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The structural properties of fluids whose molecules interact via potentials with a hard core plus two piece-wise
constant sections of different widths and heights are presented. These follow from the more general devel-
opment previously introduced for potentials with a hard core plus n piece-wise constant sections [Condens.
Matter Phys. 15, 23602 (2012)] in which use was made of a semi-analytic rational-function approximation
method. The results of illustrative cases comprising eight different combinations of wells and shoulders are
compared both with simulation data and with those that follow from the numerical solution of the Percus–
Yevick and hypernetted-chain integral equations. It is found that the rational-function approximation gener-
ally predicts a more accurate radial distribution function than the Percus–Yevick theory and is comparable
or even superior to the hypernetted-chain theory. This superiority over both integral equation theories is lost,
however, at high densities, especially as the widths of the wells and/or the barriers increase.

I. INTRODUCTION

Due to their relative simplicity, while having at the
same time the ability to adequately account for diverse
physical features of real fluids, discrete potentials of the
form

ϕ(r) =































∞, r < σ,
ǫ1, σ < r < λ1σ,
ǫ2, λ1σ < r < λ2σ,
...

...
ǫn, λn−1σ < r < λnσ,
0, r > λnσ,

(1)

have received some attention in the recent literature.1–26

They comprise a hard core of diameter σ and n steps of
“heights” ǫj and widths (λj − λj−1)σ, with λ0 = 1, so
that λnσ denotes the total range of ϕ(r). The sign of ǫj
determines whether the jth step is either a “shoulder”
(ǫj > 0) or a “well” (ǫj < 0). The interaction potential
at r = λjσ (j = 1, 2, . . . , n) is repulsive if ǫj > ǫj+1

and attractive if ǫj < ǫj+1 (with the convention ǫn+1 =
0). Particular cases of these discrete potentials when
n = 1 are the popular square-well and square-shoulder
potentials.
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The phase diagram and the thermodynamic properties
of discrete-potential fluids have been thoroughly exam-
ined and are relatively well understood.4–16 On the other
hand, although many studies of their structural proper-
ties either theoretical or from simulation have been also
performed,16–26 the variety of cases that may present jus-
tifies further work on this subject.

In a previous paper,24 following a semi-analytic
methodology referred to generically as the rational-
function approximation (RFA) that, although approxi-
mate, has proven successful for many other systems,27 we
derived the general formulae for the structural properties
of fluids whose molecules interact via discrete potentials
with a hard core plus an arbitrary number of piece-wise
constant sections of different widths and heights. The
theoretical scheme was illustrated by comparing it with
available computer simulations results.23

The aim of this paper is to carry out a more systematic
study of the structural properties of fluids characterized
by a discrete potential with a hard core plus different
combinations of a repulsive shoulder and an attractive
well. This will be done by considering the results of Ref.
24 in the case of n = 2 for various values of the param-
eters and subsequently performing a comparison both
with simulation results as well as with those that fol-
low from the numerical solution of the Ornstein–Zernike
(OZ) equation with both the Percus–Yevick (PY) and
hypernetted-chain (HNC) closures. As will be seen, the
performance of the RFA approach, despite its simplicity,
is quite satisfactory.

The paper is organized as follows. In order to make it
self-contained, in Sec. II we introduce the systems to be
studied and sketch the derivation of the results of Ref. 24
for the structural properties of such systems when n = 2.
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We also include here some details of the simulation and
of the numerical solution of the OZ equation with the
PY and HNC closures. This is followed in Sec. III by the
comparison between the outcomes of the three different
approaches for the radial distribution function (RDF).
The paper is closed in Sec. IV with further discussion
and some concluding remarks.

II. SYSTEM AND STRUCTURAL PROPERTIES

We consider a fluid of number density ρ and absolute
temperature T in which the intermolecular pair potential
is of the form of Eq. (1) with n = 2. We will take the
hard-core diameter σ as the length unit so all distances
will be measured in units of σ. The two main quantities
usually employed to characterize the structure of fluids in
equilibrium are the static structure factor S(q) and the
RDF g(r) which are related by

S(q) = 1 + ρ

∫

dr e−iq·r[g(r)− 1]

= 1− 2πρ
G(s)−G(−s)

s

∣

∣

∣

∣

s=iq

, (2)

where

G(s) =

∫ ∞

0

dr e−rsrg(r) (3)

is the Laplace transform of rg(r).

A. The rational-function approximation method

We define an auxiliary function F (s) directly related
to G(s) through

G(s) = s
F (s)e−s

1 + 12ηF (s)e−s

=

∞
∑

m=1

(−12η)m−1s[F (s)]me−ms. (4)

Here, η = (π/6)ρσ3 is the packing fraction. Laplace in-
version of Eq. (4) provides a useful representation of g(r),
namely

g(r) = r−1
∞
∑

m=1

(−12η)m−1fm(r −m)Θ(r −m), (5)

where fm(r) is the inverse Laplace transform of s[F (s)]m

and Θ(r) is the Heaviside step function.
The contact value g(1+) of the RDF is related to F (s)

through g(1+) = f1(0) = lims→∞s2F (s) and it has to be
finite. Further, as seen from Eq. (2), the behavior of G(s)
for small s determines the value of S(0), which must also
be finite. Hence, F (s) must satisfy two conditions:24

F (s) ∼ s−2, s → ∞, (6)

F (s) = −
1

12η

(

1 + s+
1

2
s2 +

1 + 2η

12η
s3 +

2 + η

24η
s4
)

+O(s5). (7)

Equations (4)–(7) are exact and valid for any inter-
action potential with a hard core at r = σ = 1. Now
we particularize to the potential (1) with n = 2. To re-
flect the discontinuities of g(r) at the points r = λ1 and
r = λ2, where ϕ(r) is discontinuous, we decompose F (s)
as

F (s) = R0(s) +R1(s)e
−(λ1−1)s +R2(s)e

−(λ2−1)s. (8)

As a consequence,

f1(r) = ξ0(r)Θ(r) + ξ1(r − λ1 + 1)Θ(r − λ1 + 1)

+ξ2(r − λ2 + 1)Θ(r − λ2 + 1), (9)

where ξj(r) denotes the inverse Laplace transform of
sRj(s). If, as will be done here, one assumes that λ2 ≤ 2,
insertion of Eq. (9) into Eq. (5) gives the RDF in the shell
1 < r < 2. In particular,

g(λ−
1 ) = λ−1

1 ξ0(λ1 − 1), (10)

g(λ+
1 ) = λ−1

1 [ξ0(λ1 − 1) + ξ1(0)] , (11)

g(λ−
2 ) = λ−1

2 [ξ0(λ2 − 1) + ξ1(λ2 − λ1)] , (12)

g(λ+
2 ) = λ−1

2 [ξ0(λ2 − 1) + ξ1(λ2 − λ1) + ξ2(0)] . (13)

Now we assume the following rational-function approx-
imation for Rj(s):

Rj(s) = −
1

12η

Aj +Bjs

1 + S1s+ S2s2 + S3s3
, j = 0, 1, 2.

(14)
Note that Eq. (14) for R0(s) guarantees the fulfillment of
the physical condition (6). Yet, the approximation (14)
contains nine parameters to be determined. The exact
expansion (7) imposes five constraints among those nine
parameters, namely24

1 = A0 +A1 +A2, (15)

S1 = −1 +B0 − C(1), (16)

S2 =
1

2
−B0 + C(1) +

1

2
C(2), (17)

S3 = −
1 + 2η

12η
+

1

2
B0 −

1

2
C(1) −

1

2
C(2) −

1

6
C(3), (18)

B0 = C(1) +
η/2

1 + 2η

(

6C(2) + 4C(3) + C(4)
)

+
1 + η/2

1 + 2η
.

(19)
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Here,

C(k) ≡
2

∑

j=1

[

Aj(λj − 1)k − kBj(λj − 1)k−1
]

. (20)

Next, since the cavity function y(r) ≡ g(r)eβϕ(r), where
β ≡ 1/kBT (kB being the Boltzmann constant), must be
continuous at r = λ1 and r = λ2, one obtains from Eqs.
(10)–(13) the two conditions24

B1

S3
=

[

eβ(ǫ1−ǫ2) − 1
]

3
∑

ν=1

sνe
(λ1−1)sν

S1 + 2S2sν + 3S3s2ν

×(A0 +B0sν), (21)

B2

S3
=

(

eβǫ2 − 1
)

3
∑

ν=1

sνe
(λ2−1)sν

S1 + 2S2sν + 3S3s2ν

×
[

A0 +B0sν + (A1 +B1sν)e
−(λ1−1)sν

]

, (22)

where sν (ν = 1, 2, 3) are the three roots of the cubic
equation

1 + S1sν + S2s
2
ν + S3s

3
ν = 0. (23)

Equations (15)–(19), (21), and (22) still leave two pa-
rameters undetermined. A simplifying assumption is that
the coefficients Aj (j = 0, 1, 2) may be fixed at their zero-
density values, namely

A0 = e−βǫ1, A1 = e−βǫ2 − e−βǫ1, A2 = 1− e−βǫ2 .
(24)

This closes the problem of determining the nine param-
eters in terms of η, λ1, λ2, βǫ1, and βǫ2. In fact, Eqs.
(16)–(19) allow us to express S1, S2, S3, and B0 as linear
combinations of B1 and B2, so that in the end one only
has to solve (numerically) the two coupled transcendental
equations (21) and (22). Since the dependence of G(s)
on s is explicit, we are now in a position to compute the
structural quantities of our systems. The structure fac-
tor S(q) can be directly obtained from Eq. (2), while the
RDF g(r) can be obtained from Eq. (5) or, more directly,
by numerical inverse Laplace transform of G(s).28

It is worth remarking that, while the choice (24) guar-
antees that the RFA is exact in the limit ρ → 0, it differs
from the exact result to first order in density, as discussed
in Ref. 29 for the square-well potential.

B. The PY and HNC approximations

In the usual integral equation approach to the theory
of liquids, the OZ equation, which may be formally con-
sidered as a definition of the direct correlation function
c(r), provides a link between this direct correlation func-
tion and the total correlation function h(r) ≡ g(r) − 1,
the latter being a measure of the ‘influence’, either direct

or through a third molecule, of two molecules separated
a distance r away. The OZ relation reads

h(r) = c(r) + ρ

∫

dr′c(r′)h(|r− r
′|)

= c(r) +
2πρ

r

∫ ∞

0

dr′ r′c(r′)

∫ r+r′

|r−r′|

dr′′ r′′h(r′′),

(25)

where in the second equality we have particular-
ized to three-dimensional systems and used bipolar
coordinates.30,31

Since both h(r) and c(r) are unknown, in order to
close the description one requires an additional equa-
tion, known as the closure relation. A closure can be
expressed as a local relationship between the direct cor-
relation function, the Mayer function f(r) ≡ e−βϕ(r)− 1,
and the cavity function y(r), i.e.,

c(r) = C (f(r), y(r)) . (26)

Equivalently, Eq. (26) can be inverted to obtain a local
relationship between the cavity function and the indirect
correlation function γ(r) ≡ h(r) − c(r), i.e.,

y(r) = Y (γ(r)) . (27)

Insertion of the closure (26) and (27) into the OZ relation
(25) yields a closed nonlinear integral equation for the
cavity function:

y(r) = Y

(

2πρ

r

∫ ∞

0

dr′ r′C (f(r′), y(r′))

×

∫ r+r′

|r−r′|

dr′′ r′′
[

e−βϕ(r′′)y(r′′)− 1
]

)

. (28)

As mentioned in Sec. I, we will consider here both the
PY and HNC closures given by

c(r) = h(r) − y(r) + 1 (PY), (29)

c(r) = h(r)− ln y(r) (HNC). (30)

In terms of the functions C(f, y) and Y(γ), the PY and
HNC closure relations are

C(f, y) = fy, Y(γ) = 1 + γ (PY), (31)

C(f, y) = (f+1)y−1− lny, Y(γ) = eγ (HNC). (32)

Note that the PY closure can be obtained from the HNC
one by formally linearizing C(f, y) and Y(y) with respect
to γ. In contrast to the RFA, the PY and HNC theories
provide the exact RDF to first order in density.
We have solved Eq. (28) numerically in the PY and

HNC cases. First, a discretization scheme y(r) → {ri, yi}
with ri = i∆r (i = 1, 2, . . . ,N ) and a cut-off distance
rN = N∆r are introduced, so that the integral equation
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(28) is replaced by a set of N nonlinear coupled equa-
tions:

yi = Y





2πρ

ri
(∆r)2

N
∑

j=1

rjC (fj, yj)

×

min(i+j,N )
∑

k=|i−j|+1

rk
(

e−βϕkyk − 1
)



 , i = 1, 2, . . . ,N .

(33)

Next, a coarse-grained solution of Eq. (33) is obtained
by an iteration method. Insertion of the nth order input

{y
(n,in)
i } into the right-hand side of Eq. (33) gives the

nth order output {y
(n,out)
i } and the subsequent input is

constructed as y
(n+1,in)
i = αy

(n,out)
i +(1−α)y

(n,in)
i , with

a convenient choice of the mixing parameter α. The it-
erations are continued until the convergence criterion

max
i

|y
(n,out)
i − y

(n,in)
i | < 10−3 (34)

is reached or the number of iterations exceeds 100. Once
the coarse-grained solution has been obtained, a fine-
grained solution of the set of N equations (33) is de-
termined with the help of a computational software pro-
gram, using the coarse-grained solution as a seed.32 In the
numerical solutions presented in Sec. III we have gener-
ally used ∆r = 0.01σ and N = 400. As for the mixing
parameter α, it was chosen by trial and error, being nec-
essary to decrease it as the density increases.33

C. Technical simulation details

The simulation data were computed with a Replica
Exchange Monte Carlo (REMC) method. The REMC
method is also known as Parallel Tempering and was de-
rived to achieve good sampling of systems that present a
free energy landscape with many local minima.34,35 The
REMC method consists of simulating M replicas (copies)
of the system at different thermodynamic conditions; the
attempted MC moves are accepted or rejected according
to the traditional Metropolis algorithm. Due to these ex-
changes, a particular replica travels through many tem-
peratures, allowing it to overcome any barriers to free
energy.
The method samples an expanded canonical ensemble,

taking the temperature as the expansion variable. The
existence of this expanded ensemble justifies the intro-
duction of movements of exchange between replicas. The
expanded ensemble is defined as

Qexpanded =
M
∏

i=1

Qi, (35)

where Qi is the partition function of the (NVT) canonical
ensemble of the system (subensemble i) at temperature

T , volume V , and number of particles N . To satisfy the
detailed balance condition, the probability of acceptance
of the exchange is given by

Pacc = min(1, exp[−(βj − βi)(Uj − Ui)]), (36)

where βj − βi is the difference between the reciprocal
temperatures and Uj − Ui is the difference between the
potential energies of the subensembles i and j.
A cubic simulation box of dimensions Lx = Ly = Lz =

10σ was used and periodic boundary conditions were set
in the three directions. Verlet lists36 were implemented
to improve performance. We have carried out computer
experiments for different systems, corresponding to dif-
ferent values of the parameters of the potentials that will
be specified later. These systems are further character-
ized by their reduced density ρ∗ = ρσ3 and their reduced
temperature T ∗ = kBT/ǫ, where ǫ = max(|ǫ1|, |ǫ2|).
The number of replicas M = 12 was chosen to match
the number of different temperatures in which we want
to examine the systems. The highest temperature was
set at T ∗ = 2, while the other temperatures were es-
tablished following a decreasing geometric progression,
namely T ∗

n = 2 × 0.959n−1, n = 1, . . . , 12. The initial
configuration of each system, consisting of a collection of
N = 500 particles randomly arranged in the simulation
box and thus setting the reduced number density of our
systems as ρ∗ = 0.5, was equilibrated by conducting 107

Monte Carlo simulation steps. The RDF was calculated
over additional 4× 107 configurations.

III. RESULTS

For convenience and in order to try to be systematic,
we now first fix the values of λ1 and λ2 to be λ1 = 1.25
and λ2 = 1.5. As for the values of ǫ1 and ǫ2, we have
considered eight representative cases. Since, as already
stated, ǫ = max(|ǫ1|, |ǫ2|), at least one of the |ǫi| must
be equal to ǫ. The other energy level has been chosen
as 0, ±ǫ, or ± 1

2ǫ with the following conditions. First,
the cases having ǫ1 = ǫ2 have not been considered since
they correspond to having just one step. The same can
be said about the cases with ǫ2 = 0. Finally, if ǫ1 and
ǫ2 have opposite signs, then we have taken |ǫ1| = |ǫ2| =
ǫ. The potentials of the different cases (from A to H)
are represented graphically in Fig. 1. We observe that
system A corresponds to a purely repulsive potential. In
the cases B–D the potential is repulsive at r/σ = λ2

and attractive at r/σ = λ1, with increasing attraction
when going from B to D. System E presents a purely
attractive tail beyond the hard core. As for systems F–
H, the potential is attractive at r/σ = λ2 and repulsive at
r/σ = λ1, with increasing repulsion when going from F
to H. The cases A and F–H are examples of core-softened
potentials.
As an illustration of the results of our calculations,

and in accordance with the simulation experiments men-
tioned above, we fix the reduced density to be ρ∗ =
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FIG. 1. Diagrams of the surveyed potentials, labeled from
A to H.
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FIG. 2. Comparison of the different theoretical approaches
to compute the RDF of the system corresponding to case
A (λ1 = 1.25, λ2 = 1.5, ǫ1 = ǫ, ǫ2 = ǫ/2) at ρ∗ = 0.5
and T ∗ = 1.26193 with simulation results. Solid line: RFA;
dashed line: HNC; dotted-dashed line: PY; symbols: REMC
data. The inset shows the interaction potential and the tem-
perature value.
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FIG. 3. Comparison of the different theoretical approaches
to compute the RDF of the system corresponding to case
B (λ1 = 1.25, λ2 = 1.5, ǫ1 = ǫ/2, ǫ2 = ǫ) at ρ∗ = 0.5
and T ∗ = 1.26193 with simulation results. Solid line: RFA;
dashed line: HNC; dotted-dashed line: PY; symbols: REMC
data. The inset shows the interaction potential and the tem-
perature value.
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FIG. 4. Comparison of the different theoretical approaches
to compute the RDF of the system corresponding to case
C (λ1 = 1.25, λ2 = 1.5, ǫ1 = 0, ǫ2 = ǫ) at ρ∗ = 0.5
and T ∗ = 1.26193 with simulation results. Solid line: RFA;
dashed line: HNC; dotted-dashed line: PY; symbols: REMC
data. The inset shows the interaction potential and the tem-
perature value.

0.5 and consider the lowest reduced temperature T ∗ =
1.26193 (corresponding to n = M = 12) in all cases, al-
though, as said before, we obtained simulation data for
the whole temperature range 1.26193 ≤ T ∗ ≤ 2. The re-
sults for the RDF are displayed in Figs. 2–9 for cases A–
H, respectively. In order to assess the influence of ǫ1 and
ǫ2 on g(r) at fixed (reduced) temperature and density,
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FIG. 5. Comparison of the different theoretical approaches
to compute the RDF of the system corresponding to case
D (λ1 = 1.25, λ2 = 1.5, ǫ1 = −ǫ, ǫ2 = ǫ) at ρ∗ = 0.5
and T ∗ = 1.26193 with simulation results. Solid line: RFA;
dashed line: HNC; dotted-dashed line: PY; symbols: REMC
data. The inset shows the interaction potential and the tem-
perature value.
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FIG. 6. Comparison of the different theoretical approaches
to compute the RDF of the system corresponding to case E
(λ1 = 1.25, λ2 = 1.5, ǫ1 = −ǫ, ǫ2 = −ǫ/2) at ρ∗ = 0.5
and T ∗ = 1.26193 with simulation results. Solid line: RFA;
dashed line: HNC; dotted-dashed line: PY; symbols: REMC
data. The inset shows the interaction potential and the tem-
perature value.

common horizontal and vertical scales have been chosen
in Figs. 2–9. In the case of the purely repulsive system
A, there exists a local accumulation of particles at the
external edge (λ+

i ) of each repulsive step, followed by a
local depletion at the internal edge (λ−

i ). For systems
B–D, where the potential is repulsive at r/σ = λ2 but
attractive at r/σ = λ1, the population of particles (as
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FIG. 7. Comparison of the different theoretical approaches
to compute the RDF of the system corresponding to case F
(λ1 = 1.25, λ2 = 1.5, ǫ1 = −ǫ/2, ǫ2 = −ǫ) at ρ∗ = 0.5
and T ∗ = 1.26193 with simulation results. Solid line: RFA;
dashed line: HNC; dotted-dashed line: PY; symbols: REMC
data. The inset shows the interaction potential and the tem-
perature value.
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FIG. 8. Comparison of the different theoretical approaches
to compute the RDF of the system corresponding to case
G (λ1 = 1.25, λ2 = 1.5, ǫ1 = 0, ǫ2 = −ǫ) at ρ∗ = 0.5
and T ∗ = 1.26193 with simulation results. Solid line: RFA;
dashed line: HNC; dotted-dashed line: PY; symbols: REMC
data. The inset shows the interaction potential and the tem-
perature value.

seen by a reference particle at the origin) is depleted in
the region λ1 < r/σ < λ2 and increases when going from
λ+
1 to λ−

1 , as expected. These effects are enhanced as the
depth of the inner well increases. In the case of system E
the potential outside the hard core is purely attractive,
what is reflected in an increase of g(r) from the external
edge λ+

i to the internal edge λ−
i . Finally, systems F–H
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FIG. 9. Comparison of the different theoretical approaches
to compute the RDF of the system corresponding to case
H (λ1 = 1.25, λ2 = 1.5, ǫ1 = ǫ, ǫ2 = −ǫ) at ρ∗ = 0.5
and T ∗ = 1.26193 with simulation results. Solid line: RFA;
dashed line: HNC; dotted-dashed line: PY; symbols: REMC
data. The inset shows the interaction potential and the tem-
perature value.

are the counterparts of systems B–D. Now the attraction
at r/σ = λ2 produces an increase of particles in the re-
gion λ1 < r/σ < λ2, this effect being enhanced as the
inner barrier becomes more repulsive.
Let us comment now on the theoretical predictions. It

follows that, as already pointed out in Ref. 24, the RFA
approach certainly outperforms the PY approximation
in all the cases. This is noteworthy because, while the
RFA reduces to the PY solution for hard spheres,24 it is
much simpler than the PY integral equation theory for
two-step potentials. As for the HNC integral equation
theory, it presents the best agreement in the region 1 <
r/σ < λ1 in the cases A–C, i.e., when ǫ1 ≥ 0 and ǫ2 > 0.
Even in those cases, however, the RFA is as accurate
as or more accurate than the HNC theory in the region
λ1 < r/σ < λ2. For larger distances the RFA and HNC
predictions are almost indistinguishable. In the rest of
the cases (D–H), the PY and HNC curves are generally
very similar, the best global performance being obtained
with the RFA.
An additional advantage of the RFA over the numer-

ical solutions of integral equations is that, since the
s-dependence of the Laplace transform G(s) is fully
explicit, the correlation length of the system can be
straightforwardly obtained. This relies upon the search
for the pole (or conjugate pair of poles) s = −κ ± iω
of G(s) − s−2 with the negative real part −κ closest to
the origin. As a consequence, the asymptotic behavior of
h(r) is given by

h(r) ∼
e−κr

r
cos(ωr + φ), (37)

where κ is the inverse correlation length and 2π/ω is

the wavelength of the oscillations. At the common
thermodynamic state ρ∗ = 0.5 and T ∗ = 1.26193, we
have found (κ, ω) = (1.503, 5.128), (1.827, 4.424),
(1.704, 7.116), (1.378, 6.990), (1.327, 6.225),
(1.059, 5.856), (0.955, 5.738), and (0.754, 5.632) for
systems A–H, respectively. Therefore, the smallest
correlation length κ−1 ≃ 0.55 corresponds to case B
and it monotonically increases from system B to system
H, where in the latter case one has κ−1 ≃ 1.33. Case
A, with κ−1 ≃ 0.67, lies in between cases C and D.
The wavelength has a less systematic behavior, ranging
from 2π/ω ≃ 0.88 (case C) to 2π/ω ≃ 1.42 (case B).
Interestingly enough, although Eq. (37) applies to the
asymptotic regime r → ∞ only, the increase of the
correlation length when going from B to H agrees
with what is observed in Figs. 3–9, where the distance
beyond which |g(r)− 1| ≤ 0.03 turns out to be 2.1, 2.45,
2.49, 2.54, 2.76, 3.01, 3.08, and 3.71 for systems A–H,
respectively.
As a final illustration, we present in Figs. 10 and

11 a comparison of the results we have obtained with
the different theoretical approaches with those of MC
simulations22 of two systems with an intermolecular po-
tential of the type of case D (square well + square bar-
rier), but this time having the following values of the
parameters: λ1 = 1.5, λ2 = 2, ǫ1 = −ǫ, ǫ2 = ǫ/5 (system
D’) and λ1 = 1.5, λ2 = 2, ǫ1 = −ǫ, ǫ2 = 2ǫ/5 (system
D”), respectively. For those systems we have considered
a fixed temperature T ∗ = 2 and the three reduced den-
sities ρ∗ = 0.2, ρ∗ = 0.4, and ρ∗ = 0.75.37 At the lowest
density (ρ∗ = 0.2) the three theoretical approaches pro-
vide excellent results, with a slight superiority of PY and
HNC. This phenomenon is a reflection of the fact that, as
said above, the PY and HNC approximations are exact to
order ρ while the RFA is not. At the intermediate density
(ρ∗ = 0.4), however, the RFA beats the PY and HNC re-
sults (which are practically indistinguishable from each
other). Finally, at the highest density (ρ∗ = 0.75) the
RFA becomes clearly worse than the PY and HNC pre-
dictions (which are again hardly distinguishable), espe-
cially in the case of the higher barrier (case D”). The
shortcomings of the RFA as the density and the widths
of the potential sections increase have been reported for
the square-well case in Ref. 29.

IV. CONCLUDING REMARKS

In this paper we have presented a rather systematic
study of the RDF of fluids whose molecules interact via
a potential with a hard core plus two piece-wise constant
sections of the same width and different heights (either
wells or shoulders), which include the RFA approach, our
REMC numerical experiments, and the numerical solu-
tion of the PY and HNC integral equations. We have con-
sidered eight representative classes of systems (see Fig.
1) which cover all the possible topologies of hard core
plus two-step potentials. They include a purely repulsive
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FIG. 10. Comparison of the different theoretical approaches
to compute the RDF of the system corresponding to case D’
(λ1 = 1.5, λ2 = 2, ǫ1 = −ǫ, ǫ2 = ǫ/5) at T ∗ = 2 and (a)
ρ∗ = 0.2, (b) ρ∗ = 0.4, and (c) ρ∗ = 0.75 with simulation re-
sults. Solid line: RFA; dashed line: HNC; dotted-dashed line:
PY; symbols: MC data.22 The inset shows the interaction
potential and the temperature value.

potential (system A), potentials with an outer repulsive
barrier and an inner attractive well (systems B–D), a
purely attractive part outside the hard core (system E),
and potentials with an outer attractive well and an inner
repulsive barrier (systems F–H). Four of these systems (A
and F–H) belong to the class of core-softened potentials.

As Figs. 2–9 show, it is fair to state that for the fixed

0.5

1.0

1.5

1.0 1.5 2.0 2.5 3.0 3.5 4.0
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1.0
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FIG. 11. Comparison of the different theoretical approaches
to compute the RDF of the system corresponding to case D”
(λ1 = 1.5, λ2 = 2, ǫ1 = −ǫ, ǫ2 = 2ǫ/5) at T ∗ = 2 and (a)
ρ∗ = 0.2, (b) ρ∗ = 0.4, and (c) ρ∗ = 0.75 with simulation re-
sults. Solid line: RFA; dashed line: HNC; dotted-dashed line:
PY; symbols: MC data.22 The inset shows the interaction
potential and the temperature value.

number density ρ∗ = 0.5 the agreement between the re-
sults of our RFA formulation and those of the REMC
experiments is very satisfactory in all instances. This is
specially rewarding in view of the fact that the reduced
temperature we have chosen to illustrate our findings
(T ∗ = 1.26193) is rather low and represents a stringent
test of our theory.
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A specially relevant point is the capability of the RFA
to provide the correlation length from the pole of the
Laplace transform G(s) with the negative real part clos-
est to the origin. The fact that, at the given state point,
the potential H has the largest correlation length (larger
than 1.3) is consistent with the results of Ref. 38 for
a similar (continuous) potential, where the (anomalous)
thermodynamic behavior of the system was shown to be
determined by the contribution to the RDF coming from
up to the fourth coordination shell.

We have complemented our study with the comparison
of the results we get and the MC data of Ref. 22 for two
cases (labeled here as D’ and D”) in which the potential
is of the form of the one of case D but with a wider width,
a lower outer barrier, and a fixed reduced temperature
T ∗ = 2. Again, as observed from Figs. 10 and 11, the
performance of the RFA approach is rather satisfactory,
except at the highest density ρ∗ = 0.75. The tendency
of the RFA to fail at high densities and wide potentials
widths was already documented in the case of the pure
square-well potential (with ǫ2 = 0).29

Concerning the comparison between our present ap-
proach and the usual integral equation approach in the
theory of liquids, we have seen that the RFA is rather
simple, requires much less numerical labor (in these cases
only the solution of two coupled transcendental equa-
tions), captures correctly all the oscillations of the RDF,
and is reasonably accurate. In fact, it is always superior
to the PY equation [except for the cases of Figs. 10(c)
and 11(c)] and in most of the instances it is of comparable
accuracy or better than the HNC equation. Hence, this
constitutes further evidence of the usefulness of the RFA
methodology that we have used for the computation of
the structural properties of different hard-core fluids.27

All the calculations that we have presented have been
made at temperatures higher than those of the possible
vapor-liquid and liquid-liquid phase transitions in these
systems.6–8,19 An interesting problem is the description
of the structure of such systems in the vicinity of these
transitions. The availability of the analytical results for
the structural properties in Laplace and Fourier spaces
as obtained from the RFA approach allows one to tackle
this problem using the same procedure that was applied
in the case of the critical point of the square-well fluid.39

Also of interest in connection not only with these phase
transitions but in a more general perspective is the study
of the thermodynamic properties of the systems, in par-
ticular the equation of state, through the virial, energy,
and compressibility routes. Again the RFA approach per-
mits such a determination. Work along these two lines is
in progress and will be reported elsewhere.

As a final point, we want to stress that the results
of this paper, together with the earlier ones,24 encour-
age us to consider the problem in which the number of
steps in the potential is much greater, leading in the limit
n → ∞ to the very interesting case of the structure in a
fluid whose molecules interact via, for instance, a Jagla
potential. We plan to undertake such a task in the future.
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