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Unsteady non-Newtonian hydrodynamics in granular gases
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The temporal evolution of a dilute granular gas, both in a compressible flow (uniform longitudi-
nal flow) and in an incompressible flow (uniform shear flow), is investigated by means of the direct
simulation Monte Carlo method to solve the Boltzmann equation. Emphasis is laid on the identifi-
cation of a first “kinetic” stage (where the physical properties are strongly dependent on the initial
state) subsequently followed by an unsteady “hydrodynamic” stage (where the momentum fluxes
are well-defined non-Newtonian functions of the rate of strain). The simulation data are seen to
support this two-stage scenario. Furthermore, the rheological functions obtained from simulation
are well described by an approximate analytical solution of a model kinetic equation.

PACS numbers: 45.70.Mg, 83.80.Fg, 05.20.Dd, 51.10.+y

I. INTRODUCTION AND STATEMENT OF

THE PROBLEM

Granular gases are dilute systems made of inelastic
particles that can be maintained in a fluidized state by
the application of external drivings to compensate for the
dissipation of kinetic energy due to collisions. These sys-
tems are always out of equilibrium and exhibit a wealth
of intriguing complex phenomena [1–12]. They are im-
portant from an applied point of view but also at the
level of fundamental physics. As Kadanoff stated in his
review paper [4], “one might even say that the study of
granular materials gives one a chance to reinvent statis-
tical mechanics in a new context.”
One of the most controversial issues in granular flu-

ids refers to the validity of a hydrodynamic description
[4, 13]. In conventional fluids, the densities of the con-
served quantities (mass, momentum, and energy) satisfy
formally exact balance (or continuity) equations involv-
ing the divergence of the associated fluxes. In the case
of granular fluids, however, energy is dissipated on col-
lisions and this gives rise to a sink term in the energy
balance equation. As a consequence, except perhaps in
quasielastic situations, the role of the energy density (or,
equivalently, of the granular temperature) as a hydro-
dynamic variable is not evident. Both for conventional
and granular fluids, the mass, momentum, and energy
balance equations do not form a closed set due to the ap-
pearance of the momentum and energy fluxes (plus the
energy sink in the granular case). On the other hand, by
assuming “hydrodynamic” conditions, the balance equa-
tions are closed by the addition of approximate constitu-
tive equations relating the momentum and energy fluxes
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FIG. 1. (Color online) Schematic description of the two-stage
evolution of the velocity distribution function in a conven-
tional gas.

(again plus the energy sink in the granular case) to the
mass, momentum, and energy fields.

The simplest constitutive equations consist of replacing
the fluxes by their local equilibrium forms, thus neglect-
ing the influence of the hydrodynamic gradients. This
gives rise to the Euler hydrodynamic equations, which
fail to account for irreversible effects, even in the case
of conventional fluids. This is corrected by the Navier–
Stokes (NS) constitutive equations, where the fluxes are
assumed to be linear in the hydrodynamic gradients. On
the other hand, if the gradients are not weak enough
(i.e., if the Knudsen number is not small enough), the
NS equations are insufficient and, thus, nonlinear (i.e.,
non-Newtonian) constitutive equations are needed in a
hydrodynamic description [14, 15].

In conventional fluids, applicability of a hydrodynamic
description (Euler, NS, or non-Newtonian) requires two
basic conditions, one spatial and another one temporal.
On the one hand, one must focus on the bulk region of the
system, i.e., outside the boundary layers, whose width is
on the order of the mean free path. On the other hand,
one must let the system age beyond the initial layer,
whose duration is on the order of the mean free time.
Let us consider the latter condition in more detail. In a
conventional gas, the typical evolution scenario starting
from an arbitrary initial state represented by an arbitrary
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FIG. 2. (Color online) Sketch of the USF.
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FIG. 3. (Color online) Sketch of the ULF for (a) a(t) > 0 and
(b) a(t) < 0.

initial velocity distribution f0(r,v) proceeds along two
successive stages [16]. First, during the so-called kinetic

stage, the velocity distribution f(r,v, t), which depends
functionally on f0, experiences a fast relaxation (lasting a
few collision times) toward a “normal” form f [v|n,u, T ],
where all the spatial and temporal dependence occurs
through a functional dependence on the hydrodynamic
fields (number density n, flow velocity u, and tempera-
ture T ). Next, during the hydrodynamic stage, a slower
evolution of the hydrodynamic fields takes place until ei-
ther equilibrium or an externally imposed nonequilibrium
steady state is eventually reached. While the first stage is
very sensitive to the initial preparation of the system, the
details of the initial state are practically “forgotten” in
the hydrodynamic regime. Figure 1 depicts a schematic
summary of this two-stage evolution in a conventional
gas.

The absence of energy conservation in granular fluids
sheds some reasonable doubts on the applicability of the
above scenario beyond the quasielastic regime. While the
usefulness of a non-Newtonian hydrodynamic description
in steady states has been validated by computer simu-
lations [17–20], it is not obvious that a hydrodynamic
treatment holds as well during the transient regime to-
ward the steady state.

In order to address the problem described in the pre-
ceding paragraph, it seems convenient to focus on cer-
tain prototypical classes of flows. Let us assume a (d-
dimensional) granular gas with uniform density n(t), uni-

form temperature T (t), and a flow velocity along a given
axis (say x) with a linear spatial variation with respect
to a certain Cartesian coordinate ℓ, i.e.,

∇jui(r, t) = a(t)δixδjℓ. (1.1)

Here a(t) is a uniform rate of strain. Two distinct possi-
bilities arise: either ℓ 6= x (say ℓ = y) or ℓ = x. The
first case defines an incompressible flow (∇ · u = 0)
commonly known as simple or uniform shear flow (USF)
[1, 11, 15, 17, 21–60], the associated rate of strain a being
the shear rate. The second case is an example of com-
pressible flow (∇ · u = a 6= 0) that will be referred to as
uniform longitudinal flow (ULF) [60–67]; the correspond-
ing rate of strain in this case will be called longitudinal

rate. These two states are particular cases of a more
general class of homo-energetic affine flows characterized
by ∂2ui/∂xj∂xk = 0 [21]. The USF and ULF flows are
sketched in Figs. 2 and 3, respectively.
Assuming that the velocity distribution function

f(r,v, t) depends on the spatial variable ℓ only, the Boltz-
mann equation reads

∂f

∂t
+ vℓ

∂f

∂ℓ
= J [f, f ], (1.2)

where J [f, f ] is the (inelastic) Boltzmann collision op-
erator, whose explicit form can be found, for instance,
in Refs. [68–70]. Multiplying both sides of Eq. (1.2) by
{1,v, v2}, and integrating over velocity, we get the bal-
ance equations for mass, momentum, and energy densi-
ties,

Dtn = −n
∂uℓ

∂ℓ
, (1.3)

Dtui = − 1

mn

∂Pℓi

∂ℓ
, (1.4)

DtT + ζT = − 2

dn

(
Pℓi

∂ui

∂ℓ
+

∂qℓ
∂ℓ

)
. (1.5)

In Eqs. (1.3)–(1.5), Dt ≡ ∂t+uℓ∂ℓ is the material deriva-
tive, and the number density n, flow velocity u, tem-
perature T , pressure tensor Pij , heat flux vector q, and
cooling rate ζ are defined by

n(ℓ, t) =

∫
dv f(ℓ,v, t), (1.6)

n(ℓ, t)u(ℓ, t) =

∫
dv vf(ℓ,v, t), (1.7)

n(ℓ, t)T (ℓ, t) = p(ℓ, t) =
1

d
trP(ℓ, t), (1.8)

Pij(ℓ, t) = m

∫
dv [vi − ui(ℓ, t)][vj − uj(ℓ, t)]f(ℓ,v, t),

(1.9)
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q(ℓ, t) =
m

2

∫
dv [v − u(ℓ, t)]2[v − u(ℓ, t)]f(ℓ,v, t),

(1.10)

n(ℓ, t)T (ℓ, t)ζ(ℓ, t) = −m

d

∫
dv v2J [f, f ]. (1.11)

The first equality of Eq. (1.8) defines the hydrostatic
pressure p, which is just given by the ideal-gas law in
the Boltzmann limit.
As said above, the density n(t) and temperature T (t),

and so the hydrostatic pressure p(t), are uniform in the
(fully developed) USF and ULF. On physical grounds, it
can also be assumed that the whole pressure tensor Pij(t)
is uniform as well. Moreover, in the absence of thermal
and density gradients, the heat flux can be expected to
vanish. Taking all of this into account, as well as Eq.
(1.1), the balance equations [Eqs. (1.3)–(1.5)] become

ṅ(t) = −n(t)a(t)δxℓ, (1.12)

ȧ(t) = −a2(t)δxℓ, (1.13)

Ṫ (t) = − 2a(t)

dn(t)
Pxℓ(t)− ζ(t)T (t). (1.14)

In the case of the USF (ℓ = y), Eqs. (1.12) and (1.13)
imply that both the density and the shear rate are con-
stant quantities. As for the temperature, it evolves in
time subject to two competing effects: viscous heating
[represented by the term −(2/dn)aPxy > 0] and inelas-
tic cooling [represented by ζT ]. Both effects eventually
cancel each other in the steady state.
In the case of the ULF (ℓ = x), the solution to Eqs.

(1.12) and (1.13) is

n(t)

a(t)
=

n0

a0
, a(t) =

a0
1 + a0t

, (1.15)

where n0 is the initial density and a0 is the initial longi-
tudinal rate. In contrast to the USF, the sign of a(t) (or,
equivalently, the sign of a0) plays a relevant role and de-
fines two separate situations (see Fig. 3). The case a > 0
corresponds to a progressively slower expansion of the
gas from the plane x = 0 into all of space. On the other
hand, the case a < 0 corresponds to a progressively faster
compression of the gas toward the plane x = 0. The
latter takes place over a finite time period t = |a0|−1.
However, since the collision frequency rapidly increases
with time, the finite period t = |a0|−1 comprises an in-

finite number of collisions per particle [67]. Given that
Pxx > 0, the energy balance equation [see Eq. (1.14)] im-
plies that the temperature monotonically decreases with
time in the ULF with a > 0. On the other hand, if a < 0,
we have again a competition between viscous heating and
inelastic cooling, so the temperature either increases or
decreases (depending on the initial state) until a steady
state is eventually reached. The main characteristic fea-
tures of the USF and the ULF are summarized in Table
I.

TABLE I. Main characteristic features of the USF and the
ULF.

USF ULF (a > 0) ULF (a < 0)
Inelastic cooling Yes Yes Yes
Viscous heating Yes No Yes
T (t) ↓ & |a∗(t)| ↑ Yes, if Yes Yes, if

ζ >
2|aPxy |

dp
ζ > 2|a|Pxx

dp

T (t) ↑ & |a∗(t)| ↓ Yes, if No Yes, if

ζ <
2|aPxy |

dp
ζ < 2|a|Pxx

dp

Steady state Yes No Yes

Regardless of whether the rate of strain a is constant
(USF) or changes with time (ULF), the relevant param-
eter is the ratio

a∗(t) =
a(t)

ν(t)
(1.16)

between a(t) and a characteristic collision frequency
ν(t) ∝ n(t)[T (t)]1/2. Note that the absolute value of a∗(t)
represents the Knudsen number of the problem, i.e., the
ratio between the mean free path and the characteris-
tic length associated with the velocity gradient [59, 60].
Since a(t)/n(t) = const both in the USF and the ULF,
we have a∗(t) ∝ [T (t)]−1/2. Consequently, the qualita-
tive behavior of |a∗(t)| is the opposite to that of T (t), as
indicated in Table I.
The scenario depicted in Fig. 1, if applicable to a gran-

ular gas in the USF or in the ULF, means that, af-
ter the kinetic stage, the velocity distribution function
f [r,v, t|f0] should adopt a hydrodynamic (or normal)
form

f [r,v, t|f0] → n(t)

[
m

2T (t)

]d/2
f∗ (C(r, t), a∗(t)) ,

(1.17)
where

C(r, t) =
v − u(r, t)√
2T (t)/m

(1.18)

is the peculiar velocity scaled with the thermal speed. For
a given value of the coefficient of restitution, the scaled
velocity distribution function f∗(C, a∗) must be indepen-
dent of the details of the initial state f0 and depend on
the applied shear or longitudinal rate a(t) through the
reduced scaled quantity a∗ only. In other words, if a hy-
drodynamic description is possible, the form (1.17) must
“attract” the manifold of solutions f [r,v, t|f0] to the
Boltzmann equation (1.2) for sufficiently long times, even
before the steady state (if it exists) is reached. Equation
(1.17) has its counterpart at the level of the velocity mo-
ments. In particular, the pressure tensor Pij [t|f0] would
become

Pij [t|f0] → n(t)T (t)P ∗
ij(a

∗(t)) (1.19)

with well-defined hydrodynamic functions P ∗
ij(a

∗).
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A few years ago we reported a preliminary study [58]
where the validity of the unsteady hydrodynamic forms
(1.17) and (1.19) for the USF was confirmed by means
of the direct simulation Monte Carlo (DSMC) method to
solve the Boltzmann equation and by a simple rheological
model. The aim of the present paper is twofold. On the
one hand, we want to revisit the USF case by present-
ing a more extensive and efficient set of simulations, by
providing a detailed derivation of the rheological model
(which was just written down without derivation in Ref.
[58]), and by including in the analysis the second visco-
metric function (which was omitted in Ref. [58]). On the
other hand, we perform a similar analysis (both compu-
tational and theoretical) in the case of the ULF. This
second study is relevant because, despite the apparent
similarity between the USF and the ULF, the latter dif-
fers from the former in that it is compressible, the two
signs of a physically differ, and a steady state is possible
only for negative a.

The remainder of the paper is organized as follows.
The formal kinetic theory description for both types of
flow is presented in Sec. II within a unified framework.
Next, Sec. III offers a more specific treatment based on a
simple model kinetic equation. In particular, a fully ana-
lytical rheological model is derived. Section IV describes
the simulation method employed to solve the Boltzmann
equation and the classes of initial conditions considered.
The most relevant part of the paper is contained in Sec.
V, where the results obtained from the simulations are
presented and discussed. It is found that the scenario
depicted by Fig. 1 and Eqs. (1.17) and (1.19) is strongly
supported by the simulations. Moreover, the simple ana-
lytical rheological model is seen to agree quite well with
the simulation results. The paper is closed in Sec. VI
with a summary and conclusions.

II. BOLTZMANN EQUATION FOR USF AND

ULF

Let us consider a granular gas modeled as a system of
smooth inelastic hard spheres (of mass m, diameter σ,
and constant coefficient of normal restitution α), subject
to the USF or to the ULF sketched in Figs. 2 and 3, re-
spectively. In the dilute regime, the velocity distribution
function f(ℓ,v, t) obeys the Boltzmann equation (1.2).
As is well known, the adequate boundary conditions for
the USF are Lees–Edwards’s boundary conditions [71],
which are not but periodic boundary conditions in the co-
moving Lagrangian frame [72]. The appropriate bound-
ary conditions for the ULF are much less obvious. In
order to construct them, it is convenient to perform a
series of mathematical changes of variables. Also, we
will proceed by encompassing the ULF and the USF in
a common framework.

A. Changes of variables

We start by defining scaled time and spatial variables

t̃ and ℓ̃ as

t̃ = θ(t), ℓ̃ = θ̇(t)ℓ, (2.1)

where

θ(t) =

{
t, USF (ℓ = y),

a−1
0 ln(1 + a0t), ULF (ℓ = x),

(2.2)

θ̇(t) =

{
1, USF (ℓ = y),

(1 + a0t)
−1, ULF (ℓ = x).

(2.3)

Also, a new velocity variable ṽ is defined as

ṽ = v − a(t)ℓex, (2.4)

where ex is the unit vector in the x direction and we
have taken into account that a(t) = a0θ̇(t) both in the
USF and in the ULF. The velocity distribution function

corresponding to the variables ℓ̃, ṽ, and t̃ is

f̃(ℓ̃, ṽ, t̃) =
1

θ̇(t)
f(ℓ,v, t). (2.5)

Consequently,

1

θ̇2
∂f

∂t
=

∂f̃

∂t̃
− a0δxℓ

[
f̃ + θ̇ℓ

(
∂f̃

∂ℓ̃
− a0

∂f̃

∂ṽx

)]
, (2.6)

where we have taken into account that

θ̈(t) = −a0[θ̇(t)]
2δxℓ. (2.7)

Similarly,

1

θ̇2
∂f

∂ℓ
=

∂f̃

∂ℓ̃
− a0

∂f̃

∂ṽx
, (2.8)

1

θ̇2
J [f, f ] = J [f̃ , f̃ ]. (2.9)

Inserting Eqs. (2.6), (2.8), and (2.9) into Eq. (1.2), and
taking into account Eq. (2.4), one finally gets

∂f̃

∂t̃
+ ṽℓ

∂f̃

∂ℓ̃
− a0

∂

∂ṽx

(
ṽℓf̃
)
= J [f̃ , f̃ ]. (2.10)

It is important to remark that no assumption has been
made. Therefore, Eqs. (1.2) and (2.10) are mathemat-
ically equivalent, so any solution to Eq. (1.2) can be
mapped onto a solution to Eq. (2.10) and vice versa.
While Eq. (1.2) describes a gas in the absence of external
forces, Eq. (2.10) describes a gas under the influence of

a nonconservative external force F̃ = −ma0ṽℓex. Note
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that in the case of the ULF with a0 < 0 the finite time
interval 0 < t < |a0|−1 translates into the infinite scaled

time interval 0 < t̃ < ∞.
The density ñ(ℓ̃, t̃), flow velocity ũ(ℓ̃, t̃), temperature

T̃ (ℓ̃, t̃), and pressure tensor P̃ij(ℓ̃, t̃) associated with the
scaled distribution (2.5) are defined analogously to Eqs.
(1.6)–(1.9). The quantities with and without tilde are
related by

ñ(ℓ̃, t̃) =
n(ℓ, t)

θ̇(t)
, P̃ij(ℓ̃, t̃) =

Pij(ℓ, t)

θ̇(t)
, (2.11)

ũ(ℓ̃, t̃) = u(ℓ, t)− a(t)ℓex, T̃ (ℓ̃, t̃) = T (ℓ, t). (2.12)

At a microscopic level, we now define the USF (ℓ = y)
and the ULF (ℓ = x) as spatially uniform solutions to
Eq. (2.10), i.e.,

f̃(ℓ̃, ṽ, t̃) = f̃(ṽ, t̃). (2.13)

Thus, conservation of mass and momentum implies that
ñ = const and ũ = const. Without loss of generality
we can take ũ = 0. It seems quite natural that periodic

boundary conditions (at ℓ̃ = ±L̃/2) are the appropri-
ate ones to complement the (scaled) Boltzmann equation
(2.10) in order to ensure the consistency with uniform so-
lutions (2.13), i.e.,

f̃(−L̃/2, ṽ, t̃) = f̃(L̃/2, ṽ, t̃). (2.14)

Assuming uniform solutions of Eq. (2.10) and going
back to the original variables, Eqs. (2.11) and (2.12)

yield n(t) = θ̇(t)ñ, u(ℓ, t) = a(t)ℓex, T (t) = T̃ (t̃), and

Pij(t) = θ̇(t)P̃ij(t̃). Therefore, uniform solutions to Eq.
(2.10) map onto USF (ℓ = y) or ULF (ℓ = x) solutions
to Eq. (1.2). The periodic boundary conditions (2.14)
translate into

f

(
− L̃

2θ̇(t)
,v, t

)
= f

(
L̃

2θ̇(t)
,v + a0L̃ex, t

)
. (2.15)

In the case of the USF, these are the well-known Lees–
Edwards’s boundary conditions [71].
While the forms (1.2) and (2.10) of the Boltzmann

equation are fully equivalent, as are the respective bound-
ary conditions (2.15) and (2.14), it is obvious that Eqs.
(2.10) and (2.14) are much simpler to implement in com-
puter simulations than Eqs. (1.2) and (2.15). This is
especially important if one restricts oneself to uniform
solutions of the form (2.13). In that case, Eq. (2.10) be-
comes

∂f̃

∂t̃
− a0

∂

∂ṽx

(
ṽℓf̃
)
= J [f̃ , f̃ ]. (2.16)

The corresponding energy balance equation is

˙̃
T (t̃) = −2a0

dñ
P̃xℓ(t̃)− ζ̃(t̃)T̃ (t̃), (2.17)

where

ζ̃ = − m

dñT̃

∫
dṽ ṽ2J [f̃ , f̃ ]. (2.18)

Note that

ζ(t) = θ̇(t)ζ̃(t̃) (2.19)

and, thus, Eqs. (1.14) and (2.17) are equivalent. Al-

though T = T̃ , in Eq. (2.17) we keep the notation T̃ to
emphasize that here the temperature is seen as a function
of the scaled time t̃.
In cooling situations, i.e., in the USF if ζ > 2|aPxy|/dp,

in the ULF with a0 < 0 if ζ > 2|a|Pxx/dp, or in the ULF
with a0 > 0, the temperature can reach values much
smaller than the initial one, which can cause technical
difficulties (low signal-to-noise ratio) in the simulations.
This is especially important in the ULF with a0 > 0
since no steady state exists and the temperature keeps
decreasing without any lower bound. To manage this
problem, it is convenient to introduce a velocity rescaling
(or thermostat). From a mathematical point of view, let
us perform the additional change of variables

t̂ = ϑ(t̃), v̂ =
ṽ

ϑ̇(t̃)
, (2.20)

f̂(v̂, t̂) =
[
ϑ̇(t̃)

]d
f̃(ṽ, t̃), (2.21)

where so far ϑ(t̃) is an arbitrary (positive definite) proto-
col function. The following identities are straightforward,

[
ϑ̇(t̃)

]d−1 ∂f̃

∂t̃
=

∂f̂

∂t̂
− ϑ̈(t̃)
[
ϑ̇(t̃)

]2
∂

∂v̂

(
v̂f̂
)
, (2.22)

[
ϑ̇(t̃)

]d−1

J [f̃ , f̃ ] = J [f̂ , f̂ ]. (2.23)

Therefore, Eq. (2.16) becomes

∂f̂

∂t̂
− â(t̂)

∂

∂v̂x

(
v̂ℓf̂
)
− µ(t̂)

∂

∂v̂

(
v̂f̂
)
= J [f̂ , f̂ ], (2.24)

where

â(t̂) ≡ a0

ϑ̇(t̃)
, µ(t̂) ≡ ϑ̈(t̃)

[
ϑ̇(t̃)

]2 . (2.25)

The Boltzmann equation [Eq. (2.24)] represents the

action of a nonconservative external force F̂(v̂, t̂) =

−mâ(t̂)v̂ℓex − mµ(t̂)v̂. The relationship between the

granular temperatures defined from f̂ and f̃ , respectively,

is T̂ (t̂) = T̃ (t̃)/
[
ϑ̇(t̃)

]2
. Thus, the thermostat choice

ϑ̇(t̃) ∝
[
T̃ (t̃)

]1/2
keeps the rescaled temperature T̂ (t̂)

constant. While, at a theoretical level, Eq. (2.16) is sim-
pler and more transparent than Eq. (2.24), the latter is
more useful from a computational point of view in cooling
situations.
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B. Rheological functions

In order to characterize the non-Newtonian properties
of the unsteady USF and ULF, it is convenient to intro-
duce generalized transport coefficients.
As is well known, the NS shear viscosity ηNS is defined

through the linear constitutive equation

Pij = pδij − ηNS

(
∇iuj +∇jui −

2

d
∇ · uδij

)
, (2.26)

where we have taken into account that the NS bulk vis-
cosity is zero in the low-density limit [14, 73]. This is
especially relevant in compressible flows like the ULF.
Making use of Eq. (1.1), we define (dimensionless) non-
Newtonian viscosities η∗(a∗) for the USF and the ULF
by the relation

P ∗
ij(a

∗) = δij − η∗(a∗)a∗
(
δixδjℓ + δjxδiℓ −

2

d
δxℓδij

)
.

(2.27)
More specifically, setting ij = xℓ, Eq. (2.27) yields

η∗(a∗) =
δxℓ − P ∗

xℓ(a
∗)

a∗
(
1 + d−2

d δxℓ
) . (2.28)

The rheological function η∗(a∗) differs in the USF from
that in the ULF. In the latter flow it is related to the
normal stress P ∗

xx. In that case, by symmetry, one has
P ∗
xx + (d− 1)P ∗

yy = d, so

P ∗
xx − P ∗

yy = −2η∗(a∗)a∗. (2.29)

Since 0 < P ∗
xx < d, the viscosity η∗(a∗) in the ULF must

be positive definite but upper bounded:

η∗(a∗) <

{
d

2(d−1)a∗
, a∗ > 0,

d
2|a∗| , a∗ < 0.

(2.30)

In contrast, in the USF the viscosity function is related
to the shear stress P ∗

xy,

P ∗
xy = −η∗(a∗)a∗. (2.31)

In this state the normal stress differences are character-
ized by the viscometric functions

Ψ∗
1(a

∗) =
P ∗
yy(a

∗)− P ∗
xx(a

∗)

a∗2
, (2.32)

Ψ∗
2(a

∗) =
P ∗
zz(a

∗)− P ∗
yy(a

∗)

a∗2
. (2.33)

III. KINETIC MODEL AND NONLINEAR

HYDRODYNAMICS

A. Kinetic model

In order to progress on the theoretical understanding
of the USF and the ULF, it is convenient to adopt an

extension of the Bhatnagar–Gross–Krook (BGK) kinetic
model [74], in which the (inelastic) Boltzmann collision
operator J [f, f ] is replaced by a simpler form [75, 76]:

J [f, f ] → −β(α)ν(f − fhcs) +
ζ

2

∂

∂v
· [(v − u)f ]. (3.1)

Here fhcs is the local version of the homogeneous cooling
state distribution [12] and

ν =
8π(d−1)/2

(d+ 2)Γ(d/2)
nσd−1

√
T

m
(3.2)

is a convenient choice for the effective collision frequency.
The factor β(α) can be freely chosen to optimize agree-
ment with the original Boltzmann equation. Although it
is not necessary to fix it in the remainder of this section,
we will take

β(α) =
1

2
(1 + α) (3.3)

at the end [76]. The cooling rate is defined by Eq. (1.11)
but here we will take the expression obtained from the
Maxwellian approximation, namely

ζ =
d+ 2

4d
(1− α2)ν. (3.4)

This is sufficiently accurate from a practical point of view
[55], especially at the level of the simple kinetic model
(3.1).
Using the replacement (3.1), Eq. (2.16) becomes

∂f̃

∂t̃
−a0

∂

∂ṽx

(
ṽℓf̃
)
= −βν̃(f̃ − f̃hcs)+

ζ̃

2

∂

∂ṽ
· (ṽf̃), (3.5)

where ν̃ and ζ̃ are given by Eqs. (3.2) and (3.4), respec-

tively, except for the change n → ñ (recall that T = T̃ ).
Taking second-order velocity moments on both sides of
Eq. (3.5) one gets

˙̃
P ij = −a0

(
P̃jℓδix + P̃iℓδjx

)
− ζ̃ P̃ij −βν̃

(
P̃ij − ñT̃ δij

)
.

(3.6)
From the trace of both sides of Eq. (3.6) we recover
the exact energy balance equation (2.17). The advan-
tage of the BGK-like model kinetic equation (3.5) is that
it allows one to complement Eq. (2.17) with a closed
set of equations for the elements of the pressure tensor
[17, 67]. It is interesting to note that Eq. (3.6), with
β = (1+α)[d+1+(d−1)α]/4d, can also be derived from
the original Boltzmann equation in the Grad approxima-
tion [19, 20, 53].
As discussed in Sec. I [cf. Eq. (1.19)], the relevant quan-

tity is the reduced pressure tensor defined as

P ∗
ij(t̃) =

Pij(t)

n(t)T (t)
=

P̃ij(t̃)

ñT̃ (t̃)
(3.7)
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Combining Eqs. (2.17) and (3.6) we obtain

Ṗ ∗
ij

ν̃
= −a∗

(
P ∗
jℓδix + P ∗

iℓδjx
)
+
2a∗

d
P ∗
ijP

∗
xℓ−β

(
P ∗
ij − δij

)
,

(3.8)
where, according to Eq. (1.16),

a∗(t̃) =
a(t)

ν(t)
=

a0

ν̃(t̃)
(3.9)

is the reduced shear (ℓ = y) or longitudinal (ℓ = x) rate.
Taking ij = xℓ and ij = ℓℓ, Eq. (3.8) yields

Ṗ ∗
xℓ

ν̃
= −a∗ (P ∗

ℓℓ + P ∗
xℓδxℓ) +

2a∗

d
(P ∗

xℓ)
2 − β (P ∗

xℓ − δxℓ) ,

(3.10)

Ṗ ∗
ℓℓ

ν̃
= −2a∗P ∗

ℓℓδxℓ +
2a∗

d
P ∗
ℓℓP

∗
xℓ − β (P ∗

ℓℓ − 1) . (3.11)

Note that Eq. (3.11) is identical to Eq. (3.10) in the ULF
(ℓ = x). Equations (3.10) and (3.11) must be comple-
mented with the evolution equation for a∗. We recall

that ν̃ ∝ T̃ q and a∗ ∝ T̃−q with q = 1
2 . Thus, using Eq.

(2.17) one simply obtains

ȧ∗

ν̃
= qa∗

(
2a∗

d
P ∗
xℓ + ζ∗

)
, (3.12)

where, according to Eq. (3.4),

ζ∗ =
d+ 2

4d
(1− α2). (3.13)

Here we will temporarily view q as a free parameter, so
the solutions to Eqs. (3.10)–(3.12) depend parametrically
on q. The exponent q is directly related to the wide class
of dissipative gases introduced by Ernst et al. [77–79].
Equations (3.10)–(3.12) constitute a closed set of non-

linear equations for {P ∗
xℓ(t̃), P

∗
ℓℓ(t̃), a

∗(t̃)} that can be nu-
merically solved subject to a given initial condition

f̃0(ṽ) ⇒ {P ∗
xℓ,0, P

∗
ℓℓ,0, a

∗
0}. (3.14)

B. Steady state

Setting Ṗ ∗
xℓ = 0, Ṗ ∗

ℓℓ = 0, and ȧ∗ = 0 in Eqs. (3.10)–
(3.12), they become a set of three (USF) or two (ULF)
independent algebraic equations whose solution provides
the steady-state values. In the case of the USF (ℓ = y)
the solution is

|a∗s| =
√

dζ∗

2β
(β + ζ∗), (3.15)

P ∗
xy,s = −

√
dβζ∗

2

sgn(a∗s)

β + ζ∗
, P ∗

yy,s =
β

β + ζ∗
. (3.16)

In contrast, the solution for the ULF (ℓ = x) is

a∗s = −dζ∗

2

β + ζ∗

β + dζ∗
, (3.17)

P ∗
xx,s =

β + dζ∗

β + ζ∗
. (3.18)

Note that the steady-state values are independent of q. A
linear stability analysis in the case of the USF [53] shows
that the steady state, Eqs. (3.15) and (3.16), is indeed a
stable solution of Eqs. (3.10)–(3.12). The proof can be
easily extended to the ULF.

C. Unsteady hydrodynamic solution

In the USF (ℓ = y), Eq. (3.8) implies that (Ṗ ∗
zz −

Ṗ ∗
yy)/ν̃ = (2a∗P ∗

xy/d− β)(P ∗
zz − P ∗

yy). Since, on physical
grounds, a∗P ∗

xy < 0, we conclude that P ∗
zz − P ∗

yy = 0 in
the hydrodynamic regime. Therefore, according to the
kinetic model description, the second viscometric func-
tion identically vanishes, i.e.,

Ψ∗
2(a

∗) = 0. (3.19)

Next, by symmetry, P ∗
xx + P ∗

yy + (d − 2)P ∗
zz = d. This

mathematical identity, combined with P ∗
zz = P ∗

yy, allows
one to rewrite Eq. (2.32) as

Ψ∗
1 = −d

1− P ∗
yy

a∗2
. (3.20)

As sketched in Fig. 1 and described by Eqs. (1.17)
and (1.19), the hydrodynamic solution requires the whole
time dependence of P ∗

ij to be captured through a depen-
dence on a∗ common to every initial state. As a first step
to obtain such a hydrodynamic solution, let us eliminate
time in favor of a∗ in Eqs. (3.10) and (3.11) with the help
of Eq. (3.12), i.e.,

q

(
2a∗

d
P ∗
xℓ + ζ∗

)
∂P ∗

xℓ

∂a∗
= −P ∗

ℓℓ − P ∗
xℓδxℓ +

2

d
(P ∗

xℓ)
2

− β

a∗
(P ∗

xℓ − δxℓ) , (3.21)

q

(
2a∗

d
P ∗
xℓ + ζ∗

)
∂P ∗

ℓℓ

∂a∗
= −2P ∗

ℓℓδxℓ +
2

d
P ∗
ℓℓP

∗
xℓ

− β

a∗
(P ∗

ℓℓ − 1) . (3.22)

This set of two nonlinear coupled differential equations
must be solved in general with the initial conditions stem-
ming from Eq. (3.14), namely

a∗ = a∗0 ⇒ {P ∗
xℓ = P ∗

xℓ,0, P
∗
ℓℓ = P ∗

ℓℓ,0}. (3.23)

Equations (3.21) and (3.22) must be solved in agreement
with the physical direction of time. This means that
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the solutions uncover the region |a∗0| < |a∗| < |a∗s | in
conditions of cooling and the region |a∗0| > |a∗| > |a∗s| in
conditions of heating (see Table I). In the case of the ULF
with a∗0 > 0, one has a∗0 < a∗ < ∞ due to the absence of
steady state. Equations (3.21) and (3.22) describe both
the kinetic and hydrodynamic regimes. In order to isolate
the hydrodynamic solution, one must apply appropriate
boundary conditions [53, 67].
An alternative route to get the hydrodynamic solu-

tion consists of expanding P ∗
xℓ and P ∗

ℓℓ in powers of a∗

(Chapman–Enskog expansion),

P ∗
xℓ(a

∗) = δxℓ +

∞∑

j=1

c
(j)
xℓ a

∗j , P ∗
ℓℓ(a

∗) = 1 +

∞∑

j=1

c
(j)
ℓℓ a

∗j .

(3.24)
Inserting the expansions in both sides of Eqs. (3.21) and

(3.22) one can get the Chapman–Enskog coefficients c
(j)
xℓ

and c
(j)
ℓℓ in a recursive way. The first- and second-order

coefficients are

c
(1)
xℓ = −d+ (d− 2)δxℓ

d(β + qζ∗)
, c

(1)
ℓℓ = c

(1)
xℓ δxℓ, (3.25)

c
(2)
xℓ = c

(2)
ℓℓ δxℓ, (3.26)

c
(2)
ℓℓ = 2

2(d− 1)(d− 2 + q)δxℓ + d(δxℓ − 1)

d2(β + qζ∗)(β + 2qζ∗)
. (3.27)

Equation (3.25) gives NS coefficients, while Eqs. (3.26)
and (3.27) correspond to Burnett coefficients. From Eqs.
(3.24) and (3.25), Eq. (2.28) yields

lim
a∗→0

η∗(a∗) =
1

β + qζ∗
. (3.28)

Thus, the NS viscosity coincides in the USF and in the
ULF, as expected. Regarding the USF first viscometric
function, Eqs. (3.20), (3.24), and (3.27) gives the Burnett
coefficient

lim
a∗→0

Ψ∗
1(a

∗) = − 2

(β + qζ∗)(β + 2qζ∗)
. (3.29)

In general, all the even (odd) coefficients of P ∗
xy (P ∗

yy)
vanish in the USF. In the ULF, however, all the coef-
ficients of P ∗

xx are non-zero. It is interesting to remark
that, in contrast to the elastic case (ζ∗ = 0) [66, 80],
the Chapman–Enskog expansions (3.24) are convergent

[59, 60, 67] if ζ∗ > 0. On the other hand, the radius
of convergence is finite and coincides with the stationary
value |a∗s |.
The series (3.24) clearly correspond to the hydrody-

namic solution since they give P ∗
xℓ and P ∗

ℓℓ as unambigu-
ous functions of a∗, regardless of the details of the initial
conditions (3.23). However, the series have two short-
comings. First, since they diverge for |a∗| > |a∗s|, they do
not provide P ∗

xℓ(a
∗) and P ∗

ℓℓ(a
∗) in a direct way for that

region. Second, even if |a∗| < |a∗s|, closed expressions for
P ∗
xℓ(a

∗) and P ∗
ℓℓ(a

∗) are not possible.
In order to get closed and explicit (albeit approximate)

solutions, we formally take q as a small parameter and
perturb around q = 0 [62, 66],

P ∗
ij(a

∗) = P
∗(0)
ij (a∗) + qP

∗(1)
ij (a∗) + · · · . (3.30)

Setting q = 0 in Eqs. (3.21) and (3.22) one gets

P
∗(0)
xℓ = d

[
δxℓ −

βγℓ(a
∗)

a∗

]
, (3.31)

P
∗(0)
ℓℓ =

1

1 + 2γℓ(a∗)
, (3.32)

where γℓ(a
∗) is the physical solution of a cubic (USF,

ℓ = y) or a quadratic (ULF, ℓ = x) equation:

γy(1 + 2γy)
2 =

a∗2

β2d
, (3.33)

d

(
1− βγx

a∗

)
(1 + 2γx) = 1. (3.34)

The respective solutions are

γy(a
∗) =

2

3
sinh2

[
1

6
cosh−1

(
1 + 27

a∗2

β2d

)]
, (3.35)

γx(a
∗) =

a∗

2β
− 1

4
+

1

2

√(
a∗

β
+

1

2

)2

− 2a∗

βd
. (3.36)

For small |a∗| one has

γy(a
∗) =

a∗2

β2d
+O(a∗4), (3.37)

γx(a
∗) =

d− 1

d

a∗

β

(
1 +

2

d

a∗

β

)
+O(a∗3), (3.38)

so

P
∗(0)
xℓ (a∗) = δxℓ −

d+ (d− 2)δxℓ
βd

a∗ +O(a∗2), (3.39)

in agreement with Eq. (3.25). Furthermore, it is easy to
check that in the steady state [cf. Eqs. (3.15) and (3.17)]
one gets

γy(a
∗
s) =

1

2

ζ∗

β
, (3.40)

γx(a
∗
s) = −d− 1

2

ζ∗

β + dζ∗
, (3.41)
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so Eqs. (3.31) and (3.32) yield Eqs. (3.16) and (3.18), as
expected.

Once P
∗(0)
ij are known, Eqs. (3.21) and (3.22) provide

P
∗(1)
ij . In the USF case (ℓ = y) the results are

P ∗(1)
xy = −P ∗(0)

xy hy(a
∗), (3.42)

P ∗(1)
yy = 6P ∗(0)

yy γy(a
∗)Hy(a

∗), (3.43)

where

hy(a
∗) ≡ [ζ∗/β − 2γy(a

∗)] [1− 6γy(a
∗)]

[1 + 6γy(a∗)]
2 , (3.44)

Hy(a
∗) ≡ ζ∗/β − 2γy(a

∗)

[1 + 6γy(a∗)]
2 , (3.45)

and use has been made of Eq. (3.33) and the relation

∂γy(a
∗)

∂a∗
=

2a∗

β2d

1

[1 + 2γy(a∗)][1 + 6γy(a∗)]
. (3.46)

Analogously, taking into account Eq. (3.34), the final ex-
pression in the ULF case (ℓ = x) is

P ∗(1)
xx = 2P ∗(0)

xx γx(a
∗)hx(a

∗), (3.47)

where

hx(a
∗) ≡ 2a∗/β − 2γx(a

∗) + ζ∗/β

[1− 2a∗/β + 4γx(a∗)]
2 . (3.48)

Note that in the steady state P
∗(1)
ij = 0 both in the

USF and the ULF. This is consistent with the fact that
the steady-state values are independent of q. For small
|a∗|,

P
∗(1)
xℓ (a∗) =

d+ (d− 2)δxℓ
β2d

ζ∗a∗ +O(a∗2), (3.49)

which again agrees with Eq. (3.25).
In principle, it is possible to proceed further and get

the terms of orders q2, q3, . . . , in Eq. (3.30) [66]. How-
ever, for our purposes it is sufficient to retain the linear
terms only.

D. Rheological model

The definitions of the rheological functions (2.28),
(2.32), and (2.33) are independent of any specific model
employed to obtain P ∗

ij(a
∗). Here we make use of the

kinetic model (3.1) and the expansion (3.30) truncated
to first order in q. Next, by means of a Padé approxi-
mant we construct (approximate) explicit expressions for

η∗(a∗). Let us start with the ULF (ℓ = x), in which case
Eqs. (3.31) and (3.47) yield

η∗(a∗) ≈ d

d− 1

γx(a
∗)

a∗[1 + 2γx(a∗)]

1

1 + qhx(a∗)
. (3.50)

Analogously, in the USF case (ℓ = y), Eqs. (3.31), (3.33),
and (3.42) give

η∗(a∗) ≈ 1

β [1 + 2γy(a∗)]
2

1

1 + qhy(a∗)
. (3.51)

Let us analyze now the USF first viscometric function.
Using Eqs. (3.32), (3.33), and (3.43), Eq. (3.20) gives

Ψ∗
1(a

∗) = − 2

β2 [1 + 2γy(a∗)]
3 [1− 3qHy(a

∗)] +O(q2).

(3.52)
Again, it is convenient to construct a Padé approximant
of Ψ∗

1(a
∗). Here we take

Ψ∗
1(a

∗) ≈ − 2

β2 [1 + 2γy(a∗)]
3

1

[1 + qHy(a∗)][1 + 2qHy(a∗)]
.

(3.53)
In principle, one should have written 1+3qHy instead of
(1 + qHy)(1 + 2qHy) in Eq. (3.53), but the form chosen
has the advantage of being consistent with the Burnett
coefficient (3.29) for any q.
In summary, our simplified rheological model consists

of Eq. (3.50), complemented with Eqs. (3.36) and (3.48),
for the ULF and Eqs. (3.51) and (3.53), complemented
with Eqs. (3.35), (3.44), and (3.45), for the USF. Since
we are interested in hard spheres, we must take q = 1

2 in
those equations.
This approximation has a number of important prop-

erties. First, as said in connection with the Chapman–
Enskog expansion (3.24), Eqs. (3.50), (3.51), and (3.53)
qualify as a (non-Newtonian) hydrodynamic description.
Second, in contrast to the full expansions (3.24) and
(3.30), they provide the relevant elements P ∗

xℓ of the pres-
sure tensor as explicit functions of both the shear or lon-
gitudinal rate a∗ and the coefficient of normal restitution
α (through β and ζ∗). Third, as seen from Eq. (3.28),
Eqs. (3.50) and (3.51) agree with the exact NS coeffi-
cients predicted by the kinetic model (3.1) for arbitrary
values of the parameter q; this agreement extends to the
Burnett-order coefficient (3.29). Next, the correct steady-
state values [Eqs. (3.15)–(3.18)] are included in the Padé
approximants (3.50), (3.51), and (3.53). Finally, it can
be checked that the correct asymptotic forms in the limit
|a∗| → ∞ [53, 67] are preserved.
Moreover, even in the physical case of hard spheres

(q = 1
2 ), Eqs. (3.50), (3.51), and (3.53) represent an ex-

cellent analytical approximation to the numerical solu-
tion of the set of Eqs. (3.21) and (3.22) with appropriate
initial conditions [53, 67]. The results for α = 0.5 and
α = 0.9 are presented in Figs. 4 and 5 in the cases of the
USF and the ULF, respectively. We observe a generally
good agreement between the numerical and the simpli-
fied results. This is especially true in the USF, where the
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FIG. 4. (Color online) Shear-rate dependence of (a) the
viscosity function and (b) the first viscometric function for
α = 0.5 and α = 0.9 in the USF with d = 3. The solid lines
have been obtained from numerical solutions of Eqs. (3.21)
and (3.22), while the dashed lines correspond to the simpli-
fied rheological model (3.51) and (3.53). The circles represent
the steady-state values [cf. Eqs. (3.15) and (3.16)]. Note that
the simplified solution deviates practically from the numerical
solution only for the most inelastic system (α = 0.5) and in
the region a∗ < a∗

s .

limitations of the rheological model are only apparent for
the most inelastic system (α = 0.5) and for shear rates
smaller than the steady-state value, the agreement be-
ing better for the viscosity than for the first viscometric
function. In the ULF case the differences are more im-
portant, both for α = 0.5 and α = 0.9, although they are
restricted to longitudinal rates near the maximum and
also to values more negative than that of the maximum.

IV. SIMULATION DETAILS

We have performed DSMC simulations of the three-
dimensional (d = 3) USF and ULF. The details are sim-
ilar to those described elsewhere [55], so here we provide
only some distinctive features.
Since the original Boltzmann equation (1.2) is fully

equivalent to the scaled form (2.10) [with the change of
variables (2.1)–(2.5)], we have solved the latter and have
applied the periodic boundary conditions (2.14). We call
this the “inhomogeneous” problem since the scaled dis-

tribution function f̃(ℓ̃, ṽ, t̃) is, in principle, allowed to de-

pend on the scaled spatial variable ℓ̃. On the other hand,
if one restricts oneself to uniform solutions (2.13), then
Eq. (2.10) reduces to Eq. (2.16). The solution to Eq.
(2.16) by the DSMC method will be referred to as the
“homogeneous” problem. Most of the results that will

-2 -1 0 1 2
0.0

0.5

1.0

1.5

=0.9

=0.5

* (a
* )

a*

FIG. 5. (Color online) Longitudinal-rate dependence of the
viscosity for α = 0.5 and α = 0.9 in the ULF with d = 3. The
solid lines have been obtained from numerical solutions of Eq.
(3.21), while the dashed lines correspond to the simplified
rheological model (3.50). The circles represent the steady-
state values [cf. Eqs. (3.17) and (3.18)].

be presented in Sec. V correspond to the homogeneous
problem.

A wide sample of initial conditions f̃0(ℓ̃, ṽ) has been

considered, as described below. Note that, since θ̇(0) = 1

[cf. Eq. (2.3)], ℓ̃ = ℓ and ṽ = v − a0ℓex at t = 0.

Consequently, ñ0(ℓ̃) = n0(ℓ) and ũ0(ℓ̃) = u0(ℓ) − a0ℓex.
However, for consistency, we will keep the tildes in the
expressions of the initial state. An exception will be the

initial temperature because T̃ = T for all times.
The inhomogeneous problem for the USF was already

analyzed in Ref. [55] and, thus, only the inhomogeneous
problem for the ULF is considered in this paper. The
chosen initial condition is

f̃0(x̃, ṽ) =
ñ0(x̃)

4π

m

3T0
δ
(
|ṽ − ũ0(x̃)| −

√
3T0/m

)
, (4.1)

where δ(x) is Dirac’s distribution and the initial density
and velocity fields are

ñ0(x̃) = 〈ñ〉
(
1 +

1

2
sin

2πx̃

L̃

)
, (4.2)

ũ0(x̃) = a0L̃

(
cos

πx̃

L̃
− 2

π

)
ex, (4.3)

respectively, while the initial temperature T0 is uniform.
In Eq. (4.2) 〈ñ〉 is the density spatially averaged between

x̃ = −L̃/2 and x̃ = L̃/2. This quantity is independent of
time. In our simulations of the inhomogeneous problem
we have taken α = 0.5 for the coefficient of restitution,
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TABLE II. Values of the initial pressure tensor for the four
initial conditions of the class (4.6).

Label φ P̃xx,0 P̃yy,0 P̃zz,0 P̃xy,0

B0 0 2ñT0 0 ñT0 0
B1 π/4 ñT0 ñT0 ñT0 −ñT0

B2 π/2 0 2ñT0 ñT0 0
B3 3π/4 ñT0 ñT0 ñT0 ñT0

a0 = −4/τ0 for the initial longitudinal rate, and L̃ = 2.5λ
for the (scaled) box length. Here,

λ =
1√

2π〈ñ〉σ2
, τ0 =

λ√
2T0/m

(4.4)

are a characteristic mean free path and an initial charac-
teristic collision time, respectively.
As for the homogeneous problem (both for USF and

UFL) two classes of initial conditions have been chosen.
First, we have taken the local equilibrium state (initial
condition A), namely

f̃0(ṽ) = ñ

(
m

2πT0

)3/2

e−mṽ2/2T0 . (4.5)

The other class of initial conditions is of the anisotropic
form

f̃0(ṽ) =
ñ

2

(
m

2πT0

)1/2

e−mṽ2

z
/2T0

× [δ (ṽx − V0 cosφ) δ (ṽy + V0 sinφ)

+δ (ṽx + V0 cosφ) δ (ṽy − V0 sinφ)] , (4.6)

where V0 ≡
√
2T0/m is the initial thermal speed and φ ∈

[0, π] is an angle characterizing each specific condition.
The pressure tensor corresponding to Eq. (4.6) is given

by P̃xx,0 = 2ñT0 cos
2 φ, P̃yy,0 = 2ñT0 sin

2 φ, P̃zz,0 = ñT0,

and P̃xy,0 = −ñT0 sin 2φ. The four values of φ considered
are φ = kπ/4 with k = 0, 1, 2, and 3; we will denote the
respective initial conditions of type (4.6) as B0, B1, B2,
and B3. The values of the elements of the pressure tensor
for these four initial conditions are displayed in Table II.

In the fully developed USF it is expected that P̃xy < 0

(if a > 0) and P̃xx > P̃yy. As we see from Table II,
the four initial conditions are against those inequalities,
especially in the case of condition B3. As for the fully

developed ULF, the physical expectations are P̃xy = 0,

P̃yy = P̃zz, and P̃xx < P̃yy if a0 > 0 and P̃xx > P̃yy if
a0 < 0 [cf. Eq. (2.29)]. Again, none of the four initial
conditions is consistent with those physical expectations,
especially in the case of condition B0 if a0 > 0 and B2 if
a0 < 0. The “artificial” character of the initial conditions
(4.6) represents a stringent test of the scenario depicted
in Fig. 1.

As summarized in Table I, when ζ̃ > 2|a0P̃xy|/3ñT̃ in

the USF or when ζ̃ > −2a0P̃xx/3ñT̃ in the ULF, the tem-
perature decreases with time (cooling states) either with-
out lower bound (ULF with a0 > 0) or until reaching the

steady state (ULF with a0 < 0 and USF). In those cool-
ing states the temperature can decrease so much (relative
to the initial value) that this might create technical prob-
lems (low signal-to-noise ratio), as mentioned at the end
of Sec. II. This can be corrected by the application of a
thermostatting mechanism, as represented by the change

of variables (2.20) and (2.21) with ϑ̇(t̃) ∝
[
T̃ (t̃)

]1/2
.

The DSMC implementation of Eqs. (2.24) and (2.25) is

quite simple. Let us denote by {v̂i(t̂); i = 1, . . . , N} the
(rescaled) velocities of the N simulated particles at time

t̂. The corresponding rescaled temperature and shear (or

longitudinal) rate are T̂ (t̂) and â(t̂), respectively. Dur-

ing the time step δt̂ the velocities change due to the ac-
tion of the (deterministic) nonconservative external force

−mâ(t̂)v̂ℓex and also due to the (stochastic) binary col-

lisions. Let us denote by {v̂′
i(t̂ + δt̂); i = 1, . . . , N} and

by T̂ ′(t̂ + δt̂) the velocities and temperature after this

stage. Thus, the action of the thermostat force −mµ(t̂)v̂

is equivalent to the velocity rescaling v̂′
i(t̂ + δt̂) →

v̂i(t̂+ δt̂) = v̂′
i(t̂ + δt̂)

√
T̂ (t̂)/T̂ ′(t̂+ δt̂), so T̂ ′(t̂+ δt̂) →

T̂ (t̂+ δt̂) = T̂ (t̂). Similarly, the rescaled shear or longitu-

dinal rate is updated as â(t̂+δt̂) = â(t̂)

√
T̂ ′(t̂+ δt̂)/T̂ (t̂),

so â(t̂+ δt̂)/

√
T̂ ′(t̂+ δt̂) = â(t̂)/

√
T̂ (t̂).

For each one of the five initial conditions for the homo-
geneous problem we have considered three coefficients of
restitution: α = 0.5, 0.7, and 0.9. In the case of the USF,
the values taken for the shear rate have been a = 0.01/τ0,
a = 0.1/τ0, a = 4/τ0, and a = 10/τ0. The two first val-
ues (a = 0.01/τ0 and a = 0.1/τ0) are small enough to
correspond to cooling cases, even for the least inelastic
system (α = 0.9), while the other two values (a = 4/τ0
and a = 10/τ0) are large enough to correspond to heat-
ing cases, even for the most inelastic system (α = 0.5).
In the case of the ULF we have chosen a0 = 0.01/τ0,
a0 = −0.01/τ0, and a0 = −10/τ0. The first and second
values correspond to cooling states (without and with a
steady state, respectively), while the third value corre-
sponds to heating states. Therefore, the total number
of independent systems simulated in the homogeneous
problem is 60 for the USF and 45 for the ULF.
The technical parameters of the simulations have been

the following ones: N = 106 simulated particles, an adap-
tive time step δt = 10−3τ0

√
T0/〈T 〉, and a layer thick-

ness (inhomogeneous problem) δx̃ = 0.05λ. Moreover,
in order to improve the statistics, the results have been
averaged over 100 independent realizations.

V. RESULTS

A. USF. Homogeneous problem

We have simulated the Boltzmann equation describing
the homogeneous problem of the USF, i.e., Eq. (2.16)
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with ℓ = y, by means of the DSMC method. As said in
Sec. IV, three coefficients of restitution (α = 0.5, 0.7, and
0.9) and four shear rates (a = 0.01/τ0, 0.1/τ0, 4/τ0, and
10/τ0) have been considered. For each combination of α
and a, five different initial conditions (A and B0–B3) have
been chosen. In the course of the simulations we focus
on the temporal evolution of the elements of the reduced
pressure tensor P ∗

ij , Eq. (3.7), and of the reduced shear
rate a∗, Eq. (3.9). From these quantities one can evaluate
the viscosity η∗, Eq. (2.31), the first viscometric function
Ψ∗

1, Eq. (2.32), and the second viscometric function Ψ∗
2,

Eq. (2.33). The effective collision frequency ν in Eq. (3.9)
is defined by

ν =
p

ηelNS

=
1

1.016

16
√
π

5
nσ2

√
T

m
. (5.1)

The factor 1.016 comes from an elaborate Sonine approx-
imation employed to determine the NS shear viscosity
ηelNS of a gas of elastic hard spheres [14]. For simplicity,
and to be consistent with the approximate character of
the kinetic model (3.1), this factor is not included in Eq.
(3.2).
Note that the initial reduced shear rate is a∗0 =

aτ0/0.8885. Time is monitored through the accumulated
number of collisions per particle, i.e., the total number
of collisions in the system since the initial state, divided
by the total number of particles. The reduced quantities
and the number of collisions per particle are not affected
by the changes of variables discussed in Sec. II.
As a representative case, we first present results for the

most inelastic system (α = 0.5). Figures 6 and 7 show
the evolution of a∗ and η∗ for the cooling states (a =
0.01/τ0 and 0.1/τ0) and the heating states (a = 4/τ0 and
10/τ0), respectively. We clearly observe that after about
30 collisions per particle (cooling states) or 20 collisions
per particle (heating states) both a∗ and η∗ have reached
their stationary values.
Figure 6 shows that, for each value of a, the full tem-

poral evolution of a∗ ∝ T−1/2 is practically independent
of the initial condition, especially in the case a = 0.01/τ0.
This is due to the fact that for these low values of aτ0
the viscous heating term −2aPxy/dn in Eq. (1.14) can be
neglected versus the inelastic cooling term ζT for short
times, so the temperature initially evolves as in the ho-
mogeneous cooling state (decaying practically exponen-
tially with the number of collisions), hardly affected by
the details of the initial state. On the other hand, the
first stage in the evolution of the reduced viscosity η∗ is
widely dependent on the type of initial condition, as ex-

pected from the values of P̃xy,0 shown in Table II. In the
heating cases, Fig. 7 shows that the evolution followed
by both a∗ and η∗ is distinct for each initial condition,
except when the steady state is practically reached.
In any case, the interesting point is whether an un-

steady hydrodynamic regime is established prior to the
steady state. If so, a parametric plot of η∗ versus a∗

must approach a well-defined function η∗(a∗), regardless
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FIG. 6. (Color online) (a) Reduced shear rate a∗ and (b) re-
duced viscosity η∗ versus the number of collisions per particle
for the USF with α = 0.5 in the cooling states a = 0.01/τ0
[blue (dark gray) lines] and a = 0.1/τ0 [orange (light gray)
lines]. The legend refers to the five initial conditions consid-
ered. The dotted horizontal line in panel (a) denotes the value
a∗
h = 0.4 above which the hydrodynamic regime is clearly es-

tablished (see text).
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FIG. 7. (Color online) (a) Reduced shear rate a∗ and (b) re-
duced viscosity η∗ versus the number of collisions per particle
for the USF with α = 0.5 in the heating states a = 4/τ0 [or-
ange (light gray) lines] and a = 10/τ0 [blue (dark gray) lines].
The legend refers to the five initial conditions considered. The
dotted horizontal line in panel (a) denotes the value a∗

h = 1.25
below which the hydrodynamic regime is clearly established
(see text).
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FIG. 8. (Color online) (a) Reduced viscosity η∗, (b) first
viscometric function −Ψ∗

1, and (c) second viscometric func-
tion Ψ∗

2 versus the reduced shear rate a∗ for the USF with
α = 0.5 in the cooling states a = 0.01/τ0 [blue (dark gray)
lines] and a = 0.1/τ0 [orange (light gray) lines]. The legend
refers to the five initial conditions considered. The circles
represent the steady-state points (a∗

s, η
∗
s ), (a∗

s,−Ψ∗
1,s), and

(a∗
s ,Ψ

∗
2,s), respectively. The dotted vertical line denotes the

value a∗
h = 0.4 above which the curves collapse to a common

one.

of the initial condition. Figures 8 and 9 present such a
parametric plot, also for the viscometric functions, for
the cooling and heating states, respectively. We observe
that, for each class of states (either cooling or heating)
, the 10 curves are attracted to a common smooth “uni-
versal” curve, once the kinetic stage (characterized by
strong variations, especially in the case of the second vis-
cometric function for the cooling states) is over. One can
safely say that the hydrodynamic regime extends to the
range 0.4 . a∗ ≤ a∗s for the considered cooling states and
to the range 1.25 & a∗ ≥ a∗s for the considered heating
states. We will denote the above threshold values of a∗

by a∗h. It is expected that a∗h depends on the initial value
a∗0 (apart from a weaker dependence on the details of the
initial distribution); in fact, Figs. 8 and 9 show that the
hydrodynamic regime is reached at a value a∗h < 0.4 by
the states with a = 0.01/τ0 and at a value a∗h > 1.25
by the states with a = 10/τ0. Here, however, we adopt
a rather conservative criterion and take a common value
a∗h = 0.4 for a = 0.01/τ0 and 0.1τ0 and a common value
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FIG. 9. (Color online) (a) Reduced viscosity η∗, (b) first
viscometric function −Ψ∗

1, and (c) second viscometric func-
tion Ψ∗

2 versus the reduced shear rate a∗ for the USF with
α = 0.5 in the heating states a = 10/τ0 [blue (dark gray)
lines] and a = 4/τ0 [orange (light gray) lines]. The legend
refers to the five initial conditions considered. The circles
represent the steady-state points (a∗

s, η
∗
s ), (a∗

s ,−Ψ∗
1,s), and

(a∗
s,Ψ

∗
2,s), respectively. The dotted vertical line denotes the

value a∗
h = 1.25 below which the curves collapse to a common

one.

a∗h = 1.25 for a = 4/τ0 and 10τ0. It is also quite appar-
ent from Figs. 8 and 9 that the collapse to a common
curve takes place earlier for η∗ than for Ψ∗

1, Ψ
∗
2 being the

quantity with the largest “aging” period.

From Fig. 6 it can be seen that the value a∗h = 0.4 is
reached after about 5 collisions per particle in the states
with a = 0.1/τ0 and after about 15 collisions per par-
ticle in the states with a = 0.01/τ0. Similarly, Fig. 7
shows that the value a∗h = 1.25 is reached after about
5 collisions per particle in the states with a = 4/τ0 and
a = 10/τ0. Given that, as said before, the values a∗h = 0.4
and a∗h = 1.25 are conservative estimates, we find that,
as expected, the duration of the kinetic stage is shorter
than the duration of the subsequent hydrodynamic stage,
before the steady state is eventually attained.

We have observed behaviors similar to those of Figs.
6–9 for the other two coefficients of restitution (α = 0.7
and α = 0.9, not shown). Table III gives the values of
a∗h and the duration of the aging and transient periods
for the 12 classes of states analyzed. It turns out that
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TABLE III. This table shows, for each value of the coefficient
of restitution α and each value of aτ0, the duration of the ag-
ing period toward the unsteady hydrodynamic regime and the
total duration of the transient period toward the steady state,
both measured by the number of collisions per particle. The
aging period is defined as the number of collisions per particle
needed to reach a common threshold value a∗

h above (below)
which the hydrodynamic regime is established for the cooling
(heating) states. The table also includes the stationary value
a∗
s of the reduced shear rate.

α a∗
s aτ0 a∗

h Aging period Transient period
0.5 0.92 0.01 0.4 15 30

0.1 0.4 5 20
4 1.25 5 20
10 1.25 5 20

0.7 0.68 0.01 0.35 20 50
0.1 0.35 8 30
4 1 5 30
10 1 5 30

0.9 0.37 0.01 0.2 50 100
0.1 0.2 10 60
4 0.8 5 50
10 0.8 5 50

the number of collisions per particle the system needs to
lose memory of its initial state is practically independent
of α for the heating states. However, the total duration
of the transient period increases with α [58]. In fact,
there is no true steady state in the elastic limit α →
1. Therefore, the less inelastic the system, the smaller
the fraction of the transient period (as measured by the
number of collisions per particle) spent by the heating
states in the kinetic regime. In the cooling cases, both
the aging and the transient periods increase with α.

Figure 10 displays the viscosity η∗(a∗) and the visco-
metric functions −Ψ∗

1(a
∗) and Ψ∗

2(a
∗) for α = 0.5, 0.7,

and 0.9, both for the cooling and the heating states. Here
we have focused on the ranges of a∗ where the hydro-
dynamic regime can safely be assumed to hold, namely
0.4 ≤ a∗ ≤ 1.25 for α = 0.5, 0.35 ≤ a∗ ≤ 1 for α = 0.7,
and 0.2 ≤ a∗ ≤ 0.8 for α = 0.9. The curves describ-
ing the predictions of the simplified rheological model for
η∗, Eq. (3.51), and for Ψ∗

1, Eq. (3.53), are also included.
We can see that the curves corresponding to the cooling
states (a∗ < a∗s) and those corresponding to the heat-
ing states (a∗ > a∗s) smoothly match at the steady-state
point. In the case of the nonlinear viscosity function η∗,
the 10 curves building each branch (cooling or heating)
for each value of α exhibit a very high degree of over-
lapping. Due to fluctuations associated with the normal
stress differences, the common hydrodynamic curves for
the viscometric functions are much more coarse grained,
especially in the case of Ψ∗

2, whose magnitude is at least
10 times smaller than that of Ψ∗

1. The impact of fluctu-
ations is higher in the cooling branches (a∗ < a∗s) than
in the heating branches (a∗ > a∗s). In fact, the definition
of the viscometric functions [see Eqs. (2.32) and (2.33)]
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FIG. 10. (Color online) (a) Reduced viscosity η∗, (b) first
viscometric function −Ψ∗

1, and (c) second viscometric func-
tion Ψ∗

2 versus the reduced shear rate a∗ for the USF with,
from top to bottom, α = 0.5, α = 0.7, and α = 0.9. In
order to focus on the hydrodynamic regime, the curves have
been truncated at the values of a∗

h given by Table III. The
circles represent the steady-state points. The thin solid lines
in panels (a) and (b) represent the predictions of our sim-
plified rheological model, Eqs. (3.51) and (3.53). Note that
the model is unable to predict a non-zero second viscometric
function.

shows that the signal-to-noise ratio is expected to dete-
riorate as the reduced shear rate a∗ decreases. Since η∗,
−Ψ∗

1, and Ψ∗
2 decrease with decreasing inelasticity, the

role played by fluctuations increase as α increases. It is
also interesting to remark that, despite its simplicity and
analytical character, the rheological model described by
Eqs. (3.51) and (3.53) describes very well the nonlinear
dependence of η∗(a∗) and Ψ∗

1(a)
∗. On the other hand,

the simple kinetic model (3.1) does not capture any dif-
ference between the normal stresses Pyy and Pzz in the
hydrodynamic regime and, thus, it predicts a vanishing
second viscometric function [cf. Eq. (3.19)].

Figure 10 strongly supports Eq. (1.19) in the USF, i.e.,
the existence of well-defined hydrodynamic rheological
functions P ∗

ij(a
∗) [or, equivalently, η∗(a∗) and Ψ∗

1,2(a
∗)]

acting as “attractors” in the evolution of the pressure
tensor Pij(t|f0), regardless of the initial preparation f0.
The stronger statement (1.17) (see Fig. 1) is also sup-
ported by the simulation results [58].
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FIG. 11. (Color online) Profiles of (a) density, (b) flow ve-
locity, and (c) temperature in the ULF, starting from the
initial condition of Eqs. (4.1)–(4.3). The curves correspond
to (1) t̃ = 0.046τ0 (≈ 0.03 coll/part), (2) t̃ = 0.158τ0
(≈ 0.29 coll/part), (3) t̃ = 0.306τ0 (≈ 0.72 coll/part), and
(4) t̃ = 0.400τ0 (≈ 1.07 coll/part). The dashed lines repre-
sent the initial profiles.

B. ULF. Inhomogeneous problem

Now we turn to the ULF sketched by Fig. 3. By per-
forming the changes of variables (2.1), (2.4), and (2.5)
(with ℓ = x), we have numerically solved the Boltzmann
equation (2.10) by means of the DSMC method. Al-
though Eq. (2.10) admits homogeneous solutions in the
fully developed ULF [see Eq. (2.13)], it is worth checking
that Eq. (2.10), complemented by the periodic boundary
conditions (2.14), indeed leads an inhomogeneous initial
state toward a (time-dependent) homogeneous state. A
similar test was carried out in the case of the USF in Ref.
[55].

As described in Sec. IV, we have considered the highly
inhomogeneous initial state given by Eqs. (4.1)–(4.3)

with a0 = −4/τ0 and L̃ = 2.5λ, and solved Eq. (2.10) for
a coefficient of restitution α = 0.5. The instantaneous
density, flow velocity, and temperature profiles are plot-
ted in Fig. 11 at four representative times. In order to
decouple the relaxation to a homogeneous state from the
increase of the global temperature (here viscous heating
prevails over inelastic cooling), panel (c) of Fig. 11 dis-

plays the ratio T̃ /〈T̃ 〉, with 〈T̃ 〉 = 〈p̃〉/〈ñ〉, where 〈ñ〉 and
〈p̃〉 are the density and hydrostatic pressure, respectively,
averaged across the system.
We observe that at t̃ = 0.046τ0 the density, velocity,

and temperature profiles are still reminiscent of the initial

fields, except in the region−0.4 . x̃/L̃ . −0.3, where the
density and the temperature present a maximum and the
flow velocity exhibits a local minimum. At t̃ = 0.158τ0
the inhomogeneities are still quite strong, with a widely

depopulated region 0.2 . x̃/L̃ ≤ 0.5 of particles practi-
cally moving with the local mean velocity (which implies

an almost zero temperature). By t̃ = 0.306τ0 the pro-
files have smoothed out significantly. Finally, the system
becomes practically homogeneous at t̃ = 0.400τ0. Thus,
the relaxation to the homogeneous state lasts about 1
collision per particle only. The system keeps evolving
to the steady state, which requires about 20 collisions

per particle. In fact, 〈T̃ 〉 ≃ 58T0 after 1 collision per

particle, while 〈T̃ 〉 ≃ 211T0 in the steady state. Recall

that ũ(x̃, t̃) = 0 translates into u(x, t) = a(t)xex [see Eq.
(2.12)].
It is important to remark that the relaxation to the

ULF geometry observed in Fig. 11 does not discard the
possibility of spatial instabilities for sufficiently large val-

ues of the system size L̃, analogously to what happens in
the USF case [27, 29, 31, 37–39, 81].

C. ULF. Homogeneous problem

Now we restrict to the homogeneous ULF problem.
The homogeneous Boltzmann equation (2.16) wit ℓ = x
has been solved via the DSMC method outlined in Sec.
IV for α = 0.5, 0.7, and 0.9, starting from the initial con-
ditions (4.5) and (4.6) with a0 = −10/τ0, −0.01/τ0, and
0.01/τ0. Note that the B1 initial state becomes B3, and
vice versa, under the change vy → −vy, and so both are
formally equivalent in the ULF geometry. As said before,
a steady state is only possible if a0 < 0. Moreover, the
choices a0 = ±0.01/τ0 correspond to cooling states, while
the choice a0 = −10/τ0 corresponds to heating states. In
the course of the simulations the reduced longitudinal
rate a∗, Eq. (3.9), and the reduced nonlinear viscosity
η∗, Eq. (2.29), are evaluated.
As in the USF case, let us adopt α = 0.5 to illustrate

the behaviors observed. Figure 12 displays the time evo-
lution of |a∗| and η∗ for the 15 simulated states (5 for each
value of a0). The states with negative a0 become station-
ary after about 20 collisions per particle, a value compa-
rable to what we observed in the USF case for α = 0.5
(see Table III). As for the states with a0 = 0.01/τ0, a

∗

monotonically increases and η∗ monotonically decreases
(except for a possible transient stage) without bound. It
is worth noticing that the first stage of evolution (up to
about 7 collisions per particle) of |a∗| and η∗ for the initial
condition B0 (B2) with a0 = −0.01/τ0 is very similar to
those for the initial condition B2 (B0) with a0 = 0.01/τ0.
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FIG. 12. (Color online) (a) Absolute value of the reduced
longitudinal rate |a∗| and (b) reduced viscosity η∗ versus the
number of collisions per particle for the ULF with α = 0.5
in the cooling states a0 = −0.01/τ0 [blue (dark gray) lines]
and a0 = 0.01/τ0 (black lines) and in the heating states a0 =
−10/τ0 [orange (light gray) lines]. The legend refers to the
five initial conditions considered. The dotted horizontal lines
in panel (a) denote the values a∗

h = ±0.08 and a∗
h = −0.4 (see

text).
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FIG. 13. (Color online) Reduced viscosity η∗ versus the ab-
solute value of the reduced longitudinal rate |a∗| for the ULF
with α = 0.5 in the cooling states a0 = −0.01/τ0 [blue (dark
gray) lines] and a0 = 0.01/τ0 (black lines) and in the heating
states a0 = −10/τ0 [orange (dark gray) lines]. The legend
refers to the five initial conditions considered. The circle rep-
resents the steady-state point (|a∗

s |, η
∗
s ). The dotted vertical

lines denote the values a∗
h = ±0.08 and a∗

h = −0.4 (see text).

Eliminating time between a∗ and η∗ one obtains the
parametric plot shown in Fig. 13. In the cooling states
a0 = ±0.01/τ0 we observe that the hydrodynamic regime
is reached at approximately |a∗h| = 0.08. From Fig. 12 we
see that this corresponds to about seven to eight collisions
per particle. The heating states a0 = −10/τ0 deserve
some extra comments. In those cases the time evolution
is so rapid that, strictly speaking, the collapse of the five
curves takes place only for a∗s ≥ a∗ ≥ a∗h = −0.4, which
corresponds to an aging period of about three to four
collisions per particle (see Fig. 12). On the other hand,
it can be clearly seen from Fig. 13 that the three curves
corresponding to the initial states B0, B1, and B3 have
collapsed much earlier and are not distinguishable on the
scale of the figure. It seems that the isotropic local equi-
librium initial state A and the highly artificial anisotropic
initial state B2 require a longer kinetic stage than in the
cases of the initial states B0, B1, and B3. While the rel-
atively slower convergence of the initial condition B2 can
be expected because of its associated “incorrect” negative
viscosity, it seems paradoxical that the local equilibrium
initial condition A also relaxes more slowly than the ini-
tial conditions B1 and B3, the three of them having a
zero initial viscosity. This might be due to the isotropic
character of the local equilibrium distribution, in contrast
to the high anisotropy of conditions B1 and B3. In what
follows we will discard the initial conditions A and B2 for
a0 = −10/τ0 and assume that the states starting from the
initial conditions B0, B1, and B3 have already reached
the hydrodynamic stage for say a∗ ≥ −2. A stricter limi-
tation to a∗ > −0.4 would miss the interesting maximum
of η∗ at a∗ < a∗s predicted by the BGK-like kinetic model
(see Fig. 5). In any case, as observed in Fig. 13, the be-
havior of the curves with a0 = −10/τ0 corresponding to
the initial conditions B2 and, especially, A is very close
to the one corresponding to the initial conditions B0, B1,
and B3.

The analysis for the cases α = 0.7 and 0.9 is similar
to the one for α = 0.5 and, thus, it is omitted here. As
in the USF (see Table III), the main effect of increasing
α is to slow down the dynamics: the steady state (if
a0 < 0) is reached after a larger number of collisions and
the hydrodynamic stage requires a longer period.

The a∗-dependence of η∗ for the three values of α is
shown in Fig. 14, where we have focused on the intervals
−2 ≤ a∗ ≤ a∗s for a0 = −10/τ0 (initial conditions B0, B1,
and B3), −0.08 ≥ a∗ ≥ a∗s for a0 = −0.01/τ0 (initial con-
ditions A and B0–B3), and a∗ ≥ 0.08 for a0 = 0.01/τ0
(initial conditions A and B0–B3). Analogously to the
case of Fig. 10, it can be seen that the heating and cool-
ing branches with negative a0 smoothly match at the
steady state. Moreover, the cooling branch with posi-
tive a0 is a natural continuation of the cooling branch
with negative a0, even though the zero longitudinal rate
a∗ = 0 represents a repeller in the time evolution of both
branches. Figure 14 also includes the predictions of the
rheological model (3.50). The agreement with the sim-
ulation results is quite satisfactory, although the model
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FIG. 14. (Color online) Reduced viscosity η∗ versus the re-
duced longitudinal rate a∗ for the ULF with, from top to
bottom, α = 0.5, α = 0.7, and α = 0.9. The circles represent
the steady-state points. The thin dashed lines represent the
predictions of our simplified rheological model, Eq. (3.50).

tends to underestimate the maxima. This discrepancy is
largely corrected by the true numerical solution of Eq.
(3.21) (see Fig. 5). However, as done in Fig. 10, we pre-
fer to keep the rheological model due to its explicit and
analytical character.

VI. CONCLUSIONS

In this paper we have investigated whether the sce-
nario of aging to hydrodynamics depicted in Fig. 1 for
conventional gases applies to granular gases as well, even
at high dissipation. Here the term hydrodynamics means
that the velocity distribution function, and, hence, the
irreversible fluxes, is a functional of the hydrodynamic
fields (density, flow velocity, and granular temperature)
and, thus, it is not limited to the NS regime. To ad-
dress the problem, we have restricted ourselves to un-
steady states in two classes of flows, the USF and the
ULF (see Figs. 2 and 3). While the USF is an incom-
pressible flow (∇ · u = 0) and the ULF is a compress-
ible one (∇ · u 6= 0), they share some physical features
(uniform density, temperature, and rate of strain ten-
sor) that allow for a unified theoretical framework. Both
flows admit heating states (where viscous heating prevails
over inelastic cooling) and cooling states (where inelastic
cooling overcomes viscous heating), until a steady state
is eventually reached. Moreover, in the ULF with posi-
tive longitudinal rates only “super-cooling” states (where
inelastic cooling adds to “viscous cooling”) are possible
and, thus, no steady state exists.
Two complementary routes have been adopted. First,

the BGK-like model kinetic equation (3.1) has been used
in lieu of the true inelastic Boltzmann equation, which
allows one to derive a closed set of nonlinear first-order
differential equations [cf. Eq. (3.8)] for the temporal evo-
lution of the elements of the pressure tensor. A nu-
merical solution with appropriate initial conditions and
elimination of time between the reduced pressure tensor
P ∗
ij and the reduced rate of strain a∗ provides the non-

Newtonian functions P ∗
ij(a

∗), from which one can con-
struct the viscosity function η∗(a∗) [cf. Eq. (2.28)] and
(only in the USF case) the viscometric functions Ψ∗

1(a
∗)

[cf. Eq. (2.32)] and Ψ∗
2(a

∗) [cf. Eq. (2.33)]. The numerical
task can be avoided at the cost of introducing approxima-
tions. The one we have worked out consists of expanding
the solution in powers of a parameter q measuring the
hardness of the interaction (q = 0 for inelastic Maxwell
particles and q = 1

2 for inelastic hard spheres), truncat-
ing the expansion to first order, and then constructing
Padé approximants. This yields explicit expressions for
the rate of strain dependence of the rheological functions.
In the USF case the viscosity and the first viscometric
functions are given by Eqs. (3.51) and (3.53), respec-
tively, complemented by Eqs. (3.35), (3.44), and (3.45);
the second viscometric function vanishes in the BGK-like
kinetic model (3.1). As for the ULF, only one rheological
function (viscosity) exists and it is given by Eq. (3.50),
complemented by Eqs. (3.36) and (3.48). While one could
improve the approximation by including terms in the q
expansion beyond the first-order one [66], the approx-
imation considered in this paper represents a balanced
compromise between simplicity and accuracy (see Figs. 4
and 5). In fact, the results predicted by the kinetic model
(3.1) and the simplified rheological model described by
Eqs. (3.50), (3.51), and (3.53) share the non-Newtonian
solution for q = 0 as well as the steady-state values and
the values at a∗ = 0 for arbitrary q.

The second, and most important, route has been the
numerical solution of the true Boltzmann equation by the
stochastic DSMC method for three values of the coeffi-
cient of restitution and a wide sample of initial condi-
tions. The most relevant results are summarized in Figs.
10 (USF) and 14 (ULF). Those figures show an excel-
lent degree of overlapping of the rheological functions ob-
tained by starting from the different initial conditions, al-
though the USF viscometric functions may exhibit large
fluctuations. The overlapping takes place after a kinetic
stage lasting about 5 collisions per particle for the heat-
ing states considered and between 5 and 50 collisions per
particle for the cooling states considered (see Table III).
In the latter states the whole dynamics is slowed down
with respect to the heating states, so the increase of the
duration of the kinetic stage is correlated with a similar
increase of the duration of the subsequent hydrodynamic
stage. We have also observed that the characteristic time
periods increase as the inelasticity decreases. Figures 10
and 14 also show that the rheological model, despite its
simplicity, captures reasonably well, even at a quantita-
tive level, the main features of the DSMC results. An
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exception is the USF second viscometric function which,
although about 10 times smaller than the first viscomet-
ric function, is unambiguously nonzero.

In summary, we believe that our results provide strong
extra support to the validity of a hydrodynamic descrip-
tion of granular gases outside the quasielastic limit and
the NS regime. Of course, it is important to bear in
mind that the USF and ULF are special classes of flows
where no density or thermal gradients exist, except dur-
ing the early kinetic stage (see, for instance, Fig. 11).
Thus, the results presented here do not guarantee a pri-

ori the applicability of a non-Newtonian hydrodynamic
approach for a general situation in the presence of den-
sity and thermal gradients. On the other hand, recent

investigations for Couette–Fourier flows [18–20, 82, 83]
nicely complement the study presented in this paper in
favor of a (non-Newtonian) hydrodynamic treatment of
granular gases.
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