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Introducción / Introduction 
 

Necesidades del agricultor / Farmers' needs 
 

Los agricultores son cada día más conscientes de la necesidad de aplicar el tratamiento agronómico 

específico que precisa el cultivo de tal forma que el rendimiento de los insumos sea máximo y el 

desarrollo sostenible (Barker and Pilbeam 2007; Jones 1998; Marschner 1995; Mengel and Kirkby 

2001). De esta forma se obtiene el máximo beneficio hoy y se garantiza la rentabilidad de la actividad 

agrícola en el futuro.  

En la consecución de esta meta la agricultura de precisión juega un papel determinante. La 

agricultura de precisión pone a disposición del agricultor la última tecnología (Srinivasan 2006; 

Stafford 1997), gracias a la cual es posible cartografiar de forma precisa, rápida y barata el campo y 

aplicar un tratamiento diferencial ajustado a las necesidades específicas de cada una de las unidades 

tierra que lo componen.  

La correcta delimitación de las unidades tierra así como el certero diagnóstico agronómico de las 

mismas se puede conseguir aunando conocimientos agronómicos y técnicas de minería de datos, 

evidenciarlo es el propósito de esta tesis. Este binomio está fuera del alcance de muchos agricultores 

por lo que es necesario desarrollar metodologías de muestreo/análisis más sencillas y tratar de 

desarrollar sistemas de apoyo a la decisión, de forma que el agricultor pueda encontrar las respuestas 

que necesita con la ayuda de su consultor agrícola y del laboratorio. 

 

 

Farmers are increasingly aware of the need for specific agronomic treatment, the required for the 

crop such that the input performance is maximized and the development is sustainable (Barker and 

Pilbeam 2007; Jones 1998; Marschner 1995; Mengel and Kirkby 2001). Thus the farmer gets the 

maximum benefit today and ensures the profitability of the farm in the future. 

Precision agriculture plays a key role in achieving that goal. Precision agriculture offers to the farmer 

the latest technology (Srinivasan 2006; Stafford 1997), thanks to which it is possible to map accurately, 

quickly and cheaply the field and apply differential treatment adjusted to the specific needs of each of 

the land units 

Proper delineation of land units and its correct agronomic diagnosis can be obtained by combining 

agricultural knowledge and data mining, the purpose of this thesis is to prove it. This binomial is 

beyond the reach of many farmers so it is necessary to develop methodologies for a simple sampling / 

analysis and try to develop a decision support system, so the farmer can find the answers with the help 

of his agricultural consultant and laboratory. 
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Soluciones actuales / Current solutions 
 

Gracias a numerosos estudios agronómicos se han conseguido identificar los rangos de 

concentraciones y las relaciones entre las concentraciones de los nutrientes adecuadas para la mayoría 

de los cultivos (Marschner 1995; Rengel 1998; Reuter et al. 1998). Rangos de suficiencia y relaciones 

que pueden emplearse como referencia en la elaboración de los planes de fertilización, de esta forma es 

más probable que el agricultor alcance altos y sostenibles rendimientos del cultivo. 

El procedimiento tradicional para la obtención de las concentraciones de los nutrientes en la planta 

son los análisis foliares. Su obtención requiere trabajo de campo (muestreo) y de laboratorio (análisis), 

es por tanto costosa en tiempo y recursos. Si es necesaria una estimación rápida y barata, entonces la 

solución son las medidas de la reflectancia espectral del cultivo (medidas proximales o remotas). Son 

muchos los trabajos científicos que han demostrado el potencial de la radiometría para estimar la 

concentración de los diferentes nutrientes en la planta (Bannari et al. 2007; Cammarano et al. 2011; De 

Assis Carvalho Pinto et al. 2007; Gnyp et al. 2009; Goel et al. 2003; Gómez-Casero et al. 2007).  

Hoy existen numerosos dispositivos comerciales (Abdelhamid et al. 2003; Arregui et al. 2006; 

Castelli and Contillo 2009; Graeff et al. 2009), muchos de ellos sencillos dispositivos de mano 

programados con intuitivas interfaces de usuario,  que ofrecen estimaciones del nivel de los nutrientes 

en la planta obtenidas a partir de las lecturas que el agricultor puede obtener en unos pocos minutos de 

muestreo en campo. 

 

 

It has been possible to identify the ranges of concentrations and relations between the 

concentrations of nutrients suitable for most crops thanks to numerous agronomic studies (Marschner 

1995; Rengel 1998; Reuter et al. 1998). Sufficiency ranges and relationships that can be used as a 

reference to calculate the fertilization plan, so it is more likely that farmers achieve high and sustainable 

crop yields. 

The traditional procedure for obtaining the concentrations of nutrients in the plant is leaf analysis. 

Its obtaining requires fieldwork (sampling) and laboratory (analysis), it is therefore costly in time and 

resources. Whether a rapid and inexpensive estimation is necessary, then the solution is spectral 

reflectance measurements of the crop (proximal or remote measurements). Many scientific studies 

have shown the potential of radiometry to estimate the concentration of different nutrients in the plant 

(Bannari et al. 2007; Cammarano et al. 2011; De Assis Carvalho Pinto et al. 2007; Gnyp et al. 2009; Goel 

et al. 2003; Gómez-Casero et al. 2007). 

Today there are numerous commercial devices (Abdelhamid et al. 2003; Arregui et al. 2006; Castelli 

and Contillo 2009; Graeff et al. 2009), many of them simple handheld devices programmed with 

intuitive user interfaces, which provide estimates of the level of nutrients in the plant derived from the 

readings that the farmer can get in a few minutes of field sampling. 
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Problemas actuales / Current problems 
 

Los anteriormente comentados rangos de suficiencia para las concentraciones de los nutrientes son 

específicos del cultivo e incluso del cultivar, además requieren el muestreo de una parte determinada 

de la planta en un estado fenológico concreto (Marschner 1995; Rengel 1998).  Otro problema de los 

rangos de suficiencia es que sólo han sido validados en unas determinadas condiciones, las de los 

ensayos en las que fueron determinados, las cuales no pueden abarcar todas las combinaciones posibles 

de desarrollo del cultivo (Alves Mourão Filho 2005; Camacho et al. 2012; Jeong et al. 2009; Stalenga 

2007). El caso de las metodologías que emplean relaciones entre nutrientes es diferente, son más 

generalizables en el espacio y tiempo, aunque las limitaciones anteriores no ha desaparecido (Agbangba 

et al. 2011; Amundson and Koehler 1987; Dagbénonbakin et al. 2010). 

Las firmas espectrales del cultivo, procedentes de medidas proximales o remotas, se transforman en 

estimaciones de los niveles de los nutrientes en la planta mediante modelos que poseen una baja 

capacidad de generalización espacio-temporal. Esto reduce su efectividad en explotaciones agrícolas 

reales (Heege et al. 2008; Li et al. 2010), relegando al binomio agronomía-radiometría a los grandes 

campos dónde resulta imbatible en la actualidad. En esos escenarios una pequeña mejora por unidad de 

superficie supone un gran incremento en los beneficios, es por ello que hasta pueden llegar a disponer 

de un panel de expertos que realicen estudios de calibración.  

Si no mejora la efectividad y capacidad de generalización de los modelos que relacionan las firmas 

espectrales (reflectancia) del cultivo y las concentraciones de nutrientes en la planta, el aumento del 

rendimiento del cultivo y de la sostenibilidad posibles gracias a la agricultura de precisión 

(radiometría), no llegará a todas las explotaciones agrícolas.  

 

 

The previously mentioned sufficiency ranges for concentrations of nutrients are crop specific and 

even of the cultivar. It also requires the sampling of a particular part of the plant in a particular 

phenological stage (Marschner 1995; Rengel 1998). Another problem, the sufficiency ranges have been 

validated in certain conditions, the conditions of the trials in which they were determined, which 

cannot cover all possible combinations of crop development (Alves Mourão Filho 2005; Camacho et al. 

2012; Jeong et al. 2009; Stalenga 2007). The case of the methodologies use relationships between 

nutrients is different; it is more generalizable over space and time, although the above limitations are 

not gone (Agbangba et al. 2011; Amundson and Koehler 1987; Dagbénonbakin et al. 2010). 

The crop spectral signatures, from proximal or remote measures, are transformed into estimates of 

the levels of nutrients in the plant using models that have low space-time generalization ability. This 

reduces its effectiveness in real farms (Heege et al. 2008; Li et al. 2010), relegating the binomial 

agronomy-radiometry to large areas where it is currently unbeatable. In these scenarios a small 

improvement per unit area is a large increase in profits, which is why they may even have a panel of 

experts to carry out calibration studies. 

If the effectiveness and generalizability of the models do not improve, the increase in crop yield and 

sustainability possible thanks to precision agriculture will not reach all farms. 
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Propósito de esta tesis / Purpose of this thesis 
 

El propósito de esta tesis es realizar dos aportaciones significativas en el campo de la agricultura de 

precisión. Ambas aportaciones persiguen el mismo objetivo, aumentar la eficacia y reducir los costes de 

los diagnósticos agronómicos integrales. En caso de conseguirlo aumentaría el número de explotaciones 

agrícolas que pueden apostar por la agricultura de precisión. Esa resultaría ser la opción más rentable 

tanto para el presente como para el futuro. 

Una explicación simplificada del proceso de diagnóstico agronómico sería adquisición de 

información relevante del cultivo e interpretación de la misma, los dos procesos a los que esta tesis 

dirige la atención. Se pretende mejorar la efectividad y capacidad de generalización de los modelos que 

estiman el estado nutricional de la planta a partir de medidas espectrales. También se trata de 

incorporar las técnicas geomáticas desarrolladas en las últimas décadas (GPS, GIS,…) a las metodologías 

clásicas para la interpretación de los niveles de los nutrientes en la planta. El objetivo es desarrollar una 

metodología para el diagnóstico agronómico de los campos, sería un proceso lógico deductivo que 

trabaja con evidencias obtenidas en el mismo campo. No serían precisos estudios previos y por tanto 

estaría a disposición de cualquier agricultor independientemente del área geográfica o cultivo. 

 

 

The purpose of this thesis is to make two significant contributions in the field of precision 

agriculture. Both contributions have the same objective, to increase efficiency and reduce the costs of 

comprehensive agronomic diagnosis. In case of achieving the objectives, this would increase the 

number of farms that can go for precision agriculture. It would be the most profitable option for the 

present and the future. 

A simplified explanation of the process for the agronomic diagnostic would be the acquisition of 

relevant information of the crop and interpretation of the same, the two processes to which this thesis 

directs the attention. It is intended to improve the effectiveness and generalizability of models that 

estimate the nutritional status of the plant from spectral measurements. On the other hand tries to 

incorporate the techniques developed in the last decades (GPS, GIS ...) to the classical methods for the 

interpretation of the levels of nutrients in the plant. The purpose is to develop a methodology to make 

agronomic diagnosis; it would be a deductive process that works with evidence obtained in the same 

field. No previous studies would be needed and therefore it would be available to all farmers, regardless 

of geographic area or crop. 
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Estructura y contenido de la tesis / Structure and content of the thesis 
 

Índices espectrales de vegetación / Spectral vegetation indices 

 

La tesis comienza evaluando el verdadero potencial de los 21 índices espectrales de vegetación 

(radiometría) más ampliamente usados para estimar la concentración de un nutriente, el nitrógeno, en 

planta (Blackburn 2007; Panda et al. 2010; Raymond Hunt et al. 2011; Schellberg et al. 2008). Prueba 

realizada en unas condiciones que simulan una explotación agrícola real (amplio rango de condiciones 

de desarrollo). Es preciso conocer si los índices espectrales de vegetación son una solución en la 

práctica, si empleándolos es posible obtener estimaciones correctas, rápidas y baratas del estado 

nutricional del cultivo. En caso afirmativo habría que dirigir los esfuerzos a proyectos de demostración 

con los que animar la transferencia de la tecnología a los agricultores. 

 

 

The thesis begins by evaluating the true potential of 21 spectral vegetation indices (radiometry), the 

most widely used indices to estimate the concentration of a nutrient, the nitrogen, in plant (Blackburn 

2007; Panda et al. 2010; Raymond Hunt et al. 2011; Schellberg et al. 2008). Testing conducted under 

conditions that simulate real farms (wide range of growing conditions). It is necessary to know if 

spectral vegetation indices are a practical solution, if it is possible to obtain correct, fast and cheap 

estimates of the crop nutritional status. If so efforts should be directed to demonstration projects which 

encourage the transfer of technology to the farmers. 

 

Garantías exigidas en el estudio / Guarantees required in the study 

 

En esta tesis se dedica un apartado especial al procedimiento de evaluación de los resultados. 

Confundir una relación descriptiva con una predictiva conduciría al desarrollo de un modelo cuyas 

recomendaciones no tendrían ningún valor, lo que haría que los objetivos de la tesis fueran 

inalcanzables. Para obtener evaluaciones realistas se toman 4 medidas, una ya comentada, 

experimentar en un amplio rango de condiciones de desarrollo. La segunda medida consiste en forzar al 

modelo que ha de relacionar el índice espectral de vegetación y la concentración de nutriente a que sea 

válido durante todo el período durante el cual sería posible actuar para corregir una potencial 

deficiencia (novedad). La tercera medida es el uso de la validación cruzada en la evaluación de las 

relaciones y la cuarta medida es el empleo en el ensayo del cultivo que presenta mayores dificultades 

para el desarrollo de modelos radiométricos, el triticale de doble propósito.  

Verato es el cultivar del triticale (X Triticosecale Wittmack) que soporta el pastoreo del ganado 

durante su desarrollo sin arruinar la cosecha final. Esta peculiaridad dificulta la consecución del 

objetivo, el desarrollo de un modelo radiométrico eficaz y generalizable, al no poder confiar en el 

verdor como estimador de la concentración de nitrógeno (después del pastoreo el cultivo amarillea 

debido a un desajuste entre crecimiento y síntesis de clorofila, no por déficit de nitrógeno). Eso obliga a 
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la búsqueda de rasgos espectrales más directamente relacionados con la concentración de nitrógeno, 

los cuales respondan correctamente incluso en condiciones complicadas.  

Gracias a estas medidas se pretende determinar el umbral mínimo de eficacia de la metodología, se 

aumentan las garantías de poder predictivo del modelo y se reducen costes de implementación, 

facilitando así la transferencia de los resultados a explotaciones agrícolas reales.  

 

 

This thesis has a special section to describe the procedure of evaluating the results. Mistaking a 

descriptive relationship with a predictive relationship leads to the development of a model whose 

recommendations would have no value; in that case the objectives of the thesis would be unreachable. 

For realistic assessments four measures were taken, the first has already been mentioned, 

experimentation in wide range of growing conditions. The second measure consists in forcing the 

model (the model that has to relate spectral vegetation index and nutrient concentration) to be valid in 

the period during which one could act to correct a potential shortcoming (new). The third measure is 

the use of cross-validation in the evaluation of relationships and the fourth measure is employment in 

the test of a crop that presents superior difficulties for the development of radiometric models, the dual 

purpose triticale. 

Verato is the cultivar of triticale (X Triticosecale Wittmack) that supports livestock grazing during its 

development without ruining the final harvest. This peculiarity makes difficult to achieve the objective, 

the development of an effective and generalizable radiometric model, because with that crop the green 

of the plant is not a good estimator of the nitrogen concentration (after grazing the crop yellowing due 

to a mismatch between growth and chlorophyll synthesis, no nitrogen deficiency). That requires finding 

spectral features directly related to the concentration of nitrogen, which respond correctly even in 

difficult conditions. 

Thanks to these measures the minimum threshold of effectiveness of the methodology could be 

determined; they increase the guarantees of predictive power and reduce implementation costs, thus 

facilitating the transfer of results to the real farms. 

 

Técnicas de reducción de dimensiones / Techniques for dimensionality reduction 

 

En el mismo escenario y con los mismos datos y procedimiento de evaluación se estudia si las dos 

técnicas de reducción de dimensiones más potentes, Análisis de componentes principales (PCA) (Shlens 

2005) y Análisis de componentes independientes (ICA) (Hyvärinen and Oja 2000), son adecuadas para 

el procesamiento de los datos obtenidos en el muestreo hiperespectral del cultivo (firma espectral 

completa). Si las técnicas son efectivas entonces concentrarán la información relativa al estado 

nutricional del cultivo en una decena de nuevas componentes, con las que sería fácil desarrollar 

modelos de regresión con los que estimar eficazmente la concentración de nitrógeno en planta. 

Un resultado positivo en el estudio con las técnicas de reducción de dimensiones difícilmente sería 

un resultado transferible, esto es así dado el coste del espectroradiómetro necesario para obtener la 

firma espectral. El objetivo de este estudio es dar un paso intermedio, comprobar que aún con todas las 



 

F. Rodríguez Moreno  Introducción / Introduction 7 de 97 

garantías exigidas es posible desarrollar un modelo efectivo con capacidad de generalización en el 

espacio y tiempo (dentro de la misma campaña). 

 

 

In the same scenario and with the same data and evaluation procedure, it was studied whether the 

two techniques for dimensionality reduction more powerful, Principal component analysis (PCA) 

(Shlens 2005) and Independent Component Analysis (ICA) (Hyvärinen and Oja 2000), are suitable for 

processing the data obtained in the hyperspectral sampling of the crop (spectral signature). If the 

techniques are effective then they will concentrate the information about the nutritional status of the 

crop in a dozen new components, with which it would be easy to develop regression models to 

effectively estimate the nitrogen concentration.  

A positive result in the study with the techniques for dimensionality reduction would hardly be a 

transferable result; this is because the cost of the spectroradiometer, the device needed to obtain the 

spectral signature. The objective of this study is to reach an intermediate goal, verifying that even with 

all the guarantees required, it is possible to develop an effective model with generalization ability in 

space and time (within the same campaign). 

 

Árboles de decisiones / Decision trees 

 

La última etapa en esta línea de investigación es la evaluación de la capacidad de los árboles de 

decisión (Gehrke 2006; Loh 2011; Ruß and Brenning 2010) para estimar la concentración de nitrógeno 

en planta, empleando para ello la reflectancia de la planta en unas pocas longitudes de onda. Esta 

investigación se realiza en las mismas condiciones que el estudio con las técnicas de reducción de 

dimensiones. 

Los árboles de decisión evaluados no emplearán más de tres longitudes de onda (reflectancia), de 

esta forma no será necesaria la participación de un caro espectroradiómetro de campo para realizar la 

estimación del estado nutricional del cultivo, superando el problema que tiene el trabajo con las 

técnicas de reducción de dimensiones.  

No todo cambio en la concentración de nitrógeno en la planta tiene un efecto sensible en la misma, 

existiendo por tanto cierta incertidumbre en el cálculo del plan de fertilización. En consecuencia 

estimar la concentración de nitrógeno en planta sin una precisión de varios decimales, tal y como 

consigue el laboratorio, no tiene efectos significativos en la gestión agrícola.  

Hacer que la salida del árbol de decisión sea un nivel para la concentración de nitrógeno en lugar de 

un valor concreto puede suponer una mejora en su efectividad. Esto sería así si el algoritmo de 

clasificación, puntos de ruptura naturales (Jenks 1967), agrupa de tal forma que resulte más fácil 

encontrar rasgos espectrales distintivos para cada nivel, lo que facilitaría la tarea a los árboles de 

decisión.  
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The last step in this research is the evaluation of the capacity of decision trees (Gehrke 2006; Loh 

2011; Ruß and Brenning 2010) to estimate the nitrogen concentration in plants, using for it the 

reflectance of the plant at a few wavelengths. This research is carried out in the same conditions as the 

study with the techniques for dimensionality reduction. 

Decision trees include up to three wavelengths (reflectance), so it will not be necessary to have an 

expensive field spectroradiometer for estimating the nutritional status of the crop, overcoming the 

problem of the work with the techniques for dimensionality reduction. 

Not every change in the nitrogen concentration has a significant effect on the plant, so there is some 

uncertainty in the calculation of the fertilization plan. Estimating the plant nitrogen concentration 

without a precision of several decimal places (as the lab gets) has not significant effects on farm 

management. 

Making the output of the decision tree is a level for the nitrogen concentration instead of a specific 

value can mean an improvement in the effectiveness of the decision tree. This would be so if the 

classification algorithm, Jenks natural breaks (Jenks 1967), groups such a way that it is easier to find 

distinctive spectral features for each level, which would facilitate the task of the decision trees. 

 

Interpretación espacial de los parámetros de la planta  / Spatial interpretation of plant 

parameters 

 

En la otra línea de estudio, el diagnóstico agronómico de los campos conocida la concentración de los 

nutrientes y otros parámetros (altura, verdor,…) de las plantas, se expondrán los trabajos con dos 

explotaciones agrícolas ubicada en centro Europa (Chequia), sembradas de trigo de invierno.  

Lo primero es la identificación de un índice de barata, fácil y rápida determinación que permita una 

correcta estimación del desarrollo de las plantas. Ese índice puede suministrar valiosa información al 

servicio de la gestión agrícola y una referencia válida con la que comparar, mediante regresiones no 

lineales y validaciones cruzadas, las concentraciones de los nutrientes en la búsqueda de una relación 

con significación estadística fruto de un vínculo causa-efecto que pueda ser empleado en la toma de 

decisiones. 

Dada la dificultad de trabajar con pequeños conjuntos de datos, se evaluará el uso de los factores 

espaciales (funciones de superficie y variables topográficas) para: 

 Verificar la relación espacial entre las muestras obtenidas en el mismo campo.  

 Realizar una validación espacial de las relaciones encontradas entre el índice de desarrollo del 

cultivo y los nutrientes. 

 Identificar factores limitantes no-nutrientes (textura, orientación,…). 

 Interpolar los datos obtenidos en el muestreo a todo el campo. Esto último es muy importante 

dado que es posible efectuar el diagnóstico apoyándose en un muestreo de bajo coste del campo y 

por ello la geoestadística no es una alternativa de garantía por las dificultades para obtener un 

variograma fiable (Oliver 2010). 
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The other line of study is the agronomic diagnosis of fields known the nutrient concentration and 

other plant parameters (height, green ...). Works in two farms located in Central Europe (Czech 

Republic) and sown with winter wheat will be discussed. 

The first is the identification of an index with cheap, easy and quick determination, which allows a 

correct estimation of the development of the plants. This index can provide valuable information at the 

service of the agricultural management and a valid reference with which to compare, using nonlinear 

regressions and cross-validations, the concentrations of nutrients in the search for a relationship 

(statistically significant), result of a cause and effect relationship that can be used in decision-making. 

Given the difficulty of working with small data sets, it will evaluate the use of spatial factors (surface 

functions and topographic variables) to: 

 Check the spatial relationship between the samples obtained in the same field. 

 Perform a spatial validation of the relationships found between the crop development index and 

the nutrients. 

 Identify non-nutrient limiting factors (texture, orientation ...). 

 Interpolate to the entire field the data obtained in the sampling. It is very important since it is 

possible to make the diagnosis relying on a low-cost sampling. Geostatistics is not an alternative 

with guarantees by the difficulties of obtaining a reliable variogram with a low-cost sampling 

(Oliver 2010). 

 

Lo que se obtendrá con la lectura de esta tesis / What you get by reading this thesis 

 

Con el índice de desarrollo del cultivo, los estudios de relación (índice de desarrollo del cultivo y 

nutrientes) y los análisis basados en los factores espaciales  se compondría un sistema integral para el 

diagnóstico agronómico de campos que no precisaría de estudios previos, que podría ser implementado 

con los datos obtenidos en un muestreo de bajo coste del campo y que podría identificar factores 

limitante  de toda naturaleza, no sólo déficit de nutrientes. Siendo lo mejor de todo que el diagnostico 

estaría siempre respaldado por evidencias estadísticas obtenidas en el mismo campo. 

Con el estudio radiométrico del triticale se pretende determinar la efectividad real  de los índices 

espectrales de vegetación  y comprobar si en esas condiciones (amplio rango de condiciones de 

desarrollo y amplio intervalo fenológico) la minería de datos (técnicas de reducción de dimensiones, 

árboles de decisión y algoritmos de clasificación) puede mejorar los resultados de los anteriores. Como 

todo ello está referido al triticale de doble propósito, los valores obtenidos podrían determinar el 

umbral mínimo de eficiencia de la radiometría apoyada por la minería de datos al servicio de la 

agricultura de precisión. 

 

 

The crop development index (CDI), the analysis based on spatial factors and the studies of the 

relationship between CDI-nutrients would compose a comprehensive system for agronomic diagnosing 

of fields that does not require previous studies. It could be implemented with data from a low-cost 

sampling of the field and it would identify limiting factors of all kinds, not only nutrient deficit. Being 
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the best of everything that the diagnosis would always be supported for statistical evidence obtained in 

the same field. 

The radiometric study about triticale seeks to determine the real effectiveness of spectral vegetation 

indices and check whether in these conditions, a wide range of development conditions and phenology, 

the data mining (techniques for dimensionality reduction, decision trees and classification algorithms) 

can improve outcomes thereof. As all this is based on the study with the dual purpose triticale, the 

values obtained could determine the minimum level of efficiency of the radiometry and data mining at 

the service of the precision agriculture. 
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Abstract 
 

There is an ample literature on spectral indices as estimators of the crop's chlorophyll concentration, 

and, by extension, of the nitrogen concentration. In this line, the suitability of 21 of these indices was 

evaluated as nitrogen concentration indicators for the dual purpose (fodder and grain) triticale (X 

Triticosecale Wittmack). The interval of interest was the one in that it would be possible to intervene to 

correct the deficiency of nitrogen (defined according to practical criteria); one peculiarity of this study 

is that it only develops a model for that period; more developments complicate the profitability, 

because the annual stability is not guaranteed and calibration studies are expensive. The results 

showed that, although there are significant correlations between the greenness indices and the crop's 

nitrogen concentration, for none of the spectral indices the relationship can reach acceptable values 

that encourage their use in the new techniques of precision agriculture of low cost. One solution for 

http://revistas.inia.es/index.php/sjar/article/download/2013/1511
https://dl.dropbox.com/u/72234534/001.pdf
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improving the effectiveness and reduce costs could be to use the information contained in the spectral 

signature beyond what is easily explicable by biochemistry and biophysics, in other words, using data 

mining in the search for new spectral indices directly related to the concentration of nitrogen in plant 

and stable throughout crop development. At present, the squared correlation coefficient (R²) of the best 

fits reach 0.5 for the later phenological stages, this mark is reduced to 0.3 with an approach of low cost. 

 

Additional key words: cereals; leaf reflectance; nutritional status; precision agriculture; 

radiometry; remote sensing 

 

Resumen 
 

Evaluación de índices de vegetación espectrales para la estimación de la concentración de 

nitrógeno en triticale de doble aptitud (forraje y grano) 

 

Existe una extensa literatura que describe el potencial de los índices espectrales como indicadores 

de la concentración de clorofila en el cultivo y, por extensión, de la concentración de nitrógeno. En esta 

línea se encuentra este trabajo, donde se evalúa la idoneidad de los 21 índices espectrales más usados 

para realizar estimaciones en triticale (X Triticosecale Wittmack) de doble propósito (forraje-grano). El 

intervalo fenológico de interés se define siguiendo criterios prácticos, es aquel durante el cual se puede 

actuar para corregir una deficiencia de nitrógeno. Una peculiaridad es que sólo se desarrolla un modelo 

para todo ese periodo; más desarrollos complicarían la rentabilidad, ya que la estabilidad de los 

modelos no está garantizada y las calibraciones son costosas. Los resultados mostraron que, aunque 

existe correlación significativa entre los índices de verdor y la concentración de nitrógeno, para 

ninguno de los índices espectrales la relación alcanza valores que animen a su uso en las metodologías 

de bajo coste. Para mejorar la efectividad y reducir costes se podría usar la información contenida en la 

firma espectral más allá de lo que es fácilmente explicable por la bioquímica-biofísica, en otras palabras, 

usar la minería de datos en la búsqueda de índices espectrales directamente relacionados con la 

concentración de nitrógeno y estables a lo largo del desarrollo del cultivo. El coeficiente de correlación 

al cuadrado (R²) del mejor de los ajustes existentes alcanza un valor de 0,5 para los últimos estadios 

fenológicos, marca que se reduce a 0,3 al emplear una metodología de bajo coste.  

 

Palabras clave adicionales: agricultura de precisión; cereales; estado nutricional; radiometría; 

reflectancia de la hoja; teledetección 

 

Abbreviations used: aR² (adjusted correlation coefficient); NDVI (normalized difference vegetation 

index); p-value (statistical significance); R² (correlation coefficient); RMSE (square root of the mean 

square error) 
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Introduction 
 

Reflectance measurements can be used to obtain the values of the most widely used spectral indices 

(reviewed in Ustin et al., 2004) as indicators of chlorophyll concentration. These indices, together with 

the canopy radiative transfer models, allow one to estimate the state of the vegetation from satellite and 

aerial images. Our ultimate goal is to make this approach a reality in agriculture and the action plan 

begins with identifying the most appropriate spectral index and estimating the magnitude of its 

relationship with nitrogen concentration. This study assesses the potential of the methodology in easily 

reproducible conditions on farms. The immediate objective is to determine if the spectral indices keep 

the effectiveness reported by other authors when implementation costs are reduced (only a model for 

relating reflectance and nutritional status by campaigning on a stage with high variability), which is 

necessary to facilitate the transfer. 

Some of the spectral indices commonly used as indicators of chlorophyll concentrations include 

corrections for the effect of the soil on the measurements of the canopy reflectance (Huete, 1988; 

Rondeaux et al., 1996; Zarco-Tejada et al., 2004), unnecessary precautions in this study because it 

works with reflectance measurements of the leaf. 

This work is in line with that described by Heege et al. (2008). They related the measurements of 

greenness, obtained by sensors mounted on farm equipment, with the dose of nitrogen fertilizer. They 

used fluorescence and reflectance measurements, in the case of reflectance; they tested the 

determination of the red-edge inflexion point both numerically and empirically.  

The work of Li et al. (2010), although similar to this one, differs in that in this study is limited to one 

the number of models that relate the spectral index and the nitrogen concentration in the plant 

throughout the development, instead of looking for relationships for specific growth stages, that is what 

has been done so far because the plant changes during its development (Marschner, 1995; Azcón-Bieto 

and Talón, 2003) complicate another approach. 

With the dual purpose triticale, one has the possibility of allowing livestock to graze more than once 

without ruining the harvest. After each grazing by livestock the plant has to regenerate the above-

ground part and with it the ability to synthesize chlorophyll, but the below-ground part is unaffected so 

that the plant's nitrogen absorbing capacity remains intact. The result is an imbalance in the first weeks 

after each cutting which is manifest in a yellowing of the plant. This is not a symptom of nitrogen 

deficiency, since there has been neither a decrease in the concentration of this element nor an 

interruption in plant growth. This characteristic is a major additional obstacle to the transference of 

radiometric technology to the dual purpose triticale case. 

 

Material and methods 
 

As part of a study at the "La Orden-Valdesequera" Research Centre aimed at determining the optimal 

combination of seeding density, number of grazing and doses of nitrogenous fertilizers for growing 

triticale (X Triticosecale Wittmack), the reflectance of the leaves throughout the growth of the crop was 

measured. 
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The experimental design was a split-split-plot with four replicates. The first factor was the seeding 

density (400, 500 and 600 plants m-2), the second the number of times the crop was cut to simulate 

grazing (0, 1 and 2 grazing by livestock) and the third the dose of nitrogenous fertilizer (0, 75 and 125 

kg ha-1). Each factor had three levels, so that there were 108 experimental plots in total, each of 30 m². 

The leaf reflectance measurements were made at 80, 117, 132, and 164 days after seeding (campaign 

2009). Together with these measurements, crop samples were taken and sent to the laboratory for the 

determination of the concentration of total nitrogen by the Kjeldahl method. 

The weather is a key factor in plant growth and climate variability is sufficient to cause changes in 

the evolution of the crop year after year; for this reason, more important than the number of days from 

sowing is to indicate the phenological stage in which was the plant. Table 1 shows the correspondence 

between the number of days after seeding, the crop's phenological stage and the description of growth 

stage. 

 

Table 1 Correspondence between the number of days after seeding and the crop's phenological stage 

(triticale). 

Days after seeding 

Phenological stage 

Description 
Zadoks scale Feekes Scale 

80 35 7-8 
Stem elongation 

(5th node detectable) 

117 40 9 Booting 

132 46 10 Booting (flag leaf sheath opening) 

164 65 10.5.2 Anthesis half-way 

 

 

The growth stages were determined using the Zadoks (Zadoks et al., 1974) and Feekes scales 

(Feekes, 1941; Large, 1954). On this matter illustrative charts can be found in the book of Rawson and 

Gómez Macpherson (2000).  

The influence of each factor on the nitrogen concentration measured for each of the 108 plots on 

each sampling day was analyzed (it is unknown whether all the factors at all levels have an effect on the 

concentration of nitrogen in plant). The analysis of variance for factorial designs (statistical analysis 

that corresponds to the split-split-plot design) determines a grouping of the elementary experimental 

plots according to the nitrogen content on each of the four sampling dates. All calculations were done 

using R 2.9 (R Development Core Team, 2004). 

The crop's spectral signature is sensitive to phenological changes; this is a good reason to test the 

relation between the spectral index and the nitrogen concentration for each sampling date. This 

approach suffers from a serious handicap; a commercial application is difficult since in that case 

calibration studies would be needed for each growth stage, which compromises the economic viability 

of this technique. This is the reason because in this work, the restriction that only one model should 

cover the entire period of interest was established. 
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On each sampling date, 20 leaves at random were collected in each of the 108 elementary plots. Ten 

estimates of the reflectance (each averaging 50 readings) were made of these samples, using the ASD 

FieldSpec 3 spectroradiometer for this. This device has a spectral range of 350–2500 nm, a sampling 

interval of 1.4 nm for the range 350–1000 nm and 2 nm for the range 1000–2500 nm, and a spectral 

resolution of 3 nm at 700 nm and 10 nm from 1400 nm to 2100 nm. Readings were performed using a 

plant probe plus leaf clip. The light source of the plant probe is a halogen bulb with a colour 

temperature of 2901±10 K. 

For each of the different groups of elementary plots defined according to their concentration of 

nitrogen on each sampling date, the mean reflectance was calculated by averaging the readings taken in 

their respective elementary plots. The average spectral signature for each of the groups identified 

during the growth of the crop was then used to determine the value of each of the selected spectral 

indices given in Table 2. 

The relationship between the different spectral indices and the nitrogen concentrations was 

evaluated by calculating the correlation coefficient squared (R2), the adjusted squared correlation 

coefficient (aR2), the square root of the mean square error (RMSE) and the statistical significance (p-

value) of the model (analysis of the variance explained as against the residual). Figure 1 is a flowchart 

that summarizes the whole process. 

 

 

Figure 1 Flow chart that summarizes the experiment design and data processing methods. 
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Table 2 Spectral indexes related to the content in chlorophyll used  

Spectral index Formulation1 Author 

Green NDVI2 (R780-R550)/(R780+R550) Gitelson and Merzlyak 

(1996) 

Green reflectance R550 Biochemical deduction 

Logarithm of reciprocal 

reflectance 

log(1/R737) Yoder and Pettigrew-

Crosby (1995) 

Modified chlorophyll absorption 

in reflectance index 

[(R700 - R670) – 0.2 * (R700 - 

R550)]*(R700/R670) 

Daughtry et al. (2000) 

Modified red-edge normalized 

difference vegetation index 

(R750-R705)/(R750+R705-

2*R445) 

Sims and Gamon (2002) 

Modified red-edge ratio (R750-R445)/(R705-R445) Sims and Gamon (2002) 

Near infrared reflection R800 Biochemical deduction 

Normalized difference 

vegetation index 

(R800-R670)/(R800+R670) Deering (1978) 

Pigment specific normalized 

difference a 

(R800-R675)/(R800+R675) Blackburn (1998) 

Pigment specific normalized 

difference b 

(R800-R650)/(R800+R650) Blackburn (1998) 

Pigment specific simple ratio a R800/R675 Sims and Gamon (2002) 

Pigment specific simple ratio b R800/R650 Sims and Gamon (2002) 

Ratio analysis of reflectance 

spectra a 

R675/R700 Blackburn (1999) 

Ratio analysis of reflectance 

spectra b 

R675/(R650*R700) Blackburn (1999) 

Ratio of near infrared to green R800/R550 Biochemical deduction 

Ratio of near infrared to red R800/R670 Biochemical deduction 

Reciprocal reflectance 1/R700 Gitelson et al. (1999) 

Red edge inflect point (700+40)*{[(R670+R780)/2]-

R700}/(R740-R700) 

Guyot et al. (1988) 

Red reflectance R670 Biochemical deduction 

Red-edge NDVI (R750-R705)/(R750+R705) Sims and Gamon (2002) 

Zarco-Tejada & Miller R750/R710 Zarco-Tejada et al. (2001) 
1 R+number: reflectance at number nm. 2NDVI: normalized difference vegetation index. 

 

Results and discussion 
 

Table 3 shows that all the models, except the one developed for the modified chlorophyll absorption 

in reflectance index, explained a significant portion of the variance of the plant's nitrogen concentration, 

but in none of the cases the magnitude of the relationship was enough for developing a profitable 

methodology.  The highest R2 was 0.31, and corresponded to the green reflectance index. 
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This study determines the reduction in the effectiveness if one tries to estimate the concentration of 

nitrogen in the plant by a low-cost approach. The reduction is 38% (the value of R² is reduced from 0.5 

to 0.31), a significant reduction received with a positive evaluation because of the complexity involved 

in developing a single model for different phenological stages and the enormous handicap which entails 

the double duality of the crop. It is understood that this reduction in effectiveness is the highest 

possible and that's not enough to discard the approach of a precision agriculture of low cost, at least 

remains to evaluate the potential of data mining in the exploitation of the information contained in 

spectral signature. 

 

Table 3 Goodness of the fit between spectral indices and the concentration of nitrogen.  

Spectral index R2 Adjusted 

R2 

p-values 

for model 

RMSE1 

Green NDVI2 0.235 0.233 0.000 0.691 
Green reflectance 0.315 0.314 0.000 0.653 

Logarithm of reciprocal reflectance 0.179 0.177 0.000 0.715 

Modified chlorophyll absorption in reflectance 

index 

0.008 0.006 0.065 0.786 

Modified red-edge normalized difference 

vegetation index 

0.058 0.056 0.000 0.766 

Modified red-edge ratio 0.047 0.045 0.000 0.771 

Near infrared reflection 0.122 0.120 0.000 0.740 

Normalized difference vegetation index 0.139 0.137 0.000 0.732 

Pigment specific normalized difference a 0.123 0.121 0.000 0.739 

Pigment specific normalized difference b 0.231 0.229 0.000 0.692 

Pigment specific simple ratio a 0.115 0.113 0.000 0.743 

Pigment specific simple ratio b 0.208 0.206 0.000 0.703 

Ratio analysis of reflectance spectra a 0.027 0.025 0.001 0.779 

Ratio analysis of reflectance spectra b 0.252 0.250 0.000 0.683 

Ratio of near infrared to green 0.213 0.211 0.000 0.700 

Ratio of near infrared to red 0.131 0.128 0.000 0.736 

Reciprocal reflectance 0.226 0.224 0.000 0.695 

Red edge inflect point 0.032 0.030 0.000 0.777 

Red reflectance 0.173 0.171 0.000 0.718 

Red-edge NDVI 0.156 0.154 0.000 0.725 

Zarco-Tejada & Miller 0.134 0.132 0.000 0.735 
1 RMSE: square root of the mean square error. 2NDVI: normalized difference vegetation index. 

 

The spectral signature of a leaf is extremely sensitive to the conditions affecting the leaf itself and to 

the conditions under which the measurements are made. These conditions vary considerably 

throughout the period during which it would be possible to act to correct a possible nitrogen deficiency 

in the crop, for this reason the models were specific to a growth stage, something that complicates the 

profitability and thus the transfer of technology, this study explores this field and its conclusion 

suggests that the cost of using a single model is not as high as could be expected. 

In light of the results, exactly of the results of F test and associated p-value for significance of the 

model, one can say that the independent variables, spectral indices, are important in explaining the 

observed variation in dependent variable, concentration of nitrogen in plant. These indices have a 
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biochemical and biophysical basis, the existence of that relationship was expected, different is the 

magnitude of it, so small that makes one think about the weakness of using non-specific index for the 

concentration of nitrogen in plant. 

It is confirmed that, in cultivating dual purpose triticale, calculations based solely on a greenness 

measurement, such as the green reflectance index (the index which gave the best correlation in this 

study), would lead to obtaining erroneous estimates of the nitrogen concentration. 

The single model developed for the entire period of interest – from stem elongation (when tillering 

has ended) through booting and heading to flowering – gave lower correlations between the vegetation 

spectral indices and the crop's nitrogen concentration than those reported in similar studies in which 

different phenological intervals were modeled separately (Heege et al., 2008; Li et al., 2010). In 

particular, the value of R² was reduced by about 40%, from 0.5 for the final growth stages (Li et al., 

2010) to the value of 0.3 for the entire period of crop growth. 

The techniques of precision agriculture have to reach to the cultivation of the dual purpose triticale. 

Since nitrogen's role in a plant is not restricted to be a component of chlorophyll and the spectral 

signature of the leaf is function of its composition and configuration, it has to be possible to derive new 

spectral indices which estimate nitrogen concentrations based on other variables besides of the 

greenness of the plant. 

The results do not provide reliable indications of spectral features of those indices which best 

correlate with the crop's nitrogen concentration. Some authors, among others, the already cited Heege 

et al. (2008) and Li et al. (2010), have attempted to find relationships between the various spectral 

indices to explain their rank in terms of suitability (greater R²). The lack of correspondence between 

the different rankings might be considered a further reason for not addressing this issue. 
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Abstract 
 

The vegetation spectral indices have been widely used as estimators of the nutritional status of the 

crops. This study has evaluated if it is possible to improve the effectiveness of these indices to estimate 

the nitrogen concentration using dimension reduction techniques to process the spectral signatures. It 

has also demanded that the model is valid in a wide range of growing conditions and phenological 

stages, thus increasing the predictive power guarantee and reducing the implementation effort. This 

work has been done using an agronomic trial with dual purpose triticale (X Triticosecale Wittmack) 

whose design included plots with different planting densities, number of grazing and fertilizer doses. 

The spectral signatures of the leaves were recorded with the ASD-FieldSpec 3 spectroradiometer and 

the nitrogen concentrations were determined by Kjeldahl method. The factors with effect on nitrogen 

concentration were identified by the analysis of variance and pairwise comparisons and, then, the mean 

http://revistas.inia.es/index.php/sjar/article/download/2366/1563
https://dl.dropbox.com/u/72234534/002.pdf
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spectral signature was calculated for each of the groups formed. The dimensional reduction was 

performed with both PCA and ICA. The analysis of the relationships between components and nitrogen 

concentration showed that only the components obtained with PCA generated a significant model 

(p=0.00) with a R2=0.68. The best spectral vegetation index in this test, the reflectance in green, 

obtained a R2=0.31. Although further confirmation is needed, this study shows that the PCA may be a 

viable alternative to spectral vegetation indices. 

 

Additional key words: cereals; dual purpose triticale; independent component analysis; leaf; 

precision agriculture; principal component analysis; radiometry 

 

Resumen 
 

PCA versus ICA para la reducción de dimensiones de las firmas espectrales en la búsqueda de 

un índice para la concentración de nitrógeno en planta 

 

Los índices espectrales de vegetación han sido ampliamente usados como estimadores del estado 

nutricional de los cultivos. En este estudio se ha evaluado si es posible mejorar la eficacia de esos 

índices para estimar la concentración de nitrógeno empleando técnicas de reducción de dimensiones 

para procesar las firmas espectrales. Además se ha exigido que el modelo sea válido en un amplio rango 

de condiciones de desarrollo y estados fenológicos, aumentando así las garantías de poder predictivo y 

reduciendo el esfuerzo de implementación. Se realizó un ensayo agronómico con triticale de doble 

aptitud (X Triticosecale Wittmack), en cuyo diseño se incluyeron parcelas con diferentes densidades de 

siembra, aprovechamientos y fertilización. La firma espectral de las hojas se registró con el 

espectroradiómetro ASD-FieldSpec 3 y la concentración de nitrógeno se determinó mediante el método 

Kjeldahl. Los factores con efecto en la concentración de nitrógeno fueron identificados mediante el 

análisis de la varianza y tests de comparación de medias; posteriormente se calculó la firma espectral 

media para cada uno de los grupos. La reducción de dimensiones se realizó tanto con PCA como con 

ICA. El análisis de las relaciones entre componentes y concentración de nitrógeno mostró que sólo las 

componentes obtenidas con PCA generaron un modelo significativo (p=0,00) con un R2=0,68. El mejor 

índice espectral de vegetación en esta prueba, la reflectancia en verde, obtuvo un R2=0,31.  Aunque es 

necesaria una mayor confirmación, en este trabajo se muestra que el PCA puede ser una alternativa 

válida a los índices espectrales de vegetación. 

 

Palabras claves adicionales: agricultura de precisión; análisis de componentes independientes; 

análisis de componentes principales; cereales; hoja; radiometría; triticale de doble aptitud 

 

Abbreviations used: Adj R2 (adjusted correlation coefficient); ICA (independent component 

analysis); MSE (mean square error); NDVI (normalized difference vegetation index); PCA (principal 
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component analysis); RMSE (square root of the mean square error); SNR (signal to noise ratio); SWIR 

(shortwave Infrared); VNIR (visible and near-infrared) 

 

Introduction 
 

The demand of nitrogen by the crop throughout its development is well known (Alaru et al., 2004) 

and both the excessive and the deficit have a negative impact on production, operating costs and 

environmental conservation. 

The technology available today can get huge volumes of information at a reasonable cost; the 

challenge is the correct interpretation of that information (Moran et al., 1997). Reflectance 

measurements can be used to obtain the values of the most widely used spectral indices (Guyot et al., 

1988; Yoder and Pettigrew-Crosby, 1995; Gitelson and Merzlyak, 1996; Blackburn, 1998; Gitelson et al., 

1999; Daughtry et al., 2000; Ustin et al., 2004) as indicators of chlorophyll concentration. The suitability 

of these indices to estimate the concentration of nitrogen in plants is limited; Li et al. (2010) showed 

that the predictive power of these indices can reach a R2=0.5 for certain growth stages. Heege et al. 

(2008) reached higher values, but they linked the spectral signature with a dose of fertilizer applied and 

not with the nutritional status of the plant. 

The work of Li et al. (2010) revealed one of the challenges to overcome, the poor spatial and 

temporal generalization of the models developed. Another difficulty was evidenced in the work of 

Rodriguez-Moreno and Llera-Cid (2011); the tests are conducted under conditions difficult to 

reproduce in real farms. In a real farm, for example, there isn´t a panel of experts dedicated to calibrate 

the methodology, so the tasks of identifying acceptable cuts in the procedure and finding out the true 

effectiveness of the methodology are left to farmers. 

In this context, only in the large farms (large areas) can bet strong for these new technologies, 

because the small improvements per unit area represent a significant increase in production and 

benefits, which compensated for the salary of specialist staff and equipment costs required for 

implementation. This is a sad reality as precision agriculture, besides trying to maximize profits, also 

seeks sustainability and protecting the environment (Moran et al., 1997). 

Studies, some of them six years old (Waheed et al., 2006), have shown the high potential of 

radiometry and artificial intelligence in the field of precision agriculture, this work is in that line. The 

purpose of this study is to present a methodology which improves, in easily reproducible conditions on 

farms; the effectiveness of the methodologies based on the classical vegetation spectral indices and also 

offers greater guarantees of space-time generalization. 

With the dual purpose triticale (X Triticosecale Wittmack), the crop used in this study, there is the 

possibility of letting livestock grazing on more than one occasion without ruining the final harvest. The 

plant after each grazing has to regenerate the above-ground part and with it the ability to synthesize 

chlorophyll, but the below-ground part is unaffected so that the plant's nitrogen absorbing capacity 

remains intact. The result is an imbalance in the first weeks after each cut, which is manifested by a 

yellowing of the plant. This is not a symptom of nitrogen deficiency, since there has been neither a 

decrease in the concentration of this element nor an interruption in plant growth.  
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The loss of greenness is not always related to a nutritional deficiency, this peculiarity, entailed by the 

crop chosen for the study, requires that the radiometric model is based on spectral features different 

from those used in many of the vegetation spectral indices such as the index of the reflectance in green. 

These new spectral features have to be more closely related to the concentration of nitrogen because 

they respond correctly under conditions in which the classical indices err. 

There is no competition between old and new spectral features, it is a necessity dictated by the crop, 

when developing models for other cereals without the dual purpose both features can be integrated and 

thus obtain better levels of effectiveness.  

One way to increase the guarantees of predictive power is limiting the number of models, only one 

model will be developed for the entire period during which it would be possible to correct the 

shortcoming nitrogen in the crop. The changes in the plant during its development (Marschner, 1995; 

Azcón-Bieto and Talón, 2003) complicate the development of generic models, but if that development is 

possible, then the model would provide greater guarantees, the Occam's razor is applicable. In addition, 

a unique development would reduce the participation of specialists in the implementation, which would 

reduce costs and would facilitate transfer of technology. 

The huge volume of data obtained in a hyperspectral sampling is very complex to analyze and its 

processing has a high computational cost. For contexts such as these were devised dimension reduction 

techniques, which filter the noise, identify redundancies and reveal the structure hidden. The most 

widely used dimensional reduction techniques are principal component analysis (PCA) (Rao, 1964) and 

independent component analysis (ICA) (Hyvärinen and Oja, 2000). This study will examine whether the 

components identified by these techniques contain the information necessary to estimate, by a linear 

regression model and under the conditions described above, the nitrogen concentration in the plants.  

The anticipated results would be evidences to support three hypotheses, the existence of features in 

the spectral signatures closely related to nitrogen concentration, the ability to develop models valid for 

a wide phenological range and the appropriateness of the dimension reduction techniques to process of 

the spectral signatures preserving the information on the nutritional status. 

 

Material and methods 
 

As part of a study at the "La Orden-Valdesequera" Research Centre (Badajoz, Spain) in order to 

determine the optimal combination of factors for the cultivation of the triticale, the reflectance of the 

leaves, at different stages of crop development, were measured. 

The experimental design used was a split-split-plot with four replicates. The first factor was seeding 

density (400, 500 and 600 plants m-2), the second the number of times the crop was cut to simulate 

grazing (0, 1 and 2 grazing), and the third the dose of nitrogenous fertilizer (0, 75 and 125 kg ha-1). Each 

factor had three levels, so that there were 108 experimental plots in total, each of 30 m². The leaf 

reflectance measurements were made at 80, 117, 132, and 164 days after seeding. Together with these 

measurements, crop samples were taken, which were sent to the laboratory for the determination of 

the concentration of total nitrogen by the Kjeldahl method. The correspondence between the number of 

days after seeding and the crop's phenological stage, along with his description, is presented in the 
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Table 1. The growth stages were determined using the Zadoks (Zadoks et al., 1974) and Feekes, 1941 

(Large, 1954) scales.  

 

Table 1 Correspondence between the number of days after seeding and the crop's phenological stage 

Days after 

seeding 

Phenological stage Description 

Zadoks scale Feekes Scale 

80 35 7-8 Stem elongation 

(5th node detectable) 

117 40 9 Booting 

132 46 10 Booting (flag leaf sheath opening) 

164 65 10.5.2 Anthesis half-way 

 

 

 

Figure 1 Flowchart of the statistical analysis for the concentration of nitrogen 

 

1º sampling 2º sampling 3º sampling  4º sampling

Looking for a valid 

model for the 4 days of 

sampling,so all the data 

were grouped into a 

single set.

In the 432 determinations of nitrogen (108 

experimental plots x 4 days of sampling) found 14 

different values. The factors number of grazing (by 

livestock) and doses of fertilizers have effects, but 

not on all levels. Planting density has no effect on 

the concentration of nitrogen in plant.

Dependent variable:

Plant nitrogen concentration (%)

Elementary plots 108

Average concentration of nitrogen in plant at the... 

A certain factor-level 

could have a significant 

effect on a given time 

and not in another, the 

analysis was performed 

for each day of 

sampling.

Those parcels that differ 

from each other by a 

factor-level without 

effect are repetitions of 

the same configuration.

Split-split-plot Anova + Pairwise Comparisons 

(Fisher´s LSD Procedure)

Identify the factors-levels that have significant 

effect on nitrogen concentration (level of 

significance 0.05).
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Principal component analysis (PCA) Independent component analysis (ICA)

The criteria that guides the transformation is improving 

the signal-to-noise ratio. The new base should be a 

linear combination of the original.

The information contained in each of the new 

components is statistically independent

Number of components: The smallest set that explains 

95% of the variance.

A good estimation of the number of independent 

components is the optimal number of principal 

components (ONPC), number determined in the PCA. 

Seven ICA were done, the numbers of independent 

components were: ONPC, ONPC+1, ONPC+2, ONPC+3, 

ONPC-1, ONPC-2, ONPC-3

Independent variable: Independent variable:

Principal components Independent components (7 dataset)

a1 * Component1 + … + an * Componentn + b

Relationship evaluated by the correlation coefficient squared, the adjusted squared correlation coefficient,  the square root of the 

mean square error and the statistical significance of the model.

Dependent variable:

Plant nitrogen 

concentration (%)

Calculation of linear regression:       [Nitrogen concentration]   = 

Spectral signatures 432 (108 plots × 4 sampling days)

Calculation of the spectral signatures representative of each nitrogen concentration, averaging all signatures obtained on plots with 

the same concentration.

In accordance with the experimental design, the influence of each factor on the nitrogen 

concentration measured for each of the 108 plots on each sampling day was analyzed (it is unknown 

whether all the factors at all levels have an effect on the concentration of nitrogen). The split-split-plot 

analysis of variance (ANOVA) and the pairwise comparisons, Fisher's LSD Procedure, determined a 

grouping of the plots according to the nitrogen concentration (p=0.05). Figure 2 is a flowchart 

explaining this analysis. This and the rest of calculations were done using R 2.9 (R Development Core 

Team, 2004). 

 

Figure 2 Flowchart of the analysis of spectral signatures 

 

On each sampling date, 20 leaves at random were collected in each of the 108 elementary plots. Ten 

estimates of the reflectance (each averaging 50 readings) were made of these samples, using the ASD 

FieldSpec 3 spectroradiometer for this. This device has a spectral range of 350–2500 nm, a sampling 

interval (the spacing between sample points in the spectrum) of 1.4 nm for the range 350–1000 nm and 

2 nm for the range 1000–2500 nm, and a spectral resolution (the full-width-half-maximum of the 

instrument response to a monochromatic source) of 3 nm at 700 nm and 10 nm from 1400 nm to 2100 

nm. Readings were performed using a plant probe plus leaf clip. The light source of the plant probe is a 

halogen bulb with a colour temperature of 2901±10 K. 
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The reflectances for the wavelengths in which the transition between the spectroradiometer sensors 

(VNIR - SWIR1 and SWIR1 - SWIR2) occur were removed of the spectral signatures, regions where 

instrumental errors could be found. 

For each of the different groups of elementary plots, formed according to their nitrogen 

concentration on each sampling date, the mean reflectance was calculated by averaging the readings 

taken in their respective plots. As the number of models has been limited to one, from this point all the 

pairs of nitrogen concentration - spectral signatures come together in one set, regardless of the date of 

sampling, since the model had to provide a correct estimate for all of them without knowing that 

information. 

The dimension reduction techniques filter the noise, identify redundancies and reveal the structure 

hidden. There are different strategies; each employs different assumptions about the original 

components and the mixing process, mathematical assumptions that may not fit perfectly with the data 

set. This is the reason why two techniques, with statements so distant, have been tested. 

The principal component analysis (PCA) searches for a new base, linear combination (this restriction 

simplifies the search) of the original base (in which the data were collected), that best expresses the 

data. For the PCA, the dynamics of interest is the one with better signal-to-noise ratio (SNR); this is the 

search criteria of the new base. Reducing the number of dimensions is got by eliminating noise and 

redundancy (Rao, 1964). 

The independent component analysis (ICA) is the other technique that was tested. This dimension 

reduction technique seeks that the information contained in the new components is statistically 

independent (Hyvärinen and Oja, 2000). The ICA has been proved successful in many cases in which the 

PCA fails (Ozdogana, 2010).  

The PCA returns as many components as inputs. In this study it was identified the smallest group of 

new components necessary to explain, at least, the 95% of the total variance, excluding other 

components; this is the way in which dimensional reduction was achieved. The ICA is different; one 

must indicate the number of independent components to generate. In this study the number of principal 

components (PCA) employed has been used as an estimation of the number of independent 

components (ICA) needed, performing several tests around that number. 

It has built a linear regression model for each of the different sets of components generated (PCA 

and ICA) with nitrogen concentration (%). The goodness of fit of each model was evaluated by 

calculating the correlation coefficient squared (R2), the adjusted squared correlation coefficient (adjR2), 

the square root of the mean square error (RMSE) and the statistical significance (p-value) of the model 

(analysis of the variance). Figure 3 is a flowchart that summarizes the whole process. 

The score to improve is 0.31, the value of R2 obtained by the green reflectance index, which is the 

highest correlation found between the nitrogen concentration and the classical spectral indices. 

Calculation obtained with the same dataset that this study and performing the evaluation under the 

same conditions. The list of spectral indices analyzed in the comparative and other details of the study 

is in Rodriguez-Moreno and Llera-Cid (2011).  
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Results and discussion 
 

The split-split-plot ANOVA (Table 2) and the pairwise comparisons (Fisher's LSD procedure) 

identified the factors with effect on nitrogen concentration (Level of significance in all tests of 0.05).  

 

Table 2 Results of the split-split-plot ANOVA, factors with effect on nitrogen concentration 

Factor (simple or 

interaction) 

Sampling 

1st 2nd 3rd 4th 

Phenological stage 

Stem 

elongation 

Booting Booting (flag leaf 

sheath opening) 

Anthesis 

half-way 

Seeding density     

Number of cuts   * * 

Dose of nitrogenous fertilizer *  * * 

Seeding density -  

Number of cuts 

    

Seeding density - Dose of 

nitrogenous fertilizer 

    

Number of cuts - Dose of 

nitrogenous fertilizer 

 *   

Seeding density -  

Number of cuts - Dose of 

nitrogenous fertilizer 

    

*: effect on nitrogen concentration at the level of significance of 0.05. 

 

It was observed that the factor seeding density had no effect at any time, the levels may not be 

appropriate or perhaps the effects were felt later.  

The effect of the factor number of grazing was not analyzed in the first dataset, since the first cut was 

made after this sampling. In the dataset of the second and third sampling, with two levels (0 and 1 cut), 

it was determined that the factor number of grazing had effect on the concentration of nitrogen. The 

analysis of the fourth dataset, the first with three levels since the second cut was made after the third 

sampling, revealed that the three levels of the factor number of grazing had significant effect on plant 

nitrogen concentration. 

The factor dose of fertilizer had effect on the concentration of nitrogen in all the datasets, but only in 

the fourth dataset the levels 75 and 125 kg ha-1 had different effects. The fact that the effects of the two 
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higher doses of fertilizers do not differ is natural. The triticale takes the nitrogen from the soil along its 

development, but most absorption occurs in a developmental stage later than the dates on which the 

samplings were done (Lance et al., 2007). 

Those plots that differed only by a factor or level without effect were repetitions, so the 

representative value for the concentration of nitrogen and the spectral signature were obtained by 

averaging the data from plots with the same configuration. The 14 different nitrogen concentrations 

recorded in the 108 plots and the four days of sampling were: 1.02, 1.19, 1.22, 1.31, 1.36, 1.42, 1.52, 

1.54, 1.64, 1.95, 2.32, 2.74, 3.14 and 3.40 percentage of nitrogen. 

Cumulative variance explained by the first 10 components obtained using PCA reached 99.5% of the 

total variance. This percentage was considered sufficient, so only the first 10 components were taken 

into account in developing the linear regression. 

Unable to make the same test to determine the appropriate number of components for the ICA, it 

was chosen to calculate 7 linear regressions (using 7 to 13 components). If the 99.5% of the variance of 

the reflectance could be explained with only 10 components in the case of PCA, ICA had to need 

something similar. 

It has built a linear regression for each of the different sets of components generated (PCA and ICA) 

with nitrogen concentration (%). The goodness of fit of each model (Table 3) was evaluated by 

calculating the R2, the adj R2, the RMSE and the p-value of the model.  

The best fit, R2=0.68, was reached in the linear regression with the components of the PCA. That 

result showed that the spectral signatures of crops meet the suppositions on the PCA is based (linearity 

in the change of base, higher variance means greater importance of the variable in the dynamics and 

that the principal components are orthonormal). 

The winner model is presented in the Table 4. Except the fourth and ninth components, the rest 

were included in the model (Level of significance of 0.05). The eighth component is the one that gets the 

highest coefficient, but the seventh, the tenth and the second are close, so one cannot conclude that the 

concentration of nitrogen can be identified with a particular component, one must use the derived 

model. 

This study provides evidences that data mining is an effective technique for analyzing the spectral 

signatures in the search for estimators of the nutritional status of the crop. 

This work shows that the changes in the crop throughout its development are not sufficient to 

prevent the development of a single model. This means that the implementation of this methodology 

would require, at most, a calibration study per crop campaign. At this point it is worth recalling the high 

variability in the experimental plots in terms of growing conditions, which means that the effort to 

adjust the model could be valid for a large area. 
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Table 3 Goodness of all linear regressions made between the sets of components (PCA and ICA) and the 

nitrogen concentration (percentage of nitrogen) 

Technique 
Number of 

components 

Significance of the model  

(p-value) 
R2 Adj R2 MSE RMSE 

ICA 7 0.19 0.02 0.01 0.62 0.79 

8 0.61 0.02 0.00 0.62 0.79 

9 0.12 0.03 0.01 0.62 0.78 

10 0.42 0.02 0.00 0.62 0.79 

11 0.48 0.03 0.00 0.62 0.79 

12 0.18 0.04 0.01 0.62 0.79 

13 0.33 0.03 0.00 0.62 0.79 

PCA 10 0.00 0.68 0.67 0.20 0.45 

Adj R2: adjusted correlation coefficient. ICA: independent component analysis. MSE: mean square error. 

PCA: principal component analysis. R²: correlation coefficient. RMSE: square root of the mean square 

error.  

 

Table 4. Linear regression built with the components obtained with the PCA and the nitrogen 

concentration (percentage of nitrogen) 

 Coefficients p-value 

Constant 2.236 0.000 

Component Nº1 -0.013 0.000 

Component Nº2 -0.020 0.000 

Component Nº3 0.008 0.000 

Component Nº4 -0.001 0.551 

Component Nº5 0.009 0.001 

Component Nº6 -0.012 0.001 

Component Nº7 0.028 0.000 

Component Nº8 -0.053 0.000 

Component Nº9 0.003 0.742 

Component Nº10 0.027 0.028 

 

In an evaluation, under the same conditions and with the same dataset, of the potential of spectral 

indices of vegetation to estimate the concentration of nitrogen in plant was determined that the best 

index was the reflectance in green, which reached an R2=0.31 (Rodriguez-Moreno and Llera-Cid, 2011). 

The results of this study placed the strategy with the PCA over the spectral indices such as NDVI. This is 

not surprising because it is not the first work that improves their effectiveness. An example is the result 

obtained by Waheed et al. (2006), which was able to develop a decision tree with a classification hit rate 
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above 90% in a similar experiment. The models developed by Waheed et al. (2006), with more than 5 

years old, have been unable to replace the spectral indices of vegetation; the NDVI keeps its hegemony 

in the scientific and commercial uses. 

The NDVI needs to be determined the reflectance at two wavelengths, the methodology presented in 

this article needs to be applied the complete hyperspectral signature. More information improves the 

estimates, but to overcome the NDVI, the simplicity and cost effectiveness are as important as the 

effectiveness. 

The complexity of the new methodology could be reduced by identifying the wavelengths with 

greater weight in the components built into the model and developing with them a model that, instead 

of estimating the concentration of nitrogen, estimates if the plant is deficient in nitrogen. In that case 

one would only need to know the reflectance in a few wavelengths and the data processing would be 

easier. 

Competing with the NDVI in terms of profitability would be possible with more studies supporting 

the greater effectiveness of this method in all scenarios and that is a valid methodology for large areas 

that only requires a calibration study per crop campaign. While both aspects do not improve, simplicity 

and profitability, the methodology presented will not end the hegemony of the spectral indices of 

vegetation. 

Li et al. (2010) presented the model with more predictive power; in his development the spectral 

indices of vegetation and the brute force search were tested, by the difficulties of the brute force search 

one can say that the methodology presented in this article has a similar complexity. The models 

developed by Li et al. (2010) are specific for certain phenological stages and his best model reaches an 

R2=0.5, this work achieves a small improvement, R2=0.68, with a valid model for the whole period 

during which it could act to correct the deficiency in the crop. 

It is very likely that this study has determined the lower threshold of efficacy, the dual purpose 

triticale supports the grazing by livestock throughout its development without ruining the final harvest; 

this makes it a special crop with additional difficulties for the development of radiometric models 

(details given in the introduction). It is hoped that the models developed for other cereals can get 

higher scores, but studies are needed to quantify it. 

Developing this model has required the processing of over nine million data. In the case of 

developing a similar model with data taken in various scenarios (other locations, different weather, 

varieties, etc.) the data volume will grow exponentially, making it impossible to process, even for 

supercomputing centers. Proving that dimensional reduction techniques are effective is the first step 

required to initiate such studies. 

The progress made has the limitation of requiring the spectral signatures of the leaves; an on-going 

investigation is going to determine if the model could be adjusted to operate with measures of 

vegetation canopy reflectance.  
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Abstract 
 

Fertilizer recommendations based on radiometry require studies to calibrate the relationships to 

scenario conditions; otherwise the effectiveness may be reduced. The objective of this study was to 

develop a decision tree to detect nitrogen deficiency with efficiency comparable to the analysis of the 

full spectral signature, with simplicity similar to a spectral index and valid over a wide range of 

development conditions and phenological stages. An agronomic trial with a dual purpose triticale (X 

Triticosecale Wittmack) was used in this study having different planting densities, number of grazing 

events (regeneration from defoliation) and nitrogen fertilization. At different phenological stages, the 

spectral signatures of leaves were recorded with an ASD-FieldSpec 3 spectroradiometer and the 

nitrogen concentrations were determined by the Kjeldahl method. Agronomic factors that affect the N 

concentration were identified using ANOVA; subsequently PCA was carried out on the set of spectral 

signatures representative of the groups formed according to nitrogen concentration. Linear regression 

was used to evaluate the relationship between the principal components and plant nitrogen 

concentration. Wavelengths with greater significance were used to construct a decision tree. The 

resulting decision tree defined for nitrogen using the Jenks Natural Breaks method had a success rate of 

68.3%. The best spectral index had a R2 = 0.31 while the estimate using the full spectral signature 

http://www.springerlink.com/content/cjvr6rm4j116324r/
https://dl.dropbox.com/u/72234534/003.pdf
mailto:fernando.rodriguez@juntaextremadura.net
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reached a R2 = 0.68. Although further testing is needed, this work shows the approach was able to 

successfully categorize nitrogen deficiency. 

 

Keywords: Cereals - Classification algorithms - Leaf reflectance - Principal component analysis - 

Spectral vegetation indices 

 

Abbreviations used: Adj R2 (adjusted determination coefficient); ANOVA (analysis of variance); 

MSE (mean square error); NDVI (normalized difference vegetation index); PCA (principal component 

analysis); p-value (statistical significance); R² (coefficient of determination); RMSE (root mean square 

error); SNR (signal to noise ratio); SWIR (shortwave infrared); VNIR (visible and near-infrared) 

 

Introduction 
 

Models that relate spectral measurements with fertilizer rate need to be calibrated to scenario 

conditions to achieve the best fertilizer recommendations  (Wood et al. 2003; Tian et al. 2009; Tian et 

al. 2011; Zhu et al. 2008; Y. Li et al. 2006). Interest in  improving the efficiency and capacity of these 

relationships (generalization over space and time) is because they offer an immediate improvement in 

sustainability and profitability (Bongiovanni and Lowenberg-Deboer 2004).  

Technologies for variable-rate nutrient applications based on prepared maps are commercially 

available. If such maps are appropriate, each land unit will receive the most appropriate treatment 

according to its characteristics (Llorens et al. 2010; Zhang et al. 2010), and frequently accompanied by a 

reduction of inputs and an increase in both production and quality. The nitrogen (N) demand of crops 

as they develop is well documented,  as are the adverse effects that  excessive and deficit nutrition have 

on production, operating costs and environmental conservation (Alaru et al. 2003; Gibson et al. 2007). 

Technologies available today can generate huge volumes of information at a reasonable cost; the 

challenge is the correct interpretation of this information (Moran et al. 1997). Reflectance 

measurements can be used to obtain the values of the most widely used spectral indices (Vrindts et al. 

2003; Dorigo et al. 2007; Broge and Leblanc 2001; Broge and Mortensen 2002; Li et al. 2008; Li et al. 

2010) as indicators of chlorophyll concentration. The suitability of these spectral indices to estimate 

plant N concentration is limited as sometimes demonstrated under on-farm conditions   (Li et al. 2010; 

Li et al. 2008). As such, there is need for calibration studies under scenario conditions (Wood et al. 

2003; Yoder and Pettigrew-Crosby 1995; Zhu et al. 2008). The profitability of this approach is not high, 

but sensible (Auernhammer 2001; Robertson et al. 2007; Schellberg et al. 2008; Schroers et al. 2010). 

This increase in profitability combined with the simplicity of implementation has made spectral 

vegetation indices the approach of choice in scientific and commercial applications. 

The alternative to spectral vegetation indices is the analysis of spectral signatures using data-mining 

techniques. The effectiveness can be superior, but the resulting models have a lower capacity to 

generalize space-time relationships and are more difficult and costly to implement  (Li et al. 2010; 

Waheed et al. 2006; Goel et al. 2003; Rumpf et al. 2010; Ruß and Brenning 2010; Shao et al. 2009). 
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The available radiometric models are not ideal (Li et al. 2010; Waheed et al. 2006; Zhou et al. 2008; 

Yao et al. 2010). Improvements in both effectiveness and ability to generalize over space and time are 

desirable. Implementing these improvements is the goal of this research. The proposed methodology 

should be simple and require the lowest possible participation of specialists because any deployment 

cost will complicate the viability for precision agriculture. 

Changes in plants during the growing season (Marschner 1995; Taiz and Zeiger 1991) complicate 

the development of general models, but if that development were possible, the resulting model would 

provide greater guarantees of predictive power. Moreover, it would reduce participation of specialists 

in the implementation phase, which would reduce costs and facilitate the transfer of technology. 

The spectral signatures of the crop, coming from experimental plots with different planting 

densities, number of grazing events, N rates and growth stages are a set of data with more than nine 

million values. The analysis of such a data set is complex and computationally expensive, therefore PCA 

(Esbensen and Geladi 2009) was used. This dimension reduction technique reveals the hidden structure 

and eliminates redundant information and noise.  This technique is suitable for this type of study 

because it simplifies the study of the relationship between the spectral signature and N concentration 

(Bajwa et al. 2004; Chen et al. 2009; Leon et al. 2003). 

Linear regression was used to evaluate the relationship between the measured components and 

plant N concentration. Wavelengths with greater significance were used to construct a decision tree. 

The expected response of the decision tree is the indication if additional N fertilizer is required by 

the crop; therefore, the target variable with which the decision tree had to be trained is the reclassified 

N concentration (adequate or inadequate level). There are four key crop development stages when it 

comes to sample collection.  Each is associated with an optimal N concentration difference (Alaru et al. 

2003) and thus the groups/levels used in the decision tree have been defined accordingly. 

The Jenks Natural Breaks Classification method (Jenks 1967) has been used for reclassification. This 

algorithm groups all recorded N concentrations so that the variance within each group is minimal and 

the variance between groups is maximal. This algorithm was considered appropriate for this study 

because the treatments induce N concentrations that are distributed into natural groups (Jenks 1967) 

focused on the optimum for each phenological stage. 

A decision tree is a nonparametric model in the form of a dichotomous key developed through a 

complex iterative algorithm. Its goal is to identify, from a training data set, the key features that allow 

predicting an attribute for a subject with a known probability of success. It is a technique that is 

included within the field of artificial intelligence and data mining. The recommendations of Breiman 

(1984) have been followed in the development of the decision tree. 

Verato is the cultivar of dual purpose triticale (X Triticosecale Wittmack) used in this study. It 

supports the grazing of sheep, goats and pigs, which ends when livestock eat all the grass or when the 

crop reaches  Zadoks 31 grow stage (Zadoks et al. 1974). In the case of early termination, it would be 

possible to have a second grazing (number of grazing events); even then this cultivar would provide a 

good harvest of grain. Plants regenerate the above-ground ability to synthesize chlorophyll after each 

grazing event, but the below-ground part is unaffected, so the N absorbing capacity remains intact. The 

result is a nutrient imbalance in the first weeks after each cut, which is manifested by a yellowing of the 

plant. This is not a symptom of N deficiency, since there has not been an interruption of plant growth; it 

is a quick restart that barely delays the physiological maturity date. The consequence is that the loss of 
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greenness is not always associated with a nutrient deficiency.  As such, different spectral features are 

required than are typically used with more conventional vegetation indices, such as those that involve 

green reflectance. Any additional spectral features would hopefully capture aspects of the cereal 

cropping system that are not embedded within classical vegetation indices.  

The objective of this research was to develop an innovative and effective spectral model for dual 

purpose triticale that characterizes the N status of the cropping system and thereby indicates the need 

for additional N fertilizer. Achievement of this goal would include developing data-mining protocols to 

identify and evaluate spectral features that are closely related to plant N concentration. 

 

Material and methods 
 

This work is a part of a study at the "La Orden-Valdesequera" Research Center (Badajoz, Spain) to 

determine the optimal combination of factors for the cultivation of a dual purpose triticale (X 

Triticosecale Wittmack, cultivar Verato). 

Verato is a new winter triticale (X Triticosecale Wittmack) cultivar released in 2007 by the "La 

Orden-Valdesequera" Research Center. This cultivar of triticale continues to grow over the winter, has 

delayed bolting dates and reaches physiological maturity quite late. It shows better adaptation to cold 

areas, especially where soil fertility is lacking. This cultivar is very tall and in some cases it could have 

problems with lodging. It has high resistance against powdery mildew fungus (Blumeria graminis f.sp. 

Hordei), but unfortunately, it shows susceptibility to brown rust fungus (Puccinia recondita f.sp. Tritici), 

which influences the performance in areas where it is most common. It has an excellent tillering 

capability which affects yields that are usually low. It is a dual purpose cultivar (grain and fodder), 

mainly for its high ability for regrowth and tillering.  

Spectral reflectance measurements were made using an ASD FieldSpec 3 spectroradiometer 

(Analytical Spectral. Devices, Boulder, CO, USA). This device has a spectral range of 350–2500 nm, a 

sampling interval (the spacing between sample points in the spectrum) of 1.4 nm over the range of 

350–1000 nm and 2 nm from 1000–2500 nm, and a spectral resolution (the full-width-half-maximum 

of the instrument response to a monochromatic source) of 3 nm at 700 nm and 10 nm from 1400- 2100 

nm. Readings were performed using a plant probe with a leaf clip. The light source of the plant probe 

was a halogen bulb with a colour temperature of 2901±10 K.  

Crop samples were analyzed in the laboratory of the Research Center according to internationally 

accepted protocols. All calculations and statistical analyses were conducted using the software R 2.9 (R-

Development_Core_Team 2008). 

A split-split-plot design of experiment with four replicates was used. The first factor was plant 

density (400, 500 and 600 plants m-2); the second factor was the number of cuts to simulate grazing (0, 

1 and 2 cuts); and the third factor was N rate (0, 75 and 125 kg ha-1). Each of the 108 experimental plots 

had an area of 30 m².  

Plant sampling in 2011 was done 80, 117, 132 and 164 days after sowing. On each sampling date, 

random leaves were collected in each of the 108 plots. The leaves in the top quartile of plant height 

were taken, leaves with the highest influence on measures of vegetation canopy reflectance; the reason 
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was to prepare the way for future research when working with vegetation canopy reflectance. Care was 

taken that the sample was representative of the entire surface of the experimental plot. Each sample 

was divided into two groups, twenty leaves were used in spectral analysis (ten measures, each an 

average of 50 readings, were made on these samples) and the rest was analyzed for the total N content 

using the Kjeldahl method. 

The correspondence between the number of days after sowing and the crop's phenological stage, 

along with its description, is presented in Table 1. The growth stages were determined using the Zadoks 

(Zadoks et al. 1974) and Feekes (Large 1954) scales.  

 

Table 1 Correspondence between the number of days after sowing and the crop's phenological stage 

Days after 

sowing 

Phenological stage Description 

Zadoks 

Scale 

Feekes Scale 

80 35 7-8 Stem elongation (5th node detectable) 

117 40 9 Booting 

132 46 10 Booting (flag leaf sheath opening) 

164 65 10.5.2 Anthesis half-way 

 

 

The N treatments were designed so the plants would “always”, “sometimes” and “never” be N 

deficient. Split-split-plot analysis of variance (ANOVA) and pairwise comparisons, Fisher's LSD 

Procedure, determined the classification of the plots according to the N concentration (level of 

significance in all tests of 0.05). The flowchart in Figure 1 illustrates this analysis. 

Processing of the spectral signatures began by eliminating the reflectance of the wavelengths near 

the transitions between the spectroradiometer sensors (VNIR - SWIR1 and SWIR1 - SWIR2).  The 

second step was to calculate the mean reflectance for each of the different N concentration groups. The 

number of models was limited to one, so from this point all the pairs of N concentration - spectral 

signature data came together in one set, regardless of the date of sampling, since the intended model 

needed to provide a reliable estimate of N concentration across a range of grazing situations, N rates, 

plant densities and growth stages. 

Principal component analysis (PCA) searches for a new base, linear combination (this restriction 

simplifies the search) of the original base (in which the data were collected), that best expresses the 

data. For PCA, the dynamic of interest is the one with best signal-to-noise ratio (SNR); this is the search 

criteria of the new base. Reducing the number of dimensions is accomplished by eliminating noise and 

redundancy (Esbensen and Geladi 2009). The suitability of the technique for this work is supported by 

numerous studies (Bajwa et al. 2004; Chen et al. 2009; Leon et al. 2003). 

Principal component analysis generates as many components as there are inputs. The smallest group 

of principal components necessary to explain 95 % of the total variance was identified. A linear 

regression model was generated to estimate N concentration (percentage) from the principal 

components (PCA).  The goodness of the model was evaluated by calculating the coefficient of 
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determination  (R2), the adjusted coefficient of determination (adjR2), the root mean square error 

(RMSE) and the statistical significance (p-value) of the model (analysis of the variance). 

 

 

Figure 1 Flowchart of the statistical analysis of nitrogen concentration 

 

This linear regression model was developed for a previous study (Rodriguez-Moreno and Llera-Cid 

2011b). In that work this model was the final result, it is a significant model with a high coefficient of 

determination. In this work, it has been used as a method to identify the components that are 

significantly related to N concentration. 

There are two PCA outputs, a set of principal components and a transformation matrix that projects 

the original data onto the new basis.  The linear combinations that generated components significantly 

related to N concentration were extracted from the matrix to identify the two wavelengths having the 

greatest weight in each component. Treatments in this study ranged from N deficient to excessive, 

which encompasses optimal N concentration values for each sampling time during grazing and growth 

stage before maturity (Alaru et al. 2003). 
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The Jenks Natural Breaks Classification method (Jenks 1967) was used to classify N concentrations 

recorded during the four days of sampling. This algorithm minimizes the total sum of squared 

deviations by adjusting the thresholds for the different groups. Figure 2 illustrates the iterative process. 

 

 

Figure 2 Flowchart of the algorithm to implement Jenks Natural Breaks 

 

The recommendations of Breiman  (1984) were followed in development of the decision tree. The 

decision tree classification algorithm was chosen because it was appropriate for the output variable. 

Gini's diversity index was applied as the split criterion. The weight of all observations was the same and 

the minimum number of observations that an impure node required before dividing was 10. All 

variables were considered in each division process. Once the decision tree reached its maximum size, 

the tree was pruned; the objective was to eliminate insignificant nodes of the training data set. This 

pruning minimizes the over-fitting problem and maximizes the predictive power of the model. Cross-

validation was used in the evaluation of the decision tree; it allows obtaining a correct estimation of the 

predictive ability. 

The decision tree needs to compete in simplicity with spectral vegetation indices that use reflectance 

values at two or three wavelengths for the calculation. For this reason, development of the decision tree 

was limited to a maximum of three wavelengths. The resulting decision tree has a combination of two 

or three elements (wavelengths) that are sensitive to plant N concentration. It should be recognized 

that the algorithm used to create the decision does not guarantee choosing the optimal set of input 

variables. Further, algorithms with a larger number of inputs variables may perform better. Figure 3 

shows a flowchart that summarizes all the steps of the methodology. 

 

This iterative process ends when improvement in TSSD 

falls below a threshold level. While optimization is not 

assured, the process can be repeated by changing the 

thresholds and comparing the TSSD values.

The mean values for each initial class 

are calculated and the sum of squared 

deviations of class members from the 

mean values is computed. The total 

sum of squared deviations (TSSD) is 

recorded.deviations (TSSD) is kept.

One selects the attribute, x, to be 

classified and specifies the number of 

classes required, k.

Jenks Natural Breaks 

A set of (k‑1) random or uniform 

values are generated in the range 

[min(x),max(x)]. They are used as 

initial class boundaries. 

Individual values in each class are 

assigned to adjacent classes by 

adjusting the class boundaries to 

check that the TSSD can be reduced.The goal is that the within-class 

variance is as small as possible and 

between-class variance is as large as 

possible.
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Figure 3 Summary of all steps of the methodology 

 

Results 
 

Split-split-plot ANOVA and pairwise comparisons (Fisher's LSD procedure) identified factors, simple 

or interaction, and levels with effect on N concentration (level of significance in all tests of 0.05). The 

factors are presented in Table 2. It was observed that planting density had no effect at any time, 

perhaps because the levels were not appropriate or the effects were expressed later.  

The effect of grazing events was not analyzed in the first data set since the first cut was made after 

this sampling. In the second and third sampling data set, with two levels (0 and 1 cut), the factor had an 

effect on N concentration. The analysis of the fourth data set, the first one with three levels since the 

second cut was made after the third sampling, revealed that the three levels of grazing events had a 

significant effect on plant N concentration (Rodriguez-Moreno and Llera-Cid 2011a). 

The N rate factor had an effect on all N concentration data sets, but only the 75 and 125 kg N ha-1 

levels had different effects within the fourth data set. Triticale takes N from the soil during its 

development, but most absorption occurs in a developmental stage later than the dates on which the 

samples were taken (Gibson et al. 2007); this is the reason why the effects of the two higher N rates did 

not differ. 
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Table 2 Split-split-plot ANOVA results, factors with effect on N concentration 

Sampling 1º 2º 3º 4º 

Phenological stage Stem 

elongation 

Booting Booting (flag leaf 

sheath opening) 

Anthesis 

half-way 

Factor (simple or interaction)     

Planting density     

Number of cuts   * * 

Nitrogen rate *  * * 

Planting density - Number of cuts     

Planting density - Nitrogen rate     

Number of cuts - Nitrogen rate  *   

Planting density - Number of cuts - 

Nitrogen rate 

    

*: effect on nitrogen (N) concentration at level of significance of 0.05. 

 

Plots that differed only by factors and/or levels without effect were repetitions, so the 

representative value for the N concentration and the spectral signature were obtained by averaging the 

data from plots with the same configuration. The 14 different N concentrations recorded during the 

four days of sampling in the 108 plots were: 1.02, 1.19, 1.22, 1.31, 1.36, 1.42, 1.52, 1.54, 1.64, 1.95, 2.32, 

2.74, 3.14 and 3.40 % N. The result of the Jenks Natural Breaks Classification method application to this 

data set is provided in Figure 4. 

The variance explained by the first 10 principal components (PCA) reached 99.5 % of the total 

variance. This percentage was considered sufficient, so only the first 10 components were taken into 

account in subsequent analysis. 

The procedure built a linear regression for the set of principal components and the N concentration 

(percentage). The goodness of the model, shown in Table 3, was evaluated by calculating the R2, the adj 

R2, the RMSE and the p-value of the model. The resulting model is presented in Table 4. Except for the 

fourth and ninth components, the rest were included in the model (level of significance of 0.05). The 

eighth component was the one that achieved the highest coefficient, but the seventh, the tenth and the 

second were close, so it is not possible to conclude that the N concentration can be identified with a 

particular component, it is necessary to use the derived model. 

The result showed that the crop spectral signatures meet suppositions on which PCA is based 

(linearity in the change of base, higher variance means greater importance of the variable in the 

dynamic and that principal components are orthonormal). 

The two wavelengths with more weight in each of the 8 principal components significantly related to 

N concentration were identified in the transformation matrix (PCA). The reflectances at 350, 405, 420, 

465, 495, 1300, 1480, 1670, 1690, 1705, 2010, 2055, 2170, 2180, 2210 and 2225 nm form the set of 

wavelengths sensitive to N concentration.  All possible decision trees were generated using as input all 

combinations of two and three elements of this set of wavelengths. The best of them was the decision 

tree shown in Figure 5. Its evaluation, shown in Table 5, was calculated using cross-validation. 
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Figure 4 Natural groups obtained by classifying the nitrogen concentrations using the Jenks Natural 

Breaks Classification method 

 

 

Table 3 Goodness of the linear regression built with the principal components (PCA) and the nitrogen 

concentration (percentage) 

Technique 
Number of 

components 

Significance of the model  

(p-value) 
R2 Adj R2 MSE RMSE 

PCA 10 0.00 0.68 0.67 0.20 0.45 

Adj R2: adjusted coefficient of determination. MSE: mean square error. PCA: principal component analysis. R²: 

coefficient of determination. RMSE: root mean square error.  

 

 

 

The 14 different nitrogen concentrations (%) recorded in the 108 plots and the four days of sampling

1.02 % 1.19 % 1.22 % 1.31 % 1.36 % 1.42 % 1.52 % 1.54 % 1.64 % 1.95 % 2.32 % 2.75 % 3.14 % 3.40 %

Group 3 Group 4

Classification by the Jenks Natural Breaks method

1.42 1.95 2.32 3.40

1.35 1.72 2.32 3.27
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1.02 1.52 2.32 2.75
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Table 4 Linear regression built with the principal components and the N concentration (percentage) 

 Coefficients p-value 

Constant 2.236 0.000 

Component Nº1 -0.013 0.000 

Component Nº2 -0.020 0.000 

Component Nº3 0.008 0.000 

Component Nº4 -0.001 0.551 

Component Nº5 0.009 0.001 

Component Nº6 -0.012 0.001 

Component Nº7 0.028 0.000 

Component Nº8 -0.053 0.000 

Component Nº9 0.003 0.742 

Component Nº10 0.027 0.028 

 

 

The resulting decision tree needs only the reflectance at 350, 1670 and 2170 nm to reach a success 

rate (average of all groups) of 66.2 %. The number of cases in each of the four groups defined was not 

the same. If the success rate for the model was calculated using a weighted average by the percentage of 

cases in each group, then the model had a success rate of 68.3 %. 

 

Table 5 Success rate of the decision tree 

Group  1 2 3 4 

Success rate  71.7 % 55.0 % 65.6 % 72.4 % 

      

Success rate (simple 

average) 

  66.2 % 

      

Group  1 2 3 4 

Weight of 

each group 

 27.8 % 13.9 % 22.2 % 36.1 % 

     

Success rate  

(average weighted by the  

percentage of cases in each group) 

68.3 % 
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Figure 5 Decision tree for the nitrogen concentration created using reflectance at three wavelengths 

 

None of the wavelengths traditionally used in the estimation of nitrogen (Rodriguez-Moreno and 

Llera-Cid 2011a)  has been included in the decision tree. This can be explained by the cultivar used in 

the study, the dual purpose triticale, where the greenness of the plant is not always a good estimator of 

N concentration. The reflectance at 350 nm has been associated with the photosynthetic activity (Ray et 

al. 2007; Ren et al. 2006) and the reflectance at short-wavelength infrared (1670 and 2170 nm) is 

related to water stress (L. Zhang et al. 2012; Wang et al. 2010), which sometimes is related to the N 

concentration (Zhao et al. 2004). These references indicate what could be the main biological meaning 

of the wavelengths used. 

The result of PCA showed that 95 % of the information contained in the spectral signature could be 

expressed with only 10 principal components.  Reflectance values at different wavelengths are not 

independent of each other and therefore it is not always easy to describe a pure biological reason for 

the identified wavebands. Others have shown that the wavelengths used in the decision tree are directly 

related to the N concentration at different phenological stages (Li et al. 2010; Koppe et al. 2010).  

The potential for spectral vegetation indices to estimate plant N concentration was evaluated. The 

test, based on the same data from the agronomic trial with triticale, determined that the best spectral 

index involved green reflectance, which reached a R2=0.31 (Rodriguez-Moreno and Llera-Cid 2011a). In 

this work, the proposed strategy performed better than spectral indices, such as NDVI. This has not 

been the first experience where the effectiveness of spectral vegetation indices has been surpassed. An 

example is the result obtained by Waheed et al. (2006), who were able to develop a decision tree with a 

classification success rate above 90 % in a similar experiment.  

The linear regression built with the goal to identify the principal components sensitive to N 

concentration, Tables 3 and 4, had a R2 of 0.68, which could resemble a success rate of 82.5 %. That 

value is slightly below the success rate achieved by Waheed et al. (2006). Major differences were 

expected for the peculiarities of a dual purpose triticale for having developed a model for a wider range 

of phenological stages and for the measures taken to increase the guarantees of predictive power. 

350 1670 2170

NO EXIT TO Group 4

YES

NO EXIT TO Group 1

YES

NO EXIT TO Group 4

YES

NO EXIT TO Group 2

YES

EXIT TO Group 3

Involved wavelengths (nm)

If ( Reflectance [1670 nm] < 0.48 )

If ( Reflectance [2170 nm] < 0.20 )

If ( Reflectance [350 nm]  <  0.08 )

If ( Reflectance [2170 nm] < 0.26 )
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Using only the reflectance at three wavelengths (success rate of 68.3 %, Table 5), instead of the full 

spectral signature (success rate of 82.5 %, Table 3), means a 14 % reduction in the success rate. The 

change also means employing a simpler model, probably with higher capacity to generalize space-time 

relationships. Such a methodology that is easier to implement, cheaper and that can be accomplished 

with a handheld device rather than a complex and expensive spectroradiometer could be sufficient. 

 

Discussion 
 

The high efficiency achieved in a complex scenario under rigorous evaluation has provided support 

for the hypotheses tested in this work. The proposed methodology is not comparable to that of NDVI or 

similar. Vegetation spectral indices have a solid biochemical-physical foundation and their usefulness 

can be tested quickly and cheaply. The foundation of the proposed methodology is statistical and 

therefore, the hypotheses involved need to be tested by many studies. The positive results in this test 

encourage continuing this line of research, which could improve the effectiveness and reduce the costs 

of implementation of radiometric techniques, thereby speed up the transfer to agriculture. 

The resulting decision tree is simple; any electronic device could implement it, a simple device that 

operates along the reflectance reader of the wavelengths involved in the decision tree. In the case of the 

model developed in the trial for the triticale, the wavelengths are available only via expensive 

spectroradiometers, the device used in the experience, but the methodology is equally applicable to 

simple spectral signatures obtained with cheap spectroradiometers. 

In section results, a biological justification of wavelengths involved in the resulting decision tree has 

been included. This is not a necessary step because the mathematical evaluation of the predictive power 

of the model is sufficient guarantee. Moreover, as this study has shown again, the information contained 

in the spectral signature of the crop is redundant so the identification of a clear biological meaning to 

each wavelength is unusual; wavelengths commonly respond to multiple factors, hence the need to use 

data mining in the processing of these signals.  

The model is therefore as simple as a spectral index of vegetation, but with greater effectiveness 

when it comes to categorizing plant N status. The success rate is only 14 % lower than that of the 

method that uses the full spectral signature, but since it is achieved with a simpler model, equally 

effective for a wide range of development conditions and growth, it is likely that its capacity to 

generalize space-time relationships is greater, thereby overcoming the handicap noted above. 

The results support the hypothesis of the existence of features in the spectral signatures that are 

closely related to N concentration. The results also demonstrate the appropriateness of dimension 

reduction techniques, decision trees and classification algorithms to process spectral signatures, 

preserving information on the nutritional status of the crop. Such confirmation could have considerable 

importance. Developing of this model required processing of over nine million pieces of data. In the 

case of developing a similar model with data taken from various scenarios (other locations, different 

weather, etc.), the data volume would grow so much that it would be impossible to process, even for 

supercomputing centers. The first step required to initiate such studies was to prove that the 

techniques are suitable for processing and analyzing crops spectral signatures, a data set that is large 

and complex. 
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A question that remains is the magnitude of the calibration necessary to use the resulting model in 

another scenario with the same success. The implementation of this methodology would require, at 

most, a calibration study per crop season. At this point, it is worth recalling the high variability in the 

experimental plots in terms of growing conditions, which means that the effort to adjust the model 

could be valid for a large area. Perhaps it is possible to design simple experiments to estimate the 

calibration parameters of the model, experiments that farmers could perform. 

The resulting model is ready to operate in a wide range of conditions, but its effectiveness is 

unknown. Fortunately, it is a challenge that is faced with a large arsenal of modeling and analysis 

techniques (derivative of the reflectance with respect to the wavelength or the time, neural networks, 

genetic algorithms, multivariate adaptive regression splines, etc.). These techniques have already 

demonstrated their enormous potential to solve problems of similar nature. The result obtained in this 

work has been evaluated as satisfactory; this is the reason why these techniques, more powerful in 

some ways, but also more complex, have not been employed. 

It is very likely that this study has determined the lowest threshold of efficacy for a dual purpose 

triticale that supports the grazing of livestock during its development, without ruining the final harvest; 

this makes it a special crop with additional difficulties for the development of radiometric models 

(details given in the introduction). It is expected that models developed for other cereals without a dual 

purpose can achieve greater effectiveness. This increase would be achieved by the combination of 

spectral vegetation indices and models developed using the proposed methodology. This needs to be 

proven and quantified, therefore further studies are needed. 

The resulting model requires direct-contact radiometric measurements of plant leaves. The next step 

is to determine whether, with measures of vegetation canopy reflectance, it is possible to reproduce the 

results. If that were achieved, then it would be appropriate to experiment with a high-efficiency system 

in real-time for the identification of the plant N requirements. 

Competing with vegetation spectral indices, NDVI or similar, in terms of profitability would be 

possible with more studies supporting the greater effectiveness of the models obtained using this 

methodology. This study has shown that there are models valid for large areas because they respond 

satisfactorily even for crops under different growth conditions and they only require a calibration study 

per crop season because the model can be valid for a wide range of phonological stages. While it is not 

satisfactorily resolved, the presented methodology will not end with the hegemony of vegetation 

spectral indices, although the resulting models have achieved higher efficacies in scientific works. 
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Abstract 
 

This paper presents a methodology for the spatial interpretation of plant parameters, which is used 

to diagnose the status of winter wheat. The crop monitoring took place in the Czech Republic in 2010 in 

two fields using uniform crop management (52 and 38ha). The survey was carried out at BBCH30 

phenological stage using a regular sampling grid with 150m distance between points (27 and 18points). 

The plant height and chlorophyll concentration (Yara N-Tester) were recorded and plant samples were 

taken to analyze the nutrients concentrations (N, P, K, Mg, Ca and S). A crop development index was 

developed from plant height and N-Tester values and compared with the results of plant analysis in 

order to determine the relationships, which were validated through spatial analysis. It may indicate the 

nutrients which limit plant grow at that stage. As a next step, the crop development index was 

compared with yield data to evaluate the success and stability in identifying the limiting factors. The 

method revealed that the limiting factors in the first field were potassium, calcium and nitrogen (in that 

order), nutrients significantly related to soil, climatology (surface functions) and relief. In the second 

field, the crop development index was not associated with any nutrient, but it was related to the 

topography (slope and moisture). Furthermore, it is found that in both cases the diagnoses were 

consistent with the DRIS diagnoses. The results show that if leaf analyses are complemented with the 
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characterization of crop development, it is possible to obtain successful diagnosis using statistical and 

spatial analysis. 

 

Keywords: Cereals / Crop development (biomass and crop vigor) / Diagnosis and Recommendation 

Integrated System (DRIS) / Plant nutrition / Site specific crop management / Spatial analysis 

 

Abbreviations used: DRIS (Diagnosis and Recommendation Integrated System); CDI (Crop 

development index); p-value ( Statistical significance); R2 (Determination coefficient); RMSE (Root mean 

square error); SF (Spatial factors); 

 

Introduction 
 

Diagnosis of the nutritional status of a crop identifies the treatment necessary to correct potential 

deficiencies and allows the crop to develop properly without input wastage (Barker and Pilbeam 2007; 

J. B. Jones 1998; Marschner 1995; Mengel and Kirkby 2001). Today, with the rise of precision 

agriculture it is necessary to repeat the diagnostic procedure in each land unit (Srinivasan 2006; 

Stafford 2007). This is why indirect methods which offer a rapid assessment of a crop’s nutritional 

status are sought, and why they rely upon the spatial relationship between samples to interpolate the 

results (Oliver 2010). 

As a result of agronomic trials, it has been possible to determine sufficiency ranges for the different 

nutrients of most crops (Marschner 1995; Rengel 1998; Reuter et al. 1998). Using other agronomic 

studies, faster but with a greater demand for computational requirements and statistical knowledge, it 

has been able to identify the relationships (ratios) between nutrients that characterize the plants of a 

particular crop which offer the best yield (Bailey et al. 1997a; Bailey et al. 1997b; Bailey et al. 2000; 

Beaufils 1973). Recent advances in this topic correspond to the identification of spectral features 

related to the nutritional status of the crop, resulting in the development of handsets that after a few 

minutes of reading in the field provide fertilizer recommendations (N-Tester of YARA International 

ASA, Germany). 

Agronomic studies leading to the identification of rules for the interpretation of leaf analysis have a 

particular configuration (Alves Mourão Filho 2005; Jeong et al. 2009; Krug et al. 2010; Partelli et al. 

2007; Soltanpour et al. 1995). It is not possible to experiment with all feasible configurations of crop 

development, which means that outside of that range of tested conditions, in real complex conditions, 

the adequacy of those rules of interpretation is unknown. 

Although agricultural practices and crop development correspond with one of the cases for which a 

given set of interpretation rules were developed, the assessment of nutritional status will not be 

available at all times. The methodologies that work with sufficiency ranges identify the phenological 

stage of the crop on which to carry out the sampling and the plant part to be analyzed to proceed to 

diagnose (Marschner 1995; Rengel 1998). The methodologies that use nutrient ratios were presented 

as being more robust in this section, but experimentation has shown that the sensitivity, although 

lower, continues (Agbangba et al. 2011; Amundson and Koehler 1987; R. Beverly 1987; R. B. Beverly 



 

F. Rodríguez Moreno Artículo Nº4 / Article # 4 57 de 97 

1991; M. E. Sumner 1977). Indirect methods are calibrated by means of some of the methodology 

described above. So, these methods inherit the same problems (Arregui et al. 2006; Liu et al. 2003), to 

which it has to add the errors inherent in using an indirect measurement instead of a leaf analysis. 

The interpretation of a set of leaf analysis from a given field should not be done individually because 

they are not independent samples. It is the reason why geostatistics can be used successfully in their 

extrapolation (Gholizadeh et al. 2009; Qian et al. 2009; Vieira and Gonzalez 2003). Studying the 

variability (differential development) of the crop at the field (Cao et al. 2012; Guo et al. 2010) might 

come to understand the causes. After deducting the diagnosis, the corrective treatment is obtained by 

combining agronomy, technology and economics. 

A methodology that studies the spatial variability of the crop has to start by defining an index to 

quantify the crop development. In this study that index is defined as the product of the reading of N-

Tester and the plant height in centimeters. Both are simple measurements related to a large number of 

determining factors in the development of cereals such as chlorophyll content  (Jhanji and Sekhon 

2011), the phenological stage (Escobar-Gutiérrez and Combe 2012), health status (Byamukama et al. 

2012), water stress (S. Ma et al. 2012; Niu et al. 2007), salt stress (L. Zhang et al. 2012), competitive 

stress (Yenish and Young 2004) and productivity (Ivanova and Tsenov 2011). 

The variance recorded by the crop development index (CDI) has to be caused by some factor. For 

example, the concentration of potassium is not right across the field. If that were to be the case, the 

study of the relationship between CDI and potassium concentration by regression and cross-validation 

(Draper and Smith 1981; Witten et al. 2011) would reveal a significant relationship whereby the 

potassium explains a certain percentage of the CDI variance . By reversing the process, one develops a 

diagnostic method for identifying the limiting factor for crop growth. However, it has to be accepted 

that the relationship with statistical significance implies a causal relationship that can be used 

successfully in agricultural management, a hypothesis shared by all the traditional methods. 

Spatial variability in the concentration of nutrients, the CDI (in the above example, potassium 

deficiency explaining the CDI should, in turn, be explained by means of a gradient in the soil properties 

…) and the crop yield are the result of the interaction between soils, climate, topography, anthropogenic 

activities and health incidents (Blandino et al. 2012; Fiez et al. 1994; Halvorson and Doll 1991; 

Kravchenko and Bullock 2000; L. P. Li et al. 2012; Miller et al. 1988; Patil et al. 2010; Sharma-Poudyal 

and Chen 2011; Wiik and Ewaldz 2009). The soil and climate may be unknown, but their effects can be 

successfully represented by the use of surface functions (Irmak et al. 2010; Jiang et al. 2010; L. Ma and 

Zuo 2012; Shi et al. 2012; C. C. Yang et al. 2004; Zandi et al. 2011). The effects of the relief have to be a 

function of topographic variables (elevation, slope, aspect, curvature and flow accumulation) (Fraisse et 

al. 2001; Pachepsky et al. 2001; Persson et al. 2005), which can be derived from a digital elevation 

model obtained through a simple differential GPS (DGPS). If agricultural management is uniform or 

known, only a health problem of the crop in its early stages, due to the spatial-temporal randomness of 

its occurrence (de Carvalho Alves et al. 2009; Demon et al. 2011; Jewell et al. 2009; B. Li et al. 2011; 

Meentemeyer et al. 2008; Plantegenest et al. 2007), would exceed the modeling capacity of the group 

formed by surface functions and topographic variables, known in this work as spatial factors (SF). 

Studies have taken place in which strategies close to these have been tested successfully (Akramkhanov 

et al. 2011; McBratney et al. 2003; Moore et al. 1993; Odeha et al. 1994; Park et al. 2001). 

There are two reasons to study whether the concentrations of nutrients, the CDI and the crop yield 

are related to spatial factors. Firstly, it serves as a check on the diagnosis because if a nutrient is 
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identified as limiting but it is not related to spatial factors, it would have to be considered a problem 

with the data or a lack of spatial relationship between samples. Secondly, these relationships with the 

spatial factors allow the interpolation of the variables and, thereby, obtain variable application maps 

and crop yield maps for the entire field. Both results are very important because of the small numbers 

of samples needed for the implementation of this methodology. In a small data set, the results are 

sensitive to outliers and the interpolation is limited using geostatistics because the number and 

distribution of data does not allow identifying of a reliable variogram (Oliver 2010). 

The aim of this study was to improve the interpretation of leaf analysis, complementing the 

traditional diagnostic with a spatial interpretation of plant parameters (SIOPP), which could provide 

own evidence for each scenario of the factor that is acting as limiting for the crop development. This can 

improve agricultural management, rationalize inputs, increase crop yield, reduce environmental impact 

and improve the profitability of farms, probably through the implementation of the new methodology in 

system decision support. 

 

Materials and methods 
 

Field experiments and data collection 

 

The data used in this study were obtained from an experiment carried out in two fields in the South 

Moravian region of the Czech Republic: The field Pachty (48° 59’ N, 16° 38’ E) with an area of 52.5 ha is 

located on a plain (elevation 176 – 182 m) with an average annual temperature of 9.2 °C, precipitation 

of 483 mm per year and a predominant soil type described as chernozem. The field Haj (49° 15’ N, 

17°06’ E) has an area of 37.8 ha and is located in hilly terrain (elevation 280 – 342 m) with a haplic 

luvisol soil type, average annual temperature of 9.25 °C and precipitation of 542 mm per year. In 2010, 

both locations were planted with winter wheat (fore-crop: sunflower at Pachty, spring barley at Haj) 

and the crop management was uniform within each field.  

In BBCH 30 growth stage (Zadoks et al. 1974), plant samples were taken for analysis of nutrients in 

dry matter (content of N, P, K, Ca, Mg and S) according to the methodology valid in the Czech Republic 

(Zbíral 2005). Simultaneously with plant sampling, chlorophyll concentration using an N-Tester (YARA 

International ASA, Germany) and the height of plants were measured, they are plant parameters used in 

this study. The survey was done in a regular grid of 150 x 150 m (27 samples in Pachty, 18 in Haj) 

within a circle of 5 m of diameter at each sampling point (Figure 1).  

To get information about the final production at both locations, yield sampling was carried out with 

the same point grid two weeks before harvest. Spikes were cut from an area of 0.2 m2 at two places 

within a circle of 5 m of diameter at each point of the 150 m sampling grid. The spikes were threshed in 

lab and yield was estimated as t. ha-1. 
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Figure 1 Sample points and digital elevation model in the field Pachty (left) and in Haj (right) 

 

The digital elevation model was obtained using differential GPS (DGPS) measurement with Trimble 

Pathfinder ProXH in 2005 (Pachty) and 2009 (Haj). Elevation data were processed using ESRI ArcGIS to 

get the final DEM grid with resolution of 5 m per pixel and to calculate DEM derivatives (elevation, 

slope, curvature, aspect and flow accumulation).  

 

Data analysis 

 

The results of crop measurement (plant height and N-Tester) were used to establish the crop 

development index (CDI) using a simple equation: CDI = N-Tester * Plant height (cm). Both are simple 

measurements related to a large number of determining factors in the development of cereals (factors 

discussed above). Thus, this crop development index summarizes information on biomass and crop 

vigor and it can serve as an estimate of crop yield (Colla et al. 2008; Schepers and Holland 2012; 

Silvertooth and Norton 1999). Studying the index record would be possible to identify the threshold of 

viability, above which the intervention is cost effective in the field. 

The variance of the CDI is an estimate of the spatial variability in the crop development (biomass and 

vigor). When working in a real agricultural field and with a low cost sampling, part of this variance is 

due to chance and sampling error, which could be estimated and used as threshold (it should also take 

into account the costs of adopting precision farming). If the coefficient of variation of CDI is below the 

threshold, the most likely explanation is that the crop development is uniform and therefore the best 

answer would be the realization of a pair of leaf analysis following a random sampling, averaging the 

results of laboratory, interpretation of analysis by traditional methods (sufficiency ranges or ratios 

between nutrients) and adoption of a uniform agricultural management in the whole field.  
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In case of rejecting the hypothesis of uniform crop development, it should be studied the 

relationship between CDI and spatial factors (SF). The SF (surface functions and topographic variables) 

represent the gradients in meteorology / climatology, soil and topography, which should be the natural 

cause of the spatial variability of CDI in the two fields (indications for other scenarios provided above). 

If the CDI was not related to the SF, the hypothesis of spatial relationship between samples would 

have to be rejected and therefore it would be necessary to use the advanced techniques to delineate 

site-specific management units (Aimrun et al. 2011; Buttafuoco et al. 2010; Corwin and Lesch 2010; 

Guastaferro et al. 2010; Ortega and Santibáñez 2007; X. Zhang et al. 2010). This means using of the 

methods of precision agriculture such as the remote sensing, crop maps, electrical conductivity of soil, 

etc.  

If the crop development was deficient and/or uniform or if there was not spatial relationship 

between samples, in any of the cases, the profitability of sampling and leaf analysis would be negative. 

This new methodology incorporates the above steps because they represent only a small additional 

effort and provide valuable information that helps to deduce the correct diagnosis. The improvements 

do not end here; reached the point where is evident the need for foliar analysis, the study of the CDI 

map helps determine the number and location of samples (the CDI map for the entire field is obtained 

using the model with the SF). 

The fourth stage is the study of the correlation between the CDI and the concentration of each 

nutrient. This is studied independently by calculating the corresponding p-value and coefficient of 

determination (R2).  Cross-validation was used for better assessment of the significance and magnitude 

of the relationships, the goal is to identify relations with predictive capacity (Antoniadou and Wallach 

2000; Guisan and Zimmermann 2000; Muñoz and Felicísimo 2004; Steyerberg et al. 2001). The result of 

cross-validation is sensitive to the grouping because of the small number of samples (27 samples in 

Pachty, 18 in Haj), therefore 20 different random groupings were defined and the cross-validation was 

repeated for each of them (Cheng et al. 2010; Das et al. 2008; K. Yang et al. 2011). The result was the 

average of all evaluations. All calculations and statistical analyses were conducted using the software 

Matlab 2009b. 

Exploring the regression model relating the CDI and a given nutrient can discover three important 

characteristics: 

 It is possible to determine whether the nutrient is excessive (negative relationship with the CDI) 

or deficient (positive relationship). 

 Comparing the coefficient of determination obtained by the different nutrients, it is possible to 

establish the order of importance, from the most important (which is responsible for the greatest 

variance in the CDI) to the least important. 

 Knowing the cost of each fertilizer and studying the type of response between nutrient and CDI 

(linear, cubic, exponential ...), it is possible to determine whether that nutrient would get the 

largest increase in crop yield at lower cost. 

If two or more nutrients are identified as limiting (significantly related to CDI), there is the 

possibility that their effects are related because the problem of one of them induces the problem in the 

other. In that case, the set of interrelated nutrients would present a high correlation and therefore it 

could be detected by evaluating the significance (p-value) and strength (R2) of the relationship between 

nutrients by cross-validation, the same process as described above. If two or more nutrients are linked 

by a relationship of cause and effect, one would have to identify which of those nutrients explains more 
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Crop development
(biomass and vigor)

Nutrient 
concentration

Imagine twenty-four samples with two errors (below), one due to an unrepresentative sample 
and the other to a laboratory error, both lead to overestimate the concentration of the nutrient.

There is a significant relationship with a high coefficient of determination (left). 
How could one know that this result is skewed by outliers?

Statistical procedures, such as Cook's distance, would warn of two points with great weight in the 
regression. Working with small dataset that will happen often and not always indicate outliers 
but insufficient sampling

Spatial analysis can solve the problem. In the example, the set of points would adjust well to a 
plane (below), this is because 92% of the data is correct and practically constant. If attention is 
directed to the suspect data one would see that they have larger errors than the rest and that if 
the relationship was reevaluated by cross validation the coefficient of determination would fall 
significantly.

 The lack of spatial coherence is the argument for rejecting the relationship between crop growth 
and nutrient.

Diagnosis of outliers using spatial analysis

Crop development
(biomass and vigor)

Nutrient concentration

Errors

Errors
Crop development gradually increases from left to right and 

the nutrient concentration is constant in the field (error free)

variance of the CDI and consult agronomic text to confirm that a problem with that nutrient may induce 

problems with the other nutrients involved. 

In the fifth stage, the models that relate the concentrations of nutrients (those identified as limiting) 

with spatial factors have to be developed (as with the CDI). In both fields, there has been a uniform 

agricultural management and no health problem has been reported. In this scenario, if the crop 

development is not uniform (CDI is not close to constant), both the CDI as those nutrients responsible 

for its variability (limiting factors) have to be modeled as a function of spatial factors. If this 

requirement is not fulfilled, the diagnosis had to be rejected. The number of data involved is small and 

therefore sensitivity to outliers is very high.  

Errors in sampling or analysis may alter the regression model between the nutrient and the SF, 

occasionally improving the goodness of fit and thus giving rise to a false identification as limiting. The 

same errors that very likely deteriorate the spatial structure of the data, which is why this fifth step 

serves as a check and has a capital importance. This procedure is inspired by the work of authors who 

have verified the spatial structure of the results obtained in different locations to evaluate the method 

used in the analysis (Basso et al. 2001; Grohs et al. 2009; G. Jones et al. 2010a, 2010b, 2010c). An 

illustrative figure of this diagnosis of outliers using spatial analysis is shown in Figure 2 and a flowchart 

summarizing the above is shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Explanation of how spatial analysis can help in identifying outliers 
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 Is crop development correct?
Historical series to determine the relationship between the crop development index and the crop yield 
and market data to determine the threshold for cost-effective intervention in the field.

Adoption of agricultural practices to 
improve soil fertility or low input crop 
management.

Is variable crop development in the field?
Evaluate whether homogenization of crop yield (crop yield equal to that estimated by the highest crop 
development index recorded in field) becomes profitable to adopt precision agriculture.

Making a pair of leaf analysis 
following a random sampling, 

averaging the results, traditional 
interpretation of the average leaf 
analysis and uniform agricultural 

management.

Is crop development related with spatial factors?
Stepwise linear and nonlinear regression with the crop development index as the dependent variable and 
latitude, longitude and topographic variables as independent variables.

NO

NO

YES

YES

Is any nutrient associated with the crop development index?
The existence of a statistically significant relationship can mean a cause-effect relationship for identifying 
limiting factors (hypothesis shared with the rest of methods for the interpretation of foliar analysis).

There is no spatial relationship 
between samples, advanced 
techniques of zoning could be used 
for the delimitation of 
management units.

1. Study the map of the CDI for the entire field for a better estimate of the number and location of leaf analysis.
2. Evaluate whether some of the spatial factors related crop development index could be the direct cause of the 
spatial variability (altitude, orientation,...).

YES NO

Spatial factors related to the 
crop development index are the 
cause of the spatial variability 
along with chance. The research 
could go deeper conducting a 
soil sampling and obtaining 
weather maps of the field.

Is the relationship biased by any outliers?
Diagnosis of outliers by spatial validation.

The diagnosis is rejected because 
of doubts on the quality of the 
data.

The agronomic diagnosis  incorporates the nutrients as limiting factors.
The field maps of the crop development index and these nutrients, created by interpolation using spatial 
factors, are used to create the map of variable rate.

YES

YES

NO

NO

The models obtained in the final stage can be used in the interpolation of the data obtained in the 

sampling to the entire surface of the field, maps that could become variable rate maps. The latter is 

possible by identifying the concentrations of nutrients in the sample points where the highest levels for 

the CDI are recorded, the difference between these concentrations and the concentration at a given 

point, adjusted for the growth stage and plant density, determines the correction (dose of fertilizer). 

The interpolation using geostatistics is limited because the small number and distribution of samples, 

which not allows identifying of a reliable variogram (Oliver 2010), reason why these outputs in map 

form are very important. 

Models relating the index of crop development (CDI), the concentrations of nutrients and the crop 

yield with the spatial factors (surface functions and variables topographic) have been developed using a 

stepwise linear and nonlinear regression (Draper and Smith 1981; Fox 1997; Hocking 2003; Rawlings 

et al. 1998). In case that the model is significant, it is evaluated by the cross-validation. In all stages of 

this research that used cross-validation, this has been done in the same way as described above and the 

same 20 sorting of the data were used.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Flowchart summarizing the steps of the methodology spatial interpretation of plant 

parameters (SIOPP) 
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Evaluation 

 

The evaluation begins with the interpretation of leaf analysis by the Diagnosis and Recommendation 

Integrated System (DRIS) (Beaufils 1973), using the norms for winter wheat obtained in the USA 

(Amundson and Koehler 1987), Canada (Amundson and Koehler 1987)  and China(X. Li et al. 2005). The 

aim is to check whether the diagnoses obtained by traditional methods are consistent with those 

obtained by the spatial interpretation of plant parameters (SIOPP). There will also be a study made 

between the two fields to verify whether the relationship between the CDI and the nutrient balance 

index (NBI), obtained from the DRIS, is the expected one and if it is constant. 

The second step in the evaluation is to check if the CDI is related to crop yield. An extraordinary 

event could change the existing spatial pattern during sampling, if that event has not occurred between 

sampling (BBCH 30 growth stage) and harvest, the CDI should be related to crop yield because none of 

deficiencies that could exist were corrected. For the same reason the nutrients identified as limiting 

have to be significantly related to crop yield, even the order of importance has to be kept. Quite the 

opposite happens if something occurs between sampling and harvest, then neither the CDI nor nutrient 

concentrations recorded in the sampling should be related to crop yield.  

The last step is to study the relationship between crop yield and spatial factors. Regardless of 

whether anything has happened between sampling and harvest or not, the crop yield has to be able to 

be modeled by the spatial factors. That model would serve to create a crop yield map of the whole field 

and it could help to identify the incidence that could happen between sampling and harvest. 

The foregoing is applied to the study presented in this article. In the case of implementing the 

recommendations obtained by this methodology, the evaluation procedure should be reversed. If the 

diagnosis is right and it has been put into practice then it is expected to get a uniform crop yield. If crop 

yield was close to constant over the entire surface, with the natural variations due to chance and 

sampling error, then there cannot be significant relationship with the CDI or the SF. 

Comparison between the Diagnosis and recommendation integrated system (DRIS) and the Spatial 

interpretation of plant parameters (SIOPP) 

Given the popularity of DRIS for interpreting leaf analysis, is understood that a presentation of the 

similarities and differences between DRIS and SIOPP will help better understand SIOPP. The 

information provided about DRIS in this section comes from an extensive literature review (Amundson 

and Koehler 1987; Arizaleta Castillo et al. 2006; Bailey et al. 1997a; Bailey et al. 1997b; Bailey et al. 

2000; Beaufils 1973, 1975; Beaufils and Sumner 1977; R. B. Beverly 1991; Caron and Parent 1989; 

Gascho and Elwali 1984; Hartz et al. 2007; Letzsch 1984; X. Li et al. 2005; Mourão Filho 2004; Nachtigall 

and Dechen 2007; Parent 2011; Partelli et al. 2007; Raj and Rao 2006; Reis Jr 2002; Reis Junior and 

Monnerat 2003; Savoy Jr and Robinson 1990; Singh et al. 2012; Souza et al. 2011; M. Sumner 1977; M. 

E. Sumner 1977; Sumner and Beaufils 1975; Talkner et al. 2011).  

Identifying the DRIS norms for a crop and geographical area usually begins by selecting a large 

number of fields. Several sampling in order to determine the concentration of nutrients during crop 

development and a final visit to record crop yield will be made in these fields. This huge data set (DRIS 

data set), representative of the most nutritious states and development conditions, is one of the 

strengths of the DRIS methodology for interpreting leaf analysis, the knowledge derived from it has 

great statistical support.  
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In the case of the spatial interpretation of plant parameters (SIOPP) is not necessary a study to 

identify the set of norms of interpretation, it only needs a small data set collected in the field that has to 

be diagnosed (the methodology is available to any crop as long as its CDI has been identified, which has 

been proved simple and is independent of the geographical area). The purpose is the agronomic 

diagnosis of that field; the recommendations will not be generalized to other field, so that the greater or 

lesser variance that is captured in this field is all that is needed. It will be analyzed to try to determine 

the factor or factors responsible for the spatial variability in the crop development (biomass and crop 

vigor). 

DRIS dataset is processed through a combination of brute force (calculation of all possible ratios 

between the concentrations of nutrients, sometimes restricted to those pairs whose evolution during 

crop development follow the same trend) and statistics (each of these ratios between nutrients is 

evaluated using statistical tests to check for statistical significance that supports the use of this ratio to 

distinguish the crops with high and low yield).   

That analysis method is not suitable for processing the data set obtained in a field because of the 

lower volume of data and variance. Since samples are not independent because they would come from 

the same field (it is unlikely that agronomic parameters vary randomly at small scale in a field), is 

possible to use regression models (linear and nonlinear), tests of statistical significance (ANOVA) and 

cross validation to identify the factor or factors responsible for the gradient in the crop development 

(biomass and crop vigor) registered in the field. 

There is a common point of great importance between the two methodologies. The statistical 

methods used are different but the result is the same, identifying a statistically significant relationship 

between a factor (nutrient or other) and the crop development / yield. Both methods rely on that 

statistical relationship corresponds to a cause - effect relationship and therefore the crop yield can 

increase if one acts on the factor. 

SIOPP uses an index of crop development (biomass and vigor) as reference instead of crop yield. This 

is the result of a necessity since SIOPP does not use information from a previous study and it has to 

provide a diagnosis at the time of sampling, when the crop yield is not available. The advantages of 

using an index of crop development are as follows: 

The agronomic diagnoses will not be influenced by events that might occur between sampling and 

harvest. 

Before spending resources on leaf sampling, it is possible to obtain a diagnosis which determines: 

 If the expected crop yield makes cost effective the intervention in the field.  

 If the crop is uniformly developed and therefore the best answer would be to adopt a uniform 

agricultural management. 

 If there is spatial relationship between the samples, because otherwise advanced techniques of 

zoning for the delimitation of management units would be need. 

 The CDI map for the field helps estimate the number and location of leaf samples, avoiding 

wasting resources. 

Another difference between DRIS and SIOPP is the use of spatial factors (SF), it would be possible to 

study its incorporation into the DRIS but where the SF are essential and they give maximum benefit is 

in SIOPP. Thanks to them, five following objectives can be achieved: 
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 Study of spatial patterns. 

 Diagnosis of outliers. 

 Data interpolation. 

 Help in identifying non-nutrient limiting factors. 

 Support for the study of events that break the relationship between the crop development index 

and crop yield. 

 

Results and discussion 
 

Field Pachty 

 

The coefficient of variation of the different nutrients ranges from 10 to 20% (Table 1), reason for 

determining the crop does not have a uniform development. This judgment is reinforced by knowing 

the coefficients of variation of N-Tester and crop height and it is confirmed by observing the variance in 

crop yield. 

 

Table 1 Statistical summary of the plant parameters for the field Pachty 

Pachty N (%) P (%) K (%) Mg  (%) Ca  (%) S (%) N-Tester Height (cm) CDI Yield (t.ha-1) 

Mean 3.654 0.349 3.347 0.106 0.276 0.202 441.00 28.822 12795 7.963 

St.dev. 0.382 0.055 0.350 0.020 0.052 0.021 52.637 3.900 2702 1.562 

Kurtosis 1.287 -0.934 0.307 0.062 -0.685 0.687 -0.658 -0.300 -0.677 -0.611 

Skewness 0.957 0.340 0.514 0.798 0.128 0.203 -0.268 0.420 0.048 0.544 

Minimum 3.12 0.27 2.78 0.08 0.20 0.16 336.00 21.30 7796 5.60 

Maximum 4.75 0.45 4.24 0.15 0.38 0.26 517.00 37.00 17786 11.06 

CV (%) 10.45 15.70 10.46 19.10 18.84 10.36 11.94 13.53 21.12 19.62 

n= 27 27 27 27 27 27 27 27 27 27 

 

The convenience of using CDI in place of the reading of N-Tester or plant height was supported by 

the literature and it is confirmed by checking that the variance of the product is far superior to the 

individual variances, the CDI collects more information on crop.  

The crop development is satisfactory because the readings of the N-Tester and the crop height are 

within the normal range for that growth stage determined by the historical data of the crop. The second 

requirement for the implementation of the methodology is that crop growth is not uniform, also 

satisfied given the coefficient of variation of CDI, about 21%.  The third requirement is the existence of a 

significant relationship between the CDI and SF, which would confirm the spatial structure of the CDI 

and the causal role of SF. The coefficient of determination obtained proves the hypothesis, the 

requirement are meets. 

The regression model between CDI and SF shows complicated interactions between surface 

functions and topographic variables, which results in a complex spatial pattern shown in Figure 4 (left). 

This map suggests increasing the number of samples in the field compared to that used in the 
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characterization of CDI and it provides indications of where they should be taken. In this experiment 

the number and location (regular grid) were kept. The result of this decision can be seen in the Table 2, 

the quality of the maps obtained for the nutrients and the crop yield are low, the suggestion was 

appropriate. 

All requirements are met so it is possible to carry out a spatial interpretation of plant parameters 

(SIOPP), the results of the next step, the study of the relationship between CDI and nutrients, together 

with other studies, are shown in Table 2. 

 

Table 2 Coefficients of determination among plant analysis results, CDI index, yield and spatial factors 

for the field Pachty obtained by cross-validation 

Pachty N (%) P (%) K (%) Mg  (%) Ca  (%) S (%) CDI Yield (t.ha-1) 

Yield 0.307** 0.033 0.552** 0.277** 0.428** 0.320** 0.515** 1 

CDI 0.159* 0.132 0.490** 0.123 0.311** 0.126 1 0.515** 

Spatial factors 0.270* 0.485** 0.170* 0.274** 0.309** 0.376** 0.563** 0.168 

The subscript numbers correspond to the coefficients of determination in the regression; they were not significant 

and therefore not proceeded to the cross-validation. 

 

The concentrations of potassium, calcium and nitrogen are positively related to the crop 

development index; these are the nutrients that could be acting as limiting (Table 2). The correlations 

between them are shown in Table 3. All of them are significant but none reached a high value, the 

expected value for two nutrients linked by a relationship of the type inductor-induced. In winter wheat 

this relationship exists between nitrogen and sulfur (Järvan et al. 2012; Rasmussen 1996; Rasmussen 

and Douglas Jr 1992), having found between these nutrients a significant relationship with a coefficient 

of determination of 0.64. 

 

Table 3 Coefficients of determination among nutrients significantly related to CDI obtained by cross-

validation 

leaf_N leaf_K 0.24* 

leaf_N leaf_Ca 0.28** 

leaf_K leaf_Ca 0.22* 

 

The K, Ca and N, in that order by percentage of variance explained of the CDI, are confirmed as 

limiting factors after checking that their concentrations are significantly related to spatial factors (Table 

2). The results obtained indicate that the priority action to improve crop develop would be a variable-

rate fertilizer application to correct the most likely limiting factor, potassium deficiency. It would also 

recommend correcting the deficiencies of calcium and nitrogen. Each nutrient has its own variable-rate 

application map derived from the interpolation to the entire surface of the CDI and the nutrient, using 

for this purpose the spatial factors. The concentration of the nutrient in the reference points, those in 

which the CDI reaches the highest values, is the level that the nutrient has to reach across the field, the 
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difference is calculated and corrected by phenological stage and crop density, the result is the fertilizer 

dose to be applied. 

It is important to differentiate between the diagnosis and corrective treatment. With the same 

diagnosis the treatment varies depending on whether it wants to improve crop yield in the campaign or 

to find an efficient system.  The results obtained by comparing the crop development index with 

nutrients (the identification of calcium as limiting) and the study of the maps of distribution of 

nutrients (Figure 4) warn about a problem with soil pH, so a correct treatment for potassium and 

nitrogen will force the plant development through the use of fertilizers (which will require the use of 

larger amounts of input each year). The alternative is to direct efforts to reach an efficient and 

sustainable soil (L-Baeckström et al. 2006; Miao et al. 2011; Míša and Křen 2001; Wienhold and 

Halvorson 1998). 

Usually it chooses the first alternative, which explains why foliar analysis is a tool used in special 

cases where the crop yield in a given field has fallen to a point that investment in inputs is not 

profitable. In the diagnosis of this problem is where the methodologies for the interpretation of leaf 

analysis play a decisive role. Having an alternative to the sufficiency ranges and relationships between 

nutrients (DRIS and similar), which incorporates new techniques developed in recent decades (GPS, GIS 

...), will increase the chances of success. 

The nutritional balance index (NBI) with China norms reaches a 22.95, with USA and Canada norms 

the value stands at about 52 (Table 4). There is agreement between the DRIS diagnoses and the CDI to 

identify the existence of a severe nutritional imbalance in the development of the crop. Then the DRIS 

index for each nutrient will be studied to identify those responsible for the nutritional imbalance. 

 

Table 4 Statistical summary of nutritional balance index (NBI), DRIS norms from USA, Canada and 

China for the Pachty field 

Pachty NBI (USA) NBI (Canada) NBI (China) 

Mean 51.837 51.928 22.949 

St.dev. 9.196 13.140 13.315 

Kurtosis -0.701 -0.058 -0.476 

Skewness 0.461 0.728 0.672 

Minimum 36.94 32.22 4.83 

Maximum 71.67 84.05 52.82 

CV (%) 17.74 25.30 58.02 

n= 27 27 27 

 

Each set of DRIS norms points to a different nutrient as limiting (Table 5). This lack of consensus 

highlights the need to obtain a set of DRIS norms specific for this scenario and prevent from identifying 

an incompatibility between DRIS and spatial interpretation of plant parameters (SIOPP).  

Phosphorus is identified as limiting, with different severity, for the three sets of DRIS norms. That 

nutrient limitation was not identified as limiting by the methodology of spatial interpretation of plant 

parameters. Figure 4 (left) shows the crop reaches maximum levels of development in areas where the 



 

F. Rodríguez Moreno Artículo Nº4 / Article # 4 68 de 97 

concentration of P has minimum values. Given this evidence with statistical significance obtained in the 

data set of interest and the fact that crop yield is not significantly related to P (Table 2), the more 

plausible explanation is that the identification of P as a limiting factor is an error of the sets of DRIS 

norms used. 

The rest of the DRIS diagnostic coincides with what is deduced by analyzing spatial. Potassium and 

nitrogen are limiting factors and the sulfur is not a problem in the two sets of DRIS norms, USA and 

Canada, where it is included in the calculations. 

 

Table 5 Summary statistics of DRIS indices for nutrients with the norm from USA, Canada and China for 

Pachty 

DRIS norms from USA CANADA CHINA 

DRIS indices for N K P S N K P S N K P 

Mean 13,848 9,072 8,729 20,189 5,419 15,765 8,294 22,341 10,319 3,987 8,642 

St.dev. 3,325 3,648 2,450 3,583 4,191 6,434 3,887 5,609 5,230 2,396 5,981 

Kurtosis -1,449 -0,426 -1,446 -0,252 -1,515 -0,494 -1,354 -0,317 0,325 -0,060 -1,171 

Skewness 0,148 0,696 0,372 -0,011 0,054 0,625 0,219 -0,332 0,854 0,663 0,432 

Minimum 8,726 3,344 5,402 13,290 -1,245 5,139 1,984 10,312 1,940 -0,004 1,155 

Maximum 19,661 17,622 12,511 27,350 11,661 30,606 14,885 31,551 23,395 9,658 19,766 

CV (%) 24,014 40,208 28,074 17,749 77,334 40,809 46,862 25,104 50,678 60,104 69,202 

n= 27 27 27 27 27 27 27 27 27 27 27 

 

Percentage of cases 

Position after 

ascending sort 

USA CANADA CHINA 

N K P S N K P S N K P 

1º 0.00 7.41 81.48 11.11 100.00 0.00 0.00 0.00 0.00 29.63 70.37 

2º 55.56 37.04 7.41 0.00 0.00 0.00 70.37 29.63 88.89 11.11 0.00 

3º 44.44 55.56 0.00 0.00 0.00 92.59 7.41 0.00 11.11 59.26 29.63 

4º 0.00 0.00 11.11 88.89 0.00 7.41 22.22 70.37  

 

Differential treatment was not applied so only if there had been some incidence from sampling to 

harvest, it could happen that crop development index was not related to crop yield. The coefficient of 

determination between development index and crop yield reached 0.51 (significant result evaluated by 

cross-validation), the hypothesis regarding the incidence was rejected and therefore the concentrations 

at BBCH 30 growth stage of the nutrients identified as limiting factors also have to be significantly 

related to crop yield and keep the order of importance (order by percentage of variance explained of 

the CDI). The coefficient of determination between the crop yield and potassium is 0.55, with calcium 

had 0.43 and with nitrogen 0.31 (Table 2). 

In the field Pachty has been possible to deduce a successful agronomic diagnosis without the need of 

any prior study and without relying on the ability to generalize of a set of norms of interpretation 

obtained in another geographic area and / or with another crop. 
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Figure 4 Interpolations based on spatial factors of the CDI (left) and of the concentration of P (right) in 

Pachty 

 

Field Haj 

 

The coefficient of variation for the different nutrients ranged between 3 and 8%, in that order of 

magnitude is unlikely that the crop was developing very heterogeneous (Table 6). This hypothesis is 

strengthened by knowing the coefficient of variation of the reading of N-Tester and the height of the 

crop, about half that recorded in Pachty, and it is confirmed by knowing the crop yield. The coefficient 

of variation of crop yield is situated 3 percentage points above the CDI; this is not an important 

variation but it reaches a magnitude more difficult to explain by random that the variability of CDI. 

The convenience of using CDI in place of the reading of N-Tester or the height of the plant is again 

supported by checking that the variance of the product is higher than the variances of the factors, the 

CDI provides more information on the crop (Table 6). 

Both the N-Tester readings and crop heights are within normal for that growth stage determined by 

the historical data. The crop development is satisfactory but the second requirement of the 

methodology, a heterogeneous development of the crop, only partially meets. The coefficient of 

variation of the CDI is about 10%, it is a low value in trials of this nature and it could be caused by noise 

or random.  The doubt is solved by knowing that there is a significant relationship between the CDI and 

SF reaching a determination coefficient of 0.53. This means that there is spatial relationship between 

the samples and only 47% of the small variance cannot be explained by the SF, percentage of variance 

that can be caused by noise or random. 
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Table 6 Summary statistics of the plant parameters for field Haj 

Haj N (%) P (%) K (%) Mg  (%) Ca  (%) S (%) N-Tester Height (cm) CDI Yield (t.ha-1) 

Mean 5.000 0.492 3.641 0.112 0.488 0.328 584.78 29.428 17214 9.827 

St.dev. 0.155 0.034 0.208 0.005 0.033 0.029 29.389 2.242 1632 1.232 

Kurtosis 0.188 0.086 0.281 -0.436 -0.694 3.653 0.180 1.445 0.417 -0.094 

Skewness -0.688 -0.656 -0.454 -0.655 0.063 1.163 0.628 -0.001 0.176 0.764 

Minimum 4.68 0.42 3.16 0.10 0.43 0.28 537.00 24.40 13786 7.97 

Maximum 5.24 0.54 3.95 0.12 0.55 0.41 646.00 34.50 20528 12.32 

CV (%) 3.09 6.94 5.71 4.73 6.84 8.86 5.03 7.62 9.48 12.54 

n= 18 18 18 18 18 18 18 18 18 18 

 

The relationship between the CDI and SF is supported mainly by a simple surface function, a 

decreasing gradient from southeast to northwest (Figure 5 left). In the next stage it will examine 

whether that gradient corresponds to some nutrient, but first is the sampling for leaf analysis. As in the 

field Pachty, the sampling for determination of CDI and foliar sampling is coincident, but unlike what 

happened in the field Pachty, in the field Haj the spatial pattern is simple (Figure 5 left) so the number 

and location of samples (regular grid) is correct and therefore the interpolations will have higher 

quality (the sampling could have been even smaller). 

The requirements are fulfilled and therefore the results of the next stage of the methodology, the 

study of the relationship between CDI and nutrients, together with other studies, are presented in Table 

7. 

 

Table 7 Coefficients of determination among plant analysis results, CDI index, yield and spatial factors 

for field Pachty obtained by cross-validation 

Haj N (%) P (%) K (%) Mg  (%) Ca  (%) S (%) CDI Yield (t.ha-1) 

Yield 0.008 0.006 0.002 0.002 0.000 0.116 0.092 1 

CDI 0.000 0.068 0.099 0.156 0.088 0.020 1 0.092 

Spatial factors 0.455** 0.179 0.352* 0.246 0.288* 0.538** 0.527** 0.758** 

The subscript numbers correspond to the coefficients of determination in the regression; they were not significant 

and therefore not proceeded to the cross-validation. 

 

None of the nutrient is significantly related to CDI and therefore there are no cross-correlations to 

study. There is not a large spatial variability of nutrients and therefore this result is not surprising, the 

question is whether the small spatial variability captured by the CDI is due to a gradient in soil 

properties, a gradient in moisture, etc.  With the information available is not possible to identify the 

cause, the research could go deeper conducting a soil sampling and obtaining weather maps of the field. 

This information is not necessary for the purpose of this study, the facts are conclusive. None nutrient is 

identified as the cause of the low variability in the CDI and the crop is developing well and almost 

homogeneous. It is not possible to adjust the fertilizer plan in order to homogenize the crop yield. 

Under these circumstances the recommendation is to apply a generous and uniform fertilization. 
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The nutritional balance index (NBI) with China norms reaches a 24.59, with USA norms 20.41 and 

with Canada norms 15.20 (Table 8). The severity of nutritional imbalance is much lower than in Pacthy 

and that coincides with what is deduced from the CDI. 

 

Table 8 Summary statistics of nutritional balance index (NBI), DRIS norms from USA, Canada and 

China, and CDI for Haj 

Haj NBI (USA) NBI (Canada) NBI (China) 

Mean 20.411 15.197 24.592 

St.dev. 6.182 5.315 5.501 

Kurtosis 1.897 1.732 0.130 

Skewness 0.309 -0.052 0.697 

Minimum 6.24 3.09 16.71 

Maximum 34.62 27.59 36.81 

CV (%) 30.29 34.98 22.37 

n= 18 18 18 

 

The results provided by each set of DRIS norms mainly coincide with what they diagnosed for the 

field Pachty (Table 5 and 9). The fields Pachty and Haj differ in the soil, climate and topography, but 

they share the crop, winter wheat, and agricultural practices, good agricultural practices to get a high 

and uniform crop yield. Since agricultural practices follow the lead of agronomic studies conducted for 

years by the research centers of the Czech Republic, it is understood that partial matching between 

diagnoses is due to the mismatch of the DRIS norms for winter wheat is the same in both plots, skewing 

toward the same nutrient each set of norms, natural mismatch since none of them are calibrated to the 

conditions of the experiments. 

The 53% of the small variability recorded in the crop growth is explained mainly by a function of 

surface (Figure 5 right and Table 7), the gradient does not coincide with the spatial distribution of P, N 

or K in the crop. The simplest explanation for that 53% of the variance is a gradient in the soil and / or 

climate (microclimate) on the field. The remaining 47% of the variance could be caused by random or 

an imbalance in the P, N, K, or combination thereof. In any case the magnitude of the problem is very 

small (47% of a small variance) to be sensed in a data set so small and to have a significant effect on 

crop yield, which is verified. 

The common denominator between the different sets of DRIS norms and the diagnostic based on the 

spatial analysis is the lightness assigned to the problem responsible for the spatial variability of crop. 

The compatibility is in the key point because the crop yield shows that the crop grew well and almost 

homogeneous. 
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Table 9 Summary statistics of DRIS indices for nutrients with the norm from USA, Canada and China for 

Haj 

DRIS norms from USA CANADA CHINA 

DRIS indices for N K P S N K P S N K P 

Mean 6,530 -1,103 3,074 9,069 -1,750 -1,316 -1,555 8,573 13,560 5,824 5,208 

St.dev. 1,612 1,795 0,980 3,883 1,326 2,880 1,852 5,036 2,584 1,339 1,866 

Kurtosis 2,069 1,646 1,473 0,057 0,459 1,474 0,909 -0,280 -0,186 -0,250 2,805 

Skewness -0,431 0,763 0,003 0,115 -0,018 0,939 0,441 0,243 0,438 0,387 1,416 

Minimum 2,348 -4,181 0,743 1,156 -4,699 -5,661 -5,387 -0,471 9,126 3,513 2,696 

Maximum 9,480 3,484 5,110 16,548 0,457 6,105 2,488 18,623 18,634 8,568 10,507 

CV (%) 24,686 162,677 31,866 42,822 75,750 218,860 119,073 58,737 19,054 22,989 35,837 

n= 18 18 18 18 18 18 18 18 18 18 18 

 

Percentage of cases 

Position after 

ascending sort 

USA CANADA CHINA 

N K P S N K P S N K P 

1º 0.00 0.00 77.78 22.22 50.00 16.67 33.33 0.00 0.00 0.00 100.00 

2º 100.00 0.00 0.00 0.00 38.89 5.56 55.56 0.00 16.67 83.33 0.00 

3º 0.00 100.00 0.00 0.00 11.11 77.78 11.11 0.00 83.33 16.67 0.00 

4º 0.00 0.00 22.22 77.78 0.00 0.00 0.00 100.00  

 

No significant relationship was found between CDI and crop yield (Table 7). The hypothesis of the 

occurrence of any incident between sampling and harvest is reinforced by observing that none of the 

concentrations of nutrients recorded in the sampling are related to crop yield. 

The high yield of the crop did not suggest the occurrence of any incident between sampling and 

harvest. Now it is known that the spatial distributions of CDI and crop yield are not coincident, but it 

cannot be forgotten that their coefficients of variation are practically the same. With this information 

the most plausible explanation is that the ideal local configuration for crop development has changed, 

keeping the above scenario (what was good is not so good at harvest and that which was normal at 

sampling is good at end). 

The last step in the evaluation is the study of the relationship between crop yield and spatial factors, 

a relationship that has to exist regardless of whether there has been (happened) any incidence between 

sampling and harvesting. Their relationship is significant and its coefficient of determination reaches 

0.76, which was expected because it was known the simplicity of the spatial pattern of CDI and it is 

suspected that the incidence between sampling and harvesting alters the optimal relative position 

maintaining the same scenario. 

Figure 5 shows the CDI (sampling) and the crop yield (harvest), both have been obtained using with 

the spatial factors. The comparison shows that the ideal local positions for crop development has 

changed from sampling to harvest; areas where the crop showed a better development during sampling 

do not correspond to areas of higher crop yield. This is not the expected effect of a health problem of 

crop (in addition it was not observed) and the soil parameters do not change in such a short period of 

time, the most likely factor is the climatology and within this the temperature and precipitation are 

classic candidates. 
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Figure 5 Interpolations based on spatial factors of the CDI (left) and the crop yield (right) in Haj 

 

A period with an abnormal temperature could affect to the crop yield, even it could negate the 

relationship between CDI and crop yield, but it is not expected that it can change the ideal relative 

positions for the crop development. The other candidate is the precipitation. Up to sampling the crops 

was better developed in low areas, an intense precipitation in conjunction with a specific edaphology 

could change the ideal relative positions for crop development, making the upper and middle zones 

more suitable than the low, wherein the amount of water may be excessive.  

From May to July the precipitation in 2010 was 228 liters per square meter higher than the average 

precipitation for that period, data obtained from the meteorological stations of the university and the 

meteorological service of the Czech Republic. This is an objective evidence to accept that in 2010 an 

incident happened between sampling and harvest, explaining the lack of relationship between the CDI 

and crop yield. Given this conclusion, a leveling of the land or improvement in the drainage would be 

advisable. It would homogenize crop yield and would decrease the effects of heavy precipitation. This 

finding proves that the verification phase of diagnosis can also provide valuable advice to farmers. This 

is another improvement that SIOPP incorporates, which helps to carry out integral agronomic 

diagnosis. 

The spatial interpretation of plant parameters begins by identifying the variability in the crop 

development, then examines whether there is any robust statistical evidence that points to any of the 

factors as the cause of that variability in the field. The success of the diagnosis can be evaluated by the 

farmer with the data of the harvest, but this is not part of the methodology, it is a mechanism of 

evaluation. Sometimes it leads to the research of the incidence that annulled the relationship between 

CDI and crop yield.  In this work it was necessary to carry out this research to show the success of the 

diagnoses obtained by SIOPP. 

The argument that led to the identification of the precipitation (a campaign with abnormally high 

precipitation) as the cause of the incidence was not enough, that's why it was necessary to verify it by 
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studying weather and climate data. The identification of the incidence is an independent research and 

not always it will be easy to know what might be behind. 

 

Conclusions 
 

The identification of a simple crop development index (biomass and crop vigor) for winter wheat 

closely related to crop yield, even with uncertainties about its best formulation, improves agricultural 

management of fields because it enables the inclusion in the decision making process of an estimation 

of the crop yield (cost-effective intervention) and a measure of the spatial variability in the crop 

development (suitability of the use of precision agriculture and need for leaf sampling and analysis). 

Also provides a reference for the interpretation of leaf analysis which is not affected by events 

occurring between sampling and harvest the crop. Despite what might have been feared at first instant, 

the CDI is not biased towards a given nutrient or factor. 

Using a stepwise linear and nonlinear regression, cross-validations and spatial checks has been 

possible to identify statistically significant relationships between crop development and factors 

(nutrient or other) with causal involvement. They can be used in agricultural management to improve 

crop yield. It has been possible to adapt the statistical procedures that support the other methodologies 

for interpreting leaf analysis to the data set obtained in a field, thus the diagnoses are supported by 

statistical evidence obtained in the same field (it does not require previous studies). This has been 

made possible by the inclusion in the analysis of spatial relationship between samples taken in the same 

field. The use of GPS, GIS and other tools of precision agriculture were not available at the time of 

development of the methodology for the interpretation of leaf analysis based on sufficiency ranges or 

relationships between nutrients. In this article is presented the natural evolution of those 

methodologies, although certain aspects have been modified to make them complementary. 

The use of spatial factors (SF), surface functions and topographic variables, has allowed an effective 

evaluation of the spatial structure of the data and the identification of the factors (nutrient or other 

nature) affecting crop development. SF have also served for interpolation of the data obtained in 

sampling, which is very important when working with low-cost methodology , since the data do not 

allow identification of a reliable variogram and therefore geostatistics is not an alternative in this 

scenario. The cross-validation with repetitions and the aforementioned spatial verification are the other 

techniques that have been proven effective when working with small datasets (low-cost methodology). 

Analyzing the relationship between the crop development index and the factor identified as limiting 

is possible to determine whether: 

 The factor is acting as limiting by excess (negative relationship) or deficit (positive). 

 The relative severity of the limitation (coefficient of determination). 

 The response type (linear, exponential …) that show the crop acting on the factor (function type).   

This information together with the concentration of the nutrient in the points where the crop 

reaches its peak (maximum CDI) allows the development of an optimal fertilization plan. 

The results presented in this article are important evidence for the spatial interpretation of plant 

parameters. Although further studies are needed to improve the formulation of the CDI and other 
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issues, from these pages are encouraged to increase minimally the sampling with the characterization 

of crop development and implement this methodology. It would be a convenient complement to the use 

of DRIS for the interpretation of leaf analysis, especially when the norms employed have not been 

specifically developed for the scenario (geographic area-crop). 

The fundamentals of this approach are agronomy, statistics and spatial analysis. Probably too 

complex for many large agricultural fields where the binomial agronomy - remote sensing are giving 

great results. But because of the weaknesses of that binomial, those fields will have problems with the 

crop yield over time, moment in which leaf analysis may be the solution. If there alternative 

methodologies for the interpretation of the analysis, it will increase the chances of achieving a correct 

diagnosis. 

This low cost methodology could be the first step in the adoption of precision agriculture by farmers 

(where the binomial agronomy and remote sensing is not profitable). Although statistical analyzes are 

complex, they are all implemented in software for statistical and spatial analysis, so its implementation 

would be in the scope of the soil laboratory or agronomic consultant. 
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Resultados y discusión / Results and discussion 
 

Estimación del estado nutricional del cultivo mediante radiometría /      

Estimation of nutritional status of the crop by radiometry 
 

Veintiún índices espectrales de vegetación fueron evaluados, los 5 índices que alcanzaron los 

mejores coeficientes de determinación con la concentración de nitrógeno se muestran en la Tabla R1a.  

 

Tabla R1a Los cinco mejores índices espectrales de vegetación en el estudio 

Índice espectral Formulación1 Autor R2 RMSE 

Green reflectance R550 Deducción bioquímica 0.315*** 0.653 
Ratio analysis of reflectance 
spectra b 

R675/(R650*R700) (Blackburn 1999) 0.252*** 0.683 

Green NDVI (R780-
R550)/(R780+R550) 

(Gitelson and Merzlyak 1996) 0.235*** 0.691 

Pigment specific normalized 
difference b 

(R800-
R650)/(R800+R650) 

(Blackburn 1998) 0.231*** 0.692 

Reciprocal reflectance 1/R700 (Gitelson et al. 1999) 0.226*** 0.695 
1Formulación: Reflectancia a N (número) nm. R2: Coeficiente de determinación indicando el nivel de 

significación, todos con alfa igual a 0.001 (***). RMSE: Raíz cuadrada del error cuadrático medio. 

 

El índice reflectancia en el verde alcanza un coeficiente de determinación de 0.315 y la raíz cuadrada 

del error cuadrático medio  se sitúa en 0.653, lo cual supone el 27% del rango registrado por la 

concentración de nitrógeno en las 108 parcelas elementales y las 4 jornadas de muestreo. Con esa 

efectividad la mejora en la gestión agrícola sería sensible pero pequeña y por tanto no será una solución 

rentable para pequeñas y medianas explotaciones agrícolas. 

Otros autores han realizado evaluaciones semejantes, en ellas se ha estimado que el coeficiente de 

determinación real (capacidad predictiva) que pueden alcanzar los modelos basados en índices 

espectrales se sitúa alrededor de 0.5 (Li et al. 2010a). La diferencia con esos estudios no pueden ser las 

condiciones de desarrollo del cultivo puesto que en todos se ha trabajado con un amplio rango para las 

mismas.  

La peculiaridad del cultivo empleado en el estudio, el triticale de doble propósito, podría haber sido 

la causa de la reducción en la efectividad. El pastoreo del ganado obliga a un rebrote del cultivo y 

durante un tiempo se produce un desajuste entre desarrollo de la planta y síntesis de clorofila, ello se 

traduce en un amarillamiento que no alerta de la escasez de nitrógeno. En este contexto en el que el 

verdor de la planta no es siempre un indicador fiable del nivel de clorofila y dado que muchos índices 

espectrales de vegetación se apoyan en él (Feng et al. 2008), era previsible una reducción en la 

efectividad. El hecho de que el índice reflectancia en el verde alcance el mejor resultado prueba que los 

efectos del amarillamiento desaparecen rápidamente y que el doble propósito del cultivo no es la causa 

probable de la disminución registrada en la efectividad. 
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La otra diferencia con los estudios anteriormente citados es el hecho de haber desarrollado un único 

modelo para un amplio rango fenológico. Los resultados obtenidos sugieren que esta es la causa de la 

disminución en la efectividad, lo cual está respaldado por los estudios que alertaban de la pequeña 

capacidad de generalización espacio temporal de los modelos (Li et al. 2010a).  

En la Figura R1a se proporciona una descripción de las longitudes de onda empleadas en los 5 

mejores índices espectrales de vegetación. No es posible identificar una región del espectro que esté 

asociada con el éxito de los índices, eso abre la puerta a una exploración en la búsqueda de rasgos 

espectrales que puedan aunar esfuerzos para desarrollar modelos efectivos y generalizables, los 

modelos que se necesitan para que esta tecnología sea rentable en todas las explotaciones agrícolas. 

 

 

Figura R1a Diagrama ilustrando las longitudes de onda empleadas por los mejores índices espectrales 

de vegetación  en el estudio 

 

La firma hiperespectral del cultivo registrada durante el muestreo tiene un rango espectral de 350–

2500 nm, un intervalo de muestreo (la separación entre dos puntos muestreados en el espectro) de 1.4 

nm en el rango 350–1000 nm y 2 nm en el rango 1000–2500 nm, y una resolución espectral (el ancho 

total a la mitad de la altura de la respuesta del instrumento ante una fuente monocromática) de 3 nm a 

700 nm y 10 nm en el rango 1400- 2100 nm.  

Explorar este conjunto de datos mediante regresión múltiple no es posible por problemas de 

colinealidad. La Figura R2a muestra la reflectancia típica de la vegetación en función de la longitud de 

onda. La continuidad que se puede apreciar en la firma espectral evidencia que las reflectancias en las 

distintas longitudes de onda no son variables independientes. Sólo con que una de ellas fuese 

combinación lineal de las otras, el modelo de regresión sería irresoluble porque la matriz X'X sería 

singular (su determinante sería cero y no se podría invertir). En un experimento con datos reales la 

colinealidad perfecta es altamente improbable, pero es indiscutible que en los datos existe la llamada 

casi-colinealidad, dicho de otro modo, que algunas variables son "casi" combinación lineal de otra u 

otras. Esto se verificó comprobando que algunos coeficientes de correlación simple y múltiple entre las 

variables independientes están cercanos a 1, aunque no alcancen dicho valor.  
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Al existir casi-colinealidad en los datos la matriz X'X es casi-singular y su determinante no es cero 

pero es muy pequeño. Para invertir una matriz hay que dividir por su determinante y con un 

determinante pequeño la estimación de los coeficientes presentará problemas de precisión y será 

inestable. Además, como las varianzas (sus matrices) de los estimadores es proporcional a X'X, en 

presencia de colinealidad los errores estándar de los coeficientes serán grandes. La respuesta natural a 

este problema es el uso de las técnicas de reducción de dimensiones, las cuales fueron ideadas para 

trabajar en este contexto. A continuación se presentan los resultados obtenidos al aplicar el Análisis de 

componentes principales (PCA) (Shlens 2005) y el Análisis de componentes independientes (ICA) 

(Hyvärinen and Oja 2000). 

Las diez primeras componentes principales obtenidas mediante el PCA concentran el 99.5% de la 

varianza total, lo cual es una confirmación del severo problema de colinealidad en los datos. Las 

reflectancias en las distintas longitudes de onda no son independientes entre sí y por tanto no es 

probable la existencia de una relación exclusiva entre la reflectancia en una región del espectro y un 

parámetro del cultivo. Una pequeña alteración de la planta podría llegar a afectar a una gran parte del 

espectro, esto puede explicar por qué se han identificado diferentes índices espectrales con los mismos 

parámetros del cultivo y por qué las evaluaciones de los mismos índices espectrales en otras 

condiciones no reproducen los resultados (Akiyama et al. 1996; Feng et al. 2008; Li et al. 2010a; Li et al. 

2010b; Ustin et al. 2009; Zhu et al. 2006; Zhu et al. 2008; Zillmann et al. 2006). 

 

 

Figura R2a Firma espectral de la vegetación 

 

Aún con ese primer resultado existe la posibilidad, aunque remota, de que el PCA haya perdido la 

información relativa al estado nutricional debido a un incumplimiento de alguna de sus suposiciones. 

Esto queda rechazado al comprobar que existe una relación significativa entre 8 de las componentes 
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principales y la concentración de nitrógeno en planta, alcanzando un coeficiente de determinación de 

0.68. 

Al haberse incluido en el modelo de regresión 8 componentes principales, ha de rechazarse el que 

hubiera sido el resultado deseado, la identificación de la deficiencia de nitrógeno con una determinada 

componente principal. En ese caso el estudio de la relación causa-efecto hubiera sido más sencillo y sólo 

se precisaría una parte de la firma espectral del cultivo para la estimación del estado nutricional. Dado 

el grado de conexión que existe entre las reflectancias en las diferentes longitudes de onda es natural 

que se haya necesitado una combinación de componentes para estimar un parámetro de la planta. 

El buen resultado obtenido con el PCA hacía augurar un mal resultado con el ICA por los diferentes 

planteamientos que cada uno defiende. Los resultados confirmaron el pronóstico, el modelo entre las 

10 componentes independientes y la concentración de nitrógeno en planta no resultó significativo 

(nivel de significación igual a 0.05) y el coeficiente de determinación se quedó en 0.02. 

El resultado alcanzado mediante el procesamiento con el PCA de la firma espectral del cultivo 

supone una mejora respecto a los estudios realizados por otros autores (Heege et al. 2008; Li et al. 

2010a; Li et al. 2010b), pero dado el alto coste del espectroradiómetro necesario para su 

implementación, el empleo de esta metodología está limitado a las grandes explotaciones agrícolas, 

donde la adquisición del equipo resultaría rentable. 

Ahora que se conoce que es posible desarrollar modelos eficaces y generalizables en el espacio y en 

el tiempo, es momento de reducir su complejidad. Se probó con una combinación de árboles de decisión 

y fuerza bruta, lo cual condujo al desarrollo de un árbol de decisión que con sólo conocer la reflectancia 

del cultivo en 3 longitudes de onda (350, 1670 and 2170 nm), es capaz de estimar el nivel del nitrógeno 

en planta con una efectividad del 68%, resultado obtenido empleando validación cruzada. 

Ninguna de las longitudes de onda tradicionalmente empleadas en la estimación de la concentración 

de nitrógeno en planta ha sido incluida en el árbol de decisión. La reflectancia a 350 nm ha sido 

vinculada con la actividad fotosintética (Ray et al. 2007; Ren et al. 2006) y la reflectancia en el infrarrojo 

de longitud de onda corta (1670 y 2170 nm) está relacionada con el estrés hídrico (X. Wang et al. 2010; 

Y. Y. Wang et al. 2010; Zhang et al. 2012), lo cual en ocasiones ha estado relacionado con la 

concentración de nitrógeno (X. Wang et al. 2010; Y. Y. Wang et al. 2010; Zhang et al. 2012). Lo anterior 

son indicaciones de los que podrían ser los significados biológicos de las longitudes de onda empleadas 

en el árbol de decisión, aunque solo es una explicación puesto que existen otros estudios que mostraron 

que esas regiones del espectro están directamente relacionadas con la concentración de nitrógeno en 

planta en diferentes estados fenológicos (Koppe et al. 2010; Li et al. 2010a). 

Esta justificación biológica de las longitudes de onda implicadas en el árbol de decisión no es un paso 

estrictamente necesario porque la evaluación matemática del poder predictivo del árbol de decisión es 

garantía suficiente. La información contenida en la firma espectral del cultivo es redundante y por tanto 

la identificación de un significado biológico para cada longitud de onda es difícil. Lo normal es que la 

reflectancia en una determinada longitud de onda responda a múltiples factores, de ahí la necesidad de 

emplear la minería de datos para procesar estas señales. 
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Twenty one spectral vegetation indices were evaluated; the five indices that reached the top 

coefficients of determination with the nitrogen concentration are shown in Table 1Rb.  

The green reflectance index achieves a coefficient of determination of 0.315 and a root mean square 

error of 0.653, which implies 27% of the recorded range for the nitrogen concentration in the 108 

elemental plots and 4 sampling days. With that effectiveness the improvement in agricultural 

management would be sensible but small and therefore it will not be a profitable solution for small and 

medium farms. 

 

Table 1Rb The five best vegetation spectral indices in the study. 

Spectral index Formulation1 Author R2 RMSE 

Green reflectance R550 Biochemical deduction 0.315*** 0.653 
Ratio analysis of reflectance 
spectra b 

R675/(R650*R700) (Blackburn 1999) 0.252*** 0.683 

Green NDVI (R780-
R550)/(R780+R550) 

(Gitelson and Merzlyak 1996) 0.235*** 0.691 

Pigment specific normalized 
difference b 

(R800-
R650)/(R800+R650) 

(Blackburn 1998) 0.231*** 0.692 

Reciprocal reflectance 1/R700 (Gitelson et al. 1999) 0.226*** 0.695 
1Formulation: Reflectance at number nm. R2: Coefficient of determination indicating the significance 

level, all with alpha 0.001 (***). RMSE: Square root of the mean square error. 

 

Other authors have made similar studies. They estimated that the real coefficient of determination 

(predictive power) of the models based on spectral indices is around 0.5 (Li et al. 2010a). The 

difference with these studies cannot be the conditions of crop development; all have operated with a 

wide range for the same.  

The peculiarity of the crop used in the study, dual purpose triticale, could have been the cause of the 

reduction in effectiveness. Livestock grazing forces a crop regrowth and, for a time, there is a mismatch 

between plant development and synthesis of chlorophyll, it results in a yellowing which is not nitrogen 

shortage alert. In this context where the green of the plant is not always a reliable indicator of the level 

of chlorophyll and since many spectral vegetation indices rely on it (Feng et al. 2008), a reduction in 

effectiveness was foreseeable. The fact that the green reflectance index reaches the best result proves 

that the yellowing effects disappear quickly. The dual purpose of the crop is not the likely cause of the 

decrease in the effectiveness. 

The other difference with previous studies is that a single model is developed for a wide range 

phenological. The results suggest that it is the cause of the decrease in effectiveness, which is supported 

by studies that warned of the small spatiotemporal generalization ability of the models (Li et al. 2010a).  

Figure 1Rb shows a description of the wavelengths used in the top 5 spectral vegetation indices. It is 

not possible to identify a region of the spectrum that is associated with the success of the indices. That 

opens the door to exploration in the search for spectral features which can cooperate to develop 

effective and generalizable models, the models that are needed to ensure that this technology is 

profitable in all farms. 
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Figure 1Rb Diagram illustrating the wavelengths used for the best vegetation spectral indices in the 

study 

 

The hyperspectral signature of the crop recorded during sampling has a spectral range of 350–2500 

nm, a sampling interval (the spacing between sample points in the spectrum) of 1.4 nm over the range 

of 350–1000 nm and 2 nm from 1000–2500 nm, and a spectral resolution (the full-width-half-

maximum of the instrument response to a monochromatic source) of 3 nm at 700 nm and 10 nm from 

1400- 2100 nm.  

Exploring this dataset by multiple regression is not possible because collinearity problems. Figure 

2Rb shows typical reflectance of vegetation as a function of wavelength. The continuity in the spectral 

signature proves that the reflectances at different wavelengths are not independent variables. If one of 

them was a linear combination of the other, the system of equations would be unsolvable because the 

matrix X'X would be singular (its determinant would be zero and it could not be reversed). In an 

experiment with real data the perfect collinearity is highly unlikely, but it is indubitable that in the data 

there is the called quasi-collinearity, in other words, some variables are "almost" linear combination of 

other. This was verified by checking the correlation coefficients (simple and multiple) between the 

independent variables, several are close to 1, but they do not reach that value. 

There is quasi-collinearity in the data and therefore the matrix X'X is almost-singular and its 

determinant is not zero but is very small. A matrix is inverted dividing the matrix by its determinant 

and with a small determinant the estimation of the coefficients presents problems of accuracy and is 

unstable. Moreover, as the variances (their matrices) of the estimators are proportional to X'X, in the 

presence of collinearity the standard errors of the coefficients will be large. The natural response to this 

problem is the use of techniques for dimensionality reduction, which were designed to work in this 

context. The results of applying the Principal component analysis (PCA) (Shlens 2005) and the 

Independent component analysis (ICA) (Hyvärinen and Oja 2000) are presented below. 

The first ten principal components obtained by PCA concentrate the 99.5% of the total variance, 

which is a confirmation of the severe problem of collinearity in the data. The reflectances in the 

different wavelengths are not independent of each other and therefore it is unlikely that there is a 

unique relationship between the reflectance in a region of the spectrum and a plant parameter. A small 

alteration might alter much of the spectrum of the plant; this may explain why different spectral indices 
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have been identified with the same crop parameters and why assessments of the same spectral indices 

in other conditions do not reproduce the same results (Akiyama et al. 1996; Feng et al. 2008; Li et al. 

2010a; Li et al. 2010b; Ustin et al. 2009; Zhu et al. 2006; Zhu et al. 2008; Zillmann et al. 2006). 

 

 

Figure 2Rb Vegetation spectral signature 

 

Even with this first result there is a possibility, however remote, that the PCA has lost the 

information on the nutritional status due to the breach of any assumption. This was rejected after 

checking that there is a significant relationship between 8 principal components and the plant nitrogen 

concentration, relationship with a coefficient of determination of 0.68. 

The regression model includes 8 principal components. The desired result, the existence of a 

relationship between a single principal component and the nitrogen deficiency, has to be rejected. If 

that had been the case, the study would have been simpler and it would require only a portion of the 

crop spectral signature for the estimation of the nutritional status. Given the degree of connection 

between the reflectances at the different wavelengths, it is natural requiring a combination of 

components to estimate a plant parameter. 

The good results obtained with the PCA portended a poor outcome with the ICA; this is due to the 

different approaches that each defends. The results confirmed the prognosis, the model built with the 

10 independent components and the plant nitrogen concentration was not significant (at the level of 

significance of 0.05) and the coefficient of determination remained at 0.02. 

The result achieved by processing the spectral signatures of the crop by the PCA is an improvement 

on the studies of other authors (Heege et al. 2008; Li et al. 2010a; Li et al. 2010b), but given the high 

cost of the spectroradiometer necessary for its implementation, the use of this methodology is limited 

to large farms where the acquisition of the equipment would be profitable. 
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It is known that it is possible to develop effective and generalizable (space and time) models, now it 

is time to reduce their complexity. A combination of decision trees and brute strength was tested, which 

led to the development of a decision tree that just knowing the crop reflectance in three wavelengths 

(350, 1670 and 2170 nm) is able to estimate the level of nitrogen in plant with an effectiveness of 68%, 

a result obtained using cross-validation. 

None of the wavelengths traditionally used in the estimation of nitrogen has been included in the 

decision tree. The reflectance at 350 nm has been associated with the photosynthetic activity (Ray et al. 

2007; Ren et al. 2006) and the reflectance at short-wavelength infrared (1670 and 2170 nm) is related 

to water stress (X. Wang et al. 2010; Y. Y. Wang et al. 2010; Zhang et al. 2012), which sometimes is 

related to the nitrogen concentration (Zhao et al. 2004). These references indicate what could be the 

main biological meaning of the wavelengths used. Others authors have shown that the wavelengths 

used in the decision tree are directly related to the nitrogen concentration at different phenological 

stages (Koppe et al. 2010; Li et al. 2010a). 

This biological justification of the wavelengths involved in the resulting decision tree is not a step 

strictly necessary, the mathematical evaluation of the predictive power of the model is sufficient 

guarantee. The information contained in the crop spectral signature is redundant and therefore the 

identification of a clear biological meaning for each wavelength is unusual; wavelengths commonly 

respond to multiple factors, hence the need to use data mining in the processing of these signals.  

 

Diagnóstico agronómico mediante interpretación espacial de los parámetros de 

la planta / Diagnosis agronomic by spatial interpretation of plant parameters 
 

Los resultados anteriores son una evidencia de que sería posible estimar eficazmente el nivel de los 

nutrientes en la planta de forma rápida y barata. Este avance por sí sólo no supondrá una gran ayuda 

para los agricultores puesto que falta una metodología para la interpretación eficaz de los niveles de los 

nutrientes en la planta. 

Es posible realizar una detallada estimación (mediante radiometría, análisis foliares u otros 

métodos) del nivel de nutrientes en un campo agrícola y que eso no se traduzca en un aumento del 

rendimiento del cultivo. Esto podría suceder por diferentes motivos: 

1. Porque sea un mal año en el que la mejor opción sea optar por una gestión agrícola de mínimos, 

cancelando el muestreo del cultivo porque no sería rentable. Es preciso poder estimar esta 

circunstancia en tiempo de muestreo. 

2. Porque no exista estructura espacial en el cultivo, es decir, que los puntos de muestreo no sean 

buenos estimadores de su vecindad y por tanto los errores por la interpolación a toda la 

superficie arruinen la potencial mejora. Esto debiera ser investigado antes de emplear recursos 

en el muestreo del cultivo. Podría ser necesario el empleo de técnicas de delimitación de zonas de 

gestión. 

3. Porque las normas para la interpretación de los niveles de nutrientes (rangos de suficiencia o 

relaciones entre nutrientes) no sean específicas del cultivo – área geográfica y por tanto no sean 

eficaces. Diferentes trabajos mostraron la limitada capacidad de generalización. 
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4. Porque suceda algún evento entre el muestreo del cultivo y la cosecha, el cual afecte 

negativamente al rendimiento del cultivo. En ese caso ese evento debiera ser identificado para 

aumentar el conocimiento y ser capaces de evitarlo en el futuro. 

Los resultados mostrados en el cuarto artículo que compone esta tesis responden a todas las 

cuestiones anteriores. 

El índice de desarrollo del cultivo (CDI) mostró recabar más información sobre el estado del cultivo 

que la altura o el NTester de forma independiente, resultó ser un buen estimador de la variabilidad 

espacial del cultivo en ambos campos y en el campo Pacthy fue buen estimador del rendimiento del 

cultivo. El CDI no fue buen estimador de la producción en Haj porque entre el muestreo y la cosecha 

llovieron 228mm por encima de la media, incidencia que alteró el desarrollo del cultivo, conocido esto 

se evidenció que el CDI es un eficaz estimador del rendimiento del cultivo, pudiendo llegar a 

determinarse umbrales de viabilidad para el mismo. Si el cultivo no alcanza ese mínimo en el momento 

del muestreo la intervención en el campo no es rentable, lo que responde al primer punto de los 

mencionados anteriormente. 

Para comprobar la estructura espacial se estudió la relación entre el CDI y los factores espaciales 

(funciones de superficie y variables topográficas), encargados de representar los factores que podrían 

causar la variabilidad espacial.  En ambos campos se comprobó que existía una estructura espacial, 

dejando al azar y al error de muestreo aproximadamente el 5% de toda la varianza registrada por el 

CDI. Sólo con eso se responde al segundo punto, pero este procedimiento aporta más, estudiando la 

variabilidad espacial del CDI en la parcela se puede estimar el número y ubicación de muestras foliares 

necesarias, lo cual optimizaría el muestro y reduciría su coste. 

Comprobado que el desarrollo del cultivo es correcto y que existe una estructura espacial se procede 

al muestreo foliar. En este punto se podrían emplear rangos de suficiencia o relaciones entre nutrientes 

para su interpretación. Para tratar de superar el tercer punto y dado que el CDI es un buen estimador 

del rendimiento del cultivo, se optó por estudiar la relación entre el CDI y los diferentes nutrientes, 

identificando como limitantes aquellos que expliquen parte de la varianza del CDI. Eso significa confiar 

en que una relación estadística implique una relación causal, por ello es necesario tomar muchas 

precauciones en ese estudio para obtener un resultado válido. Ese es un punto en común con las otras 

metodologías para la interpretación de análisis foliares, las cuales han demostrado que no es una 

debilidad. Una nueva prueba de ello son los resultados obtenidos en ambos campos. En Pacthy se 

identifica el K, el Ca y el N como deficientes, lo cual es coincidente con lo deducido en el muestreo del 

suelo y compatible con el diagnóstico DRIS. En el Haj no se identificaron factores limitantes, lo cual 

volvió a ser coincidente con lo diagnosticado por otros métodos y explica el alto y uniforme 

rendimiento del cultivo. 

Si al llegar la cosecha se realiza un nuevo muestreo, entonces es posible comprobar si existe relación 

entre el CDI y el rendimiento del cultivo, si no existe esa relación entonces la hipótesis será la de la 

ocurrencia de alguna incidencia entre el muestreo y la cosecha, la cual podría llegar a identificarse 

analizando el mapa del CDI y del rendimiento del cultivo de todo el campo obtenido mediante los 

factores espaciales.   

Como se ha comentado anteriormente, en el campo Haj ocurrió una incidencia entre muestreo y 

cosecha. El alto rendimiento del cultivo coincidía con la alta estimación del mismo obtenida mediante el 

CDI, pero sus patrones espaciales no coincidían. Comparando los mapas del CDI y del rendimiento del 

cultivo se observó que las posiciones ideales relativas habían cambiado desde el muestreo a la cosecha 
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de tal forma que hizo sospechar de una precipitación inusualmente intensa, se consultó el registro 

meteorológico y se confirmó la incidencia. 

 

 

The above results are evidence that would be possible to estimate the level of nutrients in the plant 

quickly, accurately and cheaply. This development alone will not be a great help to the farmers because 

of the lack of a methodology for efficient interpretation of the levels of nutrients in the plant. 

It is possible to make a detailed estimate of the level of nutrients in an agricultural field (radiometry, 

leaf analysis or other methods) and that this does not imply an improvement in the crop yield. That 

could happen for several reasons: 

1. Because it is a bad year in which the best option is to opt for an agricultural management of 

minimum cost. The crop sampling has to be canceled because it would not be profitable. It is 

necessary to estimate this circumstance at the time of sampling. 

2. Because there is not spatial structure in the crop development. The sampling points are not good 

estimators of their neighborhood and therefore the recommendations in unsampled points 

(interpolations) would be wrong, ruining the potential improvement. This should be investigated 

before wasting resources on a crop sampling. It could be necessary to use zoning techniques to 

delineate areas of management. 

3. Because the rules for the interpretation of the levels of nutrients (sufficiency ranges or 

relationships between nutrients) are not specific of the crop - geographical area and therefore 

they are not effective. Different studies showed the limited generalizability. 

4. Because some event occurs between the sampling of the crop and the harvest, which adversely 

affects the crop yield. In that case the event should be identified to increase the knowledge and be 

able to avoid it in the future. 

The results shown in the fourth article included in this thesis answer all the above questions. 

The crop development index (CDI) showed gather more information about the state of the crop than 

the height or the Nester independently. It turned out to be a good estimator of the spatial variability of 

the crop in both fields and in the field Pacthy it was good estimator of crop yield. The CDI was not good 

estimator of production in Haj because between sampling and harvest rained 228mm above the mean, 

incident that affected the development of the crop. Known this it became clear that the CDI is an 

efficient estimator of crop yield. Viability thresholds that determine when the intervention in the field is 

cost-effective could be identified, which responds to the first point of the above. 

The relationship between the CDI and the spatial factors (surface functions and topographic 

variables) was studied to check the spatial structure, responsible for representing the factors that could 

cause the spatial variability. Spatial structure was found in the two fields, attributing to chance and 

sampling error only the 5% of the variance recorded by CDI. That answers the second point, but this 

procedure provides more. The number and location of necessary samples can be estimated studying the 

spatial variability of the CDI in the field, it would optimize the sampling and reduce its cost. 

Only if the crop development is correct and there is a spatial structure, leaf sampling is carried out. 

At this point one could use sufficiency ranges or relationships between nutrients for its interpretation, 

but in order to overcome the third point and since the CDI is a good estimator of crop yield, we decided 
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to study the relationship between the CDI and the different nutrients, identifying as limiting to those 

that explain part of the variance of the CDI. That means trusting that a statistical relationship implies a 

causal relationship. It is necessary to take great care in this study to obtain a valid result. That is a point 

in common with the other methodologies for interpreting leaf analysis, which have shown that it is a 

valid hypothesis. New proofs of it are the results in both fields. It identifies the K, Ca and N as deficient 

in Pacthy, which is coincident with the inferred from the soil sampling and supported by DRIS. In Haj 

the limiting factors were not identified, which was again coincident with other methods and it explains 

the high and uniform crop yield. 

If at harvest a new sampling is carried out, then it is possible to check the correlation between the 

CDI and the crop yield. If there is not relationship, then the hypothesis would be the occurrence of any 

incident between sampling and harvest, which could be identified by analyzing the map of CDI and crop 

yield obtained by spatial factors. 

As mentioned above, in the field Haj an incidence occurred between sampling and harvest. The high 

crop yield coincided with the high estimate obtained by the CDI, but their spatial patterns differed. 

Comparing CDI maps and crop yield was observed that the ideal positions (relative) had changed from 

sampling to harvest. This made us suspicious of precipitation; an unusually intense precipitation could 

explain the observed. The meteorological record was consulted and the incident was confirmed. 

 

Novedades introducidas / Innovations introduced 
 

Estudio radiométrico: 

 El empleo de una combinación de técnicas de la minería de datos rigurosamente evaluadas 

mediante repeticiones de la validación cruzada. 

 La búsqueda de modelos con mayor capacidad de generalización. Pese a los evidentes cambios 

durante el desarrollo del cultivo, se buscaron rasgos espectrales relacionados estrecha y 

firmemente con el nivel de nitrógeno en planta, los cuales fueron encontrados. 

Diagnóstico agronómico: 

 La definición de un índice de desarrollo del cultivo que sirve para estimar el rendimiento del 

cultivo, como referencia con la que comparar las concentraciones de los nutrientes, etc. 

 El estudio de la variabilidad espacial para determinar la conveniencia de adoptar la agricultura de 

precisión, la necesidad de emplear técnicas avanzadas para la delimitación de zonas de gestión, 

etc. 

 La realización de un diagnóstico agronómico basado en evidencias obtenidas en el mismo campo 

y su evaluación al final de la campaña. 

 … 
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Radiometric research: 

 The use of a combination of data mining techniques rigorously evaluated by cross validation. 

 The search for models with higher generalization ability. Despite the obvious changes during the 

crop development, we sought spectral features closely and firmly related to the level of nitrogen 

in plant. 

Agronomic diagnosis: 

 The definition of a crop development index used to estimate the crop yield. It also serves as a 

reference with which to compare the concentrations of nutrients, etc. 

 The study of the spatial variability to determine the advisability of adopting precision agriculture, 

the need to employ advanced techniques for the delimitation of the agricultural management 

zones, etc. 

 Performing an agronomic diagnosis based on evidence obtained in the same field and its 

assessment at the end of the campaign. 

 … 

 

Líneas de trabajo futuras / Future research 
 

Estudio radiométrico: 

 Identificar la magnitud de la calibración necesaria para ajustar los modelos radiométricos a las 

condiciones específicas de cada campaña. Determinar si las longitudes de onda son válidas y sólo 

hay que modificar los umbrales del árbol de decisión. 

 Tratar de reproducir los resultados obtenidos en el estudio radiométrico empleando medidas de 

la reflectancia del dosel de vegetación en lugar de la firma espectral de las hojas. Ello supondría 

un logro rápidamente transferible al sector. Si eso es posible entonces se puede desarrollar un 

sistema montado en maquinaría agrícola que en tiempo real estime el estado nutricional del 

cultivo. Dada la agilidad del sistema podría barrer grandes superficies en poco tiempo, esto haría 

rentable la inversión en agricultura de precisión. 

Diagnóstico agronómico: 

 Explorar nuevas formulaciones del índice de desarrollo del cultivo (CDI). Determinar si medidas 

radiométricas y/o descriptores del patrón de desarrollo colonial del cultivo pueden mejorar la 

eficacia del CDI. 

 Comprobar la idoneidad del CDI para diferentes cultivares (trigo de invierno) y otros cereales, 

incluso para otros cultivos. 

 Realizar estudios que determinen umbrales para la media y la desviación del CDI, los cuales 

ayuden en la toma de decisiones del agricultor. 

 Comprobar si las interpolaciones empleando los factores espaciales pueden mejorar incluyendo 

imágenes remotas de toda la parcela. 
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 Continuar con los ensayos de la metodología, tratando de buscar los escenarios más complejos, 

para determinar su potencial. 

 

 

Radiometric research: 

 Identifying the magnitude of the necessary calibration to adjust the radiometric models to the 

specific conditions of each campaign. Determine if the wavelengths are valid and it just needs to 

modify the thresholds of the decision tree. 

 Trying to reproduce the results obtained in the study using canopy reflectance instead of the 

spectral signature of the leaves. It could mean an achievement quickly transferable to the farms. If 

that is possible then one can develop a system mounted on farm machinery that in real time 

estimates the nutritional status of the crop. Given the agility of the system, it could sweep large 

areas in a short time. This would make profitable the investment in precision agriculture. 

Agronomic diagnosis: 

 Explore new formulations of the crop development index (CDI). Determine whether radiometric 

measurements and / or the pattern of colonial development can improve the efficiency of the CDI. 

 Check the suitability of the CDI for different cultivars (winter wheat) and other cereals, even for 

other crops. 

 Studies to determine thresholds for the mean and the standard deviation of the CDI, which help in 

the decision making of the farmer. 

 Check if interpolations using spatial factors along with remote images can achieve better results. 

 Continue testing the methodology, trying to look for the more complex scenarios, to determine its 

potential. 
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Conclusiones / Conclusions 
 

En la firma espectral del cultivo existen rasgos relacionados con el nivel de nitrógeno en planta, los 

cuales permanecen estables durante un amplio intervalo fenológico. 

Aún en un amplio rango de condiciones de desarrollo, es posible desarrollar modelos radiométricos 

eficaces, pero se desconoce si han de ser calibrados cada campaña y si sería posible ajustarlos para 

operar con medidas de reflectancia del dosel de vegetación. 

La metodología SIOPP ha probado ser eficaz realizando el diagnóstico agronómico de dos 

explotaciones agrícolas reales en las que los problemas eran complejos.  Con las evidencias disponibles 

y dado el bajo coste añadido que implica su implementación, ya se considera una alternativa al uso de 

rangos de suficiencia o relaciones entre nutrientes para la interpretación de los análisis foliares.  

Cuando no existan zonas en el campo con un buen desarrollo del cultivo, zonas de referencia, SIOPP 

no podrá realizar el diagnóstico. Las condiciones de desarrollo del cultivo han de estar alejadas del 

óptimo, esa primera corrección, obvia revisando un tratado de agronomía, es un requisito de la 

metodología en casos extremos. 

En caso de existir severa heterogeneidad (márgenes abruptos) o si hay que diagnosticar 

plantaciones con centenares de hectáreas de extensión, SIOPP puede presentar problemas ante la 

debilidad de modelar barreras y/o infinidad de gradientes. En ese caso sería necesario realizar un 

estudio previo para la delimitación de las zonas de gestión, esta es una de las líneas de trabajo futuras. 

 

There are features in the spectral signature of the crop related to plant nitrogen (N) content, which 

remain stable over a wide range of phenological stages. 

Even in a wide range of development conditions, it is possible to develop effective radiometric 

models, but it is unknown if they have to be calibrated in each campaign and whether it would be 

possible to adjust them to operate with measures of vegetation canopy reflectance. 

The spatial interpretation of plant parameters (SIOPP) has proven to be effective for the agronomic 

diagnosis of two real farms where the problems were complex. With the available evidence and given 

the low added cost involved in its implementation, it is considered as an alternative to using sufficiency 

ranges and relationships between nutrients for interpreting leaf analysis. 

When there are not areas in the field with a good crop development, reference areas, SIOPP cannot 

make the diagnosis. The conditions for crop development should be away from the optimum. That first 

correction, which has to be obvious after reviewing any textbook of agronomy, is a requirement of the 

methodology in extreme cases. 

In case of severe heterogeneity (abrupt margins) or if it has to diagnose plantations with hundreds 

of hectares, SIOPP can present problems because of the difficulty of modeling steep barriers and / or 

countless gradients. In that case it would be necessary to carry out a study for the definition of areas of 

management; this is one of the future lines of work. 

 



 

 

 


