immobility can be interpreted as differences in bold- 

ness toward predators (Edelaar et al. 2012). 

This study has a number of implications for future studies of 

specific host-blood parasite model systems. It would be interesting 

to test whether an infected individual shows a higher intensity of 

escape behavior. It would also be interesting to test whether bird 

species show an increase in intensity of escape behavior when 

experimentally infected with blood parasites, and whether medica- 

tion with antimalarial drugs such as primaquine causes a reduction 

in the intensity of escape behavior. Although previous studies have 

demonstrated that behavioral traits show substantial spatial varia- 

tion within species (Møller 2008b), there is still a high degree of 

repeatability in behavior among habitats (Møller 2008b). Hence, it 

would be interesting to test whether the difference in prevalence 

of hemosporidians between habitats is related to the difference in 

host behavior between habitats. It would also be interesting to test 

whether different parasite lineages have a similar effect on escape 

behavior or whether they differ in effect as suggested by the pres- 

ent study. Finally, it would be interesting to test experimentally if 

species that have larger home ranges and visit a greater diversity of 

habitats accumulate more blood parasite lineages. 
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Supplementary material can be found at http://www.beheco. 
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El comportamiento de escape es llevado a cabo por las aves capturadas por un depredador, así, 

una mayor intensidad de este tipo de comportamiento podría incrementar las probabilidades de 

escapar de los depredadores. Es sabido que, para aumentar su eficacia biológica, los parásitos 

provocan efectos negativos en el hospedador. Parásitos transmitidos por vectores, como la 

malaria, obtendrían una mayor probabilidad de transmisión mediante la manipulación del 

comportamiento de sus hospedadores. Varios estudios han mostrado que el parásito de la 

malaria puede manipular a los vectores provocando así un aumento en su transmisión. Sin 

embargo, son pocos los estudios que analizan el posible cambio que el parásito de la malaria 

podría provocar en el comportamiento del hospedador, incrementándose así la dispersión del 

parásito. En este estudio analizamos el comportamiento de las aves en la naturaleza y en 

cautividad con el objetivo de determinar si Plasmodium relictum puede manipular el 

comportamiento de escape en uno de sus hospedadores más frecuente, el gorrión común Passer 

domesticus. Primero analizamos la relación entre el parásito de la malaria y el comportamiento 

de escape de gorriones en libertad, no encontrándose diferencias en el peso o en el 

comportamiento de escape entre gorriones infectados y no infectados. En segundo lugar, 

determinamos experimentalmente si el parásito de la malaria puede manipular el 

comportamiento de escape de los gorriones, encontrándose que la intensidad de picar y la 

inmovilidad tónica descendieron en los gorriones a los que se les eliminó la carga parásita 

mediante drogas anti-maláricas. Estos resultados sugieren que gorriones infectados muestran 

una mayor intensidad de comportamiento de escape, lo cual podría incrementar sus 

probabilidades de escapar de depredadores y, además, beneficiaría al parásito ya que se 

incrementarían sus oportunidades de transmisión. 

 
 
Palabras clave: picar, gorrión común, Plasmodium relictum, depredadores, inmovilidad tónica. 
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ABSTRACT 

 
Escape behaviour is the behaviour that birds and other animals display when already caught by a predator. An 

individual exhibiting higher intensity of such anti-predator behaviour could have greater probabilities of 

escape from predators. Parasites are known to affect different aspects of host behaviour to increase their own 

fitness. Vector-transmitted parasites such as malaria parasites should gain by manipulating their hosts to 

enhance the probability of transmission. Several studies have shown that malaria parasites can manipulate 

their vectors leading to increased transmission success. However, little is known about whether malaria 

parasites can manipulate escape behaviour of their avian hosts thereby increasing the spread of the parasite. 

Here we used both observational and experimental approaches to explore if Plasmodium relictum can 

manipulate the escape behaviour of one of its most common avian hosts, the house sparrow Passer 

domesticus. First, in an observational study we explored the relationship between malaria parasites and escape 

behaviour in wild sparrows. We found no significant difference in either body mass or escape behaviour 

between infected and un-infected sparrows. Second, we experimentally tested whether malaria parasites 

manipulate the escape behaviour of their avian host. We showed a decrease in the intensity of biting and tonic 

immobility after removal of infection with anti-malaria medication compared to pre-experimental behavior. 

These outcomes suggest that infected sparrows performed more intense escape behaviour, which would 

increase the likelihood of individuals escaping from predators, but also benefit the parasite by increasing its 

transmission opportunities. 

 
Key words: biting; house sparrows; Plasmodium relictum; predators; tonic immobility 
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INTRODUCTION 
 
 

In any animal population, there are behavioural 

differences among individuals, where some 

individuals are bolder, more aggressive or more 

sociable than others. Although individuals may 

change their aggressiveness or boldness depending 

on the ecological situation (e.g., predation risk or 

parasitism), the behaviour of certain individuals is 

consistent over time and across  situations 

(Gosling, 2001; Réale et al. 2010; Sih et al. 2004). 

Predation is a major selection pressure that 

determines the form and the behaviour of animals 

(Endler, 1991; Lima, 1998). Therefore, any animal 

whose behaviour facilitates avoidance of 

encounters with predators or survival of attacks 

will increase its fitness (Lind and Cresswell, 

2005). In birds, escape behaviour is displayed 

when an individual is already caught by a predator 

(Møller et al. 2011). An individual exhibiting such 

anti-predator behaviour increases the probability of 

being released by biting, struggling, losing 

feathers, emitting alarm or distress calls or 

displaying tonic immobility (Högstedt, 1983; 

Edelaar et al. 2012). Hence, individuals with 

higher intensity of escape behaviour may have 

enhanced probabilities of escape from predators 

(Møller et al. 2011). 

 
Parasites exert intense selection on their 

avian hosts (Loye and Zuk, 1991). Therefore, 

natural selection is expected to favour parasites 

with mechanisms that enhance their transmission 

success. Parasites can affect aspects of host 

behaviour in ways that increase their own fitness 

(Moore, 2002; Schmid-Hempel, 2011). The 

behavioural  manipulation  hypothesis  posits  that 

manipulation of host behaviour by parasites confer 

fitness benefits to the parasite, usually by 

increasing transmission success compared to 

conspecifics that are unable to modify host 

behaviour (Lefèvre et al. 2008; Poulin, 2010). 

 
Avian malaria and  related 

haemosporidians are abundant and diverse 

parasites infecting several hundred species of birds 

in almost all continents. Plasmodium species are 

among the most pathogenic species of avian 

malaria, being responsible for mass mortality, 

population declines and even extinctions of many 

bird species (Van Riper III et al. 1986; Valkiūnas, 

2005). These parasites are transmitted from 

infected to uninfected hosts by blood-sucking 

arthropods. Their life cycles are complex, 

involving sexual stages in the vector and asexual 

stages in the vertebrate host. Theory predicts that 

parasites that are dispersed by vectors should gain 

by manipulating their vector to their own 

advantage (Schmid-Hempel, 2011). Thus 

Plasmodium gallinaceum is able to increase the 

biting rate of its vector, the mosquito Aedes 

aegypti leading to an increase in its transmission 

success (Koella et al. 2002). Moreover, an increase 

in the attractiveness of infected hosts to the vector 

should also enhance the probability  of 

transmission from the vertebrate host  to the 

arthropod vector (Hamilton and Hurd, 2002). 

Following this idea, Cornet et al. (2013a) 

experimentally demonstrated that infected birds 

attract significantly more vectors than uninfected 

ones, suggesting that malaria parasites manipulate 

the behaviour of vectors to increase their own 

transmission. Furthermore, alterations in the 

behaviour  of  vertebrate  hosts  may  also  benefit 
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parasite transmission. For example, experimental 

mice carrying  Plasmodium gametocytes in their 

blood showed the weakest mosquito-repellent 

behaviour, thus allowing mosquitoes to ingest 

infective forms of the malaria parasites and 

contributing to transmission of the malaria 

parasites (Day and Edman, 1983). 

 
However, little is known about whether 

malaria parasites can manipulate escape behaviour 

of their avian hosts with the aim of promoting the 

spread of the parasite. So far, only a recent study 

has explored the association between 

haemosporidian infection and escape behaviour of 

avian hosts. Garcia-Longoria et al. (2014) showed 

a positive relationship between the prevalence of 

Leucocytozoon and Haemoproteus and the 

intensity of host escape behaviour in 89 species of 

birds, but did not detect any correlation between 

Plasmodium and such anti-predator behaviour. 

Here we explore if Plasmodium relictum, a 

widespread and highly pathogenic haemosporidian 

parasite, can manipulate the escape behaviour of 

one of its most common avian hosts, the house 

sparrow Passer domesticus (Marzal et al. 2011). 

With this aim we conducted observational and 

experimental studies of this bird-malaria system. 

First, we explored the relationship between 

prevalence and intensity of infection by malaria 

parasites and escape behaviour in wild sparrows. If 

the effects of malaria infection on host 

manipulation are perceptible under natural 

conditions, then we should expect a positive 

relationship between Plasmodium infection and the 

intensity of escape behaviour, presumably to 

preserve future transmission opportunities. 

Second, we experimentally tested whether malaria 

parasites can manipulate the escape behaviour of 

their avian host by breaking up any correlation 

with potentially confounding variables. If P. 

relictum is able to manipulate anti-predator 

behaviour in order to increase its probability of 

transmission, then we should predict a decrease in 

the intensity of escape behaviour after removal of 

the infection with anti-malaria medication. 

 
MATERIALS AND METHODS 

 
 

Study site and sample collection 
 

 
The study was carried out in a population of house 

sparrows in the university campus of Badajoz 

(38°52’N, 6°58’W), southwest Spain during 

November-December 2012. We captured 101 adult 

house sparrows with mist-nets and recorded their 

body mass  with  a Pesola spring  balance to  the 

nearest 0.1 g. All birds were individually identified 

with numbered metal rings. One microcapillary of 

blood (70 μl) was obtained from the brachial vein 

of each individual and stored in 500 μl of SET 

buffer (0.15 M NaCl, 0.05 Tris, 0.001 M EDTA, 

pH 8.0) until DNA extraction. We also obtained a 

blood smear from each individual in order to 

estimate parasite intensity (the number of parasites 

per individual host). Seven behavioural variables 

(see below for detailed description) were assessed 

before the bird was bled and released in the 

aviaries of the Experimental Garden in the 

University of Extremadura. After initial molecular 

screening of haemosporidian infection, we selected 

32 haemosporidian-infected sparrows and 38 non- 

infected individuals for experiments. The 

remaining non-infected sparrows (N = 31) were 

released no later than three days after capture. 
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Anti-malaria treatment 
 

 
House sparrows were placed in the aviary where 

each cage (3.5 x 1.5 x 2.5 m) contained a 

maximum of eight individuals. Birds were 

provided with water and food ad libitum and they 

stayed two weeks in the aviaries in order to 

achieve acclimatization. Due to a possible 

influence of drugs on the behaviour of sparrows, 

individuals were randomly assigned to one of two 

treatments independently of infection status: (1) a 

control group of 33 individuals (14 infected + 19 

non-infected sparrows) that were injected with 0.2 

ml phosphate buffered saline (PBS); or an 

experimental group of 37 individuals (18 infected 

+ 19 non-infected sparrows) that were sub- 

cutaneously injected with 0.02 mg of Primaquine + 

1.4 mg of Chloroquine diluted in 0.2 ml of saline 

solution (Remple, 2004). We also provide a 

Malarone™ treatment with fixed – dose 

combination of 250 mg of atovaquone and 100 mg 

of proguanil hydrochloride to individuals of the 

treatment group (Palinauskas et al. 2009). One 

dose contained 0.24 mg of Malarone™ dissolved 

in 50 μl of drinking water in the water dispensers. 

We provided the same quantity of water in the 

dispensers of the control group, but without 

Malarone. Four infected birds died two weeks after 

inoculation, so the sample size of the control and 

treatment group was finally reduced to 31 (12 

infected + 19 non-infected sparrows) and 35 (16 

infected + 19 non-infected sparrows) individuals, 

respectively. Immediately before treatment, we 

recorded body mass of all individuals and took a 

second blood sample for haemosporidian analysis. 

 
Finally, three weeks after inoculation we 

took a third blood sample to verify the 

effectiveness of the anti-malaria treatment. In 

addition, body mass and the seven behavioural 

variables were recorded again to assess for an 

effect of haemosporidian infection on body mass 

and escape behaviour of individuals. 

 
Intensity of blood parasites 

 
 
Blood samples were fixed in absolute methanol 

and stained with Giemsa. The intensity of 

Plasmodium parasites was quantified as the 

number of parasites per 10,000 erythrocytes under 

1,000· magnification with oil immersion (Godfrey 

et al. 1987). 

 
Molecular detection of blood parasite infections 

 

 
Haemosporidian parasites (Plasmodium spp. and 

Haemoproteus spp.) were detected from blood 

samples using molecular methods (Bensch et al. 

2000; Waldenström et al. 2004). DNA from the 

avian blood samples were extracted in the lab 

using the standard phenol / chloroform / 

isoamylalcohol method (Sambrook et al.  2002). 

Diluted genomic DNA (25 ng/µl) was used as a 

template in a polymerase chain reaction (PCR) 

assay for detection of the parasites using nested 

PCR-protocols described by Waldenström et al. 

(2004). The amplification was evaluated by 

running 2.5 μl of the final PCR on a 2% agarose 

gel. All PCR experiments contained one negative 

control for every eight samples. In the very few 

cases of negative controls showing signs of 

amplification (never more than faint bands in 

agarose gels), the whole PCR-batch was run again 

to make sure that all positives were true. Positive 

amplifications were sequenced in order to select 

the individuals infected by Plasmodium relictum. 
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Behavioural variables 
 

 
Seven aspects of escape behaviour were assessed 

before a bird was bled. All these variables were 

recorded in the aviary before and after treatment. 

Several of  these variables have been  associated 

with susceptibility to predation by hawks and cats 

(Møller et al. 2011). It is important to emphasise 

that the different components of escape behaviour 

are mostly independent of each other (Møller et al. 

2011). The seven behavioural variables were 

defined as follows: 

 
(1) Wriggle score. We scored how much the bird 

struggled while being held in a hand (a score 

of 0—no movement, 1—moves rarely, 2— 

moves regularly, but not always, 3—moves 

continuously). Individuals that wriggle more 

may more readily escape from a predator 

compared to individuals that stay calm. 

 
(2) Biting. Whether the bird did not bite, when we 

held our right hand index finger in front of the 

beak, we gave a score of 0, and if it did a score 

of 1. We presume that a higher frequency of 

biting entails an elevated probability of escape 

from a predator because the predator loses its 

grip when re-directing its attention towards the 

biting prey. 

 
(3) Feather loss. While the bird was handled, if it 

lost feathers we gave a score of 1, or 0 if it did 

not. Feather loss may result in predators losing 

their grip of a prey (Møller et al. 2006). 

 
(4) Fear scream. While the bird was handled, if it 

gave a fear scream (a score of 1) or not (a 

score of 0). Birds giving fear screams attract 

the attention of secondary predators thereby 

increasing the probability of escape once 

captured (Högstedt, 1983; Møller and Nielsen, 

2010). 

 
(5) Tonic immobility. At the end of the above 

procedure we placed the bird, just before it 

was released, with our right hand on its back 

on our flat left hand. When the bird was lying 

still, we removed the right hand and recorded 

the time until the bird righted itself and flew 

away. We allowed tonic immobility up to 30 s, 

and if the bird had not left yet, we terminated 

the trial. Tonic immobility is a standard 

measure of fear in poultry research with both 

environmental and genetic components 

(Hoagland, 1928; Jones, 1986; Boissy, 1995; 

Forkman et al. 2007). Recently, Edelaar et al. 

(2012) showed that tonic immobility is related 

to personality and anti-predation behaviour 

because it is  a measure  of boldness toward 

predators. The longer time a bird stays, the 

higher its level of fear. Tonic immobility has a 

strongly bimodal distribution, with most 

individuals having tonic immobility of 0–5 s, 

but some 10–20% having 25–30 s (Møller et 

al. 2011). 

 
(6) Alarm call. When the bird departed from our 

hand whether it gave an alarm call (a score of 

1) or not (a score of 0). It has been suggested 

that the function of this call is to distract the 

predator or to warn conspecifics (Charnov and 

Krebs, 1975; Platzen and Magrath, 2004). 

(7) Breath rate. Carere and van Oers (2004) 

showed that breath rate is a signal of acute 

stress in birds when handled. We recorded the 

number of inhalations during 30 seconds while 

the bird was held in the hand. According to 



54  

Garcia-Longoria et al. 
 
 

Carere et al. (2001) we should expect a higher 

number of inhalations with a higher level of 

fear. 

 
 
Statistical procedures 

 

 
We calculated the repeatability of the behavioural 

variables in order to confirm the reliability of our 

measurements. We used the program R-2.15 (R 

Development Core Team, 2011) with the rptR 

package to calculated the repeatability of binary 

variables by using a GLMM with logit-link and 

multiplicative overdispersion (Nakagawa and 

Schielzeth, 2010). We used an ANOVA to 

determine differences in quantitative variables 

(body mass) and chi-square tests to determine 

differences in qualitative variables (wriggle score, 

biting, tonic immobility, feather loss and alarm 

call) between infected and non-infected 

individuals. Previous studies have criticized  the 

use of Bonferroni correction of multiple statistical 

tests (Moran, 2003; Nakagawa, 2004; Garamszegi, 

2006; Garamszegi et al. 2009) because it could 

increase the risk of committing Type II errors 

(Nakagawa and Cuthill, 2007). It has been 

suggested that effect sizes and confidence intervals 

(CIs) reliably reveal the biological importance of 

results (Nakagawa, 2004). Hence, we applied the 

effect size approach in the analyses of the 

observational ata in order to disclose the 

magnitude of our results. To calculate effect sizes, 

we used the corresponding df to calculate r and 

standard errors (based on r) to approximate the 

corresponding CIs (Nakagawa and Cuthill, 2007). 

95% CIs are presented as lower/upper limits. We 

also present significance levels for illustrative 

purposes.  In  behavioural  studies,  the  following 

benchmark is used for interpretations: r ≈ 0.1 is a 

small effect, r ≈ 0.3 a intermediate effect and r ≈ 

1.5 a strong effect (Cohen, 1988; Møller and 

Jennions, 2002). The magnitude of effects in 

biological studies is typically intermediate 

accounting for 5-7% of the variance, thus being 

equivalent to effect sizes of 0.22-0.26 (Møller and 

Jennions, 2002). 

 
With the aim to test the hypothesis that 

malaria infection could modify the escape 

behaviour of house sparrows, we analysed the 

variation in escape behaviour before and after the 

administration of anti-malaria medication or 

placebo in malaria infected sparrows (N = 56 

observations taken from 28 individuals). We also 

tested this hypothesis separately in non-infected 

sparrows that received anti-malaria medication or 

placebo (N = 76 observations from 38 individuals). 

Therefore, the second group was used as a second 

control to ensure that the application of the 

medication was not the cause of possible changes 

in escape behaviour. We used a linear mixed 

model approach to analyses these two subsets of 

data. The dependent variables were the 

behavioural variables modelled with the 

appropriate error structure and link functions (i.e., 

binomial errors for biting, feather loss, alarm call 

and distress and Poisson errors for wriggle and 

tonic immobility). The input variables introduced 

in the models were body mass, tarsus length, sex, 

time (included as a factor with two levels, i.e., 

before-after the application of the treatment), 

treatment (PBS-medication) and the interaction 

term between time and treatment. Body mass and 

tarsus length were included to control for 

difference  among  individuals  in  body  condition 
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that could influence escape behaviour and 

therefore they were treated as confounding 

variables. We predicted that if the treatment have 

an effect on behaviour then the interaction term 

between treatment and time should be statistical 

significant. The significant of this interaction term 

were tested comparing with a Likelihood Ratio 

Test (LRT) the global model with a reduced model 

on which the interaction term were previously 

removed leaving all other input variables in the 

reduced model. In these models we also included 

the aviary and subject identification as random 

terms to control for these source of variation and to 

control for pseudo-replication caused because we 

have two observations of escape behaviour (i.e., 

before and after the application of the treatment) 

taken from the same individual. The models 

concerning the dependent variables “alarm call” 

and “feather loss” did not converge because the 

data was unbalanced with very few experimental 

or control individuals giving an alarm call or 

losing a feather. Therefore, we excluded these 

escape behavioural variables in the analyses 

concerning our experimental approach. 

 
ETHICAL NOTE 

 

All the experiments comply with the current laws 

of Spain, where the experiments were performed. 

RESULTS 
 

 
Repeatability of behavioural variables 

 

 
Repeatability based on multiple measures for each 

behavioural variable within individuals is reported 

in Table 1. Six out of seven measures of escape 

behaviour of individuals at repeated captures were 

consistent (repeatabilities ranged from 0.53 to 

0.93). Only breath rate did not have a high 

repeatability. Hence, we excluded breath rate from 

further analyses in order to avoid biased results. 

 
Relationship between malaria parasites and 

escape behaviour under natural conditions 

 
We analyzed 101 blood samples from house 

sparrows searching for haemosporidian parasites. 

We found 69 (68.3 %) non-infected individuals 

and 32 (31.7 %) individuals infected with blood 

parasites. Mean Plasmodium parasitemia was 13.9 

infected erythrocytes per 10,000 scanned 

erythrocytes (0.139%). There was a non- 

significant difference in body mass between 

infected and non-infected individuals (F1, 100 = 

0.90, P = 0.34, r = 0.096, 95% CI = -0.101/0.287). 

Likewise, effect size between infected and non- 

infected house sparrows in escape behaviour was 

small accompanied by a rather wide range of CIs 

(Table 2). 
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Table 1 . Summary statistics for escape behaviour within individual house sparrows and repeatability (R). SE 

indicates standard error. 
 

Variable Mean (SE) Range R 95% CI 

Wriggle 0.177 0-3 0.530 0.020, 0.573 

 

Biting 0.240 0-1 0.655 0.003, 0.868 

 

Feather loss 0.156 0-1 0.882 0.479, 0.977 

 

Tonic immobility (s) 0.299 0-30 0.931 0.040, 0.936 

 

Distress call 0.290 0-1 0.896 0.001, 0.905 

 

Alarm call 0.225 0-1 0.893 0.213, 0.971 

 

Breath rate 0.193 0-30 -0.21 -0.609, 0.188 

 

 
 
 

Table 2 . Effect size between infected and non-infected house sparrows in escape behaviour under natural 

conditions. Sample size was 101 house sparrows. 

 

 

95% CI 
 

Variable χ² df Effect size Lower Upper P 
 

 
 
Wriggle score 

 
 

1.85 

 
 

21 

 
 

0.053 

 
 

-0.144 

 
 

0.246 

 
 

0.60 

Distress call 0.89 7 0.013 -0.182 0.208 0.37 

Biting 0.02 7 0.015 -0.180 0.210 0.88 

Feather loss 0.91 7 0.097 -0.099 0.287 0.33 

Tonic immobility (s) 1.31 7 0.115 -0.081 0.304 0.25 

Alarm call 0.80 7 0.090 -0.107 0.280 0.37 
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Relationship between malaria parasites and 

escape behaviour under experimental conditions 

 
Escape behaviour under experimental 

conditions 

 
Effects of the  medication  in prevalence and 

intensity of blood parasites 

 
As expected from the anti-malarial treatment, there 

was a decrease in prevalence of Plasmodium 

infection in medicated sparrows with an 

intermediate effect (McNemar N = 16; χ²15 = 

14.06,   P   <   0.001,   r   =   0.741,   95%   CI   = 

0.389/0.904), while for controls there was no 

change in prevalence of infection (McNemar N = 

12; χ²11  = 0.001, P = 1.00, r = 0.000, 95% CI = - 

0.442/0.442). Likewise, parasite load decreased in 
 

infected individuals from the experimental group 

(change in parasite load (SE) = 12.11 (22.78) 

Wilcoxon matched-pairs signed-ranks test: N = 16; 

z  =  -3.73,  P  =  0.000,  r  =  0.678  ,  95%  CI  = 

0.337/0.862), while it remained similar in infected 

individuals from the control group (change in 

parasite load (SE) = 15.00 (28.20) Wilcoxon 

matched-pairs signed-ranks test: N = 12; z = -1.28, 

P = 0.201, r = 0.231 , 95% CI = -0.165/0.654). 

 
Effects of the malaria infection in escape 

behaviour 

 
We found that two out of the seven variables 

related to escape behaviour changed in infected 

house sparrows treated with anti-malaria 

medication. On the contrary, the escape behaviour 

of non-infected house sparrows did not change 

after the medication. Specifically, we found that 

the probability of biting significantly decreased in 

malaria   infected   birds   after   the   experimental 

reduction of the prevalence and intensity of 

Plasmodium relictum (Fig. 1). This was supported 

because the interaction term between time and 

treatment was statistically significant (LRT = 4.59, 

df = 1, P = 0.032) (Table 3). Likewise, we found 

that the tonic immobility significantly increased in 

infected sparrows that received an anti-malaria 

treatment (Fig. 2). This was supported because the 

interaction term between time and treatment was 

statistically significant (LRT = 47.7, df = 1, P < 

0.001) (Table 3). These results were not 

confounded by either the body condition of the 

birds before the treatment or the aviaries where the 

experiment was performed, because we controlled 

for this source of variation in our mixed model 

approach (Table 3). 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

 

Figure. 1 Percentage of biting individual house 

sparrows (%) in control and experimental groups 

before and after anti-malaria treatment. Sample 

sizes are 20 and 16 sparrows, respectively. 
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increasing their reproductive fitness (Thomas et al. 

2005; Lefèvre et al. 2008). Here we have tested 

this hypothesis using both observational and 

experimental approaches in a bird host–malaria 

system. While the observational approach did not 

show any difference in escape behaviour between 

infected and un-infected house sparrows, the 

experiment clearly showed that biting and tonic 

immobility changed after clearance of the 

infection. Moreover, we showed that the anti- 

malaria drug by itself did not provoke a change in 

behaviour. 

 

Figure. 2 Mean tonic immobility (sec) ± SD in control 

and experimental groups of house sparrows before and 

after anti-malaria treatment. Sample sizes are 20 and 16 

sparrows, respectively. 

 
On the contrary, we found no effect of the anti- 

malaria medication per se on the escape behaviour 

of sparrows. In this sense, any of the variables 

related to escape behaviour significantly varied 

among the non-infected sparrows after the 

administration of anti-malaria medication or PBS 

(all P > 0.1) (Table 4). These results were not 

confounded by either the body condition of the 

birds before the treatment or the aviaries where the 

experiment was performed, because we controlled 

for this source of variation in our mixed model 

approach (Table 4). 

 
DISCUSSION 

 

 
The behavioural manipulation hypothesis posits 

that parasites can change the behaviour of their 

hosts to their own selective advantage, usually by 

 
Individual measurements of escape 

behaviour in birds when captured by a human were 

consistent across repeated measurements in a 

population of wild-caught house sparrows. The 

repeatability of escape behaviour was high for 

behavioural traits, which confirms the validity of 

our field estimates, as did previous studies of 

repeatability of animal behaviour (Dingemanse, 

2002; Biro, 2012). 

 
Ecological factors regulating variation in 

behaviour have been the focus of recent studies 

(e.g. Réale et al. 2010; Dunn et al. 2011). It has 

been postulated that parasites could be one such 

ecological factor modulating and causing changes 

in host behaviour (Barber and Dingemanse, 2010; 

Boyer et al. 2010). Several studies have shown 

that a wide range of protozoan and metazoan 

parasites induces changes in the behaviour of their 

hosts (Moore, 2002; Tomás et al. 2007; Poulin, 

2010, 2013). However, some studies failed to 

show a 
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Variable Estimate SE z value P 

Biting 

Sex (Male) -0.361 0.666 -0.54  0.58 

Body Mass 0.229 0.193 1.18  0.23 

Tarsus 0.083 0.408 0.20  0.83 

Time (before) -0.159 0.892 -0.17  0.85 

Treatment (PRQ) 0.815 0.863 0.94  0.34 

Time*Treatment -2.679 1.245 4.59  0.03 

Distress 

Sex (Male) 0.781 0.827 0.944  0.34 

Body Mass -0.065 0.237 -0.277  0.78 

Tarsus -0.424 0.503 -0.843  0.39 

Time (before) -0.957 1.046 -0.915  0.36 

Treatment (PRQ) -1.586 1.015 -1.561  0.11 

Time*Treatment 0.220 1.653 0.017  0.89 

Tonic immobility 

Sex (Male) -0.186 0.444 -0.419  0.67 

Body Mass 0.169 0.082 2.056  0.03 

Tarsus -0.327 0.273 -1.197  0.23 

Time (before) -0.460 0.178 -2.578 0.00 

Treatment (PRQ) -0.733 0.472 -1.552  0.12 

Time*Treatment 1.579 0.234 47.77 <0. 

Wriggle 

Sex (Male) 0.072 0.208 -0.150  0.72 

Body Mass -0.054 0.062 -0.874  0.38 

Tarsus 0.118 0.127 0.934  0.35 

Time (before) 0.271 0.310 0.876  0.38 

Treatment (PRQ) -0.154 0.304 -0.508  0.61 

Time*Treatment 0.052 0.411 0.016  0.89 

 

Manipulation of escape behaviour 
 

 
 

Table 3. Effects of anti-malaria treatment on escape behaviour of infected House sparrows. Sample size was 

28 individuals. 
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Table 4. Effects of anti-malaria treatment on escape behaviour of non-infected House sparrows. Sample 

Size was 38 individuals. 

 

 
 

Variable Estimate SE z value P 

Biting 

Sex (Male) 0.776 0.996 0.779  0.43 

Body Mass -0.226 0.245 -0.921  0.35 

Tarsus 0.204 0.472 0.433  0.66 

Time (before) -0.145 0.929 -1.232  0.21 

Treatment (PRQ) 0.226 1.158 0.196  0.84 

Time*Treatment 0.374 1.178 0.08  0.77 

Distress 

Sex (Male) -0.733 4.876 -0.150  0.88 

Body Mass 0.604 0.915 0.660  0.50 

Tarsus -0.986 2.103 -0.469  0.63 

Time (before) -0.472 2.175 -0.217  0.82 

Treatment (PRQ) -0.057 4.660 -0.012  099 

Time*Treatment -0.368 2.404 0.000 1.00 

Tonic immobility 

Sex (Male) 0.369 0.599 0.616  0.53 

Body Mass -0.067 0.050 -1.340  0.18 

Tarsus 0.029 0.255 0.116  0.90 

Time (before) -0.145 0.152 -0.954  0.34 

Treatment (PRQ) 0.446 0.597 0.747  0.45 

Time*Treatment 0.187 0.159 1.390  0.23 

Wriggle 

Sex (Male) 0.065 0.178 0.366  0.71 

Body Mass 0.023 0.049 0.469  0.63 

Tarsus -0.024 0.089 -0.268  0.78 

Time (before) -0.013 0.233 -0.056  0.95 

Treatment (PRQ) -0.151 0.244 -0.618  0.53 

Time*Treatment 0.026 0.327 0.006  0.90 
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relationship between infection status  and 

behaviour of hosts (Poulin, 2010; Cornet et al. 

2013b; Garcia-Longoria et al. 2014). Likewise, in 

our observational study we found no differences in 

escape behaviour between infected and un-infected 

sparrows. It has been proposed that  changes  in 

behaviour may be positively correlated with 

parasite load, where higher intensities of infection 

should induce greater alterations in behaviour 

(Thomas and Poulin, 1998; Shirakashi and Goater, 

2002). Because Plasmodium load varies during 

infection, it is possible that the dynamics of 

infection could be the cause of the lack of 

differences in escape behaviour between infected 

and non-infected birds in the wild population of 

house sparrows. Avian malaria parasites of the 

genus Plasmodium cause substantial morbidity and 

mortality in natural populations during the brief 

acute stage of a haemosporidian infection 

(Valkiūnas, 2005), when parasites usually appear 

in the blood at high density (Atkinson and Van 

Riper III, 1991; Valkiūnas, 2005). However, it is 

common that long-term chronic infections 

developed in those individuals that survive the 

acute stage. In these individuals parasites persist 

at low densities in blood stream and are thought to 

be controlled by acquired immunity (Atkinson and 

Van Riper III, 1991; Zehtindjiev et al. 2008). 

Alternatively, in temperate regions, the lowest 

indices of infection intensity of haemosporidians 

are observed in birds in winter because suitable 

vectors for parasite transmission are absent 

(Valkiūnas, 2005). These outcomes are in 

accordance with our results where naturally 

infected birds showed very low parasitemia. This 

small intensity of infection could explain why we 

failed to show effects of Plasmodium parasites in 

wild sparrows during winter. 

 
Avian malaria parasites were considered 

for many years to have low pathogenicity because 

many studies failed to show a correlation between 

haemosporidian infections and fitness components 

of their hosts (Fallis and Desser, 1997; Dufva and 

Allander, 1995; Dawson and Bortolotti, 2000). 

However, the demonstration of effects of parasites 

requires an experimental approach (Keymer and 

Read, 1991; Marzal et al. 2005; Knowles et al. 

2010). Interestingly, we found that two 

components of anti-predator escape behaviour 

changed with the reduction in malaria infection. 

Specifically, medicated sparrows showed a lower 

frequency of biting behaviour and spent more time 

in tonic immobility before flying away. We also 

found that body mass of infected birds increased 

after treated them with an anti-malaria drug. 

However, non-infected individuals also increased 

their body mass, independently to the treatment. 

Therefore, the change in behaviour we found was 

independent of change in body mass since also 

non-infected individuals change their body mass 

during the course of the study. Additionally, we 

did not find any change in behaviour in non- 

infected individuals treated either with anti-malaria 

medication or PBS, as expected. The direction of 

the change in behaviour in infected individuals 

treated with anti-malaria medication shows a trend 

towards parasite-free individuals being more 

scared or shy. Numerous studies have shown that 

parasites can modify specific anti-predator 

behaviours to increase their own fitness (see 

reviews in Moore, 2002; Lafferty and Shaw, 

2013). These modifications include examples in 



62  

Garcia-Longoria et al. 
 
 

which parasites alter the behaviour of their 

intermediate hosts in ways that favour predation of 

infected hosts, thus enhancing trophic 

transmission. For example, a rodent infected with 

Toxoplasma gondii is known to lose fear against 

predators (definitive host), thus increasing the 

transmission of the parasite to its final host 

(Berdoy et al. 2000; Vyas et al. 2007; Webster and 

McConkey, 2010). In the case of malaria parasites, 

the death of an infected host by a predator entails 

the end of transmission of the parasite. Here, we 

showed that sparrows were more aggressive 

against the predator and performed more intense 

escape behaviour when infected with malaria 

parasites. Theoretically, these changes in host 

behaviour should benefit the parasite. In this sense, 

intense escape behaviour that allows a bird to 

escape from a predator attack would increase the 

likelihood of survival (Møller et al. 2011). 

Indirectly, this would also benefit the parasite by 

increasing their transmission opportunities, the key 

factor determining parasite fitness. To the best of 

our knowledge, this is the first study 

experimentally showing a modification in host 

escape behaviour provoked by a malaria parasite. 

 
The manipulation behaviour hypothesis 

posits that parasites may induce behavioural 

changes in their host in ways to benefit their 

transmission to other hosts and hence increase 

their own fitness (Lefèvre et al. 2008; Poulin, 

2010). But hosts usually do not obtain any benefit 

from these parasite manipulations (Levri, 1995; 

Vyas et al. 2007). However, our findings revealed 

that sparrows could also benefit from Plasmodium 

manipulation. In this sense, we showed that 

malaria infected sparrows performed more intense 

escape behaviour, which would indeed increase 

their likelihood of escape from predators and 

survival. If the performance of intense escape 

behaviour may clearly benefit an individual host, 

the question raised from here is why sparrows do 

not always exhibit a maximum in this behaviour, 

regardless to their infection status. One 

explanation could be that this anti-predatory 

behaviour should have some associated costs, and 

hence there could be an optimization of benefits 

associated with escape weighed against costs of 

the performance of the behaviour. In this sense, it 

has been shown that aggressive behaviour in birds 

can incur short-term costs in terms of energy and 

risk of injuries (Brown, 1997; Viera et al. 2011), 

which may result in long-term fitness costs 

(Hagelin, 2002). Alternatively, escape behaviour 

may show behavioural plasticity, where the 

expression of some behavioural traits (e.g. shyness 

and boldness) may vary within and among 

individuals across different environmental 

conditions (Réale, 2007; Stamps and Groothuis, 

2010; Poulin, 2013). Future studies examining the 

costs and benefits of escape behaviour in 

parasitized birds are desirable for understanding 

these variations. 

 
Another remaining question concerns the 

identification of the mechanisms that Plasmodium 

may use to enhance the escape behaviour of house 

sparrows. Although the molecular mechanisms are 

still poorly understood, three main mechanisms 

have been proposed to be used by parasites to alter 

host behaviour following infection (Adamo and 

Webster, 2013; Poulin, 2010). First, some parasites 

secrete substances capable of altering neuronal 

activity of the host provoking a change in host 
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behaviour. For instance, Schistosoma mansoni, a 

trematode, secretes opioid peptides altering 

neuronal functions in its host (Kavaliers et al. 

1999). Second, parasites can also modify the 

behaviour by interfering with physiological and 

biochemical pathways, inducing an indirect change 

in the behaviour of the infected host. For example, 

larval stages of helminths can promote changes in 

concentrations of serotonin, dopamine and others 

neurotransmitters in the brain of hosts, thereby 

modifying their behaviour (Poulin et al. 2003). 

Third, parasites may use genomics and proteomics 

to induce changes in the brain of the host. For 

example, T. gondii, a obligate parasitic protozoan, 

secretes a protein kinase in cells of an infected host 

thereby altering the expression of genes involved 

in immune function and neural signalling of the 

host (Hakimi and Cannella, 2011). We do not 

know the mechanism used by Plasmodium to 

modify the behaviour of its vertebrate hosts. 

Plasmodium parasites are known to alter the 

behaviour of their intermediate hosts. For example, 

it has been experimentally shown that Plasmodium 

gallinaceum affects the host-seeking behaviour of 

its mosquito vector Aedes aegypti to increase its 

transmission success (Koella et al. 2002). More 

recently, malaria infected mosquitoes have been 

shown to express enhanced attraction to human 

odour (Smallegange et al.  2013). Such 

modifications could be produced by alteration of 

an enzyme in the salivary glands of mosquitoes 

that hamper the blood meal process (Rossignol et 

al. 1984) and alterations in proteins in the head of 

sporozoite-infected mosquitoes indicating a 

possible dysfunction in the central neural system 

(Lefèvre et al. 2007). 

In our correlational study we found no 

differences in escape behaviour between infected 

and un-infected sparrows while in the 

experimental study we found that behaviour 

changed after experimental elimination of malaria 

parasites. However, such differences are 

commonplace. The most likely reason for the 

apparent discrepancy is that one or more 

confounding variables obscured any relationships 

in the correlational study. Thus, the effects of these 

confounding variables were eliminated by the 

experiment. In conclusion, this is the first study to 

experimentally show a modification in host escape 

behaviour provoked by a malaria parasite, as 

expected for parasite manipulation of host 

behaviour. Further studies of mechanisms involved 

in parasite-induced changes in escape behaviour 

may provide powerful tools for understanding 

bird–malaria interactions. 
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III 



 

Algunas especies de parásitos maláricos que afectan a aves son invasoras y responsables de la 

pérdida de diversidad aviar a nivel mundial. En este estudio, analizamos la prevalencia y la 

caracterización genética de la malaria aviar y de parásitos haemosporidios en aves Neotropicales 

de dos regiones diferentes de Perú. Detectamos una prevalencia del 32.4% en 12 especies de 

aves. Asimismo, encontramos que el agente patógeno Plasmodium relictum SGS1 mostró una 

distribución muy amplia y además fue el linaje más prevalente detectado en nuestro estudio 

(39% de las infecciones totales) infectando 8 especies de hospedadores en ambas localidades. 

Según nuestros datos, el presente  estudio  es el primero  en detectar  este patógeno  en el 

continente suramericano. De esta forma, el linaje pSGS1 representaría una posible amenaza para 

un tercio de todas las especies de aves en el mundo. 

 
 
Palabras clave: invasión biológica, parásitos sanguíneos, Haemoproteus, Plasmodium, 

Suramérica. 
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Abstract Some species of avian malaria parasites 

are invaders and responsible for diversity losses 

worldwide. Here we analyze the prevalence and 

genetic characterization of avian malaria and related 

haemosporidian parasites in Neotropical birds from 

two different regions of Peru. We detected an overall 

prevalence of  32.4 % comprising  12 infected bird 

species. The pathogen Plasmodium relictum SGS1 

was widespread and the most prevalent parasite found 

in our study (39 % of the total infections), infecting 8 

host species in both localities. To the best of our 

knowledge, this is the first report of this invasive 

pathogen in the mainland Americas, thus representing 

a possible menace to over one-third of all bird species 

in the world. 
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Introduction 

 
Many Emerging Infectious Diseases (EID) are a result 

of the increasing incidence and impact on host fitness 

by biological invasions of parasites that have ‘‘jumped 

ship’’ to novel host species (Hatcher et al. 2012). 

Malaria parasites (genus Plasmodium) are globally 

distributed, including several hundred species infect- 

ing birds of most species. Plasmodium relictum is 

among the most pathogenic species of avian malaria, 

being responsible for mass mortality, population 

declines and even extinctions of many bird species 

worldwide after its introduction outside its native 

range (Van Riper et al. 1986; Valkiū nas 2005). P. 

relictum lineage pSGS1 is a widespread and actively 

transmitted parasite lineage in Europe, Africa and Asia 

(Palinauskas et al. 2007), although recently it has also 

been recorded infecting native and indigenous birds in 

Oceania (Howe et al. 2012). P. relictum lineage 

pSGS1 has been reported in over 60 species of birds, 

but as of yet, this invasive lineage has not been 

reported in the mainland Americas (Beadell et al. 

2006; Durrant et al. 2006; Merino et al. 2008; Marzal 

et al. 2011; Lacorte et al. 2013). It is closely related to 

P. relictum lineage pGRW4 (where lineages are based 

on partial sequences of the cytochrome b gene), which 

also has a broad geographical range including New 

Zealand, Africa, Asia and the Americas (Beadell et al. 

2006; Marzal et al. 2011). Both parasites lineages 

might easily switch to new hosts as they spread into 

new areas (Beadell et al. 2006; Hellgren et al. 2009). 
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Fig. 1  Collection sites in 

Peru 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For all these reasons, the International Union for 

Conservation of Nature (IUCN) classifies avian 

malaria P. relictum to be among the 100 of the 

world’s worst invasive alien species (Lowe et al. 

2000). Hence, the identification of the geographical 

distribution of P. relictum lineages and their infection 

prevalences in birds has become essential in order to 

develop appropriate management strategies to facili- 

tate biodiversity conservation efforts worldwide. Here 

we analyze the presence of pSGS1 in Neotropical 

birds from  two different areas of Peru; Lima  and 

Huanuco. This system in Peru will allow us to test how 

the arrival of an introduced Plasmodium species 

affects birds that have already been exposed to other 

endemic (native) malaria parasites. 
 

 
Methods 

 
The study was carried out in two different areas of 

Peru: Pantanos de Villa wetland Reserve, a RAMSAR 

protected  area  in  the  south  of  Lima  including  a 
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complex of lagoons, pools and marsh areas of Pacific 

coast (12°120S, 76°590W; 10 masl), and Huánuco 

region, located between the eastern slope of the Andes 

Mountain Range and the Amazon plain (9°550S, 

76°140W; 1894 masl) (Fig. 1). In June 2012, 102 

individuals from 18 native bird species were caught 

using mist-nets. Different morphometric characters 

were measured by the same observer (AM). We 

captured individuals at each site and recorded their 

body weight with a Pesola spring balance to the 

nearest 0.5 g. We measured tarsus length with a digital 

caliper to the nearest 0.01 mm. We calculated body 

mass index as the residuals from an ordinary least 

squares linear regression of body weight against tarsus 

length (Jakob et al. 1996). 

One microcapillary of blood (70 ll) was obtained 

from the brachial vein of each individual and stored in 

500 ll SET buffer (0.15 M NaCl, 0.05 M Tris, 

0.001 M EDTA, pH 8.0) until analyses. Blood films 

were fixed with methanol and stained with Giemsa. 

Plasmodium and Haemoproteus infections were 

detected from blood samples using molecular methods 

(see Hellgren et al. 2004 for detailed description). The 

obtained sequences of 478 bp of the cyt b were edited, 

aligned and compared in a sequence identity matrix 

using the program BioEdit (Hall 1999). P. relictum 

SGS1 and new lineages were also sequenced from the 

reverse end using the primer HaemR2. 

These molecular analyses were repeated in three 

independent laboratories to verify the validity and 

reproducibility of detection of the SGS1 lineage. The 

obtained results in all the cases were the same. 

Moreover, we also amplified specific nuclear genes of 

pSGS1 (Garcı́a-Longoria, unpublished) to confirm 

that this finding was not resulting from sporadic lab 

contamination. The obtained sequences match SGS1 

for this fast evolving gene which easily separates 

SGS1 from other closely  related lineages (e.g. 

GRW4). Up to 40,000 erythrocytes were microscop- 

ically examined on each PCR-positive blood films for 

P. relictum SGS1. Malaria infection was confirmed 

microscopically in 61.5 % of individuals as early 

trophozoites and meronts of Plasmodium spp (Fig. 2). 

Unfortunately, most likely due to low parasitemia, we 

were not able to identify any gametocytes in the blood 

films. Blood smears were deposited in the museum 

collection of Museo de Historia Natural (Universidad 

Ricardo Palma, Lima, Peru) under the accession num- 

bers PROT-MHN-001–PROT-MHN-007. Intensities of 

infection were low with parasitemias that did not 

exceed 1 parasites/10,000 red blood cells. Using the 

information on the host species and geographical 

distribution of 1338 parasite lineages provided  by 

MalAvi database (Version 2.0.5 June 2013, Bensch 

et al. 2009), we studied the host range and geograph- 

ical distribution of parasites found in our study. We 

classified as exotic parasite species those lineages that 

have been previously reported infecting wild birds 

from other zoogeographical regions (i.e. pSGS1), 

whereas parasites linages reported in previous studies 

infecting wild birds from North or South America, but 

not found in other zoogeographical regions, were 

considered as native parasite species. New parasite 

lineages that were found for the first time in the present 

study were excluded from this categorization. All new 

DNA sequences have  been deposited in  GenBank 

under the accession numbers (KF482344, KF482356, 

KF482358). 
 

 
Results and discussion 

 
A total of 102 bird blood samples were examined for 

haemosporidian infection. We detected an overall 

prevalence of 32.35 % (33 positive  samples) 

(Table 1). We found 5 Haemoproteus lineages and 5 

Plasmodium lineages infecting 12 different bird 

species (Table 1). Plasmodium relictum SGS1 was 

widespread and the most prevalent parasite lineage 

found in our study, infecting 13 individuals from 8 

host species in both localities (39.40 % of the total 

infections) (Table 1). Although the fauna of haemo- 

sporidians have been studied irregularly in South 

America, this parasite lineage may be a recent invader 

because it has not been previously reported in any of 

the 39 studies analyzing avian malaria and related 

haemosporidian parasites from 213 native and intro- 

duced bird species from 17 orders covering almost the 

entire geographical range from North and South 

America (MalAvi database, version 2.0.5 June 2013, 

Bensch et al. 2009). Therefore, to the best of our 

knowledge, this is the first report of this invasive 

pathogen in the mainland Americas. 

Several characteristics are predicted of invasive 

parasite species to enable their successful establish- 

ment into a new range area, such as to be a host 

generalist and to be cosmopolitan in their distribution 

(Ewen et al. 2012). Here we found that pSGS1 infects 
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Fig. 2  Representative development structures observed in the erythrocytes from PCR-positive Plasmodium relictum SGS1 birds of our 

study demonstrating Plasmodium morphologies. t trophozoite, s intraerythrocytic schizont/meront 

 
8 different host species from 2 orders of Peruvian 

birds, being the most host generalist parasite lineage in 

our study (Table 1). Moreover, pSGS1 was also the 

most geographically widespread parasite, being the 

only Plasmodium lineage infecting birds in both study 

areas  (Table 1).  These  data  agree  with  previous 
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Table 1  Lineage names, parasite genus (H Haemoproteus,  P  

Plasmodium), GenBank accession numbers, prevalence of total 

infection, localities where have been sampled (Huan Huanuco, 

PV Pantanos de Villa), names of recorded hosts and number of 

infected and number of tested separate for each host and 

locality 
 

Lineage Genus   GenBank#    Prevalence of Localities Recorded hosts (N infected/N tested) 
total infection 

   (%)   

BAEBIC02 P AF465555 15.15 HUAN Zonotrichia capensis (5/23) 

CHLOP01 H JQ764618 18.18 HUAN Zonotrichia capensis (6/23) 

PHPAT01 P EF153642 3.03 HUAN Sayornis nigricans (1/7) 

PYERY01 H AY172842 3.03 HUAN Carduelis magellanica (1/2) 

SERCIN01 H KF482344 3.03 HUAN Serpophaga cinerea (1/16) 

SGS1 P AF495571 39.40 HUAN, 

PV 

Amazilia chianogster (HUAN; 1/12), Colibri 

coruscans(HUAN; 1/2), Sayornis nigricans (HUAN; 2/7), 

Serpophaga cinerea (HUAN; 3/16), Zonotrichia capensis 

(HUAN; 2/23), Conirostrum cinereum (PV; 1/1), 

Phleocryptes melanops (PV; 1/6), Troglodytes aedon (PV; 

1/3) 

STTA17H H JN819389 9.09 HUAN, 

PV 

Thraupis episcopus (HUAN; 2/3), Sicalis luteola (PV; 1/6) 

TACHURIS01 P KF482356 3.03 PV Tachuris rubigastra (1/7) 

TROGLODY01 P KF482358 3.03 PV Troglodytes aedon (1/3) 

ZOCAP01 H EF153649 3.03 HUAN Zonotrichia capensis (1/23) 

 

 
records on the host range and geographical distribu- 

tion of generalist pSGS1 (Bensch et al. 2009), 

suggesting that pSGS1 may be a recent invader and 

also showing the invasive potential of this species. 

This invasive parasite, however, could have not 

become so widely established without the presence 

of a suitable vector. Unfortunately we are not able to 

confirm the origin of this emerging disease and we can 

only speculate about the mechanisms that may have 

facilitated its spread to South America. Previous 

reports of avian malaria outbreaks have shown that the 

combination of naı̈ve native birds, infected non-native 

birds, and abundant competent mosquito vectors has 

expedited the rapid establishment and spread of avian 

malaria (Atkinson et al. 1995; Tompkins and Gleeson 

2006). Hence, once a population of a suitable vector 

has been fully established, the introduction of chronic 

avian malaria through exotic birds (e.g. pets) and/or 

migratory birds may provoke an outbreak of avian 

malaria in endemic birds (Van Riper et al. 1986; 

Warner 1968). Future studies examining blood para- 

sites from non-native birds and mosquitoes in both 

study areas will help to elucidate when and where 

infection was most likely acquired by the Peruvian 

native birds. 

Evolutionary theory predicts that virulence of 

parasites will be low in hosts that have evolved with 

the parasite (Schmid-Hempel 2011). In contrast, 

exotic parasites should be highly virulent to  their 

new hosts because the lack of evolved immunological 

resistance (Schmid-Hempel 2011). In this sense, 

invasive parasite species often cause extreme morbid- 

ity and mortality in novel hosts because naive host 

populations usually lacks protective immunity, result- 

ing in high mortality. For example, as an outcome of 

the fatal introduction of exotic P. relictum GRW4 

lineage and its competent vector in Hawaii in the 19th 

century, the mortality of resident birds increased up to 

90 % and many native species went extinct (Atkinson 

et al. 1995; Beadell et al. 2006; Lapointe et al. 2012). 

A similar situation has been reported in New Zealand, 

where different exotic avian malaria parasites lineages 

have recently arrived in multiple independent events 

along with their primary vector Culex quinquefasci- 

atus and may have an impact on New Zealand native 

birds (Ewen et al. 2012; Howe et al. 2012). Here we 

did not find that birds infected with exotic avian 

malaria pSGS1 had lower body mass scores than birds 

infected with native parasite lineages when introduc- 

ing bird host species ID in the model (mean body mass 
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index (SD): infected with exotic malaria parasite = 

-1.761 (3.763); infected with endemic malaria para- 

site  =2.226   (5.728);   GLMM:   estimate = -0.391, 

P = 0.622). However, the effects of pSGS1 on 

Neotropical birds could be underestimated due to the 

use of mist-nets, which tend to under-sample highly 

infected birds exhibiting high morbidity (Valkiū nas 

2005). Experimental studies have shown that avian 

haemosporidians provoke detrimental effects on their 

hosts by decreasing body condition (Atkinson et al. 

2000; Valkiū nas et al. 2006), which in turn may reduce 

adult bird survival (Valkiū nas 2005). Hence, the 

presence of this exotic Plasmodium lineage in birds 

of South America may represent a serious risk to this 

avifauna. Ornithological fauna from Peru represents 

20 % of bird diversity of the world and more than 

62 % of bird species richness of South America. Many 

of these species of birds are considered a priority for 

conservation because of their high degree of ende- 

mism or their risk of extinction (Schulenberg et al. 

2010). Moreover, Peru has the second largest portion 

of the Amazon rain forest after the Brazilian Amazon, 

being one of the most biologically diverse areas on 

Earth. The high prevalence of this invasive parasite in 

the limit with Peruvian Amazon (34.6 % of the overall 

infection in Huanuco) should warn us about the 

potential threat to over one-third of all bird species in 

the world (Da Silva et al. 2005). 

Summarizing, we show for first time the presence 

of invasive avian malaria P. relictum SGS1 infecting 

birds in the mainland Americas. Our intention is to 

underscore the conservation implications of invasive 

avian malaria and to elucidate the impact of exotic 

avian malaria parasites on individuals, populations 

and species of Neotropical birds. 
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Los parásitos maláricos necesitan sintetizar una enzima llamada quitinasa para traspasar la 

membrana peritrópica, la cual es creada alrededor del estómago del mosquito, y así completar su 

ciclo de vida. En las especies maláricas que infectan a mamíferos, el gen de la quitinasa está 

formado siempre por una copia, bien una corta o bien una larga. Sin embargo, se ha detectado 

que en la especie malárica aviar Plasmodium gallinaceum están presentes ambas copias. Esto 

podría sugerir que las especies maláricas que afectan a aves podrían ser antecesoras de las 

especies maláricas que afectan a los mamíferos donde las primeras perdieron una de las dos 

copias, a lo largo de la evolución, dando lugar a las segundas. Por otro lado, Plasmodium 

gallinaceum no es la especie de malaria aviar más extendida y dañina en aves. Este estudio es el 

primero en buscar e identificar el gen de la quitinasa en uno de los parásitos de malaria aviar 

más prevalentes y peligrosos, Plasmodium relictum. Identificamos el gen de la quitinasa en dos 

linajes mitocondriales de P. relictum (SGS1 y GRW4). Comprobamos que ambos genes están 

compuestos por dos copias, una larga (PrCHT1) y otra corta (PrCHT2). Las diferencias 

genéticas en la copia larga de SGS1 y GRW4 fueron mayores que las diferencias observadas en 

el gen del citocromo b. Así, estos resultados podrían aclarar las relaciones filogenéticas entre 

especies del género Plasmodium. Además, debido a su elevada variabilidad genética, el gen de 

la quitinasa podría ser usado para estudiar la estructura poblacional de Plasmodium en 

diferentes especies de aves y regiones geográficas. 

 
 
Palabras clave: malaria aviar, quitinasa, Plasmodium relictum, SGS1, GRW4. 
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Abstract 
 

Background: Malaria parasites need to synthesize chitinase in order to go through the peritrophic membrane, 

which is created around the mosquito midgut, to complete its life cycle. In mammalian malaria species, the 

chitinase gene comprises either a large or a short copy. In the avian malaria parasites Plasmodium gallinaceum 

both copies are present, suggesting that a gene duplication in the ancestor to these extant species preceded the 

loss of either the long or the short copy in Plasmodium parasites of mammals. Plasmodium gallinaceum is not the 

most widespread and harmful parasite of birds. This study is the first to search for and identify the chitinase gene 

in one of the most prevalent avian malaria parasites, Plasmodium relictum. 

Methods: Both copies of P. gallinaceum chitinase were used as reference sequences for primer design. Different 

sequences of Plasmodium spp. were used to build the phylogenetic tree of chitinase gene. 

Results: The gene encoding for chitinase was identified in isolates of two mitochondrial lineages of P. relictum 

(SGS1 and GRW4). The chitinase found in these two lineages consists both of the long (PrCHT1) and the short 

(PrCHT2) copy. The genetic differences found in the long copy of the chitinase gene between SGS1 and GRW4 

were higher than the difference observed for the cytochrome b gene. 

Conclusion: The identification of both copies in P. relictum sheds light on the phylogenetic relationship of the 

chitinase gene in the genus Plasmodium. Due to its high variability, the chitinase gene could be used to study the 

genetic population structure in isolates from different host species and geographic regions. 
 

Keywords: Avian malaria, Chitinase, Plasmodium relictum, SGS1, GRW4 
 

 

Background 

Malaria parasites have a complicated life cycle that requires 

several unique adaptive mechanisms that enable the para- 

site to successfully invade a variety of different tissues both 

in the vertebrate host and in the arthropod vector. Presum- 

ably as a protection against pathogens, arthropods develop 

a protective peritrophic membrane (PM) around their mid- 

gut after each blood meal which remains for 24 hours and 

then disappears [1]. The PM acts as a barrier blocking the 

penetration of parasites and not allowing them to spread to 

other organs [2]. Parasites in turn, have developed three dif- 

ferent ways to overcome this barrier by (i) leaving the eryth- 

rocytes before the formation of the PM (as is the case 

Wuchereria infection) [3], (ii) persisting until the PM disap- 

pears (e.g. Leishmania) [4], or (iii) penetrating the PM (e.g. 

malaria parasites) [1]. The mechanism which allows malaria 

parasites to go through the PM of mosquitoes is well 

described [5-7]. These studies have shown that following 

the sexual process that takes place in the mosquito 

stomach, the ookinete has the ability to cross the PM by 

secreting a chitinase with characteristics of the family 18- 

glycohydrolases that have catalytic and substrate-binding 

sites that breaks down this layer [8-10]. After crossing the 

PM, ookinetes finally transform into oocysts which after 

maturing (9–11 days [11]) releases the sporozoites that 

move to the salivary glands where they are ready for infec- 

ting a new host (e.g. birds). Therefore, chitinase secretion 

has an essential role in the completion of the life cycle of 

malaria parasites. 

The  mammalian  Plasmodium  parasite  species  have  a 

   single copy of the chitinase gene but with two different 
* Correspondence:  luzlongoria@unex.es 
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Badajoz, Spain 

Full list of author information is available at the end of the article 

structures. In the human and primate malaria parasites, 

Plasmodium  vivax  and  Plasmodium  knowlesi  and  the 
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rodent parasites (Plasmodium berghei, Plasmodium yoelii 

and Plasmodium chabaudi) the chitinase  gene  is  longer 

and contains both a catalytic domain and a chitin-binding 

domain; in contrast, the shorter version present in Plasmo- 

dium falciparum and Plasmodium reichenowi lacks the 

chitin-binding domain [12]. Remarkably, the chicken para- 

site Plasmodium gallinaceum has functional copies of both 

the long (PgCHT1) and the short (PgCHT2) chitinase gene 

[12] suggesting that it is a common ancestor of the mam- 

malian Plasmodium parasites that subsequently lost either 

the short or the long copy of the chitinase gene [13]. The 

phylogenetic relationships among Plasmodium parasites in- 

fecting mammals and birds have been intensively debated 

over the past decades. Some studies have found support for 

that P. falciparum is more closely related to bird parasites 

than to the other mammalian malaria parasites [13,14], 

whereas other studies support that the mammalian para- 

sites are forming a monophyletic clade [15,16]. Because P. 

gallinaceum so far is the only bird malaria parasite investi- 

gated for its chitinase genes, it is too early to establish that 

the occurrence of both chitinase copies is representative for 

bird malaria parasites in general. 

Plasmodium gallinaceum has been the primary model for 

studies related with chitinase function in avian malaria 

[1,17]. However, this species is not the most common mal- 

aria parasite in birds. In fact, species belonging to the genus 

Plasmodium show distinct differences in their distribution 

and prevalence [18]. The most widespread and harmful 

avian malaria species is Plasmodium relictum, found to in- 

fect more than 70 different bird species, whereas P. gallina- 

ceum has been found to infect only 4 (MalAvi data base 

2013-12-02 [19]). Plasmodium relictum is one of the most 

generalist malaria parasite in birds and has several 

mitochondrial cytochrome b lineages (e.g. SGS1, GRW4, 

GRW11, LZFUS01) that can be found in almost all conti- 

nents (MalAvi data base 2013-12-02 [19]). Full understand- 

ing of the genetic mechanisms of the infection cycle could 

help to gain insights into why some parasites are specialist 

whereas others can infect a large number of different host 

species. 

Despite the wide distribution and harmfulness of P. relic- 

tum, no study has tried to determine either if this species 

has the chitinase gene, nor the number of copies it pos- 

sesses. Therefore, the objectives of this study were (1) to 

determine  whether  the  two  most  widespread  lineages  of 

P. relictum (SGS1 and GRW4) have the gene encoding for 

chitinase, (2) if these lineages have both copies (CHT1 and 

CHT2) and (3) finally determine the genetic variability of 

chitinase genes between the lineages SGS1 and GRW4. 

 
Methods 

Chitinase identification and sequencing 

Geneious 6.1. software primer design tool was used to 

create  primers  for  amplification  of  overlapping  partial 

regions within the catalytic domain of both copies of the 

P. gallinaceum chitinase genes (long: AF064079; short: 

AY842482). Each of the copies of the chitinase gene was 

first aligned to the sequences of all other available 

mammalian Plasmodium parasites in order to identify 

conserved regions. Figure 1 shows the position  of the 

primers in both fragments of P. gallinaceum and the 

primer sequences are given in Table 1. 

Two samples from previous experimental infections 

with P. relictum, the cytochrome b lineage SGS1 from 

crossbills [20] and GRW04 from great reed warblers 

[21], were used as DNA template. Total genomic DNA 

from the avian blood samples was extracted by standard 

ammonium acetate protocol [22]. All samples were 

screened for chitinase using a nested PCR method for 

chitinase genes with primers as in Table 1. For  both 

steps,  PCR  reactions  were  set  up  in  total  volumes  of 

25 μl, containing 15.4 μl of ddH2O, 1.5 μl of MgCl2 

(25 mM), 2.5 μl dNTP (10 mM), 2.5 μl 10x Buffer, 1 μl 

of each primer (10 μM), 0.1 of Taq polymerase and 1 μl 

of each sample (25 ng DNA/μl). The PCR temperature 

profile was 95°C for 2 min followed by 25 or 35 cycles of 

95°C for 30 sec, annealing temperature according to 

Table 1 for 30 sec and 72°C for 30 sec and terminated 

by a step of 72°C for 10 min. For the SGS1 isolate we 

used an additional set of primers (PgCHT1_F3, PgCHT1_R3, 

PgCHT2_F3, PgCHT2R4) to amplify a region 3’ to the 

fragment obtained with the nested protocol. Positive am- 

plifications were precipitated and sequenced using a dye 

terminator cycling sequencing (big dye) kit and loaded on 

an ABI PRISM™ 3100 sequencing robot (Applied Biosystems. 

Florida. USA). 

 
Phylogenetic analysis 

Sequences from P. relictum were aligned with the avail- 

able chitinase gene sequences  from  Plasmodium  spp. 

(P. gallinaceum CHT1: AF064079; CHT2: AY842482; P. 

berghei  CHT1:  AJ305256;  P.  yoelii  CHT1:  AB106898; 

P. knowlesi CHT1: XM002257469; P. vivax CHT1: 

AB106896; P. falciparum CHT1: AF127445; P. reiche- 

nowi CHT1: AY842483) using Geneious translation 

alignment tool. The quality of the  alignment  was 

checked by manual inspection. The combined phylo- 

genetic tree for the two copies was constructed in the 

programme MEGA 5.2 and using a Maximum Likeli- 

hood model. Bootstrap values were used in order to 

obtain a consensus phylogeny using 200 iterations. 

 
Results 

Both lineages of P. relictum (SGS1 and GRW4) had both 

gene copies encoding for chitinase. The obtained sequences 

for the lineage SGS1 and GRW4 were 852 bp and 339 bp 

for the long copy (GenBank accession number KJ452165, 

KJ452167)  and  845  bp  and  393  bp  for  the  short  copy 
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Figure 1 Primer sites (Forward: dark green arrows, Reverse: light green arrows) along the cht1 (a) and cht2 (b). Amplified fragments are 

represented by dashed lines. 

 
 

(GenBank accession number KJ452166, KJ452168). Because 

the obtained sequences from the GRW4 isolate were short 

only the data from the SGS1 isolate was used for the phylo- 

genetic analyses. These two regions do not completely over- 

lap (Figure 2). As a result, both sequences were trimmed to 

only cover the shared sites resulting in a combined align- 

ment covering a region of 802 nucleotides. The phylo- 

genetic analyses found strong support for the separation of 

the long and the short copies, both being present in the 

SGS1 isolate of P. relictum (Figure 3). 

The nucleotide (and amino acid) distances were com- 

pared between P. gallinaceum and P. relictum for both 

copies using a Pairwise distance matrix. For the  long 

copy a distance of 10.0% was found (9.2%) between 

SGS1 and P. gallinaceum. For the short copy, a distance 

of 11.0% (10.6%) was found between SGS1 and P. galli- 

naceum. Over the regions for which data of P. relictum 

are available from both isolates of P. relictum, SGS1 and 

GRW4 differed by 1.5% (0.8%) for the short copy and 

4.1% (3.6%) for the long copy. 

 
Discussion 

The chitinase gene can consist of one or two copies [9], 

a long and a short one. Previous studies have established 

that some malaria parasites only have one copy (e.g. P. 

falciparum [10,23] and P. berghei [24]) while only P. 

gallinaceum has both variants [9]. Molecular results 

showed that P. relictum has both copies encoding for chi- 

tinase (PrCHT1 and PrCHT2). Plasmodium relictum is as 

far as it is known, the second malaria parasite demon- 

strated to have both copies. As P. gallinaceum and P. relic- 

tum are quite distantly related among the Plasmodium 

parasites infecting birds [15,16] suggests that the presence 

of two chitinase gene copies is widespread among the bird 
 

 
 

Table 1 Annealing temperature for all the primers used 
 

Primer  Seq (as ordered) Annealing temp. (°C) 

PgCHT1_F Forward 5’-ATGATAGAAAATCACCAAGACAAATTTTAGA-3′ 50 

PgCHT1_R Reverse 5’-GGTTCCCAGTCAATATCTACACCA-3′ 50 

PgCHT1_F2 Forward 5’-TAGAGGAATACAAAAGAAGGAAACAAGG     −3′ 50 

PgCHT1_R2 Reverse 5’-CAGTCAATATCTACACCATCTAAATCA   −3′ 50 

PgCHT2_F Forward 5’-ATTCAAGGTTATTATCCATCATGGGT-3′ 53 

PgCHT2_R Reverse 5’-GAAATCCTATACAGCTCAAAGCTCC   −3′ 53 

PgCHT2_F2 Forward 5’-GGGTGTCATATAATCATAATATGAAAGA   −3′ 53 

PgCHT2_R2 Reverse 5’-GACATTGATATTAATTTATCCTCACACA   −3′ 53 

PgCHT1_F3 Forward 5’-AATGACTTTGATTTAGATGGTGTAGAT-3′ 55 

PgCHT1_R3 Reverse 5’-TAATTGTTCTTTCATAAATAAATGCCA  −3′ 55 

PgCHT2_F3 Forward 5’-ATGAACCCAATGGATCGTTTGATG  −3′ 58 

PgCHT2_R4 Reverse 5’-TAAATTATTAGACAAAGACCACAATCC   −3′ 58 
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Figure 2 Overlap of the long (PrCHT1) and short copy (PrCHT2) sequenced in the mitochondrial lineage SGS1 of P. relictum. The 

aminoacid sequence is shown in order to illustrate the overlap (green areas). 

 
Plasmodium parasites. Hence, avian malaria parasites are, 

to date, the only parasites with both copies. Li et al. [12] 

suggested that avian malaria parasites could be the ances- 

tor for the chitinase gene in malaria parasites of primates 

and rodents. Thus, given the current phylogenetic hypoth- 

esis, it can be assumed that mammalian parasites evolved 

from an avian parasite that carried two copies of the chiti- 

nase gene. 

The bar-coding gene for molecular identification of 

Plasmodium parasites of birds is the cytochrome b gene 

[25-27]. When a genetic difference between lineages ex- 

ceeds 5% this is often followed by distinct morphological 

differentiation which allows for identification of mor- 

phological defined species [26]. Obviously, differences 

are lower when lineages within the same morphological 

defined species are compared. The MalAvi data  base 

[19] shows that the genetic variability in the cytochrome 

b between SGS1 and GRW4 is 1.8% (9 nucleotides dif- 

ferent in 480 bp). However, the present study shows that 

the genetic variability between SGS1 and GRW4 in the 

chitinase gene was much higher, 4.1% (14 different nu- 

cleotides in 339 bp). Moreover, the genetic distance in 

the cytochrome b between  P. relictum and P. gallina- 

ceum is 6.9% (29 nucleotides different in 480 bp). The 

results of this study shows that the genetic distance be- 

tween P. relictum and P. gallinaceum in the short copy 

was 13.1% (44 different nucleotides in 339 bp). Previous 

studies have identified some nuclear genes with a high 

variability in P. relictum, for instance the msp1  gene 

[28], that can be used for epidemiological studies of the 

malaria parasite. In the same way, the chitinase gene 

could be a good candidate and complement for studies 

of genetic population structure of the parasites. 

In conclusion, the present study demonstrates that the 

most widespread and harmful avian malaria parasite, 

P. relictum, have the gene encoding for chitinase. In ac- 

cordance  with  previous  studies  on  avian  malaria  (i.e. 

P.   gallinaceum),   the  present  study  demonstrates  that 

occurrence of both copies (PrCHT1 and PrCHT2) seems 

to   be   widespread   across   avian   Plasmodium   species. 

Additionally,  the  present  study  demonstrates  that  the 

genetic variability of the chitinase gene was high between 

the two analysed lineages of P. relictum (SGS1 and GRW4). 

To  determine  the  phylogenetic  relationship  between 

the  chitinase  gene  in  malaria  parasites,  future  studies 

could search for the number of fragments in other spe- 

cies of  haemosporidian  parasites and  most importantly 

in  the  genera  closely  related  to  Plasmodium  that  are 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Maximum likelihood consensus phylogeny using midpoint rooting of the translated CHT1 (long copy) gene and CHT2 (short 

copy) from 10 different malaria species. Numbers in branches represent bootstrap values based on 200 iterations. 
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transmitted by vectors of other dipteran families than 

Culicidae. Another interesting approach would be to 

analyse the chitinase gene in parasites isolated from a 

wide range of  bird species with a high prevalence of 

P.  relictum  and  different  habitat  uses,  looking  at  the 

gene variability in P. relictum. 
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SGS1, uno de los linages de Plasmodium relictum, tiene una transmisión activa en zonas 

tropicales de  África y  en áreas templadas de Europa. La detección de  nuevas secuencias 

nucleares de este linaje (basados en diversidades alélicas de MPS1) ha proporcionado nuevas 

evidencias sobre la distribución geográfica y las áreas de transmisión de estos alelos. Por 

ejemplo, los alelos del gen MSP1 que se transmiten en África difieren de los transmitidos en 

Europa, sugiriendo la existencia de dos poblaciones de SGS1. Sin embargo, hasta la fecha, 

ningún estudio ha analizado la distribución de alelos africanos y europeos en aves migratorias. 

Con ese objetivo, investigamos si aviones comunes juveniles se infectaban en Europa antes de 

su primera migración a África. Analizamos la diversidad alélica del gen MSP1 en aviones 

adultos y juveniles infectados con SGS1. Encontramos que los juveniles se infectaban con 

SGS1 durante sus primeras semanas de vida, confirmando así una transmisión activa de SGS1 

en aviones nacidos en Europa Además, encontramos que todos los juveniles y la mayoría de los 

adultos estaban infectados con un alelo de MSP1 transmitido en Europa mientras que dos 

aviones adultos estaban infectados, respectivamente, por dos alelos de MSP1 transmitido en 

África. Estos resultados sugieren que los aviones comunes están expuestos a diferentes 

poblaciones de P. relictum en sus cuarteles de invernada y en los de cría. 

 
Palabras clave: Plasmodium relictum, avión común, Delichon urbica, MSP1, malaria aviar. 
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ABSTRACT 
 
 
 
 
 

Cytochrome b lineage of Plasmodium relictum, SGS1, is known to have active transmission in 

tropical Africa and temperate regions of Europe. Nuclear sequence data from isolates infected with 

SGS1 (based on MSP1 allelic diversity) have provided new insights on the distribution and 

transmission areas of these allelic variants. For example, MSP1 alleles transmitted in Africa differ 

from those transmitted in Europe, suggesting the existence of two populations of SGS1 lineages. 

However, no study has analysed the distribution of African and European transmitted alleles in Afro- 

Palearctic migratory birds. With this aim, we investigated whether juvenile house martins become 

infected in Europe before their first migration to Africa. We explored the MSP1 allelic diversity of P. 

relictum in adult and juvenile house martins. We found that juvenile house martins were infected 

with SGS1 during their first weeks of life, confirming active transmission of SGS1 to house martins 

in Europe. Moreover, we found that all the juveniles and most of adult house martins were infected 

with one European transmitted MSP1 allele, whereas two adult birds were infected with two African 

transmitted MSP1 alleles. These findings suggest that house martins are exposed to different strains 

of P. relictum in their winter and breeding quarters. 

 

Keywords: avian malaria; Delichon urbica; juveniles; MSP1; Plasmodium relictum. 
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INTRODUCTION 
 

 

Climate changes are likely to affect the 

biology and ecology of vectors with 

consequences on changing transmission areas 

of blood parasites such as malaria and other 

haemosporidians (Githeko et al., 2000). 

However, areas of transmission of different 

vector-borne diseases remain a key knowledge 

gap in our understanding of these pathogens. 

Parasites can regulate their host populations by 

reducing the fecundity or the survival of their 

host population, but our current knowledge of 

population regulation of hosts by parasites is 

still limited (see reviews in Møller, 2005; 

Schmid-Hempel, 2011). In the case of 

haemosporidian parasites, most of the 

mortalities of infected birds normally occur 

during the acute phase of the parasite 

infection, which usually happens several days 

after the parasite transmission (Valkiūnas, 

2005). Juvenile birds are especially susceptible 

for infection because they are 

immunologically naïve, which may drive to 

population decline (Samuel et al., 2011). 

Hence, it becomes essential to identify the 

regions where vector-borne diseases are 

transmitted in order to study the host 

population dynamics and to recognize future 

changes in environmental conditions that may 

potentially influence the transmission areas. 

 

Haemosporidians are among the most 

well studied blood parasites of reptiles, 

mammals and birds (Valkiūnas, 2005). Avian 

Plasmodium species show a cosmopolitan 

distribution, being found in all continents 

except Antarctica (Valkiūnas, 2005). To date, 

more than 50 morphospecies of avian malaria 

parasites of the genus Plasmodium have been 

described worldwide (Valkiūnas, 2005; 

Palinauskas et al., 2007). Plasmodium 

relictum is one of the most widespread and 

harmful parasite species of avian malaria, 

being responsible for mass mortality, 

population declines and even extinctions of 

many bird species (Van Riper III et al., 1986; 

Valkiūnas, 2005). For all these reasons  and 

due to its devastating effects, the International 

Union for Conservation of Nature (IUCN) 

classifies P. relictum as one of the worst 

invasive species in the world (Lowe et al., 

2000). Therefore, it becomes essential to 

identify the geographical distribution of P. 

relictum lineages and to assess their infection 

prevalence in birds in order to develop 

appropriate management strategies to promote 

biodiversity conservation policies worldwide. 

 

With the use of mtDNA cytochrome b 

gene (cyt b) to barcode the parasites more than 

500 avian Plasmodium parasite lineages have 

been (MalAvi database 2015-01-15) (Bensch 

et al., 2009). Moreover, four different cyt b 

lineages have been described within the 

morphologically described species of P. 

relictum (Palinauskas et al., 2007; Valkiūnas 

et al., 2007; Ilgunas et al., 2013; Kazlauskiene 

et al., 2013). Two of the P. relictum cyt b 
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lineages (SGS1 and GRW4) are some of the 

most abundant and geographically widespread 

of all bird Plasmodium lineages. Both lineages 

are host generalists infecting 95 species of 28 

families (SGS1) and 60 species in 19 families 

(GRW4) (MalAvi database 2015-01-15) 

(Bensch et al., 2009), respectively. The 

lineages SGS1 and GRW4 exhibit different 

transmission areas (Hellgren et al., 2007), with 

GRW4 being transmitted in New Zealand, 

Africa, Asia and America (Beadell et al., 

2006; Marzal et al., 2011), whereas SGS1 

shows a widespread distribution in Europe, 

Africa and Asia (Palinauskas et al., 2007). 

Recently, SGS1 was also detected in Oceania 

(Howe et al., 2012) and South America 

(Marzal et al., 2015). In consequence, SGS1 

was suggested to be one of the few 

Plasmodium lineages with active transmission 

in both tropical Africa and temperate regions 

of Asia and Europe (Hellgren et al., 2007). 

 

Investigations based on multiple 

nuclear loci of P. relictum have provided new 

insights into allelic variation, geographical 

structure and parasite transmission (Hellgren 

et al., 2013). The merozoite surface protein 1 

(MSP1) is a gene which shows a high 

variability (Miller et al., 1993) and encodes a 

protein involved in the attachment of the 

malaria parasite to the red blood cell (Gerold 

et al., 1996). Because its high variability this 

gene is a good candidate for investigation of 

the population structure and phylogeography 

of malaria lineages. For example, the SGS1 

lineage transmitted in tropical Africa have a 

different set of MSP1 alleles compared to 

those transmitted in Europe, suggesting the 

existence of separate SGS1 populations along 

the European-African migratory flyways 

(Hellgren et al., 2015). This pattern implies 

the existence of transmission barriers (e.g. 

vector communities or abiotic factors) limiting 

transmission between regions, but further 

studies are required to confirm this 

geographical distribution. 

 

The house martin is a migratory 

species with a high fidelity to their area of 

hatching and nesting (Cramp and Perrins, 

1994; Lope and Silva, 1998). This species 

migrates from Africa to Europe for breeding. 

Once the breeding is completed, adult house 

martins and new-born individuals  migrate 

back to their African wintering quarters 

(Cramp and Perrins, 1994; Tumer and Rose, 

1989). Previous studies in different localities 

of Europe and Northern-Africa have found 

haemosporidian infections in more than 70 % 

of adults (Marzal et al., 2008; Piersma and van 

der Velde, 2012; Marzal et al., 2013a, 2013b; 

Van Rooyen et al., 2014). Additionally, 

different P. relictum cyt b lineages such as 

SGS1, GRW4 and GRW11 have been found 

infecting adult house martins in these 

populations (Marzal et al., 2008; Piersma and 

van der Velde, 2012; Marzal et al., 2013b; van 

Rooyen  et  al.,  2014).  These  blood  parasite 
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infections are supposed to be transmitted on 

the African wintering grounds or during 

migration. This assumption is based on the 

absence of haemosporidian infection in the 

single study analyzing haemosporidian 

infections in 112 fledgling and juvenile house 

martins before their first migration (Piersma 

and van der Velde, 2012). However, the 

confirmation of transmission areas of 

haemosporidian parasites in house martins 

requires further investigation. Therefore, the 

first goal of our study was to determine 

whether haemosporidian transmission in house 

martins do occur at European sites by 

sampling juvenile birds. Additionally, the 

second objective of this study was to analyse 

the MSP1 alleles in P. relictum lineages 

infecting adult and juvenile house martins in 

order to identify their potential areas of 

transmission. 

 
 
 
MATERIAL AND METHODS 

 

 

Study site and collecting samples 
 

 

The study was carried out in a colony of house 

martins in the surroundings of Badajoz (38° 

50’ N, 6° 59’ W), southwest Spain, during a 6- 

year period (2006–2012) as part of a longer 

study. For the present study we captured 422 

house martins, 310 of them were classified as 

juveniles according to the morphological 

characteristics established by Svensson et al., 

(2009) and Lope (1986). Most of individuals 

were caught in July, at the end of their 

breeding season (Pajuelo et al., 1992). All 

birds were individually identified with 

numbered metal rings. One microcapillary of 

blood (70 μl) was obtained from the brachial 

vein of each individual and stored in 500 μl of 

SET buffer (0.15 M NaCl, 0.05 Tris, 0.001 M 

EDTA, pH 8.0) until DNA extraction. 

 
 
Molecular detection of blood parasite 

infections 

 

Haemosporidian parasites (Plasmodium spp.) 

were detected from blood samples using 

molecular methods (Bensch et al., 2000; 

Waldenström et al., 2004). DNA from the 

avian blood samples were extracted in the lab 

using the standard 

phenol/chloroform/isoamylalcohol method 

(Sambrook et al., 2002). Diluted genomic 

DNA (25 ng/µl) was used as a template in a 

polymerase chain reaction (PCR) assay for 

detection of the parasites using nested PCR- 

protocols described by Waldenström et al., 

(2004). The amplification was evaluated by 

running 2.5 μl of the final PCR on a 2% 

agarose gel. All PCR experiments contained 

one negative control for every eight samples. 

In the very few cases of negative controls 

showing signs of amplification (never more 

than faint bands in agarose gels), the whole 

PCR-batch was run again to make sure that all 

positives were true. All positive amplifications 

were precipitated and sequenced in order to 
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identify the species and lineage in each 

infection. The obtained sequences were edited, 

aligned and compared in a sequenced matrix 

using the program Bioedit (Hall, 1999). We 

selected SGS1 and GRW4 infected house 

martins for further analyses of the MSP1 gene 

(270 nucleotides, block 14) and detect the 

MSP1 allele following the protocol described 

by Hellgren et al., (2013) and using the 

primers MSP1_3F, MSP1_3R,  MSP1_3FN 

and MSP1_3RN. 

 

Phylogenetic reconstruction 
 

 

The obtained sequences were edited, aligned 

against the SGS1_MSP1 gene (KC969175) 

and compared in a sequence identity matrix 

using the program BioEdit (Hall, 1999). The 

quality of the alignment was checked by 

manual inspection. Genetic differences 

between the MSP1 alleles were calculated 

using a Jukes-Cantor model as implemented in 

MEGA 5.2. We used MEGA 5.2 for 

phylogenetic reconstruction of the MSP1 

alleles where the homolog sequence of P. 

gallinaceum (AJ809338.1) was used as an out- 

group. The phylogenetic tree for all the alleles 

found was constructed in the programme 

MEGA 5.2 and using a Maximum Likelihood 

model. Bootstrap values were used in order to 

obtain a consensus phylogeny using 200 

iterations. 

RESULTS 
 

 

Prevalence of infection and genetic parasite 

diversity (Cyt b gene analyses) 

 
 

We analyzed 422 blood samples from adult (N 
 

= 112) and juvenile (N = 310) house martins in 

search for haemosporidian parasites. Among 

adults 80 (71%) individuals were infected with 

haemosporidian parasites. In juveniles only 

three where found to be infected (0.96%). 

 

Of the 80 infected adult birds, 20 % 

were infected with Plasmodium spp. and 80 % 

were infected with Haemoproteus spp. We 

found five different blood parasite lineages 

infecting adult house martins, of which three 

were of the genus Haemoproteus (DELURB1: 

32 infected birds; DELURB2: 29 infected 

birds; DELURB3: 3 infected bird), and two of 

them from the genus Plasmodium (SGS1: 15 

infected birds; GRW4: 1 infected bird). The 

three infected juveniles were all infected with 

the P. relictum lineage SGS1. 

 
Genetic parasite diversity (MSP1 gene 

analyses) 

 
All the samples infected with P. relictum 

lineages (N = 19; 16 adults and 3 juveniles) 

were selected for further molecular analyses. 

From each sample, we obtained a 268 bp 

MSP1_ b14 fragment of high quality. We used 

a SGS1_MSP1 gene (KC969175) in order to 

confirm the amplification of the MSP1 block 
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14 (MSP1_b14). Within adults, 14 out of 16 

individuals showed the allele Pr2 (SGS1), 

whereas one individual was infected with Pr1 

(SGS1) and the other one was infected with 

Pr4 (GRW4) (Figure 1). Moreover, we found 

the same allele (Pr2; SGS1) in all the juvenile 

house martins infected with malaria  (Figure 

1). 

 
 
 
 

 
 
 
 

Figure 1. Phylogenetic relationship between all the MSP1_b14 alleles detected to date (Hellgren et al. 2015) 

and number of individuals (adults or juveniles) infected by these alleles. * and § represent confirmed active 

transmission in Africa and Europe, respectively (Hellgren et al. 2015). 

 
 

DISCUSSION 

 
In this study we analysed blood samples from 

adults and juvenile house martins in search for 

haemosporidian parasites. We showed, for the 

first time, that juvenile house martins become 

infected with Plasmodium parasites already 

 
 
before their first migration to Africa, thus 

confirming that active transmission of 

Plasmodium spp. to house martins occur in 

Europe. By analyzing the MSP1 alleles in P. 

relictum lineages, we were able to get a more 

detailed view of the likely transmission areas 
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for the infections found in the adult birds. 

Below, we will discuss the biological meaning 

of these results in detail. 

 
House martins have been used in 

several studies to analyse life-history 

consequences  of  haemosporidian  infections 

(e.g. Piersma and van der Velde, 2012; Marzal 

et al., 2013b; Marzal et al., 2013a; Van 

Rooyen et al., 2014). In our study, we show 

that 70 % of adults were infected with 

haemosporidian parasites. This prevalence is 

similar to what has been reported from 

previous studies in this house martin 

population (Marzal et al., 2008, 2013a; b). 

Moreover, the prevalence of haemosporidian 

parasites among adult house martins greately 

exceed the prevalence in juveniles. This 

difference may be explained by a higher 

mortality of young individuals during the 

infection before these being captured due to 

their näive immune system (Sol et al., 2003) 

and / or the maintenance of haemosporidian 

infection in infected birds that survived the 

acute phase of infection (Valkiūnas, 2005). 

Alternatively, the juveniles may not yet have 

been exposed to infections or only recently 

been infected and in the phase when 

Plasmodium cryptozoites are developing in 

reticuloendothelial cells and therefore absent 

in the blood stream (Valkiūnas ,2005). 

Migratory birds are exposed to at least two 

different parasite communities during their 

annual  cycle.  According  to  this,  migratory 

species such as house martins could get the 

blood parasite infections during their breeding 

season in Europe and / or in their African 

winter quarters and at stop-over sites. 

Moreover, the parasites could be transported 

within the migratory bird and be able to be 

infect a resident bird in the new area. 

However, Hellgren et al., (2007) investigated 

the degree of geographical shifts of 

transmission of 259 haemosporidian parasite 

lineages. They showed that most of the 

parasite lineages are restricted to a specific 

area and thus dispersing from one 

biogeographical zone to another is a rare and 

slow evolutionary process. In agreement with 

these findings, all the recent studies exploring 

the prevalence and genetic diversity of 

haemosporidian parasites in house martins 

assumed that haemosporidian parasites are 

only actively transmitted on the African 

wintering grounds or during migration (Marzal 

et al., 2008; Piersma and van der Velde, 2012; 

Marzal et al., 2013a, 2013b; Van Rooyen et 

al., 2014). This assumption was supported 

with the results showed by Piersma and van 

der Velde, (2012) in a population of house 

martins in the Netherlands, where none of the 

analyzed juveniles were infected with 

haemosporidian parasites. But contrary to this 

statement, here we have detected the presence 

of malaria parasites in juvenile house martins. 

As far as we know, this is the first study 

revealing an active transmission of 

Plasmodium  parasites  in  house  martins  in 
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Europe. These findings give rise to new 

questions about the transmission areas of 

malaria parasites in this migratory bird 

species. 

 
The use of data on the distribution of 

nuclear MSP1 alleles across the cyt. b lineages 

isolates may facilitate the investigation on the 

distribution of these malaria parasites across 

geographical regions (Hellgren et al., 2013; 

Hellgren et al., 2015). A recent study have 

explored the global phylogeography of the P. 

relictum based on MSP1 allelic diversity, 

showing several different MSP1 alleles within 

the cyt b lineages of SGS1 and GRW4. In this 

study we found two MSP1 alleles that is 

thought to be transmitted in tropical Africa Pr1 

(SGS1) and Pr4 (GRW4) as well as one allele 

that is thought to be confined to temperate 

regions, Pr2 (SGS1) (Hellgren et al., 2015). 

This pattern suggests the existance of barriers 

limiting the tramission areas of these parasites. 

In the present study we have shown that most 

of the adult birds infected with SGS1, as well 

as all the infected juveniles, carried the 

European transmitted MSP1 allele, Pr2 . Only 

one adult house martins out of 15 birds was 

infected with a tropical transmitted SGS1 

allele (MSP1 allele Pr1), while the other one 

was infected with GRW4 (Pr4) which is 

known to have tropical transmission in the old 

world. These results indicate the existence of 

two different areas of transmission of malaria 

parasites for house martins population: one in 

the African winter quarters (Pr1 and Pr4), and 

the other one in the European breeding 

quarters (Pr2). Moreover, the high number of 

house martins infected with the MSP1 allele 

Pr2 compared to the low number infected with 

the MSP1 African-transmitted alleles (Pr1 and 

Pr4) would suggest that most of the malaria 

transmission takes place in Europe during the 

breeding season. This finding agrees with 

previous studies indicating that 

haemosporidian parasites are usually 

transmitted during breeding season in 

temperate regions, because biotic and abiotic 

factors are optimal for the transmission of 

vector-borne diseases such as malaria 

(Valkiūnas, 2005; Cosgrove et al., 2008; but 

also see Dunn et al., 2014). However, we 

cannot exclude that a high number of 

infections may also occur in tropical Africa 

during the winter or at stop-over sites, but that 

such infected individuals may not reach their 

European breeding quarters because they die 

during migration. In this line, several studies 

have shown that blood parasites may increase 

mortality in their avian hosts during stressful 

and energy-demanding periods such as 

migration (Davidar and Morton, 1993; 

Valkiūnas, 2005; Garvin et al., 2006). 

 

In conclusion, we confirmed that active 

transmission of Plasmodium relictum (lineage 

SGS1) occurs in house martins in Europe. 

Additionally, we detected African and 

European MSP1 alleles in adult house martins, 
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suggesting two different areas of transmission 

for the P. relictum SGS1 lineage in this 

migratory bird species. These findings 

emphasize the importance of using multiple 

independent loci of avian Plasmodium 

parasites to understand transmission areas of 

blood parasites. Further studies exploring the 

transmission and species limit of avian malaria 

parasites are needed to evaluate the 

importance of migratory birds in spreading 

haemosporidian infections. 
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Malaria infection affect negatively feather growth 

rate in house sparrows 
 
 

 
 
 
 
 
 
 

 
I was taught that the way of progress was neither swift nor easy. 

Marie Curie. VI 
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Los parasites maláricos poseen un papel importante en la historia evolutiva de las aves ya que 

afectan a su éxito reproductivo, supervivencia y eficacia biológica. Recientemente, se ha 

mostrado que los parásitos maláricos pueden  afectar a la velocidad  de  muda en  especies 

migradoras. Sin embargo, el mecanismo entre la velocidad de muda, la salud del hospedador y 

la infección por parásitos maláricos permanece oculto. Ya que los recursos nutricionales y 

energéticos son limitados, en teoría se podría predecir que un individuo debe distribuir esta 

energía limitada entre los diferentes sistemas fisiológicos como el sistema inmunitario o el 

vuelo. En este capítulo, llevamos a cabo tres estudios diferentes en gorriones comunes para 

detectar la relación entre la velocidad de muda, la infección por malaria y la salud del 

hospedador. Primero, analizamos si los individuos infectados naturalmente y los no infectados 

diferían en su velocidad de muda. Después, examinamos si los gorriones infectados 

experimentalmente mudaban más lentamente que los no infectados. Y por último, evaluamos si 

un factor fisiológico como es la condición corporal (peso, hematocrito, grasa corporal, 

musculatura o la habilidad para volar verticalmente) estaba afectado por la muda o la infección 

experimental por malaria. Nuestros resultados muestran que la velocidad de muda se vio 

negativamente afectada por la infección parásita en condiciones naturales. Además, 

experimentalmente demostramos que la infección por Plasmodium relictum reduce dicha 

velocidad en gorriones comunes. Finalmente, demostramos un efecto negativo inducido por la 

muda y la infección por malaria en la grasa y la musculatura de los gorriones pero no en su peso 

ni en su capacidad para volar verticalmente. Estos resultados resaltan el papel del parásito de la 

malaria como un mecanismo potencial que puede afectar tanto a la velocidad de muda como a la 

eficacia biológica de su hospedador. 

 
Palabras clave: Interacción parásito-hospedador; velocidad de muda; Passer domesticus; 

Plasmodium 
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ABSTRACT 

 
Malaria parasites have an important role in the evolutionary history of birds, as they have been shown to affect 

reproductive success, survival and fitness. Recently, it was shown that malaria parasites may have an effect on 

moult speed in a migratory species. However, little is known about the underlying mechanism between feather 

growth rate, host health conditions and malaria parasite infection. Because nutritional and energetic resources 

are limited, theory predicts that an individual must allocate the limited supply of resources between various 

physiological systems, such as immunity, flight and general condition. Here, we conducted three studies in the 

house sparrow in order to investigate whether a trade-off occurred among feather growth rate, malaria 

infection and host health conditions. First, we explored whether naturally infected and uninfected house 

sparrows differed in feather growth rate in the wild. Secondly, we examined this relationship by 

experimentally manipulating house sparrows in captivity. And finally, we evaluated whether a third 

physiological factor - individual condition (body mass, haematocrit, fat scores, muscle score and the ability of 

birds to perform hovering flights) - were affected by forced moult or malaria experimental infection. Our 

findings showed that the rectrix growth rate in house sparrows was negatively affected by haemosporidian 

infection in wild conditions. Moreover, we experimentally revealed that the infection with  Plasmodium 

relictum reduced feather growth rate in house sparrows. To the best of our knowledge, this is the first study 

demonstrating the negative effects of malaria infection on the speed of moult of birds. Furthermore, our 

outcomes showed that malaria parasite also negatively affect the hematocrit of birds. Finally, we also revealed 

the negative effects of induced moult and malaria infection on fat and protein storage in house sparrows, but 

not on body mass and vertical hover capacity. These findings highlight the role of malaria parasites as a 

potential mechanism driving this trade-off to explain fitness differences in wild populations of birds. 

 
Keywords: Host-parasite interactions; moult speed; Passer domesticus; Plasmodium. 
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INTRODUCTION 
 

 
Feathers play a vital role in the life-history of 

birds. They are essential for flight, but they can 

also provide streamlining, insulation, camouflage, 

waterproofing and may act as sexual traits 

involved in female mate choice (Proctor and 

Lynch 1994; Kose et al. 1999; Kraaijeveld et al. 

2004). Daily activities such as rubbing, preening 

and dust bathing all subject feathers to physical 

abrasion that causes wear in the plumage (Butler 

and Johnson 2004). Additionally, feathers are also 

exposed to factors such as ultraviolet light 

(Bergman 1982) and bacterial activity (Burtt and 

Ichida 1999) that lead to degradation. As damage 

accumulates, the functional properties of feathers 

are compromised, and hence birds must replace 

(moult) them to maintain plumage functions. 

 
During moult, birds may suffer from 

increased vulnerability to predators (Lind 2001), a 

reduction in flight performance (Williams and 

Swaddle 2003), and/or a decrease in 

thermoregulatory capability (Ginn and Melville 

1983). As such,  it likely behooves  birds to 

minimize moult duration (Hasselquist 1998) by 

maximizing feather growth rates (De La Hera et al. 

2011). Evidence supporting this hypothesis comes 

from Gienapp and Merilä (2010) who showed that 

Siberian jays (Perisoreus infaustus) with faster 

feather growth rates had higher survival prospects. 

In addition, Marzal et al. (2013a) showed that 

house martins (Delichon urbica) with low feather 

growth rate during the preceding winter delayed 

egg-laying in the subsequent spring, leading to a 

decrease in clutch size and the number of reared 

chicks. Yet, while birds should ideally replace 

their  old  feathers  regularly  and  rapidly  for  the 

reasons mentioned above, moult does require a 

significant investment of resources (Klaassen 

1995; Murphy 1996), which could impose trade- 

offs with organs and functions (Murphy and 

Taruscio 1995; Murphy 1996; Nava et al. 2001). 

Because resources are usually limited in natural 

systems, increased investment in one physiological 

process leads to decreased investment in other 

processes (Roff 1992; Stearns 1992). As a 

consequence, the rate of feather growth during 

moult can be affected by factors such as body 

condition, nutritional status, physiological stress 

and disease (DesRochers et al. 2009; Moreno- 

Rueda 2010; Vágási et al. 2012). However, to the 

best of our knowledge, any  study has analyzed 

how condition assessments (as body mass, 

hematocrit, fat scores and muscle score) or flight 

performance are affected by the moult process. 

 
Avian malaria and related haemosporidian 

parasites (e.g. Plasmodium and Haemoproteus) are 

common parasites of many bird species (Valkiūnas 

2005) and are known to provoke detrimental 

effects on their passerine hosts by decreasing host 

fitness (Marzal et al. 2005; Palinauskas et al. 2008; 

Valkiūnas 2005). Plasmodium species in particular 

are the most harmful and damage species of avian 

malaria, causing high rates of mortality (Van Riper 

III et al. 1986; Valkiūnas 2005), and affecting 

reproductive success (Merilä and Andersson 1999; 

Asghar et al. 2011), body mass (Marzal et al. 

2008) and fitness (Lachish et al. 2011). During 

plumage replacement, malaria parasites may affect 

host resource allocation and thereby determine the 

growth rate of the feathers that are produced. 

Although some studies have shown that blood 

parasite infections are associated with the time of 
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moulting (Morales et al. 2007; Tarello 2007 also 

see Allander and Sundberg 1997), the effects of 

haemosporidian parasites on the growth rate of 

individual feathers are largely unknown. Also, 

malaria parasites infect hundreds of bird species 

worldwide, but a negative association between 

malaria infection and feather growth rate has been 

poorly investigated. Marzal et al. (2013a) found 

that rectrix growth rate in wintering house martins 

was negatively affected by blood  parasite 

infection. They also found that birds co-infected 

with two haemosporidian lineages had the lowest 

inferred growth rate of their tail feathers as 

compared with uninfected and individuals infected 

with only a single lineage (Marzal et al. 2013b). 

Thus, it has been shown that malaria parasites may 

affect negatively feather growth rate under natural 

conditions (Marzal et al 2013a, 2013b). Because 

both processes, moult and infection, require 

significant amount of energy (Klaassen 1995; 

Murphy 1996; Valkiūnas 2005) limited natural 

resources might be distributed over these two 

processes. However, to date, any study has tested 

which of these events (moult or malaria infection) 

is more demanding in birds. 

 
Here we conducted three studies in the 

house sparrow, Passer domesticus, one of the most 

ubiquitous hosts for avian malaria (Marzal et al. 

2011). First we explored whether naturally 

infected and uninfected house sparrows differed in 

feather growth rate in the wild. If the effect of 

malaria infection on the growth rate of feathers 

seen in previous studies holds up in  house 

sparrows under natural conditions, we would 

expect a negative relationship between malaria 

infection and feather growth rate in wild sparrows. 

Secondly, we examined this relationship by 

experimentally manipulating house sparrows in 

captivity, thereby removing many potentially 

confounding variables that are present in wild 

populations. If malaria parasites are the factor 

provoking a drop in feather growth rate, then we 

should expect a slower inferred growth rate of tail 

feathers in experimentally-infected compared to 

uninfected control birds while both groups are kept 

under standard captive conditions. Finally, in order 

to evaluate which event was more demanding 

(moult or infection by malaria parasites) we 

evaluated individual condition assessments (body 

mass, hematocrit, fat scores and muscle score) and 

the ability of birds to perform hovering flights 

(Veasey et al. 1998) after being experimentally- 

infected and/or forced to moult in the outermost 

tail feathers. We expected lower  flight 

performance and a worse body condition in 

malaria experimentally-infected birds and those 

induced to moult compared to control birds. 

Moreover, we predicted negative trend  in 

condition and flight performance from controls to 

moulting or  experimentally-infected  sparrows to 

individuals that received simultaneously both 

treatments (induced moult and malaria 

inoculation). 

 
MATERIALS AND METHODS 

 
 

Study site and sample collection 
 

 
The three studies were conducted using all or a 

subset of a population of 100 adult house sparrows 

captured in January and February 2012 in mist- 

nets from the Universidad de Extremadura 

Badajoz campus (38°52’N, 6°58’W) in southwest 

Spain. At capture, we recorded body mass with a 
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Pesola spring balance to the nearest 0.1 g and 

collected a single microcapillary tube (70 μl) of 

blood from the brachial vein which was stored in 

500 μl of SET buffer (0.15 M NaCl, 0.05 Tris, 

0.001 M EDTA, pH 8.0) until DNA extraction. All 

birds were individually identified with numbered 

metal rings. Birds were then released in the 

aviaries of the Experimental Garden in the 

University of Extremadura. Molecular screening of 

blood samples collected at capture were used in 

determining naturally infected and uninfected 

individuals for study 1, a correlational study 

examining natural infection status versus feather 

growth rate. This initial molecular screening was 

also used to choose 10 Plasmodium relictum SGS1 

(pSGS1) infected sparrows as donors and 38 

uninfected individuals for study 2, where we 

examined infection status and burden versus 

feather growth rate, and study 3, where we 

evaluated the strength of trade-offs between 

infectious burden, body condition and feather 

growth. The rest of sparrows were released within 

three days of capture. 

 
Moult induction and experimental infection 

 
House sparrows were placed in aviaries in which 

each of several cages (3.5 x 1.5 x 2.5 m) contained 

a maximum of eight individuals. Birds were 

provided with water and food ad libitum and they 

stayed one month in the aviaries. Thirty-eight 

uninfected individuals were randomly assigned to 

one of four treatments: (1) moult group (N = 10), 

where sparrows were forced to moult their right 

outermost tail feathers by plucking them and were 

inoculated with 250 uL of the control solution, 

phosphate buffered saline (PBS) in the pectoral 

muscle;  (2)  infected  group  (N  =  10),  where 

sparrows were experimentally infected by 

intramuscularly inoculation of 250 uL of malaria 

infected blood mixture (100 uL blood from 

infected house sparrow donor, 25 uL 3.7 % sodium 

citrate, 125 uL 0.9% buffered saline) in the 

pectoral muscle (Palinauskas et al. 2008); (3) 

combined moult and infected group (N = 10), 

where sparrows received both malaria infection 

and forced moult treatments explained above; or 

(4) a control group (N = 8), where sparrows were 

inoculated with 250 uL of PBS. 

 
Condition measurements and blood sampling 

 
Immediately before the treatment and 4, 10 and 17 

days post-treatment, all experimental individuals 

were weighed to the nearly 0.1 g, their pectoral 

muscle volume scored on a 0-2 ordinal scale 

(Gosler 1991), their visual fat scored on a 0-5 

ordinal scale (Gosler 1996) and their blood 

collected. Blood was collected into two 70 uL 

samples heparinized microcapillary tubes from the 

brachial vein of each individual. One drop of one 

of these samples was used to create a blood smear 

for microscopic quantification of malaria parasites 

after treatment; the remainder of the sample was 

stored in 500 uL of SET buffer for molecular 

diagnosis of malaria infection (described below). 

The second microcapillary tube was centrifuged 

for 10 min at 11,000 r.p.m. to estimate 

haematocrit. 

 
Vertical flight challenge 

 
Vertical flight performance was quantified weekly 

by assessing the height of hovering flights in a 

Plexiglass™ vertical flight chamber (180 H x 21.5 

W x 21.5 D cm) housed in a room free of other 

birds (Veasey et al. 1998; Altshuler et al. 2010). 
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All the trials were conducted in the same time of 

the day for all the individuals (between 0900 – 

1030). The chamber included a trapdoor 

approximately 10 cm above the floor that was 

released to encourage flight when the trial began. 

To conduct each trial, a video camera was placed 

in the room prior to trials, equidistant from the 

flight chamber for all trials. A single bird was then 

captured from its cage in a separate room, placed 

in the flight box on the trapdoor, and given ~45 s 

to accommodate to the conditions. A 0.5 m section 

of nylon cord with 1.3 g weights every 10 cm was 

attached to each individual’s left leg (Altshuler et 

al. 2010). Flight was induced by the sudden 

opening of trapdoor, which caused the sparrows to 

display their natural escape response, i.e. vertical 

flight, thereby lifting progressively more weight 

until reaching the maximum elevation. The 

summed height (cm) of all flights during a 30- 

second trial was used as score of performance. 

 
Measuring feather growth rate 

 

 
We plucked the right outermost tail feather from 

some individuals to determine feather grow rate of 

naturally infected and uninfected birds (for study 

1) and to induce moulting of this feather (for 

studies 2 and 3). Once the right outermost tail 

feather was fully grown it was plucked again in 

order to compare feather grow rate between initial 

and renewal feathers in experimentally 

manipulated birds (studies 2 and 3). All feathers 

were stored in dry paper envelopes until laboratory 

analyses. Bird feathers have a series of light and 

dark bands perpendicular to the feather rachis. 

Each light and dark band taken together (one 

growth bar) represents 24 h of growth (Riddle 

1908; Michener and Michener 1938; Grubb 2006). 

Thus, the number of dark bands indicates the 

number of days spent moulting these feathers. We 

measured the number of growth bars and the 

length of the right outermost rectrix feather in a 

Biorad XR gel documentation system in the 

laboratory following  Shawkey et al. (2003).  To 

visualize growth bars, we placed the feather in a 

light cabinet. We positioned a ruler (0,1 mm 

accuracy) near to the feather for use as a scale 

marker. Once contrast and resolution were 

optimized, a digital image of the feather was 

obtained. We measured the number of growth bars 

and the length of rectrix minus the calamus using 

ImageJ software (Abràmoff et al. 2004). 

 
Molecular detection of blood parasite infections 

 

 
Haemosporidian parasites (Plasmodium spp. and 

Haemoproteus spp.) were detected from blood 

samples using both microscopy (Valkiūnas 2005) 

and molecular methods (Waldenström et al. 2004). 

Blood smears were fixed in absolute methanol and 

stained with Giemsa the day of collection. The 

intensity of pSGS1 infection was quantified as 

number of parasites per 100 fields under 1,000X 

magnification with oil immersion (Godfrey et al. 

1987). DNA from the avian blood samples was 

extracted using the standard 

phenol/chloroform/isoamyl alcohol method 

(Sambrook et al. 2002). Diluted genomic DNA (25 

ng/uL) was used as a template in a polymerase 

chain reaction (PCR) assay for detection of the 

parasites using nested PCR-protocols described by 

Waldenström et al. (2004). Amplified products 

were evaluated by running 2.5 μL of the final PCR 

on a 2% agarose gel. All PCR experiments 

contained one negative control for every eight 

samples. The obtained sequences of 478 bp of the 
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cyt b were edited, aligned and compared in a 

sequence identity matrix using the program 

BioEdit (Hall 1999) to (1) determine naturally 

infected sparrows (study 1), and (2) to select 

pSGS1-infected sparrows as donors and uninfected 

sparrows for experimental manipulation (studies 2 

and 3). 

 
Statistical procedures 

 

 
All analyses were run in IBM SPSS v22.0 and 

graphs made in GraphPad Prism v5.04. Blood 

samples from every malaria-exposed individual 

were found infected by d10 using molecular or 

microscopic techniques. Two experimental 

individuals infected by donor #5 (both in the 

infected group) had significantly higher burdens 

(>2 SD) than any other infected individuals; 

therefore these individuals were not included in 

analyses of burden. Initial visualization and 

analysis of the data did not suggest that any of the 

variables were significantly non-normal (based on 

regression residuals) nor did they support the use 

of cage, sex or donor as covariates in any analyses. 

We used a multivariate general linear model 

(GLM) to analyze the effect of burden and moult 

speed on body condition metrics (mass, 

hematocrit, fat score, muscle score and summed 

jumps in vertical flight performance) in the 

appropriate treatment groups. We analyzed paired 

data (Wilcoxon matched-pairs signed-ranks test) 

before and after treatment to test the effect that 

malaria infection and/or molt change health 

conditions of the host. 
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RESULTS 
 
Study 1: Malaria infection and feather growth rate 

in wild conditions 
 
We analysed 105 blood samples from wild house 

sparrows    for    malaria    infection;    60    (57%) 

individuals were uninfected and 45 (43%) 

individuals were infected. There were differences 

in feather growth rate between infected and 

uninfected birds (N = 105; df = 1; F = 5.321; P = 

0.023); infected house sparrows grew feathers 

more slowly than uninfected individuals [mean 

feather growth rate (SD): uninfected = 3.37 (0.26) 

mm / day; infected = 3.25 (0.26) mm / day] (Fig. 

1). 

 

 
Figure 1. Feather growth rate (mm / day) for 

uninfected (N = 60) and infected house sparrows 

(N = 45). Error bars plots show means ± 95% of 

confidence interval. 

 
 

 
Study 2: Malaria infection and feather growth rate 

in captivity 
 
Only malaria infection explained significant 

variation in rectrix growth rate while controlling 

for other potentially influencing variables such as 

sex, muscle score, fat score, haematocrit and body 

mass  (Table  1).  Specifically,  malaria-inoculated 

sparrows significantly decreased feather growth 

rate whereas uninfected control birds increased 

feather growth rate although not significantly 

(Mean variation in feather growth rate (SD): 

infected = - 0.50 (0.37) mm / day; control = 0.27 

(0.33) mm / day; Estimate (SE) = 1.059 (0.294)). 

None of the interaction terms were statistically 

significant (P > 0.10) in all models (Table 1) 

(Figure 2). 

 

 

Figure 2. Feather growth rate for experimentally- 

infected (N = 10) and uninfected house sparrows 

(N = 10) before and after the forced moult. 

 
 

 
Study 3: Malaria infection, feather growth rate, 

host condition and vertical flight performance 
 
We found that all individuals increased their body 

mass during the experiment, independently of the 

treatments they received (Table 2). Body mass 

gain was marginally non-significant in individuals 

from control group (P = 0.09), while the increase 

in body mass was significant in birds from the rest 

of the treatments. 
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Table 2. Mean (SD) values for condition and performance of house sparrows before (1) and after (2) the experimental treatment. P-values in Wilcoxon signed-rank 

test less than 0.05 are marked in bold. 

 

 
 
 

Control Moult Infected Moult-infected 
 

 
 
 
 
 

Hematocrit 

 

Mean 

(SD) 1 

47.6 
 

(6.90) 

 

Mean 

(SD) 2 

55.28 
 

(2.51) 

 

 
Z P 

 

 
 

-2.03 0.04 

 

Mean 

(SD) 1 

46.4 
 

(5.85) 

 

Mean 

(SD) 2 

55.90 
 

(2.51) 

 

 
Z P 

 

 
 

-2.81 0.00 

 

Mean 

(SD) 1 

49.70 
 

(4.62) 

 

Mean 

(SD) 2 

51.10 
 

(3.87) 

 

 
Z P 

 

 
 

-0.92 0.35 

 

Mean 

(SD) 1 

51.80 
 

(4.21) 

 

Mean 

(SD) 2 

53.11 
 

(5.27) 

 

 
Z P 

 

 
 

-0.85 0.39 

 

 
Fat 

1.25 
 

(0.46) 

2.07 
 

(0.73) 

 
-2.06 0.03 

2.00 
 

(1.05) 

2.75 
 

(1.29) 

 
-0.29 0.77 

2.20 
 

(0.91) 

2.05 
 

(0.89) 

 
-0.29 0.77 

1.30 
 

(0.48) 

1.60 
 

(0.51) 

 
-1.73 0.08 

 

Muscle 

Vertical flights 

(cm) 

Body mass 

0.50 
 

(0.53) 
 

675.87 
 

(325.24) 
 

25.61 
 

(1.48) 

1.07 
 

(0.67) 
 

248.42 
 

(252.83) 
 

26.17 
 

(1.36) 

 
-2.12 0.03 

 

 
 

-2.19 0.028 
 

 
 

-1.69 0.09 

1.00 
 

(0.47) 
 

736.10 
 

(465.04) 
 

23.65 
 

(1.64) 

0.80 
 

(0.58) 
 

777.00 
 

(632.48) 
 

25.30 
 

(1.25) 

 
-1.24 0.21 

 

 
 

-0.153 0.878 
 

 
 

-2.65 0.00 

0.60 
 

(0.51) 
 

823.90 
 

(559.70) 
 

25.50 
 

(1.87) 

0.70 
 

(0.67) 
 

450.50 
 

(402.55) 
 

26.70 
 

(1.76) 

 
-0.45 0.65 

 

 
 

-2.293 0.022 
 

 
 

-2.71 0.00 

0.50 
 

(0.52) 
 

831.40 
 

(511.95) 
 

24.21 
 

(1.49) 

0.30 
 

(0.48) 
 

893.11 
 

(809.50) 
 

25.16 
 

(1.22) 

 
-0.82 0.41 

 

 
 

-0.296 0.76 
 

 
 

-2.24 0.02 
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Table 1. Results from the GLM explaining variation in the feather growth rate for individual house sparrows. 

Experimental infection, sex, body mass, haematocrit, fat score and muscle score were the predictor variables. 

Sample size was 20 individual. 

 
Independent variable Type III sum of 

squares 

d.f. F P 

 
 

Experimental infection 

 
 

1.88 

 
 

1 

 
 

11.411 

 
 

0.005 

Sex 0.001 1 0.002 0.967 

Body mass 0.001 1 0.009 0.927 

Haematocrit 0.115 1 0.714 0.415 

Fat score 0.060 1 0.372 0.553 

Muscle score 0.004 1 0.022 0.883 

 

 
Control and moult individuals significantly 

increased hematocrit after the treatment whereas 

hematocrit did not change in experimentally 

infected sparrows (both infected and moult- 

infected groups) (Table 2) (Figure 3). 

 
 

 

Figure 3. Hematocrit values among the four 

experimental groups (control, moult, infected and 

moult/infected), before and after the treatment. N 

= 40. 

 

Neither fat score nor muscle score 

significantly changed in any moult and/or infected 

sparrows group during the experiment. Only 

individuals from control group significantly 

increased their muscle and fat scores after the 

treatment (Table 2). 

 
Finally, both control and infected birds 

significantly decreased the summed height (cm) 

achieved during vertical flight performance (Table 

2); this performance trait did not change in the 

other two groups. 

 
DISCUSSION 

 
 

Moult is a critical period within the annual cycle 

of birds because they suffer from reduced thermal 

insulation and flight performance (Williams and 

Swaddle 2003; Ginn and Melville 1983) and 

enhance the exposure to predators (Lind 2001). 

Since birds need to replace regularly their old 

feathers, natural selection should favour the 

regeneration of feathers as rapidly as possible. In 

migratory species it has been shown that stressors 
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such as blood  parasites  may reduce  the feather 

growth rate during moult (Marzal et al. 2013b; 

Marzal et al. 2013a). However, as far as we know, 

this relationship has not been shown yet in resident 

species. Our findings showed that rectrix growth 

rate in resident wild house sparrows was 

negatively affected by haemosporidian infection. 

Moreover, we experimentally demonstrated that 

the infection with Plasmodium relictum SGS1 

reduced feather growth rate in house sparrows. To 

the best of our knowledge, this is the first 

experimental study revealing the negative effects 

of malaria infection on the speed of moult of birds. 

These differences in feather growth rate between 

infected and non-infected house sparrows could be 

explained by consumption of host resources by the 

parasites. Host blood provides an ideal source of 

amino acids to the parasite, particularly during 

blood stage infection in which Plasmodium infects 

erythrocytes and asexually divides (Liu et al. 2006; 

Landfear 2011). The renewal of the feathers is a 

nutritionally and energetically costly process in 

birds requiring large amounts of amino acids, the 

main chemical compound of feathers (Murphy et 

al. 1990). Leucine, isoleucine and valine are 

essential amino acids to the completion of the 

complex life cycle of all Plasmodium species 

(Sherman 1977); they are also three of the four 

most abundant essential amino acids in bird 

feathers (Murphy et al. 1990). Consequently, the 

removal of essential amino acids from avian host 

by Plasmodium parasites could provoke this 

decrease in feather growth rate. 

 
Alternatively, the lower growth rate in 

malaria-infected house sparrows can also be due to 

the need to mount an immune response against 

Plasmodium infection. Because both avian moult 

and mounting an immune response against parasite 

infection are physiologically demanding processes 

(Murphy 1996; Martin et al. 2003; Klasing 2004; 

Hasselquist and Nilsson 2012), a trade-off between 

these physiological activities is expected. In this 

sense, Martin (2005) showed feather growth was 

inversely related to cutaneous immune responses 

to phytohemagglutinin (PHA) in house sparrows. 

Moreover, Amat et al. (2007) found that 

regenerated feathers of immune-challenged 

greenfinches (Carduelis chloris) were more 

asymmetric than regenerated feathers from control 

birds. Also, Moreno-Rueda (2010) showed 

stimulation of the immune system with an antigen 

halved moult rate in house sparrows. The 

physiological mechanisms mediating feather 

renewal and response to malaria infection deserves 

further investigation. 

 
Morphometric estimates of body condition 

typically reflect the size or nutrient reserves or the 

ability to resist parasites (Gosler 2004). Because a 

decrease in body mass is usually observed in 

haemosporidian infected (Valkiūnas 2005) and 

moulting birds (Portugal et al. 2007; Ndlovu et al. 

2010), we expected a decrease in body mass 

during the experiment in moulting and / or infected 

house sparrows. But contrary to our expectations, 

sparrows increased body mass during the second 

experiment. These findings are in accordance with 

the ‘environmental constraint’ idea, suggesting 

that changes in body mass can be accounted for by 

local environmental conditions (Gehrold and 

Köhler 2013). Because both mounting and 

immune response and moulting requires 

substantial amount of nutrients (Martin et al. 2003; 



115  

Malaria and feather growth rate 
 
 

Klasing 2004; Pap et al. 2008), the ad libitum food 

availability during the experiment might have 

masked effects of malaria infection and moulting 

on body mass. In support of this idea, it is known 

that environmental conditions such as food 

quantity or quality can significantly modify 

immune response in sparrows (Cornet and Sorci 

2010). For example, Gonzalez et al. (1999) found 

that house sparrows provided with a high protein 

diet mounted stronger cell-mediated immune 

responses and had less detrimental effects of 

malaria compared to individuals experiencing a 

protein-poor diet. 

 
Haematocrit has been widely used as an 

index of physiological condition in wild birds (see 

Fair et al. 2007 for a review), as it is often affected 

by food resources. For example, Sánchez-Guzmán 

et al. (2004) showed that haematocrit values in 

captive Northern Bald Ibis (Geronticus eremita) 

decreased as a response to poorer nutritional 

conditions. Moreover, hematocrit values were 

positively correlated with food availability in 

nestlings European serin (Serinus serinus) (Hoi- 

Leitner et al. 2001). Also, food supplementation 

increased haematocrit of fledgling Tengmalm`s 

owls (Aegolius funereus) (Santangeli et al. 2012). 

Similarly, our findings showed that moulting and 

control sparrows increased hematocrit, probably 

due to increased food availability during captivity. 

In contrast, hematocrit did not increase in malaria- 

infected house sparrows (infected and moult and 

infected groups),  besides they  were kept  in the 

same captivity conditions as the rest of birds. 

These differences in hematocrit between infected 

and non-infected sparrows could be explained by 

the negative effects of blood parasite infection on 

hematological values. In this sense, it has been 

shown that an infectious disease such as malaria 

provokes anemia and decreased hematocrit values 

in birds (Campbell and Ellis 2007). Following this 

idea, Palinauskas et al. (2008) showed a significant 

decrease of hematocrit  values in common 

crossbills (Loxia curvirostra) and siskins (Spinus 

spinus) experimentally infected with Plasmodium 

relictum SGS1. Therefore, the absence of increase 

of hematocrit values in infected house sparrows 

may be reflecting the red cell destruction and 

decreased red cell production provoked by malaria 

infection (Phillips and Pasvol 1992). 

 
Under mild environmental conditions (e.g. 

water and food availability) energy intake exceeds 

expenditures, and thus a greater food intake is 

stored as large fat deposits under the skin, in the 

pectoral muscle, and in the abdominal cavity of 

birds (Davidson 1981; Dugan et al. 1981; Jenni- 

Eiermann et al. 2002). Because wild birds are 

usually under some nutritional stress, it is thus not 

surprising that captivity could lead to increases in 

fat and muscle scores. Consistent with this idea, 

Martin et al. (2012) recently showed that breast 

muscle size increased and fat score recovered after 

initial decline in house sparrows in captivity with 

ad libitum access to food and water. But these 

muscle and fat stores should be metabolized 

during increased rates of energy consumption. In 

this sense, moult may affect the metabolism by 

increased energy requirements and protein 

synthesis (Lindström et al. 1993). For example, 

plasma triglyceride levels decreased with body 

moult intensity in red knots (Calidris canutus 

islandica) (Jenni-Eiermann et al. 2002), and fat 

stores   declined   as   moult   progressed   in   tree 
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sparrows (Passer montanus) (Lind et al. 2004). 

Moreover, whole body protein turnover (synthesis 

and degradation) accelerated ~35% during moult 

in white-crowned sparrows (Zonotrichia 

leucophrys) (Murphy and Taruscio 1995; Taruscio 

and Murphy 1995). In addition, the production of 

an immune response and an infection may also 

raise the catabolism of proteins and lipids. For 

example, poultry species fighting infection often 

increase protein turnover and accelerate muscle 

protein breakdown to mobilize amino acids for 

proliferation of components of immune response 

(Butcher and Miles 2002). Also, fat scores 

declined significantly in Apapane (Himatione 

sanguinea) experimentally infected with malaria 

relative to uninfected controls (Yorinks and 

Atkinson 2000). Because renewal of feathers and 

fighting against malaria infection are both 

energetically demanding activities (Atkinson et al. 

1988; Garvin et al. 2003; Martin et al. 2003; Pap et 

al. 2008), sparrows that were induced to moult and 

/ or  experimentally infected  are  expected  to  be 

more energetically constrained than control 

individuals. Our findings agree with this 

prediction, showing that neither experimentally- 

infected individuals (infected and moult/infected 

group) nor sparrows with induced moult (moult 

and moult/infected group) increased these 

measures of condition, probably revealing the 

energetic demands of feather renewal and immune 

response against malaria infection. 

 
During moult birds may suffer a reduction 

in flight performance (Williams and Swaddle 

2003). Hence, we expected sparrows which moult 

was forced (moult and moult + infected groups) to 

show  a  lower  vertical  flight  performance  than 

birds which moult was not induced. However, we 

found that both control and infected birds 

significantly decreased their vertical flight 

performance, but none of the sparrows which 

moult was forced (moult and moult + infected 

groups) varied their summed height achieved 

during vertical flight performance. It has been 

suggested that the study of the vertical flights 

through the flight box may entail habituation such 

that low values in week 0 followed by an increase 

and decline thereafter comprise both physical and 

mental changes (Martin et al. 2012). Thus, it might 

be that vertical flight performance variable could 

not be a suitable measurement to test the effect of 

moult and infection in long-term captured house 

sparrows. 

 
To summarize, we demonstrated that 

malaria parasite negatively affect feather growth 

rate and hematocrit in a resident bird species. We 

also revealed the negative effects of induced moult 

and malaria infection on fat and protein storage in 

house sparrows, but not on body mass and vertical 

hover capacity. Future studies may go deeper in 

the relationship between infection by malaria 

parasite and amino acids concentration by 

comparing the amount of leucine, valine and 

isoleucine between infected and non-infected 

individuals. Additionally, as the  body condition 

indexes we measured were unrelated to moult and 

malaria infection at the level of individuals, future 

studies may determine the mechanisms mediating 

molt-malaria infection trade-offs. 
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CONCLUSIONS 
 

 
1. Birds infected with Haemoproteus and 

Leucocytozoon exhibit a more intense 

escape behavior (fear screams and 

struggling) when simulated a predator 

attack than non-infected birds. 

 
 

2. Bird species exposed to a greater diversity 

of habitats (generalist) have higher 

prevalence of blood parasites than 

specialist bird species (exposed to a lower 

diversity of habitats). 

 
 

3. Avian malaria parasite (Plasmodium spp.) 

may manipulate the escape behavior of 

their avian hosts, as the decrease in the 

intensity of escape behaviour in house 

sparrows after anti-malaria medication has 

shown. 

 
 

4. For the first time, avian malaria parasite 

Plasmodium relictum SGS1 has been 

detected infecting Neotropical birds in the 

Americas, thus representing a serious 

menace for bird conservation. 

 
 

5. Chitinase gene has been identified, for the 

first time, in one of the  most prevalent 

avian malaria parasites Plasmodium 

relictum. 

 
6. The detection of the two copies (short and 

long) in two mitochondrial lineages of P. 

relictum (GRW4 and SGS1) sheds light on 

the      phylogenetic      relationship      of 

the chitinase gene in the genus 
 

Plasmodium. 
 
 
7. Because of the high variability detect in 

the chitinase gene, it could be used to 

study the genetic population structure in 

isolates from different host species and 

geographic regions. 

 
8. Plasmodium relictum SGS1 lineage may 

be actively transmitted in Europe in Afro- 

Paleartic migratory bird species, as the 

detection of juvenile house martins 

infected with this malaria lineage has 

shown. 

 
9. All the juveniles and most of adult house 

martins were infected with a European 

transmitted malaria MSP1 allele, whereas 

the less number of adult birds were 

infected with two African transmitted 

MSP1 alleles. 

 
10. The infection with avian malaria 

(Plasmodium relictum) decreases the 

feather growth rate in house sparrows. 

 
11. This blood parasite infection also provokes 

negative effects on haematocrit and fat and 

protein storages in house sparrows. 
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Figure Al. Phylogenetic. relationship between the 85 species included in the study on parasite prevalence and escape behavior. 
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Table A1. Innovation behaviour (feeding innovations and FID (Flight Initiation Distance)), habitat complexity, habitat generalism (number of habitats), prevalence of blood parasite, 

escape behaviour, sample size, mass, migration and coloniality for all the avian host analyzed in this study. 

 
 

Species 
log 

Feeding 

innovations 

log 

Research 

effort 

log 

FID 

Habitat 

Complex 

No 

habitats 

 
Haemoproteus 

 
Plasmodium 

 
Leucocytozoon 

 
Biting 

Fear 

screa

m 

Feather 

loss 

Tonic 

immobility 

(s) 

 
Alarm 

 
Wriggle 

N Capture 

behaviour 

Mass 

(g) 

 
Migration 

Colonialit 

y 

Acrocephalus 
arundinaceus 

0 2.537 0 0 4 0.220 0.183 0.061 0 0 0 30 0 0 1 30.350 1 0 

Acrocephalus 
palustris 

0 0 0.946 0 14 0.530 0 0.132 0 0.330 0 13.670 0 1.330 3 12 1 0 

Acrocephalus 
schoenobaenus 

0 2.444 0.879 0 7 0.283 0.202 0.116 0 0 0 13 0 0.800 5 11.900 1 0 

Acrocephalus 
scirpaceus 

0 0 0.828 0 10 0.221 0.117 0.102 1 0 0 30 0 1 1 11.800 1 0 

Aegithalos 
caudatus 

0.778 2.223 0.701 2 11 0 0 0.127 0 0 0 1 0 0.330 3 8.800 0 0 

Anthus 
spinoletta 

0.301 2.288 0.619 0 16 0 0 0.250 0 0 0 21 0.250 1.500 4 21.450 1 0 

Anthus trivialis 0 0 1.008 1 9 0.272 0 0.272 0.070 0.030 0.070 22.450 0.240 0.790 29 23.400 1 0 

Arenaria 

interpres 
0.903 2.483 1.312 0 5 0 0 0 0 0 0 0 0.500 0.500 2 107.500 1 0 

Bombycilla 

garrulus 
0.699 2.207 0 2 5 0 0 0.281 1 0 0 0 1 2 1 50 1 0 

Calidris alpina 0 2.745 0 0 5 0 0 0 0 0 0 15.730 0.200 0.730 30 43.050 1 0 

Calidris 

canutus 
0.301 2.580 1.415 0 1 0 0 0 0 0.390 0 9.230 0.190 2.130 31 137 1 0 

Caprimulgus 

europaeus 
0 0 0 3 15 0.314 0.220 0.220 0 1 1 3 0 1 1 85 1 0 

Carduelis 

carduelis 
0.477 2.373 0.883 2 11 0.358 0.164 0 0.350 0.050 0.160 17.840 0.920 0.540 37 15.600 1 0 

Carduelis 

chloris 
0.845 2.465 0.819 2 9 0.416 0.276 0 0.530 0.100 0.230 16.780 0.690 0.960 81 27.650 1 0 

Carduelis 
flammea 

0.477 2.188 0.653 1 14 0.188 0 0.284 0.330 0 0.270 10.900 0.470 0.830 30 13.050 1 0 

Carduelis 

spinus 
0.778 2.384 0.684 2 3 0.124 0.307 0.243 0.240 0.180 0.150 8.060 0.240 1.030 34 13.800 1 0 

Certhia 

brachydactyla 
0 0 0.850 2 5 0 0 0 0 0 1 30 1 0 1 9.150 0 0 

Certhia 

familiaris 
0.301 2.354 0.650 2 4 0.194 0 0.137 0.100 0.600 0.050 8.800 0.150 1.050 20 9.150 0 0 

Charadrius 

hiaticula 
0 2.413 1.293 0 7 0 0 0 0 0 0 9.250 0.600 0.600 5 63.250 1 0 

Cinclus cinclus 0.602 2.663 0 0 5 0 0 0.464 0.200 0.600 0.200 0 1 3 5 61.900 1 0 

Coccothraustes 

coccothraustes 
0.477 2.083 0.934 2 13 0.134 0.271 0.333 1 0.524 0.095 19.570 0.050 1.190 21 54.700 1 0 
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Columba 
palumbus 

0.301 2.442 1.294 2 10 0.524 0.385 0.372 0 0 1 0.500 0 1.500 2 494.500 1 0 

Corvus 

monedula 
0.845 2.640 1.426 2 2 0 0.064 0.064 1 0.333 0 3.670 0 0.667 6 249 1 1 

Delichon 

urbica 
0.845 2.844 0.802 0 4 0.342 0 0 0.180 0.270 0 2.270 0.270 0.730 11 19.550 1 1 

Dendrocopos 

major 
1.041 2.332 1.128 2 5 0 0 0 1 0.600 0 0.750 0 2.200 5 89.650 0 0 

Dendrocopos 

minor 
0.301 1.778 0 2 3 0 0 0 0 0 0.250 30 0 0.500 4 25.500 0 0 

Emberiza 

citrinella 
0 0 1 1 10 0.461 0.320 0.183 0.080 0 0.140 8.750 0.920 0.810 36 26.750 0 0 

Emberiza 

schoeniclus 
0.301 2.303 0.992 0 15 0.075 0 0.295 0.730 0 0.190 7.290 0.390 1.520 31 18.800 1 0 

Erithacus 

rubecula 
0.845 2.712 0.710 2 3 0.249 0.092 0.196 0.100 0.060 0.070 11.520 0.100 0.930 71 16.350 1 0 

Ficedula 

hypoleuca 
0.477 2.997 0.732 2 10 0.407 0.197 0.127 0.030 0.170 0.030 6.310 0.090 1.600 35 14.350 1 0 

Ficedula parva 0 2.111 0 2 3 0 0 0 0 0.500 0 5.500 0 0 2 11.700 1 0 

Fringilla 

coelebs 
0.845 2.763 0.854 2 10 0.561 0.120 0.388 0.850 0.170 0.150 12.980 0.300 1.060 124 24.200 1 0 

Fringilla 

montifringilla 
0.301 2.418 0 2 3 0.426 0.100 0.707 0.910 0.120 0.210 5.210 0.740 1.380 34 22.650 1 0 

Garrulus 

glandarius 
1 2.330 1.070 2 7 0.248 0.191 1.086 1 0.143 0.714 9.570 0 1.286 7 161.700 0 0 

Hippolais 

icterina 
0 0 0.876 2 10 0.558 0.287 0 0.470 0.890 0.080 6.580 0.060 2.220 36 13.300 1 0 

Hirundo 
rustica 

1.146 3.042 1.007 0 4 0.083 0.044 0.083 0.070 0.013 0.002 9.470 0.120 0.720 870 19.100 1 1 

Jynx torquilla 0 2.196 0 2 5 0.257 0 0.367 0.200 0.200 0 3.200 0 1.800 5 37.350 1 0 

Lanius collurio 0.602 2.651 0.862 1 16 0.604 0.219 0.126 1 0.220 0 20.220 0 1.040 27 30.700 1 0 

Locustella 

fluviatilis 
0 0 0 0 10 0 0 0 0 0 0 0 0 1 1 18.800 1 0 

Locustella 
naevia 

0 0 1.177 0 11 0 0 0 0 0.290 0.140 6.570 0 0.710 7 12.700 1 0 

Lullula 

arborea 
0 0 1.084 0 11 0.524 0 0 0 0 0 30 0 0 2 30.050 1 0 

Luscinia 

luscinia 
0 0 1.201 1 5 0.791 0.172 0.133 0.040 0.080 0.211 21.250 0 0.632 19 25 1 0 

Luscinia 

svecica 
0.301 2.365 0 1 7 0 0 0.421 0 0 0.360 1.270 0.080 2 11 18.250 1 0 

Motacilla alba 0.954 2.571 1.054 0 11 0.245 0.140 0.657 0.530 0.030 0.030 9.420 0.660 1.420 38 20.750 1 0 

Muscicapa 

striata 
0.903 2.286 0.929 2 13 0.432 0.133 0.421 0.320 0.490 0.120 14.290 0.150 1.710 41 15.500 1 0 

Oriolus oriolus 0.477 2.155 1.598 2 8 0.625 0.186 0.161 1 1 1 30 0 1 1 68.500 1 0 
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Parus 
caeruleus 

1.041 2.932 0.744 2 9 0.174 0.091 0.335 0.020 0.520 0.080 8.100 0.560 1.120 50 11.750 0 0 

Parus cristatus 0 2.196 0.801 2 3 0 0 0 0.250 0.500 0.250 23 0 1 4 11.150 0 0 

Parus major 1.176 3.221 0.718 2 8 0.266 0.169 0.263 0.950 0.230 0.120 11.120 0.300 1.220 74 18.500 0 0 

Parus 

montanus 
0 2.544 0 2 11 0.195 0.259 0.482 1 0.500 0 30 0 1.500 2 11.650 0 0 

Parus palustris 0.602 2.382 0.747 2 7 0.184 0 0 0.714 0 0 2.860 0 0.880 26 11.900 0 0 

Passer 

domesticus 
1.279 3.211 0.583 0 6 0.178 0.301 0.065 0.690 0.040 0 5.850 0.380 1.080 48 30.350 0 1 

Passer 

montanus 
0.602 2.671 0.708 1 4 0.331 0.353 0 0.270 0 0.020 14.960 0.100 1.080 48 21.700 0 1 

Philomachus 

pugnax 
0.477 2.491 0 0 5 0 0 0 0 0 0.040 5.330 0 1.750 24 140.500 1 0 

Phoenicurus 

ochruros 
0 2.480 0.842 0 3 0 0 0 0.120 0.060 0.120 18.940 0.240 1.060 17 16.100 1 0 

Phoenicurus 

phoenicurus 
0 2.358 0.959 2 7 0.217 0.132 0.382 0.190 0.150 0.070 15.970 0.450 1.433 67 15.900 1 0 

Phylloscopus 

collybita 
0.903 2.545 0.812 2 9 0.194 0 0.221 0.060 0.140 0.220 9.940 0.190 0.750 36 7.700 1 0 

Phylloscopus 

sibilatrix 
0 0 0 2 6 0.213 0 0 0.300 0.350 0 22.910 0.090 1.090 23 9.100 1 0 

Phylloscopus 

trochilus 
0.301 2.622 0.798 2 13 0.333 0.109 0.208 0.080 0.060 0 12.010 0.140 1.080 79 9.350 1 0 

Plectrophenax 

nivalis 
0 2.267 0 0 5 0 0 0 1 0 0 30 0 1 1 37.350 1 0 

Pluvialis 

squatarola 
0 2.310 1.708 0 7 0 0 0.340 0 0 0 3.250 0.500 0.500 4 227 1 0 

Prunella 

modularis 
0.699 2.318 0.706 2 18 0.242 0.054 0.236 0 0.030 0.280 6.690 0.130 1.220 32 18.950 1 0 

Pyrrhula 

pyrrhula 
0.699 2.301 0.779 2 10 0.183 0 0.248 0.170 0.250 0.130 9.250 0.500 1.420 24 31.050 1 0 

Regulus 

regulus 
0.699 2.279 0.652 2 4 0 0 0.150 0 0.200 0.030 9.660 0.550 0.670 30 5.800 1 0 

Riparia riparia 0.778 2.731 1.364 0 7 0 0 0.104 0 0 0 1 0 0.500 2 13.150 1 1 

Saxicola 

rubetra 
0 2.212 1.221 0 10 0.441 0 0.279 0 0.400 0.200 16.200 0 1.600 5 16.600 1 0 

Scolopax 

rusticola 
0.301 2.487 1.041 2 8 0.350 0 0.245 1 0 1 16 0.500 1 2 309.500 1 0 

Serinus serinus 0 0 0.766 2 6 0.348 0.217 0 0.090 0 0.450 18.500 0.270 0.910 11 11.950 1 0 

Sitta europaea 0.477 2.441 0.819 2 8 0.370 0.210 0.210 0.667 0 0 1.670 0 1 3 23.900 0 0 

Streptopelia 

decaocto 
0.477 2.619 0.731 2 4 0 0 0 0 0 0.800 15.500 0 1.200 5 201.500 0 0 

Sturnus 

vulgaris 
1.146 3.281 0.989 2 8 0.034 0.109 0.034 0.560 0.500 0.090 5.790 0.940 2 34 80.500 1 1 
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Sylvia 
atricapilla 

1 2.715 0.766 2 7 0.536 0.075 0.177 0.270 0.150 0.110 14.560 0.020 1.300 66 18.850 1 1 

Sylvia borin 0 0 0.820 2 9 0.457 0.103 0.216 0.380 0.500 0.240 13.460 0 1.700 50 19.050 1 1 

Sylvia 

communis 
0.477 2.272 0.911 1 12 0.535 0.133 0.196 0.070 0.170 0.240 15.830 0.050 1.020 42 14.500 1 1 

Sylvia curruca 0 2.190 0.723 1 15 0.316 0.188 0.133 0 0.110 0 14.450 0.032 0.680 62 12.400 1 1 

Sylvia 

melanocephala 
0 0 0.822 1 7 0 0 0 0 0 1 16 0 2 2 13.450 1 1 

Sylvia nisoria 0 1.996 0 1 11 0.719 0 0 0.190 0.190 0.060 17.070 0 1.560 16 24.350 1 1 

Tringa 

glareola 
0 0 0 0 5 0.388 0 0 0 0 0 2.500 0.330 1.670 3 67.500 1 1 

Tringa 

hypoleucos 
0 0 1.230 0 9 0 0 0.187 0 0 0 30 0 2 1 47.750 1 1 

Troglodytes 

troglodytes 
0.301 2.515 0.751 2 14 0.091 0 0.091 0.140 0.060 0.060 2.580 0.390 1.640 36 8.900 1 1 

Turdus iliacus 0.602 2.318 1.106 2 5 0.393 0.598 0.357 0.778 0 0.556 11.440 0.778 1.222 9 62.850 1 1 

Turdus merula 1.477 2.936 0.852 2 11 0.223 0.333 0.290 0.640 0.300 0.810 18.900 0.460 1.340 164 95.850 1 1 

Turdus 

philomelos 
1.079 2.540 0.888 2 7 0.372 0.198 0.586 0.970 0.480 0.640 15.390 0.390 1.480 66 70.500 1 1 

Turdus 

viscivorus 
0.699 2.041 1.286 2 7 0.194 0 0.395 0.833 0.500 1 6.170 0 1.330 6 117.800 1 1 

Upupa epops 0 0 1.300 0 12 0.140 0.140 0.140 0 0 0 10 0 0.330 3 67.050 1 1 



 

Table A2. Infection by Haemoproteus, Leucocytozoon and Plasmodium in relation to escape 

behaviour and frequency of feeding innovations. Test statistics refer to linear estimated and their 

standard errors (SE) and the associated P-values in phylogenetic analyses weighted by sample 

size. Effect sizes (r) are showed with its 95% CIs. 
 
 
 

95% CIs 
 

 

Factor 
 

Value 
 

SE 
 

t 
 

Effect size 
 

Lower 
 

Upper 
 

P 

Haemoproteus        

log Research effort -0.051 0.093 -0.55 -0.064 -0.285 0.164 0.579 

Alarm call -0.005 0.090 -0.06 -0.007 -0.232 0.219 0.952 

Biting 0.104 0.061 1.68 0.191 -0.035 0.399 0.095 

Wriggle 0.011 0.045 0.25 0.029 -0.197 0.252 0.803 

Feather loss 0.105 0.082 1.29 0.148 -0.080 0.361 0.201 

Fear scream 0.137 0.099 1.37 0.157 -0.071 0.370 0.172 

log Tonic Immobility (s) 0.006 0.124 0.04 0.004 -0.221 0.230 0.961 

log Mass (g) -0.290 0.095 -3.06 -0.335 -0.521 -0.118 0.003 

λ = 0.000, residual SE=0.067, df=76 
 

 

Leucocytozoon  

log Research effort -0.016 0.072 -0.22 -0.025 -0.201 0.117 0.819 

Alarm call 0.037 0.085 0.43 0.049 -0.177 0.272 0.662 

Biting 0.185 0.058 3.17 0.345 0.130 0.529 0.002 

Wriggle 0.029 0.042 0.67 0.077 -0.150 0.297 0.499 

Feather loss 0.132 0.077 1.70 0.193 -0.033 0.402 0.092 

Fear scream -0.048 0.094 -0.51 -0.059 -0.281 0.168 0.607 

log Tonic Immobility (s) 0.066 0.118 0.56 0.065 -0.163 0.286 0.575 

log Mass (g) -0.123 0.089 -1.36 -0.156 -0.368 0.072 0.175 

λ  = 0.000, residual SE=0.063, df=76 
 

 

Plasmodium  

log Research effort -0.081 0.052 -1.54 -0.176 -0.386 0.051 0.125 

Alarm call 0.060 0.058 1.04 0.120 -0.108 0.333 0.300 

Biting 0.026 0.043 0.59 0.068 -0.159 0.289 0.551 

Wriggle -0.011 0.029 -0.38 -0.044 -0.266 0.183 0.704 

Feather loss 0.048 0.051 0.93 0.107 -0.121 0.325 0.352 

Fear scream 0.066 0.061 1.07 0.123 -0.105 0.339 0.285 

log Tonic Immobility (s) -0.083 0.079 -1.05 -0.121 -0.337 0.107 0.297 

log Mass (g) -0.038 0.078 -0.48 -0.055 -0.277 0.172 0.626 

λ  = 0.258, residual SE=0.0447, df=76 
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