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Communication: Virial coefficients and demixing in highly asymmetric binary
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The problem of demixing in a binary fluid mixture of highly asymmetric additive hard spheres is revisited.
A comparison is presented between the results derived previously using truncated virial expansions for three
finite size ratios with those that one obtains with the same approach in the extreme case in which one
of the components consists of point particles. Since this latter system is known not to exhibit fluid-fluid
segregation, the similarity observed for the behavior of the critical constants arising in the truncated series
in all instances, while not being conclusive, may cast serious doubts as to the actual existence of a demixing
fluid-fluid transition in disparate-sized binary additive hard-sphere mixtures.

An analysis of the solution of the Percus–Yevick in-
tegral equation for binary additive hard-sphere (HS)
mixtures1 leads to the conclusion that no phase sep-
aration into two fluid phases exists in these systems.
The same conclusion is reached if one considers the
most popular equation of state proposed for additive
HS mixtures, namely the Boubĺık–Mansoori–Carnahan–
Starling–Leland (BMCSL) equation of state.2,3 For a long
time the belief was that this was a true physical fea-
ture. Nevertheless, this belief started to be seriously
questioned after Biben and Hansen4 obtained fluid-fluid
segregation in such mixtures out of the solution of the
Ornstein–Zernike equation with the Rogers–Young clo-
sure, provided the size disparity was large enough. More
recently, an accurate equation of state derived by invok-
ing some consistency conditions5 does predict phase sep-
aration. The importance of this issue resides in the fact
that if fluid-fluid phase separation occurs in additive HS
binary mixtures, it must certainly be entropy driven. In
contrast, in other mixtures such as molecular mixtures,
temperature plays a non-neutral role and demixing is a
free-energy driven phase transition.
The demixing problem has received a lot of attention in

the literature in different contexts and using different ap-
proaches. For instance, Coussaert and Baus6–8 have pro-
posed an equation of state with improved virial behavior
for a binary HS mixture that predicts a fluid-fluid transi-
tion at very high pressures (metastable with respect to a
fluid-solid one). On the other hand, Regnaut et al.9 have
examined the connection between empirical expressions
for the contact values of the pair distribution functions
and the existence of fluid-fluid separation in HS mixtures.
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Finally, in the case of highly asymmetric binary additive
HS mixtures, the depletion effect has been invoked as the
physical mechanism behind demixing (see, for instance,
Refs. 10–14 and the bibliography therein) and an effective
one-component fluid description has been employed. It is
worth remarking that the entropic forces driving a pos-
sible demixing transition become much more important
as the dimensionality increases, so that demixing in four-
and five-dimensional HS systems is much less elusive.15

In the limit of infinite dimensionality, demixing becomes
possible even in the presence of negative nonadditivity.16

This paper addresses the (in our view) still un-
solved and controversial problem of demixing in three-
dimensional binary mixtures of additive HS. Our sys-
tem consists of a binary fluid mixture of N = N1 + N2

additive HS of species 1 and 2 whose diameters are σ1

and σ2, respectively, with σ1 > σ2, so that the range
of the repulsion between particles of species 1 and 2 is
σ12 = 1

2 (σ1 + σ2). The thermodynamic properties of the
mixture can be described in terms of the number density
(which for this system is given by ρ ≡ N/V , with V the
volume), the mole fraction of the big spheres x ≡ N1/N ,
and the parameter γ ≡ σ2/σ1, which measures the size
asymmetry. Also convenient for later use is the packing
fraction η ≡ (π/6)ρσ3

1 [x + (1 − x)γ3]. We will consider
as starting point for our analysis the available informa-
tion on the (in principle exact) virial expansion of the
equation of state. In general, one may express the virial
coefficients of a binary HS mixture as

Bn(x, γ) =

n
∑

m=0

Bm,n−m(γ)
n!

m!(n−m)!
xm(1− x)n−m,

(1)
where the partial (composition-independent) virial coef-
ficients Bm,n−m(γ) (m = 0, 1, . . . , n) have been intro-
duced. Analytical expressions are known for B2(x, γ)

17

and B3(x, γ),
18 while B4(x, γ) and up to B7(x, γ) have

been evaluated numerically for various size ratios.19–23

Recently, Lab́ık and Kolafa have developed an accurate
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algorithm to compute virial coefficients up to B8(x, γ)
at a number of size ratios.24 The specific values of the
partial virial coefficients Bm,n−m(γ) with n = 4–8 for
γ = 0.05, 0.1, and 0.2 were reported in Table 1 of Ref.
25. These most recent results, apart from providing the
new eighth virial coefficients, also improve on the numer-
ical values of the lower ones. A recent review on virial
expansions, including an extensive list of references and
a description of the difficulties associated with the com-
putation of higher virial coefficients, has been written by
Masters.26

A convenient way to study demixing in binary additive
HS mixtures is to look at the loss of convexity of the
Helmholtz free energy per particle f ≡ f(ρ, x, γ). For
our binary HS mixture it reads

f = fid + fex, (2)

with the ideal contribution fid given by

βfid = −1 + x ln
(

ρxΛ3
1

)

+ (1− x) ln
[

ρ(1− x)Λ3
2

]

, (3)

and, in terms of Bn+1(x, γ), the excess contribution fex
given by

βfex =
∞
∑

n=1

1

n
Bn+1(x, γ)ρ

n. (4)

In the above formulae, β ≡ 1/kBT (where kB is the
Boltzmann constant and T the absolute temperature)
plays only the role of a scale factor, and Λi (i = 1, 2)
is the thermal de Broglie wavelength of the particles of
species i. In the present thermodynamic representation,
where ρ and x are the independent variables, the condi-
tion for the occurrence of a spinodal instability reads

(

∂2f

∂ρ2
+

2

ρ

∂f

∂ρ

)

∂2f

∂x2
−

(

∂2f

∂ρ∂x

)2

= 0. (5)

In two instances, namely the limiting cases of a pure
HS system (γ = 1) and that of a binary mixture in which
species 2 consists of point particles (γ = 0), it is known
that there is no fluid-fluid separation.27 For size ratios
other than γ = 1 and γ = 0, once γ is fixed, the con-
stants corresponding to the lower critical consolute point,
ρc and xc, should be found by determining the minimum
of the curve obtained from the use of Eq. (5). However,
due to the fact that the virial coefficients beyond the
eighth are unknown, the exact expression for f(ρ, x, γ)
is also unknown. Hence, either one truncates the series
in Eq. (4) after the term with n = 7 or uses an ap-
proximate compressibility factor Zapp(ρ) (in which case
βfex ≃

∫ ρ

0 dρ′[Zapp(ρ
′) − 1]/ρ′) to approximate the true

Helmholtz free energy.
As already observed by Vlasov and Masters20 and

López de Haro and Tejero,28 truncation of a virial se-
ries [which is equivalent to truncating the series in Eq.
(4)] can produce dramatic effects on the resulting crit-
ical behavior of the mixture. More recently, by work-
ing with the truncated virial series and systematically

adding one more known coefficient from the second to the
eighth, López de Haro et al.

25 obtained the (apparent)
critical consolute point for three mixtures of size ratios
0.05, 0.1, and 0.2. In the three cases it was found that
the values of the critical pressures and packing fractions
monotonically increase with the truncation order. Ex-
trapolation of these results to infinite order suggests that
the critical pressure diverges to infinity and the critical
packing fraction tends towards its close-packing value,
thus supporting a non-demixing scenario, at least for
the three systems investigated. In Ref. 25 it was also
found that the same trends were obtained when the un-
known exact virial coefficients beyond the eighth one are
estimated from Wheatley’s extrapolation formula29,30 or
when the BMCSL equation of state2,3 (which does not
predict demixing) is “amended” by replacing a num-
ber of approximate virial coefficients by the exact ones.
This shows the extreme sensitivity of the demixing phe-
nomenon to slight changes in the approximate equation
of state that is chosen to describe the mixture.

A more detailed analysis of the results for the criti-
cal pressures pc(k) obtained by López de Haro et al.

25

allows one to get an insight of the behavior of pc with
the truncation order k. In fact, a log-log plot of pc(k)
vs. k shows a quasi-linear behavior, consistent with a
power law pc(k) ≈ Akµ, with an exponent µ ≈ 1.7–2
that slightly depends on the size ratio.

The argument that the truncated virial series are prone
to exhibit demixing, albeit with larger and larger crit-
ical pressures, can be reinforced, as will be discussed
in this paper, by analyzing a binary mixture in which
species 2 consists of point particles, so that γ = 0. In
that limit the exact free energy is βf(ρ, x, γ = 0) =
xβfpure(η) − (1 − x) ln(1 − η), where fpure is the free
energy of a pure HS fluid evaluated at the same packing
fraction η as that of the mixture. Note that in this limit-
ing case the virial coefficients of the mixture are directly
related to the ones of the pure fluid, which are known up
to the tenth.31–34 Further, and as mentioned previously,
this system is known to lack a demixing transition27 but,
as shown below, the truncated virial series exhibits arti-
ficial critical points with the same qualitative features as
observed for the mixtures with size ratios γ = 0.05, 0.1,
and 0.2.

In Fig. 1 we illustrate the trends observed with differ-
ent values of the size ratio both for the reduced critical
pressure p∗c ≡ βpcσ

3
1 and packing fraction ηc as one adds

one more ‘exact’ virial coefficient (up to the tenth) each
step to the truncated virial series. In the case of non-zero
γ, the ninth and tenth virial coefficients have been com-
puted with Wheatley’s extrapolation formula.29,35 As al-
ready pointed out in Ref. 25, for non-zero γ one does
not know the convergence properties of the virial series
and hence whether the demixing transition in such bi-
nary mixtures is either stable, metastable with respect
to freezing, or nonexistent cannot be ascertained on the
basis of the previous results alone. On the other hand,
the absence of the demixing transition is certain27 for
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γ = 0 and the trends observed with the truncated series
in this case for the ηc vs. p∗c curve are strikingly similar
to those that arise for the same curve when γ = 0.05,
0.1, and 0.2. Although not shown, if one considers the
limit γ = 0 in the BMCSL equation of state, the results
obtained from truncating this latter are virtually indis-
tinguishable from the ones shown in Fig. 1.
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FIG. 1. Critical packing fraction ηc vs. reduced critical pres-
sure p

∗

c
in binary HS mixtures of different size ratios γ as

computed from truncated virial expansions keeping succes-
sively two, three, four, five, six, seven, eight, nine, and ten
‘exact’ virial coefficients. In the case of non-zero γ, the ‘ex-
act’ ninth and tenth virial coefficients have been estimated
using Wheatley’s extrapolation formula. Diamonds: γ = 0;
squares: γ = 0.05; triangles: γ = 0.1; open circles: γ = 0.2.
The inset shows the representation with the critical pressure
in logarithmic scale.

In conclusion, while not settling definitely the matter
and contrary to approaches based on either approximate
integral equations or on an effective one-component de-
scription, the above results provide further evidence that
it is plausible that a stable demixing fluid-fluid transition
does not occur in (three-dimensional) additive binary HS
mixtures with non-zero size ratio.
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