Moduli spaces for finite-order jets of Riemannian metrics

Gordillo, A., Navarro, J. and Sancho, J.B.

March 5, 2009

Abstract

We construct the moduli space of r—jets of Riemannian metrics at a point on a smooth manifold. The construction is closely related to the problem of classification of jet metrics via differential invariants.

The moduli space is proved to be a differentiable space which admits a finite canonical stratification into smooth manifolds. A complete study on the stratification of moduli spaces is carried out for metrics in dimension n=2.

Introduction

Let X be an n-dimensional smooth manifold. Fixed a point $x_0 \in X$ and an integer $r \geq 0$, we will denote by $J_{x_0}^r M$ the smooth manifold of r-jets at x_0 of Riemannian metrics on X. On the manifold $J_{x_0}^r M$, there exists a natural action of the group Diff_{x_0} of germs at x_0 of local diffeomorphisms leaving x_0 fixed, so it yields an equivalence relation on $J_{x_0}^r M$:

$$j_{x_0}^r g \equiv j_{x_0}^r \bar{g} \iff j_{x_0}^r (\tau^* g) = j_{x_0}^r \bar{g}$$
, for some $\tau \in \text{Diff}_{x_0}$.

The quotient space $\mathbb{M}_n^r := J_{x_0}^r M/\mathrm{Diff}_{x_0}$ is called moduli space for r-jets of Riemannian metrics in dimension n. It depends neither on the point x_0 nor on the n-dimensional manifold X chosen.

The purpose of this paper is to study the structure of moduli spaces \mathbb{M}_n^r .

Moduli spaces \mathbb{M}_n^r have been studied in the literature through their function algebras $\mathcal{C}^\infty(\mathbb{M}_n^r) := \mathcal{C}^\infty(J_{x_0}^r M)^{\mathrm{Diff}_{x_0}}$. This function algebra $\mathcal{C}^\infty(\mathbb{M}_n^r)$ is nothing but the algebra of differential invariants of order $\leq r$ of Riemannian metrics. Muñoz and Valdés ([8],[9]) prove that it is an essentially finitely-generated algebra and they determine the number of its functionally independent generators. In a more general setting, Vinogradov ([15]) has pointed out a simple and natural relationship between the algebra of differential invariants of homogeneous geometric structures and their characteristic classes. (See also [14].)

Let us also mention that in [4] García and Muñoz obtain a moduli space for linear frames, which has structure of smooth manifold.

However, apart from some trivial exceptions, moduli spaces \mathbb{M}_n^r of jet metrics are not smooth manifolds, but they possess a differentiable structure in a more general sense: that of a differentiable space. (The typical example of differentiable space is a closed

subset $Y \subseteq \mathbb{R}^m$ where a function $f: Y \to \mathbb{R}$ is said to be differentiable if it is the restriction to Y of a smooth function on \mathbb{R}^m , see [10].)

In addition, the differentiable structure of \mathbb{M}_n^r is not too far from a smooth structure, since it admits a stratification by a finite number of smooth submanifolds. Our results can be summed up in the following

Theorem 0.1. Every moduli space \mathbb{M}_n^r is a differentiable space and it admits a finite canonical stratification

$$\mathbb{M}_n^r = S_{[H_0]}^r \sqcup \ldots \sqcup S_{[H_s]}^r,$$

for locally closed subspaces $S^r_{[H_i]}$ which are smooth manifolds. Moreover, one of them is an open connected dense subset of \mathbb{M}^r_n .

Each stratum of this decomposition of the space \mathbb{M}_n^r consists of those jet metrics having essentially the same group of automorphisms. To be more precise, let us denote by [H] the conjugacy class of a closed subgroup H of the orthogonal group O(n). Then $S_{[H]}^r$ is the set of equivalence classes of jet metrics $j_{x_0}^r g$ whose group of automorphisms $\operatorname{Aut}(j_{x_0}^r g)$ is conjugate to H, viewing $\operatorname{Aut}(j_{x_0}^r g)$ as a subgroup of the orthogonal group $O(T_{x_0}X,g_{x_0})\simeq O(n)$.

It is convenient to notice that Theorem 0.1 is not valid for semi-Riemannian metrics. For metrics of any signature, the problem lies on the existence of non-closed orbits for the action of $\operatorname{Diff}_{x_0}$ on the space $J^r_{x_0}M$ of r-jets of such metrics, which means that the corresponding moduli space $J^r_{x_0}M/\operatorname{Diff}_{x_0}$ is not a T_1 topological space, and consequently, it does not admit a structure of differentiable space either.

In dimension n=2, we improve the above theorem by determining exactly all the strata which appear in the decomposition of each moduli space $\mathbb{M}_{n=2}^r$. Let us consider the only, up to conjugacy, closed subgroups of the orthogonal group O(2): the finite group K_m of rotations of order $m \ (m \ge 1)$, the dihedral group D_m of order $2m \ (m \ge 1)$, the special orthogonal group SO(2) and O(2) itself. The stratification of \mathbb{M}_2^r is determined by the following

Theorem 0.2. The strata in the moduli space $\mathbb{M}_{n=2}^r$ correspond exactly to the following conjugacy classes: [O(2)], $[D_1]$,..., $[D_{r-2}]$, $[K_1]$,..., $[K_{r-4}]$. (And also $[K_1]$, if r=4.)

Finally, we include two appendices. In the first one, we give a brief discussion of the notion of differential invariant. In the second one, we analyze the equivalence problem for infinite-order jets of Riemannian metrics.

1 Preliminaries

1.1 Quotient spaces

Throughout this paper, we are going to handle geometric objects of a more general nature than smooth manifolds, which appear when one considers the quotient of a smooth manifold by the action of a Lie group.

Definition 1.1. Let X be a topological space. A **sheaf of continuous functions** on X is a map \mathcal{O}_X which assigns a subalgebra $\mathcal{O}_X(U) \subseteq \mathcal{C}(U,\mathbb{R})$ to every open subset $U \subseteq X$, with the following condition:

For every open subset $U \subseteq X$, every open cover $U = \bigcup U_i$ and every function $f: U \to \mathbb{R}$, it is verified

$$f \in \mathcal{O}_X(U) \iff f|_{U_i} \in \mathcal{O}_X(U_i), \ \forall i.$$

In particular, if $V \subseteq U$ are open subsets in X, then it is verified

$$f \in \mathcal{O}_X(U) \implies f|_V \in \mathcal{O}_X(V)$$
.

Definition 1.2. We will call **ringed space** the pair (X, \mathcal{O}_X) formed by a topological space X and a sheaf of continuous functions \mathcal{O}_X on X.

Although the concept of ringed space in the literature, specially in that concerning Algebraic Geometry, is much broader, the previous definition is good enough for our purposes.

Every open subset U of a ringed space (X, \mathcal{O}_X) is itself, in a very natural way, a ringed space, if we define $\mathcal{O}_U(V) := \mathcal{O}_X(V)$ for every open subset $V \subseteq U$.

Hereinafter, a ringed space (X, \mathcal{O}_X) will usually be denoted just by X, dropping the sheaf of functions.

Definition 1.3. Given two ringed spaces X and Y, a morphism of ringed spaces $\varphi: X \to Y$ is a continuous map such that, for every open subset $V \subseteq Y$, the following condition is held:

$$f \in \mathcal{O}_Y(V) \implies f \circ \varphi \in \mathcal{O}_X(\varphi^{-1}(V))$$
.

A morphism of ringed spaces $\varphi: X \to Y$ is said to be an **isomorphism** if it has an inverse morphism, that is, there exists a morphism of ringed spaces $\phi: Y \to X$ verifying $\varphi \circ \phi = \operatorname{Id}_Y$, $\phi \circ \varphi = \operatorname{Id}_X$.

Example 1.4. (Smooth manifolds) The space \mathbb{R}^n , endowed with the sheaf $\mathcal{C}^{\infty}_{\mathbb{R}^n}$ of smooth functions, is an example of ringed space. An n-smooth manifold is precisely a ringed space in which every point has an open neighbourhood isomorphic to $(\mathbb{R}^n, \mathcal{C}^{\infty}_{\mathbb{R}^n})$. Smooth maps between smooth manifolds are nothing but morphisms of ringed spaces.

Example 1.5. (Quotients by the action of a Lie group) Let $G \times X \to X$ be a smooth action of a Lie group G on a smooth manifold X, and let $\pi: X \to X/G$ be the canonical quotient map.

We will consider on the quotient topological space X/G the following sheaf $\mathcal{C}^{\infty}_{X/G}$ of "differentiable" functions:

For every open subset $V\subseteq X/G$, $\mathcal{C}^{\infty}_{X/G}(V)$ is defined to be

$$\mathcal{C}^{\infty}_{X/G}(V) := \{ f : V \longrightarrow \mathbb{R} : f \circ \pi \in \mathcal{C}^{\infty}(\pi^{-1}(V)) \} .$$

Note that there exists a canonical \mathbb{R} -algebra isomorphism:

$$\mathcal{C}^{\infty}_{X/G}(V) = \mathcal{C}^{\infty}(\pi^{-1}(V))^{G}$$

$$f \longmapsto f \circ \pi.$$

The pair $(X/G, \mathcal{C}^{\infty}_{X/G})$ is an example of ringed space, which we will call **quotient** ringed space of the action of G on X.

As it would be expected, this space verifies the **universal quotient property**: Every morphism of ringed spaces $\varphi: X \to Y$, which is constant on every orbit of the action of G on X, factors uniquely through the quotient map $\pi: X \to X/G$, that is, there exists a unique morphism of ringed spaces $\tilde{\varphi}: X/G \to Y$ verifying $\varphi = \tilde{\varphi} \circ \pi$.

Example 1.6. (Inverse limit of smooth manifolds) Sometimes we will consider an inverse system

$$\cdots \longrightarrow X_{r+1} \longrightarrow X_r \longrightarrow \cdots \longrightarrow X_1$$

of smooth mappings between smooth manifolds (or, with some more generality, an inverse system of ringed spaces).

The inverse limit $\lim_{\longleftarrow} X_r$ is a ringed space in the following natural way. On $\lim_{\longleftarrow} X_r$ it is considered the inverse limit topology, that is, the initial topology induced by the evident projections $p_s: \lim_{\longleftarrow} X_r \to X_s$. A real function on an open subset of $\lim_{\longleftarrow} X_r$ is said to be "differentiable" if it locally coincides with the composition of a projection $p_s: \lim_{\longrightarrow} X_r \to X_s$ and a smooth function on X_s .

The topological space $\lim_{\leftarrow} X_r$ endowed with the above sheaf of differentiable functions is a ringed space satisfying the suitable universal property:

For every ringed space Z, there exists the bijection

$$\operatorname{Hom}(Z, \lim_{\leftarrow} X_r) = \lim_{\leftarrow} \operatorname{Hom}(Z, X_r)$$

$$\varphi \longmapsto (\dots, p_r \circ \varphi, \dots).$$

Example 1.7. Let Z be a locally closed subspace of \mathbb{R}^n . We define the sheaf \mathcal{C}_Z^{∞} of differentiable functions on Z to be the sheaf of functions locally coinciding with restrictions of smooth functions on \mathbb{R}^n . The pair $(Z, \mathcal{C}_Z^{\infty})$ is another example of ringed space.

Definition 1.8. A (reduced) **differentiable space** is a ringed space in which every point has an open neighbourhood isomorphic to a certain locally closed subspace $(Z, \mathcal{C}_Z^{\infty})$ in some \mathbb{R}^n .

A map between differentiable spaces is called **differentiable** if it is a morphism of ringed spaces.

Theorem 1.9. (Schwarz [11],[10] Th. 11.14) Let $G \to Gl(V)$ be a finite-dimensional linear representation of a compact Lie group G. The quotient space V/G is a differentiable space.

More precisely: Let p_1, \ldots, p_s be a finite set of generators for the \mathbb{R} -algebra of G-invariant polynomials on V; these invariants define an isomorphism of ringed spaces

$$(p_1,\ldots,p_s):V/G==Z\subseteq\mathbb{R}^s$$
,

Z being a closed subspace of \mathbb{R}^s .

1.2 Normal tensors

Let X be an n-dimensional smooth manifold. Fix a point $x_0 \in X$ and a semi-Riemannian metric g on X of fixed signature (p,q), with n=p+q. Let us recall briefly some definitions and results:

Definition 1.10. A coordinate system (z_1, \ldots, z_n) in a neighbourhood of x_0 is said to be a **normal coordinate** system for g at the point x_0 if the geodesics passing through x_0 at t=0 are precisely the "straight lines" $\{z_1(t)=\lambda_1t,\ldots,z_n(t)=\lambda_nt\}$, where $\lambda_i \in \mathbb{R}$.

In particular, x_0 is the origin of any normal coordinate system for g at x_0 .

Remark 1.11. Observe that we do not require $(\partial_{z_1}, \dots, \partial_{z_n})$ to be an orthonormal basis of $T_{x_0}X$.

As it is well known, via the exponential map $\exp_g: T_{x_0}X \to X$, normal coordinate systems on X correspond bijectively to linear coordinate systems on $T_{x_0}X$. Therefore, two normal systems differ in a linear coordinate transformation.

Proposition 1.12. Let g, \bar{g} be two semi-Riemannian metrics on X. Let us also consider their corresponding exponential maps \exp_g , $\exp_{\bar{g}}: T_{x_0}X \to X$. For every $r \geq 0$ it is verified:

$$j_{x_0}^r g = j_{x_0}^r \bar{g} \implies j_0^{r+1}(\exp_q) = j_0^{r+1}(\exp_{\bar{q}}).$$

As a consequence of Proposition 1.12, whose proof is routine, normal coordinate systems at x_0 for a metric g are determined up to the order r+1 by the jet $j_{x_0}^r g$. This fact will be used later on with no more explicit mention.

Definition 1.13. Let $r \ge 1$ be a fixed integer and let $x_0 \in X$. The space of **normal tensors** of order r at x_0 , which we will denote by N_r , is the vector space of (r + 2)-covariant tensors T at x_0 having the following symmetries:

- T is symmetric in the first two and last r indices:

$$T_{ijk_1...k_r} = T_{jik_1...k_r}$$
 , $T_{ijk_1...k_r} = T_{ijk_{\sigma(1)}...k_{\sigma(r)}}$, $\forall \sigma \in S_r$;

- the cyclic sum over the last r+1 indices is zero:

$$T_{ijk_1...k_r} + T_{ik_rjk_1...k_{r-1}} + ... + T_{ik_1...k_rj} = 0.$$

If r=0, we will assume N_0 to be the set of semi-Riemannian metrics at x_0 of a fixed signature (p,q) (which is an open subset of $S^2T_{x_0}^*X$, but not a vector subspace).

A simple computation shows that, in general, $N_1 = 0$. Moreover, in [2] it is proved that N_r $(r \ge 2)$ is a linear irreducible representation of the linear group $\operatorname{Gl}(T_{x_0}X)$.

To show how a semi-riemannian metric g produces a sequence of normal tensors $g_{x_0}^r$ at x_0 , let us recall this classical result:

Lemma 1.14. (Gauss Lemma) Let $(z_1, ..., z_n)$ be germs of coordinates centred at $x_0 \in X$. These coordinates are normal for the germ of a semi-Riemannian metric g if and only if the metric coefficients g_{ij} verify the equations

$$\sum_{j} g_{ij} z_j = \sum_{j} g_{ij}(x_0) z_j.$$

Let (z_1, \ldots, z_n) be a normal coordinate system for g at $x_0 \in X$ and let us denote:

$$g_{ij,k_1...k_r} := \frac{\partial^r g_{ij}}{\partial z_{k_1}...\partial z_{k_r}}(x_0).$$

If we differentiate r+1 times the identity of the Gauss Lemma, we obtain:

$$g_{ik_0,k_1...k_r} + g_{ik_1,k_2...k_rk_0} + \cdots + g_{ik_r,k_0...k_{r-1}} = 0.$$

This property, together with the obvious fact that the coefficients $g_{ij,k_1...k_r}$ are symmetric in the first two and in the last r indices, allows to prove that the tensor

$$g_{x_0}^r := \sum_{ijk_1...k_r} g_{ij,k_1...k_r} \, \mathrm{d}z_i \otimes \mathrm{d}z_j \otimes \mathrm{d}z_{k_1} \otimes \ldots \otimes \mathrm{d}z_{k_r}$$

is a normal tensor of order r at $x_0 \in X$. This construction does not depend on the choice of the normal coordinate system (z_1, \ldots, z_n) .

Definition 1.15. The tensor $g_{x_0}^r$ is called the r-th normal tensor of the metric g at the point x_0 .

As a consequence of $N_1=0$, the first normal tensor of a metric g is always zero, $g_{x_0}^1=0$.

The normal tensors associated to a metric were first introduced by Thomas [13]. The sequence $\{g_{x_0}, g_{x_0}^2, g_{x_0}^3, \ldots, g_{x_0}^r\}$ of normal tensors of the metric g at a point x_0 totally determines the sequence $\{g_{x_0}, R_{x_0}, \nabla_{x_0}R, \ldots, \nabla_{x_0}^{r-2}R\}$ of covariant derivatives at x_0 of the curvature tensor R of g and vice versa (see [13]). The main advantage of using normal tensors is the possibility of expressing the symmetries of each $g_{x_0}^s$ without using the other normal tensors, whereas the symmetries of $\nabla_{x_0}^s R$ depend on R (recall the Ricci identities).

Remark 1.16. Using the exact sequence

$$0 \longrightarrow N_r \longrightarrow S^2 T_{x_0}^* X \otimes S^r T_{x_0}^* X \stackrel{s}{\longrightarrow} T_{x_0}^* X \otimes S^{r+1} T_{x_0}^* X \longrightarrow 0,$$

where s stands for the symmetrization on the last (r+1)-indices, we obtain

$$\dim N_r = \binom{n+1}{2} \binom{n+r-1}{r} - n \binom{n+r}{r+1}.$$

2 Differential invariants of metrics

In the remainder of the paper, X will always be an n-dimensional smooth manifold.

Let us denote by $J^rM \to X$ the fiber bundle of r-jets of semi-Riemannian metrics on X of fixed signature (p,q), with n=p+q. Its fiber over a point $x_0 \in X$ will be denoted $J_{x_0}^rM$.

Let $\operatorname{Diff}_{x_0}^r$ be the group of germs of local diffeomorphisms of X leaving x_0 fixed, and let $\operatorname{Diff}_{x_0}^r$ be the Lie group of r-jets at x_0 of local diffeomorphisms of X leaving x_0 fixed. We have the following exact group sequence:

$$0 \longrightarrow H_{x_0}^r \longrightarrow \operatorname{Diff}_{x_0}^r \longrightarrow \operatorname{Diff}_{x_0}^r \longrightarrow 0$$
,

 $H_{x_0}^r$ being the subgroup of $Diff_{x_0}$ made up of those diffeomorphisms whose r-jet at x_0 coincides with that of the identity.

The group $\operatorname{Diff}_{x_0}$ acts in an obvious way on $J^r_{x_0}M$. Note that the subgroup $H^{r+1}_{x_0}$ acts trivially, so the action of $\operatorname{Diff}_{x_0}^r$ on $J^r_{x_0}M$ factors through an action of $\operatorname{Diff}_{x_0}^{r+1}$.

Definition 2.1. Two r-jets $j_{x_0}^r g$, $j_{x_0}^r \bar{g} \in J_{x_0}^r M$ are said to be **equivalent** if there exists a local diffeomorphism $\tau \in \text{Diff}_{x_0}$ such that $j_{x_0}^r \bar{g} = j_{x_0}^r (\tau^* g)$.

Equivalence classes of r-jets of metrics constitute a ringed space. To be precise:

Definition 2.2. We call **moduli space** of r-jets of semi-Riemannian metrics of signature (p,q) the quotient ringed space

$$\mathbb{M}_{p,q}^r := J_{x_0}^r M / \text{Diff}_{x_0} = J_{x_0}^r M / \text{Diff}_{x_0}^{r+1}$$
.

In the case of Riemannian metrics, that is $\,p=n\,,\,\,q=0\,,$ the moduli space will be denoted $\,\mathbb{M}_n^r\,.$

It is important to observe that the moduli space depends neither on the point x_0 nor on the chosen n-dimensional manifold:

Given a point \bar{x}_0 in another n-dimensional manifold \bar{X} , let us consider an arbitrary diffeomorphism

$$X \supset U_{x_0} \xrightarrow{\varphi} U_{\bar{x}_0} \subset \bar{X}$$

between corresponding neighbourhoods of x_0 and \bar{x}_0 , verifying $\varphi(x_0) = \bar{x}_0$. Such a diffeomorphism induces an isomorphism of ringed spaces between the corresponding moduli spaces,

$$J_{\bar{x}_0}^r \bar{M}/\mathrm{Diff}_{\bar{x}_0} = J_{x_0}^r M/\mathrm{Diff}_{x_0}$$
$$[j_{\bar{x}_0}^r \bar{g}] \longmapsto [j_{x_0}^r \varphi^* \bar{g}],$$

which is independent of the choice of the diffeomorphism φ . So both moduli spaces are canonically identified.

Let us now consider the quotient morphism

$$J_{x_0}^r M \xrightarrow{\pi} J_{x_0}^r M/\mathrm{Diff}_{x_0} = \mathbb{M}_{p,q}^r$$
.

Recall that a function f defined on an open subset $U \subseteq \mathbb{M}_{p,q}^r$ is said to be **differentiable** if $f \circ \pi$ is a smooth function on $\pi^{-1}(U)$, that is,

$$\mathcal{C}^{\infty}(U) = \mathcal{C}^{\infty}(\pi^{-1}(U))^{\mathrm{Diff}_{x_0}}$$
.

Every semi-Riemannian metric g on X of signature (p,q) defines a map

$$\begin{array}{ccc} X & \xrightarrow{m_g} & \mathbb{M}_{p,q}^r \\ x & \longmapsto & \left[j_x^r g\right], \end{array}$$

which is "differentiable", that is, it is a morphism of ringed spaces.

Definition 2.3. A differential invariant of order $\leq r$ of semi-Riemannian metrics of signature (p,q) is defined to be a global differentiable function on $\mathbb{M}_{p,q}^r$.

Taking into account the ringed space structure of $\mathbb{M}_{p,q}^r$, we can simply write:

{Differential invariants of order
$$\leq r$$
} = $\mathcal{C}^{\infty}(\mathbb{M}_{p,q}^r) = \mathcal{C}^{\infty}(J_{x_0}^r M)^{\mathrm{Diff}_{x_0}}$.

A differential invariant $h: \mathbb{M}^r_{p,q} \to \mathbb{R}$ associates with every semi-Riemannian metric g on X a smooth function on X, denoted by h(g), through the formula $h(g) := h \circ m_g$, that is,

$$h(g)(x) = h([j_x^r g]).$$

In any local coordinates, h(g) is a function smoothly depending on the coefficients of the metric and their subsequent partial derivatives up to the order r,

$$h(g)(x) = h\left(g_{ij}(x), \frac{\partial g_{ij}}{\partial x_k}(x), \dots, \frac{\partial^r g_{ij}}{\partial x_{k_1} \dots \partial x_{k_r}}(x)\right),$$

which is equivariant with respect to the action of local diffeomorphisms,

$$h(\tau^* g) = \tau^* (h(g)).$$

For a discussion on the concept of differential invariant, see Section 6.

3 A fundamental lemma

The aim of this section is to prove that there exist a certain linear finite-dimensional representation V^r of the orthogonal group O(p,q) and an isomorphism of ringed spaces

$$\mathbb{M}_{p,q}^r = V^r / O(p,q)$$
.

This bijection is already known at a set-theoretic level (see [2] and also [7] for G-structures which posses a linear connection). We just add the fact that this bijection is an isomorphism of ringed spaces.

Let us fix for this entire section a local coordinate system (z_1, \ldots, z_n) centred at x_0 . We will denote by $\mathcal{N}_{x_0}^r$ the smooth submanifold of $J_{x_0}^rM$ formed by r-jets at x_0 of metrics of signature (p,q) for which (z_1, \ldots, z_n) is a normal coordinate system (that is, Taylor expansions of the coefficients of such metrics with respect to coordinates (z_1, \ldots, z_n) satisfy the equations of the Gauss Lemma up to the order r).

Consider the subgroup of $Diff_{x_0}$

$$H_{x_0}^1 := \{ \tau \in \text{Diff}_{x_0} : j_{x_0}^1 \tau = j_{x_0}^1(\text{Id}) \}.$$

Note the following exact group sequence:

$$0 \longrightarrow H^1_{x_0} \longrightarrow \operatorname{Diff}_{x_0} \longrightarrow \operatorname{Gl}\left(T_{x_0}X\right) \longrightarrow 0\,,$$

where the epimorphism $\operatorname{Diff}_{x_0} \to \operatorname{Gl}(T_{x_0}X)$ takes every diffeomorphism to its linear tangent map at x_0 .

Lemma 3.1. There exists an isomorphism of ringed spaces

Proof. Let us start by constructing a smooth section of the natural inclusion

$$\mathcal{N}_{x_0}^r \hookrightarrow J_{x_0}^r M$$
.

Given a jet metric $j_{x_0}^r g \in J_{x_0}^r M$, consider a metric g representing it. Let $(\bar{z}_1, \ldots, \bar{z}_n)$ be the only normal coordinate system centred at x_0 with respect to g which satisfies $d_{x_0}\bar{z}_i = d_{x_0}z_i$.

Let τ be the local diffeomorphism which transforms one coordinate system into another: $\tau^*(\bar{z}_i) = z_i$. The condition $\mathrm{d}_{x_0}\bar{z}_i = \mathrm{d}_{x_0}z_i$ implies that the linear tangent map of τ at x_0 is the identity, i.e. $\tau \in H^1_{x_0}$.

As $(\bar{z}_1,\ldots,\bar{z}_n)$ is a normal coordinate system for g, $(z_1 = \tau^*(\bar{z}_1),\ldots,z_n = \tau^*(\bar{z}_n))$ is a normal coordinate system for τ^*g ; that is, $j_{x_0}^r(\tau^*g) \in \mathcal{N}_{x_0}^r$.

Therefore, the section we were looking for is the following map:

$$\begin{array}{ccc}
J_{x_0}^r M & \xrightarrow{\varphi} & \mathcal{N}_{x_0}^r \\
j_{x_0}^r g & \longmapsto & j_{x_0}^r (\tau^* g),
\end{array}$$

with τ depending on g.

Let us now see that φ is constant on each orbit of the action of $H^1_{x_0}$. Let $j^r_{x_0}g'$ be another point in the same orbit as $j^r_{x_0}g$, so we can write $g'=\sigma^*g$ for some $\sigma\in H^1_{x_0}$.

Since $(\bar{z}_1, \ldots, \bar{z}_n)$ are normal coordinates for g, $(z'_1 = \sigma^*(\bar{z}_1), \ldots, z'_n = \sigma^*(\bar{z}_n))$ is a normal coordinate system for $g' = \sigma^*g$. Then $z_i = \tau^*(\bar{z}_i) = \tau^*(\sigma^{*^{-1}}(z'_i))$, and, if we apply the definition of φ , we get

$$\varphi(j_{x_0}^r g') = j_{x_0}^r (\tau^* \sigma^{*^{-1}} g') = j_{x_0}^r (\tau^* g) = \varphi(j_{x_0}^r g).$$

As φ is constant on each orbit of the action of $H_{x_0}^1$, it induces, according to the universal quotient property, a morphism of ringed spaces:

$$J_{x_0}^r M/H_{x_0}^1 \longrightarrow \mathcal{N}_{x_0}^r$$
.

This map is indeed an isomorphism of ringed spaces, because it has an obvious inverse morphism, which is the following composition:

$$\mathcal{N}^r_{x_0} \hookrightarrow J^r_{x_0}M \to J^r_{x_0}M/H^1_{x_0}$$
.

Let us denote by Gl_n the general linear group in dimension n:

$$Gl_n := \{ n \times n \text{ invertible matrices with coefficients in } \mathbb{R} \}.$$

Considering every matrix in Gl_n as a linear transformation of the coordinate system (z_1, \ldots, z_n) , we can think of Gl_n as a subgroup of $Diff_{x_0}$.

Via the action of the group Diff_{x_0} on $J^r_{x_0}M$, the subgroup Gl_n , for its part, acts leaving the submanifold $\mathcal{N}^r_{x_0}$ stable, and then we can state the following

Lemma 3.2. There exists an isomorphism of ringed spaces

$$\mathcal{N}_{x_0}^r/\operatorname{Gl}_n = J_{x_0}^r M/\operatorname{Diff}_{x_0} = \mathbb{M}_{p,q}^r$$
.

Proof. Via the epimorphism

$$\operatorname{Diff}_{x_0} \longrightarrow \operatorname{Diff}_{x_0} / H^1_{x_0} = \operatorname{Gl}(T_{x_0}X),$$

the subgroup Gl_n gets identified with $Gl(T_{x_0}X)$. Consequently, the subgroups $H^1_{x_0}$ and Gl_n generate $Diff_{x_0}$.

If we consider the isomorphism

$$\mathcal{N}_{x_0}^r = J_{x_0}^r M / H_{x_0}^1$$

of Lemma 3.1 and take quotient with respect to the action of Gl_n , we get the desired isomorphism:

$$\mathcal{N}_{x_0}^r/\operatorname{Gl}_n = (J_{x_0}^r M/H_{x_0}^1)/\operatorname{Gl}_n = J_{x_0}^r M/\operatorname{Diff}_{x_0}.$$

Let us express the previous result in terms of normal tensors by using the following

Lemma 3.3. The map

$$\mathcal{N}_{x_0}^r = N_0 \times N_2 \times \ldots \times N_r , \quad j_{x_0}^r g \longmapsto (g_{x_0}, g_{x_0}^2, \ldots, g_{x_0}^r)$$

is a diffeomorphism.

Proof. The inverse map is defined in the obvious way:

Given $(T^0, T^2, ..., T^r) \in N_0 \times N_2 \times ... \times N_r$, consider the jet metric $j_{x_0}^r g$ which in coordinates $(z_1, ..., z_n)$ is determined by the identities

$$g_{ij,k_1...k_s} := \frac{\partial^s g_{ij}}{\partial z_{k_1} \cdots \partial z_{k_s}} (x_0) = T^s_{ijk_1...k_s} , \quad s = 0, \dots, r.$$

The symmetries of tensors T^s guarantee that the coefficients g_{ij} of the metric g verify the equations of the Gauss Lemma up to the order r, that is, $j_{x_0}^r g \in \mathcal{N}_{x_0}^r$.

Combining Lemma 3.2 and Lemma 3.3, we obtain an isomorphism of ringed spaces:

$$\mathbb{M}_{p,q}^r = J_{x_0}^r M / \operatorname{Diff}_{x_0} = (N_0 \times N_2 \times \dots \times N_r) / \operatorname{Gl}(T_{x_0} X)$$
$$[j_{x_0}^r g] \longmapsto [(g_{x_0}, g_{x_0}^2, \dots, g_{x_0}^r)].$$

Let us now fix a metric $g_{x_0} \in N_0$ at x_0 and let us consider the orthogonal group $O(p,q) := O(T_{x_0}X,g_{x_0})$. As the linear group $\mathrm{Gl}(T_{x_0}X)$ acts transitively on the space of metrics N_0 , and O(p,q) is the stabilizer subgroup of $g_{x_0} \in N_0$, we obtain the following isomorphism:

$$(N_0 \times N_2 \times \ldots \times N_r)/\operatorname{Gl}(T_{x_0}X) = (N_2 \times \ldots \times N_r)/O(p,q)$$
.

To sum up, we can state the main result of this section:

Lemma 3.4. (Fundamental Lemma) The moduli space $\mathbb{M}_{p,q}^r$ is isomorphic to the quotient space of a linear representation of the orthogonal group O(p,q), through the following isomorphism of ringed spaces:

$$\mathbb{M}_{p,q}^r = (N_2 \times \ldots \times N_r) / O(p,q)$$
.

This isomorphism takes every class $[j_{x_0}^r \bar{g}] \in \mathbb{M}_{p,q}^r$, with $\bar{g}_{x_0} = g_{x_0}$, to the sequence of normal tensors $[(\bar{g}_{x_0}^2, \dots, \bar{g}_{x_0}^r)] \in (N_2 \times \dots \times N_r)/O(p,q)$.

4 Structure of the moduli spaces

Let V be a finite-dimensional linear representation of a reductive Lie group G. The \mathbb{R} -algebra of G-invariant polynomials on V is finitely generated (Hilbert-Nagata theorem, see [3]). Let p_1, \ldots, p_s be a finite set of generators for that algebra; by a result of Luna [6], every smooth G-invariant function f on V can be written as $f = F(p_1, \ldots, p_s)$, for some smooth function $F \in \mathcal{C}^{\infty}(\mathbb{R}^s)$.

Theorem 4.1. (Finiteness of differential invariants, [8]) There exists a finite number $p_1, \ldots, p_s \in \mathcal{C}^{\infty}(\mathbb{M}_{p,q}^r)$ of differential invariants of order $\leq r$ such that any other differential invariant f of order $\leq r$ is a smooth function of the former ones, i.e. $f = F(p_1, \ldots, p_s)$, for a certain $F \in \mathcal{C}^{\infty}(\mathbb{R}^s)$.

Proof. By the Fundamental Lemma (3.4),

$$\mathcal{C}^{\infty}(\mathbb{M}_{p,q}^r) = \mathcal{C}^{\infty}(N_2 \times \ldots \times N_r)^{O(p,q)},$$

and we can conclude by applying the above theorem by Luna to the linear representation $N_2 \times \ldots \times N_r$ of the orthogonal group O(p,q).

Remark 4.2. Using the theory of invariants for the orthogonal group and the fact that the sequence of normal tensors $\{g_{x_0}, g_{x_0}^2, g_{x_0}^3, \ldots, g_{x_0}^r\}$ is equivalent to the sequence $\{g_{x_0}, R_{x_0}, \nabla_{x_0}R, \ldots, \nabla_{x_0}^{r-2}R\}$, it can be proved that the generators p_1, \ldots, p_s of Theorem 4.1 can be chosen to be **Weyl invariants**, that is, scalar quantities constructed from the sequence $\{g_{x_0}, R_{x_0}, \nabla_{x_0}R, \ldots, \nabla_{x_0}^{r-2}R\}$ by reiteration of the following operations: tensor products, raising and lowering indices, and contractions.

Theorem 4.3. In the Riemannian case, differential invariants of order $\leq r$ separate points in the moduli space \mathbb{M}_n^r .

Consequently, differential invariants of order $\leq r$ classify r-jets of Riemannian metrics (at a point).

Proof. For positive definite metrics, the orthogonal group O(n) is compact. It is a well-known fact that, if V is a linear representation of a compact Lie group G, then smooth G-invariant functions on V separate the orbits of the action of G, or, in other words, the algebra $\mathcal{C}^{\infty}(V/G)$ separates the points in V/G.

Using this, together with the Fundamental Lemma, we conclude our proof.

Neither assertion in Theorem 4.3 is valid for semi-Riemannian metrics. See Note in Subsection 5.2 for a counterexample. For such metrics, moduli spaces $\mathbb{M}_{p,q}^r$ are generally pathological in a topological sense, since they have non-closed points (they are not T_1 topological spaces).

In the Riemannian case, Schwarz Theorem 1.9 and the Fundamental Lemma directly provide the following

Theorem 4.4. In the Riemannian case, moduli spaces \mathbb{M}_n^r are differentiable spaces.

More precisely: Let p_1, \ldots, p_s be the basis of differential invariants of order $\leq r$ mentioned in Theorem 4.1. These invariants induce an isomorphism of differentiable spaces

$$(p_1,\ldots,p_s): \mathbb{M}_n^r \longrightarrow Z \subseteq \mathbb{R}^s,$$

Z being a closed subspace of \mathbb{R}^s .

Although the differentiable space \mathbb{M}_n^r is not in general a smooth manifold, its structure is not so deficient as it could seem at first sight, since we are going to prove that it admits a finite stratification by certain smooth submanifolds.

Definition 4.5. Let us consider $V_n = \mathbb{R}^n$ endowed with its standard inner product δ , and the corresponding orthogonal group $O(n) := O(V_n, \delta)$. We will denote by \mathcal{T} the set of conjugacy classes of closed subgroups in O(n).

Given another n-dimensional vector space \bar{V}_n with an inner product $\bar{\delta}$, we can also consider the set $\bar{\mathcal{T}}$ of conjugacy classes of closed subgroups in $O(\bar{V}_n, \bar{\delta})$.

Observe that there exists a canonical identification

$$\mathcal{T} \longrightarrow \bar{\mathcal{T}} \ , \ [H] \longmapsto [\varphi \circ H \circ \varphi^{-1}] \, ,$$

where φ stands for any isometry $\varphi: V_n \to \bar{V}_n$.

As the identification is canonical (i.e. it does not depend on the choice of the isometry φ), from now on we will suppose that the set \mathcal{T} is just "the same" for every pair $(\bar{V}_n, \bar{\delta})$.

Note that \mathcal{T} possesses a partial order relation: $[H] \leq [H']$, if there exist some representatives H and H' of [H] and [H'] respectively, such that $H \subseteq H'$.

Definition 4.6. The **group of automorphisms** of a Riemannian jet metric $j_{x_0}^r g$ is defined to be the stabilizer subgroup $\operatorname{Aut}(j_{x_0}^r g) \subseteq \operatorname{Diff}_{x_0}^{r+1}$ of $j_{x_0}^r g$:

$$\operatorname{Aut}(j^r_{x_0}g) := \{j^{r+1}_{x_0}\tau \in \operatorname{Diff}^{r+1}_{x_0} \,:\, j^r_{x_0}(\tau^*g) = j^r_{x_0}g\}\,.$$

Given $\tau \in \mathrm{Diff}_{x_0}$, let us denote by $\tau_{*,x_0}: T_{x_0}X \to T_{x_0}X$ the linear tangent map of τ at x_0 .

Lemma 4.7. The group morphism

$$\operatorname{Aut}(j_{x_0}^r g) \longrightarrow O(T_{x_0} X, g_{x_0}) \simeq O(n)$$

$$j_{x_0}^{r+1} \tau \longmapsto \tau_{*,x_0}$$

is injective.

Proof. For any $\tau \in \text{Diff}_{x_0}$ and any metric g on X we have the following commutative diagram of local diffeomorphisms:

$$T_{x_0}X \xrightarrow{\exp_{\tau^*g}} X$$

$$\downarrow^{\tau_*} \qquad \qquad \downarrow^{\tau}$$

$$T_{x_0}X \xrightarrow{\exp_g} X$$

If $j_{x_0}^{r+1}\tau \in \text{Aut}(j_{x_0}^rg)$, that is, $j_{x_0}^r(\tau^*g) = j_{x_0}^rg$, then $j_0^{r+1}(\exp_{\tau^*g}) = j_0^{r+1}(\exp_g)$ because of Proposition 1.12.

Now, taking (r+1)-jets in the above diagram, we obtain:

$$j_{x_0}^{r+1}\tau \,=\, j_0^{r+1}(\exp_g)\,\circ\, j_0^{r+1}\tau_*\,\circ\, j_{x_0}^{r+1}(\exp_g^{-1})\,,$$

hence $j_{x_0}^{r+1}\tau$ is determined by its linear part τ_* .

By the previous lemma, the group $\operatorname{Aut}(j_{x_0}^r g)$ can be viewed as a subgroup (determined up to conjugacy) of the orthogonal group O(n).

Definition 4.8. The type map is defined to be the map

$$t: \mathbb{M}_n^r \longrightarrow \mathcal{T} \ , \ [j_{x_0}^r g] \longmapsto [\operatorname{Aut}(j_{x_0}^r g)] \ .$$

For each $[H] \in \mathcal{T}$, the **stratum of type** [H] is said to be the subset $S_{[H]} \subseteq \mathbb{M}_n^r$ of those points of type [H].

Theorem 4.9. (Stratification of the moduli space) The type map $t: \mathbb{M}_n^r \to \mathcal{T}$ verifies the following properties:

- 1. t takes a finite number of values $[H_0], \ldots, [H_k]$, one of which, say $[H_0]$, is mini-
- 2. Semicontinuity: For every type $[H] \in \mathcal{T}$, the set of points in \mathbb{M}_n^r of type $\leq [H]$ is an open subset of \mathbb{M}_n^r . In particular, every stratum $S_{[H_i]}$ is a locally closed subspace of \mathbb{M}_n^r .
- 3. Every stratum $S_{[H_i]}$ is a smooth submanifold of \mathbb{M}_n^r .
- 4. The (also called generic) stratum $S_{[H_0]}$ of minimum type is a dense connected open subset of \mathbb{M}_n^r .

Proof. Fix a positive definite metric g_{x_0} on $T_{x_0}X$ and denote by O(n) its orthogonal group. The Fundamental Lemma 3.4 tells us that there exists an isomorphism

$$\mathbb{M}_n^r = (N_2 \times \ldots \times N_r) / O(n)$$
.

This isomorphism takes every class $[j^r_{x_0}\bar{g}]\in \mathbb{M}_n^r$, with $\bar{g}_{x_0}=g_{x_0}$, to the sequence of normal tensors $[\bar{g}^2_{x_0},\ldots,\bar{g}^r_{x_0}]\in (N_2\times\ldots\times N_r)/O(n)$. Let us check that the subgroup $\operatorname{Aut}(j^r_{x_0}\bar{g})\hookrightarrow O(n)$, $j^{r+1}_{x_0}\tau\mapsto \tau_*$, coincides with the

subgroup

$$\operatorname{Aut}(\bar{g}_{x_0}^2,\dots,\bar{g}_{x_0}^r) := \left\{ \sigma \in O(n) : \sigma^*(\bar{g}_{x_0}^k) \, = \, \bar{g}_{x_0}^k \, , \, \forall \, k \leq r \right\}.$$

It is clear that if an automorphism $j_{x_0}^{r+1}\tau$ leaves $j_{x_0}^r\bar{g}$ fixed, then the sequence of its normal tensors must also remain fixed by the automorphism: $\tau^*(\bar{g}_{x_0}^k) = \bar{g}_{x_0}^k$.

Reciprocally, given an automorphism $\sigma: T_{x_0}X \to T_{x_0}X$ of the sequence of normal tensors $(\bar{g}_{x_0}^2, \dots, \bar{g}_{x_0}^r)$, let us consider a normal coordinate system z_1, \dots, z_n for \bar{g} at x_0 .

Via the identification provided by the exponential map $\exp_g : T_{x_0}X \to X$, the map σ can be viewed as a diffeomorphism of X (a linear transformation of normal coordinates).

In normal coordinates, the expression of the normal tensor $\bar{g}_{x_0}^k$ corresponds to the expression of the homogeneous part of degree k of the jet metric $j_{x_0}^r \bar{g}$. Hence it is an immediate consequence that the linear transformation σ leaves $j_{x_0}^r \bar{g}$ fixed, i.e. $j_{x_0}^{r+1} \sigma \in \operatorname{Aut}(j_{x_0}^r \bar{g})$.

The identity $\operatorname{Aut}(j_{x_0}^r \bar{g}) = \operatorname{Aut}(\bar{g}_{x_0}^2, \dots, \bar{g}_{x_0}^r)$ implies that the following diagram is commutative:

$$\begin{array}{ccc}
\mathbb{M}_{n}^{r} & \xrightarrow{t} & \mathcal{T} \\
\parallel & & \parallel \\
(N_{2} \times \ldots \times N_{r}) / O(n) & \xrightarrow{t} & \mathcal{T} \\
[\bar{g}_{x_{0}}^{2}, \ldots, \bar{g}_{x_{0}}^{r}] & \longmapsto & [\operatorname{Aut}(\bar{g}_{x_{0}}^{2}, \ldots, \bar{g}_{x_{0}}^{r})].
\end{array}$$

Therefore, our theorem has come down to the case of a linear representation $V(=N_2 \times ... \times N_r)$ of a compact Lie group G(=O(n)) and the corresponding type map:

$$\begin{array}{ccc} V/G & \stackrel{t}{\longrightarrow} & \mathcal{T} = \{ \text{conjugacy classes of closed subgroups of } G \} \\ [v] & \longmapsto & [\text{Stabilizer subgroup of } v] \, . \end{array}$$

For this type map, the analogous properties to 1-4 in the statement are well known (see [1], Chap. IX, $\S 9$, Th. 2 and Exer. 9).

Remark 4.10. Except for trivial cases, the generic stratum has type $H_0 = \{0\}$.

Remark 4.11. The dimension of the moduli space \mathbb{M}_n^r (or rather that of its generic stratum) can be deduced directly from the Fundamental Lemma and the formulae giving the dimensions of spaces N_r of normal tensors which were presented in Section 1.

The result (due, in a different language, to J. Muñoz and A. Valdés, [9]) is as follows:

$$\begin{split} \dim \mathbb{M}_n^0 &= \dim \mathbb{M}_n^1 = 0 \ , \ \forall \, n \geq 1 \, ; \\ \dim \mathbb{M}_1^r &= 0 \ , \ \forall \, r \geq 0 \, ; \\ \dim \mathbb{M}_2^2 &= 1 \quad , \quad \dim \mathbb{M}_2^r = \frac{1}{2}(r+1)(r-2) \ , \ \forall \, r \geq 3 \, ; \\ \dim \mathbb{M}_n^r &= n + \frac{(r-1)n^2 - (r+1)n}{2(r+1)} \binom{n+r}{r} \ , \ \forall \, n \geq 3 \, , \, r \geq 2 \, . \end{split}$$

5 Moduli spaces in dimension n=2

5.1 Stratification

We are going to determine the stratification of moduli spaces \mathbb{M}_2^r of r-jets of Riemannian metrics in dimension n=2.

Let us consider the vector space $\mathbb{R}^2 = \mathbb{C}$, endowed with the standard Euclidean metric, and its corresponding orthogonal group O(2). We will denote by (x,y) the Cartesian coordinates and by z = x + iy the complex coordinate.

Let us denote by $\sigma_m : \mathbb{C} \to \mathbb{C}$ the rotation of angle $2\pi/m$ (that is, $\sigma_m(z) = \varepsilon_m z$, with $\varepsilon_m = \cos(2\pi/m) + i\sin(2\pi/m)$ a primitive *m*th root of unity) and by $\tau : \mathbb{C} \to \mathbb{C}$, $\tau(z) = \bar{z}$ the complex conjugation.

The only (up to conjucacy) closed subgroups of O(2) are the following ones:

$$SO(2) := \{ \varphi \in O(2) : \det \varphi = 1 \}$$
 (special orthogonal group),

$$K_m := <\sigma_m>$$
 (group of rotations of order m) $(m \ge 1)$,

$$D_m := <\sigma_m, \tau>$$
 (dihedral group of order $2m$) $(m \ge 1)$,

and O(2) itself. All these subgroups are normal but the dihedral D_m .

The subgroup SO(2) of rotations is identified with the multiplicative group $S_1 \subset \mathbb{C}$ of complex numbers of modulus 1,

$$S_1 = SO(2)$$
 $\alpha \mapsto \rho_{\alpha} , \quad \rho_{\alpha}(z) := \alpha z .$

Besides, every element in $\,O(2)\,$ is either $\,\rho_{\alpha}\,$ or $\,\tau\rho_{\alpha}\,$, for some $\,\alpha\in S_{1}\,$.

The action of O(2) on \mathbb{R}^2 induces an action on the algebra $\mathbb{R}[x,y]$ of the polynomials on \mathbb{R}^2 , to be more specific: $\varphi \cdot P(x,y) := P(\varphi^{-1}(x,y))$.

The following lemma provides us with the list of all invariant polynomials with respect to each of the subgroups of O(2) above mentioned:

Lemma 5.1. The following identities hold:

1.
$$\mathbb{R}[x,y]^{K_m} = \mathbb{R}[x^2 + y^2, p_m(x,y), q_m(x,y)]$$
,

2.
$$\mathbb{R}[x,y]^{D_m} = \mathbb{R}[x^2 + y^2, p_m(x,y)]$$
,

3.
$$\mathbb{R}[x,y]^{O(2)} = \mathbb{R}[x,y]^{SO(2)} = \mathbb{R}[x^2 + y^2]$$
,

with $p_m(x,y) = \operatorname{Re}(z^m)$ and $q_m(x,y) = \operatorname{Im}(z^m)$.

Proof. 1. Let us consider the algebra of polynomials on \mathbb{R}^2 with complex coefficients,

$$\mathbb{C}[x,y] \,=\, \mathbb{C}[z,\bar{z}] \,=\, \bigoplus_{ab} \mathbb{C} z^a \bar{z}^b \,.$$

Every summand is stable under the action of K_m , since

$$\sigma_m \cdot (z^a \bar{z}^b) = \frac{1}{\varepsilon_m^a \bar{\varepsilon}_m^b} z^a \bar{z}^b = \varepsilon_m^{b-a} z^a \bar{z}^b.$$

This formula also tells us that the monomial $z^a\bar{z}^b$ is invariant by K_m if and only if $b-a\equiv 0 \mod m$, that is, $b-a=\pm km$ for some $k\in\mathbb{N}$. Then invariant monomials are of the form

$$z^a \bar{z}^b = (z\bar{z})^a \bar{z}^{km}$$
 or $z^a \bar{z}^b = (z\bar{z})^b z^{km}$,

whence

$$\mathbb{C}[x,y]^{K_m} = \mathbb{C}[z\bar{z}, z^m, \bar{z}^m].$$

As $z\bar{z}=x^2+y^2\,,\ z^m+\bar{z}^m=2p_m(x,y)$ and $z^m-\bar{z}^m=2iq_m(x,y)\,,$ we can conclude that

$$\mathbb{C}[x,y]^{K_m} = \mathbb{C}[x^2 + y^2, p_m(x,y), q_m(x,y)],$$

and particularly,

$$\mathbb{R}[x,y]^{K_m} = \mathbb{R}[x^2 + y^2, p_m(x,y), q_m(x,y)].$$

2. As $D_m = \langle K_m, \tau \rangle$, we get

$$\mathbb{C}[x,y]^{D_m} = (\mathbb{C}[x,y]^{K_m})^{<\tau>} = \mathbb{C}[z\bar{z},z^m,\bar{z}^m]^{<\tau>}$$

$$= \left[\left(\bigoplus_k \mathbb{C}[z\bar{z}] z^{km} \right) \oplus \left(\bigoplus_k \mathbb{C}[z\bar{z}] \bar{z}^{km} \right) \right]^{<\tau>}$$

(as $\tau \cdot z = \bar{z}$ and $\tau \cdot \bar{z} = z$)

$$= \bigoplus_{k} \mathbb{C}[z\bar{z}](z^{km} + \bar{z}^{km}) = \mathbb{C}[z\bar{z}, z^{m} + \bar{z}^{m}] = \mathbb{C}[x^{2} + y^{2}, p_{m}(x, y)],$$

and, in particular,

$$\mathbb{R}[x,y]^{D_m} = \mathbb{R}[x^2 + y^2, p_m(x,y)].$$

3. Every summand in the decomposition

$$\mathbb{C}[z,\bar{z}] \,=\, \bigoplus_{ab} \mathbb{C} z^a \bar{z}^b$$

is stable under the action of SO(2), since for every $\rho_{\alpha} \in SO(2)$ it is satisfied:

$$\rho_{\alpha} \cdot (z^a \bar{z}^b) = \frac{1}{\alpha^a \bar{\alpha}^b} z^a \bar{z}^b.$$

Moreover, this formula assures us that the only monomials $z^a \bar{z}^b$ which are SO(2)—invariant are those verifying a = b. Then,

$$\mathbb{C}[x,y]^{SO(2)} = \mathbb{C}[z,\bar{z}]^{SO(2)} = \mathbb{C}[z\bar{z}] = \mathbb{C}[x^2 + y^2],$$

whence

$$\mathbb{R}[x,y]^{SO(2)} = \mathbb{R}[x^2 + y^2].$$

Finally, this identity tells us that SO(2)—invariant polynomials are O(2)—invariant too, so the obvious inclusion $\mathbb{R}[x,y]^{O(2)}\subseteq\mathbb{R}[x,y]^{SO(2)}$ is indeed an equality. \square

Corollary 5.2. With the same notations used in the previous lemma, it is verified:

- 1. D_m is the stabilizer subgroup of the polynomial $p_m(x,y)$, and there exists no polynomial in $\mathbb{R}[x,y]$ of degree < m whose stabilizer subgroup is D_m .
- 2. K_m $(m \ge 2)$ is the stabilizer subgroup of the polynomial $p_m(x,y)+(x^2+y^2)q_m(x,y)$, and there exists no polynomial in $\mathbb{R}[x,y]$ of degree < m+2 whose stabilizer subgroup is K_m .
- 3. $K_1 = \{ \text{Id} \}$ is the stabilizer subgroup of the polynomial x + xy, and there exists no polynomial in $\mathbb{R}[x,y]$ of degree < 2 whose stabilizer subgroup is K_1 .

Proof. 1. Using that every element in O(2) is either of the form ρ_{α} or of the form $\rho_{\alpha} \circ \tau$, it is a matter of routine to check that the stabilizer subgroup of the polynomial $p_m(x,y) = \text{Re}(z^m)$ is D_m .

If there were another polynomial $\bar{p}(x,y)$ of degree < m with the same property, $\bar{p}(x,y)$ should be a power of $x^2 + y^2$, because of Lemma 5.1(2), and in that case its stabilizer subgroup would be the whole O(2), against our hipothesis.

2. According to Lemma 5.1 (1), every K_m -invariant polynomial of degree $\leq m$ is of the form $\lambda p_m(x,y) + \mu q_m(x,y)$ (up to addition of a power of $x^2 + y^2$). However, a polynomial of such a form does not have K_m as its stabilizer subgroup, but a larger dihedral group: after multiplying by a scalar, we can indeed assume $\lambda^2 + \mu^2 = 1$; if $\alpha = \lambda - i\mu$, then

$$\lambda p_m(x,y) + \mu q_m(x,y) = \operatorname{Re}(\alpha z^m) = \operatorname{Re}((\beta z)^m)$$

(with $\beta^m = \alpha$)

$$= \rho_{\beta^{-1}} \cdot \operatorname{Re}(z^m) = \rho_{\beta^{-1}} \cdot p_m(x, y),$$

whose stabilizer subgroup is the dihedral group $\rho_{\beta^{-1}} \cdot D_m \cdot \rho_{\beta}$, which is conjugate to the stabilizer subgroup D_m of $p_m(x,y)$. (In particular, taking $\lambda = 0$, $\mu = -1$, we get that the stabilizer subgroup of $q_m(x,y)$ is $\rho_{\beta^{-1}} \cdot D_m \cdot \rho_{\beta}$, for $\beta^m = i$).

As no polynomial of degree $\leq m$ has the desired stabilizer subgroup K_m , and there are not any K_m -invariant polynomials of degree m+1 (up to a power of x^2+y^2), the following degree to be considered is m+2. The stabilizer subgroup of the polynomial $p_m(x,y)+(x^2+y^2)q_m(x,y)$, of degree m+2, is the intersection of the stabilizer subgroups of its two homogeneous components, $p_m(x,y)$ and $(x^2+y^2)q_m(x,y)$, that is,

$$D_m \cap (\rho_{\beta^{-1}} \cdot D_m \cdot \rho_{\beta}) = K_m \quad (\beta^m = i).$$

3. This case is trivial.

Theorem 5.3. The strata in the moduli space \mathbb{M}_2^r correspond exactly to the following types: $[O(2)], [D_1], \ldots, [D_{r-2}], [K_1], \ldots, [K_{r-4}]$. (And also $[K_1]$, if r = 4.)

Proof. It is a classical result (see [2]) that in dimension 2 every Riemannian metric can be written in normal coordinates (x, y) (in a unique way up to an orthogonal transformation) as follows:

$$g = dx^2 + dy^2 + h(x, y)(ydx - xdy)^2,$$

for some smooth function h(x, y).

Observe that the stabilizer subgroup of O(2) for the jet $j_0^k h$ is the same as that for $j_0^{k+2}g$.

If we take h(x,y)=0, we get a metric (the Euclidean one, i.e. $g=\mathrm{d}x^2+\mathrm{d}y^2$) whose group of automorphisms (for any jet order) is O(2).

Choosing $h(x,y)=p_m(x,y)$, we obtain an r-jet metric (with $r\geq m+2$) whose stabilizer subgroup is D_m , because of Corollary 5.2 (1).

If we choose $h(x,y) = p_m(x,y) + (x^2 + y^2)q_m(x,y)$, we get an r-jet metric (with $r \ge m+4$) whose stabilizer subgroup is K_m , by Corollary 5.2 (2).

If we make h(x,y) = x + xy, then we get an r-jet metric (with $r \ge 4$) whose stabilizer subgroup is K_1 , according to Corollary 5.2 (3).

Finally, let us note that no r-jet metric can have SO(2) as its stabilizer subgroup, since such a metric would correspond to a jet function $j_0^{r-2}h$ whose stabilizer subgroup should be SO(2), which is impossible, because, by Lemma 5.1 (3), every SO(2)-invariant polynomial is also O(2)-invariant.

Corollary 5.4. Every closed subgroup of O(2), except for SO(2), is the group of automorphisms of a jet metric $j_0^r g$ on \mathbb{R}^2 for some order r.

Corollary 5.5. The number of strata in \mathbb{M}_2^r is:

Number of strata in
$$\mathbb{M}_2^r = \begin{cases} 1 & \text{for } r = 0, 1, 2 \\ 2 & \text{for } r = 3 \\ 4 & \text{for } r = 4 \\ 2r - 5 & \text{for } r \ge 5 \end{cases}$$

5.2 Examples

Now we describe, without proofs, low order jets in dimension n=2.

For order r = 0, 1 (and in any dimension n) moduli spaces \mathbb{M}_n^r come down to a single point.

Case
$$r=2$$
.

The moduli space is a line:

$$\mathbb{M}_2^2 \longrightarrow \mathbb{R} , \quad [j_{x_0}^2 g] \longmapsto K_g(x_0) .$$

In other words, the curvature classifies 2—jets of Riemannian metrics in dimension n=2. In this case there is just one stratum, the generic one, whose type is [O(2)].

Case
$$r=3$$
.

The moduli space is a closed semiplane:

$$\mathbb{M}_2^3 \longrightarrow \mathbb{R} \times [0, +\infty)$$
 , $[j_{x_0}^3 g] \longmapsto (K_g(x_0), |\operatorname{grad}_{x_0} K_g|^2)$.

That is to say, the curvature and the square of the modulus of the gradient of the curvature classify 3-jet metrics in dimension n=2.

Now we have two different strata:

The generic stratum $S_{[D_1]} = \mathbb{R} \times (0, +\infty)$, with type $[D_1]$. This stratum is the set of all classes of jets $j_{x_0}^3 g$ verifying $\operatorname{grad}_{x_0} K_g \neq 0$ (in this case, the group of automorphisms is the group of order 2 generated by the reflection across the vector $\operatorname{grad}_{x_0} K_g$).

The non-generic stratum $S_{[O(2)]} = \mathbb{R} \times \{0\}$, with type [O(2)], is the set of all classes of jets $j_{x_0}^3 g$ verifying $\operatorname{grad}_{x_0} K_g = 0$ (which are invariant with respect to every orthogonal transformation of normal coordinates).

Note: If we consider metrics of signature (+,-), instead of Riemannian metrics, then the map

$$\mathbb{M}_2^3 \longrightarrow \mathbb{R} \times [0, +\infty) , [j_{x_0}^3 g] \longmapsto (K_g(x_0), |\operatorname{grad}_{x_0} K_g|^2) .$$

is not injective, that is, differential invariants do not classify 3–jet metrics of signature (+,-). To illustrate this, consider two metrics g, \bar{g} of signature (+,-), such that $K_g(x_0) = K_{\bar{g}}(x_0)$, $\operatorname{grad}_{x_0} K_g = 0$ and $\operatorname{grad}_{x_0} K_{\bar{g}}$ is a non-zero isotropic vector with respect to \bar{g}_{x_0} . Both jets $j_{x_0}^3 g$, $j_{x_0}^3 \bar{g}$ cannot be equivalent (because the gradient of the curvature at x_0 equals zero for the first metric, whereas it is non-zero for the other one), but its differential invariants coincide: $K_g(x_0) = K_{\bar{g}}(x_0)$ and $|\operatorname{grad}_{x_0} K_g|^2 = |\operatorname{grad}_{x_0} K_{\bar{g}}|^2 = 0$.

Case
$$r=4$$
.

A set of generators for differential invariants of order 4 is given by the following five functions:

$$\begin{split} p_1(j_{x_0}^4 g) &= K_g(x_0)\,, \\ p_2(j_{x_0}^4 g) &= |\mathrm{grad}_{x_0} K_g|^2\,, \\ p_3(j_{x_0}^4 g) &= \mathrm{trace}\left(\mathrm{Hess}_{x_0} K_g\right), \\ p_4(j_{x_0}^4 g) &= \det\left(\mathrm{Hess}_{x_0} K_g\right), \\ p_5(j_{x_0}^4 g) &= \mathrm{Hess}_{x_0} K_g(\mathrm{grad}_{x_0} K_g\,,\mathrm{grad}_{x_0} K_g)\,, \end{split}$$

where $\operatorname{Hess}_{x_0} K_g := (\nabla dK_g)_{x_0}$ stands for the hessian of the curvature function at x_0 . These above functions satisfy the following inequalities:

$$p_2 \ge 0$$
 , $p_3^2 - 4p_4 \ge 0$, $(2p_5 - p_2p_3)^2 \le p_2^2(p_3^2 - 4p_4)$.

To say it in other words, these five differential invariants define an isomorphism of differentiable spaces

$$(p_1,\ldots,p_5):\mathbb{M}_2^4\longrightarrow Y\subset\mathbb{R}^5$$

Y being the closed subset in \mathbb{R}^5 determined by the inequalities

$$x_2 \ge 0$$
 , $x_3^2 - 4x_4 \ge 0$, $(2x_5 - x_2x_3)^2 \le x_2^2(x_3^2 - 4x_4)$.

In this case, the moduli space \mathbb{M}_2^4 has the following four strata:

- The generic stratum of all classes of jets $j_{x_0}^4 g$ verifying that $\operatorname{grad}_{x_0} K_g$ is not an eigenvector of $\operatorname{Hess}_{x_0} K_g$ (therefore, the eigenvalues of $\operatorname{Hess}_{x_0} K_g$ are different). The type of this stratum (group of automorphisms of its jets) is $[K_1 = \{\operatorname{Id}\}]$.

- The stratum of those classes of jet metrics $j_{x_0}^4 g$ verifying that $\operatorname{grad}_{x_0} K_g$ is a non-zero eigenvector of $\operatorname{Hess}_{x_0} K_g$. Its type is $[D_1]$: the group of automorphisms of each jet metric is generated by the reflection across the vector $\operatorname{grad}_{x_0} K_g$.
- The stratum composed of those classes of jet metrics $j_{x_0}^4 g$ with $\operatorname{grad}_{x_0} K_g = 0$ and verifying that the eigenvectors of $\operatorname{Hess}_{x_0} K_g$ are different. The type of this stratum is $[D_2]$: the group of automorphisms of each jet metric is generated by the reflections across either eigenvector of $\operatorname{Hess}_{x_0} K_g$.
- The stratum of all classes of jets $j_{x_0}^4 g$ with $\operatorname{grad}_{x_0} K_g = 0$ and verifying that the eigenvectors of $\operatorname{Hess}_{x_0} K_g$ are both equal. The type of the stratum is [O(2)].

6 Appendix A: On the notion of differential invariant of metrics

The aim of this Appendix A is to discuss the notion of differential invariant and to back up the Definition 2.3 given in Section 2.

The notion of differential invariant must be understood as a particular case of the concept of regular and natural operator between natural bundles (see [5] for an exposition of the theory of natural bundles). What follows is an adaptation of this point of view, getting around, though, the concept of natural bundle.

Let X be an n-dimensional smooth manifold. Let $M \to X$ be the bundle of semi-Riemannian metrics of a fixed signature (p,q) and let \mathcal{M}_X denote its sheaf of smooth sections

Loosely speaking, the concept of differential invariant refers to a function "intrinsically, locally and smoothly constructed from a metric". Rigorously, as it is a *local* construction, a differential invariant is a morphism of sheaves:

$$f: \mathcal{M}_X \longrightarrow \mathcal{C}_X^{\infty}$$
,

where \mathcal{C}_X^∞ stands for the sheaf of smooth functions on X .

The intuition of "intrinsic and smooth construction" can be encoded by saying that the morphism f also satisfies the following two properties:

1.- Regularity: If $\{g_s\}_{s\in S}$ is a family of metrics depending smoothly on certain parameters, the family of functions $\{f(g_s)\}_{s\in S}$ also depends smoothly on those parameters.

To be exact, let S be a smooth manifold (the space of parameters) and let $U \subseteq X \times S$ be an open set. For each $s \in S$, consider the open set in X defined as $U_s := \{x \in X : (x,s) \in U\}$. A family of metrics $\{g_s \in \mathcal{M}(U_s)\}_{s \in S}$ is said to be *smooth* if the fibre map $U \to S^2T^*X$, $(x,s) \mapsto (g_s)_x$, is smooth. In the same way, a family of functions $\{f_s \in \mathcal{C}^{\infty}(U_s)\}_{s \in S}$ is said to be smooth if the function $U \to \mathbb{R}$, $(x,s) \mapsto (f_s)(x)$, is smooth.

In these terms, the regularity condition expresses that for each smooth manifold S, each open set $U \subseteq X \times S$ and each smooth family of metrics $\{g_s \in \mathcal{M}(U_s)\}_{s \in S}$, the family of functions $\{f(g_s) \in \mathcal{C}^{\infty}(U_s)\}_{s \in S}$ is smooth.

2.- Naturalness: The morphism of sheaves f is equivariant with respect to the action of local diffeomorphisms of X.

That is, for each diffeomorphism $\tau: U \to V$ between open sets of X and for each metric g on V, the following condition must be satisfied:

$$f(\tau^*g) = \tau^*(f(g)).$$

Taking into account the previous comments, the suitability of the following definition is now clear:

Definition 6.1. A differential invariant associated to semi-Riemannian metrics (of the fixed signature) is a regular and natural morphism of sheaves $f: \mathcal{M}_X \to \mathcal{C}_X^{\infty}$.

Note that this definition of differential invariant seems to be far too general, since a differential invariant f(g) is not assumed a priori to be constructed from the coefficients of the metric g and their subsequent partial derivatives. As we are going to show below, this question is clarified by a beautiful result by J. Slovák.

For every integer $r \geq 0$, we denote by $J^rM \to X$ the fiber bundle of r-jets of semi-Riemannian metrics on X (of the prefixed signature). The fiber bundle $J^\infty M \to X$ of ∞ -jets of semi-Riemannian metrics is not a smooth manifold, but it can be endowed with the structure of a ringed space as follows. On $J^\infty M \to X$ we consider the inverse limit topology: $J^\infty M = \lim_{\longleftarrow} J^r M$; a function on an open set $U \subseteq J^\infty M$ is said to be differentiable if it is locally the composition of one of the natural projections $U \subseteq J^\infty M \to J^r M$ with a smooth function on $J^r M$. This way, $J^\infty M$ is a ringed space, with its sheaf of differentiable functions.

In a similar manner, the structure of a ringed space is defined for the fiber of the bundle $J^{\infty}M \to X$ over a given point $x_0 \in X$: $J_{x_0}^{\infty}M = \lim J_{x_0}^rM$.

Theorem 6.2. (Slovák) There exists the following bijective correspondence:



with
$$f(g)(x) := \tilde{f}(j_x^{\infty}g)$$
.

The result by Slovák [12] refers, with a bit more of generality, to regular morphisms between sheaves of sections of fiber bundles.

If a regular morphism $\mathcal{M}_X \to \mathcal{C}_X^{\infty}$ is, furthermore, natural (that is, a differential invariant), then the corresponding smooth function $\tilde{f}: J^{\infty}M \to \mathbb{R}$ is determined by its restriction to the fiber $J_{x_0}^{\infty}M$ of an arbitrary point $x_0 \in X$. This assertion can be expressed more precisely in the following way.

Corollary 6.3. Fixed a point $x_0 \in X$, the set of differential invariants $f: \mathcal{M}_X \to \mathcal{C}_X^{\infty}$ is in bijection with the set of differentiable Diff_{x_0} -invariant functions $\tilde{f}: J_{x_0}^{\infty}M \to \mathbb{R}$.

Definition 6.4. A differential invariant $f: \mathcal{M}_X \to \mathcal{C}_X^{\infty}$ is said to be **of order** $\leq r$ if the corresponding differentiable function $\tilde{f}: J^{\infty}M \to \mathbb{R}$ factors through the projection $J^{\infty}M \to J^rM$.

Reformulating Corollary 6.3 for invariants of order r, we obtain that Definition 6.4 coincides with that originally given in Section 2 (Definition 2.3):

Corollary 6.5. Fixed a point $x_0 \in X$, the set of all differential invariants

$$f: \mathcal{M}_X \to \mathcal{C}_X^{\infty}$$

of order $\leq r$ is in bijection with the set of all smooth $\operatorname{Diff}_{x_0}$ -invariant functions

$$\tilde{f}: J^r_{r_0}M \to \mathbb{R}$$
.

7 Appendix B: Classification of ∞ -jets of metrics

In Section 4 we have seen that differential invariants of order $\leq r$ classify r-jets of Riemannian metrics at a point (Theorem 4.3). We are now going to generalize this result for infinite-order jets.

In the proof of next lemma we will use the following well-known fact ([1], Chap. IX, $\S 9$, Lemma 6):

Let G be a compact Lie group. Every decreasing sequence of closed subgroups $H_1 \supseteq H_2 \supseteq H_3 \supseteq \cdots$ stabilizes, that is, there exists an integer s such that $H_s = H_{s+1} = H_{s+2} = \cdots$

Lemma 7.1. Let G a compact Lie group and let

$$\cdots \longrightarrow X_{r+1} \longrightarrow X_r \longrightarrow \cdots \longrightarrow X_1$$

be an inverse system of smooth G-equivariant maps between smooth manifolds endowed with a smooth action of G. There exists an isomorphism of ringed spaces:

$$(\lim_{\leftarrow} X_r)/G = \lim_{\leftarrow} (X_r/G)$$
$$[(\dots, x_2, x_1)] \longmapsto (\dots, [x_2], [x_1]).$$

Proof. Because of the universal quotient property, compositions of morphisms

$$\lim_{\stackrel{\leftarrow}{\longrightarrow}} X_r \longrightarrow X_r \longrightarrow X_r/G$$

$$(\dots, x_2, x_1) \longmapsto x_r \longmapsto [x_r]$$

induce morphisms of ringed spaces

$$(\lim_{\leftarrow} X_r)/G \longrightarrow (X_r/G)$$
$$[(\dots, x_2, x_1)] \longmapsto [x_r],$$

which, for their part, because of the universal inverse limit property, define a morphism of ringed spaces

$$(\lim_{\leftarrow} X_r)/G \xrightarrow{\varphi} \lim_{\leftarrow} (X_r/G)$$
$$[(\dots, x_2, x_1)] \longmapsto (\dots, [x_2], [x_1]).$$

It is easy to check that this morphism is surjective. Let us see that it is also injective. First note that, given a point $(\ldots, x_2, x_1) \in \lim_{\leftarrow} X_r$, we can get the decreasing sequence $H_{x_1} \supseteq H_{x_2} \supseteq H_{x_3} \supseteq \cdots$ of closed subgroups of G, where H_{x_k} stands for the

stabilizer subgroup of x_k . This chain stabilizes, since G is compact, so for a certain s

it is verified $H_{x_s}=H_{x_{s+1}}=H_{x_{s+2}}=\cdots$ Let now $[(\ldots,x_2,x_1)]$ and $[(\ldots,x_2',x_1')]$ be two points in $(\lim_r X_r)/G$ having the same image through φ , i.e. $[x_k] = [x'_k]$, for each $k \geq 0$. Write $x'_s = g \cdot x_s$ for some $g \in G$. As the morphisms $X_s \to X_k$ (with $s \geq k$) are G-equivariant, it is verified that $x'_k = g \cdot x_k$ for every $k \le s$.

Let us show that the same happens when k>s. As $[x_k]=[x_k']$, we have $x_k'=g_k\cdot x_k$ for a certain $g_k \in G$; applying that $X_k \to X_s$ is equivariant yields $x_s' = g_k \cdot x_s$, and then (comparing with $x_s' = g \cdot x_s$) $g^{-1}g_k \in H_{x_s}$; since $H_{x_s} = H_{x_k}$, it follows that $g^{-1}g_k \in H_{x_k}$, and hence the condition $x_k' = g_k \cdot x_k$ is equivalent to $x_k' = g \cdot x_k$. In conclusion, $x_k' = g \cdot x_k$ for every k > 0, and therefore $[(\ldots, x_2, x_1)]$ and $[(\ldots, x_2', x_1')]$ are the same point in $(\lim X_r)/G$.

Once we have proved that φ is bijective, it is routine to check that φ is an isomorphism of ringed spaces.

Definition 7.2. Let $x_0 \in X$ and let

$$J_{x_0}^{\infty}M := \lim_{\leftarrow} J_{x_0}^r M$$

be the ringed space of ∞ -jets of Riemannian metrics at x_0 on X. The quotient ringed

$$\mathbb{M}_n^{\infty} := J_{x_0}^{\infty} M / \mathrm{Diff}_{x_0}$$

is called **moduli space** of ∞ -jets of Riemannian metrics in dimension n.

In the same fashion as for finite-order jets, the moduli space \mathbb{M}_n^{∞} depends neither on the choice of the point x_0 nor on that of the n-dimensional manifold X.

For every integer r > 0 we have an evident morphism of ringed spaces

and these morphisms allow us to define another morphism of ringed spaces:

$$\begin{array}{cccc} \mathbb{M}_n^{\infty} & \longrightarrow & \lim\limits_{\leftarrow} \mathbb{M}_n^r \\ [j_{x_0}^{\infty} g] & \longmapsto & (\dots, [j_{x_0}^r g], \dots), . \end{array}$$

Theorem 7.3. There exists an isomorphism of ringed spaces

$$\mathbb{M}_n^{\infty} = \lim_{\leftarrow} \mathbb{M}_n^r$$
$$[j_{x_0}^{\infty}g] \longmapsto (\dots, [j_{x_0}^rg], \dots).$$

Proof. Fix a local coordinate system (z_1, \ldots, z_n) centered at x_0 . With the same notations as in Section 3, let us define

$$\mathcal{N}^{\infty} := \lim \mathcal{N}^r$$
.

In other words, \mathcal{N}^{∞} is the subspace of $J_{x_0}^{\infty}M$ formed by all those ∞ -jets at x_0 of Riemannian metrics having (z_1, \ldots, z_n) as a normal coordinate system. All lemmas in

Section 3, with their corresponding proofs, remain valid when substituting the integer ∞ for r. In particular, our Fundamental Lemma 3.4, when $r = \infty$, gives us the desired isomorphism of ringed spaces:

$$\mathbb{M}_n^{\infty} = \left(\prod_{k \geq 2} N_k\right) / O(n) = \left(\lim_{\leftarrow} \left(N_2 \times \cdots \times N_r\right)\right) / O(n)$$

(by Lemma 7.1)

$$= \lim_{\leftarrow} \left((N_2 \times \cdots \times N_r) / O(n) \right) = \lim_{\leftarrow} \mathbb{M}_n^r.$$

Corollary 7.4. Differential invariants of finite order classify ∞ -jets of Riemannian metrics: Two jet metrics $j_{x_0}^{\infty}g$ and $j_{x_0}^{\infty}\bar{g}$ are equivalent if and only if for each finite-order differential invariant h it is satisfied $h(g)(x_0) = h(\bar{g})(x_0)$.

Proof. According to Theorem 7.3, we get:

$$j_{x_0}^{\infty}g \equiv j_{x_0}^{\infty}\bar{g} \iff j_{x_0}^rg \equiv j_{x_0}^r\bar{g} , \ \forall r \ge 0.$$

To complete our proof, it is sufficient to use the fact that differential invariants of order $\leq r$ classify r-jet metrics (Theorem 4.3).

References

- [1] N. Bourbaki, Groupes et algèbres de Lie, Masson, Paris (1982).
- [2] D.B.A. EPSTEIN, Natural tensors on Riemannian manifolds, J. Differential Geom. 10 (1975) 631–645.
- [3] J. FOGARTY, Invariant Theory, W.A. Benjamin Inc., New York (1969).
- [4] P.L. GARCÍA & J. MUÑOZ, Differential invariants on the bundles of linear frames, J. Geom. Phys., Vol. 7, 3 (1990) 395–418.
- [5] I. KOLÁR, P.W. MICHOR & J. SLOVÁK, Natural operations in differential geometry, Springer-Verlag, Berlin (1993).
- [6] D. Luna, Fonctions différentiables invariantes sous l'operation d'un groupe réductif, Ann. Inst. Fourier 26 1 (1976) 33–49.
- [7] C. Martínez, J. Muñoz & A. Valdés, On the structure of the moduli of jets of G-structures with a linear connection, *Differential Geom. Appl.* **18** (2003) 271–283.
- [8] J. Muñoz & A. Valdés, Génération des anneaux d'invariants différentiels des métriques riemanniennes, C. R. Math. Acad. Sci. Paris 323 Série I (1996) 643-646.
- [9] J. Muñoz & A. Valdés, The number of functionally independent invariants of a pseudo-Riemannian metric, J. Phys. A: Math. Gen. 27 (1994) 7843–7855.

- [10] J.A. NAVARRO & J.B. SANCHO, C^{∞} -differentiable spaces, Lecture Notes in Mathematics **1824**, Springer-Verlag (2003).
- [11] G.W. Schwarz, Smooth functions invariant under the action of a compact Lie group, *Topology* **14** (1975) 63–68.
- [12] J. Slovák, Peetre theorem for nonlinear operators, Ann. Global Anal. Geom. 6 (1988) 273–283.
- [13] T.Y. Thomas, The differential invariants of generalized spaces, *Chelsea Publishing Company*, New York (1991). (First edition: Cambridge University Press, 1934.)
- [14] A.M. VERBOVETSKY, A.M. VINOGRADOV & D.M. GESSLER, Scalar differential invariants and characteristic classes of homogeneous geometric structures, (Russian) *Mat. Zametki*, **51** (1992), no. 6, 15–26. English translation in *Math. Notes*, **51** (1992), no. 5-6, 543–549.
- [15] A.M. VINOGRADOV, Scalar differential invariants, difficties and characteristic classes, in Mechanics, Analysis and Geometry: 200 years after Lagrange, M. Francaviglia, ed., *Elsevier*, Amsterdam (1991) 379–416.