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ABSTRACT 

 
1H NMR spectroscopy (500MHz) has been used to investigate the self-association in aqueous 

buffered solution of a bis-intercalator, Acridine Homodimer (AcrH), and its hetero-association 

with the aromatic dye, Ethidium Bromide (EB).  The equilibrium constants and 

thermodynamical parameters (enthalpy and entropy) of self-association have been determined 

from the observed concentration and temperature dependences of chemical shifts of AcrH 

protons and the results are consistent with a model consisting of at least four distinct forms of 

AcrH molecules in solution: unfolded (U), folded (F), a dimer formed from two folded 

molecules (F2) and a trimer formed from three folded molecules (F3).  It has also been shown 

that Ethidium Bromide complexes strongly to the dimer form (F2) of the bis-acridine molecule, 

AcrH.  Comparison of the calculated association parameters of AcrH with the previously studied 

Ethidium Homodimer (EBH) revealed a correlation between the effectiveness of complexation 

and the length of chain connecting the chromophores of a bis-intercalator. 

 

Key words: Acridine Homodimer, Ethidium Bromide, self-association, hetero-association, NMR 

spectroscopy 
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INTRODUCTION 

 

It has been demonstrated that dimerization of DNA intercalating compounds can lead to 

molecules able to bind to DNA with a very high affinity constant and be very specific in their 

base pair recognition [1-7].  Some natural and synthetic bis-intercalators have substantial anti-

cancer activity and in certain cases are able to overcome multidrug resistance in cultured cells [6-

8].  In addition, they can provide probes for large-amplitude DNA dynamics and may also serve 

as models for some types of protein-DNA interactions [9]. 

Over the years a range of bis-intercalators, based on acridine, phenanthridine and 

anthracycline units connected with linkers of different structure and length, has been synthesized 

[6,7,10,11] and their complexation with DNA studied, because DNA is considered to be the 

primary target in their biological action [1-7].  Although a number of models of drug-DNA 

interaction have been suggested, they are all based on the assumption that a bis-intercalator may 

exist in an open or unfolded (U) conformation and a closed or folded (F) conformation [3,12].  A 

few studies on the self-association of acridine and phenanthridine dimeric dyes in solution have 

provided evidence of the existence of the U- and F-forms in solution [10,11,13,14].  In addition, 

studies on the interaction of bis-intercalators with mono- and dinucleotides have also been 

performed in order to gain insight to the specificity of drug-DNA complexation [13,15].  It has 

been shown that the DNA monomeric units, as well as some other monomeric aromatic ligands, 

are able to intercalate into the F-form of a bis-intercalator [ref.].  Bearing in mind that 

monomeric acridines and phenanthridines effectively self-associate in solution via π-π stacking 

[16], it is likely that some self-association of bis-intercalators can occur in solution. 

Early NMR studies on the self-association of Ethidium (EBH) and Acridine (AcrH) 

Homodimers indicated very little probability of the formation of higher order aggregates than U- 

and F-forms in solution [11,13].  On the other hand, a spectrophotometric titration of AcrH 

revealed specific spectral changes attributed by the authors to higher order aggregation involving 

the complexation of the monomeric forms of AcrH molecules in solution [12,14].  We have 

recently shown by high field NMR that EBH molecules associate in solution in a complicated 

fashion resulting in mutually intercalated dimers and trimers formed mainly of the folded form 

of the molecules [17].  It was also shown that the folded structure of EBH formed strong hetero-

association complexes with Propidium Iodide, and appeared to be an effective trapper of the 

aromatic dye [17].  In the present work we have studied by 500MHz 1H NMR spectroscopic 

methods the self-association of a Acridine Homodimer and its hetero-association with the 

phenanthridine dye, Ethidium Bromide.  The results obtained in this work, in fact, provide a 

rationale for analysis of the dynamic equilibrium of structurally-related aromatic bis-intercalators 
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in solution linked with a spermine-type linker, which also enables to suppose the same mode of 

self- and hetero-association for another bis-intercalating compound, Acridine Homodimer.  

 

 

EXPERIMENTAL 

 

Acridine Homodimer (“Molecular Probes”) and Ethidium Bromide (“Sigma”) were 

lyophilized from D2O and re-dissolved in 0.1M solution of HEPES buffer in 99.95% D2O, pD 

7.5, containing 10-4 M EDTA.  The structures of AcrH and EB are shown in Figure1. 

500 MHz 
1
H-NMR spectra were recorded on a Bruker DRX spectrometer.  Signal 

assignments of the non-exchangeable protons of AcrH and EB were obtained using two-

dimensional homonuclear TOCSY and ROESY experiments.  Chemical shift measurements of 

the non-exchangeable protons of aromatic molecules were made as a function of concentration at 

298 and 308K in the experiments on the self-association of AcrH (Figure 2a) and at 298K for 

AcrH-EB hetero-association (Figure 3a); measurements as a function of temperature were made 

at constant concentration of AcrH (Figure 2b) and EB (Figure 3b) in the temperature range 278-

348K.  Proton chemical shifts were measured relative to an internal reference TMA 

(tetramethylammonium bromide) and recalculated with respect to DSS (sodium 2.2 dimethyl 2-

silapentane-5-sulphonate).  All NMR experiments were made in the fast-exchange condition on 

the NMR time-scale. 

 

RESULTS 

 

Self-association of Acridine Homodimer. Signal assignments of all the non-exchangeable 

protons of the 1H NMR spectrum of AcrH in aqueous solution were obtained using both two-

dimensional homonuclear TOCSY and ROESY experiments and are in good agreement with the 

results published previously [13].  The concentration and temperature dependence of proton 

chemical shifts of AcrH presented in Figure 2a and b, respectively, exhibit normal behaviour for 

the association process, i.e. low frequency shift of the concentration curves on increasing the 

concentration and high frequency shift on increasing the temperature.  The behaviour is 

markedly different from that reported previously for self-association of the bis-intercalator, EBH, 

in which the experimental concentration and temperature curves for EBH protons were 

characterized by a highly non-monotonic profile and explained by a competitive contribution of 

two processes, the formation of dimers (F2) and trimers (F3) of EBH molecules in solution [17]. 

The competitiveness originated from a pronounced shielding of aromatic protons in the F2 form 
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and concomitant deshielding in the F3 form due to the electric charges located on the linker chain 

of EBH.  In contrast, the bis-acridine molecule studied in the present work has a pKa 

significantly lower (<7) than its monomeric acridine unit (≈8) [13].  It follows that AcrD is not 

charged under the conditions adopted in the present experiment (pD 7.5), which excludes the 

competitive factor of shielding/deshielding and results in the observed monotonic profile of the 

experimental chemical shift dependences (Figures 2,3). 

 The scheme of self-association reactions of AcrH in solution [depicted schematically in 

Figure 4 and with equilibrium constants defined in equation (1)] includes folded (F) and 

unfolded (U) forms and the formation of dimers (F2) and trimers (F3) of the folded form, 

analogous to that in previous work on EBH [17]   
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Taking into account the mass conservation law for reactions (1) and the law of mass 
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where δU, δF, δ2, δ3 are proton chemical shifts in the U, F, F2 and F3 forms of a bis-intercalator, 

respectively.  The proton chemical shifts in the unfolded and folded forms of AcrH, δU and δF, 

may be considered approximately equal to each other as in previous work [17], taking into 

consideration the relatively large spacing between the chromophores in the folded form of AcrH 

due to a rigidity of the linker which prevents their approaching a distance allowing effective 

magnetic shielding (0.3-0.4 nm [18]).  It follows that the observed concentration dependence of 

AcrH proton chemical shifts is a function of 6 unknown quantities Kh, δF, K2, δ2, K3, δ3, which 

can be calculated using the computation procedure described previously [17]. The values of the 

calculated parameters are presented in Tables 1 and 2. 

The thermodynamical parameters, enthalpy (ΔH) and entropy (ΔS), for each of the self-

association reactions (1) were determined from the temperature dependencies of the proton 

chemical shifts of AcrH in solution (Figure 2b) using van’t Hoff’s formalism [16,17].  The 

calculated values of enthalpy and entropy of AcrH self-association are summarised in Table 2. 

Hetero-association of the Acridine Homodimer with Ethidium Bromide.  The 

concentration and temperature dependence of the proton chemical shifts of AcrH and EB 

molecules in the mixed solution are shown in Figure 3.  As in the case of self-association 
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experiments (Figure 2), the NMR curves in Figure 3 indicate monotonic behaviour unlike those 

observed previously for complexation of EBH with Propidium Iodide [17]. 

A number of models of AcrH-EB hetero-association have been tested in order to give the 

best description of the experimental data and the minimum discrepancy between calculated and 

experimental data was obtained using the same scheme of molecular hetero-association [depicted 

schematically in Figure 5 and with equilibrium constants defined in equation (3)] as in previous 

work [17]; 
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where FEB, F2EB are the most probable 1:1 and 1:2 hetero-complexes between EB and AcrH; 

KD, KC1, KC2 are equilibrium self-association constant for EB and hetero-association constants 

for 1:1 and 1:2 complex formation, respectively. 

The mass conservation law equations for reactions (3) and the observed proton chemical 

shift can thus be written in the form [17]: 
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where d1 and d0 are monomeric and total concentrations of EB in solution, respectively; δmD, δdD 

are proton chemical shifts in the monomer and dimer forms of EB; δC1, δC2 are proton chemical 

shifts in 1:1 and 1:2 hetero-complexes between the homodimer (h) and ethidium (D) molecules, 

respectively.  The parameters δU, δF, δ2, δ3, Kh, K2, K3 and δmD, δdD, KD have been determined 

from the self-association studies of AcrH (Tables 1,2) and EB [16] under the same experimental 

conditions.  It follows that eqns.(4) contain 4 unknown quantities KC1, KC2, δC1, δC2.  The 

computational procedure of determination of these parameters is similar to that used for self-

association analysis of AcrH and the calculated parameters of the hetero-association of AcrH and 

EB are presented in Tables 1,2. 

Thermodynamical parameters of the hetero-association reactions (3e)-(3f) were 

determined from the experimental temperature dependences of the proton chemical shifts of 

AcrH and EB (Fig.3b), using a similar approach as considered above for the thermodynamical 

analysis of the self-association of the bis-intercalator. 
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DISCUSSION 

 

Self-association of Acridine Homodimer. 

In the present work on the self-association in aqueous solution of the bis-intercalator 

AcrH, the same model (1) of the dynamic equilibrium was used as for EBH [17], which included 

the formation of intercalated dimers and trimers (Figure 4).  However the monotonic dependence 

of the concentration and temperature dependence curves for AcrH (Figure 2) indicates that it 

may not be necessary to include all the contributing processes (in Figure 4) as used in the study 

of EBH self-association [17].   A simple dimer model, i.e. lacking reaction (1c) in equation (1), 

has also been tested for AcrH self-association;  such calculations resulted in an average induced 

shielding of AcrH protons in the F2 form (Δδ=δF−δ2) equal to Δδ ∼2ppm (results are not 

presented here).  If the dimer model is valid, approximately the same shielding would be 

expected for the aromatic protons of the monointercalator Acridine Orange, which is structurally 

close to the aromatic moiety of AcrH, when sitting inside an aggregate of molecules.  The 

average induced shielding of Acridine Orange protons is ∼1.1ppm [16], which is significantly 

different from Δδ for AcrH protons derived from the dimer model.  On the other hand, the 

average shielding of AcrH protons in both F2 or F3 complexes utilizing the full scheme (1) is no 

greater than 0.8ppm, which is similar to the shielding parameters of Acridine Orange self-

association [16].  It is found that the most appropriate description of the NMR data of AcrH is 

equilibrium model (1), which includes the formation of dimers and trimers. 

It is found that the induced shielding, Δδ, in both F2 and F3 complexes of AcrH is positive 

(Table 1) indicating no competition between dimerization and trimerization reactions and 

resulting in the monotonic dependence of the concentration and temperature curves, in contrast 

to that found for EBH self-association where the linker chain is charged [17]. 

Comparison of the thermodynamic parameters of self-association of AcrH and EBH 

(Table 2) shows that there is a close relation between the energy of aggregation of the molecules 

in solution and their structures.  It should be noted that the linker chain for AcrH is 4 bonds 

longer than that of EBH, which probably results in a greater spacing between the chromophores 

in the folded form of AcrH (F in Figure 4a) and a better stacking of the AcrH chromophores in 

the F3 complex (Figure 4c) with respect to formation of similar complexes of EBH (the length of 

EBH linker is critical for stabilization of the trimer with a characteristic inter-chromophore 

distance of 0.34nm [17]).  The stacking of the AcrH chromophores is probably responsible for 

the much larger equilibrium constant of AcrH trimer formation (K3 ) compared to that for EBH 

resulting from more effective dispersive and hydrophobic interactions in the AcrH trimer 
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molecules.  The high negative values of enthalpy and entropy of reaction (1b) also provides 

evidence a strengthening of dispersive interactions in the F2 dimer of AcrH compared to the EBH 

dimer.  It should be emphasised that the enthalpy of self-association of Acridine Orange and 

Ethidium Bromide, the monomeric analogues of the bis-acridine and bis-ethidium respectively, 

exhibits the same relation [16]. 

The calculated magnitudes of the equilibrium self-association constants of Acridine 

Homodimer (Table 2) were used to calculate the relative content (f) of different types of AcrH 

complexes in solution as a function of concentration of AcrH (Figure 6).  Examination of the 

curves shows that a complicated dynamic equilibrium of AcrH aggregates exists in solution and 

that it is strongly dependent on the concentration of the bis-intercalator.  In particular, at 

concentrations above 0.6 mM, the total contribution of homodimer aggregates, F2+F3, dominates 

in solution with respect to the monomers, F+U, and the main contribution is given by the trimer 

form of AcrH aggregates in this range of concentrations (Figure 6). 

Hetero-association of Acridine Homodimer with Ethidium Bromide. 

In mixed solutions of AcrH and EB it is observed that, on changing the concentration of 

AcrH, the chemical shifts of EB protons also change (Figure 3a), which is indicative of a 

complexation process between AcrH and EB molecules in solution.  The same pattern has also 

been observed previously when studying the hetero-association of simple monointercalators [19]. 

A preliminary search of the model providing the best fit to the experimental data in 

Figure 3 has resulted in reaction scheme (3), which is the same as that used previously for 

analysis of the hetero-association of Ethidium Homodimer with Propidium Iodide [17].  

However, as a result of a small contribution of the 1:1 hetero-association reaction (3e) to the 

dynamic equilibrium in solution, the hetero-association constant, KC1, is very small (less than 20 

l/mol) and the induced chemical shift, δC1, seems to be unreliable.  Bearing in mind that the KC1 

value for EBH-PI complexation was estimated as KC1=30 l/mol (T=298K [17]), it is possible that 

the negligible contribution of the reaction (3e) results from the greater length of the linker chain 

in AcrH, which hinders the approach of the chromophores of the bis-intercalator towards the 

inserted EB molecule to allow better stacking on formation of the FEB complex (Figure 5a). 

Analysis of the complexation parameters (Table 2) reveals that the hetero-association 

constant KC2 is greater than the trimerization constant, K3.  It is likely that a monomeric EB 

molecule having no linker attached is better accommodated when binding with the F2 complex 

when compared with a bulky AcrH molecule forming F3 complex via reaction (1c).  It is 

interesting to note that the KC2(AcrH-EB) constant is significantly greater than the KC2(EBH-PI) 

constant (Table 2).  As the chain linker of EBH is critical for insertion of two aromatic 

chromophores into the F-form (Figure 4c) and the chain linker of AcrH linker is longer than that 
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of EBH, it is possible that its length is sufficient so that the complexation of EB with the dimer 

of AcrH is facilitated with respect to EBH-PI complexation, thus resulting in more intense 

dispersive and hydrophobic contact and the greater association constant.  An increase in the 

absolute values of enthalpy and entropy of the hetero-association reaction of AcrH-EB over the 

same parameters of the formation of F2 and F3 complexes of AcrH (see Table 2) supports the 

assumption of favourable energetics for insertion of EB with the dimer F2 compared to the 

binding of the F-molecule to F2. 

The calculated magnitudes of the hetero-association constants were used to calculate the 

relative content of different types of AcrH associates in the presence of EB (Figure 7).  It is 

easily seen that the equilibrium distribution of the homodimer aggregates is strongly 

concentration dependent and that, at concentrations of EB greater than about 0.5 mM, the 

contribution of the F2EB hetero-complex (∼40%) dominates in solution with respect to other 

associated complexes of the homodimer. 

Conclusions. 

In the present work it has been shown that a typical bis-intercalator, Acridine 

Homodimer, exhibits a strong tendency to self-associate in solution, forming an intercalated-like 

compact complexes of two (F2) and three (F3) molecules.  It has also been shown that AcrH 

molecule is an effective trapper of aromatic dye, Ethidium Bromide, which binds with a dimer F2 

of AcrH.  A comparative of the calculated association parameters of AcrH with those for 

Ethidium Homodimer previously studied [17] reveals a correlation between the effectiveness of 

association reactions and the length of the chain connecting the chromophores of a bis-

intercalator.  Such models and analyses as in this work should be taken into consideration for 

investigations of the complexation of bis-intercalating agents with biopolymers and in 

circumstances when other aromatic species may present in solution. 
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Table 1 Induced proton chemical shifts of Acridine Homodimer in different self-association 

complexes 

 
Protons H8 H4 H3 H5 H7 H1 

T=298K 
δU≈δF 8.04 7.57 7.57 7.49 7.38 7.27 
δ2 7.82 7.31 7.31 7.26 7.25 7.08 
δ3 7.26 6.81 6.81 6.64 6.72 6.45 
δC2 7.77 7.28 7.28 7.18 7.13 6.90 

T=308K 
δU≈δF 8.05 7.58 7.57 7.51 7.38 7.28 
δ2 7.76 7.28 7.22 7.28 7.11 7.15 
δ3 7.43 6.91 6.96 6.80 6.82 6.55 

 
 

 
Table 2 Comparison of the thermodynamical parameters of self- and hetero-association of 

Acridine Homodimer (AcrH) and Ethidium Homodimer (EBH) [17] in aqueous solution  
  

Reaction K298, l/mol K308, l/mol -ΔH°, 
J/mol 

-ΔS°, 
J/mol·K 

AcrH 42 ± 10 26 ± 6 11000 ± 3000 6 ± 3 U ↔ F EBH 25 ± 5 ⎯ 9000 ± 3000 4 ± 2 
AcrH 540 ± 130 400 ± 100 32000 ± 5000 50 ± 10 F + F ↔ F2 EBH 730 ± 100 ⎯ 23000 ± 3000 22 ± 5 
AcrH 4200 ± 1000 3200 ± 800 28000 ± 5000 25 ± 5 F + F2 ↔ F3 EBH 1400 ± 200 ⎯ 26000 ± 3000 27 ± 5 

EB + F2 ↔ F2EB AcrH 6500 ± 800 ⎯ 36000 ± 4000 50 ± 10 
PI + F2 ↔ F2PI EBH 160 ± 40 ⎯ 17000 ± 3000 15 ± 5 

 
 



 12

 
 
 
 

 
 
 
 

a) 
 
 
 
 
 
 

 
 
 

b) 
 
 
 
 
 
 
 
 
 
 

Fig.1 Structure of (a) Acridine Homodimer and (b) Ethidium Bromide 
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Fig.2 Dependence of proton chemical shifts of AcrH on: (a) concentration (T=298K); (b) 
temperature (h0=0.496 mM) in aqueous solution, pD 7.5 
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Fig.3 Dependence of proton chemical shifts of AcrH and EB on: (a) concentration of AcrH 
(T=298K, d0=0.95 mM); (b) temperature (h0=0.55 mM, d0=0.95 mM) in aqueous solution, pD 
7.5 
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Fig.4 Schematic representation of different structures of self-aggregates of AcrH complexes 
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Fig.5 Schematic representation of different structures of AcrH-EB hetero-complexes 
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Fig.6 Relative content (f) of different types of AcrH aggregates in solution as a function of AcrH 

concentration (h0) 
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Fig.7 Relative content (f) of different types of AcrH aggregates in solution in the presence of EB; 

the concentration of EB is constant (? mM) and AcrH (I0) is varied. 
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	EXPERIMENTAL 
	Acridine Homodimer (“Molecular Probes”) and Ethidium Bromide (“Sigma”) were lyophilized from D2O and re-dissolved in 0.1M solution of HEPES buffer in 99.95% D2O, pD 7.5, containing 10-4 M EDTA.  The structures of AcrH and EB are shown in Figure1. 
	Analysis of the complexation parameters (Table 2) reveals that the hetero-association constant KC2 is greater than the trimerization constant, K3.  It is likely that a monomeric EB molecule having no linker attached is better accommodated when binding with the F2 complex when compared with a bulky AcrH molecule forming F3 complex via reaction (1c).  It is interesting to note that the KC2(AcrH-EB) constant is significantly greater than the KC2(EBH-PI) constant (Table 2).  As the chain linker of EBH is critical for insertion of two aromatic chromophores into the F-form (Figure 4c) and the chain linker of AcrH linker is longer than that of EBH, it is possible that its length is sufficient so that the complexation of EB with the dimer of AcrH is facilitated with respect to EBH-PI complexation, thus resulting in more intense dispersive and hydrophobic contact and the greater association constant.  An increase in the absolute values of enthalpy and entropy of the hetero-association reaction of AcrH-EB over the same parameters of the formation of F2 and F3 complexes of AcrH (see Table 2) supports the assumption of favourable energetics for insertion of EB with the dimer F2 compared to the binding of the F-molecule to F2. 
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