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A granular fluid modeled as a driven system of elastic hard spheres
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We explore the possibility of describing the main transport properties of a granular gas by means
of a model consisting of elastic hard spheres under the action of a drag force that mimics the inelastic
cooling of the granular gas. Direct Monte Carlo simulations of the Boltzmann equation show a good
agreement between the results for a gas of inelastic hard spheres and those for a gas of driven elastic
hard spheres in the simple shear flow state. This approximate equivalence between both systems is
exploited to extend known kinetic models for elastic collisions to the inelastic case.

I. INTRODUCTION

The simplest model of a granular fluid in the rapid flow regime consists of a gas of (smooth) inelastic hard spheres
(IHS) characterized by a constant coefficient of normal restitution α [1]. The inelasticity of collisions produces a
decrease of the mean kinetic energy (or granular temperature) with a cooling rate ζ ∝ 1−α2. Interestingly, a cooling
effect can also be generated in a gas of elastic hard spheres (EHS) by the application of an effective drag force
with a friction coefficient 1

2ζ. At a macroscopic level of description, the hydrodynamic balance equations of mass,
momentum, and energy for the IHS gas are (formally) identical to those for the frictional EHS gas. However, the
microscopic dynamics is physically quite different in both systems: in the IHS gas (a) the particles move freely between
two successive collisions but (b) each colliding pair loses energy upon collision; in the EHS case (a) the particles lose
energy between collisions due to the action of the drag force but (b) energy is conserved by collisions. This implies
that during a certain small time step, only the small fraction of colliding particles are responsible for the cooling of
the system in the IHS case, whereas all the particles contribute to the cooling in the EHS case. Therefore, there
is no reason in principle to expect that the relevant physical properties (e.g., the velocity distribution function) are
similar for IHS and frictional EHS under the same conditions. For instance, in the so-called homogeneous cooling
state the solutions to the respective Boltzmann equations for IHS and EHS differ: while the distribution function is a
(time-dependent) Gaussian for EHS [2], deviations from a Gaussian (as exemplified by a nonzero kurtosis and by an
overpopulated high energy tail) are present in the case of IHS [3]. Notwithstanding this, the differences between the
homogeneous solutions for IHS and EHS are not quantitatively important in the domain of thermal velocities and so
it is still possible that both systems exhibit comparable departures from equilibrium in inhomogeneous states where
transport of momentum and/or energy is the relevant phenomenon. The investigation of this possibility is the main
aim of this work.

II. MODEL OF DRIVEN ELASTIC HARD SPHERES

The Boltzmann equation for a gas of inelastic hard spheres (IHS) is [4, 5]

(∂t + v · ∇) f(v) = σd−1

∫
dv1

∫
dσ̂ Θ(g · σ̂)(g · σ̂)

[
α−2f(v′)f(v′

1) − f(v)f(v1)
]

≡ J (α)[f, f ]. (1)

In this expression f(r,v; t) is the one-particle distribution function, σ is the diameter of a sphere, d is the dimensionality
of the system, Θ is the Heaviside step function, σ̂ is a unit vector directed along the centers of the two colliding spheres
at contact, g = v − v1 is the relative velocity, and α is the coefficient of normal restitution. The precollisional or
restituting velocities v′ and v′

1 are given by

v′ = v − 1 + α

2α
(g · σ̂)σ̂, v′

1 = v1 +
1 + α

2α
(g · σ̂)σ̂. (2)
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The collision operator for elastic hard spheres (EHS), J (1)[f, f ], is obtained from eqs. (1) and (2) by setting α = 1.
The first d + 2 moments of the distribution function define the number density n, the nonequilibrium flow velocity

u and the granular temperature T . The most important properties of J (α)[f, f ] are those that determine the form of
the macroscopic balance equations for mass, momentum and energy, namely

∫
dv

{
1,v, mV 2

}
J (α)[f, f ] = {0,0,−dnTζ} , (3)

where m is the mass of a particle, V(r, t) ≡ v − u(r, t) is the peculiar velocity and ζ(r, t) is the cooling rate due to
the inelasticity of the collisions. Although it is a nonlinear functional of the distribution function f [5, 6], a simple
estimate ζ ≈ ζ0 is obtained by replacing the actual distribution function f by the local equilibrium distribution
f0 = n(m/2πT )d/2 exp(−mV 2/2T ). The result is [6, 7]

ζ0(r, t) = ν0(r, t)
d + 2

4d
(1 − α2), ν0 ≡ 8π(d−1)/2σd−1

(d + 2)Γ (d/2)
n

(
T

m

)1/2

. (4)

According to the arguments of section I, our model consists of the replacement

J (α)[f, f ] → β(α)J (1)[f, f ] +
1

2
ζ0(α)

∂

∂v
· (Vf) , (5)

where β(α) is a positive constant to be determined. The model (5) complies with the properties (3), except that the
true cooling rate is replaced by the local equilibrium estimate (4). According to eq. (5), the gas of inelastic hard spheres
is replaced by an “equivalent” gas of elastic hard spheres subjected to the action of a drag force Fdrag = −(mζ0/2)V
proportional to the peculiar velocity with a friction constant that depends on the local density and temperature. This
drag force mimics the cooling effect due to dissipative collisions in the underlying granular system. The parameter β
accounts for the fact that, in principle, the gas of EHS that more efficiently succeeds in capturing the main properties
of the granular gas is made of particles with a diameter σ′ = β1/(d−1)σ that does not necessarily coincide with the
diameter σ of the inelastic spheres. Alternatively, we can view β as a correction factor to modify the collision rate
of the equivalent system of EHS. A comparison between the transport coefficients of IHS [7, 8] and those of the
“equivalent” EHS [9] suggests the choice

β(α) =
1

2
(1 + α). (6)

III. SIMULATIONS

In order to test the model (5) in inhomogeneous states far from equilibrium, we have carried out computer simula-
tions of the Boltzmann equation by means of the DSMC method [10] in both systems (IHS and EHS) for the simple
shear flow problem. In the simple shear flow [1, 11], the gas is enclosed between two infinite parallel plates located at
y = ±L/2 and moving with velocities ±U/2 along the x-axis. When a particle crosses one of the plates it is reentered
through the opposite plate by applying the standard Lees–Edwards boundary conditions [12]. This produces a viscous
heating effect that tends to increase the temperature of the system, whereas the inelastic cooling (in the IHS system)
or the drag force (in the EHS system) tend to decrease the temperature. Eventually, a nonequilibrium steady state
(NESS) is reached when both effects cancel each other. If the size of the system is large enough as to avoid clustering
effects, the NESS is characterized by uniform density and temperature, and a linear velocity profile ux(y) = ay, where
a = U/L is the constant shear rate.

As a test case, we have considered three-dimensional systems with L = 2.5λ, where λ = (
√

2πn̄σ2)−1 is the average

mean free path of the IHS gas (n̄ being the average density), and U = 10v0, where v0 =
√

2T0/m is the initial thermal

velocity (T0 being the initial temperature). The shear rate is then a = 4τ−1
0 , where τ0 = λ/v0 is the initial mean free

time of the IHS gas. The coefficient of restitution for the IHS gas has been taken as α = 0.9. As for the EHS gas, its
collision rate has been reduced by a factor β = 0.95, in agreement with eq. (6). In both cases the viscous heating effect
dominates during the transient regime until the NESS is reached. In the simulations we have considered a number
N = 104 of simulated particles, a width layer δL = 0.05λ and a time step δt = 10−3τ0

√
T0/T .

Figure 1(a) shows the velocity and temperature profiles at times t/τ0 = 0.13, 0.5, 1, 1.5, 2 for both systems, starting
from an initial condition of total equilibrium. By time t = 2τ0 (what corresponds to about 2.4 collisions per inelastic
particle) the velocity profile is practically linear and the temperature profile is almost uniform. However, the global
temperature keeps growing in time until it reaches a stationary value T ≃ 146T0 for t & 10τ0 (i.e. after about 48
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collisions per inelastic particle). The time evolution of T/T0 and of −Pxy/nT0 (where Pxy is the shear stress) is
shown in fig. 1(b) for an initial condition of local equilibrium, so that the system is initially prepared with a linear
velocity profile. The NESS value of the shear stress represents an effective shear viscosity about 14% smaller than
the Navier–Stokes value corresponding to α = 0.9. Figure 1, along with a more comprehensive comparison that
will be reported elsewhere [9], shows that the equivalent EHS system succeeds in capturing the main nonequilibrium
transport properties of the underlying IHS system.
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FIG. 1: (a) Velocity and temperature profiles. (b) Time evolution of the temperature and the shear stress

IV. KINETIC MODELING

A. BGK and ES models

The mapping IHS→EHS allows one to take advantage of the existence of simple kinetic models for EHS to extend
them straightforwardly to IHS. For instance, consider the so-called ellipsoidal statistical (ES) model [11, 13]

J (1)[f, f ] → −ν0(1 − ǫ)(f − fǫ), (7)

where

fǫ(v) = n
(mn

2π

)d/2

(detR)
−1/2

exp
(
−mn

2
R
−1 : VV

)
, R =

1

1 − ǫ
(pI − ǫP) , (8)
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P being the pressure tensor. The parameter ǫ ≤ d−1 can be freely chosen. The choice ǫ = d−1 makes the ES model
reproduce the correct value Pr = (d − 1)/d of the Prandtl number. The simplest choice, however, is ǫ = 0, in which
case R = pI, the reference function fǫ = f0 becomes the local equilibrium distribution and the ES model reduces to
the well-known BGK model.

In the spirit of (5), the extension of the ES model to IHS is

J (α)[f, f ] → −β(α)ν0(1 − ǫ)(f − fǫ) +
1

2
ζ0(α)

∂

∂v
· (Vf) . (9)

In particular, setting ǫ = 0 we get a simplified version of the BGK-like model for IHS that was proposed in ref. [6].
This BGK model is easy to solve for the simple shear flow problem considered in section III. The thin solid lines
in fig. 1(b) represent the evolution of the temperature and the shear stress according to such a solution. As can be
observed, the BGK solution exhibits an excellent agreement with the DSMC results for both IHS and EHS.

B. Mixtures

The same idea behind (5) can be extended to a multi-component granular gas [9]. In the special case where all the
species have the same flow velocity (ui = u), our model becomes

J
(αij)
ij [fi, fj ] → βij(αij)J

(1)
ij [fi, fj ] +

1

2
ζij(αij)

∂

∂v
· [(v − ui) fi] (10)

with

βij =
1 + αij

2
, ζij =

√
2π(d−1)/2

Γ(1 + d/2)
njµ

2
jiσ

d−1
ij

(
Ti

mi

)1/2 (
1 +

miTj

mjTi

)3/2 (
1 − α2

ij

)
, (11)

where Ti is the granular temperature of species i and µji ≡ (1 + mi/mj)
−1. The model (10) preserves the first

d + 2 collision integrals of IHS in the leading Sonine approximation with ui = u. The important point is that the
approximation (10) allows one to transfer any given kinetic model

J
(1)
ij [fi, fj ] → K

(1)
ij (12)

for elastic mixtures [11] into an equivalent model for inelastic mixtures:

J
(αij)
ij [fi, fj] → K

(αij)
ij =

1 + αij

2
K

(1)
ij +

ζij

2

∂

∂v
· [(v − ui) fi] . (13)

V. CONCLUSION

In summary, we have shown that the nonequilibrium transport properties of a Boltzmann gas of inelastic hard
spheres can be satisfactorily captured by an equivalent gas of elastic hard spheres driven by a dissipative drag force
Fdrag = −(mζ0/2)V, where ζ0(α) is the (local equilibrium) cooling rate. Besides, the elastic particles must reduce
their collision rate by a factor β(α) ≈ 1

2 (1+α) in order to “disguise” as a granular gas. While the “equivalent” system
of EHS does not retain finer details of the true IHS gas (e.g., high energy tails, velocity correlations, . . . ), it is able
to account for those phenomena (e.g., inelastic clustering) that can be described at a hydrodynamic level. Finally, we
have exploited the possibility of reverting the mapping IHS→EHS to construct kinetic models for granular gases as
natural extensions of known kinetic models originally proposed for elastic particles.
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