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Juan Jesús Ruiz Lorenzo





Agradecimientos

La elaboración de esta tesis doctoral ha sido únicamente posible
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soporte técnico ha sido excelente; gracias en particular a Guillermo
Losilla, Arturo Giner y Fermı́n Serrano. Los desarrolladores de Iber-
civis han hecho un esfuerzo importante en la adaptación y soporte de
nuestra aplicación; gracias en concreto a Alejandro Rivero y David
Benito.
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Caṕıtulo 1

Introducción

Una transición de fase se define como un cambio brusco en la estructura interna
y las propiedades de un sistema debido a variaciones en su entorno. Este entorno
se caracteriza generalmente por cantidades tales como temperatura, presión, cam-
pos electromagnéticos, etc. Los ejemplos más comunes de transiciones de fase son
la transición de ĺıquido a gas, de conductor normal a superconductor, o de mate-
rial paramagnético a ferromagnético. El estudio de las transiciones de fase es de
indiscutible interés tanto teórico como tecnológico.

Los estudios teóricos microscópicos de las transiciones de fase implican el estu-
dio de un fenómeno producido por la interacción simultánea de un número enorme
(∼ 1023) de componentes individuales. Esto forzó el desarrollo de teoŕıas aproxima-
das que proporcionaban soluciones exactas solo en algunos casos simplificados. Un
ejemplo es la teoŕıa de campo medio para transiciones de segundo orden, véase [1]
ó [2], introducida por L. D. Landau al final de la década de 1950. La explicación
más satisfactoria de los fenómenos cŕıticos fue proporcionada por el Grupo de Re-
normalización (GR), en primer lugar intuido por L. P. Kadanoff [3] y finalmente
desarrollado alrededor de 1970 en los importantes art́ıculos de K. G. Wilson [4, 5],
ver [6] para una interesante revisión histórica de los logros del GR.

La transición de fase en un sistema puede ser descrita como una discontinuidad
en las derivadas de su enerǵıa libre respecto a alguna de las variables termodinámicas
y pueden ser clasificadas de acuerdo a esto, utilizando la llamada clasificación de
Ehrenfest. Si la discontinuidad se presenta en la primera derivada, se denomina
transición de fase de primer orden, mientras que si es en la segunda derivada, se
denomina transición de fase de segundo orden.

De forma general, las transiciones de fase de primer orden son casi siempre las
que involucran un calor latente. Durante dichas transiciones, el sistema absorbe o
libera una cantidad fija (y por lo general grande) de enerǵıa. Durante el proceso,
la temperatura del sistema permanece constante conforme se absorbe o se libera
calor. Además, las transiciones de primer orden están asociadas a reǵımenes mixtos
en los que algunas partes del sistema han completado la transición, mientras que
otras no. Un ejemplo t́ıpico de este fenómeno es la coexistencia del régimen de baja
temperatura del agua (hielo) y el de alta temperatura (agua ĺıquida); el agua y el
hielo pueden coexistir (existen los icebergs).
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Caṕıtulo 1. Introducción

Las transiciones de fase de segundo orden son continuas en la primera derivada
de la enerǵıa libre, pero presentan discontinuidades en su segunda derivada. Estas
incluyen la transición a la fase ferromagnética en materiales como el hierro, donde la
magnetización, que es la primera derivada de la enerǵıa libre con respecto a la fuerza
del campo magnético aplicado, aumenta de forma continua desde cero conforme la
temperatura desciende por debajo de la temperatura de Curie. La susceptibilidad
magnética, la segunda derivada de la enerǵıa libre respecto al campo, diverge. Este
tipo de transiciones no tiene calor latente asociado pero presenta longitudes de
correlación infinita. Ejemplos t́ıpicos de transiciones de fase de segundo orden son las
transiciones paramagnética-ferromagnética y conductor-superconductor. Este tipo
de transiciones también se caracteriza por comportamientos en forma de leyes de
potencia en el punto de transición (también llamado punto cŕıtico) con exponentes
no enteros, llamados exponentes cŕıticos1. Los exponentes cŕıticos están relacionados
entre śı por relaciones de hiperescalado – conociendo dos de los exponentes, los otros
pueden ser deducidos. Sistemas muy diferentes pueden compartir exactamente el
mismo conjunto de exponentes cŕıticos y se dice entonces que pertenecen a la misma
Clase de Universalidad (CU). La CU de un sistema se define por propiedades muy
generales tales como la simetŕıa de la interacción microscópica, la dimensionalidad
espacial, o la dimensionalidad del parámetro de orden, ver [8] para una revisión
exhaustiva de las CU más habituales.

La existencia de un parámetro de orden es también caracteŕıstica de las tran-
siciones de fase. Éste puede ser definido como una cantidad que es nula en una de
las fases y no nula en la otra. Refleja el proceso de ruptura de simetŕıa que normal-
mente tiene lugar a través del punto de transición. Por ejemplo, para la transición
paramagneto-ferromagneto un parámetro de orden válido es la magnetización neta
(cero en la fase de alta temperatura y no cero en la de baja temperatura), mientras
que para la transición ĺıquido-gas es la diferencia de densidad de los dos reǵımenes
que coexisten. Otros tipos de transiciones de fase deben ser descritos por parámetros
de orden más complejos.

Simulaciones de Monte Carlo (MC) han resultado ser muy útiles en esta rama
de la Mecánica Estad́ıstica, ver [9] para una revisión de los métodos más populares.
Con ellos, se puede simular la evolución temporal de cada constituyente del sistema
para un determinado Hamiltoniano. En nuestro caso, los sistemas se definen en
redes de dimensionalidad espacial D, con tamaño lineal L y condiciones de contorno
periódicas. En cada nodo de la red se define una variable, llamada esṕın, que toma
ciertos valores (dependientes del modelo) que evolucionan con el tiempo.

Un método de MC puede actualizar o bien un solo esṕın por iteración, como es
el caso del algoritmo de Metrópolis o del de baño térmico [9], o bien un grupo de
espines, como en el caso de los algoritmos de Wolff [10] o de Swendsen-Wang [11].
Estos últimos son llamados métodos de clusters. En las proximidades del punto cŕıti-
co, se produce el llamado Decaimiento Cŕıtico, ver por ejemplo [9]. Los tiempos de

1Seguiremos la nomenclatura habitual (ver por ejemplo [7]) para los exponentes cŕıticos: ν es
el exponente de la longitud de correlación, α es el del calor espećıfico, β el del parámetro de
orden, mientras que ω es el exponente (universal) de correcciones de escala de orden dominante.
Un exponente ligeramente distinto, la dimensión anómala η, se define en Ec. (2.72).
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relajación del parámetro de orden divergen como una potencia de la longitud de co-
rrelación, τ ∼ ξz, siendo z el denominado exponente cŕıtico dinámico. Esto implica
que el tiempo necesario para producir configuraciones estad́ısticamente independien-
tes diverge cerca del punto cŕıtico para un sistema finito como τ ∼ Lz. Los métodos
de MC de actualización de un único esṕın tienen un exponente z & 2. Por lo tanto
es muy complicado obtener datos de alta precisión muy cerca del punto cŕıtico en
sistemas grandes. Por el contrario, se obtiene un comportamiento dinámico mucho
mejor utilizando métodos de MC de actualización de clusters. Con estos últimos,
dependiendo del modelo y de la dimensionalidad, se obtienen valores de z entre 0 y
1 [12]. En este trabajo hemos utilizado casi siempre algoritmos de clusters.

Los métodos de actualización de espines incluyen simulaciones dentro del co-
lectivo canónico (a una temperatura fija) y dentro del colectivo microcanónico (a
enerǵıa fija). Respecto a las simulaciones dentro del colectivo microcanónico, hemos
utilizado un método de simulación microcanónico propuesto recientemente que per-
mite la simulación de sistemas de un tamaño nunca antes alcanzado que realizan
transiciones de fase de primer orden [13].

Incluso con los recursos de computación de hoy en d́ıa, estamos restringidos a
simular sistemas con más de 1015 órdenes de magnitud menos componentes que los
presentes en un sistema macroscópico real (con ∼ 1023 part́ıculas). Lo único que
podemos hacer es simular sistemas con diferentes tamaños y tratar de extrapolar
nuestros resultados al Ĺımite Termodinámico (L → ∞). El estudio del comporta-
miento de escala de los diferentes observables con el tamaño del sistema es llamado
Finite-Size Scaling (FSS) y es fundamental para el estudio de las transiciones de
fase, véase por ejemplo [7]. En este trabajo hemos usado continuamente técnicas
de FFS, además hemos realizado un estudio novedoso del FSS dentro del colectivo
microcanónico, veáse el Caṕıtulo 2.

Nuestro objetivo principal es el estudio de los efectos del desorden sobre las tran-
siciones de fase. En concreto, deseamos estudiar el efecto de las impurezas congeladas
en la transición de material paramagnético a ferromagnético. La presencia de des-
orden aleatorio en un sistema produce muchos fenómenos interesantes y f́ısicamente
relevantes, lo que ha motivado extensos estudios teóricos y experimentales. Los tipos
más caracteŕısticos de sistema con desorden aleatorio son: vidrios de esṕın [14, 15],
sistemas aleatoriamente anisotrópicos [16–18], sistemas diluidos [19–21] y sistemas
con los campos aleatorios [14]. En todos estos casos, existen variables aleatorias que
caracterizan el comportamiento del sistema.

Al modelar un sistema con desorden aleatorio se pueden utilizar dos enfoques
diferentes. Por un lado, se puede considerar que las variables aleatorias están en
equilibrio termodinámico las otras variables dinámicas del sistema. Por lo que las
variables aleatorias también serán “dinámicas”. Este es el llamado desorden annea-
led y debe ser la elección si deseamos modelar un sistema en el que los tiempos
caracteŕısticos de la dinámica del desorden sean comparables con los tiempos carac-
teŕısticos de la dinámica de las variables originales, como seŕıa el caso por ejemplo de
una disolución de dos ĺıquidos. Por otro lado, se puede considerar que las variables
aleatorias no evolucionan en el tiempo, sino que están congeladas. Es el llamado des-
orden congelado. Ésta última es una alternativa perfectamente válida por ejemplo si
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Caṕıtulo 1. Introducción

queremos modelar sistemas magnéticos con impurezas. En este caso, el comporta-
miento magnético se debe a los espines de los electrones no apareados en las capas
atómicas exteriores, mientras que las impurezas son átomos sin electrones no apa-
reados. Se sabe que la dinámica de los electrones es órdenes de magnitud más veloz
que la dinámica de los núcleos de modo que se puede considerar a los átomos de im-
purezas congelados en el tiempo. En Ref. [22] se presenta un análisis más detallado
de esta cuestión. Cuando se considera el desorden congelado se generan diferentes
configuraciones espaciales aleatorias del desorden (llamadas muestras). Los espines
de cada muestra evolucionarán independientemente mientras que las impurezas per-
manecen fijas. Para extraer la información de un determinado observable, en primer
lugar realizamos el promedio de su evolución temporal en el interior de cada muestra
(en lo sucesivo denominado promedio termal y denotado por brackets) y luego rea-
lizamos el promedio de lo anterior entre todas las muestras (denominado promedio
muestral y denotado por un suprarrayado), el promedio doble es entonces denotado
por 〈· · · 〉.

Uno de los resultados de mayor importancia en el estudio de sistemas desordena-
dos es el criterio de Harris [23], véase el Apéndice A. El criterio señala que si el calor
espećıfico en el sistema puro diverge (el exponente cŕıtico αpuro es mayor que cero),
el desorden cambiará el comportamiento cŕıtico del modelo, es decir, aparecerá una
nueva CU. En este caso, se dice que el desorden es relevante. Por el contrario, si el
calor espećıfico no diverge en el sistema puro (αpuro < 0) los exponentes cŕıticos del
sistema desordenado no cambiarán. Es este caso, se dice que el desorden es irrele-
vante. En el presente trabajo recomprobaremos la validez del criterio para el modelo
de Heisenberg tridimensional con dilución por sitios.

Otra cuestión muy interesante que surge cuando se estudian sistemas diluidos
es la cuestión del autopromedio. El valor medio de un observable O en una red de
tamaño lineal L es diferente para cada realización del desorden (en nuestro caso,
para cada distribución espacial de los sitios no magnéticos), por lo que es una varia-
ble estocástica caracterizada por un promedio sobre el desorden O y una varianza

(∆O)2 ≡ O2−O2
. Se dice que un sistema exhibe autopromedio para el observable O

si ∆O/O tiende a cero cuando L→∞. Cuando un sistema diluido no autopromedia
los estudios numéricos se hacen muy dif́ıciles: incluso fijando la temperatura cŕıtica
al valor correcto para L→∞, hacer el sistema más grande no proporciona una gran
mejora estad́ıstica. El autopromedio de las propiedades de los sistemas desordena-
dos genera gran interés, reflejado en numerosos trabajos tanto numéricos [24–26]
como anaĺıticos [27–29]. En esta tesis se estudiará el autopromedio tanto de la sus-
ceptibilidad del modelo de Heisenberg tridimensional, como del calor latente y la
tensión superficial del modelo de Potts tridimensional, ambos modelos con dilución
por sitios.

Hemos estudiado numéricamente varios modelos con desorden aleatorio que pre-
sentaban importantes cuestiones abiertas. Nuestra colaboración ha producido las
publicaciones recogidas en [30–42] aunque en el presente trabajo sólo se presentan
los resultados de las referencias [30–35].

La disposición del resto de esta tesis doctoral es la siguiente. En el Caṕıtulo 2
estudiamos las propiedades de escala, tanto del modelo de Potts puro con cuatro
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estados (Q = 4) en D = 2 como del modelo de Ising puro en D = 3. Estos modelos
realizan transiciones de fase de segundo orden bien conocidas con calores espećıfi-
cos divergentes. Hemos simulado ambos modelos utilizando el método de simulación
microcanónico presentado en [13]. Obtuvimos fuertes evidencias de la bondad de
dicho método a través de la comparación con los resultados más recientes [8,43]. El
Caṕıtulo 3 lo dedicamos al estudio de los efectos de la dilución en un sistema que
realiza una transición de fase de primer orden fuerte: el modelo de Potts tridimen-
sional con Q = 4 y Q = 8 estados. Utilizando el método de simulación comprobado
en el Caṕıtulo 2, fuimos capaces de simular sistemas con más de 106 componentes,
multiplicando por un factor de 100 el número de componentes de los trabajos más
recientes [44–46]. En el Caṕıtulo 4 estudiamos las propiedades de autopromedio del
modelo de Heisenberg tridimensional diluido por sitios, donde existen dos escenarios
en conflicto que afirman que la susceptibilidad es [27] o no es [28] autopromedian-
te. Además obtendremos información acerca de la validez del criterio de Harris. En
el Caṕıtulo 5 exponemos nueva información acerca de los exponentes cŕıticos de
los términos logaŕıtmicos del modelo de Ising en cuatro dimensiones con dilución
por sitios. Hemos logrado discriminar entre cinco diferentes teoŕıas [47–51] median-
te simulaciones numéricas de gran envergadura. Presentamos nuestras conclusiones
generales en el Caṕıtulo 6. También se exponen varios apéndices tratando de am-
pliar la información sobre algunas de las herramientas utilizadas más importantes
o innovadoras. En el Apéndice A explicamos con detalle el criterio de Harris. En
el Apéndice B presentamos brevemente las técnicas populares del FSS, aśı como
el Método de los Cocientes, una técnica que permite el cálculo de los exponente
cŕıticos partiendo de los datos obtenidos en sistemas finitos. En el Apéndice C se
describen dos cuestiones muy importantes para la simulación de sistemas dinámicos
con métodos de MC: los tiempos de autocorrelación y la estimación de errores. El
Apéndice D está dedicado a describir los diferentes métodos para la extrapolación
en temperatura de los resultados obtenidos en una simulación canónica mientras
que en el Apéndice E se describe la obtención de la construcción de Maxwell, muy
útil para el estudio de transiciones de fase de primer orden. En el Apéndice F se
describe el enfoque introducido por Lee y Yang para describir las transiciones de
fase, formulando su importante teorema. También discutimos en este apéndice de
la distribución de los ceros de Lee-Yang sobre el ćırculo unidad. Por último, dedi-
camos el Apéndice G a la descripción de la infraestructura de supercomputación
IBERCIVIS, que ha sido crucial para completar algunas partes de este trabajo.
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Chapter 1

Introduction

A phase transition is defined as a sharp change in the internal structure and prop-
erties of a system due to variations in its environment. This environment is usually
characterised by quantities such as temperature, pressure, electromagnetic fields,
etc. Common examples of phase transitions are the transition from liquid to gas,
from normal conductor to superconductor, and from paramagnet to ferromagnet.
The study of phase transitions is of major interest both theoretically and techno-
logically.

Theoretical microscopic studies of phase transitions involve the study of a phe-
nomenon produced by the simultaneous interaction of an enormous number (∼ 1023)
of individual components. This forced the development of approximate theories that
produce exact solutions only for some simplified cases. An example is the mean-field
theory for second-order phase transitions, see for instance [1] or [2], introduced by
L. D. Landau in the late 1950s. The most satisfying explanation of critical phe-
nomena was provided by the Renormalization Group (RG) picture, first intuited
by L. P. Kadanoff [3] and finally developed around 1970 in the landmark papers of
K. G. Wilson [4, 5], see [6] for an interesting historical review of RG achievements.

A phase transition in a system can be described as a discontinuity in the deriva-
tives of its free energy with respect to some thermodynamic variable, and can be
classified according to this by using the so-called Ehrenfest classification. If the
discontinuity is in the first derivative it is called a first-order phase transition, while
if it is in the second derivative it is called a second-order phase transition.

More generally, first-order phase transitions are usually those involving a latent
heat. During such a transition, the system either absorbs or releases a fixed (and
typically large) amount of energy. During the process, the temperature of the system
remains constant as heat is added or released. In addition, first-order transitions
are associated with mixed-phase regimes in which some parts of the system have
completed the transition while others have not. A typical example of this phe-
nomenon is the coexistence of the low temperature regime of water (ice) and the
high temperature one (liquid water); water and ice can and do coexist (there exist
icebergs).

Second-order phase transitions are continuous in the first derivative but exhibit
discontinuities in a second derivative of the free energy. These include the ferro-
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magnetic phase transition in materials such as iron, where the magnetisation, which
is the first derivative of the free energy with respect to the applied magnetic field
strength, increases continuously from zero as the temperature is lowered below the
Curie temperature. The magnetic susceptibility, the second derivative of the free
energy with respect to the field, diverges. These have no associated latent heats,
but present infinite correlation lengths. Examples of second-order phase transitions
are the paramagnetic-ferromagnetic and the conductor-superconductor transitions.
This kind of transition is also characterised by power-law behaviour at the transi-
tion point (also-called critical point) with non-integer exponents, thus called critical
exponents1. The critical exponents are related to each other by hyperscaling rela-
tions – knowing two of the exponents the others can be deduced. Quite different
systems can share exactly the same set of critical exponents and are said to belong
to the same Universality Class (UC). The UC of a system is defined by very general
properties such as symmetry of the microscopic interaction, dimensionality of the
space, or dimensionality of the order parameter, see [8] for an exhaustive review of
the most usual UC’s.

The existence of an order parameter is also characteristic of phase transitions.
It can be defined as a quantity that is null in one of the phases and non-null in the
other, and reflects the symmetry-breaking process that usually takes place across
the transition point. For example, for the ferromagnetic-paramagnetic transition a
valid order parameter is the net magnetisation (zero in the high temperature phase
and non-zero in the low-temperature one), while for the liquid-gas transition it is
the density difference of the two co-existing regimes. Other kinds of phase transition
must be described by more complex order parameters.

Monte Carlo (MC) simulations have proved very useful in this branch of Statisti-
cal Mechanics, see [9] for a review of the most popular methods. With them, one can
simulate the evolution in time of each constituent of the system for a given Hamil-
tonian. In our case the systems are defined on lattices of spatial dimensionality D,
with linear size L and periodic boundary conditions. On each node of the lattice we
define a variable, called spin, that takes on values (depending on the model) that
evolve in time.

An MC spin update method can change either just one spin per iteration, as
is the case of the Metropolis or heat-bath algorithms [9], or a cluster of spins, as
is the case of the Wolff [10] and Swendsen-Wang [11] algorithms. The latter are
thus called cluster methods. At the critical point is presented the so-called Critical
Slowing Down, see for example [9]. The relaxation time of the order parameter
diverges as a power of the correlation length, τ ∼ ξz, with z being the dynamic
critical exponent. This roughly implies that the time needed to produce statistically
independent configurations diverges at the critical point for a finite system as τ ∼ Lz.
Single-spin MC update methods have an exponent z & 2. Therefore is very hard to
obtain high-precision data very close to the critical point on large systems. However,

1We follow the standard terminology (see e.g [7]) for the critical exponents: ν is the exponent
for the correlation length, α that of the specific heat, β that of the order parameter, while ω
is the (universal) leading-order scaling-corrections exponent. A slightly different exponent, the
anomalous dimension η, is defined in Eq. (2.72).
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cluster MC update methods produce a much better dynamic behaviour. Depending
on the model and dimensionality, cluster methods have z values between 0 and 1 [12].
In this work we have used basically cluster methods.

Spin update methods include simulations within the canonical ensemble (at fixed
temperatures) and within the microcanonical ensemble (at fixed energies). With
respect to simulations in the microcanonical ensemble, we have exploited a recently
proposed microcanonical simulation method that allows the simulation of systems
with a size never reached before that undergo first-order phase transitions [13].

Even with today’s computing resources, we are restricted to simulating systems
with more than 1015 orders of magnitude fewer components than the real macro-
scopic system (with ∼ 1023 particles). The only thing we can do is to simulate sys-
tems with different sizes and try to extrapolate the results to the Thermodynamic
Limit (L → ∞). The study of the scaling behaviour of the different observables
with system size is called Finite-Size Scaling (FSS) and is fundamental for the study
of phase transitions, see for example [7]. In this work we have continually used FSS
techniques, as well as performing a novel study of FSS within the microcanonical
ensemble, see Chap. 2.

Our main objective is the study of the effects of disorder in phase transitions. In
particular, we study the effect of quenched impurities on the paramagnet-ferromagnet
transition. The presence of random disorder in a system produces many interesting
and physically relevant phenomena which have motivated extensive theoretical and
experimental studies. The most typical types of system with random disorder are:
spin glasses [14, 15], random anisotropic systems [16–18], dilute systems [19–21],
and systems with random fields [14]. In all these cases there exist random variables
characterising the behaviour of the system.

When modelling a randomly disordered system one can use either of two ap-
proaches. On the one hand, one can consider the random variables in thermody-
namic equilibrium with the other dynamic variables of the system. Thus the random
variables will also be “dynamic”. This is the so-called annealed disorder and should
be the choice if we model a system in which the characteristic times for the dynamics
of the disorder are comparable with the characteristic time of the original dynamic
variables, as would be the case for example of a solution of two liquids. On the
other hand, one can consider that the random variables do not evolve in time, but
are frozen. This is the so-called quenched disorder. The latter is a perfectly valid
alternative for example if we want to model magnetic systems with impurities. In
this case the magnetic behaviour is due to the spins of the unpaired electrons in the
outer atomic shells while the impurities are whole atoms with no unpaired electrons.
It is known that the dynamics of the electrons is orders of magnitude faster than
the dynamics of the nuclei, so that we can perfectly consider the impurity atoms
as frozen in time. In Ref. [22] there is presented a more detailed discussion of this
issue. When considering quenched disorder we will generate different random spatial
configurations of the disorder (called samples). Within each sample the spins evolve
independently but the disorder is fixed. To extract information of a given observ-
able, first we perform the average of its temporal evolution within each sample (in
the following called thermal average and denoted by angle brackets) and afterwards
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Chapter 1. Introduction

we perform the sample average (denoted by an overline), the double average is then
denoted by 〈· · · 〉.

One of the main results in disordered systems is the Harris criterion [23], see
Appendix A. It states that if the specific heat diverges in the pure system (the
critical exponent, αpure, is greater than zero), the disorder will change the critical
behaviour of the model, i.e a new UC will appear. In this case it is said that the
disorder is relevant. Conversely, if the specific heat does not diverge in the pure
system (αpure < 0) the critical exponents of the disordered system will not change.
In this case it is said that the disorder is irrelevant. We will recheck in the present
work the validity of the criterion for the three-dimensional site-diluted Heisenberg
model.

Another very interesting question arising when studying dilute systems is the
issue of self-averaging. The mean value of a quantity O on a lattice of linear size L is
different for each realization of the disorder (in our case, for each spatial distribution
of the non-magnetic sites). Therefore it is a stochastic variable characterised by an

average over the disorder O and a variance (∆O)2 ≡ O2 − O2
. It is said that a

system is self-averaging for the quantity O if ∆O/O goes to zero when L → ∞.
When a dilute system is not self-averaging, numerical studies become very difficult:
even fixing the critical temperature to the correct value for L −→ ∞ making the
system larger does not much improve the statistics. The self-averaging properties
of disordered systems have generated much interest, reflected in numerous works
both numerical [24–26] and analytical [27–29]. In this work we will study the self-
averaging properties both of the susceptibility of the three-dimensional site-diluted
Heisenberg model and of the latent heat and surface tension of the three-dimensional
site-diluted Potts model.

We have numerically studied randomly disordered models presenting important
open issues. Our collaboration has produced the papers of Refs. [30–42], although
in the present work we only present the results of Refs. [30–35].

The organisation of the rest of this PhD thesis is as follows. In Chapter 2 we
study the scaling properties both of the four-state (Q = 4) pure Potts model in
D = 2 and of the pure Ising model in D = 3. These models undergo well-known
second-order phase transitions with diverging specific heats. We have simulated
them using the microcanonical simulation method presented in [13] obtaining strong
evidence for the goodness of our approach by comparing it with the most recent
results [8,43]. Chapter 3 is devoted to the study of the effects of dilution on a system
performing a strong first-order phase transition: the three-dimensional Potts model
with Q = 4 and Q = 8 states. Using the simulation method studied in Chapter 2,
we will be able to simulate systems with more than 106 components, multiplying by
a factor of 100 the number of components reached in the most recent work [44–46].
In Chapter 4 we study the self-averaging properties of the three-dimensional site-
diluted Heisenberg model, where there exist two conflicting results stating that the
susceptibility is [27] or is not [28] a self-averaging quantity. We will also obtain
information about the validity of the Harris criterion. In Chapter 5 we report
novel information about the critical exponents of the logarithmic terms of the four-
dimensional site-diluted Ising model, we try to discriminate between five different
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theories [47–51] by using high-statistics MC simulations. We present our conclusions
in Chapter 6. We also present some appendices with the aim of extending some of
the most important or innovative tools used. In Appendix A we explain in detail the
Harris criterion. In Appendix B we briefly present the popular FSS techniques and
the Quotient Method, a technique that allows the computation of critical exponents
from data obtained in finite systems. In Appendix C we describe two important
issues when simulating dynamical systems with MC methods – autocorrelation times
and error estimates. Appendix D is devoted to describing the different methods to
temperature-extrapolate the results obtained in a canonical MC simulation, and
Appendix E describes the derivation of the Maxwell construction, which is very
useful in the study of first-order phase transitions. In Appendix F we describe
the approach introduced by Lee and Yang to describe phase transitions, formulating
their landmark theorem. We also discuss in this appendix the distribution of the LY-
zeros on the unit circle. Finally Appendix G describes the IBERCIVIS computing
infrastructure, which has been crucial for the completion of some parts of this work.
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Chapter 2

Microcanonical Finite-Size Scaling

2.1 Introduction

The canonical ensemble enjoys a predominating position in Theoretical Physics due
to its many technical advantages (convex effective potential in finite systems, eas-
ily derived fluctuation-dissipation theorems, etc.). This somewhat arbitrary choice
of ensemble is justified by the ensemble equivalence property, which holds in the
Thermodynamic Limit (TL) for systems with short-range interactions.

However, in spite of this long-standing bias in favour of the canonical ensemble,
the canonical analysis of phase transitions is not simpler. The advantages of mi-
crocanonical analyses of first-order phase transitions have long been known [13,52],
and indeed become overwhelming in the study of disordered systems [31]. Further-
more, the current interest in mesoscopic or even nanoscopic systems, where ensemble
equivalence does not hold, provides ample motivation to study other statistical en-
sembles, in particular the microcanonical ensemble [53]. Besides, microcanonical
Monte Carlo [54] is now as simple and efficient as its canonical counterpart (even
microcanonical cluster algorithms are available [13]). Under such circumstances, it
is of interest to extend Finite-Size Scaling (FSS) [7, 55–57] to the microcanonical
framework for systems undergoing a continuous phase transition.

The relation between the microcanonical and the canonical critical behaviour is
well understood only in the TL. A global constraint modifies the critical exponents,
but only if the specific heat of the unconstrained system diverges with a positive
critical exponent α > 0 [58] (however, see [59]). This fact is explained in detail
in Sec. 2.2.1. The modification of the critical exponents, termed Fisher renormal-
ization, is very simple. Let L be the system size, and consider an observable O
(for instance, the susceptibility) whose diverging behaviour in the infinite-volume
canonical system is governed by the critical exponent xO

〈O〉canonical
L=∞,T ∝ |t|−xO , t =

T − Tc

Tc
. (2.1)

Now, let e be the internal energy density and ec = 〈e〉canonical
L=∞,Tc

. Consider the micro-
canonical expectation value of the same observable O in Eq. (2.1), but now at fixed
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energy e. The scaling behaviour (2.1) translates to 1

〈O〉L=∞,e ∝ |e− ec|−xO,m , xO,m =
xO

1− α . (2.2)

We will denote the microcanonical exponents with the subindex “m”. Hence, the
Fisher renormalization of the correlation length exponent ν, is ν → νm = ν/(1−α),
that of the order parameter exponent is β → βm = β/(1 − α), etc. On the other
hand, the anomalous dimension, defined in Eq. (2.72), is invariant under Fisher
renormalization [58], i.e. η = ηm . See also [60] for a recent extension of Fisher
renormalization to the case of logarithmic scaling corrections.

As for systems of finite size, the microcanonical FSS [61–63] is at the level of
an ansatz. This ansatz is obtained from the canonical one merely by replacing the
free-energy density by the entropy density, and using Fisher renormalised critical
exponents. The microcanonical ansatz reproduces the canonical one [64], and has
been the subject of some numerical testing [63,65]. Furthermore, systems undergoing
Fisher renormalization (due to some global constraint other than the energy) do seem
to obey FSS as well [66].

A difficulty lies in the fact that the current forms of the microcanonical FSS
ansatz (FSSA) [61–63] are in a somewhat old-fashioned form. Indeed, they are
formulated in terms of quantities such as ec or the critical exponents, which are
not accessible in the absence of an analytical solution. In this respect, a great
step forward was achieved in a canonical context [67] when it was realized that the
finite-lattice correlation length [68] allows one to formulate the FSSA in terms of
quantities computable in a finite-lattice. This formulation made it practical to ex-
tend Nightingale’s phenomenological renormalization [69] to space dimensions D > 2
(the so-called quotient method [70]).

Here, we will extend the microcanonical FSSA to a modern form, allowing us
to use the quotient method. We will test numerically this extended FSSA in two
models with α > 0, hence undergoing non-trivial Fisher renormalization, namely

1In the particular case of the fixed-energy constraint, Eq. (2.2) follows from (2.1) and from the
ensemble equivalence property

〈O〉L=∞,e = 〈O〉canonical
L=∞,T , if e = 〈e〉canonical

L=∞,T .

Indeed, it suffices to notice that (C(T ) is the canonical specific heat, C ∝ |t|−α),

e− ec =

∫ T

Tc

dT C(T ) ∝ |t|1−α =⇒ |t| ∝ |e− ec|
1

1−α .

The only exponent whose renormalization is not clear at this point, is α itself, for the energy is
not a dynamical variable but a parameter in this ensemble. If one chooses to define αm as the
critical exponent corresponding to dt/de, the correspondence with Fisher renormalization, αm =
−α/(1−α) becomes complete. In fact, see concluding paragraph in Sect. 2.2.2, the microcanonical
dt/de behaves as the canonical 1/[de/dt] . Note that in the above expressions we disregarded
subdominant terms such as the contribution of the analytical background in the specific heat.
Such terms are subdominant only if α > 0. In case α were negative, the asymptotic dominance is
different. The specific heat at Tc is dominated by the analytical background. As a consequence
|t| ∼ |e− ec| and none of the exponents (not even α) gets renormalised.
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the D = 3 ferromagnetic Ising model, and the D = 2 four-state ferromagnetic Potts
model. The Potts model has the added interest of undergoing, in its canonical form,
quite strong logarithmic corrections to scaling that are nevertheless under relatively
strong analytical control [43]. It will therefore be quite a challenge to control the
logarithmic corrections in the microcanonical setting.

2.2 Analytical Framework

2.2.1 Fisher Renormalization of Critical Exponents

In 1976, an important paper of M. E. Fisher [58] established a set of elegant rela-
tionships describing the effects of constrained hidden variables on the critical ex-
ponents. The original theory was developed to explain the significant deviations of
the theoretical predictions (basically from the Ising model) from the experimental
measurements of critical exponents. These deviations were attributed to some extra
“hidden” degrees of freedom, present in the real system but not in the oversimplified
ideal theoretical model. Models (like Ising or Potts) are somewhat gross idealisa-
tions of real fluids or magnets, and can be said to lack sufficient internal degrees
of freedom. In addition, some experiments are unavoidably different from the ideal
system, for example due to the presence of defects or impurities (such as quenched
magnetic impurities or non-uniform isotopic composition).

Apart from the exactly soluble models introduced in the original work [58], the
formalism introduced by Fisher has provided explanations of numerous phenomena
and behaviours, both theoretical and experimental. To cite some examples, there
are studies of the phase transition of constrained uniaxial dipolar ferromagnets [71]
and of the random-field antiferromagnet with competing interactions [72], efforts
made to distinguish between the Random Field Ising Model (RFIM) and the Dilute
Antiferromagnetic Model (DAFM) under an applied field [73], and the study of the
tricritical point of the Blume-Capel model in three dimensions [74] related with the
superfluid λ transition in 3He-4He mixtures in confined films [75]. We would also
point to the agreement of Fisher theory with the results for compressible systems,
theoretically for both the Ising [77] and the φ4 [78] models and experimentally for
ammonium chloride at high pressures [79], see also [76] for a study of the tricritical
point in compressible systems.

The situation was described as follows: firstly, there is an “ideal” system with
known variables characterised by the ideal critical exponents α, β, γ, . . .; secondly,
the “real” system has some “hidden” degrees of freedom which fluctuate but remain
in equilibrium with the known variables; finally, the hidden variables are subject to
some form of constraint (for example, the total number of impurity atoms must re-
main fixed). The critical exponents of the real system are denoted by αX , βX , γX, . . .

In the following we will describe the relationships between the two sets of critical
exponents (now called Fisher renormalization), following in some points the recent
work of Kenna et al. [60] in which there also can be found the corresponding set of re-
lationships for the logarithmic correction exponents. We will focus the discussion on
describing the temperature transition in a ferromagnet at the Curie point, although
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the results are perfectly valid for other kinds of phase transitions (antiferromagnets,
gas-liquid transitions, binary fluids, etc.).

The starting point is the description of the ideal system in terms of the free
energy:

f = f0(t, h) , (2.3)

where t = (T − Tc)/Tc is the reduced temperature and h is the “field”. The field
is related in general with the order parameter, σ, describing the transition under
study through

σ = σ(t, h) = −
(
∂f

∂h

)

t

, (2.4)

that in the ideal case becomes

σ = σ0(t, h) = −
(
∂f0

∂h

)

t

. (2.5)

The order parameter can be the magnetisation in a ferromagnet, the sublattice
magnetisation in an antiferromagnet, the density in a gas-liquid transition, etc. The
ideal system will undergo a phase transition at T 0

c . Thus below this temperature
there will be a non-vanishing order parameter (spontaneous magnetisation)

∆σ0 = lim
h→0+

1

2
[σ0(t, h)− σ0(t,−h)] , (2.6)

which vanishes at the critical point as:

∆σ0 ∼ |t|β , (t→ 0−) . (2.7)

The second field derivative is also described by its corresponding critical exponent

χ0(t) = lim
h→0

(
∂σ0

∂h

)

t

∼ |t|−γ , (t→ 0) . (2.8)

Finally the critical behaviour of the specific heat

c0(t) ∼ |t|−α , (t→ 0) , (2.9)

means that, in the absence of a field, the ideal free energy behaves for small t as

f0(t, 0) = A0± +A1±|t|+A2±|t|2 + B±|t|2−α +O(|t|3) , (2.10)

where the ± depends on the sign of t.
We assume that the real system is derived from the ideal system by the intro-

duction of a new “hidden” thermodynamic variable x which is the conjugate of a
force u, such that the thermodynamic potential becomes f = f(t, h, u), with

x(t, h, u) =

(
∂f

∂u

)

t,h

. (2.11)
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The constraint in the hidden variable is written as

x(t, h, u) = X(t, h, u) , (2.12)

where X(t, h, u) is assumed to be an analytical function. Let us introduce the basic
hypothesis (suggested in part by the analytical results of some soluble models [58])
that the free energy of the constrained system can be written in terms of the ideal
free energy f0 as

f(t, h, u) = f0(t
∗(t, h, u), h∗(t, h, u)) + g(t, h, u) , (2.13)

where t∗, h∗, and g are analytic functions of their arguments. I.e., we assume that
the total free energy consists of a “regular background” contribution g(t, h, u) plus
a “singular contribution” derived from the ideal free energy f0(t, h) by a smooth
transformation of the temperature, t, and the field, h, to the modified versions t∗

and h∗. Furthermore, the transition must remain ideal if observed at fixed force u,
and the ideal free energy f0(t, h) is recovered when u = 0.

To simplify the discussion we assume that the hidden degrees of freedom are
neutral in the sense that they do not bias the value of the external field at the
transition. I.e., the transition still occurs at h = 0 and

h∗(t, h, u) = hJ (t, h, u) . (2.14)

With the previous assumptions, one can obtain from Eqs. (2.6), (2.13), and (2.14)
that the order parameter of the constrained system behaves as

∆σ = ∆σ0(t
∗(t, 0, u))J (t, 0, u) , (2.15)

where we have made use of the continuity of all the analytical functions for h → 0
including the internal energy of the ideal system, e0 = ∂f0/∂t.

We can calculate the internal energy for zero field using Eq. (2.10) as

e0(t, 0) =
∂f0(t, 0)

∂t
= A0 + A|t|+B|t|1−α + · · · , (2.16)

with A0 = ±A1±, A1 = 2A2± and B = ±(2 − α)B± and where · · · represents
higher-order terms.

We can also obtain from Eqs. (2.11) and (2.13) for h→ 0

x(t, 0, u) =
∂f(t, 0, u)

∂u
=
∂f

∂t∗
∂t∗

∂u
+
∂f

∂h∗
∂h∗

∂u
+
∂g

∂u
(2.17)

= e0(t
∗, 0)

∂t∗(t, 0, u)

∂u
+
∂g(t, 0, u)

∂u
, (2.18)

where we used the fact that

∂h∗

∂u
= h

∂J
∂u

= O(h) . (2.19)
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Provided that t∗ is a smooth function, it can be expanded for h = 0 around the
real critical point T = Tc and u = uc,

t∗(t, 0, u) = a1µ+ a2τ + · · · , (2.20)

with µ = u − uc and τ = T − Tc. The absence of constant terms in the above
expansion is due to Eq. (2.15) because ∆σ(t∗(tc, 0, uc)) = 0 fixes the temperature in
the constrained system so that t∗(tc, 0, uc) = 0.

Then to first order
∂t∗(t, 0, u)

∂u
= a1 + · · · , (2.21)

which inserted into Eq. (2.18) with Eq. (2.16) gives

x(t, 0, u) = a1A0 + a1A|t∗|+ a1B|t∗|1−α +
∂g(t, 0, u)

∂u
+ · · · . (2.22)

We can also expand the constraint, Eq. (2.15), about the real critical point u = uc

and T = Tc

X(t, 0, u) = X(tc, 0, uc) + d1µ+ d2τ + · · · . (2.23)

In addition, from Eq. (2.20)

µ =
1

a1

t∗(t, 0, u)− a2

a1

τ + · · · . (2.24)

Using the above equation, we can insert Eqs. (2.22) and (2.23) into (2.12) to obtain
the main result

a2
1(A|t∗|+B|t∗|1−α) = d1t

∗ + (a1d2 − d1a2)τ . (2.25)

If α < 0, the regular term dominates and |t∗| ∝ |τ |, resulting in the absence of
Fisher renormalization, in which case the critical exponents of the transition remain
unchanged. On the contrary, if α > 0, one obtains the central result

|t∗| ∝ |τ |1/(1−α) . (2.26)

That means that a deviation from the critical point of τ in the real system is equiva-
lent to a deviation t∗ in the ideal system, these deviations being related by Eq. (2.26).
Then the real system approaches the transition more slowly than the ideal one. The
internal energy of the real system for h = 0 is

e(t, 0, u) =
∂f(t, 0, u)

∂t
= e0(t

∗, 0)
∂t∗(t, 0, u)

∂t
+
∂g(t, 0, u)

∂t
(2.27)

= (A0 + A|t∗|+B|t∗|1−α)∂t
∗(t, 0, u)

∂t
+
∂g(t, 0, u)

∂t
(2.28)

= (A0 + A|τ |1/(1−α) +B|τ |)∂t
∗(t, 0, u)

∂t
+
∂g(t, 0, u)

∂t
, (2.29)
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where the only possible singular contributions to the specific heat stem from the
terms within parentheses. The specific heat of the constrained system is then

c(t, 0, u) =
∂e(t, 0, u)

∂t
∼ |τ |α/(1−α) , (2.30)

and therefore the singular behaviour of the specific heat has been replaced for a
cusp-like one, i.e., it remains finite due to the presence of the constrained hidden
variable. Then the Fisher renormalization for the exponent of the specific heat is

αX = − α

1− α . (2.31)

We can obtain analogously the renormalization for other critical exponent as:

σ ∼ |t∗|β ∼ |τ |β/(1−α) , βX =
β

1− α , (2.32)

χ ∼ |t∗|−γ ∼ |τ |−γ/(1−α) , γX =
γ

1− α , (2.33)

ξ ∼ |t∗|−ν ∼ |τ |−ν/(1−α) , νX =
ν

1− α . (2.34)

The critical exponent η is defined at just the critical point and therefore is invariant 2

ηX = η . (2.35)

If the standard power-law scaling behaviour of the main quantities is modified
by multiplicative logarithmic correction, i.e,

c0(t) ∼ |t|−α| log |t||α̂ , (2.36)

m0(t) ∼ |t|β| log |t||β̂ for t < 0 , (2.37)

χ0(t) ∼ |t|−γ| log |t||γ̂ , (2.38)

ξ0(t) ∼ |t|−ν | log |t||ν̂ , (2.39)

m0(h) ∼ |h| 1δ | log |h||δ̂ for t = 0 , (2.40)

G0(x, t) ∼ x−(D−2+η)(log x)η̂G

(
x

ξ(t)

)
for t≪ 1 , (2.41)

then Eq. (2.10) is naively changed to give:

f0(t, 0) = A0±+A1±|t|+A2±|t|2+O(|t|3)+B±|t|2−α| log |t||α̂
{

1 +O
(

log | log |t||
log |t|

)}
.

(2.42)
And therefore it can be obtained the equivalent of Eq. (2.25) for the logarithmic
case

a2
1(A|t∗|+B|t∗|1−α| log |t∗||α̂) = d1t

∗ + (a1d2 − d1a2)τ . (2.43)

The above equation produces the following results:

2This can also be obtained from the scaling relationship (2−η)ν = γ. If ν and γ are renormalised,
η remains unchanged.

27



Chapter 2. Microcanonical Finite-Size Scaling

• If α < 0, or α = 0 and α̂ < 0, the regular term dominates and |t∗| ∝ |τ |,
leading to the absence of Fisher renormalization.

• If α > 0, or α = 0 and α̂ > 0, one obtains the modified central result

|t∗| ∝ |τ |1/(1−α)| log |τ ||−α̂/(1−α) , (2.44)

which produces the renormalization of the individual exponents of the loga-
rithms:

α̂X = − α̂

1− α , (2.45)

β̂X = β̂ − βα̂

1− α , (2.46)

γ̂X = γ̂ +
γα̂

1− α , (2.47)

ν̂X = ν̂ +
να̂

1− α . (2.48)

Again, no renormalization takes place for the exponents η̂X = η̂ and δ̂X = δ̂ .

2.2.2 The Microcanonical Ensemble

The first step in the construction of the ensemble is an extension of the configuration
space. We add N(= LD) real momenta, pi, to our N original variables, σi (named
spins here) [13,54]. Note that this extended configuration, {σi, pi}, appears in many
numerical schemes (consider, for instance, Hybrid Monte Carlo [80] simulations in
Lattice Gauge Theory). We shall work in the microcanonical ensemble for the {σi, pi}
system.

Let U be the original spin Hamiltonian (i.e., Eq. (2.82) in our case). Our total
energy is 3

E =

N∑

i=1

p2
i

2
+ U (e ≡ E/N , u ≡ U/N) . (2.49)

The momenta contribution,

Nκ ≡
N∑

i=1

p2
i

2
, (2.50)

is necessarily positive, and it is best thought of as a “kinetic” energy. In this me-
chanical analogue, the original spin Hamiltonian U can be regarded as a “potential”
energy.

3Note that this microcanonical ensemble exactly matches the conditions in the original Fisher
work [58]: the momenta are some hidden degrees of freedom in thermal equilibrium with the spins,
and a global constraint is imposed. It is also curious to rederive the results in Sec. 2.2.2 considering
Γ momenta per spin (in this work Γ = 1, while Lustig [54] always considered Γ = 3). If one takes
the limit Γ →∞, at fixed N, the canonical probability is recovered for the spins.
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2.2. Analytical Framework

The canonical partition function is (β≡1/T )

ZN(β) =

∫ ∞

−∞

N∏

i=1

dpi
∑

{σi}

e−βE =

(
2π

β

)N
2 ∑

{σi}

e−βU , (2.51)

where
∑

{σi}
denotes summation over spin configurations. Hence, the {pi} play the

role of a Gaussian thermostat. The {pi} are statistically uncorrelated with the spins.
Since 〈κ〉canonical

L,β = 1/(2β), one has 〈e〉canonical
β = 〈u〉canonical

β + 1/(2β) .
Furthermore, given the statistical independence of κ and u, the canonical prob-

ability distribution function for e, P
(L)
β (e), is merely the convolution of the distribu-

tions for κ and u:

P
(L)
β (e) =

∫ ∞

0

dκ P
(L),κ
β (κ)P

(L),u
β (e− κ) . (2.52)

In particular, note that for spin systems on a finite lattice, P
(L),u
β (u) is a sum of (order

N) Dirac δ functions. Now, since the canonical variance of κ is 1/(β
√

2N), roughly√
N discrete u-levels, with u ∼ e − 1/(2β), give the most significant contribution

to P
(L)
β (e). We see that the momenta’s kinetic energy provides a natural smoothing

of the comb-like P
(L),u
β (u). Once we have a conveniently smoothed P

(L)
β (e), we may

proceed to the definition of the entropy.
In a microcanonical setting, the crucial role is played by the entropy density,

s(e,N), given by

exp[Ns(e,N)] =

∫ ∞

−∞

N∏

i=1

dpi
∑

{σi}

δ(Ne− E) . (2.53)

Integrating out the {pi} using the Dirac delta function in (2.53) we get

exp[Ns(e,N)] =
(2πN)

N
2

NΓ (N/2)

∑

{σi}

ω(e, u,N) , (2.54)

ω(e, u,N) ≡ (e− u)N−2
2 θ(e− u) , (2.55)

where Γ is the gamma function and the step function, θ(e−u), enforces e > u. Equa-
tion (2.54) suggests defining the microcanonical average at fixed e of any function
of e and the spins, O(e, {σi}), as [54]

〈O〉e ≡
∑

{σi}
O(e, {σi})ω(e, u,N)
∑

{σi}
ω(e, u,N)

. (2.56)

We use Eq. (2.54) to compute ds/de [13]:

ds(e,N)

de
= 〈β̂(e; {σi})〉e , (2.57)

β̂(e; {σi}) ≡
N − 2

2N(e− u) . (2.58)

29



Chapter 2. Microcanonical Finite-Size Scaling

Bearing in mind the crucial role of the generating functional in Field Theory (see
e.g. [7]), we extend the definition (2.53) by considering a linear coupling between
the spins and a site dependent source field hi:

exp[Ns(e, {hi}, N)] =

∫ ∞

−∞

N∏

i=1

dpi
∑

{σi}

e
P

i hiσiδ(Ne− E) , (2.59)

where E = Ne is still given by Eq. (2.49), without including the source term. In
this way, the microcanonical spin correlation functions follow from derivatives of
s(e, {hi}, N):

∂[N s]

∂hk

∣∣∣∣
e,{hi},N

= 〈σk〉e,{hi} , (2.60)

∂2[N s]

∂hk∂hl

∣∣∣∣
e,{hi},N

= 〈σkσl〉e,{hi} − 〈σk〉e,{hi} 〈σl〉e,{hi} .

In particular, if the source term is uniform hi = h we observe that the microcanonical
susceptibility is given by standard fluctuation-dissipation relations, see Ref. [7] and
Eq. (2.89) below.

Ensemble equivalence

Equation (2.53) ensures that the canonical probability density function for e is

P
(L)
β (e) =

N

ZN(β)
exp[N(s(e,N)− βe)] , (2.61)

hence, Eq. (2.57),

logP
(L)
β (e2)− logP

(L)
β (e1) = N

∫ e2

e1

de
(
〈β̂〉e − β

)
, (2.62)

where log means natural logarithm everywhere in this work.
The relation between the canonical and the microcanonical spin-values is given

by

〈O〉canonical
β =

∫ ∞

−∞

de 〈O〉e P (L)
β (e) . (2.63)

Now, Eqs. (2.61) and (2.63) imply that the canonical mean value will be dominated
by a saddle-point at eSP,

〈β̂〉eSP
L,β

= β , (2.64)

which can be read as yet another expression of the Second Law of Thermodynamics,
Tds = de.

The condition of thermodynamic stability (namely that 〈β̂〉e be a monotonically
decreasing function of e) ensures that the saddle point is unique and that eSP is
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2.2. Analytical Framework

a maximum of Pβ(e). Under the thermodynamic stability condition and if, in the
large L limit,

d〈β̂〉e
de

∣∣∣∣∣
eSP
L,β

< 0 , (2.65)

the saddle point approximation becomes exact:

eSP
L=∞,β = 〈e〉canonical

L=∞,β , (2.66)

and we have ensemble equivalence:

〈O〉L=∞,eSP
L=∞,β

= 〈O〉canonical
L=∞,β . (2.67)

It follows that the microcanonical estimator

Cm(L, e) =
1

d〈β̂〉e,L/de
, (2.68)

evaluated at eSP
L=∞,β will tend in the large-L limit to minus the canonical specific

heat. Thus, if the critical exponent α is positive, Eq. (2.65) will fail precisely at ec.
Hence, Eq. (2.67) can be expected to hold for all e but ec (or for all β but βc).

Double-peaked histogram

The situation can be slightly more complicated if Pβc
(e) presents two local maxima,

remindful of phase coexistence. This is actually the case for one of our models
– the D = 2, four-state Potts model [81]. From Eq. (2.62) it is clear that the
solution to the saddle-point equation (2.64) will no longer be unique. We borrow
the following definitions from the analysis of first-order phase transitions (where
true phase coexistence takes place) [13]:

• The rightmost root of Eq. (2.64), edL,β , is a local maximum of P
(L)
β correspond-

ing to the “disordered phase”.

• The leftmost root of Eq. (2.64), eoL,β , is a local maximum of P
(L)
β corresponding

to the “ordered phase”.

• The second rightmost root of Eq. (2.64), e∗L,β , is a local minimum of P
(L)
β .

Maxwell construction yields the finite-system critical point, βc,L, see Fig. 2.9 and
Appendix E:

0 =

∫ edL,βc,L

eo
L,βc,L

de
(
〈β̂〉e − βc,L

)
, (2.69)

and the finite-system estimator of the “surface tension”

ΣL =
N

2LD−1

∫ edL,βc,L

e∗
L,βc,L

de
(
〈β̂〉e − βc,L

)
. (2.70)

Of course, in the large-L limit and for a continuous transition, ΣL → 0, βLc → βc

and edL,βc,L
, eoL,βc,L

→ ec , as we will see.
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Chapter 2. Microcanonical Finite-Size Scaling

2.2.3 Our Microcanonical Finite-Size Scaling Ansatz

Usually, the Microcanonical FSSA takes an entropy density scaling form [61–63].
In close analogy with the canonical case, one assumes that s(e, {h~x}, N) can be
divided into a regular part and a singular term ssing(e, {h~x}, N). The regular part
is assumed to converge for large L (recall that N = LD) to a smooth function of
its arguments. Hence, all critical behaviour comes from ssing(e, {h~x}, N). Note as
well that we write {h~x}, instead of {hi}, to emphasise the spatial dependence of the
sources (supposedly very mild [7]). Hence,

ssing(e, {h~x}, N) = L−Dg
(
L

1
νm (e− ec), {Lyhh~x}

)
. (2.71)

Here, g is a very smooth function of its arguments, while yh = 1+D−η
2

is the canonical
exponent, see e.g. [7], which does not get Fisher-renormalised. Corrections to FSS
due to irrelevant scaling fields, have not played a major role in several previous
analysis [61–63] (in [63] only analytical scaling corrections were considered), but
will be important for our precision tests. Leading order corrections were, however,
explicitly considered in Ref. [66].

We will propose here alternative forms of the ansatz (2.71), more suitable for a
numerical work where neither ec nor the critical exponents are known beforehand.

Our first building block is the infinite-system microcanonical correlation length,
ξ∞,e . Indeed, ensemble equivalence implies that, in an infinite system, the long-
distance behaviour of the microcanonical spin-spin propagator G(~r; e) = 〈σ~xσ~x+~r〉e−
〈σ~x〉e〈σ~x+~r〉e behaves for large ~r as in the canonical ensemble (close to a critical point
ξ∞,e is large, so that rotational invariance is recovered in our lattice systems):

G(~r; e) =
A

rD−2+η
e−r/ξ∞,e , (2.72)

where A is a constant. In particular, note that ensemble-equivalence implies that the
anomalous dimension η does not get Fisher-renormalised. We expect ξ∞,e = ξcanonical

∞,T

if the correspondence between e and T are fixed through e = 〈e〉canonical
L=∞,T .

The basic assumption underlying the FSSA is that the approach to the L→∞
limit is governed by the dimensionless ratio L/ξ∞,e. Hence, our first form of the
microcanonical FSSA for the observable O whose critical behaviour was discussed
in referring to Eq. (2.2) is

〈O〉L,e = L
xO,m

νm fO(L/ξ∞,e) + · · · . (2.73)

In the above, the ellipsis stands for scaling-corrections, while the function fO is
expected to be very smooth (i.e., differentiable to a large degree or even analytical).
A second form of the microcanonical FSSA is obtained by substituting the scaling
behaviour ξ∞,e ∝ |e− ec|−νm :

〈O〉L,e = L
xO,m

νm f̃O
(
L1/νm(e− ec)

)
+ · · · . (2.74)
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2.2. Analytical Framework

Again, f̃O is expected to be an extremely smooth function of its argument 4. In par-
ticular, this is the form of the ansatz that follows from Eq. (2.71) by differentiating
with respect to e or from the source terms.

However, the most useful form of the microcanonical FSSA is obtained by apply-
ing Eq. (2.73) to the finite-lattice correlation length ξL,e, obtained in a standard way
(see Ref. [7]) from the finite-lattice microcanonical propagator. We expect ξL,e/L to
be a smooth, one-to-one function of L/ξ∞,e, that can be inverted to yield L/ξ∞,e as
a function of ξL,e/L. Hence, our preferred form of the FSSA is

〈O〉L,e = L
xO,m

νm

[
FO

(
ξL,e
L

)
+ L−ωGO

(
ξL,e
L

)
+ · · ·

]
. (2.75)

Here, FO and GO are smooth functions of their arguments and ω is the first universal
scaling corrections exponent.

It is important to note that exponent ω does not get Fisher-renormalised. Indeed,
let us consider an observable O with critical exponent xO at a temperature T such
e = 〈e〉canonical

L=∞,T . Now, ensemble equivalence tells us that Ocanonical
L=∞,T = OL=∞,e and that

ξcanonical
L=∞,T = ξL=∞,e. Eliminating T in favour of ξcanonical

L=∞,T , see e.g. [7], we have

Ocanonical
L=∞,T = ξ

xO/ν
L=∞,e[A0 +B0ξ

−ω
L=∞,e + · · · ] , (2.76)

where A0 and B0 are scaling amplitudes. It follows that ωm = ω, and that xO/ν =
xO,m/νm.

The Quotient Method

Once we have Eq. (2.75), it is straightforward to generalise the quotient method [70].
In Appendix B we also describe how it should be modified in the presence of (mul-
tiplicative) logarithmic corrections to scaling.

Let us compare data obtained at the same value of e for a pair of lattices L1 = L
and L2 = sL with s > 1. We expect that a single ec,L1,L2

exists such that the
correlation-length in units of the lattice size coincides for both systems:

ξL,ec,L1,L2

L
=
ξsL,ec,L1,L2

sL
. (2.77)

Hence, if we compare now in the two lattices the observable O in (2.75), precisely
at ec,L,sL, we have

〈O〉sL,ec,L1,L2

〈O〉L,ec,L1,L2

= s
xO,m

νm

[
1 + AO,sL

−ω + · · ·
]
, (2.78)

where AO,s is a non-universal scaling amplitude. One considers this equation for
fixed s (typically s = 2), and uses it to extrapolate to L = ∞ the L-dependent
estimate of the critical exponents ratio xO,m/νm . At the purely numerical level, it

4Note that the microcanonical weight (2.55) is not analytical at each energy level of the spin
Hamiltonian.
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Chapter 2. Microcanonical Finite-Size Scaling

needs to be noted as well that there are strong statistical correlations between the
quotients in (2.77) and in (2.78), that reduces the statistical errors in the estimate
of critical exponents. These errors can be computed via a jack-knife method, see
e.g. [7].

In this chapter, we shall compute the critical exponents from the following op-
erators (χ is the susceptibility, while ξ is the correlation length, see Sec. 2.3 for
definitions):

χ → xO = νm(2− η) , (2.79)

∂eξ → xO = νm + 1 . (2.80)

The L dependence of ec,L,s follows from Eq. (2.74) as applied to ξL/L for the two
lattice sizes L and sL [7, 55]:

ec,L,s = ec +B
1− s−ω
s1/νm − 1

L−(ω+ 1
νm

) + · · · , (2.81)

where B is again a non-universal scaling amplitude. In particular, if one works at

fixed s, ec,L,sL tends to ec for large L as L−(ω+ 1
νm

) 5.

2.3 The Model

We will define here the model and observables of a generic D-dimensional Q-state
Potts model. The numerical study was done for two instances of this model: the
three-dimensional Ising (Q=2) model, and the two-dimensional Q=4 Potts model.

We place the spins σi = 1, . . . , Q at the nodes of a hypercubic D-dimensional
lattice with linear size L and periodic boundary conditions.

The Hamiltonian is
U = −

∑

〈i,j〉

δσiσj
, (2.82)

where 〈i, j〉 denotes first nearest neighbours and δij is the Kronecker delta. For a
given spin, σ, we define the normalised Q-vector ~s, whose q-th component is

sq =

√
Q

Q− 1

(
δσq −

1

Q

)
. (2.83)

A Q components order parameter for the ferromagnetic transition is

~M =
1

LD

∑

i

~si , (2.84)

where i runs over all the lattice sites. We will now consider microcanonical averages.
The spatial correlation function is

C(r′ − r) =
〈
~s(r) · ~s(r′)

〉

e

=
Q

Q− 1

〈
δσ(r)σ(r′) −

1

Q

〉

e
.

(2.85)

5Note that, Eq. (2.74) tells us that, if the energy histogram is double-peaked, see Sec. 2.2.2, the
histogram maxima will tend to ec only as L−1/νm .
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Our definition for the correlation length at a given internal energy density e, is
computed from the Fourier transform of C

Ĉ(k) =
∑

r

C(r) eik·r , (2.86)

at zero and minimal (‖kmin‖ = 2π/L) momentum [7,68]:

ξ(e, L) =

√
Ĉ(0)/Ĉ(kmin)− 1

2 sin(π/L)
. (2.87)

Note that Ĉ can be easily computed in terms of the Fourier transform of the spin
field, ŝ(k), as

Ĉ(k) = LD
〈
ŝ(k) · ŝ(−k)

〉
e
, (2.88)

and that the microcanonical magnetic susceptibility is

χ = LD〈 ~M2〉e = Ĉ(0) . (2.89)

For the specific case of the Ising model, the traditional definitions, using Si = ±1
(recall that si = ±1/

√
2), are related with those of the general model through:

U Ising = −
∑

<i,j>

SiSj = 2U − 3LD ,

βIsing = β/2 , (2.90)

χIsing = 2χ .

Notice that for D = 2 this model undergoes a phase transition at βc = log(1 +√
Q) which is of second order for Q ≤ 4 and first order for Q > 4 [82].

2.4 Numerical Results

2.4.1 Methods

We have simulated systems of several sizes in a suitable range of energies (see Ta-
ble 2.1). To update the spins we used a Swendsen-Wang (SW) version of the mi-
crocanonical cluster method [13]. This algorithm depends on a tunable parameter,
κ, which should be as close as possible to 〈β̂〉e in order to maximise the acceptance
of the SW attempt (SWA). This requires a start-up using a much slower Metropolis
algorithm for the determination of κ. In practice, we performed cycles consisting
of 2× 103 Metropolis steps, a κ refresh, 2× 103 SWA, and a further κ refresh. We
require an acceptance exceeding 60% to finish these pre-thermalization cycles fixing
κ for the following main simulation, where only the cluster method is used.

In both cases studied, we observed a very small autocorrelation time for all
energy values at every lattice size. In the largest lattice for the four-state Potts
model we also considered different starting configurations: hot, cold, and mixed
(strips). Although the autocorrelation time is much smaller, for safety we decided
to discard the first 10% of the Monte Carlo history, using the last 90% for taking
measurements.
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Chapter 2. Microcanonical Finite-Size Scaling

Model L Nm(×106) Ne Energy range

Q = 2, D = 3 8 20 42 [−0.8,−0.9]
12 20 42 [−0.8,−0.9]
16 20 49 [−0.8,−0.9]
24 20 25 [−0.845,−0.875]
32 20 16 [−0.87,−0.860625]
48 20 10 [−0.87,−0.860625]
64 5 10 [−0.870625,−0.865]
96 5 10 [−0.870625,−0.865]

128 5 7 [−0.869375,−0.865625]

Q = 4, D = 2 32 1024 61 [−1.2,−0.9]
64 128 61 [−1.2,−0.9]

128 32 41 [−1.08,−0.98]
256 32 24 [−1.08,−1.005]
512 25.6 32 [−1.07,−1.01]

1024 6.4 30 [−1.06,−1.02]

Table 2.1: Simulation details for the two models considered. For each lattice size
L we show the number of measurements Nm at each energy and the total number
of simulated energies uniformly distributed over the displayed energy range Ne. For
the Q = 4, D = 2 model, the values of Nm reported were reached only at specific
energies near the peaks of the Maxwell construction, where additional energy values
were simulated.

2.4.2 D = 3 Pure Ising Model

In Fig. 2.1 (upper panel) we show a scaling plot of the correlation length (in lattice
size units) against (e − ec)L

1/νm . For the susceptibility we plot χ ∼ L2−η (lower
panel). If the data followed the expected asymptotic critical behaviour with micro-
canonical critical exponents they should collapse into a single curve. In Fig. 2.1 we
have used the canonical critical quantities from Refs. [83,84] transformed to the mi-
crocanonical counterparts using Eq. (2.2). From the plot it is clear that important
scaling corrections exist in both cases for the smallest lattices, although they are
mainly eliminated in the largest systems.

To obtain the microcanonical critical exponents we used the quotient method,
see Sec. 2.2.3. The clear crossing points of the correlation length for different lattice
sizes can be seen in Fig. 2.2. The determination of the different quantities at the
crossings, and the position of the crossing itself, requires one to interpolate the
data between consecutive simulated energies. We found that the method of choice,
given the high number of energy values available, is to fit, using the least squares
method, a selected number of points near the crossing to a polynomial of appropriate
degree. Straight lines do not provide good enough fits. However, second and third
order polynomials give compatible results. In practice, we fitted a second-order
polynomial using the nine points nearest to the crossing, also comparing the results
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Figure 2.1: Scaling plot of the correlation length (in lattice size units) and the
scaled susceptibility for the three-dimensional Ising model. We used the critical
values, ec = −0.867433 and νm = 0.7077. Notice the strong scaling corrections for
small systems as well as the data collapse for the largest ones.

with those using the seven nearest points that turn out to be fully compatible. For
error determination we always used a jack-knife procedure, see Appendix C.

L ec,L,2L ξL,ec,L,2L
/L νm ηm

8 −0.861831(12) 0.44922(3) 0.8033(42) 0.0564(2)

12 −0.865010(10) 0.46106(5) 0.7968(31) 0.0492(4)

16 −0.866020(6) 0.46710(5) 0.7717(22) 0.0469(4)

24 −0.866767(3) 0.47411(4) 0.7665(11) 0.0437(3)

32 −0.867034(4) 0.47813(6) 0.7594(13) 0.0425(5)

48 −0.867228(2) 0.48278(5) 0.7492(5) 0.0412(3)

64 −0.867302(2) 0.48555(11) 0.7457(16) 0.0397(8)

Table 2.2: Lattice size dependent estimates of critical quantities for the microcanon-
ical D = 3 Ising model. The displayed quantities are: crossing points ec,L,2L for the
correlation length in units of the lattice size, ξ/L itself at those crossing points, and
the estimates of the correlation length exponent νm and the anomalous dimension
ηm. All quantities were obtained using parabolic interpolations.

The numerical estimates for ec, ξL,ec/L and the critical exponents νm and ηm,
obtained using the quotient method for lattice pairs (L, 2L) are given in Table 2.2.
Our small statistical errors allow one to detect a tiny L evolution. An extrapolation
to infinite volume is clearly needed.
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Chapter 2. Microcanonical Finite-Size Scaling

Before continuing, let us recall our expectations as obtained by applying Fisher
renormalization to the most accurate determination of canonical critical exponents
known to us [νm = ν/(1− α) = ν/(Dν − 1)]:

νm = 0.7077(5) (from ν = 0.6301(4) [8]) , (2.91)

ηm = η = 0.03639(15) [85] , (2.92)

ω = 0.84(4) [8] . (2.93)

Besides, although non-universal, let us take ec = −0.867433(12) 6.

The results obtained from an extrapolation using only leading order scaling cor-
rections were:

• ec = −0.867397(6), ω + 1/νm = 1.918(26)
(we obtained a good fit for L ≥ Lmin = 12, with χ2/d.o.f. = 0.39/3, C.L.=94%,
where “d.o.f.” stands for degrees of freedom and “C.L.” for confidence level 7).

• ξec,L/L = 0.5003(12), ω = 0.581(27)
(Lmin = 12, χ2/d.o.f. = 0.12/3, C.L.=99%).

• νm = 0.714(28), ω = 0.53(30)
(Lmin = 8, χ2/d.o.f. = 3.16/4, C.L.=53%).

• ηm = 0.0391(15), ω = 1.21(24)
(Lmin = 8, χ2/d.o.f. = 0.96/4, C.L.=92%).

The main conclusions that we draw from these fits are: (i) the exponents are com-
patible with our expectations from Fisher renormalization, (ii) sub-leading scaling
corrections are important given the tendency of the fits to produce a too low estimate
for ω (see below), and (iii) the estimates from canonical exponents (themselves ob-
tained by applying the high-temperature expansion to improved Hamiltonians [8,85])
are more accurate than our direct computation in the microcanonical ensemble.

We can, instead, take an opposite point of view. If we take the central values in
Eqs. (2.91, 2.92, 2.93) as if they were exact, we can obtain quite detailed information
on the amplitudes for scaling corrections:

• We find an excellent fit to νm(L, 2L) = νm + A1L
−ω + A2L

−2ω, for Lmin = 16:
χ2/d.o.f. = 1.53/3, C.L.=68%, with A1 = 1.38(7) and A2 = −7.6(1.1). This
confirms our suspected strong sub-leading corrections. Indeed, according to
these amplitudes A1 and A2, only for L ≈ 130 the contribution of the (sub-
leading) quadratic term becomes 10% of that of the leading one.

6For the 3D Ising model at criticality, uIsing
c =−0.990627(24) [83], and βIsing

c =0.2216546(2) [84],
we obtain for our Potts representation of the Ising model ec = (uIsing

c −D)/2 + 1/(4βIsing
c ).

7The confidence level is the probability that χ2 would be larger than the observed value, sup-
posing that the statistical model is correct. As a rule, we consider a fit not good-enough whenever
C.L.< 10%.
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Figure 2.2: Crossing points of the correlation length in lattice size units for the
three-dimensional Ising model. The error bars are in every case smaller than the
point sizes. The values of the different quantities at the crossing as well as the
critical exponents are given in Table 2.2.

• In the case of ηm(L, 2L) = ηm + B1L
−ω + B2L

−2ω , for Lmin = 8: χ2/d.o.f. =
2.4/5, C.L.=79%, we have B1 = 0.101(10) and B2 = 0.07(7). Sub-leading
scaling corrections are so small that, within our errors, it is not clear whether
or not B2 = 0.

The quite strong scaling corrections found for νm may cast some doubt on the
extrapolation for ξL,ec/L, the only quantity that we cannot double check with a
canonical computation. To control this, we proceed to a fit including terms linear
and quadratic in L−ω with ω = 0.84(4). We get

ξL,ec
L

= 0.4952(5)(7),

with Lmin = 12, χ2/d.o.f. = 2.17/3, C.L.=54%. Here, the second error is due to
the quite small uncertainty in ω. It is remarkable that the contribution to the error
stemming from the error in ω is larger than the purely statistical one.

The canonical specific-heat

Previous numerical studies of microcanonical FSS [61–63] focussed on the specific
heat. Although we show all across this paper that a complete microcanonical FSS
analysis can be based only on the spin propagator, the specific heat can be certainly
studied within the present formalism.
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Chapter 2. Microcanonical Finite-Size Scaling

As discussed in Sect. 2.2.2 (see also [13]), the canonical specific heat can be
estimated from the microcanonical estimator Cm(L, e) defined in Eq. (2.68). The
expected FSS behaviour for Cm(L, ec,L,2L) is

Cm(L, ec,L,2L) = Lα/ν [A0 + A1L
−ω + · · · ] +B . (2.94)

Here, A0 and A1 are scaling amplitudes, while B is a constant background usually
termed analytical correction to scaling, stemming from the non-singular part of the
free-energy [7]. It is usually disregarded as it plays the role of a subleading scaling-
correction term. Yet, a peculiarity of the D = 3 Ising model is that B is anomalously
large (see e.g. [63]) and needs to be considered.

In Fig. 2.3, we reproduce the analysis of Bruce and Wilding [63], where the
amplitude A1 in Eq. (2.94) was fixed to zero by hand. In this way, if we consider
the range of lattice sizes 8 ≤ L ≤ 64 (in [63] only L ≤ 32 was considered), we
obtain B = −35.01(11) but with an untenable χ2/d.o.f = 227/5. Our value of B is,
nevertheless, quite close to the result B = −34.4(4) reported in [63] (unfortunately,
these authors provided no information on fit-quality).

Once the arbitrary constraint A1 = 0 is removed, we do obtain an acceptable
fit, χ2/d.o.f = 0.68/4. Perhaps unsurprisingly, the estimate of B is largely changed,
once a nonvanishing A1 is allowed: B = −24.4(7).
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Figure 2.3: Microcanonical estimate of the specific heat, Cm(L, e), at ec,L,2L for the
D = 3 Ising model, as a function of the system size. The numerical estimates of
exponents α/ν and ω were taken from Ref. [8]. The error bars are in every case
smaller than the point sizes. The solid line is a fit to Eq. (2.94) (fitting parameters:
A0, A1 and B), the dashed one is obtained by constraining the fit to A1 = 0.
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2.4. Numerical Results

2.4.3 D = 2 , Q = 4 Pure Potts Model

The Q = 4, D = 2 Potts model involves two peculiarities that will be explored here.
First, it suffers from quite strong logarithmic scaling corrections. And second, it
displays pseudo-metastability [81], an ideal playground for a microcanonical study.

The study of the FSS for the Q = 4, D = 2 Potts model [43], based on the
analysis of the Renormalization Group (RG) equations [86], reveals the presence of
multiplicative logarithmic scaling corrections. This is one of the possible forms that
scaling corrections can take in the limit ω → 0, and is a major nuisance for numerical
studies. A very detailed theoretical input is mandatory to safely perform the data
analysis. We shall make here an educated guess for the microcanonical form of the
scaling corrections, based purely on ensemble equivalence and the canonical results.

From ensemble equivalence we expect

e− ec ∼ C(L, βc)∆βL , (2.95)

where C(L, βc) is the finite-lattice canonical specific heat at βc, and ∆β = β
(L)
c − βc

is the inverse-temperature distance to the critical point of any L-dependent feature
(such as the temperature maximum of the specific heat, etc.). We borrow from
Ref. [43] the leading FSS behaviour for these quantities:

C(L, βc) ∼
L

(logL)3/2
, ∆βL ∼

(logL)3/4

L3/2
. (2.96)

Thus, we have:
e(L)− ec(∞) ∼ L−1/2(logL)−3/4 . (2.97)

This result can be derived as well by considering only the leading terms of the
first derivative of the singular part of free energy with respect to the thermal field,
φ (∝ β − βc) [43]:

∂fsing(φ, h, ψ)

∂φ
≈ 4

3
D±|φ|1/3(− log |φ|)−1 +D±|φ|4/3(− log |φ|)−2 1

φ
. (2.98)

The above equation describes the energy of the system, and its leading term is

e− ec ∼
4

3
D±
|φ|1/3
log |φ| , (2.99)

but
φ ≈ C ′

±L
−3/2(logL)3/4 , (2.100)

so it is direct to obtain again Eq. (2.97). Hence, we are compelled to recast Eq. (2.74)
as

〈O〉L,e = L
xO,m

νm f̃O
(
L1/2(logL)3/4(e− ec)

)
+ · · · . (2.101)

Furthermore, from the canonical analysis [43], we expect multiplicative logarithmic
corrections to the susceptibility (that do not get Fisher renormalised). Furthermore,
the ellipsis in (2.101) stands for corrections of order log logL/ logL and 1/ logL [43].

We first address in the next subsection the direct verification of Eq. (2.101) using
the quotient method. We then consider the pseudo-metastability features.
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Scaling plots and critical exponents
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Figure 2.4: Graphical demonstration of Eq. (2.101) as applied to the microcanonical
D = 2, Q = 4 Potts model: both the correlation length in units of the lattice size
(top) and the scaled susceptibility, χ in Eq. (2.102) (bottom), are functions of the
scaling variable (e− ec)L1/2(logL)3/4.

We start with a graphical demonstration of Eq. (2.101): ξ/L as a function of
(e−ec)L1/2(logL)3/4 should collapse onto a single curve (the deviation will be larger
for small L values due to neglected scaling corrections of order log logL/ logL and
1/ logL) 8. Similar behaviour is expected for the scaled susceptibility [43]:

χ =
χ

L7/4(logL)−1/8
. (2.102)

Note that ξ/L does not need an additional logarithmic factor. These expectations
are confirmed in Fig. 2.4, especially for the larger system sizes (that are subject to
smaller scaling corrections).

We can check directly the importance of the multiplicative logarithmic correc-
tions for the susceptibility by comparing χ and χ as a function of ξ/L, see Fig. 2.5.
The improved scaling of χ is apparent. We observe as well that the largest cor-
rections to scaling are found at and below the critical point (around ξ/L ≈ 1.0).

The scaling proposed for the susceptibility in Ref. [43] can also be checked from
our values at ec,L,2L. Considering χ ∼ L7/4 (our data is fully supportive of this
point) we can plot log(χ/L7/4) versus log logL. We obtain a linear fit for the data
with L > 64 with a slope −0.132(3) (χ2/n.d.f. = 7.5/1), see the dashed line in

8We obtain the exact ec in the thermodynamic limit from βc = log(1 +
√

Q) [87], and uc =
−(1 + Q−1/2) [82] by applying ec = uc + 1/(2βc).
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Figure 2.5: Comparison of the scaling for the naively scaled susceptibility χL−7/4

(top) and for χ, defined in Eq. (2.102), (bottom), as a function of the correlation
length in units of the lattice size, for the microcanonical D = 2, Q = 4 Potts model.

Fig. 2.4.3, which can be compared with the expected value −1/8 [43]. The large
value of χ2/d.o.f. can be ascribed to the presence of higher order correction terms.
In fact the whole scaling behaviour for the susceptibility is [43]

χ ∼ L7/4(logL)−1/8

(
1 + A

log logL

logL
+B

1

logL
+ · · ·

)
, (2.103)

and we can use this form for a least-square fit. Fixing both the leading and the
logarithmic exponents we estimate A = 0.80(7) and B = −0.48(3) using all the
lattice sizes with χ2/d.o.f. = 2.9/2, see the solid line in Fig. 2.4.3. Therefore our
data set is fully supportive of the behaviour proposed in Ref. [43], including the
subleading additive logarithmic corrections.

We now proceed to the numerical computation of critical exponents. We shall
use the quotient method, modified as described in Appendix B. From Fig. 2.7, we
can see that the crossing points can be well obtained using parabolic interpolations
of the nine points around the estimated crossing energies, as done in Sec. 2.4.2.
We checked that the results do not depend on the interpolating polynomial degree
by comparing with interpolations using cubic curves. We also compared with the
results obtained using only seven points around the crossing obtaining again full
agreement.

The critical exponents obtained are listed in Table 2.3. They may be compared
with the exact ones [82] (ν = 2/3, α = 2/3 and η = 1/4):

νm = 2 ; η = ηm =
1

4
. (2.104)
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Figure 2.6: Logarithmic scaling behaviour of the susceptibility at the critical point.
The error bars are in every case smaller than the point sizes. The dashed line do
not include the subleading additive terms of Eq. (2.103) while the solid line do.

Comparing with our computed exponents, we obtain an acceptable agreement. In
the case of the microcanonical ν exponent, νm, after adding the correction for the
quotient method in the presence of logarithms, the agreement is fairly good. We can
see a clear trend towards the exact value for all the lattice sizes except the largest
(2.5 standard deviations away), which is probably due to a bad estimate of the huge
temperature derivatives of the correlation length. In the case of the microcanonical
η exponent, ηm, which must be the same as the canonical one, we can see clearly
the tendency to the analytical value ηm = 0.25. We must stress the importance of
adding the corrections described in Appendix B to the quotient method.

Critical point, latent heat, and surface tension

It has been known for quite a long time that the D = 2, Q = 4 Potts model on finite
lattices shows features typical of first-order phase transitions [81]. For instance, see
Fig. 2.8, the probability distribution function for the internal energy, Pβ(e), displays
two peaks at energies ed (the coexisting disordered phase) and eo (the energy of the
ordered phase) separated by a minimum at e∗. Of course, since the transition is of
second order, ec is the common large L limit of ed, eo and e∗.

We discussed in Sec. 2.2.2 how the Maxwell construction is used to estimate the
canonical critical point βc,L, as well as ed, eo and the associated surface tension.
This procedure is outlined in Fig. 2.9. The numerical results are listed in Table 2.4,
where we can see that βc,L is a monotonically increasing function of L continuously
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Figure 2.7: Correlation length in lattice size units for the D = 2, Q = 4 Potts model.
The values of the different quantities at the crossings for lattices L and 2L, as well
as the corresponding estimates for critical exponents, are given in Table 2.3. The
inset is a magnification of the critical region.

approaching the analytical value βc = log(1+
√
Q) = 1.0986122 . . . [87]. A jack-knife

method [7] was used to compute the error bars for all the quantities in Table 2.4.
To perform a first check of our data, we observe that βc,L is a typical canonical

estimator of the inverse critical temperature. As such, it is subject to standard
canonical FSS, where the main scaling corrections come from two additive logarith-
mic terms [43]:

βc,L − βc = a1
(logL)3/4

L3/2

(
1 + a2

log logL

logL
+ a3

1

logL

)
. (2.105)

From our data in Table 2.4, we obtain a1 = −0.44(7), a2 = −1.15(72), and a3 =
2.28(26), and a good fit (Lmin = 128, χ2/d.o.f. = 0.28/1, C.L.=60%).

As for the L dependence of ed and eo, we try a fit that considers the expected
scaling correction terms [43]:

ec,o,L − ec = a1L
−1/2(logL)−3/4

(
1 + a2

log logL

logL
+ a3

1

logL

)
. (2.106)

Our results for eo are: a1o = −2.03(20), a2o = −1.65(27), and a3o = −2.08(41),
with a fair fit quality (Lmin = 32, χ2/d.o.f. = 2/3, C.L.=57%). We obtain for
ed: a1d = 2.02(14), a2d = 0.93(37), and a3d = −2.93(34) , with a fair fit as well
(Lmin =32, χ2/d.o.f. = 0.84/3, C.L.=84%). These two fits are shown in Fig. 2.10.

For the surface tension, one notes in Table 2.4 a non-monotonic behaviour. Fur-
thermore, we lack any theoretical input with which to attempt a fit. We thus turn to
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L ec,L,2L ξL,ec,L,2L
/L νm ν ′m ηm η′m

32 −1.04659(5) 0.8016(5) 1.534(6) 1.998(10) 0.2663(9) 0.2334(9)

64 −1.04633(2) 0.7990(3) 1.554(8) 1.957(12) 0.2638(6) 0.2360(6)

128 −1.04579(1) 0.7909(3) 1.578(5) 1.938(7) 0.2639(5) 0.2398(5)

256 −1.04548(2) 0.7836(5) 1.643(12) 1.987(17) 0.2615(11) 0.2402(11)

512 −1.04519(2) 0.7734(9) 1.602(31) 1.895(42) 0.2617(21) 0.2427(21)

Table 2.3: Crossing points of the correlation length in lattice size units as a function
of the energy for pairs of lattices (L, 2L). Using the original quotient method [7] we
obtain the microcanonical critical exponents, listed in Columns 4 and 6, while the
corrected ones (Columns 5 and 7) are labelled with primed symbols, see Appendix B.
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Figure 2.8: Canonical probability distribution function for the energy density,
P

(L)
β (e), as reconstructed from microcanonical simulations of the D = 2, Q = 4

Potts model for different system sizes. The L-dependent critical point βc,L is com-
puted using the Maxwell rule, Sec. 2.2.2 (note the equal height of the two peaks
enforced by Maxwell construction). The system displays an apparent latent heat
that becomes smaller with increasing L, and vanishes in the large L limit.

a variant of the quotient method. Were Σ to follow pure power-law scaling, Σ ∝ Lb,
the exponent b would be obtained as:

Σ(L1)

Σ(L2)
=

(
L1

L2

)b
=⇒ b =

log[Σ(L1)/Σ(L2)]

log(L1/L2)
. (2.107)

The effective exponent b obtained from our data is given in Table 2.5. We observe
that it is clearly negative (as it should be since Σ vanishes for a second-order phase

46



2.4. Numerical Results

 1.09

 1.1

-1.15 -1.1 -1.05 -1 -0.95
e

 1.09105

 1.09115

-1.02 -1 -0.98
 1.09105

 1.09115

-1.02 -1 -0.98
 1.09105

 1.09115

-1.02 -1 -0.98
 1.09105

 1.09115

-1.02 -1 -0.98
 1.098

 1.0985

-1.06 -1.02

βc(Exact)

βc(Exact)

eo e* ed

〈∧ β
〉 e

〈∧ β
〉 e

Figure 2.9: Top: From the microcanonical mean values 〈β̂〉e,L for the D = 2, Q = 4
Potts model, we estimate the size dependent canonical inverse critical temperature
βc,L (horizontal lines) for all the simulated lattice sizes, ranging from L = 32 (lower)
to L = 1024 (upper). We show as well the analytical prediction (uppermost horizon-
tal line). Bottom-left: Example of Maxwell construction for our L = 32 data. The
e-integral of 〈β̂〉e,L − βc,L from eo to ed vanishes. Bottom-right: Zoom of upper
panel showing only data for lattice sizes L = 256 (lower curve), L = 512 (middle
curve), and L = 1024 (upper curve).

L βc,L eo ed Σ × 105

32 1.0911070(20) -1.0175(4) -0.9760(2) 0.47(2)
64 1.0957256(14) -1.0392(3) -0.9915(2) 2.77(7)

128 1.0975150(10) -1.0463(3) -1.0062(5) 4.10(15)
256 1.0981989(5) -1.0489(2) -1.0183(3) 3.92(8)
512 1.0984570(3) -1.0490(1) -1.0266(2) 3.28(11)

1024 1.0985539(3) -1.0483(3) -1.0325(1) 2.09(17)

Table 2.4: Using the Maxwell construction, we compute for the D = 2, Q = 4
Potts model the L-dependent estimates of the (inverse) critical temperature βc,L,
the energies of the coexisting ordered eo, and disordered ed phases, as well as the
surface tension Σ.

transition). An asymptotic estimate, however, seems to require the simulation of
larger systems.
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Figure 2.10: System size dependent estimates of the energies of the “coexisting”
ordered (eo, blue squares) and disordered (ed, red circles) phases of the D = 2,
Q = 4 Potts model, as a function of L−1/2. The lines are fits to the expected
analytical behaviour Eq. (2.106). The horizontal line corresponds to the asymptotic
value, ec.

(L1, L2) beff(Σ)

(32,64) 2.56(7)
(64,128) 0.56(6)
(128,256) −0.065(60)
(256,512) −0.257(57)
(512,1024) −0.650(127)

Table 2.5: Effective exponent obtained using Eq. (2.107) for the surface tension.

We have just seen that, up to scaling corrections, e
(L)
d and e

(L)
o correspond

to (different) L-independent values of the argument of the scaling function f̃ξ in
Eq. (2.101). Hence we expect that ξ(ed)/L and ξ(eo)/L, see Table 2.6, approach
non-vanishing, different values in the large L limit. The FSS corrections are expected
to be additive logarithms [43]

ξ

L
= a +

b

logL
. (2.108)

The results are:
ξ(eo)

L
= 1.28(1)− 2.28(5)

logL
, (2.109)
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L ξ(eo)/L ξ(ed)/L χ(eo) χ(ed) ξcanonical/L χcanonical

32 0.637(2) 0.453(1) 0.907(2) 0.647(1) 0.990(3) 1.287(3)
64 0.732(3) 0.396(1) 1.025(3) 0.545(2) 0.995(2) 1.310(2)

128 0.799(5) 0.357(4) 1.106(5) 0.472(7) 1.001(3) 1.331(3)
256 0.866(6) 0.335(3) 1.182(6) 0.429(5) 1.001(5) 1.343(5)
512 0.915(4) 0.315(2) 1.238(4) 0.392(4) 1.014(8) 1.366(8)

1024 0.953(15) 0.302(2) 1.279(13) 0.367(3)) 0.997(21) 1.353(22)

Table 2.6: Correlation length in units of the lattice size and the RG invariant χ
defined in Eq. (2.102), for several L values, as computed in the microcanonical
D = 2, Q = 4 Potts model. The values of the energy density correspond to the
ordered (eo) and disordered (ed) phases. For comparison we also display in the last
two columns the canonical results at βc obtained in Ref. [43].

(Lmin = 32, χ2/d.o.f. = 4.2/3, C.L.=22%), and

ξ(ed)

L
= 0.159(4)− 0.98(2)

logL
, (2.110)

(Lmin = 32, χ2/d.o.f. = 3.3/3, C.L.=37%).
A very similar analysis can be performed for the scaled susceptibility, Eq. (2.89),

at ed and eo. In order to deal with the multiplicative logarithms of the susceptibility,
we used χ defined in Eq. (2.102).

Fitting our data set to the logarithmic form

χ = A +B
log logL

logL
, (2.111)

obtained in Ref. [43], we obtain a good fit in the ordered phase energy, eo:

χ(eo) = 2.41(5)− 4.00(15)
log logL

logL
, (2.112)

with Lmin = 128, χ2/d.o.f. = 3.10/2, C.L.=21%. However, the extrapolation for the
susceptibility defined in the disordered phase energy, ed, is a nonsensical negative
value.

We can also fit the data to the logarithmic form also used in Ref. [43]:

χ = A+
B

logL
, (2.113)

finding:

χ(eo) = 1.643(5)− 2.55(2)

logL
, (2.114)

(Lmin = 32, χ2/d.o.f = 7.44/4, C.L.=11%), and

χ(ed) = 0.094(7) +
1.87(37)

logL
, (2.115)
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(Lmin = 64, χ2/d.o.f = 2.94/3, C.L.=37%) . For comparison, we recall that Ref. [43]
reports two different fits for χ, depending on the logarithmic corrections they used:

χcanonical = 1.673(33)− 1.056(98)
log logL

logL
, (2.116)

χcanonical = 1.454(13)− 0.600(55)

logL
. (2.117)

2.5 Conclusions

We have formulated the Finite Size Scaling Ansatz (FSSA) for microcanonical sys-
tems in terms of quantities accessible in a finite lattice. This form allows to extend
the phenomenological renormalization approach (the so-called quotient method) to
the microcanonical framework.

Our FSSA was subjected to strong numerical testing. We performed exten-
sive microcanonical numerical simulations in two archetypal systems in Statistical
Mechanics: the three-dimensional Ising model and the two-dimensional four-state
Potts model. The two models present a power-law singularity in their canonical
specific heat, implying non-trivial Fisher renormalization when passing to the mi-
crocanonical ensemble. A microcanonical cluster method works for both models,
hence allowing us to study very large system sizes (L = 128 in D = 3 and L = 1024
in D = 2).

In the case of the Ising model, we obtained precise determinations of the critical
exponents that provide strong evidence for our extended microcanonical FSS ansatz.

For the Potts model, very strong logarithmic corrections (both multiplicative
and additive) plague our data. Fortunately, we have a relatively strong command
over these corrections from canonical studies [43]. Our data can be fully rationalised
using the scaling corrections suggested by the theoretical analysis [43].

50



Chapter 3

Quenched Disorder Effect on a
First-Order Phase Transition

3.1 Introduction

Although first-order phase transitions are by far the more frequent in nature, not
much is known about the consequences of adding impurities to systems that in the
pure case undergo this type of transition. This is due to the fact that there exist
inherent difficulties for their study.

One of the intrinsic problems in simulating first-order phase transitions is that
in this case two or more phases coexist at the critical temperature. The system
changes from the high temperature phase to the low temperature one by building
an interface of size L, where L is the lattice size. The energy cost of such a mixed
configuration is ΣLD−1 (with Σ being the surface tension and D the spatial dimen-
sion). Therefore, when doing simulations using the canonical ensemble (at fixed
temperatures), the probability of reaching such mixed configurations is attenuated
by a factor exp[−ΣLD−1], and as a result the natural time scale of the simulation
grows with the system size L as exp[ΣLD−1]. This huge obstacle to simulating large
systems is called Exponential Critical Slowing Down (ECSD).

Up to now, no solution for ECSD has been found in canonical simulations. This
has motivated the popularity of simulations within the microcanonical ensemble (at
fixed energy), see Sec. 2.2.2. Some simulation methods within this ensemble consider
the canonical probability density function (pdf) of the energy as a constant within
the energy interval eo < e < ed (eo and ed being the energy densities of the coexisting
ordered and disordered phases respectively). This led to these methods being called
flat-histogram methods [88–91]. The canonical probability minimum in the energy
gap (∝ exp[−ΣLD−1]) is achieved by means of an iterative parameter optimisation.
In flat-histogram methods the system performs an energy random walk in the energy
gap. The elementary step being of order L−D (a single spin-flip), one naively expects
a tunnelling time from eo to ed of order L2D spin-flips. But the (one-dimensional)
energy random walk is not Markovian, and these methods still suffer ECSD [92]. In
fact, for the standard benchmark (the Q=10 Potts model [82] in D=2), the barrier
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of 104 spins was reached in 1992 [88], while the largest simulated system (to the best
of our knowledge) had 4× 104 spins [89].

ECSD in flat-histogram simulations is probably understood [92]: on its way
from ed to eo, the system undergoes several (four in D = 2) “transitions”. First
comes the condensation transition [92, 93], at a distance of order L−D/(D+1) from
ed, where a macroscopic droplet of the ordered phase is nucleated. Decreasing e,
the droplet grows to the point that, for periodic boundary conditions, it reduces its
surface energy by becoming a strip [94], see the figures in [13] (in D=3, the droplet
becomes a cylinder, then a slab [95]). At lower e the strip becomes a droplet of
disordered phase. Finally, at the condensation transition close to eo , we encounter
the homogeneous ordered phase.

In this work we will study a prototypical model of a strong first-order phase
transition, the three-dimensional Potts model with Q > 3 states. There are numer-
ous experimental systems which can be mapped by this model. For instance, the
Q = 4 pure case in two dimensions describes the adsorption of N2 molecules on Kr
in graphite layers [96]; in three dimensions it describes the behaviour of FCC anti-
ferromagnetic lattices (NdSb, NdAs, and CeAs, for example) with the magnetic field
pointing in the 〈1, 1, 1〉 direction [97]. The site-diluted Q = 4 case in two dimen-
sions models the effect of oxygen impurities on a sample of nickel where hydrogen
molecules are adsorbed [98]. In the dilute three-dimensional case we are not aware
of any experimental realization.

It is known [13, 46] that the pure three-dimensional Potts model undergoes a
first-order phase transition in the pure case for Q ≥ 3. On the contrary, it has been
been found [44] that for strong dilution the system performs a second-order phase
transition. A direct question is the following: what is the exact dilution that causes
the order of the transition to change? What is more, are we absolutely sure that
first-order phase transitions exist in the presence of dilution? This is still an impor-
tant open problem in Statistical Mechanics, and also one with implications in very
technical fields such as highly correlated electron systems (e.g., high temperature
superconductors or colossal magnetoresistance oxides) where phase coexistence and
chemical disorder play crucial roles [99].

The question in the previous paragraph can be considered exactly solved in two
dimensions [100]: even the most insignificant amount of impurities is enough to
switch the phase transition from first-order to second-order (for the Universality
Classes see [101]). In D = 3 the most useful physical picture is provided by the
Cardy-Jacobsen conjecture [101]: considering a ferromagnetic system undergoing a
first-order phase transition for a pure sample, with T being the temperature and p
the concentration of magnetic sites, a critical line, Tc(p), separates the ferromagnetic
and the paramagnetic phases in the (T, p) plane. In D=3 a critical concentration
is expected to exist, 1 > pc > 0, such that the phase transition is of first order for
p > pc and of second order for p < pc (at pc one has a tricritical point). When p
approaches pc from above, the latent heat must vanish with the critical exponent
of the magnetisation in the Random Field Ising Model (RFIM). Also the surface
tension, Σ, vanishes at pc, while the correlation length ξ(Tc(p)) diverges, with critical
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exponents related to those of the RFIM1. The main objection to this argument is that
the Cardy-Jacobsen conjecture relies on a mapping from the (large Q) disordered
Potts model [82] onto the RFIM (two unsolved models in D = 3). As a result, if the
D = 3 RFIM phase transition turned out to be of first order [104], the conjecture
would not be valid.

The D=3 problem has already been numerically studied [44–46]; large regions
of the critical line Tc(p) were found to be second order. Unfortunately, the study of
the tricritical point as well as that of the first-order part of the critical line seemed
beyond hope, mainly due to two factors. Firstly, an important difficulty arises from
the long-tailed pdf’s encountered when comparing the specific heat or the magnetic
susceptibility of different samples at Tc(p) [46]. Note that diverging-variance pdf’s
arise from the common practice of defining the quenched free energy at temperature
T as the average of the sample’s free energy at T [22], which is dominated by rare
events2. Secondly, the other factor has been described above – the simulation of a
sample of linear size L with previous methods is intrinsically difficult: the required
simulation time grows exponentially with LD−1 [92] due to the ECSD. These two
factors have limited previous work [45, 46] to L ≤ 25.

To overcome these two difficulties, on the one hand we propose two alterna-
tive methods of performing the sample average, both of which reproduce the correct
Thermodynamic Limit, avoiding the diverging-variance pdf’s, and providing comple-
mentary information, and on the other we exploit a novel microcanonic Monte Carlo
method [13], which allows one to study the system entropy directly. This method,
combined with a slightly modified typical cluster algorithm [11,13], permits accurate
studies of systems with more than 106 spins (when the previous methods can only
handle 104). In our case the method will allow us to simulate systems of size up to
L=128 in the case Q = 4, D = 3, also making it possible to perform a Finite-Size
Scaling (FSS) study of the elusive tricritical point as well as the associated critical
behaviour.

The highly accurate numerical study presented in this chapter has only been
possible due to our capability of using different supercomputing facilities simultane-
ously:

• For the Q = 4 case: on the Mare-Nostrum machine of BSC (Barcelona Su-
percomputing Centre) we used 160 000 computation hours (PowerPC 2.3 GHz
processors); on the BIFI (Instituto de Biocomputación y F́ısica de Sistemas
Complejos de Zaragoza) cluster we used 250 000 hours (Xeon Dual Core 3.40

1The expected exponents β and ν of the tricritical point [101] are: β = βRFIM and 1/ν =
D−θRFIM−βRFIM/νRFIM or (modified hyperscaling relation of the RFIM) ν = νRFIM/(2−αRFIM−
βRFIM). The surface tension goes to zero with an exponent µ = (D− 1)ν [102]. Taking the critical
exponents of the Gaussian RFIM: βRFIM = 0.00(5), νRFIM = 1.1(2) and θRFIM = 1.53(1) [103], the
exponents for the tricritical point should be: ν ≃ 1.5, β ≃ 0 and µ ≃ 3.

2Equilibrium phase-coexistence in a sample of N spins occurs for a temperature interval of
width ∼ N−1 [105], where the specific heat is C ∼ N . Yet the sample-averaged C scales at most
as N1/2 [106] because the sample dispersion of the critical temperatures leads to the critical region
having a width ∼ N−1/2 around Tc(p). For any fixed temperature within the critical region, only
a fraction ∼ N−1/2 of the samples displays C ∼ N .
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GHz processors); and on computers (mostly Pentium 2.6 GHz) located in the
UEX (Universidad de Extremadura) and UCM (Universidad Complutense de
Madrid) we used 65 000 and 160 000 hours respectively. As a result we esti-
mate that the computational resources used for this part are equivalent to 60
years of a single last generation (Pentium 2.5 GHz) processor.

• For the Q = 8 case: we used mostly the IBERCIVIS infrastructure, see Ap-
pendix G, from which we obtained the huge number of approximately 300 years
of a single last generation (Pentium 2.5 GHz) processor. In addition we made
extensive use of the BIFI cluster, from which we obtained around 40 years of
equivalent simulation time. We also used local resources in Badajoz but they
can be disregarded compared to the aforementioned enormous numbers.

3.2 Analytical Framework

In this section we briefly review the main analytical results on first-order phase
transitions with disorder. They have been taken from Ref. [100], where it was
demonstrated that for D ≤ 2 even the smallest amount of impurities (whether in
the bonds or in the fields) destroys the discontinuities of the first derivatives of
the free energy making the transition continuous (of second order type), and from
Ref. [101] where, after relating the dilute Potts model with the RFIM, it was found
that for D > 2 there must exist a region in the phase diagram where the transition
continues to be of the first order type even in the presence of disorder. This region
will end up in a tricritical point.

3.2.1 Aizenman-Wehr Theorem

In Ref. [100], it was demonstrated that for D ≤ 2 the presence of quenched random
fluctuations in the structural parameters (external field h, temperature T , ...) pro-
duces the elimination of the first-order character of the phase transitions; in other
words, it eliminates the discontinuities in the thermodynamic expectation values of
the conjugate quantities (magnetisation if the disorder is in the field, energy if the
disorder is in the temperature, etc.).

The problem was solved for the general case of spin variables σ = {σx} lo-
cated on a D-dimensional lattice whose Hamiltonian is the sum of an ordered term
(translation-invariant and non-random) and a fluctuating term with quenched ran-
domness, represented in the following by a collection of independent random vari-
ables {η}. Some examples of this form are:

1. Random field (RF) models

H(σ) = −1

2

∑

x,y

Jx−yσxσy −
∑

x

(hx + ǫηx)σx , (3.1)

where, in the ferromagnetic RFIM, σ ∈ Z
2 and J ≥ 0. In the O(N) model, σx

are N -component unit vectors with a rotation-invariant distribution.
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In RF models the spins are subjected to a fluctuating magnetic field composed
of two terms: one uniform (h), and the other random, with the order of magni-
tude of ǫ. We assume that the random fields ηx are independently distributed
with a probability measure ν(dη) (with averages denoted by A(f)≡

∫
fν(dη))

that fulfil:
A(η) = 0 , A(η2) > 0 , (3.2)

and
A(esη) <∞ , ∀s <∞ . (3.3)

2. Random bond (RB) models

For example, the Q-state Potts model, with σ ∈ {1, . . . , Q} and with Hamil-
tonian with bond disorder

H1(σ) = −1

2

∑

x,y

(Jx−y + ǫx−yηx,y)δσx,σy , (3.4)

or with site disorder

H2(σ) = −1

2

∑

x,y

(1 + ǫηx + ǫηy)Jx−yδσx,σy = H0(σ)−
∑

x

ǫηx
∑

y

Jx−yδσx,σy .

(3.5)

3. Spin-glass models

For example, the Ising model with Hamiltonian

H(σ) = −1

2

∑

|x−y|=1

ηx,yσxσy −
∑

x

(h+ ǫηx)σx . (3.6)

In general, all the above models can be unified in a Hamiltonian of the form

H(σ) = H0(σ) +
∑

a

∑

x

(ha + ǫaηa,x)ga(Txσ) , (3.7)

where the index a may parameterise pair-interaction terms of a given range or other
multiple-spin terms, ga are bounded functions of the spin configuration, Tx are
translation operators (not to be confused with the temperature T ≡ 1/β), and ηa,x
are a collection of random variables satisfying the conditions (3.2) and (3.3), with
an identical distribution within each a class.

The free energy, F , is derived from the finite volume partition function ZV . By
standard thermodynamic arguments, for almost every configuration of the disorder
parameters {ηa,x} the limit

lim
V→∞

T

V
log[ZV (T, {h}, {ǫ}, {η})] = F (T, {h}, {ǫ}) (3.8)
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converges to a non-random function in the Thermodynamic Limit. In other words,
the free energy self-averages.

In addition, it is known that the free energy is convex in {h}, for fixed T and
{ǫ}, and therefore their directional derivatives exist; any discontinuity of those cor-
responds to a first-order phase transition. One can define the following order pa-
rameter:

Ma(T, {h}, {ǫ}) =
1

2

[
∂

∂(ha + 0)
− ∂

∂(ha − 0)

]
F (T, {h}, {ǫ}) . (3.9)

In the case of the ferromagnetic RFIM:

M(T, h, ǫ) =
1

2
[A(〈σ0〉+)−A(〈σ0〉−)] , (3.10)

where with “+” and “−” we denote the extremal Gibbs states (“pure phases”)
constructed via choices of the boundary conditions (+ or −).

The following is the main result for the general case, see Ref. [100] for its demon-
stration:

Theorem. In a D ≤ 2 system with quenched disorder, described by a Hamiltonian of
the general type of Eq. (3.7) with nearest neighbour interaction (this can be extended
to longer range interactions) and with a continuous (non-atomic) probability measure
ν(dη) is

Ma(T, {h}, {ǫ}) = 0 ∀ T ≥ 0, {h}, {ǫ} and a for which ǫa > 0 . (3.11)

In the disordered Potts case, where the transition is due to a change in temper-
ature, the free energy F is also convex in T for {h} and {ǫ} fixed and therefore its
partial temperature derivative exists. We can define in this case the latent heat as

L =
1

2

(
∂

∂T

∣∣∣∣
T+

c

− ∂

∂T

∣∣∣∣
T−

c

)
F , (3.12)

which is the order parameter for this first-order phase transition. In an analogous
way it can be demonstrated that L = 0 for D ≤ 2 .

3.2.2 Cardy-Jacobsen Theory

The following results are based on a mapping between the Random Bond (RB)
model (such as the dilute Potts model) and the Random Field (RF) model (such as
the RFIM), see [101]. Firstly we will summarise the main properties of the latter
model.

Random Field Ising Model (RFIM)

It is defined by the Hamiltonian

H = −J
∑

i,j

sisj +
∑

i

hisi + h
∑

i

si , (3.13)

56



3.2. Analytical Framework

hi being quenched random variables satisfying hi = 0 and h2
i = ∆2. The pdf of hi,

p(hi), can be chosen3 Gaussian or bimodal (±∆).
There are some important general theoretical results concerning this model:

1. Dimensional reduction

A D-dimensional system with a random field is equivalent to a system with
D−2 dimensions without the random field [108]. Therefore the lowest critical
dimension is Dinf

c = 3 because for the pure Ising model it is Dinf
c = 1. This

result can be obtained by using supersymmetry arguments or through pertur-
bation theories. Nevertheless, dimensional reduction seems to fail specifically
for this model [109], although it is a valid result for many other models.

2. Imry-Ma argument

Starting from T ⋍ 0 in the RFIM and considering that the fundamental low
temperature ferromagnetic state is si = +1, we can analyse what happens if
we form a “droplet” with radius R with si = −1 [110], see Fig. 3.1.

Figure 3.1: “Droplet” with different sign within an almost fully ordered Ising model.
We study what is the effect of this perturbation depending on the dimension of the
space.

This “droplet” will present an interface with an energy cost

∆E = JRD−1 ∼ RD−1 . (3.14)

There is also an energy variation due to the random field within the “droplet”

∆EH =
∑

i∈R

hi , (3.15)

which, by the definition of the random field, will fulfil

δ ≡
√
∆E2

H = ±(RDh2
RF )1/2 ∼ R

D
2 , h2

RF ≡ ∆2 . (3.16)

3Some controversy exists about the influence of this choice on the universality class of the model,
see [107] and references therein.
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We can always choose a point in the lattice where δ < 0, so that the energy
balance between ∆E and ∆EH produces the following results depending on
the dimensionality of the space:

• ForD > 2 the fundamental low temperature state is stable. Consequently
the low temperature ferromagnetic phase exists and a phase transition at
finite temperature can be found.

• For D < 2 the fundamental state is not stable and there will exist no
phase transition.

• For D = 2 we are in the marginal case. In Ref. [111] it was demon-
strated that the rugosity of the interface (which is obviously not flat)
destabilises the ferromagnetic state, see Fig. 3.2. This result is included
in the Aizenman-Wehr theorem.

Figure 3.2: Rough interface for a two-dimensional Ising model.

The rugosity of the interface in D = 2 produces the energy [111]

E = −Ch
2
RF

J
R logR , (3.17)

with C > 0, which makes the ferromagnetic state unstable. By defining (for D = 2)

J(L) = JL− Ch
2
RF

J
L logL = JL(1− Cw2

RF logL) with: w2
RF ≡

h2
RF

J2
, (3.18)

with L being the linear lattice size, we can obtain [109]

dJ(L)

d logL
= J(L)(1− Cw2

RF ) +O(w4
RF ) , (3.19)

which is the Renormalization Group (RG) equation for the coupling J . We can easily
obtain the remaining RG equations by taking into account that h has dimensions of
RD, h2

RF has dimensions of RD, and J has dimensions of RD−1. Therefore it will be
to leading order

58



3.2. Analytical Framework






dhRF
dl

= D
2
hRF , l ≡ log(b) ,

dh

dl
= Dh , (3.20)

dJ

dl
= J [(D − 1)− Cw2

RF ]←− (generalising to dimension D) .

In addition, by definition, wRF ≡ hRF /J and therefore

dwRF
dl

= − ǫ
2
wRF + Cw3

RF , with: ǫ ≡ D − 2 . (3.21)

If D > 2 then ǫ > 0 and the RG flow has a non-trivial random fixed point (with

w ∼ ǫ
1
2 6= 0) in agreement with [110]. Using these results, the phase diagram for

the RFIM can be obtained, see Fig. 3.3.

Figure 3.3: RG flows for the RFIM for D > 2 .

Cardy-Jacobsen mapping

In the case of a pure system undergoing a first-order phase transition there will be
coexistence of a (generally unique) disordered phase and the (generally non-unique)
ordered phases. The internal energies U1 and U2 of these two phases differ by the
latent heat. Consider, see Ref. [101], a large (say horizontal) interface between the
disordered phase and one of the ordered ones, with surface tension Σ. If Σ ≫ 1,
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there will be a really small number of isolated bubbles of the opposite phase above
or below the main interface. The free energy of these bubbles is proportional to
their areas multiplied by the surface tension.

On the other hand, let us consider an Ising model and build an interface between
the two possible ordered phases (all spins taking the values ±1). At a very low
temperature, there will basically exist no “bubbles” above or below the interface and
the surface tension will be ∼ 2J , where J is the reduced coupling of the Hamiltonian.
In the limit Σ ∼ 2J ≫ 1, these two interface models will be identical.

We will analyse the effect of disorder in these two models. In the first one, we
introduce random bonds (disorder coupled with the energy) while in the second we
introduce a random field (disorder coupled with the magnetisation). The changes
in the energy due to the introduction of the disorder are:

1. Random Field: ∑

r>

h(r)−
∑

r<

h(r) , (3.22)

where the sums are defined over all the points above (>) or below (<) the
interface.

2. Random bonds

U1

∑

r>

δx(r) + U2

∑

r<

δx(r) =
1

2
L

(
∑

r>

δx(r)−
∑

r<

δx(r)

)
+ const. , (3.23)

with δx(r) being the local impurities density, L = U1 − U2 is the latent heat,
and the final constant is independent of the interface location4. The latter
equation has the same form as that corresponding to the random field.

Therefore the thermal variables of the random bond system are related to the
magnetic variables of the RFIM by the following mapping:

Random Bond Random Field

Σ/kTc ⇐⇒ J/kT

(L/kTc)x ⇐⇒ hRF/kT (3.24)

(T − Tc)L ⇐⇒ HM

4The energy can be split in the following way, ∆ being the difference between the two sides of
Eq. (3.23):

∆ =
1

2
U2

∑

r<

δx(r) +
1

2
U1

∑

r>

δx(r) +
1

2
U1

∑

r<

δx(r) +
1

2
U2

∑

r>

δx(r) =

1

2
U1

[
∑

r<

δx(r) +
∑

r>

δx(r)

]
+

1

2
U2

[
∑

r<

δx(r) +
∑

r>

δx(r)

]
=

1

2
U1

∑

∀i

δxi +
1

2
U2

∑

∀i

δxi

which is independent of the interface location.
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The last relationship is between the “field” (T −Tc) and a uniform external field
H , which helps to distinguish between the two phases (in the same way as (T −Tc)).
One of the possible problems of this mapping is its use of the local energy density as
a kind of order parameter. However it can be made completely explicit, for example
for the Q-state Potts model, through the mapping to the random cluster model
where Σ ∼ L ∼ logQ, Q→∞, see Ref. [101].

Explicit relationship with the Potts model

We can now derive [101] the specific relationship of the previous section with the
Q-state Potts model with quenched disorder, with Hamiltonian

H = −
∑

<i,j>

Kijδsisj
, (3.25)

where the sum extends only over nearest neighbours. The ferromagnetic couplings
Kij are quenched random variables, taking the values K1 and K2, each with proba-
bility 1

2
; in other words, their pdf is

p(Kij) =
1

2
δ(Kij −K1)−

1

2
δ(Kij −K2) . (3.26)

When (eK1 − 1)(eK2 − 1) = 1 this model is, on average, self-dual, and, if the
transition is unique, is at its critical point [112]. It is useful to parameterise the
model through

uij = (eKij − 1) = Q
1
2
+wij , (3.27)

with wij = ±w. w ≥ 0 measures the strength of the randomness, with w = 0 being
the case without disorder. We can solve for Kij

Kij = log(1 +Q
1
2
+wij ) , (3.28)

and consider the limit Q→∞ to approximate

Kij = log(1 +Q
1
2
+wij ) ≃ log(Q

1
2
+wij) =

(
1

2
+ wij

)
logQ . (3.29)

By substituting in the Hamiltonian we obtain

H = −1

2
logQ

∑

<i,j>

δsisj
− logQ

∑

<i,j>

wijδsisj
, (3.30)

where the first term corresponds to an ordered model while the second term corre-
sponds to a disordered one. Therefore the term added to the pure model is

Hadded ∼
∑

<i,j>

wij logQ δsisj
. (3.31)

We will work in the following in two dimensions; i.e. the label i identifying the
lattice sites means i ≡ (x, y), with (x, y) being Cartesian coordinates. Using the
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same arguments as in the previous section, if an interface divides the space into two
parts, denoted by “>” and “<”, then

Hadded ∼
∑

>

w logQ+
∑

<

w logQ , (3.32)

noting that within each of these two homogeneous regions δsisj
= 1. Each of the

two terms of Eq. (3.32) is

∑

<

w logQ =
1

2

(
∑

>

+
∑

<

)
+

1

2

(
∑

<

−
∑

>

)
, (3.33)

but, as in the previous section, the term (
∑

> +
∑

<) does not depend on the inter-
face position and as a consequence

1

2

(
∑

>

−
∑

<

)
w logQ (3.34)

is an analogue of the random field term of Eq. (3.22). Therefore we obtain the
relationship

hRF ←→
1

2
w logQ . (3.35)

In addition, following Ref. [82], when Q→∞, the surface tension is:

Σ ∼ 1

4
logQ . (3.36)

But as was seen in Sec. 3.2.2 for the RFIM Σ ∼ 2J , and therefore we have the
relation

J ←→ 1

8
logQ . (3.37)

Finally, while a uniform field in the RF model distinguishes between the two
phases, in the RB model this is the task of the reduced temperature t ≡ T−Tc

T
;

provided that t is coupled to the energy density we can make the identification

h←→ 1

4
t logQ . (3.38)

To summarise, the mapping between the Potts model and the RFIM is:

RFIM Q-state Potts model

J ⇐⇒ 1
8
logQ

h ⇐⇒ 1
4
t logQ (3.39)

hRF ⇐⇒ 1
2
w logQ

We can use this mapping to derive the RG equations for the Potts model starting
from those for the RFIM [109], see Eq. (3.20). We will denote for the sake of clarity
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the w used in Eq. (3.35) as wRB ≡ w, to distinguish between this wRB and the wRF
defined in Eq. (3.18). Therefore from Eqs. (3.35) and (3.37) one obtains

wRB =
2hRF
logQ

=
hRF
4J

. (3.40)

But wRF = hRF/J , hence

wRB =
1

4
wRF , (3.41)

and therefore the RG equation for wRF is also valid for wRB, i.e.,

dwRB
dl

= − ǫ
2
wRB + Aw3

RB , with: ǫ ≡ D − 2 , l ≡ log(b) . (3.42)

From the last RG equation of Eq. (3.20) and from Eq. (3.37), one easily derives the
RG relation

d(logQ)−1

dl
= −(logQ)−1[(D − 1)−Aw2

RB] . (3.43)

Finally, using again Eq. (3.20) and Eq. (3.38), one obtains:

dt

dl
= t(1 + Aw2

RB) . (3.44)

Summarising, the set of RG equations for the Q-state Potts model with quenched
disorder is:






dwRB
dl

= − ǫ
2
wRB + Aw3

RB , with ǫ ≡ D − 2 , l ≡ log(b) ,

dt

dl
= t(1 + Aw2

RB) , (3.45)

d(logQ)−1

dl
= −(logQ)−1[ǫ+ 1−Aw2

RB] .

We can now analyse the stability of the fixed points of the RG transformations
to trace the phase diagram of the model. To simplify we make the change

Q̂ ≡ 1

logQ
. (3.46)

Then the fixed points of the RG transformation are the Gaussian one:

Q̂ = t = wRB = 0 , (3.47)

and the tricritical one:

Q̂ = t = 0 , wRB =

√
ǫ

2A
. (3.48)
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The Jacobian matrix for the transformation is

J =





− ǫ
2

+ 3Aw2
RB 0 0

2AtwRB 1 + Aw2
RB 0

2AQ̂wRB 0 −(ǫ+ 1−Aw2
RB)





which evaluated at the Gaussian point is

J |Gauss =





− ǫ
2

0 0

0 1 0

0 0 −(ǫ+ 1)





resulting in that at the Gaussian fixed point the “fields” wRB and Q are irrelevant
while t is relevant. At the tricritical (TC) point, the Jacobian will be

J |TC =





ǫ 0 0

0 1 + ǫ
2

0

0 0 −(1 + ǫ
2
)





and therefore wRB and t are relevant “fields” while Q is irrelevant. For D > 2 the
eigenvalues are

yw = ǫ > 0 =⇒ Relevant

yt = 1 +
ǫ

2
=⇒ Relevant

yQ = −
(
1 +

ǫ

2

)
=⇒ Irrelevant

The (Q,w) plane of the phase diagram is depicted in Fig. (3.4). In the pure
system, for Q > Q2 there is a phase transition with non-vanishing latent heat
controlled by a fixed point at infinite Q. For D > 2 it will continue into the
shaded region bounded by a line of tricritical points whose exponents are related
to those of the RFIM [101]. It also may be shown that the latent heat vanishes as
(wc−w)βRF as the line RQ2 is approached from below. Let us note also that Q = 1
corresponds to the percolation model, where the disorder is irrelevant (α ≈ −0.64),
while Q = 2 corresponds to an Ising model, where the phase transition is always of
second order but the disorder is relevant (α ≈ 0.1118). Therefore there exists a Q1,
with 1 < Q1 < 2, at which the sign of α changes. In addition, for Q > Q2 = 2 + ǫ
the transition becomes first order.

Above the line RQ2, as w grows the RG equations lose validity. In addition the
surface tension goes to zero and the mapping between the two models disappears.
Nevertheless, for Q→∞ the mapping remains exact and the flow goes to infinite w.
But this can not happen for finite Q because this is the percolation limit K1/K2 = 0,
at which the disorder is relevant [113]. Therefore there should exist [101] another
line of stable fixed points emerging from P1, which control the universal continuous
transition for large, but finite, values of w and Q.
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3.3. The Model

Figure 3.4: Phase diagram of the dilute Potts model with Q states for D > 2,
obtained in Ref. [101]. Q grows towards the left; w is a measure of the disorder
strength, w = 0 being the pure case. The latent heat do not vanishes within the
shaded region while outside the transition is continuous. P1 and P2 are the percola-
tion thresholds.

3.3 The Model

In the three-dimensional site-diluted Q-state Potts model [82] the spins, σi, take the
values σi=1, . . . , Q and are defined at the nodes of a cubic lattice with probability p.
We consider only nearest neighbour interaction and periodic boundary conditions.
Therefore the Hamiltonian takes the form:

Hspin = −
∑

〈i,j〉

ǫiǫjδσiσj
, (3.49)

with ǫi being quenched occupation variables (ǫi=0 or 1 with probability 1− p and
p respectively)5, and 〈i, j〉 denoting nearest neighbours. Each one of the specific
disorder realizations ({ǫ} spatial distribution) is called a sample. The pure system
is recovered for p = 1, and is known to undergo a first-order phase transition for
Q ≥ 3 [13, 46] generally regarded as very strong.

A valid order parameter for the model is the magnetisation density (aQ-dimensional
vector) defined as

Mq =
1

V

∑

i

ǫi

[
Qδσi,q − 1√
Q(Q− 1)

]
, (3.50)

5To reduce statistical fluctuations, we kept only the spins in the percolating cluster [114] that
control the critical behaviour. However, in the most interesting region (p & 0.9) this correction is
quite small.
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with V = L3 being the volume and L the linear size of the system. We can define
the magnetic susceptibility as

χ = V |M |2 . (3.51)

A well-behaved definition for the correlation length in a finite system is obtained
from the correlation function as [7]

ξ ≡
(

χ/F − 1

4 sin2(π/L)

) 1
2

, (3.52)

where

F ≡ V

3
〈|F (2π/L, 0, 0)|2 + |F (0, 2π/L, 0)|2 + |F (0, 0, 2π/L)|2〉 , (3.53)

and where we denote the thermal averages with brackets while the sample average
is overlined. In addition

F (k) ≡ 1

V

∑

r

eik·rǫrσr . (3.54)

In this work we use the microcanonical simulation method defined in Ref. [13],
see also Sec. 2.2.2, so that, by using the Maxwell construction, see Appendix E, we
can directly obtain some quantities characteristic of the phase transition. Firstly
the critical temperature is fixed by the definition of the Maxwell construction: the
e-integral of β{ǫ}(e)− 1/Tc from ed to eo must vanish, where e is the energy density
and β{ǫ}(e) was defined in Eq. (2.58). This fact also implies that

sd − so =(ed − eo)/Tc , (3.55)

s being the entropy density. The latent heat is defined directly as

∆e=ed − eo . (3.56)

Finally the surface-tension, Σ, is L2/2 times the integral of the positive part of
β{ǫ}(e)− 1/Tc , see Ref. [13].

3.4 Numerical Results

We have studied numerically two cases of the three-dimensional site-diluted Potts
model: the four-state (Q=4) and the eight-state (Q=8) cases. Both cases undergo
a well-known [82] strong first-order phase transition in the pure case; the strength
of the first-order character of the phase transition will grow with Q. In both cases a
softening of the discontinuities of the first derivatives of the free energy is expected
to appear with increasing dilution. The critical concentration, pc, at which the
character of the phase transition switches to second order will depend on Q, being
smaller for increasing Q.
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3.4.1 Methods

Simulation method

To update the Potts spins of our systems, we used a microcanonical version [13]
of the Swendsen-Wang (SW) [11] cluster method. For disordered systems, SW up-
dates loosely connected regions properly [51] and does not require tedious parameter
tuning. The microcanonical cluster method, which is not rejection-free, depends on
a tunable parameter, κ. In order to maximise the acceptance of the SW attempt
(SWA), κ should be chosen as close as possible to β{ǫ}(e). After every e change, we
performed cycles consisting of 103 Metropolis steps, a κ refresh, then 103 SWAs, and
a new κ refresh. The cycling was stopped, and κ fixed, when the SWA acceptance
exceeded 60%. We then performed a number of SWAs depending on the lattice size,
taking measurements every 2 SWAs.

For Q = 4 we performed thermalization checks that included comparisons of hot
and cold starts or even mixed configurations (bands and strips [13]). We checked that
the Maxwell construction obtained for the pure case of the largest system (L = 128)
does not depend on the initial configuration, after discarding a part of the initial
Monte Carlo history.

In the Q = 8 case, reaching the thermodynamic equilibrium is a far more compli-
cated task, especially on the first-order side of the phase diagram. For a first-order
phase transition, it is known that metastable states do exist. These states can have
a very long life even when they are not the true equilibrated states. This is most
dramatic for large systems in which the simulation times are intrinsically longer.
Therefore the thermalization issue in this case deserves a special treatment that will
be described in Sec. 3.4.3.

Sample averaging methods

For a disordered system, one has to analyse a set of functions β{ǫ}(e) corresponding
to a large enough number of samples. There are two natural possibilities. On the
one hand, one can use the Maxwell construction for each sample extracting Tc, ed,
eo and Σ, and then considering their sample average, median, or even their pdf, see
Fig. 3.6. This is the most usual approach.

On the other hand, one can compute the sample average of the (inverse) tem-
perature defined at each simulation energy, e, β(e) = β{ǫ}(e), and then perform the
Maxwell construction on it (i.e., take the sample average of s(e), rather than the
sample average of the free energy at fixed T ).

We found empirically that the two sample averagings are equivalent in the first-
order piece of the critical line. This is hardly surprising, because the internal energy
as a function of T is a self-averaging quantity, for all temperatures but the critical
one. Therefore, also ed, eo, and Tc are self-averaging properties in the first-order
part of the critical line.

While the first method offers more information, it is computationally more de-
manding (it requires high accuracy for each sample). The method featuring β(e)
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can be used as well in the second-order part of the critical line, but its merit in that
region is yet to be investigated.

3.4.2 D = 3 , Q = 4 Site-Diluted Potts Model

For Q = 4 we investigated the phase transition for several p values in the range
0.75 ≤ p ≤ 1. As a rule, we found that at fixed p the latent heat is a monotonically
decreasing function of L, see Fig. 3.7. For each p value, we simulated L = 16, 32,
64, and 128 (for a given p, we did not consider larger lattices once the latent heat
vanished). For all pairs (p, L) we simulated 128 samples. Also, some intermediate p
values were added for the FSS study, see Fig. 3.8, and we raised to 512 the number
of samples for (L = 16 and 32, p = 0.86 and 0.875).

General behaviour

Following the procedure of Sec. 3.4.1 we performed sample averages of the Maxwell
constructions for each L and p. In Fig. 3.5 one can see the general behaviour of
the Maxwell constructions as the spin concentration, p, varies: while for large p
(p ≈ 0.95) we can form the Maxwell construction for every system size, it softens
with decreasing p up to a point, pc, at which both latent heat and surface tension
vanish. This pc depends on the system size.
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0.6715
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L=64, p=0.92

Figure 3.5: Sample-averaged e-derivative of the entropy, β(e), for several lattice
sizes, L, and spin concentrations, p. Metastability requires a non-decreasing β(e).
The horizontal line marks the critical (inverse) temperature 1/Tc, obtained through
Maxwell construction. At fixed L the surface tension increases for increasing p. Note
that, for a fixed dilution, a seemingly first-order transition (L = 64, bottom-right),
may actually be of second order if studied on larger lattices (L = 128, bottom-left).
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Figure 3.6: Histograms for the sample-dependent latent heat ∆{ǫ}e = ed − eo (left)
and surface tension, Σ(right). In the top panels we show results in the largest
lattice, where two very close spin concentrations behave very differently. The three
types of horizontal lines drawn (indicating central value and statistical error) corre-
spond, from top to bottom, to the median, the mean, and the value obtained from
β(e). In the lower panels we show the histograms for p = 0.98 and different L’s
(note the difference in the horizontal scales with the upper part). As can be seen,
the latent heat is self-averaging while the surface tension is not.

As was said before, for each sample we can define the different thermal-averaged
quantities, and then determine their mean, median, or pdf. We can also compute
the sample-average β(e) = β{ǫ}(e), and then perform the Maxwell construction on
it. We compared the two approaches for this model both for the latent heat and for
the surface tension, see Fig. 3.6. We found that the two approaches are equivalent,
although the second one requires less statistical accuracy for each sample and is
therefore less numerically demanding. Also from Fig. 3.6 (top row) we can see
that as the dilution is slightly decreased (the tricritical point is reached), a great
number of samples present vanishing latent heat and surface tension; the transition
has become continuous. Finally we found that within the first-order part of the
phase diagram (p = 0.98) the width of the histograms of the latent heat decreases
as the lattice size increases; this is the definition of a self-averaging quantity. On
the contrary, we can not see this behaviour for the surface tension and therefore we
can state that it is not self-averaging.

69



Chapter 3. Quenched Disorder Effect on a First-Order Phase Transition

0.000

0.005

0.010

 0.8  0.85  0.9  0.95  1

Σ

p

0.000

0.250

0.500

∆ 
e

L = 16
L = 32
L = 64
L=128

Figure 3.7: Top: Latent heat as obtained from β(e) as a function of spin concen-
tration for several lattice sizes (lines are linear interpolations). Data for p = 1 and
L=128 were taken from Ref. [13]. To illustrate the sample dispersion, we also show
the scatter-plot of (N/LD, ∆{ǫ}e) for the 128 samples at L=16 p=0.85 and L=64
p=0.92. Bottom: As the top panel, but for the surface tension.

Latent heat and surface tension

Our results for the behaviour of the latent heat and the surface tension obtained
from β(e) as the dilution changes are shown in Fig. 3.7. The apparent location
of the tricritical point (i.e., the p where both ∆e and Σ vanish) shifts to higher
p for increasing L rather fast. For lattice sizes comparable with those of previous
work [46], L = 16, we obtain a sizeable value pL=16

c ≈ 0.75, but the estimate of pc

increases very rapidly with L. An extrapolation to L→∞ is called for.

The pdf’s for ∆e and Σ, Fig. 3.6, display an interesting L evolution. When
the β(e) changes behaviour from non-monotonic (L = 64, Fig. 3.5, bottom-right)
to monotonic (L = 128, Fig. 3.5, bottom-left), the two pdf’s becomes enormously
wide6, see the top panels in Fig 3.6. This arises because for many L = 128 samples
the curve β{ǫ}(e) is becoming flat, or even monotonically decreasing (i.e., ∆e=Σ =
0), while no such behaviour was seen for L=64. Only for p=0.98 does the width of
the pdf’s for ∆e scale as L−D/2, as expected for a self-averaging quantity, see Fig. 3.6
– bottom-left. The surface-tension is not self-averaging, see Fig. 3.6 – bottom-right.

Finite Size Scaling study

From Figs. 3.5, 3.6, and 3.7 one cannot rule out that pc 6= 1: a disordered first-order
transition would not exist. Fortunately we can solve this dilemma by consider-

6The estimates for ∆e and Σ are consistent with the median of their (non-Gaussian) pdf’s.
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Figure 3.8: Correlation length in units of the lattice size in the Q = 4 case, at phase
coexistence for the paramagnetic phases, ed, as a function of concentration, p, for
several system sizes, L (lines are cubic spline interpolations for data at fixed L).

ing the correlation length, obtained from the sample-averaged correlation function,
Eq. (3.52).

We take the correlation length in units of the lattice size at ed (see Fig. 3.8), and
eo (see Fig. 3.9), as obtained from β(e) (a jack-knife method [7] takes care of the
statistical correlations). For all p < pc, one expects that both ξ(ed)/L and ξ(eo)/L
tend to non-vanishing and different limits for large L7. For p > pc, ξ(ed)/L is of
order 1/L, while ξ(eo)/L ∼ LD/2. For a fixed L, with increasing p, the behaviour
goes from a second-order type to first-order (see Fig 3.5). Hence, a FSS approach [7]
is needed.

Consider the curves of ξ(ed)/L versus p for different L, see Fig. 3.8. There is a
unique concentration, pL,2L, where the correlation lengths in units of the lattice size
coincide for pairs of lattices of sizes L and 2L. One has 8

pL,2L ≈ pc + AdL
−x . (3.57)

An exactly analogous result holds for ξ(eo)/L, see Fig. 3.9. Since Ad and Ao are quite
different, see Fig. 3.10, a combined fit of all the data yields an accurate estimate of

7We have checked numerically that this is indeed the case for the D = 2, Q = 4, pure Potts
model (a prototypical example of a second-order phase transition with a double-peaked canonical
pdf for e at Tc), see Sec. 2.4.3.

8The tricritical point has no basin of attraction for the RG flow in the (T, p) plane. Although
two relevant scaling fields are to be expected, the Maxwell construction allows us to eliminate one
of them and hence we use the formulae for a standard critical point.
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Figure 3.9: Correlation length in units of the lattice size in the Q = 4 case, at phase
coexistence for the ferromagnetic phases, eo, as a function of concentration, p, for
several system sizes, L.
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3.9) coincide for lattices L and 2L versus 1/Lx, see Eqs. (3.57) and (3.58). Lines are
a combined fit for x, pc, Ad, and Ao.
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the location of the tricritical point:

pc = 0.954(3), x = 1.23(9),
χ2

d.o.f.
=

4.23

3
, C.L. = 24% . (3.58)

Of course, due to higher-order scaling corrections, Eq. (3.57) should be used only for
lattices larger than some Lmin [70]. The fit χ2 was acceptable taking Lmin

d = 12 and
Lmin

o = 16 (for the sake of clarity we do not display data for L = 12 in the figures).
Therefore we can conclude that p = 0.98 is definitively in the first-order part of the
critical line.

We now look at ξ/L at pL,2L, see Figs. 3.8 and 3.9. Consider ξ(ed)/L as a function
of (L, p), see Fig. 3.11. Its salient features are:

1. For fixed L, ξ(ed)/L is a decreasing function of p (while ξ(eo)/L is increasing).

2. For fixed p, ξ(ed)/L has a minimum (while ξ(eo)/L has a maximum) at a
crossover length scale, Lcr(p), that separates the first-order type of behaviour
from the second-order type, see Figs. 3.8 and 3.9.

3. At the crossing point pL,2L we have L < Lcr(p
L,2L) < 2L.

4. At least within the range of our simulations, Lcr(p) is an increasing function
of p.

A standard scaling argument, combined with (1–4), yields that ξ(ed)/L at pL,2L is

of order 1/Lcr(p
L,2L) (ξ(eo)/L ∼ L

D/2
cr ). If Lcr(p) diverges at pc, ξ(ed)/L at pL,2L

should tend to zero for large L, which is indeed consistent with our data.

3.4.3 D = 3 , Q = 8 Site-Diluted Potts Model

We also present in this chapter some of the preliminary results of our study of the
eight-state (Q = 8) site-diluted Potts model using basically the same methodological
approach as in the Q = 4 case. First, however, it has to be stressed that there are
two important differences in this case:

• We used chiefly another kind of computing platform. While the Q = 4 case
was entirely simulated on typical cluster facilities, i.e., the BSC and BIFI,
the Q = 8 case case was simulated on IBERCIVIS, a distributed computing
platform based on BOINC, see Appendix G. This change in platform involved
both advantages and disadvantages. By using IBERCIVIS, we were able to
outperform broadly all previous statistical accuracies both in the number of
samples (we were able to simulate up to 2000 samples of a system with 643

spins) and in the number of dilution levels (around ten for each system size).
In addition, we did more than 3 × 106 Swendsen-Wang steps at each energy
of a system with 643 spins. In particular, with IBERCIVIS we obtained more
than 300 years of computation time in less than a year of wall clock time. This
would have been hard to achieve using a traditional cluster facility.
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Figure 3.11: Correlation length at ed in units of the lattice size, for fixed dilutions
as a function of the inverse lattice size. For fixed p < pc, ξ(ed)/L has a minimum
at a crossover length scale, Lcr(p), that separates the first-order type of behaviour
from the second-order type.

On the other hand, the use of IBERCIVIS, a novel infrastructure, led to nu-
merous unusual problems in the adaptation and stabilisation of the original
code to the new computing paradigm, see again Appendix G. The huge output
of the computations has to be carefully analysed, and a major effort must be
made to identify all the possible error sources. For example, the connection
of the individual parts of each BOINC job is an extremely delicate issue, and
the development of a secure mechanism for the detection of corrupted outputs
is fundamental.

• It is known that the pure Potts model undergoes a first-order phase transition
forQ > 2 in three dimensions [82], with the strength of the first-order character
being larger as Q grows. Therefore the Q = 8 case will show more evidently
the features of this kind of transition (i.e., latent heat, metastabilities, phase
coexistence, etc.). This fact has pros and cons. The main benefit is that if
we want to see a first-order phase transition in the presence of disorder, the
first-order region in the phase diagram is expected to be larger for Q = 8 than
for Q = 4, in other words pc will be smaller. This will mean stronger evidence
for the main result of this chapter – first-order phase transitions do exist in
the presence of disorder in three-dimensional systems.

On the contrary, the stronger first-order character of the transition produces
much more palpable metastability effects. This is a huge problem in Monte
Carlo simulations, because exponential autocorrelation times will grow sub-
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Figure 3.12: Comparison of the different “energy walks” for the system with L = 48
and p = 0.95. The upper part correspond to the Maxwell construction of a random
sample. Note the clear difference between the walk starting from hot (red solid line)
and cold (blue dashed line). The lower part shows the softening of the difference
as the sample average (with 40 samples) is performed. Horizontal lines mark the
corresponding estimates of βc.

stantially, see Appendix C and Ref. [115], making thermalization really hard
to achieve for large systems at given values of their internal energy. This fact
restricted us to thermalizing systems with “only” 643 spins on the first-order
side of the phase diagram, compared with the Q = 4 case for which we were
able to thermalize systems with up to 1283 spins. Anyway we plan to study
the first-order side of the transition by making estimates of the errors due to
not having reached the asymptotic states of the system.

For Q = 8 we simulated the model for p values in the range 0.65 ≤ p ≤ 1. For
each p value, we simulated L = 12, 16, 24, 32, 48, 64, and 96 (for a given p, we did not
consider larger lattices once the latent heat vanished). Finally, we disregarded our
simulations for L = 96 because of the impossibility of thermalization in a reasonable
time. For all pairs (p, L) we simulated at least 500 samples.

To check the thermalization of the systems we compared simulations of the same
samples (distribution of the vacancies), performing annealings starting from both
random configurations at high temperatures and cold (all the spins in the same state)
configurations at low temperatures. As we performed our “energy walk” we found
that for energies corresponding to pure states (with no “islands” of the other phase)
both annealings will agree fully. However, between eo and ed there will exist some
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energies where the two annealings will produce different estimates of the observables
(especially for the largest lattices). These energies are precisely those at which the
system switches between the different configurations of the “islands”, for example
from a “droplet” to a “strip”. In the case that the thermal averages of the different
observables from the two annealings were similar, we would be fairly confident of
the equilibration of the system. If they were not, we could at least estimate the
error due to the lack of thermalization from their difference.

In Fig. 3.12 we plot the comparison of the annealings of the system with 483

spins and p = 0.95. The system is clearly undergoing a first-order phase transition.
The simulation of each sample used in Fig. 3.12 took around three days of a last
generation Pentium I7 3.0 GHz core and are clearly not thermalized! With this in
mind, it is clear that on the first-order side of the phase diagram the simulations
must be really long in time to reach equilibrated states. As was said before, this
fact will critically restrict us in simulating large systems.

Due to the lack of mixed phases, thermalization is quite easy to achieve on the
second-order side of the phase diagram. No metastability will exist and the cluster
update method will work very well.

Therefore the approach to the problem must be very different depending on the
dilution of the system. If the dilution is weak, the systems will undergo first-order
phase transitions and we will not be able to simulate large systems. Nevertheless we
can estimate the latent heat and the surface tension to obtain the exponents of their
scaling, always taking into account the possibility of unequilibrated systems. On the
contrary, if the dilution is important, since the systems will undergo second-order
phase transitions, we will be able to equilibrate large systems (with 643 spins) and
to obtain accurate results for the tricritical point location. In this work we present
only the latter study, i.e., the study of the exact location of the tricritical point.
The study of the first-order side will be left for further research.

General behaviour

First we outline the behaviour of the model, which is very similar to that of the
Q = 4 case although the first-order character is stronger. Firstly, by taking the
sample average of the Maxwell constructions, see Sec. 3.4.1, we can obtain for each
system size the behaviour of the model as the dilution changes, see Fig. 3.13 for the
system with L = 24. Note that in this case we obtain clean Maxwell constructions up
to p = 0.800. The system is undergoing (on average) a first-order phase transition
even with 20% of vacancies! It is also remarkable that in the pure case, p = 1,
the Maxwell construction is smooth, without flat parts or strong steps between
consecutive energies.

By representing the same plot for a larger system, see Fig. 3.13 for the L = 48
case, we find that Maxwell constructions can not be formed for dilutions less than
p = 0.850. As was said in Sec. 3.4.2, the apparent tricritical point depends on the
system size (a FSS study is again called for). We can also see that the Maxwell
construction in the pure case presents flat parts and clear steps in the temperature.
They are due to the existence of clear mixed regimes with droplet or strip-like
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Figure 3.13: Maxwell constructions for the system with L = 24 as a function of the
spin concentration, p. In the dilute cases, each point represents the average of the
temperature for 500 samples. Note that for this size we can form the construction
even for p = 0.800.
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temperature for 500 samples. Note that we can form the construction only up to
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Figure 3.15: Top: Latent heat as obtained from the averaged Maxwell construction
as a function of p for each simulated lattice size (lines are linear interpolations) for
the Q = 8 case. Bottom: As in the top panel, but for the surface tension.

configurations in which the internal energy basically does not change over a range of
energy densities. This is also manifest in the case of the mildly dilute samples prior
to the sample-averaging process. The location of the flat parts and the steps is by
far the part of the “energy walk” that is most sensitive to the metastability effects;
it is really difficult for any Monte Carlo spin update method to perform properly
with configurations of this kind.

Again we can plot the entire behaviour of the latent heat and the surface tension
as a function of the system size and the dilution, see Fig. 3.15. This figure must be
compared with that corresponding to the Q = 4 case, Fig. 3.7. While in the Q = 4
case the tricritical dilution is clearly above p = 0.95, this is not so for Q = 8. The
data for both the latent heat and the surface tension show the clear trend of the
tricritical dilution towards larger values as the number of Potts states grows. The
points in Fig. 3.15 corresponding to large values of the dilution and the lattice size
(p > 0.925, L > 32) are possibly not fully equilibrated, so special treatment of the
data is needed to obtain accurate information of the scaling in this part of the phase
diagram. This will be done in future work.

78



3.4. Numerical Results

 0

 0.1

 0.2

 0.8  0.85  0.9  0.95  1

ξ(
e d

)/
L

p

L = 12
L = 16
L = 24
L = 32
L = 48
L = 64

Figure 3.16: Correlation length for the Q = 8 case in units of the lattice size, at
phase coexistence for the paramagnetic phases, ed, as a function of concentration
for several system sizes, L. The huge error bar for L = 48, p = 0.85 is due to
the enormous sample-to-sample dispersion of this observable close to the tricritical
point.

Behaviour of the model on the second-order side

From Fig. 3.15, while one can not obtain an accurate estimate of pc 6= 1, one can
again consider the correlation length obtained from the sample-averaged correlation
function, Eq. (3.52). We use then the same approach as we used in Sec. 3.4.2
computing the crossings of the correlation length in units of the lattice size at ed,
see Fig. 3.16, and eo, see Fig. 3.17, as obtained from β(e).

As was done in Sec. 3.4.2, we define pL,2L as the crossing points of the correlation
length ξ(ed) (in lattice size units) for pairs of lattices with L and 2L. We can fit
these points again to the form of Eq. (3.57) to obtain the value of the tricritical
dilution pc. Fitting our data set in ed, see Fig. 3.16, we obtain:

pc, ed = 0.915(1), x = 1.14(28),
χ2

d.o.f.
=

1.5

2
, C.L. = 47% , (3.59)

which is a perfectly valid fit producing a value for pc clearly less than unity. Using
the same approach for the crossings of ξ(eo), see Fig. 3.17, we obtain a valid fit with
parameters

pc, eo = 0.910(2), x = 0.95(49),
χ2

d.o.f.
=

1.1

2
, C.L. = 58% . (3.60)

Finally we can fit both data series to the form (3.57) sharing the same coefficients
pc and x. To get an acceptable value for the χ2 of the fit we had to disregard the
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Figure 3.17: Correlation length for the Q = 8 case in units of the lattice size, at
phase coexistence for the ferromagnetic phases, eo, as a function of concentration
for several system sizes, L.

data with L < 16 for ξ(ed) and L < 24 for ξ(eo) obtaining the fitting parameters:

pc, joined = 0.922(1), xjoined = 0.93(47),
χ2

d.o.f.
=

1.50

2
, C.L. = 47% . (3.61)

A plot of all the above fits is shown in Fig. 3.18. Therefore we can firmly conclude
that p = 0.925 is in the first-order part of the critical line for the three-dimensional
Potts model with Q = 8. This is another result that reinforces our main conclusion
of the previous section, i.e., first-order phase transitions do exist in D = 3.

3.5 Conclusions

In this chapter we have performed a detailed study of the effects of quenched dis-
order on a three-dimensional system undergoing a first-order transition in the pure
case. We studied the site-diluted version of both the Q = 4 and the Q = 8 Potts
model, a model undergoing a prototypically strong first-order transition, with the
strength being proportional to the value of Q. A small degree of dilution smooths
the transition up to the point of becoming second order at a tricritical point, pc.
We observed strong finite-size effects in both the location of the tricritical point
and the behaviour of the most relevant quantities (latent heat, surface tension, cor-
relation length, etc.). A delicate FSS analysis allowed us to firmly conclude that
pc < 1, with pc = 0.954(3) and pc = 0.922(1) in the Q = 4 and Q = 8 cases respec-
tively. We are then able to claim that (quenched) disordered first-order transitions
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coincide for lattices L and 2L versus 1/Lxjoined , see Eq. (3.61). Solid lines are the
combined fit, while the dashed and dotted curves correspond to the individual fits
of the crossing of ξ(ed) and ξ(eo) respectively, Eqs. (3.59) and (3.60).

do exist in three dimensions, although quenched disorder is unreasonably effective in
smoothing the transition (we speculate that the percolation mechanism for colossal
magnetoresistance proposed in [99] could be fairly common in D=3).

We also observed that, for a given p < pc, a crossover length scale Lcr(p) exists
such that for L < Lcr(p) the behaviour is of first-order type. The asymptotic second-
order behaviour appears only for L > Lcr(p).

In the Q = 4 case, we also verified that the latent heat is a self-averaging quantity
for random first-order phase transitions while the surface tension is not. We will try
to verify this point for the Q = 8 case in future work.

All these results were made possible first by a new definition of the quenched
average that avoids long-tailed pdf’s [46], and second by the use of a recently intro-
duced microcanonical Monte Carlo method that features the entropy density rather
than the free energy [13].

As further research, we will obtain novel information on the scaling of some
quantities on the first-order part of the critical line in the Q = 8 case. To perform
this analysis, we will have to deal with systems that are not fully equilibrated. The
characterisation of the effects due to the metastable states will be done by comparing
pairs of simulations performing annealings from hot and cold states.
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Chapter 4

The Site-Diluted Heisenberg
Model in Three Dimensions

4.1 Introduction

The three-dimensional Heisenberg model is the most general representation of the
interaction of the spins within an isotropic magnetic material, where isotropic means
that the magnetisation does not have any preferential direction to point to. Besides,
other popular models such as the Ising or XY models describe materials with a
plane or axis of easy magnetisation, as is the case for instance of hexagonal lattices
where the magnetisation usually chooses as preferential orientation either the c axis
(correctly described then by the Ising model) or its orthogonal plane (an XY model
is then correct).

The three-dimensional site-diluted Heisenberg model correctly describes the ex-
perimental behaviour of a large number of real dilute magnetic materials, see Ta-
ble 4.1, so we will be able to compare our numerical results with some experimental
estimates.

In this model, according to the Harris criterion [23], see Appendix A, the disorder
is irrelevant. We want to check this point through numerical simulation by measuring
critical exponents and different cumulants for different values of the dilution. If they
do not depend on the dilution and agree with the pure case values, they will all belong
to the same Universality Class (UC) and the Harris criterion will be re-verified.

In addition we will study the self-averaging properties of the model computing
at criticality the quantity Rχ, which will be defined below and is a measure of the
self-averageness of the susceptibility. We will show results strongly supporting that
this Rχ cumulant is zero at the critical point, but only taking into account the
scaling corrections. This runs against some theoretical predictions [28] but supports
others [27, 29].

We will obtain high-precision measurements of the observables for each lattice
size near the critical point, so it will be necessary to take into account their finite-size
effects in order to obtain asymptotic results. This implies estimating the correction
to scaling exponents, whose leading term is denoted ω, related to irrelevant operators
in the Renormalization Group (RG) language. To this end, we will use the shift of
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Ref. Material γ β δ

[116]1994 Fe10Ni70Bi19Si 1.387(12) 0.378(15) 4.50(5)

[116]1994 Fe13Ni67Bi19Si 1.386(12) 0.367(15) 4.50(5)

[116]1994 Fe16Ni64Bi19Si 1.386(14) 0.360(15) 4.86(4)

[117, 118]1995 Fe20Ni60P14B6 1.386(10) 0.367(10) 4.77(5)

[117, 118]1995 Fe40Ni40P14B6 1.385(10) 0.364(5) 4.79(5)

[119]1997 Fe91Zr9 1.383(4) 0.366(4) 4.75(5)

[119]1997 Fe89CoZr10 1.385(5) 0.368(6) 4.80(4)

[119]1997 Fe88Co2Zr10 1.389(6) 0.363(5) 4.81(5)

[119]1997 Fe84Co6Zr10 1.386(6) 0.370(5) 4.84(5)

[120]1999 Fe1.85Mn1.15Si 1.543(20) 0.408(60) 4.74(7)

[120]1999 Fe1.50Mn1.50Si 1.274(60) 0.383(10) 4.45(19)

[121]1999 MnCr1.9In0.1S4 1.39(1) 0.36(1) 4.814(14)

[121]1999 MnCr1.8In0.2S4 1.39(1) 0.36(1) 4.795(10)

[122]2000 Fe86Mn4Zr10 1.381(12) 0.361

[122]2000 Fe82Mn8Zr10 1.367(12) 0.363

[123]2001 Fe84Mn6Zr10 1.37(3) 0.359 4.81(4)

[123]2001 Fe74Mn16Zr10 1.39(5) 0.361 4.86(3)

Table 4.1: Experimentally-obtained critical exponents of materials which are ex-
pected to be described by the three-dimensional site-diluted Heisenberg model with
quenched disorder. Table from Ref. [8]. The results we obtain in this work are:
γ = 1.398(6), β = 0.370(2), and δ = 4.775(5).

the crossing points both for the Binder cumulant and for the correlation length for
lattice pairs of different sizes near the critical point. This study will also provide
estimates of the asymptotic critical temperature value. We will also check that
including the correction to scaling terms is crucial for the comparison of the values
we obtain for the critical exponents with those of other workers.

The simulations of this chapter were done mainly on the BIFI cluster. This
consists of Xeon Dual Core 64-bit 3.40 GHz processors, with 2 GB of shared RAM.
We used around fifty nodes for nine months making a total of around 17 years of
computation time.

4.2 Analytical Framework

The self-averaging (SA) of the susceptibility is defined in terms of:

Rχ ≡
〈M2〉2 − 〈M2〉2

〈M2〉2
, (4.1)
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withM being the total magnetisation. The susceptibility is self-averaging if Rχ → 0
as L→∞.

In Ref. [27], the following picture was found:

1. Away from the critical temperature: Rχ = 0. On the basis of the RG or
using general statistical arguments, one can find that Rχ ∝ (ξ/L)d in a finite
geometry, L being the system size and ξ the correlation length which is finite
for T 6= Tc. Then Rχ → 0 as L→∞. This is called Strong SA.

2. At the critical temperature, a RG analysis opens up two possible scenarios:

• Models in which according to the Harris criterion the disorder is relevant
(αpure > 0): Rχ 6= 0. The susceptibility at the critical point is not self-
averaging. In particular, Ref. [27] shows that under these conditions Rχ

is proportional to the fixed-point value of the coupling which induces the
disorder in the Hamiltonian, which controls the new UC. This is called
No SA.

• Models in which according to the Harris criterion the disorder is not
relevant (αpure < 0): Rχ = 0. The susceptibility at the critical point is
self-averaging. In a finite geometry Rχ scales as Lα/ν → 0, where α and
ν are the critical exponents of the pure system, which are the same in
the disordered one. This is called Weak SA.

The observable Rχ has been measured in other dilute models, for example in
the four-dimensional dilute Ising model, see Ref. [51]. In this model a Mean Field
computation and a numerical one found a non-zero value for Rχ although the dilute
model was shown to belong to the same UC as the pure model, contradicting the con-
clusions of Ref. [27]. One can claim that the logarithms involved in the upper critical
dimension make the numerical analysis difficult. In particular it was found analyt-
ically in the mean field that Rχ = 0.31024 and numerically that Rχ ∈ [0.15, 0.32].
Because of the logarithms, it was impossible to make an infinite volume extrapola-
tion for the numerical values of Rχ. Notice that in this model the only fixed point is
the Gaussian one (all the values of the couplings are zero) and, following Ref. [27],
Rχ should be zero.

In addition a two-loop field theory calculation done in Ref. [28] predicts a non-
zero value for Rχ for the dilute Heisenberg model (in which the disorder is irrelevant,
αpure = −0.134, see Ref. [124]). The two-loop field theoretical prediction for α in the
pure case was αpure > 0, so that apparently this work is consistent with the findings
of Ref. [27]. The starting point in Ref. [28] was the mean field computation done in
Ref. [51], modifying it to take into account the vector degrees of freedom, introducing
the fluctuations using the Brezin-Zinn-Justin (BZJ) method, Ref. [125]. They found
analytically Rχ = 0.022688 for the vector channel and universally (independent of
the dilution for all p < 1). It is important to remark that in the BZJ method one
fixes from the beginning the temperature of the system to the infinite volume critical
value, working in a finite geometry, so in order to compute Rχ in this scheme the
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following sequence of limits is used:

R∗
χ = lim

L→∞
lim
T→Tc

Rχ(L, T ) , (4.2)

where R∗
χ is the infinite volume extrapolation at criticality of Rχ(L, T ), and Tc is the

infinite volume critical temperature of the system. The other possible limit sequence
that can be computed is:

lim
T→Tc

lim
L→∞

Rχ(L, T ) , (4.3)

which is zero even when the disorder is relevant since Rχ ∝ L−d as T 6= Tc.
Hence, in order to test these discrepancies we simulated numerically the site-

diluted three-dimensional Heisenberg model computing R∗
χ in the vector and tensor

channels. To perform this programme, in particular in doing the infinite volume
extrapolations of cumulants and exponents, a proper use of the corrections to scaling
is really important.

4.3 The Model

The Heisenberg site-diluted model in three dimensions is defined in terms of O(3)
spin variables placed at the nodes of a cubic three-dimensional lattice, with Hamil-
tonian

H = −β
∑

<i,j>

ǫiǫjS i · S j , (4.4)

where the S i are three-dimensional vectors of unit modulus, and the sum is extended
only over nearest neighbours. The disorder is introduced by the random variables
ǫi which take value unity with probability p and zero with probability 1 − p. An
actual {ǫi} configuration will be called a sample.

In addition, as done in Ref. [126], we define a tensorial channel associated with
the vector S through the traceless tensor

ταβi = Sαi S
β
i −

1

3
δαβ , α, β = 1, 2, 3 . (4.5)

We define the total nearest-neighbour energy as

E =
∑

〈i,j〉

ǫiǫjS i · S j , (4.6)

and the normalised magnetisation for both channels as

M =
1

V

∑

i

ǫiS i , (4.7)

Mαβ
T =

1

V

∑

i

ǫi(S
α
i S β

i −
1

3
δαβ) , (4.8)
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with V = L3 and L is the linear lattice size. Because of the finite probabil-
ity of reaching every minimal value for the free energy, the thermal average of
Eqs. (4.7) and (4.8) is zero in a finite lattice. Therefore, we have to define the
order parameters as the O(3) invariant scalars

M =
〈√
M2

〉
, MT =

〈√
trM2

T

〉
. (4.9)

Notice that the mean value of a non-invariant O(3) observable is automatically zero.

We also define the two susceptibilities as:

χ = V 〈M2〉 , χT = V 〈trM2
T 〉 . (4.10)

A very useful quantity is the Binder parameter, defined as

gV4 = 1− 1

3

〈M4〉
〈M2〉2

, gT4 = 1− 〈(trM
2
T )

2〉
3〈trM2

T 〉
2 . (4.11)

Another kind of Binder parameter, meaningless for the pure system, can be
defined as

gV2 =
〈M2〉2 − 〈M2〉2

〈M2〉2
, gT2 =

〈trM2
T 〉2 − 〈trM2

T 〉
2

〈trM2
T 〉

2 , (4.12)

and these are the quantities we use to estimate the self-averaging properties of the
susceptibility (Rχ) in both channels.

A very convenient definition of the correlation length in a finite lattice is, see
Ref. [68],

ξ =

(
χ/F − 1

4 sin2(π/L)

) 1
2

, (4.13)

where F is defined in terms of the Fourier transform of the magnetisation

F(k) =
1

V

∑

r

eik ·rǫrSr (4.14)

as

F =
V

3
〈|F(2π/L, 0, 0)|2 + |F(0, 2π/L, 0)|2 + |F(0, 0, 2π/L)|2〉 . (4.15)

The same definition is also valid in the tensorial case. This definition is very well
behaved for the FSS method we have employed, see Ref. [126]. Finally, we measure
the specific heat as

C = V −1〈E2〉 − 〈E〉2 . (4.16)
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4.4 Numerical Results

4.4.1 Methods

The lattice sizes L we have studied are 8, 12, 16, 24, 32, 48, 64, and, only in the pure
model, L = 96. We have simulated five values of the dilution apart from the pure
case, p = 1. These values are p = 0.97, 0.95, 0.9, 0.7, and 0.5.

Between each measurement of the observable described in Sec. 4.3, firstly, we
update the spin variables using a Metropolis method over 10% of the individuals
spins, chosen at random, then we perform a number (increasing with L) of cluster
updates using a Wolff method – see Ref. [7]. This is our elementary Monte Carlo step
(EMCS). The number of clusters traced (or Wolff updates) between measurements
was chosen to yield a good value of the self-correlation time, see Ref. [7], in our case
always 1 < τ < 2 (τ being the integrated autocorrelation time of the energy, see
Appendix C).

In order to work in thermally equilibrated systems, we perform a great number
of EMCSs before starting measurements. We start the simulation always from ran-
dom (hot) distributions of the spin variables, although we have checked that the
averages do not change if we begin from cold configurations (i.e., all spins pointing
in the same direction). In particular, we took 4 × 106 measurements for the pure
model, discarding about 105 of the first measurements for L = 8 and increasing this
number with the lattice size. For every lattice size, we performed 2× 104 quenched
disorder realizations in the dilute models (except for p = 0.97 and p = 0.95 with
only 103 realizations) taking 100 measurements per sample after equilibration, in
accordance with Ballesteros et al. [51] who demonstrated that the best approach to
minimising the statistical error is to simulate a great number of samples with just
a few measurements in each one.

To measure the critical exponents, we use the so-called quotient method [70],
which allows great statistical accuracy, see Appendix B. Therefore, firstly we needed
to estimate by successive simulations the β point where

ξ(2L, β, p)

2L
=
ξ(L, β, p)

L
, (4.17)

for each pair of lattices (L, 2L). Then we used re-weighting techniques to fine-
tune this condition. These re-weighting techniques are used to β extrapolate the
observables and calculate their β derivatives, always before the sample averaging is
performed. The equations used are, see Appendix D,

〈O〉(β +∆β) = 〈Oe∆βE〉/〈e∆βE〉 , (4.18)

∂β〈O〉 = ∂β〈O〉 =
〈
OE − 〈O〉〈E〉

〉
. (4.19)

These extrapolations are biased. For instance, the expectation value of equation
(4.19), when the averages are calculated with Nm measurements is

(
1− 2τ

Nm

)
∂β〈O〉 . (4.20)
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Hence, we have to correct this bias, see again Appendix D. An example of the effect
of this correction is found in Fig. 4.1: a major bias affects the uncorrected numerical
data, and the importance of taking this effect into account is clear. In addition, it
is clear that the recipe of Ref. [51] is working perfectly for Nm = 100, which is the
number of measurements per sample we have taken in this work. Therefore, we are
very confident that all the data presented in this work are not biased due to the
re-weighting technique.
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 0  0.005  0.01  0.015  0.02

g 2
T

(Nm)-1

0.015

0.018

0.021

0.024

g 2
V

Figure 4.1: The g2 cumulant in both channels for L = 64, p = 0.9 with 1000
samples, βsimulation = 0.79112, re-weighted at β = 0.79082 as a function of 1/Nm,
with Nm being the number of measurements in each sample. We report data with
Nm = 50, 100, 500, 1000, 5000, and 10000. The data without the bias correction
proposed in Ref. [51] are marked with triangles while the corrected ones are marked
with circles. We also mark with the dotted lines the selection used in this work
(which corresponds to Nm = 100). Notice the importance of the correction of the
bias if one performs re-weighting with the data.

Also, we tried to use the solution for the bias obtained in Ref. [127], where each
sample is split into four parts, but the results were poor. This was due to the
small number of measurements we take in each sample (102), which leads to large
differences between the averages in each quarter.

To compute errors in the averages we used a jack-knife method, see Appendix C.
We defined twenty jack-knife blocks for the pure model in a single sample and one
block for each sample in the dilute (p < 1) models.

The calculated observables and critical exponents sometimes present, instead of
a stable value, a monotonically decreasing one. For η, there is found this type of
evolution with increasing L, but it is clearly weaker than for ν, see Tables 4.5–4.12.
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Chapter 4. The Site-Diluted Heisenberg Model in Three Dimensions

In these cases an infinite volume extrapolation is called for. If hyperscaling holds,
we expect finite-volume scaling corrections proportional to L−ω. This issue will be
addressed in the next subsection.

4.4.2 The Scaling Exponent ω

As will be seen in Tables 4.5 to 4.12 in Sec. 4.4.4, there are evident finite volume
effects, especially for the thermal exponents and the cumulants (g4 and g2). So we
have to use the equation

xO
ν

∣∣∣
∞
− xO

ν

∣∣∣
(L,2L)

∝ L−ω , (4.21)

which is a consequence of the scale hypothesis first derived in Ref. [128]. Conse-
quently, choosing a good value for ω is a crucial question.

Exact results and RG calculations tell us that the disorder, being irrelevant in
this model, induces scaling corrections with an exponent α/ν ≃ −0.188 (in L) [8].
In addition to this new scaling correction one must have that of the pure model,
which is related to the coupling of the (φ2)2 term in the Ginzburg-Landau theory.
This exponent is assumed to be 0.8 [129, 130] (for the pure model). Hence, the
leading correction is the exponent induced by the disorder. We will try to check
this scenario by computing the ‘leading’ correction to the scaling exponent from the
numerical data.

First of all, we tried to estimate ω just by considering it as another tunable
parameter in Eq. (4.21) applied to some physical quantities. In these fits, as a
first approximation, we disregarded the possible correlations between the data for
different L values. The results are presented in Table 4.2. If we perform a weighted
averaging with these results we obtain ω = 1.07(9) for the pure model and ω =
0.92(9), ω = 0.81(7), and ω = 0.88(4) for the dilute model with p = 0.9, 0.7, and
0.5 respectively, in very good agreement with the value of the scaling correction
exponent of the pure model. However, we think this method is not very consistent
because of the variability of the results from one quantity to another as seen in
Table 4.2.

Another approach, following Ref. [131], is to study the crossing points of scaling
functions (such as ξ/L and g4) measured in pairs of lattices with sizes L and sL.
The deviation of these crossing points from the infinite volume critical coupling will
behave as

∆β(L, sL) ≡ β(L, sL)− βc(∞) ∝ 1− s−ω

s
1
ν − 1

L−ω− 1
ν . (4.22)

With this method we need an additional estimate for the thermal exponent ν. We
used, following [124], the value ν = 0.7113(11) for the pure model (notice the really
small error in ν, so that we will discard it in the following), which is also a valid
value for the dilute models because of the validity of the Harris criterion, and as can
be checked with the data below. We fixed s = 2. In this approach, we only use the
crossing points in the vectorial channel because they are cleaner.
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4.4. Numerical Results

O ωp=1.0 ωp=0.9 ωp=0.7 ωp=0.5

ηχV 1.45(52) — — —

ηMV 1.62(80) — — —

ηχT — — 1.2 (1.1) 0.68(46)

ηMT — — — 0.73(46)

ν∂βg
V
4

— — — —

ν∂βξV 2.30(61) — — 0.62(47)

ν∂βg
T
4

— — — —

ν∂βξT 2.12(52) 1.76(60) 1.09(40) 1.34 (27)

ξV /L 1.08(21) 1.21(31) 0.61(12) 0.45(10)

ξT/L — — 1.55(76) 1.64(17)

gV4 0.85(14) 2.00(61) 1.21(15) 1.19(13)

gT4 1.06(14) — 1.35(33) 1.41(42)

gV2 — 0.81(16) 0.89(9) 0.94(7)

gT2 — — 0.63(12) 0.72(10)

ω̄weighted 1.07(9) 0.92(9) 0.81(7) 0.88(4)

Table 4.2: ω values from the L → ∞ extrapolations of some quantities. The last
row gives the weighted average of each column. We disregarded data with error bars
larger than 100% of the values themselves. Those disregarded data are shown in the
table as —.

Extrapolating these crossing points using Eq.(4.22), we can plot the minimum
of the χ2 of the fit as a function of ω obtaining the upper part of Fig. 4.2 and the
whole of Fig 4.3. To carry out these extrapolations we must take into account that
the measurements of the crossing points are correlated in pairs, so that we have to
use the χ2 definition that includes the whole self-covariance matrix

χ2
x =

N∑

l=1

N∑

m=1

(xl − fit)(cov−1)l,m(xm − fit) , (4.23)

with N being the number of crossing points, that is to say, the number of simulated
L values minus two; xl is the value obtained for the observable x (in our case the
coupling) at the crossing point for Ll and 2Ll, and “fit” is the value fitted to the
form of Eq. (4.22) (or to another scaling form) for Ll. In addition

(cov)l,m = 〈xmxl〉 − 〈xm〉〈xl〉 (4.24)

can also be defined in terms of jack-knife blocks, see Ref. [7], as

(cov)l,m =
Nb − 1

Nb

Nb∑

i=1

(xJ−K
l,i − 〈xl〉)(xJ−K

m,i − 〈xm〉) , (4.25)
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Figure 4.2: Top: χ2 as a function of ω deduced from the fits to L→∞, Eq. (4.22),
for the crossing point of ξ/L and g4 for the (L, 2L) pair for the pure model. Also
shown is the combined χ2, whose minimum is marked with the dotted line. Bottom:
Extrapolated βc(∞) as a function of ω. The point where the two observables give
the same extrapolated value is marked with the dashed line.

where Nb is the number of jack-knife blocks, xJ−K
l,i are block variables, where the

first subindex runs over L values while the second one runs over jack-knife blocks,
and 〈xl〉 is the average of all block variables given L = Ll.

Also, following Ref. [131], we can do a combined fit in ω of the crossing points
of ξV /L and gV4 by defining

χ2
combined = χ2

ξV /L + χ2
gV
4
, (4.26)

using Eq. (4.23) to calculate each of the right-hand-side terms and searching for the
minimum of χ2

combined. We can obtain the error in ω by searching for the point ω1

at which χ2
combined(ω1) = χ2

combined(ωmin) + 1, so that the error is ∆ω = |ωmin − ω1|.
The results for these combined fits are shown in the upper part of Fig. 4.2 and in
the whole of Fig. 4.3. With this method we find the values

ω = 0.96(15) , (4.27)

for the pure model and

ω = 2.29(70) , 0.84(17) , 0.64(13) , (4.28)

for the dilute models with p = 0.9, 0.7, and 0.5 respectively, in agreement with
the value obtained in the pure model [124, 126,129,130], except in the p = 0.9 case
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Figure 4.3: Top: χ2 as a function of ω for the dilute (p = 0.7) model. Also shown
is the combined χ2. Bottom: χ2 as a function of ω for the dilute (p = 0.5) model.

for which the value is two standard deviations away from ω = 0.8 [129, 130]. One
possibility is that we are computing the leading correction to the scaling exponent
but with a large error. Another possibility is that in the p = 0.9 model the coefficient
of the leading correction to the scaling vanishes or is very small. This result and
the change in the slope of the g4 data for p < 1 with respect to the p = 1 ones, as
can be seen in Table 4.3, constitute evidence for the possible improved action found
for p = 0.9, see Ref. [127]. Therefore the ω exponent that we are measuring in this
case could correspond to the third irrelevant operator, instead of the second one
(remember that following RG the first one is α/ν ≃ −0.188).

In addition, as also was done in Ref. [131], we were able to estimate the correct
value for ω as that producing the same βc(∞) value for both the crossings of ξ/L
and g4, as can be seen in the lower part of Fig. 4.2 marked with the dotted line at
ω = 0.88. This approach only works for the pure model in which such a point is
found. With another p value the βc(∞) estimates from ξ/L and g4 do not cross each
other.

In conclusion, we have shown that our data (for both the pure and the dilute
models) are fully compatible with the value ω = 0.80(1) obtained previously both
numerically and analytically for the pure model 1. In addition, since the error bars in
ω are really small (1% of error) we have discarded the uncertainty in ω in the analysis
presented in this work. Since the error bars in the extrapolated quantities are much

1Field theoretical approaches (both fixed dimension and ǫ-expansion) provide very accurate
values for ω: 0.782(13) and 0.794(18) (respectively) [129]. Recent numerical simulations provide
the values 0.775(13) and 0.799(13) [130] and 0.64(13) and 0.71(15) [126].
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larger than the uncertainty caused by the error bars in ω, we fixed ω = 0.80. The
extrapolations obtained in the rest of the chapter are all obtained using this value.

Finally, it is interesting to note that in the analysis presented in this subsection
we have seen no traces of the leading correction to the scaling exponent even for
the strongest dilution we have simulated, which should be α/ν ≃ −0.188. One can
explain this fact by assuming that the amplitudes of this scaling correction exponent
are really small, so that we are seeing only the next-to-leading scaling correction.

4.4.3 Self-Averaging of the Susceptibility

Having checked that the value ω = 0.80 describes the corrections to the scaling for
both the pure and the dilute models, we can try to extrapolate the values of g2 to
infinite volume.

Numerical results for g2 and g4 in both channels are presented in Table 4.3 for
both pure (only g4) and dilute models.

p L gV2 gT2 gV4 gT4

1.0 8 0 0 0.62243(4) 0.5216(1)

12 0 0 0.62172(5) 0.5189(2)

16 0 0 0.62152(6) 0.5181(2)

24 0 0 0.62100(5) 0.5166(2)

32 0 0 0.62092(3) 0.5162(1)

48 0 0 0.62066(5) 0.5156(2)

0.9 8 0.0327(4) 0.0576(7) 0.6151(2) 0.5102(3)

12 0.0273(3) 0.0518(6) 0.6163(1) 0.5104(3)

16 0.0253(3) 0.0499(6) 0.6166(1) 0.5100(3)

24 0.0226(3) 0.0453(6) 0.6168(1) 0.5098(3)

32 0.0208(2) 0.0421(5) 0.6171(1) 0.5100(3)

0.7 8 0.0780(8) 0.1406(16) 0.6061(3) 0.4994(6)

12 0.0610(6) 0.1177(13) 0.6108(2) 0.5039(5)

16 0.0512(5) 0.1009(11) 0.6131(2) 0.5064(4)

24 0.0423(4) 0.0868(10) 0.6150(2) 0.5077(4)

32 0.0371(4) 0.0770(9) 0.6160(2) 0.5089(4)

0.5 8 0.1130(11) 0.2061(24) 0.6006(4) 0.4999(8)

12 0.0834(8) 0.1600(18) 0.6072(3) 0.5047(6)

16 0.0702(7) 0.1395(16) 0.6107(3) 0.5070(6)

24 0.0553(6) 0.1138(13) 0.6138(2) 0.5085(5)

32 0.0474(5) 0.0980(11) 0.6151(2) 0.5095(4)

Table 4.3: Cumulants for the O(3) model. The first column is the spin density p.
All the cumulants are calculated at the crossing points of ξ/L for L and 2L. The
averages were computed using 104 samples (except in the p = 1 case).
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p L gV2 gT2 gV4 gT4

0.97 8 0.0108(6) 0.0181(13) 0.6201(4) 0.5187(10)

12 0.0102(6) 0.0189(14) 0.6195(4) 0.5164(10)

16 0.0084(6) 0.0158(12) 0.6201(4) 0.5159(10)

24 0.0072(5) 0.0146(11) 0.6206(4) 0.5162(9)

32 0.0074(5) 0.0152(12) 0.6206(4) 0.5152(10)

0.95 8 0.0179(10) 0.0290(18) 0.6180(5) 0.5158(11)

12 0.0167(9) 0.0329(20) 0.6182(5) 0.5116(12)

16 0.0150(9) 0.0286(18) 0.6181(5) 0.5129(11)

24 0.0117(7) 0.0228(14 0.6186(4) 0.5135(11)

32 0.0118(7) 0.0251(17) 0.6193(4) 0.5140(10)

Table 4.4: Cumulants for the O(3) model with high p values (very soft dilution). In
this case the cumulants are computed averaging 103 samples.

First of all, we will try to check the non-zero g2 scenario with the correction to the
scaling exponent fixed to that obtained in the previous section. We found that it is
possible, using the form of Eq. (4.21) (performing a combined fit) to extrapolate the
values of g2 to a value (depending only on the channel) which is independent of the
dilution, and near the analytical prediction of reference [28]. However, simulations
at dilutions p = 0.95 and p = 0.97 do not follow the scaling found for p ≤ 0.90
(see Table 4.4). Hence, as a whole our numerical data do not support the scenario
g2 6= 0, see Figs. 4.4 and 4.5 for the two channels. Notice, see also Table 4.4, that
all the values for these two lowest dilutions are smaller than the extrapolated point
and they are decreasing (for both channels and taking into account the error bars).

Secondly, we will check the g2 = 0 scenario. To do this, we extrapolate g2 using
the form proposed in Ref. [27] (g2 ∽ Lα/ν) but also including the term L−ω, i.e. we
fit to:

g2 = aLα/ν + bL−ω . (4.29)

We obtain the fits shown in Figs. 4.6 and 4.7 for the two channels. The χ2 of these
fits are really good. Hence, we have obtained strong evidence supporting this g2 = 0
scenario. Notice that the introduction of the two scaling correction exponents has
been of paramount importance for obtaining a very good χ2 for all the fits. The
numerical data, for the simulated lattice size, do not follow the one-term dependence
g2 ∝ Lα/ν .

4.4.4 Critical Exponents and Cumulants

In this subsection we will check the consistency of the ω exponent obtained in the
text by means of the computation of critical exponents and cumulants. In addition,
we will check whether or not these sets of exponents are universal by comparing
different dilutions with the pure model. In this analysis we will use the data for
p = 0.9, 0.7, and 0.5.
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Figure 4.7: Extrapolation to L → ∞ for the g2 cumulant of the tensorial suscepti-
bility for the fitting form g2 = aLα/ν + bL−ω.

97



Chapter 4. The Site-Diluted Heisenberg Model in Three Dimensions

Equation (B.8) applied to the quantities ∂βξ, ∂βg4, M , and χ yields respectively
the critical exponents 1+1/ν, 1/ν, (D−2+η)/2, and 2−η. Their numerical results
are given in Tables 4.5 and 4.6 for the pure model, Tables 4.7 and 4.8 for the p = 0.9
case, Tables 4.9 and 4.10 for p = 0.7, and Tables 4.11 and 4.12 for p = 0.5. We also
carried out combined extrapolations for all p values by fixing the same value of the
extrapolated exponents for every p value. Some of these fits are shown in Figs. 4.8
to 4.11, and the compared results are presented in Tables 4.13 and 4.14.

The combined extrapolation of the Binder cumulant g4 is given in Table 4.15.
The agreement of our results with those obtained in Refs. [124] (numerical for the
pure model) and [28] (analytical) is really very good. We also obtain complete
agreement with previous numerical estimates of the pure model critical exponents,
see Ref. [124].

We obtain non-universal critical exponents and cumulants if instead of ω = 0.8
we use ω = −α/ν as the correction to scaling exponent. In addition, the dilution
dependent exponents and cumulants are clearly different from the pure ones. Fur-
thermore, this scenario does not change if we fit the data using both −α/ν and
ω = 0.8.

η ηT
L χ M χT MT

8 0.0301(7) 0.0319(8) 1.4301(12) 1.4343(13)

12 0.0339(7) 0.0353(8) 1.4324(11) 1.4352(12)

16 0.0348(7) 0.0358(8) 1.4310(11) 1.4335(12)

24 0.0361(6) 0.0367(7) 1.4293(9) 1.4307(10)

32 0.0369(7) 0.0374(7) 1.4289(11) 1.4300(12)

48 0.0373(6) 0.0378(7) 1.4271(9) 1.4280(10)

L→∞ 0.0391(9) 0.0390(10) 1.4250(13) 1.4249(15)

χ2/d.o.f 0.138/3 0.354/3 1.047/3 1.952/3

C.L. 0.987 0.950 0.790 0.582

Table 4.5: Magnetic exponents for the pure O(3) model. The last three rows corre-
spond to the L→∞ extrapolation (disregarding data with L = 8).
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ν

L ∂βg
V
4 ∂βξ

V ∂βg
T
4 ∂βξ

T

8 0.7016(30) 0.7217(13) 0.6846(41) 0.7306(14)

12 0.7033(32) 0.7162(14) 0.6931(49) 0.7188(13)

16 0.7028(35) 0.7123(16) 0.6830(56) 0.7118(17)

24 0.7061(37) 0.7123(17) 0.6908(47) 0.7112(18)

32 0.7081(35) 0.7121(19) 0.7022(61) 0.7116(23)

48 0.7101(41) 0.7118(19) 0.7125(61) 0.7085(21)

L→∞ 0.7109(38) 0.7071(19) 0.7082(51) 0.7071(35)

χ2/d.o.f 0.667/4 4.104/4 7.039/4 0.565/2

C.L. 0.954 0.392 0.134 0.754

Table 4.6: Thermal critical exponents for the pure O(3) model. In the last column
we have disregarded data with L < 16.

η ηT
L χ M χT MT

8 0.0346(26) 0.0345(28) 1.4154(36) 1.4176(37)

12 0.0360(24) 0.0360(26) 1.4195(34) 1.4207(36)

16 0.0371(23) 0.0374(25) 1.4207(34) 1.4218(35)

24 0.0373(22) 0.0375(24) 1.4204(32) 1.4221(34)

32 0.0383(21) 0.0383(23) 1.4219(31) 1.4227(33)

L→∞ 0.0397(29) 0.0399(31) 1.4245(41) 1.4252(43)

χ2/d.o.f 0.292/3 0.124/3 0.544/3 0.137/3

C.L. 0.962 0.989 0.909 0.987

Table 4.7: Magnetic exponents for the dilute O(3) model with p = 0.9 . Extrapola-
tions were carried out without disregarding data.
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ν

L ∂βg
V
4 ∂βξ

V ∂βg
T
4 ∂βξ

T

8 0.7319(49) 0.7443(24) 0.7128(83) 0.7709(29)

12 0.7381(53) 0.7411(25) 0.7267(86) 0.7514(29)

16 0.7430(55) 0.7381(26) 0.7536(99) 0.7426(31)

24 0.7384(57) 0.7368(28) 0.7337(95) 0.7395(32)

32 0.7398(54) 0.7365(29) 0.7241(97) 0.7345(33)

L→∞ 0.734(15) 0.7318(33) 0.728(17) 0.7152(39)

χ2/d.o.f 0.134/1 0.168/3 5.468/2 3.156/3

C.L. 0.714 0.983 0.065 0.368

Table 4.8: Thermal exponents for the dilute O(3) model with p = 0.9 . In the second
and fourth columns we obtain poor results because the series are not monotonically
decreasing.

η ηT
L χ M χT MT

8 0.0436(38) 0.0412(41) 1.3882(52) 1.3879(53)

12 0.0411(34) 0.0401(36) 1.4005(48) 1.4007(49)

16 0.0392(31) 0.0392(34) 1.4061(45) 1.4073(46)

24 0.0383(29) 0.0386(31) 1.4131(41) 1.4136(43)

32 0.0382(27) 0.0389(29) 1.4142(40) 1.4149(41)

L→∞ 0.0343(57) 0.0370(58) 1.4299(72) 1.4318(76)

χ2/d.o.f 0.232/3 0.059/3 0.472/3 0.567/3

C.L. 0.972 0.996 0.925 0.904

Table 4.9: Magnetic exponents for the dilute O(3) model with p = 0.7 . Extrapola-
tions were carried out without disregarding data.
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ν

L ∂βg
V
4 ∂βξ

V ∂βg
T
4 ∂βξ

T

8 0.7888(69) 0.7881(31) 0.8256(143) 0.8422(42)

12 0.7810(74) 0.7806(33) 0.8078(140) 0.8067(41)

16 0.7633(70) 0.7760(35) 0.7739(131) 0.7897(43)

24 0.7491(66) 0.7628(37) 0.7719(146) 0.7792(47)

32 0.7400(67) 0.7521(42) 0.7656(178) 0.7627(56)

L→∞ 0.7206(88) 0.723(10) 0.729(19) 0.7255(61)

χ2/d.o.f 2.313/3 0.281/1 1.314/3 1.965/3

C.L. 0.510 0.596 0.726 0.580

Table 4.10: Thermal exponents for the dilute O(3) model with p = 0.7 . In the third
column the fit was obtained disregarding data with L < 16.

η ηT
L χ M χT MT

8 0.0505(45) 0.0461(48) 1.3435(61) 1.3431(62)

12 0.0448(39) 0.0439(42) 1.3684(54) 1.3702(56)

16 0.0421(36) 0.0417(39) 1.3877(51) 1.3896(52)

24 0.0396(32) 0.0406(35) 1.4033(46) 1.4053(48)

32 0.0399(30) 0.0414(32) 1.4126(43) 1.4152(45)

L→∞ 0.0346(60) 0.0378(46) 1.446(12) 1.449(12)

χ2/d.o.f 2.225/2 2.191/3 0.119/1 0.327/1

C.L. 0.329 0.534 0.730 0.568

Table 4.11: Magnetic exponents for the dilute O(3) model with p = 0.5 . In the
fourth and fifth columns we disregarded data with L < 16.
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ν

L ∂βg
V
4 ∂βξ

V ∂βg
T
4 ∂βξ

T

8 0.8102(91) 0.8357(46) 0.9180(241) 0.9540(72)

12 0.8042(90) 0.8322(50) 0.8880(248) 0.8866(71)

16 0.7764(89) 0.7862(48) 0.8449(242) 0.8136(64)

24 0.7702(93) 0.7778(52) 0.8311(234) 0.7952(66)

32 0.7562(91) 0.7779(56) 0.7812(220) 0.7833(70)

L→∞ 0.720(16) 0.764(14) 0.735(28) 0.744(17)

χ2/d.o.f 1.149/2 0.208/1 1.565/3 0.025/1

C.L. 0.563 0.649 0.667 0.874

Table 4.12: Thermal exponents for the dilute O(3) model with p = 0.5 . In the
second column we only used data with L > 8 while in the third and fifth columns
we only used data with L > 12.

η ηT
χ M χT MT

Our results 0.0390(9) 0.0389(10) 1.4251(13) 1.4251(14)

χ2/d.o.f 6.675/12 5.104/15 9.151/10 13.931/11

C.L. 0.878 0.991 0.518 0.237

Ref. [124] 0.0378(6) — — —

Table 4.13: Combined extrapolation with all p values for the magnetic exponent η
compared with the results from Ref. [124]. The first three rows correspond to our
L→∞ extrapolation.
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Figure 4.8: Combined extrapolation to L → ∞ for the η exponent deduced from
the vectorial susceptibility (χV ). Extrapolations were carried out by choosing a
common value for the first term of Eq. (4.21) for all dilutions, and by minimising
the combined χ2.
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Figure 4.9: Combined extrapolation with all p values to L→∞ for the η exponent
deduced from the vectorial magnetisation (MV ).
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ν

∂βg
V
4 ∂βξ

V ∂βg
T
4 ∂βξ

T

Our results 0.7126(46) 0.7129(31) 0.7294(81) 0.7089(32)

χ2/d.o.f 4.831/11 6.606/6 9.009/13 9.609/7

C.L. 0.939 0.359 0.772 0.212

Ref. [124] 0.7113(11) — — —

Table 4.14: Combined extrapolation with all p values for the thermal exponent ν
compared with the results from Ref. [124].

gV4 gT4
Our results 0.62018(6) 0.51366(19)

χ2/d.o.f 10.324/9 5.980/10

C.L. 0.325 0.817

Ref. [28] 0.625783 —

Ref. [124] 0.6202(1) —

Table 4.15: Combined extrapolation to L → ∞ with all p values for the Binder
cumulant g4 defined in Eq. (4.11), compared with results from Refs. [28] and [124].
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4.5 Conclusions

We have studied the critical properties of the site-dilute Heisenberg model for differ-
ent values of the dilution. Our main aims were both to re-verify the Harris criterion
and to check the self-averaging properties of the susceptibility.

We studied in great detail the corrections to the scaling in the model, finding
that the numerical data follow the next-to-leading correction to the scaling exponent
instead of the leading one. We obtained all the critical exponents and cumulants
using this next-to-leading exponent. Also, the result of this analysis was found to
be fully compatible with the RG predictions and the Harris criterion: our exponents
and cumulants are compatible with those of the pure model and independent of the
dilution to a high degree of precision.

In addition, we showed that we obtain non-universal quantities if we assume α/ν
to be the main scaling correction even if we add the ω correction to the scaling
exponent, using two correction-to-scaling exponents in the analysis.

Finally, we showed strong evidence for a zero g2 cumulant, in both the vector
and the tensor channels, in the thermodynamic limit at criticality, contrasting with
some analytical predictions [28], but in agreement with others [27]. The introduction
of scaling corrections in the analysis was crucial to obtain the g2 = 0 scenario. In
addition, simulations of samples with very soft dilution (p > 0.9) helped us to discard
the g2 6= 0 scenario.
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Chapter 5

The Site-Diluted Ising Model in
Four Dimensions

5.1 Introduction

One of the major achievements of statistical physics is the fundamental explanation
of critical behaviour at continuous phase transitions through Wilson’s Renormaliza-
tion Group (RG) approach. While this has mostly provided a satisfying picture for
over thirty years, certain types of phase transitions have resisted full treatment. Such
stubborn cases, which have been the subject of conflicting proposals and analyses,
include systems with in-built disorder.

The Ising model with uncorrelated, quenched random-site or random-bond dis-
order is a classic example of such systems and has been controversial in both two
and four dimensions. In these dimensions, the leading exponent α which charac-
terises the specific heat critical behaviour vanishes and no Harris prediction for the
consequences of quenched disorder can be made [23], see Appendix A. In the two-
dimensional case, the controversy concerns the strong universality hypothesis which
maintains that the leading critical exponents remain the same as in the pure case,
and the weak universality hypothesis, which favours dilution-dependent leading crit-
ical exponents (see [132] and references therein).

Since D = 4 marks the upper critical dimensionality of the model, the leading
critical exponents there must be given by mean field theory and there is no weak
universality hypothesis. However, unusual corrections to scaling characterise this
model, and the precise nature of these corrections has been debated. This debate
motivates the work presented in this chapter: methods similar to those employed
in [132], namely a high-statistics Monte Carlo (MC) approach coupled with finite-
size scaling (FSS), are used to advance our understanding of the four-dimensional
version of the random-site Ising model (RSIM).

While not directly experimentally accessable, the four-dimensional RSIM is of
interest for the following reasons: (i) it is closely related to the experimentally im-
portant dipolar Ising systems in three dimensions, (ii) it is an important testing
ground for the widespread applicability of the RG, (iii) it presents unusual correc-
tions to scaling, (iv) in high energy physics, the establishment of a non-trivial Higgs
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sector [133] for the standard model requires a non-Gaussian fixed point and a new
universality class which may, in principle, result from site dilution, and (v) it is the
subject of at least five analytical papers which differ in the detail of the scaling
behaviour at the phase transition.

5.2 Analytical Framework

5.2.1 Scaling in the RSIM in Four Dimensions

The consensus in the literature is that the following structure characterises the
scaling behaviour of the specific heat, the susceptibility, and the correlation length
at the second-order phase transition in the RSIM in four dimensions (up to higher-
order corrections to scaling terms) [47–51,134]:

C∞(t) ≈ A− B|t|−α exp

(
−2

√
6

53
| log |t||

)
| log |t||α̂ , (5.1)

χ∞(t) ∼ |t|−γ exp

(√
6

53
| log |t||

)
| log |t||γ̂ , (5.2)

ξ∞(t) ∼ |t|−ν exp

(
1

2

√
6

53
| log |t||

)
| log |t||ν̂ . (5.3)

Here, the subscript indicates the size of the system, the reduced temperature t =
(T − Tc)/Tc marks the distance of the temperature T from its critical value Tc, and
A and B > 0 are constants. The correlation function at criticality decays as [48,50]

G∞(x) = x−(D−2+η)| log x|η̂ , (5.4)

where x measures distance across the lattice, the dimensionality of which is D. The
correlation length for a system of finite linear extent L also exhibits a logarithmic
correction and is of the form

ξL(t = 0) ∼ L(logL)q̂ . (5.5)

The leading power-law behaviour is believed to be mean field because the fixed
point is expected to be Gaussian and therefore

α = 0 , β =
1

2
, γ = 1 , δ = 3 , ν =

1

2
, η = 0 , ∆ =

3

2
. (5.6)

Here, β and δ are, in standard notation, the critical exponents for the magnetisation
out of field and in field respectively while ∆ is the gap exponent characterising
the Yang-Lee edge. There is no dispute in the literature regarding these leading
exponents, some of which will be re-verified in this chapter. Neither is there any
dispute regarding the details of the unusual exponential correction terms in (5.1)–
(5.3). However there are at least five different sets of predictions for the exponents
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of the logarithmic terms, which differ from their counterparts in the pure model,
and a principle aim of this work is to investigate these predictions numerically.

Aharony used a two-loop RG analysis to derive the unusual exponential terms
in (5.1)–(5.3), and also found [47]

α̂ =
1

2
, γ̂ = 0 , ν̂ = 0 . (5.7)

In [48], Shalaev pointed out that Aharony’s results needed to be refined and, by de-
termining the beta function to three loops, gave predictions for the specific heat and
the susceptibility which differ from those in [47] in the slowly varying multiplicative
logarithmic factors:

α̂ = 1.2368 , γ̂ = −0.3684 , η̂ = 0.0094 . (5.8)

Jug studied the α = 0 line of n-component spin models in (n,D) space where D is
the system’s dimensionality, and thereby worked out the logarithmic corrections for
the D = 4 n-vector model [49]. For the case at hand (n = 1), he obtained

α̂ = 1/2 , γ̂ = 1/212 ≈ 0.0047 . (5.9)

In [50], Geldart and De’Bell confirmed that to obtain the correct powers of | log |t||
the beta function has to be calculated to three loops, but the results of [50] differ
from those of [48] in the powers of the logarithms which appear in the specific heat
and in the correlation function:

α̂ ≈ 1.2463 , γ̂ ≈ −0.3684 , η̂ =
1

212
= 0.0047 . (5.10)

Finally Ballesteros et al. [51] extended and corrected Aharony’s computation to give
the correction exponents:

α̂ =
1

2
, γ̂ =

1

106
≈ 0.0094 , ν̂ = 0 , q̂ =

1

8
. (5.11)

So the detailed analytic scaling predictions of at least five groups of workers
clash, and a number of questions arise: (i) Is each set of predictions self-consistent?
(ii) What is the full set of predictions (i.e., extended to all observables) originated
by each set? (iii) Can a simulation approach provide numerical support for the shift
in the correction terms from their counterparts in the pure model? (iv) And can
such a computational approach lend support to one or other of these five different
sets of analytic predictions? Here the scaling relations for logarithmic corrections
developed in [135, 136] are used to answer (ii), and it is shown that the answers
to questions (i) and (iii) and to some extent (iv) are affirmative. In particular,
numerical support is presented for the broad scenarios presented in [47, 49, 51].

Modification of the self-consistent scaling theory for logarithmic corrections of [135,
136] to incorporate the exponential terms leads to the following forms for the be-
haviour of the magnetisation in the 4D RSIM:

m∞(t) = tβ exp

(
−1

2

√
6

53
| log |t||

)
| log t|β̂ , (5.12)

m∞(h) = h
1
δ | logh|δ̂ . (5.13)
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The Lee-Yang edge, denoted by rLY (t), is related to the locus of the Lee-Yang
zeros along the imaginary h-axis, see Appendix F, and marks the end of their dis-
tribution. From Eq.(15) of [135], we also write for its scaling in the paramagnetic
phase

rYL(t) ∼ t∆ exp

(
−3

2

√
6

53
| log |t||

)
| log t|∆̂ . (5.14)

Besides the scaling behaviour of the Yang-Lee edge, defined in Eq. (5.14), we
also consider the density of zeros which, for an infinitely large system, we write as
g∞(r), where r parameterises their locus along the imaginary h-axis (assuming the
Lee-Yang theorem holds). In fact it is more convenient to consider the integrated,
or cumulative, distribution function of zeros, defined as

G∞(r, t) =

∫ r

rY L(t)

g∞(s, t)ds . (5.15)

Following the approach outlined in [135], its critical behaviour can be determined
as

G∞(r) ∼ r
2−α
∆ exp

((
1− 3γ

2∆

)√
6

53
| log r|

)
| log r|α̂−(2−α) ∆̂

∆ , (5.16)

where the exponential term drops out by using the mean-field values γ = 1 and
∆ = 3/2.

The scaling relations for logarithmic corrections in this 4D model are [135,136]1

α̂ = Dq̂ −Dν̂ , (5.17)

2β̂ − γ̂ = Dq̂ −Dν̂ , (5.18)

β̂(δ − 1) = δδ̂ − γ̂ , (5.19)

η̂ = γ̂ − ν̂(2− η) , (5.20)

∆̂ = β̂ − γ̂ . (5.21)

These scaling relations are now used to generate a complete scaling picture from
the fragments available in the literature [47–51]. This complete picture is given in
Table 5.1, where the exponents of the logarithmic correction terms are listed. Values
for the exponents in boldface come directly from the reference concerned and the
remaining values are consequences of the scaling relations (5.17)–(5.21) . Each of
the five papers [47–51] is self-consistent in that the exponents given within them
do not violate logarithmic scaling relations. However, there are clear discrepancies
between each of the five papers.

The presence of the special exponential corrections has recently been verified by
Hellmund and Janke in the case of the susceptibility [134]. These exponential terms
mask the purely logarithmic corrections, so in order to detect and measure the latter
one needs to cancel the former. Certain combinations of thermodynamic functions

1The relation (5.17) is modified to read α̂ = 1+dq̂−dν̂ when α = 0 and when the impact angle
of Fisher zeros onto the real axis is any value other than π/4, which is not expected to be the case
in this 4D model [136].
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Log Pure model Aharony [47] Shalaev [48] Jug [49] Geldart Ballesteros

exp [51, 137] & De’Bell [50] et al [51]

α̂ 1/3 0.5 1.237 0.5 1.246 0.5

β̂ 1/3 0.25 0.434 0.252 0.439 0.255
γ̂ 1/3 0 -0.368 0.005 -0.368 0.009

δ̂ 1/3 0.167 0.167 0.170 0.170 0.173
ν̂ 1/6 0 -0.189 -0.187 0
η̂ 0 0 0.009 0.005 0.009
q̂ 1/4 0.125 0.120 0.125 0.125

∆̂ 0 0.25 0.803 0.248 0.807 0.245

Table 5.1: Theoretical predictions for the exponents of the logarithmic corrections
to scaling for the pure Ising model in four dimensions and for its random-site coun-
terpart. The latter exponents are listed in boldface if they come directly from the
cited literature. The remaining values are extended from those of the literature
using the scaling relations (5.17)–(5.21).

achieve this, but it turns out that FSS does this also. FSS therefore offers an ideal
method to determine the exponents of the logarithmic corrections numerically [132].

5.2.2 Finite-Size Scaling

Fixing the ratio of ξ∞(t) in (5.3) and ξL(0) in (5.5) to x, one has

t−ν exp

(
1

2

√
6

53
| log |t||

)
| log |t||ν̂ = xL(logL)q̂ . (5.22)

Taking logarithms of both sides, one obtains

| log |t|| ≈ 1

ν
logL , (5.23)

which re-inserted into (5.22) gives

t ∼ L− 1
ν (logL)

ν̂−q̂
ν exp

(
1

2ν

√
6

53

1

ν
logL

){
1 +O

(
1√

logL

)}
(5.24)

∼ L−2 (logL)−
α̂
2 exp

(√
12

53
logL

){
1 +O

(
1√

logL

)}
, (5.25)

having used the mean-field value (5.6) for the leading exponent ν and the logarithmic
scaling relation (5.17). If α̂ = 1/2, this recovers a result in [51] for the FSS of the
pseudo-critical point.

Inserting (5.25) into (5.3) recovers (5.5), as it should. The FSS’s of the remaining
functions are determined by inserting (5.25) into (5.1) to (5.3) and (5.12) to (5.14).
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One finds

CL(0) ≈ A−B′L
α
ν exp

(

−
(
2 +

α

2ν

)√ 6

53ν
logL

)

(logL)α̂+ α
ν
(q̂−ν̂) , (5.26)

where B′ ∝ B is a positive constant [47–51]. Inserting the mean-field values α = 0,
ν = 1/2, one obtains the simpler form

CL(0) ≈ A− B′ exp

(
−2

√
12

53
logL

)
(logL)α̂ . (5.27)

Similarly, the FSS for the susceptibility is

χL(0) ∼ L
γ
ν | logL|γ̂− γ

ν
(ν̂−q̂) = L2| logL|ζ̂ , (5.28)

where

ζ̂ = γ̂ − 2(ν̂ − q̂) =
1

2
α̂+ γ̂ . (5.29)

The FSS for the Yang-Lee edge is

r1(L) ∼ L−∆
ν | logL|∆̂+ ∆

ν
(ν̂−q̂) = L−3| logL|ρ̂ , (5.30)

where

ρ̂ = ∆̂+ 3(ν̂ − q̂) = −1

4
α̂− 1

2
γ̂ . (5.31)

Each of these also has sub-leading scaling corrections of strength O(1/
√

logL) times
the leading behaviour. One notes, however, that the unusual exponential terms,
which swamp the logarithmic corrections in the thermal scaling formulae (5.2) and
(5.14), drop out of their FSS counterparts (5.28) and (5.30). These are therefore
ideal quantities to study the logarithmic corrections. The theoretical analytical
predictions of each of the five sources in the literature are now used to construct
five possible FSS scenarios for the specific heat, the susceptibility, and the Lee-Yang
zeros. While Jug did not calculate the critical correlator or correlation length in 4D,
the FSS picture corresponding to [49] can still be constructed through the scaling
relations for logarithmic corrections. The FSS scenarios are listed in Table 5.2.

The remainder of this chapter is concerned with Tables 5.1 and 5.2. The primary
objective is to verify that the exponents for the logarithmic-correction terms in the
RSIM are indeed different from those of the pure model. Once this is established,
one would like to determine which of the five sets of analytical predictions are
supported numerically. From Table 5.2, it is clear that present-day numerics can not
be sensitive enough to distinguish between all five scenarios for the susceptibility
or individual zeros. However, there are clear differences between the predictions
from [47, 49, 51] and from [48, 50] for the specific heat (Table 5.1), and it will turn
out that the numerical data is indeed sensitive enough to favour the former over the
latter.
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Exponent Pure Aharony Shalaev Jug Geldart & Ballesteros
model [47] [48] [49] De’Bell [50] et al [51]

Susceptibility ζ̂ 1/2 0.25 0.25 0.255 0.255 0.259
Lee-Yang zeros ρ̂ -1/4 -0.125 -0.125 -0.127 -0.127 -0.130

Table 5.2: The exponents of the multiplicative logarithmic corrections to FSS for
the magnetic susceptibility and for the Lee-Yang zeros coming from the literature
and compared to their equivalents in the pure case. The FSS exponents are ζ̂ for
the susceptibility and ρ̂ for the Yang-Lee edge.

5.3 The Model

The partition function of the RSIM in a reduced magnetic field h is

ZL(β, h) =
∑

{σi}

exp



β
∑

〈i,j〉

ǫiǫjσiσj + h
∑

i

ǫiσi



 , (5.32)

where L denotes the linear extent of the lattice, the sum over configurations {σi}
is taken over Ising spins σi ∈ {±1}, 〈i, j〉 denotes nearest neighbours, and ǫi are
independent quenched random variables which take the value unity with probability
p and zero with probability 1 − p. Below the percolation threshold (pc = 0.197
in four dimensions), the phase transition is expected to disappear, while for every
p > pc there exists a critical (inverse) temperature βc(p) for each given dilution.

In order to find the Lee-Yang zeros we define the energy, E, and the magnetisa-
tion, M , of the system as

E = −
∑

〈ij〉

ǫiǫjσiσj , M =
∑

i

ǫiσi , (5.33)

and

ρL(β ;M) =
∑

E

ρL(E,M)exp(−βE) , (5.34)

where the spectral density ρL(E,M) gives the relative weight of configurations with
given values of E and M , the partition function in an imaginary field ih is therefore

ZL(β, h) =
∑

M

ρL(β ;M)exp(ihM) = ZL(β, 0)〈cos(hM) + i sin(hM)〉 , (5.35)

where the thermal average 〈(· · · )〉 is a real measure, i.e., it is taken with Z(β, h =
0). Assuming the Lee-Yang theorem holds [138, 139], since odd moments of the
magnetisation vanish in the paramagnetic phase, the zeros for a given realization of
the disorder are given by the values of h for which

〈cos(hM)〉 = 0 . (5.36)
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In this way we obtain the zeros of the partition function for each value of p and L.
Then we average over realizations of the disorder (samples), and the resulting jth
Lee-Yang zero is denoted by rj(L), the zero with j = 1 being the smallest.

A robust method to determine the density of zeros, defined in Eq. (5.15), from
simulation data was presented in Ref. [140]. Defining the density of zeros for a finite
system of size L along the singular line r > rY L(t) as

gL(r) = L−D
∑

j

δ[r − rj(L)] , (5.37)

we can insert it into the cumulative density of zeros to obtain

GL(r) =

∫ r

0

gL(s)ds =
j

LD
for: rj(L) < r < rj+1(L) , (5.38)

so that it is given at a zero by the average

GL[rj(L)] =
2j − 1

2LD
. (5.39)

We also measure the non-connected susceptibility, χW , defined as

χL =
1

V
〈M2〉 , (5.40)

with V = L4 being the volume of the system. This quantity is directly related to the
average size of the clusters constructed using a Wolff algorithm [10]. We checked this
point in this work. In all cases, the two definitions of the non-connected susceptibility
are fully compatible.

Finally we measure the specific heat of the system, defined as

C =
1

V
(〈E2〉 − 〈E〉2) . (5.41)

5.4 Numerical Results

5.4.1 Methods

We performed extensive simulations of the model for linear lattice sizes from L = 8
to L = 48 at dilutions p = 1, p = 0.8, and p = 0.5. In each case, we employed a Wolff
single-cluster algorithm [10] to update the spin variables using periodic boundary
conditions. Thermalization tests including the comparison between cold (all spins
up) and hot (all spins random) starts were carried out. We found that the plateau
for the susceptibility is quickly reached by starting from cold configurations, see
Fig. 5.1. Indeed, the results for the susceptibilities from hot and cold starts are fully
compatible (and are less than two standard deviations away from each other, even
at the level of logarithmic corrections). The information about the numerical details
is given in Table 5.3. We took 1000 disorder realizations in all the cases except for
L = 48, where only 800 samples were used. We estimate that the total simulation
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Figure 5.1: Averaged behaviour of the susceptibility with the MC time for 20 sam-
ples at L = 32 and p = 0.800. Measurements were performed after every MC sweep
(Wolff update). The plateau is reached more easily starting from a cold configura-
tion.

time was equivalent to 20 years of a single node of a Pentium Intel Core2 Quad
2.66 GHz processor. Since our aim is to estimate the scaling of quantities right
at the critical point, simulations must be performed at the critical temperature of
the model. We used the estimates for the critical temperature given in [51]. In
terms of β = 1/kT , where k is the Boltzmann constant, these are βc = 0.149695,
βc = 0.188864, and βc = 0.317368, for p = 1, p = 0.8, and p = 0.5, respectively.

In addition we simulated the dilution p = 0.650 at βc = 0.235049 [51] using
the same statistics as for the other dilutions. In this case we found the behaviour
of the observables to differ from the expected. For example, Fig. 5.2 shows the
strong deviation of the leading scaling behaviour of the susceptibility compared with
that of the other dilutions. We re-checked this point starting from different initial
configurations and even using different random number generators. This deviation
is surely due to a biased estimate of the critical temperature in [51]. For this reason
we omit p = 0.650 from our analysis.

5.4.2 The Pure Case p = 1

To establish confidence in the present approach, the pure system is analysed first
to test whether the method employed successfully quantitatively identifies the log-
arithmic corrections which are well established there.
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Spin Concentration L NWolff Nd

p= 1.000 8 200 2
(βc = 0.149695) 12 400 8

16 1600 32
24 2000 128
32 3000 400
48 4000 1600

p= 0.800 8 100 1
(βc = 0.188864) 12 200 4

16 800 16
24 1000 64
32 1500 200
48 2000 1250

p= 0.500 8 100 2
(βc = 0.317368) 12 200 8

16 800 32
24 1000 128
32 1500 512
48 2000 1250

Table 5.3: Simulation details for each spin concentration p and system size L. Here,
NWolff denotes the number of Wolff updates between consecutive measurements, Nd

is the number of dropped measurements at the beginning of the MC history (in
units of 103). We always performed 103 measurements within each sample after
equilibration.
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Figure 5.2: Scaling of the susceptibility comparing the p = 0.650 case at βc =
0.235049 [51] with the other dilute cases (also simulated at their corresponding βc’s
obtained from [51]). There can be seen the strong deviation for p = 0.650 from the
expected leading behaviour χ ∼ L2 . The point size is in every case larger than the
corresponding error bar.

The scaling and FSS of the pure model (p = 1) are well understood [51, 137].
The specific heat FSS behaviour is given by

CL(0) ∼ (logL)α̂ ∼ (logL)1/3 , (5.42)

up to additive corrections. Fitting to this form for α̂ over the full data set 8 ≤
L ≤ 48, one finds the estimate α̂ = 0.42(4) with a goodness of fit given by a
χ2/d.o.f. = 3.9/3, C.L.=27%. The estimate is two standard deviations away from
the known value 1/3. As elsewhere in this analysis, inclusion of sub-leading scaling
correction terms in the fits does not ameliorate this result, which is similar to that
reported in [51].

The FSS for the susceptibility is given in (5.28) with ζ̂ = 1/2. Fitting to the
leading form

χL(0) ∼ L
γ
ν (5.43)

gives γ/ν = 2.16(1) for 8 ≤ L ≤ 48 and γ/ν = 2.13(2) for 12 ≤ L ≤ 32, the
difference from the theoretical value γ/ν = 2 being ascribable to the presence of the
logarithmic correction term. Accepting this mean-field value for γ/ν and fitting to

χL(0) ∼ L2(logL)ζ̂ (5.44)
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gives the estimate ζ̂ = 0.48± 0.02 in the range 8 ≤ L ≤ 48, albeit with χ2/d.o.f. =
12.3/3, C.L.=1%.

The FSS for the individual Lee-Yang zeros is given in (5.30) with ρ̂ = −1/4 in
the pure case. Fitting to the leading form

rj(L) ∼ L−∆
ν (5.45)

gives ∆/ν = 3.074(5) for 8 ≤ L ≤ 48, the difference from the theoretical mean-field
value ∆/ν = 3 being due to the corrections. Accepting this value and fitting to

rj(L) ∼ L−3(logL)ρ̂ (5.46)

gives ρ̂ = −0.22(2) in the range 8 ≤ L ≤ 48. This estimate is compatible with the
known value ρ̂ = −1/4. As one would expect, the higher zeros yield less accurate
estimates (as they are further from the real simulation points) with ρ̂ = −0.18(3) ,
ρ̂ = −0.17(7) , and ρ̂ = −0.10(14) from the second, third and fourth zeros respec-
tively. These estimates are listed in Table 5.4.

Having established that the numerics give reasonable agreement with the pure
theory at the leading and the logarithmic levels, we now perform a similar analysis
in the presence of disorder.

5.4.3 The Dilute Cases p = 0.8 and p = 0.5

Since the ansatz (5.27) for the specific heat in disordered systems is somewhat more
complex than that for the pure case (5.42), we begin the p 6= 1 analyses with the
susceptibility and the Lee-Yang zeros. It will turn out that our analyses will reinforce
the analytical predictions that scaling is governed by the Gaussian fixed point and
that the logarithmic corrections in the RSIM differ from those in the pure model.
Indeed, the results for the zeros will be seen to be broadly compatible with the
analytic predictions contained in [47–51].

For the weaker dilution value p = 0.8, a fit using all lattice sizes to the leading
form (5.43) for the susceptibility yields the estimate γ/ν = 2.14 ± 0.01. Ascribing
the difference from the Gaussian value γ/ν = 2 as being due to the correction terms
and, as in the pure case, fitting to (5.44), one finds an estimate for the correction
exponent ζ̂ = 0.39(3) for 8 ≤ L ≤ 48. This value lies between the pure value ζ̂ = 0.5
and the theoretical estimates for the dilute value which are ζ̂ ≈ 0.25 to 0.26. Thus,
while the FSS for the susceptibility does not capture the theoretical estimates for
the dilute case, the fitted values have moved away from the pure value and towards
the lower value listed in Table 5.2. As elsewhere in this work, the inclusion of scaling
corrections does not alter these results significantly.

A similar analysis for the FSS of the susceptibility at the stronger dilution value
p = 0.5 gives similar results: the leading form (5.43) yields an estimate γ/ν =
2.13± 0.02 with a goodness of fit given by χ2/d.o.f. = 1.2/3, C.L.=75%. Ascribing
the difference from the mean-field value γ/ν = 2 as being due to the logarithmic
corrections, and fitting to (5.44), one obtains the estimate ζ̂ = 0.37(4) for 8 ≤ L ≤
48. Again this result is between the theoretical predictions for the pure (ζ̂ = 0.5)
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p ζ̂ ρ̂

Theory (p = 1) ⇒ 1/2 -1/4
Theory (p 6= 1)⇒ 0.25 to 0.26 −0.125 to −0.13

j = 1 j = 2 j = 3 j = 4
1 L = 8− 48 0.48(2) -0.22(2) -0.18(3) -0.17(7) -0.10(14)
0.8 L = 8− 48 0.39(3) -0.15(2) -0.16(3) -0.20(3) -0.17(3)
0.8 L = 12− 48 0.42(4) -0.17(4) -0.16(4) -0.17(5) -0.18(4)
0.5 L = 8− 48 0.37(4) -0.20(4) -0.22(4) -0.21(4) -0.21(4)
0.5 L = 12− 48 0.40(6) -0.16(5) -0.20(5) -0.18(5) -0.19(5)

Table 5.4: FSS estimates for the various dilution values, using a range of lattice
sizes. For p < 1 the susceptibility is expected to scale as χL ∼ L2(logL)ζ̂ and the
Lee-Yang zeros as rj ∼ L−3(logL)ρ̂, where ζ̂ ≈ 0.25 to 0.259 and ρ̂ ≈ −0.125 to

−0.130. (For comparison, the pure theory with p = 1 has ζ̂ = 1/2 and ρ̂ = −1/4.)
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Figure 5.3: Left: FSS plot for χL at p = 0.8 (circles) and p = 0.5 (triangles) at the
critical point. The slopes of the fitted solid and dashed lines give estimates for γ/ν of
2.14(1) and 2.13(2), respectively. Right: Plot of logχL − 2 logL against log (logL)
at p = 0.8 (circles) and p = 0.5 (triangles) giving slopes 0.39(3) and 0.37(4), respec-
tively, indicating slow crossover of multiplicative logarithmic corrections from the
pure case (where ζ̂ = 0.5) to the dilute case, where the theoretical value is ζ̂ ≈ 0.25.

and the dilute (ζ̂ ≈ 0.25 to 0.26) cases. These results are summarised in Table 5.4,
together with the results for the same fits but with the smallest lattices removed.

Since in each of the dilute cases the susceptibility results lie between what is
expected for the pure and for the dilute theories, we appeal to the Lee-Yang zeros
since they are expected to provide a cleaner signal.
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Figure 5.4: Left: FSS plot for the Yang-Lee edge at p = 0.8 (circles) and p =
0.5 (triangles). The slopes of the fitted solid and dashed lines give estimates for
∆/ν of 3.055(4) and 3.07(2), respectively. Right: Plot of log r1 + 3 logL against
log (logL) at p = 0.8 (circles) and p = 0.5 (triangles). Fits in the range L = 12 to
L = 48 (plotted) give slopes −0.17(4) and −0.16(5), compatible with the literature
predictions that range from ρ̂ ≈ −0.125 to ρ̂ ≈ −0.13. (For comparison, in the pure
model, ρ̂ = −1/4.)

The leading behaviour is first examined by fitting each of the first four Lee-
Yang zeros to Eq. (5.45). For the weaker dilution given by p = 0.8, one obtains
∆/ν = 3.055(8), 3.056(9), 3.069(11), and 3.060(10) from fits to the first, second,
third, and fourth zeros, respectively, using all lattice sizes. The equivalent results
for the stronger dilution value p = 0.5 are ∆/ν = 3.068(13), 3.071(15), 3.072(12),
and 3.071(11), respectively. All fits are of good quality with acceptable values of
χ2/d.o.f., which we refrain from detailing. Again, these are interpreted as being sup-
portive of the mean-field leading behaviour ∆/ν = 3 with logarithmic corrections.

The logarithmic-correction exponents are estimated by fitting to Eq. (5.46), with
the various theories indicating that ρ̂ = −0.125 to −0.13. The strongest evidence
supporting this comes, as it should, from the first zero (the Yang-Lee edge) for
p = 0.8, which yields the estimate ρ̂ = −0.15(2) (with χ2/d.o.f. = 1.8/3, C.L.=61%).
As in the pure case, and as expected, estimates for ρ̂ deteriorate as higher-index
zeros are used. Dropping the smallest lattices from the analysis, however, leads to
these estimates for ρ̂ becoming more compatible with [47–51]. These results are
summarised in Table 5.4.

The equivalent analysis for the stronger dilution value p = 0.5 is less clear, with
an estimate ρ̂ = −0.20(4) coming from the first zero when all lattices are included in
the fit (with χ2/d.o.f. = 3.3/3, C.L.=35%). Dropping the smallest lattices, however,
gives ρ̂ = −0.16(5) (with χ2/d.o.f. = 1.8/2, C.L.=40%), closer to the values coming
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from [47–51]. Similar results are obtained for the higher zeros, and these are also
summarised in Table 5.4.

As a final check of the reliability of our results, we used the spectral energy
method [142, 143] to re-weight the data obtained at βc to βc ± ∆βc (taken again
from [51]), finding that the new data sets are fully supportive of the previous results2.

Having established that the leading FSS behaviour corresponds to that originat-
ing from the Gaussian fixed point, and that the logarithmic corrections to scaling
are different from those in the pure model and moreover are (at least in the case of
the Yang-Lee edge) broadly compatible with the literature predictions [47–51], we
now attempt to distinguish between these broad predictions. To this end we turn to
the specific heat.
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Figure 5.5: The specific heat for p = 0.8 (circles) and p = 0.5 (triangles). The error
bars are in every case smaller than the point size. The solid and dashed curves are
best fits to the ansatz Eq. (5.27), with α̂ = 1/2.

Having established confidence in the validity of the mean-field values γ = 1 and
∆ = 3/2 for the 4D RSIM, we may use the scaling relation α = 2− 2∆+ γ to also
establish the mean-field value α = 0. The ansatz Eq. (5.27) for the specific heat
may now be used. This contains information which can be used to discriminate
between some of the scenarios in the literature. In Table 5.1, one observes that
there is a striking difference between the estimates for the specific heat logarithmic-
correction exponent α̂ coming from [48, 50] and from [47, 49, 51]. While the former
have relatively large values of α̂, the latter agree on α̂ = 0.5. The simulated values

2We followed the recipe given in Appendix D to perform the extrapolation to infinite number
of measurements per sample.
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of the specific heat at p = 0.8 and p = 0.5 are plotted in Fig. 5.5. The slope of the
full specific heat curve (5.27) is

dCL
dL

= [A− CL(0)]

√
12/53

L
√

logL

(

1− α̂
√

53/12√
logL

)

. (5.47)

This vanishes when CL(0) = A and when
√

logL = α̂
√

53/12. The first of these
is the asymptote L → ∞, from which A can be determined for each dilution. The
second occurrence of zero slope is for quite small lattice sizes, i.e., beneath lattice
size L = 8. Therefore α̂ <∼

√
12/53

√
log 8 ≈ 0.7, which excludes the values α̂ ≈

1.237 and α̂ ≈ 1.246 given in [48, 50]. In fact, a best fit to the ansatz Eq. (5.27)
gives A = 89(34), B′ = 142(71), and α̂ = 0.57(14) for p = 0.8, and A = 60(25),
B′ = 102(54), and α̂ = 0.76(3) for p = 0.5. Fixing α̂ = 1/2 in each case gives
A = 76(4), B′ = 115(13) for p = 0.8, and A = 22(3), B′ = 19(9) for p = 0.5. These
curves are plotted along with the specific heat measurements in Fig. 5.5. However,
fixing the correction exponent α̂ to the value given in [48, 50] yields a best-fit value
of B′ which is negative in each case, contradictory to [47, 50]. Thus we can deem
these values to be unlikely.

5.5 Conclusions

Numerical measurements of the leading critical exponents in the 4D RSIM have
been presented, confirming that the phase transition in this model is governed by
the Gaussian fixed point. We then turned to the corrections to scaling, for which
there exist five distinct sets of predictions in the literature [47–51]. The scaling
relations for logarithmic corrections were used to complete these sets, and their
counterparts for finite-size systems were given.

The measured values of the susceptibility FSS correction exponent, ζ̂, for the site-
diluted model lie between the known value for the pure model and the theoretical
estimates coming from [47–51] for the disordered system. While this result illustrates
slow crossover of the susceptibility, the lowest lying Lee-Yang zeros give a cleaner
signal. The measured value for their logarithmic correction exponents were indeed
found to be compatible with the theories.

To discriminate between the five theories, the detailed finite-size scaling be-
haviour of the specific heat was also examined. The analysis was clearly in favour of
the analytical predictions of [47,49,51] over those of [48,50]. This was contrary to ex-
pectation since the former involve only two loops in the perturbative RG expansion,
while the latter take the expansion to three loops in the beta function.

122



Chapter 6

Conclusions

We have presented in this work highly accurate numerical simulations of various
models of phase transitions in the presence of dilution. We checked the validity of
some recent work, being able to outperform their statistical accuracy.

Firstly, we checked the goodness of a recently proposed microcanonical simula-
tion method [13] that computes entropy, rather than free energy, to derive all the
thermodynamic information. The results, both for the pure four-state (Q = 4)
Potts model in two dimensions and for the pure Ising model in three dimensions,
were fully compatible with the most recent canonical simulations [8,43]. To achieve
this, we applied (for the first time, to the best of our knowledge) the Nightingale
phenomenological renormalization [69] (also called the Quotient Method [70]) within
a microcanonical ensemble. In addition we obtained the critical exponents in the
microcanonical ensemble, checking the validity of the Fisher renormalization [58] for
models with a constraint in the internal energy.

Once we had set up a correct microcanonical simulation method, we used it to
study the (inherently complicated) strong first-order phase transition of the three-
dimensional Potts model withQ > 3 states. We confirmed that dilution dramatically
smooths the transition up to a tricritical point, with spin concentration pc, where
it becomes of second order [44–46]. We were able to claim that pc is definitely less
than unity, having obtained pc = 0.954(3) and pc = 0.922(1) in the Q = 4 and Q = 8
cases, respectively. We also obtained that within the first order region in the Q = 4
case the latent heat is a self-averaging quantity while the surface tension is not. As
a future development we will study the scaling of latent heat, surface tension, and
critical temperature within the first-order region for the Q = 8 case. In this case we
will have to deal with not fully equilibrated systems, so that we will have to quantify
the effects of the lack of thermalization.

Within the canonical ensemble, we studied the critical properties of the Heisen-
berg dilute model in three dimensions for different values of the dilution. Using
the next-to-leading scaling correction, we obtained results fully compatible with the
Renormalization Group predictions and with the Harris criterion: our exponents
and cumulants in the dilute cases were compatibles with those of the pure model
and independent of the dilution. We also obtained strong evidence for a zero g2

cumulant, in both the vector and the tensor channels, in the thermodynamic limit
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at criticality, contrasting with some analytical predictions [28], but in agreement
with others [27]. The introduction of scaling corrections into the analysis was found
to be crucial to obtain the g2 = 0 scenario.

We also studied the site-diluted version of the Ising model in four dimensions,
confirming that the phase transition in this model is governed by the Gaussian fixed
point. The logarithmic corrections to scaling were analysed to try to discriminate
between five distinct sets of predictions [47–51]. The measured values of the sus-
ceptibility logarithmic correction exponent in the dilute case lie between the known
value for the pure model and all the theoretical estimates for the disordered sys-
tem, indicative of a slow crossover to the dilute universality class. We were able to
discriminate between the five theories by a detailed study of the finite-size scaling
behaviour of the specific heat. The analysis is clearly in favour of the analytical pre-
dictions of [47,49,51] over those of [48,50]. Further theoretical effort should be made
in this field because the favoured scenerio stems from computation up to two loops
in the perturbative RG expansion, while the rejected scenario involves expansion up
to three loops in the beta function.

The numerical results of this thesis were only made possible by the intensive use
of important supercomputing facilities. We obtained from their resources more than
the equivalent of 400 years of computation time of a single last generation Pentium
2.5 GHz CPU. Specifically, we used the clusters at the “Instituto de Biocomputación
y F́ısica de Sistemas Complejos” (BIFI) and the “Barcelona Supercomputing Cen-
tre” (BSC). In addition, we exploited the volunteer computing platform IBERCIVIS,
for which we are in debt with all its developers and volunteers.
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Conclusiones

En el presente trabajo hemos realizado simulaciones numéricas de alta precisión
de varios modelos de transiciones de fase en presencia de desorden. Con dichas
simulaciones hemos logrado comprobar la validez de los trabajos más recientes y
hemos mejorado la precisión de sus resultados.

En primer lugar, hemos comprobado la validez de un método de simulación den-
tro del colectivo microcanónico propuesto recientemente [13]. Dicho método utiliza
la entroṕıa, en lugar de la enerǵıa, para obtener toda la información termodinámica
del sistema. Los resultados obtenidos, tanto para el modelo de Potts puro con cuatro
estados (Q = 4) en dos dimensiones como para el modelo de Ising puro en tres di-
mensiones, son completamente compatibles con las simulaciones dentro del colectivo
canónico más recientes [8, 43]. Para lograrlo hemos aplicado por primera vez, que
nosotros sepamos, la renormalización fenomenológica de Nightingale [69] (también
llamada Método de los Cocientes [70]) dentro del colectivo microcanónico. Además
hemos obtenido los exponentes cŕıticos microcanónicos comprobando la validez de
la renormalización de Fisher [58] para un modelo con una ligadura en la enerǵıa.

Una vez que hemos asegurado la bondad de nuestro método de simulación mi-
crocanónico, lo hemos utilizado para el estudio de la (inherentemente complicada)
transición de primer orden fuerte que tiene lugar en el modelo de Potts tridimensio-
nal con Q > 3 estados. Hemos comprobado que la dilución suaviza drásticamente
la transición hasta llegar a un punto tricŕıtico, con concentración de espines pc,
donde la transición pasa a ser de segundo orden [44–46]. Podemos afirmar que pc

es definitivamente más pequeña que la unidad, habiendo obtenido pc = 0.954(3) y
pc = 0.922(1) en los casos Q = 4 y Q = 8 respectivamente. También hemos obtenido
que dentro de la región de primer orden para el caso Q = 4 el calor latente es una
magnitud autopromediante mientras que la tensión superficial no lo es. Como una
futura investigación se pretende estudiar el escalado del calor latente, la tensión su-
perficial y la temperatura cŕıtica dentro de la región de primer orden para el caso con
Q = 8, para ello tendremos que tratar con estados no completamente equilibrados
por lo que tendremos que cuantificar los efectos debidos a la falta de termalización.

Dentro del colectivo canónico hemos estudiado las propiedades cŕıticas del mo-
delo de Heisenberg diluido en tres dimensiones para diferentes valores de la dilución.
Usando hasta segundo orden en correcciones de escala hemos obtenido resultados
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completamente compatibles con las predicciones del Grupo de Renormalización y
con el criterio de Harris: los exponentes y cumulantes obtenidos son compatibles
con los del modelo puro e independientes de la dilución. Además hemos obtenido
evidencias importantes de un cumulante g2 nulo, tanto en el canal vectorial como
en el tensorial, en el ĺımite termodinámico y en el punto cŕıtico. Éste último resul-
tado contrasta con algunas predicciones anaĺıticas [28] y concuerda con otras [27].
La introducción de correcciones al escalado en nuestro análisis ha sido fundamental
para obtener el escenario con g2 = 0.

También hemos estudiado la versión con dilución por sitios del modelo de Ising
en cuatro dimensiones, confirmando que la transición de fase de este modelo está go-
bernada por el punto fijo Gaussiano. Las correcciones logaŕıtmicas al escalado fueron
analizadas para tratar de discriminar entre cinco conjuntos distintos de prediccio-
nes [47–51]. Los valores medidos del exponente de correcciones logaŕıtmicas de la
susceptibilidad en el caso diluido se sitúan entre el valor conocido del modelo puro
y todos los valores teóricos estimados para el modelo diluido, esto es un signo de la
existencia un fenómeno de paso (crossover) muy lento hacia la clase de universalidad
del modelo diluido. Hemos logrado discriminar entre las cinco teoŕıas en conflicto
haciendo un estudio detallado de comportamiento de escalado con el tamaño del sis-
tema del calor espećıfico. El análisis claramente favorece las predicciones anaĺıticas
propuestas en [47,49,51] sobre las propuestas en [48,50]. Un esfuerzo teórico adicio-
nal parece necesario ya que el escenario favorecido procede de un cálculo hasta dos
“loops” de la expansión perturbativa del Grupo de Renormalización mientras que
el escenario descartado procede de una expansión hasta tres “loops”.

Los resultados numéricos de esta tesis doctoral solo han sido posibles debido al
uso exhaustivo de importantes infraestructuras de supercomputación. Hemos obte-
nido el equivalente a más de 400 años de tiempo de cómputo de un único procesador
Pentium 2.5 GHz de última generación. Espećıficamente hemos usado los clusters del
“Instituto de Biocomputación y F́ısica de Sistemas Complejos” (BIFI) y del “Bar-
celona Supercomputing Centre” (BSC). Además hemos explotado la plataforma de
computación voluntaria IBERCIVIS, por lo que estamos en una deuda profunda con
los desarrolladores y voluntarios.
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Appendix A

The Harris Criterion

Given the fact that real systems are almost always impure, it is crucial to quantify
to what extent, if any, disorder affects their critical behaviour. A criterion, the
so-called Harris criterion, makes it possible to predict quantitatively the effect of
disorder by using the critical exponents of the pure system only [23]. According to
this criterion, the impurities change the critical behaviour only if the specific heat
exponent α of the pure system is positive (the specific heat of the pure system is
divergent). In the opposite case, α < 0 (the specific heat is finite), the impurities
appear to be irrelevant, i.e. their presence does not alter the critical behaviour. We
will derive the criterion following the approach of Ref. [141].

Let us consider a system with quenched disorder. This can be for example the
presence of impurities at random sites in a crystal lattice. In the pure case, this sys-
tem undergoes a continuous phase transition at a temperature Tc. This critical tem-
perature is expected to change in presence of disorder because it introduces spatial
inhomogeneities in the coordination number1. The thermodynamics of second-order
phase transitions is dominated by large-scale fluctuations. The dominant scale, or
the correlation length, ξ ∼ |t|−ν goes to infinite as t→ 0, with t = (T −Tc)/Tc being
the reduced temperature.

The strength of the disorder (in our example, the impurity concentration) is
denoted by ρ, with ρ = 0 being the pure case. As Tc is approached the following
change of scale length takes place. First the correlation length of the fluctuations
becomes much larger than the lattice spacing, and the system ’forgets’ about the
lattice. The only relevant scale that remains in the system is ξ(t). When we move
closer to the critical point, ξ grows and becomes larger than the average distance
between impurities, so that the effective concentration of impurities, measured with
respect to the correlation length, becomes larger. It should be stressed that such a
situation is reached for an arbitrary small initial concentration ρ. If ξDρ≫ 1 there
is no reason for believing that the effect of impurities will be small.

We will discuss, for the sake of simplicity, the Harris criterion using a particular
model: the D-dimensional Ising-like system described in terms of the scalar field

1This is by definition the number of interacting neighbours of a given spin. In a mean field
calculation, one obtains that the critical temperature of the Ising model is Tc = 2qJ/kB, where q
is the coordination number, J the coupling, and kB the Boltzmann constant.
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Ginzburg-Landau Hamiltonian, see for example [141]:

H =

∫
dDx

[
1

2
(∇φ(x))2 +

1

2
(t− δt(x))φ2(x) +

1

4
gφ4(x)

]
, (A.1)

where the quenched disorder is described by random fluctuations of the effective
transition temperature δt(x) whose probability distribution is taken to be symmetric
and Gausssian:

P [δt] = p0 exp

(
− 1

4ρ

∫
dx (δt(x))2

)
, (A.2)

where p0 is the normalisation constant. For notational simplicity, the sign of δt(x)
in Eq. (A.1) is defined such that positive fluctuations lead to locally ordered regions.

Configurations of the fields φ(x) that correspond local minima in H satisfy the
saddle-point equation:

−∆φ(x) + tφ(x) + gφ3(x) = δt(x)φ(x) , (A.3)

Such localised solutions exist in regions of space where t − δt(x) assumes negative
values. Clearly, the solutions of Eq. (A.3) depend on a particular configuration of
the function δt(x) being inhomogeneous. Let us estimate under which conditions
the quenched fluctuations of the effective transition temperature are the dominant
factor for the local minima field configurations.

Let us consider a large region ΩL of linear size L ≫ 1. The spatially average
value of the function δt(x) in this region can be defined as follows:

δt(ΩL) =
1

LD

∫

x∈ΩL

dx δt(x) . (A.4)

Correspondingly, for the characteristic values of the temperature fluctuations (aver-
aged over realizations) in this region we get:

δtL =

√
δt2(ΩL) =

√
2ρL−D/2 . (A.5)

Then, according to Eq. (A.3) the average value of the order parameter φ(ΩL) in this
region can be estimated from the equation:

t+ gφ2 = δt(ΩL) . (A.6)

One can obtain that if the value of t is sufficiently small, i.e. if

δt(ΩL)≫ t , (A.7)

then the solutions of Eq. (A.6) are defined only by the value of the random temper-
ature fluctuation

φ(ΩL) ≃ ±
(
δt(ΩL)

g

)1/2

. (A.8)
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Now let us estimate up to which sizes of locally ordered regions this may occur.
According to Eq. (A.5) the condition δtL ≫ t yields:

L≪ ρ1/D

t2/D
. (A.9)

On the other hand, the estimation of the order parameter in terms of the saddle-
point equation (A.6) can be correct only at scales much larger than the correlation
length ξ ∼ t−ν . Thus one has a lower bound for L

L≫ t−ν . (A.10)

Therefore, quenched temperature fluctuations are relevant only when

t−ν ≪ ρ1/D

t2/D
, (A.11)

or
t2−νD ≪ ρ . (A.12)

According to the Josephson scaling relation, α = 2− νD, see for example [1]. Thus
one recovers the Harris criterion: if the specific heat critical exponent of the pure
system is positive, then in the critical interval:

t < t∗ ≡ ρ1/α (A.13)

the disorder becomes relevant. This argument identifies 1/α as the crossover expo-
nent associated with randomness. In this case, the critical exponents of the disor-
dered systems differ from those of the pure one. In particular, the value of α for the
disordered systems is never positive 2.

On the other hand, if the exponent α = 2−νD < 0, the condition (A.13) can not
be satisfied near Tc (at t ≪ 1), and therefore in this case a weak disorder remains
irrelevant in the critical region.

In the marginal situation, i.e. α = 0, which is the case, for instance, in the four-
dimensional Ising model (Chapter 5) or in the two-dimensional Ising model [132], it
can be demonstrated [141] that although the specific heat exponent in the disordered
model remains zero, the forms of the logarithmic singularities are affected by the
disorder.

2A rigorous argument for α < 0 in the disordered case, applicable to many situations, is given
in [106].
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Appendix B

Finite Size Scaling and the
Quotient Method

When doing numerical simulations we are restricted to finite systems and therefore
we will never obtain infinite specific heats or susceptibilities at the critical point.
Nonetheless, there exist different methods to study the critical behaviour of a phys-
ical system, working with a finite number of degrees of freedom.

Probably the most popular approach is the use of Finite Size Scaling (FSS)
techniques. They are based on the study of the evolution of observables with the
system size in order to obtain information about the behaviour of the system at the
Thermodynamic Limit (TL). FSS is based on the scaling hypothesis [128], which
states that the behaviour of the system is governed by the ratio L/ξ(∞, t), where L
is a characteristic scale of the system (for example its linear dimension) and ξ(∞, t)
is the correlation length of the infinite system. If this ratio is large, the system is
basically in its TL; if it is small, it will be in the FSS regime.

One of the consequences of the above statement is that the evolution of the mean
value of a given observable, O, with the system size will follow the functional form

〈O(L, t)〉
〈O(∞, t)〉 = fO(L/ξ(∞, t)) +O(ξ−ω, L−ω) , (B.1)

with t = (T − Tc)/Tc being the reduced temperature and fO is a smooth function
depending on the observable. The leading correction term exponent, ω, is minus the
eigenvalue of the first irrelevant operator of the theory, in terms of RG language. In
the following we assume that we are in the critical region, so that ξ ≫ L. Then in
the last term we can neglect ξ−ω compared with L−ω. The above equation is one
of the multiple forms of the FSS ansatz, which can also be derived from a pure RG
analysis, see for example [7] or [56] for detailed explanations.

There exist more practical forms of the ansatz. The observable O diverges in the
TL according to:

〈O(∞, t)〉 = t−xO + · · · . (B.2)

For the correlation length, xξ = ν, so that we can make the change

t−xO = t−
xO
ν
ν ∝ ξ(∞, t)xO/νL−xO/νLxO/ν = g(L/ξ(∞, t))LxO/ν , (B.3)
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and Eq. (B.1) can be rewritten as

〈O(L, t)〉 = LxO/ν [F̂O(L/ξ(∞, t)) + L−ωĜO(L/ξ(∞, t)) + · · · ] , (B.4)

where it can be shown that the correction term is also a function of L/ξ(∞, t).
Given that ξ(∞, t) ∝ t−ν , the scale variable can be written in terms of the reduced
temperature to obtain an alternative form of the ansatz:

〈O(L, t)〉 = LxO/ν [F̃O(tL
1
ν ) + L−ωG̃O(tL

1
ν ) + · · · ] . (B.5)

Moreover, since we can use Eq. (B.4) for the correlation length and F̂O is smooth,
we can invert it to obtain ξ(∞, t) as a function of ξ(L, t), and thus arrive at the
most useful form of the ansatz:

〈O(L, t)〉 = LxO/ν [FO(L/ξ(L, t)) + L−ωGO(L/ξ(L, t)) + · · · ] . (B.6)

All the quantities in the above equation can be measured on a finite lattice, so that
this will be our starting point for the explanation of the quotient method [70].

If we form the quotient, QO, of a given observable, O, measured for two lattice
sizes L1 = L and L2 = sL, with s > 1 , at just such a temperature that Qξ = s, or
explicitly

ξ(sL, t)

sL
=
ξ(L, t)

L
, (B.7)

the result will be the elimination of the scaling function FO in Eq. (B.6),

QO|Qξ=s
= sxO/ν +O(L−ω) . (B.8)

Typically one chooses s = 2. The critical exponent xO can easily be derived from the
above equation. The fact that there are strong statistical correlations between the
quotients in Eqs. (B.7) and (B.8) can be used via a jack-knife method to decrease the
statistical errors in the numerical estimates of critical exponents, see Appendix C
or Ref. [7].

In the present work we used the quantities:

χ → xo = ν(2− η) , (B.9)

M → xo =
ν

2
(D − 2− η) , (B.10)

∂βξ , ∂eξ → xo = ν + 1 , (B.11)

∂βg4 → xo = 1 . (B.12)

In addition, the crossing points of the correlation length, i.e. the temperatures
where the condition of Eq. (B.7) is satisfied, provide an estimate of the critical
temperature of the transition. By applying Eq. (B.5) to the correlation length,
assuming that the scaling functions are smooth, we can obtain for the (inverse)
temperature of the crossing the following behaviour:

βL,sc − βc ∝
1− s−ω
s1/ν − 1

L−ω− 1
ν . (B.13)
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The method can be also applied in a microcanonical context if a valid FSS ansatz
is available. In this case the role of the reduced temperature t is played by e − ec,
where e is the energy density of the system and ec is the energy density at the critical
point, see Sec. 2.2.3 for more details.

The quotient method can be improved to speed up convergence if logarithmic
corrections are present. In particular, if a given quantity, O, behaves in the TL as

O(L, z) = LxO/ν(logL)bxO

[
FO

(
L

ξ(L, z)

)
+O(L−ω)

]
, (B.14)

where z can be either the reduced temperature t or e− ec, the critical canonical or
microcanonical exponent calculated using Eq. (B.8) must be corrected according to:

x′O
ν

=
xO
ν
− x̂O

log(L2/L1)
log

(
logL2

logL1

)
, (B.15)

where we use primes to label corrected exponents.
If we have enough analytical information about the logarithmic term exponents

we can apply the correction exactly. For example, for the two-dimensional four-state
Potts model the values of the logarithmic correction exponents are known analyti-
cally [43, 86]. Thus we can calculate the corrections accurately. The susceptibility
behaves as

χ ∼ L7/4(logL)−1/8 (B.16)

and we easily arrive at

η′ = η − 1

8 log(L2/L1)
log

(
logL2

logL1

)
. (B.17)

For the correlation length it is known that

ξ ∼ |t|−2/3(− log t)1/2 ; t ∼ L−3/2(logL)3/4 , (B.18)

and therefore its temperature derivative scales as

∂βξ ∼ L5/2(logL)−3/4 , (B.19)

resulting in a ν canonical exponent correction of

ν ′ = ν

[
1− 3

4

ν

log(L2/L1)
log

(
logL2

logL1

)]
. (B.20)

For the microcanonical ν exponent, νm, we use that

e ∼ L−1/2(logL)−3/4 , (B.21)

so that
∂eξ ∼ L3/2(logL)3/4 , (B.22)

and

ν ′m = νm

[
1 +

3

4

νm

log(L2/L1)
log

(
logL2

logL1

)]
. (B.23)

135





Appendix C

Data Analysis: Autocorrelations
and Error Estimation

The goal of this appendix is to provide a brief resume of the main ideas for the
data analysis of the output of a dynamic Monte Carlo (MC) simulation. For a more
detailed study see for example Refs. [7, 115]. Our aim is to describe the modern
techniques that avoid the usual error sources in this kind of numerical study.

Given that the output of a dynamic MC simulation is a sequence of system
configurations1, {φ}0, {φ}1, {φ}2, . . . , {φ}N , we have to take two crucial issues into
account:

1. The initial bias: We have to start every simulation from a physically unrepre-
sentative configuration (usually “hot”, all the spins in random configurations,
or “cold” , every spin in the same state). The first configurations are thus not
representative of the equilibrium distribution (the Boltzmann weight). There
will be an initial transient regime which must be discarded to avoid a system-
atic source of error. If we discard the nd initial data in estimating the mean
value 〈O〉β at the inverse temperature β, then:

〈O〉β ≈ Ō ≡ 1

N − nd

N∑

t=nd+1

Ot , (C.1)

where we have distinguished the true mean value 〈O〉 from its estimate Ō.

2. Error estimates in equilibrium: The output of every MC simulation must be
a confidence interval around the estimated mean value. The true mean value
must lie within this interval at a reasonable level of confidence if the cor-
rect procedures have been applied. Once equilibrium is reached, correlations
between consecutive system configurations make the statistical error a factor
2τint,O larger than that of the corresponding independent sampling case, where
τint,O is the integrated correlation time of the observable O, see below.

1As one does not need to store all the configurations, but only the values of a few functions of
them (observables), what one really has is a sequence of numbers O0, O1, O2, . . . , ON , where O is
a generic observable.
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Both these issues are related to the same object, namely the autocorrelation
function.

The Autocorrelation Function

By definition, the equilibrium autocorrelation function of the observable O at time
t is [7]:

COO(t) ≡ 〈OsOs+t〉β − 〈O〉2β (C.2)

=
∑

Y

∑

X

O(Y )

[
[T t]Y X −

e−βH(Y )

Z

]
e−βH(X)

Z
O(X) , (C.3)

where:

• O(Y ) is the value of the observable O for the system configuration Y .

• [T ]tY X is the probability of reaching the configuration Y starting from the
configuration X in t steps; i.e., it is a sum over all possible paths connecting
X and Y in t steps.

• exp(−βH(Y ))/Z is the Boltzmann weight of the configuration Y , with β being
the inverse temperature, H the Hamiltonian, and Z the partition function.

A normalised form is often used, defined as:

ρOO(t) ≡ COO(t)

COO(0)
. (C.4)

Typically, for long times, COO(t) decays exponentially with time.
The exponential autocorrelation time is defined by

τexp,O = lim
t→∞

sup
t

− log ρOO(t)
. (C.5)

It is useful to define the maximum over all the measured observables,

τexp = sup
O
τexp,O . (C.6)

In Ref. [115] it is demonstrated that the rate of convergence to equilibrium from an
initial non-equilibrium distribution can be bounded in terms of τexp. In particular:

∣∣∣∣∣
∑

Y

O(Y )[T t]Y X − 〈O〉β

∣∣∣∣∣ ∼ e−t/τexp , (C.7)

From this, it can be said that setting nd = 20τexp in Eq. (C.1) is enough for all
practical purposes. Hence, waiting for this time before starting to save the mea-
surements for averaging, we can avoid the initial bias of the MC simulation. The
problem with this approach is the difficulty in estimating τexp in some cases.
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Usually the convergence to equilibrium is determined empirically by plotting
certain observables as a function of time and noting when the initial transient seems
to end. This includes the comparison between hot and cold starts. The main
objection to this is the possibility of metastability, especially for first-order phase
transitions. In such cases the equilibrium appears to be reached but really the system
has just settled down into a long-lived metastable region of the configuration space.
One has to be extremely careful in these cases, see Chapter 3.

Once in equilibrium, to what extent are the measurements taken in the system
representative? This issue reflects the fact that consecutive measurements are usu-
ally close in configuration space (and are thus correlated) so they do not provide the
same information as if they were independent.

We can resolve this question in terms of the integrated autocorrelation time,
defined as:

τint,O =
1

2
+

∞∑

t=1

ρOO(t) . (C.8)

This time controls the error estimates in MC simulations. In particular, the sample
mean

Ō ≡ 1

N

N∑

t=1

Ot , (C.9)

assuming for brevity that the data at t = 1 are already good, has a variance

〈(Ō − 〈O〉β)2〉β =
1

N2

N∑

r,s=1

〈(Or − 〈O〉β)(Os − 〈O〉β)〉β (C.10)

=
1

N2

N∑

r,s=1

COO(r − s) (C.11)

=
1

N

N−1∑

t=−(N−1)

(
1− |t|

N

)
COO(t) (C.12)

≈ 2τint,O

N
(〈O2〉β − 〈O〉2β) . (C.13)

To derive these last relationships, we made use of COO(t) = COO(−t) in equilibrium
and assumed that N is large enough to neglect COO(t) for |t| ∼ N – recall that
COO(t)→ 0 exponentially for increasing t.

Therefore the variance of Ō is a factor 2τint,O larger that it would be if all the
configurations {φ}i were statistically independent. In other words, the number of
effective measurements in a MC simulation of length N is reduced to N/(2τint,O).
Roughly speaking, the error bars will be of order (τint,O/N)1/2, so that if we want
an error bar for our simulation of around 1% precision we will need a run of length
≈ 10000τint.

Now we will define a more practical estimate of the correlation times [115]. The
direct estimate from a run of length N (supposing again that at t = 1 the data are
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already good) is:

COO(t) =
1

N − |t|

N−|t|∑

s=1

(Os − Ō)(Os+|t| − Ō) , (C.14)

ρOO(t) = COO(t)/COO(0) . (C.15)

At first sight, one would estimate the integrated autocorrelation time as

τint,O =
1

2
+

N−1∑

t=1

ρOO(t) . (C.16)

But this is wrong because this estimator has a variance that does not go to zero for
large N . Each of the terms ρOO(t) decreases exponentially with t but is a random
variable obtained by averaging N − t data. For t > τint,O each ρOO(t) is very small,
but its error is not null. Therefore most of the terms in the definition Eq. (C.16)
carry little information but much noise for large t, and there are very many of them.
The cure is the truncation of Eq. (C.16) to estimate τint,O self-consistently:

τint,O =
1

2
+

ατint,O∑

t=1

ρOO(t) , (C.17)

where α is a small fixed number, around 6. Clearly τint,O is biased, but the con-
tribution of the neglected terms should be negligible (at 6τint,O, it is expected that

ρOO(t) ≪ 1). See [115] for more details about this “automatic windowing” algo-
rithm.

For τexp,O, one can use two different estimates, see [7]:

τexp,Ot,A
=

t

| log ρOO(t)|
, (C.18)

τexp,Ot,B
=

[

log

(
ρOO(t)

ρOO(t+ 1)

)]−1

. (C.19)

The autocorrelation functions decay as pure exponentials, e−t/τexp,O , for large t. Then
both τexp,Ot,A

and τexp,Ot,B
become equal to τexp,O. Nevertheless as was found before,

the information carried by the signal decreases rapidly with t, and it can not be said
which definition will first reach the t-independent region, see [7].

Error Estimation

Having demonstrated that the effective number of measurements is N/(2τint,O),
where τint,O is not known accurately, we will now describe the most usual method of
obtaining independent quantities: making data blocks. This will also allow the esti-
mate of functions of observables, and we will see that the time correlations between
different observables can even be beneficial.
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Starting from a set of N data, let us form N/b data blocks of size b:

Ob,i =
1

b

bi∑

t=(i−1)b+1

Ot . (C.20)

The autocorrelation times for the blocked data are divided by a factor b. The mean
value of the block data, Ô, is b-invariant, while the error can be estimated (if b is
large enough) as for statistically independent data:

∆2
O =

1
N
b
− 1



 b

N

N/b∑

i=1

(Ob,i)
2 −



 b

N

N/b∑

i=1

Ob,i




2

 . (C.21)

The error estimate first grows with b until the data blocks become effectively inde-
pendent (b ≈ 20τint,O). Then ∆2

O becomes b-independent (the expression in brackets
in Eq (C.21) decreases as 1/b but the prefactor grows as b). As can be seen in Ref. [7],
an assumption that the data are independent would underestimate the errors by a
factor

√
2τint,O. Once b is large enough, the error estimate reaches a plateau, but

from then on the fluctuations grow as the block size is increased. Therefore N/b
should be kept large enough. Typically, a ratio of between 10 and 50 is chosen.

Now we have to consider the crucial issue of the error estimation of functions of
observables. Let f(〈O(1)〉β, 〈O(2)〉β, . . . , 〈O(R)〉β) be a function of R observables (R

could be one). The best thing we can do is estimate f({〈O(R)〉β}) by f({O(R)}),
although we know that this estimate is biased unless f(x) is a linear function. The
estimate of the error could be done by linear error propagation, but when f depends
on several observables this may overestimate the size of the errors due to correlations
between the observables. For some clear examples of this last point, see Ref. [7].

The fact that correlations can be beneficial is exploited by the jack-knife method.
This allows one to estimate the error bars of derivative quantities easily and coher-
ently. The procedure is the following [7]:

1. Estimate f(〈O(1)〉β, 〈O(2)〉β, . . . , 〈O(R)〉β) by f(O(1), O(2), . . . , O(R)) .

2. For each observable, form the corresponding block data, as in Eq. (C.20), with
large enough b (the same for every observable).

3. Make jack-knife blocks from the blocked data. This means that the i-th jack-
knife block is formed by averaging all the blocks formed in the previous step
except the i-th. I.e.:

O
(r)
JK,b,i ≡

1
N
b
− 1

∑

j 6=i

O
(r)
b,j , r = 1, 2, . . . , R . (C.22)

4. Estimate the function value for the jack-knife blocked observables as

fJK,b,i ≡ f(O
(1)
JK,b,i, O

(1)
JK,b,i, . . . , O

(R)
JK,b,i) . (C.23)

141



Appendix C. Data Analysis: Autocorrelations and Error Estimation

5. Estimate the variance of the function as

∆2
f =

(
N

b
− 1

)

 b

N

N/b∑

i=1

f 2
JK,b,i −



 b

N

N/b∑

i=1

fJK,b,i




2

 . (C.24)

Since the expression in brackets is an average of blocked data, it is smaller
than usual. This is the reason for the multiplication (instead of division) by
the number of blocks minus one. In the case of correlations between observ-
ables, their jack-knife blocks will fluctuate simultaneously, thus reproducing
the possible positive effect on the error.
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Appendix D

Temperature Extrapolations

Within a canonical Monte Carlo method, the temperature of the system is kept
fixed, and all the information about the observable corresponds to the simulation
temperature. It is often very desirable to obtain an accurate estimate of a given
quantity at a temperature different from the simulated one. This may be the case
for example when one tries to obtain the absolute maxima in temperature of some
quantities to estimate critical exponents, or when one has to fine-tune some condition
as in the quotient method, see Eq. (B.7).

Using the energy histogram of the system at a given temperature, one can ob-
tain accurate information at nearby temperatures. The method was first proposed
in [142], and was recovered in [143]. If we are working with disordered systems, the
temperature extrapolation must be performed before averaging over the different
disorder realizations.

The following formulae allow one to calculate the thermal derivative of an ob-
servable, O, and its value at a temperature close to the simulated one:

∂β〈O〉 = ∂β〈O〉 =
〈
OE − 〈O〉〈E〉

〉
, (D.1)

〈O〉(β +∆β) =
〈Oe−∆βE〉
〈e−∆βE〉 , (D.2)

where β = 1/T is the inverse simulation temperature.
Nevertheless, it must be borne in mind that the two above expressions involve a

systematic bias whose correction can become critical. We shall follow the approach
proposed in [144]. Using Eq. (D.1) with N different measurements, we are really
obtaining (

1− 2τ

N

)
∂β〈O〉 , (D.3)

where τ represents the integrated autocorrelation time, see Appendix C, between
the observable O and the energy. Since the τ value is different for different samples,
we shall have to obtain the disorder average.

Let us demonstrate the validity of Eq. (D.3). Consider two observables, Oa and
Ob, and, using N measurements, calculate their connected correlation

〈OaOb〉 − 〈Oa〉〈Ob〉 , (D.4)
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Since the mean value of Oa is by definition

〈Oa〉 =
1

N

N∑

i=1

Oa
i , (D.5)

Eq. (D.4) can be written as

1

N

N∑

i=1

Oa
i O

b
i −

1

N2

N∑

i=1

N∑

j=1

Oa
i O

b
j , (D.6)

where the latter term is more complex given that the measurements of the two
observable may be correlated. We can rewrite it as

N∑

i=1

N∑

j=1

Oa
i Obj =

N∑

i=1

N−i∑

t=1−i

Oa
i O

b
i+t . (D.7)

Recall that the behaviour of the correlation between two observables is for large
|t|:

〈Oa
i O

b
i+t〉 ≡ Ct = 〈Oa〉〈Ob〉+ C0 exp

[
−|t|
τ

]
, (D.8)

where
C0 = 〈OaOb〉 − 〈Oa〉〈Ob〉 . (D.9)

As we are summing over i, we can replace Oa
i O

b
i+t by its mean value, and in order

to perform the sum we shall take N ≫ |t|. From the exponential decay with |t|
in Eq. (D.8) we can extend the limit of the sum to infinity, and simplify things by
replacing the sum with an integral. Therefore

N∑

i=1

N∑

j=1

Oa
iO

b
j = N2

(
〈Oa〉〈Ob〉

)
+NC0

∫ +∞

−∞

dt exp

[
−|t|
τ

]
. (D.10)

But the integral is 2τ , see again Appendix C, and replacing C0 by the expres-
sion (D.9) one recovers Eq. (D.3).

Thus it has been shown that the derivative of the mean value of an observable is
subject to a systematic bias of order 2τ/N , although corrections of higher order can
be expected. This systematic error is not considered in general in other MC studies
mainly because it is usually masked by the statistical error, of order 1/

√
N , that is

far larger than the bias.
Nevertheless, in a dilute model the situation is more complicated because there

are two parameters involved: the number of measurements that we perform within
each realization of the disorder (Ising average), denoted by NI , and the number of
realizations of the disorder (sample average), NM .

We can associate with every observable σM , representing the deviation of this
observable between different samples, and σI , representing the average of the de-
viations within each sample. Assuming statistical independence between different
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samples (this is the case if there are no correlations in the random numbers) and
independence between different measurements within a sample (possible using a
cluster method), the variance of the mean value of an observable can be written as

σ2
T =

1

NM

(
σ2
M +

σ2
I

NI

)
. (D.11)

From this equation the optimal choice ofNI andNM can be deduced if we want to
optimise the simulation time to obtain a given error bar. Note that the simulation
time is proportional to NMNI , because the simulation spends an approximately
fixed portion of time taking measurements. For this reason the optimal value of NI

can not be much larger than σ2
I/σ

2
M , i.e., NI is limited by this latter expression.

Therefore the best procedure to improve the statistical errors is to increase the
number of samples, performing a not too large number of measurements within
each one. Numerous studies on dilute models have avoided tackling this question
by working in general in the regime NI ≫ NM . Besides, a value of NI that is large
does not improve the result for the deviation σ2

M because it is only suppressed by a
factor NM .

However, if we need to obtain the temperature derivatives there is a term in the
statistical error proportional to 1/

√
NM . If this number is of order 1/NI (systematic

error in the extrapolation) a detectable bias appears. Unfortunately this is indeed
the scenario in some cases. For example for the Heisenberg model, see Sec. 4.4.1,
we used NM = 104 and NI = 100 measurements per sample.

As a result it is necessary to find some algorithm to obtain correct results from
the simulation data. The first possibility is to use fully independent measurements
(by assuring 2τ = 1) for each disorder realization. In such a case, recalling Eq. (D.3),
we could build a correct unbiased estimator by multiplying by the factor 1/(1−1/NI)
in the case of the derivative and by the corresponding quantity in the case of the
temperature extrapolations. However this is too expensive in simulation effort, due
both to the need for too wide a time interval between measurements and to the
fluctuations of τ between different samples, which forces one to disregard too many
measurements in samples with τ smaller than the maximum. This makes the use of
this approach inefficient.

Another possibility, see Ref. [51], is to correct the systematic bias by splitting
the measurements into statistically independent groups. In this way, by multiplying
estimators from the different groups, correct values of 〈Oa〉〈Ob〉 can be obtained.
Nevertheless, in a real situation independence is complicated because, in general,
consecutive measurements in MC time are used to form these groups.

In this work the approach that will be used for the dilute models, see again
Ref. [51], is to extrapolate to NI → ∞ by using estimators coming from different
values of NI . We will work with 2τ & 1, but the equality is not essential, as we will
demonstrate in the following.

In particular, for each disorder realization we can calculate the derivative with the
entire MC history (NI measurements), obtaining the estimator, y1, whose systematic
error is proportional to 2τ/NI . If we consider the two contiguous halves of the total
history, we obtain two estimates for the derivative that, once averaged, produce
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the estimator, y2, whose systematic error is proportional to 4τ/NI . If the history
is divided into four, the derivative in each part is obtained and the average of the
four parts is calculated, the estimator, y3, will have a bias of 8τ/NI . In Fig. D.1,
obtained in Ref. [51], is shown the observable ∂βχ for a four-dimensional site-diluted
Ising model in a system with L = 48, p = 0.5. The estimator y1 is plotted, but using
only one of every k measurements of the history and averaging the results. It is
obvious that doing so reduces the τ by a factor k, as also is the case for the number
of measurements, NI . Therefore the bias, proportional to 2τ/NI , remains constant.
This effect is maintained up to k ≈ 10. The correlation time between energy and χ,
τ , was about eight measurements.

Using the yi values, linear and quadratic extrapolations to NI → ∞ in the
variable 1/NI can be obtained with the form

yi = y∞ +
A

NI
+

B

N2
I

. (D.12)

For the linear case (B = 0) we obtain

yL = y∞ = 2y1 − y2 , (D.13)

and for the quadratic case

yQ = y∞ =
8

3
y1 − 2y2 +

1

3
y3 . (D.14)

The procedure is repeated for each sample and averaged over the disorder. The
value yQ is used to verify that the higher-order effects are negligible compared with
the statistical error of the extrapolation in temperature. If this were not the case,
to obtain measurements of the observable at the shifted temperature it would be
advisable to make another simulation closer to that point.

The estimate for the temperature extrapolations of the O(3) model was obtained
in this work in a similar way, see Chap. 4, Fig. 4.1.
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Figure D.1: Upper part: Sample average of the estimator y1 corresponding to ∂βχ
considering just one of each k measurements, for a four-dimensional Ising model on
an L = 48 lattice, with p = 0.5 and τ ≈ 8. Lower part: Sample average of y1, y2,
and y3 as a function of the inverse of NI , on a lattice, with L = 32, p = 0.5 , and
τ ≈ 0.8. Figure taken from Ref. [51].
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Appendix E

The Maxwell Construction

Let us consider a system with action S[ψ], depending on the local variables ψ,
coupled with a source J . If φ(β, J) is the Gibbs free energy1 and O(x) ≡ O(ψ(x))
is a generic observable then

e−V φ(β,J) =

∫
d[ψ]e−βS[ψ]−J

R

dDxO(x) , (E.1)

where V is the system volume and D is the spatial dimensionality. The equation of
state is

∂φ

∂J
=

1

V

∫
dDxO(x) ≡ O(J) , (E.2)

relating the observable, O, with its conjugate variable, J .
In the neighbourhood of the phase transition, the function O = O(J) may be

discontinuous. In other words, there may exist a range of O values that do not
correspond to any J value, see Fig. E.1.

An effective potential associated with the observable O can be defined as:

e−V Γ (O) =

∫
d[ψ] e−βS[ψ] δ

(
1

V

∫
dDxO(x)− O

)
, (E.3)

where δ is the Dirac delta function. Then it can be obtained

e−V φ(β, J) =

∫
dO e−V [Γ (O)+JO] . (E.4)

But for a large volume this integral is dominated by the saddle point

∂Γ

∂O
= −J , (E.5)

and we can conclude that φ(β, J) is the Legendre transform of Γ :

φ(β, J) = Γ (O) + JO . (E.6)

1We have included in its definition the β term.
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Figure E.1: Lack of continuity of the function O = O(J) at a first-order phase
transition.

In Eq. (E.6), the O must be chosen that produces a global minimum of Γ (O) +
JO. The contribution of all other minima will be exponentially suppressed. In
general Γ (O) + JO has two local minima. One will be the absolute minimum for
J < Jc, and the other will be that corresponding to J > Jc. Recall that O = O(J)
may be discontinuous.

The condition for a minimum located at O is

∂

∂O

(
Γ (O) + JO

)
= 0 . (E.7)

Let us define the two local minima as:

min
J<Jc

[Γ (O) + JO] ≡ OA , (E.8)

min
J>Jc

[Γ (O) + JO] ≡ OB . (E.9)

Therefore
∂Γ

∂O

∣∣∣∣
OA

=
∂Γ

∂O

∣∣∣∣
OB

= −Jc . (E.10)

Just at Jc both minima will result in the same value of Γ (O) + JO, i.e.,

Γ (OA) + JcOA = Γ (OB) + JcOB . (E.11)

Given that

Γ (O) = −
∫ O

Cte

dO J(O) , (E.12)
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Eq. (E.11) can be written as

∫ OB

OA

dO J(O)− Jc(OB −OA) = 0 , (E.13)

which implies that the shaded areas in Fig. E.2 must be equal (in absolute value).
This represents the well-known form of the Maxwell construction.

Figure E.2: Usual form of the function J = J(O). Also shown is the Maxwell
construction.
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Appendix F

Lee-Yang Zeros

In 1952 T. D. Lee and C. N. Yang, as part of their study of the phenomenon of
spontaneous symmetry breaking, wrote two impressive papers [138]. In analysing
the behaviour of a lattice gas (which is equivalent to an Ising model in a magnetic
field), they approached the problem of its phase transition in an absolutely novel
way focusing on finding the zeros of the partition function in terms of an external
field allowed to take complex values. With this new approach, the dimension, size,
structure, and periodicity of the lattice play no part at all in the main result.

Their starting point is that for a real (inverse) temperature, β, the partition
function of the finite system is a polynomial in the activity exp(−2h), where h is
the external field. Since all the coefficients of the polynomial are positive, none of
their roots can be on the real positive axis, but are in general complex.

Lee-Yang Theorem

The discovery of Lee and Yang is that the zeros of the partition function are all
located on the unit circle of the complex activity plane, or equivalently on the imag-
inary h-axis. This was originally demonstrated for an Ising system with ferromag-
netic interactions (with no need for any limit to first nearest neighbours) although
the result is valid for more general models [145].

The distribution of the zeros on the unit circle will determine whether or not a
phase transition exists. As the number of spins, N , approaches infinity, if the zeros
do not condense onto the positive real axis the free energy, F , will remain analytic
and no phase transition exists at the given β; otherwise, if the zeros condense onto
the real positive axis a phase transition will exist at this β = βc.

We will use the demonstration of the theorem described in [146] including the
derivation of the magnetisation of the system from the angular distribution of roots
on the unit circle. We will focus on a general Ising model defined on a graph of
N sites (vertices of the graphs) with at most one link joining each pair of vertices,
which are then defined as neighbours. The total number of links is L.
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The partition function for N spins, σi, is:

ZN =
1

2N

∑

σi=±1

exp



β
∑

(ij)

σiσj +
∑

i

hiσi



 , (F.1)

where
∑

(ij) is a sum over all links and hi denotes the magnetic site-dependent field

at the site i (strictly the true external field is proportional to hi/β). Let us define

ρi = e−2hi ; τ = e−2β . (F.2)

Then the partition function can be recast in the form

ZN =
1

2N
exp

(
βL+

∑

i

hi

)
P (τ, ρi) , (F.3)

where P is a polynomial in τ and ρ obtained as

P =
∑

σi=±1

exp



β
∑

(ij)

(σiσj − 1) +
∑

i

hi(σi − 1)



 . (F.4)

For τ and ρi real and positive, P is always positive and cannot vanish. We assume
in the following 0 < τ < 1, i.e., we are in the ferromagnetic regime.

It is easy to find that the polynomials P corresponding to the simplest graphs
are:

1 • •2 P12 = 1 + τ(ρ1 + ρ2) + (ρ1ρ2) (F.5)
1 • •2 •3 P123 = (1 + ρ1τ)(1 + ρ3τ) + ρ2(τ + ρ1)(τ + ρ3) (F.6)

It can then be seen that P is a polynomial of degree one in each ρi individually and
of degree N in all of them.

We will analyse how the polynomials are generated by building a graph step
by step. First, one observes that for any disjoint union of subsets of the graph,
the polynomial P factorizes, P = P1P2, where P1 and P2 are the corresponding
polynomials of the two separate subsets. With this in hand, we generate a new
polynomial by identifying a site a from the subset 1 with a site b from subset 2. We
call P(12) the corresponding (contracted) polynomial of the union. Since P1 is linear
in ρa and P2 is linear in ρb we can write

P1 = A+ + ρaA− ; P2 = B+ + ρbB− , (F.7)

where A+(B+) correspond to the contribution with spin up, σa = +1 (σb = +1),
and A−(B−) correspond to the contribution with spin down, σa = −1 (σb = −1).
When the identification of a and b is made, a new activity variable, ρab, is attached
to the new site and we have the following contraction process, see Fig. F.1:

P1P2 ≡ A+B+ + ρaA−B+ + ρbA+B− + ρaρbA−B− −→ (F.8)

P(12) ≡ A+B+ + ρabA−B− . (F.9)
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Figure F.1: The contraction process obtained by identifying a and b from two disjoint
subsets of the whole graph.

Using this process, one can obtain for example the expression of Eq. (F.6) by
joining two unconnected two-vertex graphs, such as that of Eq. (F.5), and by iden-
tifying two of the four points. It is a good exercise to obtain the expression for a
cyclic graph of three vertices by first obtaining that corresponding to a graph of four
vertices (by joining a graph of two with a graph of three) which is

1 • •2 •3 •4 P1234 = 1 + τ{ρ1[1 + ρ2(1 + ρ3)] + ρ4[1 + ρ3(1 + ρ2)]}+

τ 2[ρ1ρ4(1 + ρ2 + ρ3) + ρ2(1 + ρ3) + ρ3] +

τ 3(ρ1ρ3 + ρ2ρ4) + ρ1ρ2ρ3ρ4 , (F.10)

and then identifying the outer vertices (1 and 4 in the above equation) to obtain for
the cyclic graph:

Pcyclic = 1 + τ 2(ρ1 + ρ2 + ρ3 + ρ1ρ2 + ρ1ρ3 + ρ2ρ3) + ρ1ρ2ρ3 . (F.11)

The contraction process can be applied to a single connected part, where at first
the sites a and b are different, then they are identified as a single site ab with activity
variable ρab and

P ≡ A++ + A−+ρa + A+−ρb + A−−ρaρb −→ Pab ≡ A++ + ρabA−− . (F.12)

As in the initial set, in the contracted graph no pair of vertices can be joined by
more than one link.

Thus we have demonstrated that the contraction process allows the polynomial
P of any arbitrary graph to be obtained by starting from the elementary result of
the simplest graph of two vertices joined by a link. In this case, from Eq. (F.5), the
zero of the polynomial is obtained for:

ρ1 = −1 + τρ2

τ + ρ2
, (F.13)

which defines a one-to-one mapping between the complex planes ρ1 and ρ2. For τ
real it leaves the unit circle invariant while for 0 < τ < 1 exchanges the interior and
the exterior of this circle. Therefore it can be stated that if |ρ1| < 1 and |ρ2| < 1 ,
or |ρ1| > 1 and |ρ2| > 1, the polynomial can not vanish.
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The previous property for a graph of two vertices is generalised in the following:
For an arbitrary graph, if all ρi lie inside, or all ρi lie outside the unit circle, P is
different from zero.

To demonstrate the foregoing statement, it is sufficient to verify that the property
survives the contraction process. Let us assume that for a given graph P (ρi) 6= 0
when |ρi| < 1 for all i, and apply the contraction process: When the dependence on
the two points (a and b) to be identified is made explicit, P is given by Eq. (F.12),
while if the identification is already made Pab is a function only of the subset {ρi}−
{ρa, ρb} and a new variable ρab. We fix all the ρi’s distinct from ρa and ρb within
the unit circle. We want to show that |A++| > |A−−|, in which case Pab will be non-
vanishing for |ρab| < 1. Recalling that P 6= 0 for |ρa| < 1, |ρb| < 1, the polynomial
A++ + ρ(A+− + A−+) + ρ2A−− must have its two roots equal to or greater than
unity, which means that |A++| ≥ |A−−|. Thus Pab is different from zero when all its
ρ’s are within the unit circle, and this property holds for any graph.

If we set now all ρi ≡ ρ, corresponding to a uniform external field, from the
symmetry property under reversal of the field h → −h , ρ → ρ−1 , and Z(h) =
Z(−h), we have:

e+NhP (τ, ρ) = e−NhP (τ, ρ−1) , (F.14)

or equivalently:
P (τ, ρ) = ρNP (τ, ρ−1) . (F.15)

As a result if P 6= 0 for |ρ| < 1, it follows that also P 6= 0 for |ρ| > 1. The Lee-Yang
theorem has thus been demonstrated – the partition function can (and does) only
vanish on the unit circle |ρ| = 1.

Distribution of Roots on the Unit Circle

Using the definition of P in Eq. (F.4) we can obtain the two extreme cases of the
distribution of the zeros on the unit circle:

• For a system at infinite temperature (τ = 1):

P (τ, ρ) = P (1, ρ) = (1 + ρ)N . (F.16)

• For a system at zero temperature (τ = 0):

P (τ, ρ) = P (0, ρ) = 1 + ρN . (F.17)

Then, decreasing the temperature from infinity, one goes from a degenerate zero
with multiplicity N located at ρ = −1 to a uniform distribution ρk = eiπ(2k+1)/N . In
addition, if N remains finite, no zero will be located on the real positive axis (ρ = 1,
h = 0).

Let us obtain the general result for a lattice of N sites, with coordination number
q, see footnote in Appendix A, when taking the infinite volume limit. According to
Eq. (F.1), the free energy per site in a uniform field is:

F ≡ 1

N
lnZ =

1

2
qβ + h+ ln 2 + lim

N→∞

1

N
lnPN(τ, ρ) , (F.18)
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where we have used that L = Nq/2, with L being the total number of links in the
lattice. PN can be factorized in terms of its roots

PN =
N∏

a=1

(
1− ρ

ρa(τ)

)
. (F.19)

As was demonstrated in the previous section, the zeros will accumulate for N →∞
on the unit circle, ρ = eiϕ, with a (τ -dependent) angular density Nµ(ϕ) satisfying

µ(ϕ) = µ(−ϕ) ≥ 0 ;

∫ +π

−π

dϕµ(ϕ) = 1 , (F.20)

where the above property is a consequence of the invariance under field reversal,
h→ −h. Making the change

1

N
lnPN(τ, ρ) =

1

N

N∑

a=1

ln

(
1− ρ

ρa(τ)

)
−→ 1

N

∫ π

−π

dϕNµ(ϕ) ln

(
1− ρ

ρ(ϕ)

)
,

(F.21)
and using the symmetry property of the angular distribution to join the contributions
of the conjugate zeros we arrive at

F =
1

2
qβ + h+ ln 2 +

1

2

∫ +π

−π

dϕµ(ϕ) ln(1 + ρ2 − 2ρ cosϕ) , (F.22)

which is valid over the whole range 0 < τ < 1. Below the critical temperature, where
the support of µ(ϕ) is the full circle, this defines in general two different analytic
functions, one for |ρ| < 1 and another for |ρ| > 1. At ρ = 1 (h = 0), F is continuous.
Nevertheless, let us consider the behaviour of its derivative with respect to h, i.e.
the magnetisation, as the temperature varies. By definition

M =
∂F

∂h
= 1 +

∫ +π

−π

dϕµ(ϕ)
∂

∂h

[
ln(1− ρe−iϕ)

]
, (F.23)

but
∂

∂h
=
∂ρ

∂h

∂

∂ρ
= −2ρ

∂

∂ρ
, (F.24)

thus

M = 1 + 2

∫ +π

−π

dϕµ(ϕ)
ρ

eiϕ − ρ =

∫ +π

−π

dϕµ(ϕ)
1 + ρe−iϕ

1− ρe−iϕ , (F.25)

=

∫ +π

−π

dϕµ(ϕ)
1− ρ2

1− 2ρ cosϕ+ ρ2
, (F.26)

where we made use of the normalisation of µ(ϕ), Eq. (F.20). The magnetisation
vanishes as h → 0 (ρ → 1) for τ > τc and becomes discontinuous for τ < τc. The
above equation is not zero for ρ = 1 only if cosϕ = 1. Therefore the value of the
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magnetisation is directly related to the value of the density of zeros on the real
positive axis (ϕ = 0), as a simple contour integration summing the residues shows:

τ < τc ; M± ≡ lim
h→±0

M = ±2πµ(0) (F.27)

We have therefore demonstrated that in the Thermodynamic Limit the spontaneous
magnetisation is directly related to the existence of zeros on the real positive axis.
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Appendix G

IBERCIVIS

During the year 2007, the BIFI (Institute for Biocomputation and Physics of Com-
plex Systems) and the National Fusion Laboratory of the CIEMAT (Centro de
Investigaciones Energéticas, Medioambientales y Tecnológicas), collaborating with
the city council of Zaragoza (Spain), leadered the ZIVIS project. The scope of the
project was to develop a volunteer supercomputing platform, based on individual
computers located in both private homes and public buildings, to be used by the
scientific community in the University of Zaragoza. This network of individual com-
puters would make it possible to perform calculations as a single installation. The
project converted Zaragoza into the first city with a large and stable computing
structure based only on the volunteer effort of its citizens in a non-profit contribu-
tion to science and research. The scientific goal of the project was the analysis of
plasma trajectories in the next-generation nuclear fusion reactors.

The ZIVIS project was based on the BOINC (Berkeley Open Infrastructure for
Network Computing) software. BOINC was originally developed in the SETI@home
project for analysing the electromagnetic radiation received from outer space in the
search for extra-terrestrial intelligence. The software every volunteer downloaded has
the form of a simple-to-instal program (client) that works as a screensaver during
idle times of the computer (on average, some 80% of total CPU time). This means
that the user does not notice any inconvenience when using the computer. A server
sends tasks via Internet to the clients, which return the results of the computations
as they are performed and when their Internet connection is enabled.

ZIVIS was an impressive success that even took its promoters aback. Around
3000 volunteers offered more than 5000 computers resulting in around 850 000 hours
of CPU time. It allowed the analysis of more than 4.2×106 ion trajectories. During
the short life of the project (40 days), it achieved a performance comparable with a
large “traditional” supercomputing facility (in fact it became one of the five most
important supercomputing facilities in Spain).

After the marvellous experience of ZIVIS, and the interest it raised in the rest of
the country, an extension of the project to a higher level was designed. The result
was called IBERCIVIS [147]. It was predicted that it would include more than
50 000 nodes (only in Spain) resulting in the largest computer of this kind all around
the world. The project was officially launched in June 2008 and it has helped the
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scientific community since then. The project is becoming a major achievement both
scientifically (now six applications are producing high-precision numerical results)
and socially (more than 6000 users are sharing their computers and getting involved
with scientific research daily). It differs from ZIVIS in some major points:

• There is not just one scientific application running within IBERCIVIS. Sci-
entists all around the world are invited to use the infrastructure created to
run their programs. The “machine” is an open structure where any research
group could in principle execute their programs. The diagram of the process
an application must follow to run in IBERCIVIS is outlined in Fig. G.1. While
at first IBERCIVIS started just running three different applications (plasma
trajectories in fusion reactors, protein folding, and phase transitions in disor-
dered systems), it is today running simultaneously six scientific programs (the
former three plus neuronal amino acid simulations, adsorption in porous me-
dia, and light behaviour at the nanoscale) [147]. Every volunteer can choose
which application they prefer to run on their computer.

Figure G.1: An IBERCIVIS application road map from the beginning of the collab-
oration up to the dissemination of the results.

• IBERCIVIS is not a temporary project (unlike ZIVIS or many other BOINC-
based volunteer computing projects), so it will be possible to submit applica-
tions indefinitely. This implies that IBERCIVIS is seen by scientists as a stable
structure like traditional supercomputing centres on which they can run their
programs via a user-friendly interface with a typical queueing system, launch
their simulations from their personal computers, and receive the output on a
special server with high storage capability.

Advantages and Disadvantages versus Other Struc-

tures

On the one hand, the strong points of the project are the following:

• Apart from the huge scientific interest that nowadays every supercomputing
facility produces, this one has the additional feature of its extremely low cost.

160



As it mainly uses existing infrastructure (both computers and networks), it
only requires the effort of the development and support of the specific software
and servers, apart from an effort in publicity to persuade people to join the
project (for example, there are periodically competitions between individual
clients or between teams of clients with prizes for the winners).

• It provides an excellent way for bringing science close to people; the best
way to make someone interested in something is to get them involved with it.
People feel themselves to be part of the solution of a hard research problem
and learn about the subject. Channels of communication can be established
between volunteers and scientists through blogs and social networks [147]. In
this way, the most advanced scientific knowledge is spread to society using
modern information technologies.

On the other hand, the main objections to the project, and generally to any kind
of distributed volunteer computation, are the following:

• Every node of the supercomputing facility is located, in principle, away from
other nodes making the communication between nodes very expensive. This
fact makes direct parallelisation of the computing problem impossible if com-
munication between nodes is a must. The range of applicability is therefore
lower than for “one-room” supercomputers. Nevertheless, there exists a large
class of problem for which communication between nodes is irrelevant. These
are the so-called embarrassingly parallel problems. Within this class, problems
can be split into independent simulations whose outputs can be joined later.

• Given that all the data necessary for the job must be transferred to the volun-
teer’s computer via the Internet, the input/output of the program cannot be
too massive. Otherwise, it would interfere with the volunteers’ network traffic
and they would naturally become upset. Typically the size of the transfered
I/O files should not be greater than a few megabytes.

• Volunteers’ computers are not as stable as computers within a traditional
supercomputing facility – they are more likely to be restarted or even turned
off. Therefore, in order to increase the probability for a task to be finished, a
long computation (say of a week) must be divided into short portions (say of
one hour). This produces an increase both in the network traffic and in the
probability of corruption of transferred data as they undergo several iterations
from computer to computer. The implementation of a bulletproof system for
the validation of the output of each task becomes crucial in order to ensure
reliability of the final data.

The Numbers of the Project

As was said before, the project is being a success both in scientific results and in
citizen contributions. The number of users and of available nodes are both increasing
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continuously, see Fig G.2. The number of registered users is today (May 2009)
around 11 000 and every day around 5500 of them share their computers with the
scientists. The cluster equivalence of the IBERCIVIS structure is currently of 900
nodes located in a classical supercomputing facility.

Figure G.2: Evolution in time (from June 2008 to June 2009) of the number of
volunteers, computers, and cores involved in the project.

Only during the project’s first year it has produced around eight millions hours
of CPU time. The total economic cost has been around 270 000 euros, which is
not too much taking into account that the first year of life will be surely the most
expensive.

At present, six research groups are running simultaneously on the platform, and
three new applications are in the porting process. This is indicative of the interest
that the project is producing in the scientific community.

The publicity campaign of the project has also been really important. Apart from
appearances in newspapers, magazines, and TV [147], more than 200 000 entries can
be found using the Google search engine for the word “ibercivis”.

Our Experience

In our case we have been using IBERCIVIS for approximately a year to simulate
disordered magnetic systems defined in lattices through Monte Carlo methods. In
particular, we have studied the three-dimensional eight-state Potts model [82] in the
presence of dilution. The results of these simulations are presented in Sec. 3.4.3.

We started running on IBERCIVIS from its earliest stages (around May 2008)
so that we have followed all the evolutional process of the project, thus suffering its
teething problems but also experiencing its gratifying educational advances.

Our starting point was code written in C that we had been running during the
previous year on different supercomputing facilities. The code was neither too com-
plex nor did it make use of any exotic C libraries – facts which made the porting
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process simpler, ensuring compatibility between the different platforms of the vol-
unteer’s computers (Windows, Mac, or Linux operating systems with 32 or 64 bit
processor architectures).

Our application is the perfect example of an embarrassingly parallelisable one.
We parallel in four fully independent ways: Firstly we have to simulate different
system sizes. Secondly, for each size, we have to simulate different values of the
dilution of the system. Thirdly, for each dilution, we have to simulate different
realizations of the random spatial hole distribution (each one is called a sample).
And fourthly, we have to simulate each sample at different values of its internal
energy.

Our application does not have strong requirements of RAM within the volunteer
nodes (around 40 megabytes for the most demanding case) or of disk storage (around
2 megabytes to store the I/O configurations of the largest systems). The main
problem of our simulations is that, as the system size is increased, the run time
grows exponentially. This fact forced us to design a continuity system allowing the
division of long simulations into small (in terms of time) parts. In particular, the
process that one of our runs for a given dilution and system size follows is:

1. For each sample (typically there will be around 1000 of them), a random spatial
hole configuration is generated depending on the system dilution. The holes
will remain fixed in time (quenched disorder).

2. For each energy (typically there will be around 30 of them), to each non-
empty site of the lattice a spin variable is assigned. The assignation can be
or a random Potts state, or a fixed one, or even a value depending on the
system’s energy. The result is called a configuration and saved into a file.

3. Each configuration is sent to a volunteer’s machine and updated there using a
MC method. In addition, some measurements are taken into the system during
the update process and saved into a measurement file. It has been calculated
that the optimal time for a run on each volunteer machine (in order to minimise
both the errors due to unexpected shutdowns and the web traffic) is around
half an hour. Therefore the number of MC updates of the configuration must
be set to last around this amount of time.

4. When the specified number of MC updates have been made, both the out-
put configuration and the measurement file are uploaded from the volunteer’s
computer to a server, where they are checked properly in order to avoid cor-
ruption.

5. If the total desired simulation time is longer than half an hour, the continu-
ity system takes over control: It will resend both the configuration and the
measurement file to another volunteer (step 3), who will continue updating
the system from the last configuration. The process is repeated until the to-
tal number of desired MC updates is performed. The number of continuity
iterations of a given job must be specified a priori in our application.
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For example, for the smallest simulated system (with 243 sites) the configurations
travel only twice between the IBERCIVIS server’s and the volunteer’s computers
while for the largest system (with 1283 sites) the continuity process is repeated
twenty times. See Fig. G.3 for a full sketch of the process.

Figure G.3: Different stages of a simulation from the user submission to the results
download. The term “work unit” is used the define each small portion of the whole
job that is sent to a single client (each work unit should last around half an hour).
Both validation and assimilation stages are crucial in order to avoid data corruption.
The continuity stage is only used if the required time for the job is much longer than
half an hour.

The implementation of the continuity systems is by no means naive. Each file
must be univocally identified in order to avoid misdirections. If only a single file is
lost or misplaced, the rest of the continuity process will fail for this configuration
making the analysis of the corresponding sample impossible. In addition, if there
were a temporary failure in the servers, some files would surely fail to be transferred,
resulting in a breakdown of the continuity process. This sometimes happened in the
early stages of the project: due to some server crashes, the continuity process was
unstable and simulation of the largest systems was impossible. Finally, by building
paranoid assimilation-validation systems and by developing a univocal nomenclature
for each file we decreased the failure rate of the continuity system to less than 0.5%.

Using IBERCIVIS, we have simulated the site-diluted three-dimensional Potts
model with a precision never reached before. We obtained more than 2.5×106 hours
of CPU time. A more detailed description of our usage of the infrastructure is given
in Table G.1.
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L # dilutions # samples # iterations # energies CPU time (×103 hours)

24 14 7000 2 40 280
32 13 6500 2 30 195
48 12 24000 2 30 720
64 8 10000 3 30 450
128 4 2000 20 30 900

Table G.1: Approximate statistics of our simulations in IBERCIVIS for each linear
lattice size L. The fourth column gives the number of continuity iterations used to
obtain enough MC time for each simulated energy.
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[66] A. Tröster, Phys. Rev. Lett. 100, 140602 (2008).

[67] S. Caracciolo, R. G. Edwards, S. J. Ferreira, A. Pelissetto, and A. D. Sokal,
Phys. Rev. Lett. 74, 2969 (1995).

[68] F. Cooper, B. Freedman, and D. Preston, Nucl. Phys. B 210, 210 (1982).

[69] M.P. Nightingale, Physica A, 83, 561 (1975).

[70] H. G. Ballesteros, L. A. Fernández, V. Mart́ın-Mayor, and A. Muñoz Sudupe,
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