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Abstract 
A MIDAS regression involves a dependent variable observed at a low frequency and 

independent variables observed at a higher frequency. This paper relates a true high frequency 

data generating process, where also the dependent variable is observed (hypothetically) at the 

high frequency, with a MIDAS regression. It is shown that a correctly specified MIDAS 

regression usually includes lagged dependent variables, a substantial number of explanatory 

variables (observable at the low frequency) and a moving average term. Next, the parameters 

of the explanatory variables unlikely obey certain convenient patterns, and hence imposing such 

restrictions in practice is not recommended.  
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Introduction 
 

MIDAS regressions typically involve a dependent variable observed at a low frequency and 

independent variables observed at a higher frequency. A MIDAS regression often also includes 

lags of the low frequency dependent variable on the right hand side. An example is quarterly 

growth in Gross Domestic Product as the dependent variable and the monthly observed growth 

in industrial production as an explanatory variable. Another example is category sales observed 

per 13 weeks, possibly being explained by weekly observed sales levels of a prominent product 

within that category. The first mention of a MIDAS regression is Ghysels et al. (2004), and 

since then a variety of studies have implemented and extended the initial MIDAS regression, 

see for example Clements and Galvao (2008), Andreou et al. (2010) and Ghysels et al. (2007). 

The focus is often on forecasting and it is frequently found that a MIDAS regression delivers 

accurate forecasts, usually more accurate that models where all variables are aggregated at the 

low frequency.  

 Usually, the MIDAS regression is considered in practice with the assumption that the 

underlying data generating process (DGP) also is a MIDAS model, that is, the variables are in 

reality only observable at different frequencies. In this paper, I provide an alternative look at 

MIDAS regressions by assuming that the underlying DGP is a model at the high frequency for 

both the dependent and the independent variables, but that somehow only low frequency 

observations of the dependent variable are available. This adds to the literature where the 

consequences of (temporal) aggregation are discussed, where usually the focus is on the 

aggregation of both the dependent and the independent variables, see Lütkepohl (1986) and 

Marcellino (1999). As a running example, also to save notation, I will consider quarters as the 

low frequency and months as the high frequency, but the main results qualitatively apply to any 

other mix of frequencies. The simulation experiments will consider years and half years, also 

to reduce the number of tables. Again, the findings from the simulations will carry on through 

to other mixes of frequencies. 

 With a DGP at the high frequency, it can be derived how the appropriate MIDAS 

regression looks like when there are two different frequencies. In the example of an 

autoregressive distributed lag (ADL) model of orders (3,3), which is a rather parameter-rich 

model at the high frequency, I can derive the exact expression of the appropriate corresponding 

MIDAS regression. This illustration leads to three key insights, which are all generalizable to 

other DGPs. The first is that the numbers of lags in a MIDAS regression, both for the dependent 
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low frequency variable and for the independent high frequency variables, are not necessarily 

high, which seems in contrast to what one usually sees in empirical studies. The second insight 

is that currently fashionable restrictions on the parameters of the independent variables, like the 

Almon structure or the logit expressions, potentially have no particular meaning. The 

parameters in the high frequency DGP can lead to a wealth of different parameter 

configurations in the MIDAS regressions, and particular systematic patterns might be rare. The 

third insight is that, in some cases, the parameters in the MIDAS regression are informative 

about the true parameters in the high frequency DGP. This can lead to proper estimates of 

carryover effects, short run effects, and cumulative effects in the true high-frequency ADL 

process, should one be interested in that exercise. 

 The paper proceeds as follows. In Section 2, I present a high frequency DGP at the 

monthly level, and derive the features of the associated MIDAS regression where the dependent 

variable is observed only quarterly. I rely on a notation that is different from the one currently 

in use in the literature to effectively indicate the transition from DGP to a MIDAS regression. 

This transformation might be called a high frequency/low frequency transformation, or in brief, 

a HILO transformation. Our notation resembles the one that is typically used for periodic time 

series models for seasonal data, see Franses (1994) and Franses and Paap (2004). The main 

insights are also summarized in this Section 2. In Section 3, I report on simulation experiments 

to examine the properties of the least squares estimators in the MIDAS regression. It is possible 

to quantify the loss of forecasting power in case a MIDAS regression is used instead of a model 

that perfectly matches with the true high-frequency DGP. Section 4 includes an illustration for 

total vehicle sales per quarter and monthly observed sales of new passenger cars. Section 5 

concludes with a summary of the main findings and a few suggestions for future research.  

 

2. Quarterly (dependent) and monthly (explanatory) variables 
 

The idea of this paper is to derive the properties of a MIDAS regression when there is a true 

data generating process at a high frequency, for which the time indicator is t and where the 

dependent variable turns out to be observable only at a low frequency, with indicator T. The 

difference between the two frequencies is denoted as S. So, t can refer to quarterly observations 

and T to annual observations, which makes S equal to 4. All derivations in this paper concern 

flow variables, that is, the low-frequency variables associate with the sum or the average of the 

high frequency variables.  To save notation, but at the same time, to be able to illustrate as much 

as possible, I will use S = 3 in this section.  
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 Assume that the DGP at the high frequency level is an autoregressive distributed lag 

model with lags (3,3) (ADL(3,3)), that is, 

 

𝑦𝑦𝑡𝑡 = 𝛼𝛼1𝑦𝑦𝑡𝑡−1 + 𝛼𝛼2𝑦𝑦𝑡𝑡−2 + 𝛼𝛼3𝑦𝑦𝑡𝑡−3 + 𝛽𝛽0𝑥𝑥𝑡𝑡 + 𝛽𝛽1𝑥𝑥𝑡𝑡−1 + 𝛽𝛽2𝑥𝑥𝑡𝑡−2 + 𝛽𝛽3𝑥𝑥𝑡𝑡−3 + 𝜀𝜀𝑡𝑡 (1) 

 

where 𝜀𝜀𝑡𝑡  is a standard white noise process with mean 0 and variance 𝜎𝜎2 . This is a rather 

parameter-rich model, which is perhaps rarely fitted to actual data in practice, and below it will 

be demonstrated what the consequences are of parameter restrictions. The key idea of this paper 

is first to write (1) in a low frequency format, that is, to use a HILO notation transformation. 

When S = 3, the equivalent of (1) is then 

 

�
1 0 0
−𝛼𝛼1 1 0
−𝛼𝛼2 −𝛼𝛼1 1

��
𝑌𝑌1,𝑇𝑇
𝑌𝑌2,𝑇𝑇
𝑌𝑌3,𝑇𝑇

� = �
𝛼𝛼3 𝛼𝛼2 𝛼𝛼1
0 𝛼𝛼3 𝛼𝛼2
0 0 𝛼𝛼3

��
𝑌𝑌1,𝑇𝑇−1
𝑌𝑌2,𝑇𝑇−1
𝑌𝑌3,𝑇𝑇−1

� + �
𝛽𝛽0 0 0
𝛽𝛽1 𝛽𝛽0 0
𝛽𝛽2 𝛽𝛽1 𝛽𝛽0

��
𝑋𝑋1,𝑇𝑇
𝑋𝑋2,𝑇𝑇
𝑋𝑋3,𝑇𝑇

� +

                                                                   �
𝛽𝛽3 𝛽𝛽2 𝛽𝛽1
0 𝛽𝛽3 𝛽𝛽2
0 0 𝛽𝛽3

��
𝑋𝑋1,𝑇𝑇−1
𝑋𝑋2,𝑇𝑇−1
𝑋𝑋3,𝑇𝑇−1

� + �
𝜀𝜀1,𝑇𝑇
𝜀𝜀2,𝑇𝑇
𝜀𝜀3,𝑇𝑇

�  (2) 

 

Hence, the letters y and x are used for the high frequency and Y and X for the low frequency. 

The inverse of the left-hand side matrix in (3), say 𝐴𝐴0, is 

 

𝐴𝐴0−1 = �
1 0 0
𝛼𝛼1 1 0

𝛼𝛼12 + 𝛼𝛼2 𝛼𝛼1 1
� 

 

Multiplying both sides of (2) with this inverse results in  

 

�
1 0 0
0 1 0
0 0 1

��
𝑌𝑌1,𝑇𝑇
𝑌𝑌2,𝑇𝑇
𝑌𝑌3,𝑇𝑇

� = 𝐴𝐴0−1𝐴𝐴1 �
𝑌𝑌1,𝑇𝑇−1
𝑌𝑌2,𝑇𝑇−1
𝑌𝑌3,𝑇𝑇−1

� + 𝐴𝐴0−1𝐵𝐵0 �
𝑋𝑋1,𝑇𝑇
𝑋𝑋2,𝑇𝑇
𝑋𝑋3,𝑇𝑇

� +

                                                                 𝐴𝐴0−1𝐵𝐵1 �
𝑋𝑋1,𝑇𝑇−1
𝑋𝑋2,𝑇𝑇−1
𝑋𝑋3,𝑇𝑇−1

� + 𝐴𝐴0−1 �
𝜀𝜀1,𝑇𝑇
𝜀𝜀2,𝑇𝑇
𝜀𝜀3,𝑇𝑇

�  (3) 

 

with  
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𝐴𝐴0−1𝐴𝐴1 = �
𝛼𝛼3 𝛼𝛼2 𝛼𝛼1
𝛼𝛼1𝛼𝛼3 𝛼𝛼1𝛼𝛼2 + 𝛼𝛼3 𝛼𝛼12 + 𝛼𝛼2

𝛼𝛼12𝛼𝛼3 + 𝛼𝛼2𝛼𝛼3 𝛼𝛼12𝛼𝛼2 + 𝛼𝛼22 + 𝛼𝛼1𝛼𝛼3 𝛼𝛼13 + 2𝛼𝛼1𝛼𝛼2 + 𝛼𝛼3
� 

 

where the matrices 𝐴𝐴0−1𝐵𝐵0 and 𝐴𝐴0−1𝐵𝐵1 have similarly-looking expressions now also involving 

the 𝛽𝛽 parameters. A final part of the HILO notation transformation is to multiply both sides of 

(3) with the vector (1 1 1), which results in 

 

𝑌𝑌𝑇𝑇 = 𝑌𝑌1,𝑇𝑇 + 𝑌𝑌2,𝑇𝑇 + 𝑌𝑌3,𝑇𝑇 = 𝛼𝛼1∗𝑌𝑌1,𝑇𝑇−1 + 𝛼𝛼2∗𝑌𝑌2,𝑇𝑇−1 + 𝛼𝛼3∗𝑌𝑌3,𝑇𝑇−1 

                  +𝛽𝛽0∗𝑋𝑋3,𝑇𝑇 + 𝛽𝛽1∗𝑋𝑋2,𝑇𝑇 + 𝛽𝛽2∗𝑋𝑋1,𝑇𝑇 + 𝛽𝛽3∗𝑋𝑋3,𝑇𝑇−1 + 𝛽𝛽4∗𝑋𝑋2,𝑇𝑇−1 + 𝛽𝛽5∗𝑋𝑋1,𝑇𝑇−1 + 𝜀𝜀𝑇𝑇  (4) 

 

where 𝜀𝜀𝑇𝑇 is again a white noise process now at the low frequency with a variance that is a 

function of the 𝛼𝛼  parameters and 𝜎𝜎2 . The parameters in (4) are functions of the original 

parameters in (1).  

 There are two key features to be observed from (4). The first is that the right-hand side 

includes three (and in general S) unobserved variables, that is, 𝑌𝑌1,𝑇𝑇−1, 𝑌𝑌2,𝑇𝑇−1 and 𝑌𝑌3,𝑇𝑇−1, and 

these are unobserved because 𝑌𝑌𝑇𝑇−1 is assumed to be only observable at the low frequency. The 

second feature is that a pattern in the values of the 𝛽𝛽0∗  to 𝛽𝛽5∗  parameters depends on the 

(unknown) values of the underlying parameters in the high frequency DGP.   

Table 1 presents two sets of parameter patterns for two specific versions of (1). 

Evidently, any pattern on the parameters can emerge, depending on the parameters in the high 

frequency DGP. This suggests that imposing structures on the parameters in a MIDAS 

regression using for example Almon lags or a logistic function does not seem to make sense, a 

priori. Next, if one were interested in the parameters in the high frequency DGP, one may 

impose and test parameter restrictions in the MIDAS regression using expressions like those as 

in Table 1.  

 

How to deal with the S unobservable variables? 

 

There are various strategies to deal with the S  = 3 unobserved variables 𝑌𝑌1,𝑇𝑇−1, 𝑌𝑌2,𝑇𝑇−1 and 

𝑌𝑌3,𝑇𝑇−1, and later on I will rely on some simulation experiments to examine the consequences of 

each strategy.  

 A first, but unwise, strategy is to consider the MIDAS regression 

 

 5 



𝑌𝑌𝑇𝑇 = 𝛽𝛽0∗𝑋𝑋3,𝑇𝑇 + 𝛽𝛽1∗𝑋𝑋2,𝑇𝑇 + 𝛽𝛽2∗𝑋𝑋1,𝑇𝑇 + 𝛽𝛽3∗𝑋𝑋3,𝑇𝑇−1 + 𝛽𝛽4∗𝑋𝑋2,𝑇𝑇−1 + 𝛽𝛽5∗𝑋𝑋1,𝑇𝑇−1 + 𝜀𝜀𝑇𝑇  (5) 

 

which simply ignores lagged information on the dependent variable. As (1) and (4) show, the 

omitted variables then are correlated with the included explanatory variables, and this will 

imply biased estimates.  

 A second strategy is to rely on the approximation that 𝑌𝑌1,𝑇𝑇−1 =  𝛾𝛾𝑌𝑌𝑇𝑇−1, 𝑌𝑌2,𝑇𝑇−1 = 𝛾𝛾𝑌𝑌𝑇𝑇−1 

and 𝑌𝑌3,𝑇𝑇−1 = 𝛾𝛾𝑌𝑌𝑇𝑇−1, indeed assuming that 𝛾𝛾 is the same each time. In that case, (4) becomes 

 

𝑌𝑌𝑇𝑇 = (𝛼𝛼1∗ + 𝛼𝛼2∗ + 𝛼𝛼3∗)𝛾𝛾𝑌𝑌𝑇𝑇−1 

+𝛽𝛽0∗𝑋𝑋3,𝑇𝑇 + 𝛽𝛽1∗𝑋𝑋2,𝑇𝑇 + 𝛽𝛽2∗𝑋𝑋1,𝑇𝑇 + 𝛽𝛽3∗𝑋𝑋3,𝑇𝑇−1 + 𝛽𝛽4∗𝑋𝑋2,𝑇𝑇−1 + 𝛽𝛽5∗𝑋𝑋1,𝑇𝑇−1 + 𝜀𝜀𝑇𝑇  (6) 

 

which now includes only observable variables on the right hand side. It is however not certain 

that 𝛾𝛾 is constant over time, so the inclusion of 𝑌𝑌𝑇𝑇−1  potentially implies the inclusion of a 

variable with measurement error.  

 A third strategy involves looking again at (1), and to recognize that a model for 𝑌𝑌1,𝑇𝑇−1 

includes 𝑋𝑋1,𝑇𝑇−1,𝑋𝑋3,𝑇𝑇−2,𝑋𝑋2,𝑇𝑇−2,𝑋𝑋1,𝑇𝑇−2  as well as 𝜀𝜀1,𝑇𝑇−1 . For 𝑌𝑌2,𝑇𝑇−1  this entails 

𝑋𝑋2,𝑇𝑇−1,𝑋𝑋1,𝑇𝑇−1,𝑋𝑋3,𝑇𝑇−2, 𝑋𝑋1,𝑇𝑇−2  and 𝜀𝜀2,𝑇𝑇−1 , while for 𝑌𝑌3,𝑇𝑇−1  this entails 𝑋𝑋3,𝑇𝑇−1,𝑋𝑋2,𝑇𝑇−1,𝑋𝑋1,𝑇𝑇−1,

𝑋𝑋3,𝑇𝑇−2 as well as 𝜀𝜀3,𝑇𝑇−1. At the same time it holds that 𝑌𝑌1,𝑇𝑇−1 = 𝑌𝑌𝑇𝑇−1 − (𝑌𝑌2,𝑇𝑇−1 + 𝑌𝑌3,𝑇𝑇−1), that 

𝑌𝑌2,𝑇𝑇−1 = 𝑌𝑌𝑇𝑇−1 − (𝑌𝑌1,𝑇𝑇−1 + 𝑌𝑌3,𝑇𝑇−1), and that 𝑌𝑌3,𝑇𝑇−1 = 𝑌𝑌𝑇𝑇−1 − (𝑌𝑌1,𝑇𝑇−1 + 𝑌𝑌2,𝑇𝑇−1). This suggests 

that a general MIDAS regression, which replaces the S = 3 unobservable variables by 

observables, looks like 

 

𝑌𝑌𝑇𝑇 = 𝜌𝜌𝑌𝑌𝑇𝑇−1 + 𝛽𝛽0∗𝑋𝑋3,𝑇𝑇 + 𝛽𝛽1∗𝑋𝑋2,𝑇𝑇 + 𝛽𝛽2∗𝑋𝑋1,𝑇𝑇 + 𝛽𝛽3∗𝑋𝑋3,𝑇𝑇−1 + 𝛽𝛽4∗𝑋𝑋2,𝑇𝑇−1 + 𝛽𝛽5∗𝑋𝑋1,𝑇𝑇−1 +

                          𝛽𝛽6∗𝑋𝑋3,𝑇𝑇−2 + 𝛽𝛽7∗𝑋𝑋2,𝑇𝑇−2 + 𝛽𝛽8∗𝑋𝑋1,𝑇𝑇−2 + 𝑣𝑣𝑇𝑇 + 𝜃𝜃𝑣𝑣𝑇𝑇−1     (7) 

 

This MIDAS regression model in (7) has the correct dynamics given the high-frequency DGP 

in (1). Again, no particular structure on the 𝛽𝛽𝑗𝑗∗ parameters is to be expected. Note that (7) 

involves a moving average term of order 1 (MA(1)), which is due to the inclusion of 𝜀𝜀1,𝑇𝑇−1, of 

𝜀𝜀2,𝑇𝑇−1 and of 𝜀𝜀3,𝑇𝑇−1. Exclusion of this MA term, as is apparently usually done in empirical 

applications, amounts to misspecification. However, when S increases, one may expect that 𝜃𝜃 

approaches 0, as will also be clear from the expressions in the next section when some 

simulations will be performed. The parameter 𝜌𝜌 is a function of the parameters 𝛼𝛼1 and 𝛼𝛼2. 
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 The exercise in this section leads to three general conclusions. A correctly specified 

MIDAS regression usually includes lagged dependent variables, a substantial number of 

explanatory variables and a moving average term. The parameters of the explanatory variables 

cannot be expected to obey certain convenient patterns, and it is therefore not recommended to 

impose such restrictions. When S is large, the impact of the ignorance of the moving average 

term shall become small, but that will also depend on the size of the parameters for the lagged 

dependent variables in the high frequency DGP. In specific cases, one may wish to impose and 

to test restrictions on the parameters in the MIDAS regression to learn about the underlying 

parameters in the high frequency DGP. When the high frequency DGP includes a small number 

of lags either of the dependent or the independent variables, then the size of the MIDAS 

regression quickly reduces.  

 

3. Simulations for S = 2 
 

In this section, I present various simulation experiments to illustrate the practical consequences 

of the HILO transformation and the various expressions for MIDAS regressions.  

 Suppose now that there is a DGP at a “half-yearly frequency”, that is,  

 

𝑦𝑦𝑡𝑡 = 𝛼𝛼𝑦𝑦𝑡𝑡−1 + 𝛽𝛽0𝑥𝑥𝑡𝑡 + 𝛽𝛽1𝑥𝑥𝑡𝑡−1 + 𝜀𝜀𝑡𝑡       (8) 

 

Assuming S = 2, this DGP after HILO notation transformation is 

 

� 1 0
−𝛼𝛼 1� �

𝑌𝑌1,𝑇𝑇
𝑌𝑌2,𝑇𝑇

� =  �0 𝛼𝛼
0 0� �

𝑌𝑌1,𝑇𝑇−1
𝑌𝑌2,𝑇𝑇−1

� + �𝛽𝛽0 0
𝛽𝛽1 𝛽𝛽0

� �
𝑋𝑋1,𝑇𝑇
𝑋𝑋2,𝑇𝑇 

� + �0 𝛽𝛽1
0 0 � �

𝑋𝑋1,𝑇𝑇−1
𝑋𝑋2,𝑇𝑇−1 

� + �
𝜀𝜀1,𝑇𝑇
𝜀𝜀2,𝑇𝑇

� 

 

Pre-multiplying both sides of (8) with the inverse of � 1 0
−𝛼𝛼 1�, one obtains 

 

�
𝑌𝑌1,𝑇𝑇
𝑌𝑌2,𝑇𝑇

� =  �0 𝛼𝛼
0 𝛼𝛼2� �

𝑌𝑌1,𝑇𝑇−1
𝑌𝑌2,𝑇𝑇−1

� + � 𝛽𝛽0 0
𝛼𝛼𝛽𝛽0 + 𝛽𝛽1 𝛽𝛽0

� �
𝑋𝑋1,𝑇𝑇
𝑋𝑋2,𝑇𝑇 

� 

                                                 + �0 𝛽𝛽1
0 𝛼𝛼𝛽𝛽1

� �
𝑋𝑋1,𝑇𝑇−1
𝑋𝑋2,𝑇𝑇−1 

� + �
𝜀𝜀1,𝑇𝑇

𝛼𝛼𝜀𝜀1,𝑇𝑇 + 𝜀𝜀2,𝑇𝑇
�  (9) 

 

Pre-multiplying (9) with the vector (1  1) gives 
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  𝑌𝑌𝑇𝑇 = 𝑌𝑌1,𝑇𝑇 + 𝑌𝑌2,𝑇𝑇 = (𝛼𝛼 + 𝛼𝛼2)𝑌𝑌2,𝑇𝑇−1 + 

                     (𝛽𝛽0 + 𝛼𝛼𝛽𝛽0 + 𝛽𝛽1)𝑋𝑋1,𝑇𝑇 + 𝛽𝛽0𝑋𝑋2,𝑇𝑇 + (𝛽𝛽1 + 𝛼𝛼𝛽𝛽1)𝑋𝑋2,𝑇𝑇−1 + (𝛼𝛼 + 1)𝜀𝜀1,𝑇𝑇 + 𝜀𝜀2,𝑇𝑇  (10) 

 

where the variable 𝑌𝑌2,𝑇𝑇−1 is unobserved.  

 In the simulations, I will consider three versions of a MIDAS regression relevant to (10). 

The first is 

 

𝑌𝑌𝑇𝑇 = 𝜇𝜇 + 𝛽𝛽0∗𝑋𝑋2,𝑇𝑇 + 𝛽𝛽1∗𝑋𝑋1,𝑇𝑇 + 𝛽𝛽2∗𝑋𝑋2,𝑇𝑇−1 + 𝑢𝑢𝑇𝑇 

 

where it is known that the true parameters are 𝛽𝛽0∗ = 𝛽𝛽0 , 𝛽𝛽1∗ = (1 + 𝛼𝛼)𝛽𝛽0 + 𝛽𝛽1 , and 𝛽𝛽2∗ =

(1 + 𝛼𝛼)𝛽𝛽1 + 𝛼𝛼𝛽𝛽0. This model lacks three components, that is, the autoregressive term, the 

variable 𝑋𝑋1,𝑇𝑇−1 and the MA term.   

The second MIDAS regression is 

 

𝑌𝑌𝑇𝑇 = 𝜇𝜇 + 𝜌𝜌𝑌𝑌𝑇𝑇−1 + 𝛽𝛽0∗𝑋𝑋2,𝑇𝑇 + 𝛽𝛽1∗𝑋𝑋1,𝑇𝑇 + 𝛽𝛽2∗𝑋𝑋2,𝑇𝑇−1 + 𝑢𝑢𝑇𝑇 

 

where now the variable 𝑋𝑋1,𝑇𝑇−1 and the MA term are missing. The true parameters are as above 

plus 𝜌𝜌 = 𝛼𝛼2.  

 The third and final MIDAS regression replaces 𝑌𝑌2,𝑇𝑇−1, as is done in (7), and it reads as   

 

𝑌𝑌𝑇𝑇 = 𝜇𝜇 + 𝜌𝜌𝑌𝑌𝑇𝑇−1 + 𝛽𝛽0∗𝑋𝑋2,𝑇𝑇 + 𝛽𝛽1∗𝑋𝑋1,𝑇𝑇 + 𝛽𝛽2∗𝑋𝑋2,𝑇𝑇−1 + 𝛽𝛽3∗𝑋𝑋1,𝑇𝑇−1 + 𝑢𝑢𝑇𝑇 

 

where now only the MA term is ignored. Here, the true parameters are as before and 

additionally, 𝛽𝛽3∗ = 𝛼𝛼𝛽𝛽1. All parameters in these three models are estimated using ordinary least 

squares (OLS). 

 Table 2 reports the simulation results for N = 40, 400 and 40000, and for 𝛼𝛼 is 0.5, 0.8, 

0.9 and 0.95, for the first mis-specified MIDAS regression. Tables 3 and 4 refer to the other 

two MIDAS regressions.  

 Table 2 shows that the larger is α, the more bias there is for 𝛿𝛿0 and 𝛿𝛿1, particularly for 

small samples, whereas bias for 𝛿𝛿2 persists. Table 3 shows that the inclusion of 𝑌𝑌𝑇𝑇−1 alleviates 

the bias for 𝛿𝛿0 and 𝛿𝛿1, and substantially reduces the bias for 𝛿𝛿2, while the parameter for 𝑌𝑌𝑇𝑇−1 

itself is estimated with bias (due to still two missing terms). Table 4 shows that when only the 
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MA term is omitted, this is not very harmful, except for the parameter for 𝑌𝑌𝑇𝑇−1 and 𝛿𝛿3 when 

the true α is small.  

 Table 5 reports on the out-of-sample forecast accuracy, when measured with the root 

mean squared prediction error (RMSPE) for the three models. Clearly, only omitting the MA 

terms gives the smallest deterioration, while omitting 𝑌𝑌𝑇𝑇−1 is disastrous.  

 

4. An illustration 
 

In this section, I provide an empirical illustration using data on the registrations of new motor 

vehicles in the Netherlands. Figure 1 presents the total amount of new motor vehicles of all 

types, while Figure 2 additionally presents the new registrations for passenger cars only, for 

each of the three months within a quarter.  

 The first MIDAS regression for these data, explaining total vehicles by lags and the 

monthly passenger cars is (7). The p value of the Wald test for the restrictions 𝛽𝛽6∗ = 𝛽𝛽7∗ = 𝛽𝛽8∗ =

0, 𝛽𝛽7∗ = 𝛽𝛽8∗ = 0, and  𝛽𝛽8∗ = 0 are 0.061, 0.516 and 0.137, respectively, while the t value for  

𝛽𝛽5∗ = 0 is -7.281, and hence the final main MIDAS model is  

 

𝑌𝑌𝑇𝑇 = 𝜌𝜌𝑌𝑌𝑇𝑇−1 + 

𝛽𝛽0∗𝑋𝑋3,𝑇𝑇 + 𝛽𝛽1∗𝑋𝑋2,𝑇𝑇 + 𝛽𝛽2∗𝑋𝑋1,𝑇𝑇 + 𝛽𝛽3∗𝑋𝑋3,𝑇𝑇−1 + 𝛽𝛽4∗𝑋𝑋2,𝑇𝑇−1 + 𝛽𝛽5∗𝑋𝑋1,𝑇𝑇−1 + 𝑣𝑣𝑇𝑇 + 𝜃𝜃𝑣𝑣𝑇𝑇−1  

   

The estimated parameters are presented in Table 6. The parameter for the MA term is not 

significant, and hence panel 2 of Table 6 presents the estimation results in case this term is 

ignored. Clearly, the change in the in-sample RMSPE is small, when this term is ignored. And, 

the estimated parameters for the explanatory variable do not show any systematic pattern. The 

first-order autoregressive parameter is significantly different from 0 and also from 1. Excluding 

the first-order autoregressive term leads to biased estimates, and also to a significant drop in in-

sample forecast accuracy, as is evident from the final panel of Table 6. 

 

5. Conclusion 
 

This paper proposed to relate explicitly a true high frequency data generating process, where 

also the dependent variable is observed (hypothetically) at the high frequency, with a MIDAS 

regression. It was shown that a corresponding correctly specified MIDAS regression includes 
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lagged dependent variables, a substantial number of explanatory variables (observable at the 

low frequency) and a moving average term. Next, the parameters of the explanatory variables 

unlikely obey certain convenient patterns, and hence imposing such restrictions in practice is 

not recommended.  

 The analysis reveals a few practical guidelines when MIDAS regressions are considered 

for actual data. First, it seems helpful to first speculate about the form of a potentially underlying 

DGP at a high frequency. This may help to decide on the number of lags to include in the 

MIDAS regression. Second, it is recommended always to include a lagged dependent variable 

and a moving average term. Third, it is not recommended to impose parameter restrictions on 

the explanatory variables, but simply to estimate the parameters without restrictions. Even in 

small samples, when the dynamic specification is (approximately) correct, it should be possible 

to estimate the parameters without (much) bias. Fourth, for practical purposes, it helps to read 

the data in an explicit low-frequency format, making use of the insights from the literature on 

periodic time series models.  

 Further work in this area concerns extensions to MIDAS regressions with more than a 

single explanatory variable and to MIDAS regressions involving more than a single dependent 

variable. A particular challenge shall be MIDAS regressions with cointegration. 
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Table 1: Parameter values in the low frequency DGP as in (4) for an ADL(3,3) model as in (1) 

   

    𝛼𝛼2 = 𝛼𝛼3 = 0     𝛼𝛼1 = 𝛼𝛼2 = 𝛼𝛼3 = 0 

Variable 

          

𝑋𝑋3,𝑇𝑇    𝛽𝛽0      𝛽𝛽0  

𝑋𝑋2,𝑇𝑇    𝛽𝛽0(1 + 𝛼𝛼1) + 𝛽𝛽1    𝛽𝛽0 + 𝛽𝛽1  

𝑋𝑋1,𝑇𝑇    𝛽𝛽0(1 + 𝛼𝛼1 + 𝛼𝛼12) + 𝛽𝛽1(1 + 𝛼𝛼1)  𝛽𝛽0 + 𝛽𝛽1  

𝑋𝑋3,𝑇𝑇−1    𝛽𝛽1(1 + 𝛼𝛼1 + 𝛼𝛼12) + 𝛽𝛽2(1 + 𝛼𝛼1) + 𝛽𝛽3 𝛽𝛽1 + 𝛽𝛽2 + 𝛽𝛽3  

𝑋𝑋2,𝑇𝑇−1    𝛽𝛽2(1 + 𝛼𝛼1 + 𝛼𝛼12) + 𝛽𝛽3(1 + 𝛼𝛼1)  𝛽𝛽2 + 𝛽𝛽3  

𝑋𝑋1,𝑇𝑇−1    𝛽𝛽3(1 + 𝛼𝛼1 + 𝛼𝛼12)    𝛽𝛽3  
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Table 2: Simulation results based on a sample of N “yearly” observations, when a “half-yearly” 

DGP is the true process with 𝑥𝑥𝑡𝑡 ∼ 𝑁𝑁(1,1),  𝜀𝜀𝑡𝑡 ∼ 𝑁𝑁(0,1), 𝑦𝑦0 ∼ 𝑁𝑁(0,1), DGP is 𝑦𝑦𝑡𝑡 = 𝛼𝛼𝑦𝑦𝑡𝑡−1 +

𝑥𝑥𝑡𝑡 + 2𝑥𝑥𝑡𝑡−1 + 𝜀𝜀𝑡𝑡, 1000 replications.  The MIDAS regression is  

 

𝑌𝑌𝑇𝑇 = 𝜇𝜇 + 𝛿𝛿0𝑋𝑋2,𝑇𝑇 + 𝛿𝛿1𝑋𝑋1,𝑇𝑇 + 𝛿𝛿2𝑋𝑋2,𝑇𝑇−1 + 𝑢𝑢𝑇𝑇  

 

   𝛿𝛿0    𝛿𝛿1   𝛿𝛿2  

𝛼𝛼 N  mean st.d.  mean st.d.  mean st.d.           

 

True   1   3.5   3.5 

0.5 40  0.937 0.505  3.447 0.498  3.732 0.522   

 400  0.996 0.145  3.493 0.154  3.745 0.152 

 40000  1.001 0.014  3.500 0.015  3.750 0.015 

 

True   1   3.8   4.4 

0.8 40  0.690 1.293  3.530 1.313  4.854 1.342 

 400  0.957 0.371  3.754 0.381  5.006 0.386 

 40000  1.000 0.036  3.799 0.038  5.040 0.036 

 

True   1   3.9   4.7 

0.9 40  0.368 2.606  3.250 2.618  5.047 2.615 

 400  0.898 0.634  3.803 0.639  5.421 0.647 

 40000  1.000 0.059  3.898 0.062  5.509 0.059 

 

True   1   3.95   4.85 

0.95 40  -0.069 5.554  2.665 5.463  4.887 5.480 

 400  0.808 1.095  3.773 1.080  5.574 1.104 

 40000  1.001 0.089  3.947 0.095  5.752 0.090 
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Table 3: Simulation results based on a sample of N “yearly” observations, when a “half-yearly” 

DGP is the true process with 𝑥𝑥𝑡𝑡 ∼ 𝑁𝑁(1,1),  𝜀𝜀𝑡𝑡 ∼ 𝑁𝑁(0,1), 𝑦𝑦0 ∼ 𝑁𝑁(0,1), DGP is 𝑦𝑦𝑡𝑡 = 𝛼𝛼𝑦𝑦𝑡𝑡−1 +

𝑥𝑥𝑡𝑡 + 2𝑥𝑥𝑡𝑡−1 + 𝜀𝜀𝑡𝑡, 1000 replications.  The MIDAS regression is  

 

𝑌𝑌𝑇𝑇 = 𝜇𝜇 + 𝛾𝛾𝑌𝑌𝑇𝑇−1 +  𝛿𝛿0𝑋𝑋2,𝑇𝑇 + 𝛿𝛿1𝑋𝑋1,𝑇𝑇 + 𝛿𝛿2𝑋𝑋2,𝑇𝑇−1 + 𝑢𝑢𝑇𝑇  

 

 

   𝛾𝛾  𝛿𝛿0  𝛿𝛿1  𝛿𝛿2  

𝛼𝛼 N  mean std mean std mean std mean std          

 

True   0.25  1  3.5  3.5 

0.5 40  0.355 0.056 1.024 0.361 3.495 0.356 3.424 0.367   

 400  0.363 0.016 1.007 0.099 3.502 0.104 3.389 0.105 

 40000  0.364 0.002 1.001 0.010 3.500 0.010 3.386 0.010 

 

True   0.64  1  3.8  4.4 

0.8 40  0.691 0.043 1.031 0.474 3.772 0.470 4.395 0.476 

 400  0.710 0.012 1.011 0.129 3.801 0.137 4.335 0.136 

 40000  0.712 0.001 1.001 0.013 3.800 0.013 4.328 0.013 

 

True   0.81  1  3.9  4.7 

0.9 40  0.824 0.030 1.018 0.519 3.842 0.513 4.723 0.523 

 400  0.846 0.009 1.011 0.143 3.900 0.151 4.669 0.149 

 40000  0.851 0.001 1.001 0.014 3.900 0.015 4.660 0.015 

 

True   0.9025  1  3.95  4.85 

0.95 40  0.904 0.017 1.003 0.538 3.864 0.530 4.875 0.545 

 400  0.917 0.006 1.010 0.150 3.947 0.158 4.840 0.156 

 40000  0.924 0.001 1.001 0.015 3.950 0.015 4.830 0.015 
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Table 4: Simulation results based on a sample of N “yearly” observations, when a “half-yearly” 

DGP is the true process with 𝑥𝑥𝑡𝑡 ∼ 𝑁𝑁(1,1),  𝜀𝜀𝑡𝑡 ∼ 𝑁𝑁(0,1), 𝑦𝑦0 ∼ 𝑁𝑁(0,1), DGP is 𝑦𝑦𝑡𝑡 = 𝛼𝛼𝑦𝑦𝑡𝑡−1 +

𝑥𝑥𝑡𝑡 + 2𝑥𝑥𝑡𝑡−1 + 𝜀𝜀𝑡𝑡, 1000 replications.  The MIDAS regression is  

 

𝑌𝑌𝑇𝑇 = 𝜇𝜇 + 𝛾𝛾𝑌𝑌𝑇𝑇−1 + 𝛿𝛿0𝑋𝑋2,𝑇𝑇 + 𝛿𝛿1𝑋𝑋1,𝑇𝑇 + 𝛿𝛿2𝑋𝑋2,𝑇𝑇−1+ 𝛿𝛿3𝑋𝑋1,𝑇𝑇−1 + 𝑢𝑢𝑇𝑇  

 

   𝛾𝛾  𝛿𝛿0  𝛿𝛿1  𝛿𝛿2  𝛿𝛿3  

𝛼𝛼 N  mean std mean std mean std mean std mean std

           

True   0.25  1  3.5  3.5  1 

0.5 40  0.263 0.070 1.010 0.345 3.512 0.329 3.500 0.346 0.966 0.418 

 400  0.270 0.020 1.005 0.093 3.502 0.096 3.480 0.095 0.933 0.116 

 40000  0.272 0.002 1.001 0.009 3.500 0.010 3.478 0.009 0.923 0.011 

 

True   0.64  1  3.8  4.4  1.6 

0.8 40  0.641 0.045 1.008 0.409 3.813 0.387 4.417 0.403 1.611 0.423 

 400  0.648 0.013 1.007 0.110 3.802 0.114 4.392 0.112 1.572 0.122 

 40000  0.650 0.001 1.001 0.011 3.800 0.011 4.390 0.011 1.562 0.012 

 

True   0.81  1  3.9  4.7  1.8 

0.9 40  0.808 0.028 1.004 0.428 3.905 0.407 4.720 0.423 1.819 0.425 

 400  0.814 0.010 1.008 0.116 3.902 0.120 4.697 0.118 1.791 0.125 

 40000  0.815 0.001 1.001 0.012 3.900 0.012 4.696 0.012 1.780 0.012 

 

True   0.9025  1  3.95  4.85  1.9 

0.95 40  0.901 0.014 1.002 0.435 3.950 0.419 4.871 0.433 1.913 0.429 

 400  0.904 0.006 1.008 0.119 3.952 0.123 4.849 0.122 1.900 0.125 

 40000  0.905 0.001 1.001 0.012 3.950 0.012 4.848 0.012 1.890 0.012 

   

 

 

 

 

 

 14 



Table 5: Root mean squared prediction errors for 10, 100 and 10000 observations out-of-sample 

and forecast accuracy of the correctly specified high frequency DGP, that is, including the true 

𝑌𝑌2,𝑇𝑇−1. 

 

   MIDAS regressions in      True DGP 

   Table 2  Table 3  Table 4 

𝛼𝛼 N   

 

0.5 40  1.101   0.573   0.605   0.519 

 400  0.346   0.170   0.184   0.162 

 40000  0.036    0.017   0.018   0.016 

 

0.8 40  4.111   0.790   0.761   0.617 

 400  1.389   0.208   0.222   0.186 

 40000  0.145    0.021   0.022   0.018 

 

0.9 40  9.723   0.937   0.828   0.664 

 400  3.291   0.228   0.237   0.196 

 40000  0.344    0.022   0.023   0.019 

 

0.95 40  27.345   1.051   0.873   0.701 

 400  7.262   0.251   0.247   0.202 

 40000  0.747    0.023   0.024   0.020 
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Table 6: Estimated parameters in MIDAS regressions for new registrations of motor vehicles 

   

   Full MIDAS  Without MA  Without MA and 𝑌𝑌𝑇𝑇−1 

 

Variable 

  

Intercept  -2692  (4100)  -2319 (3769)  4312 (4738) 

𝑌𝑌𝑇𝑇−1   0.672 (0.162)  0.685 (0.140)      

𝑋𝑋3,𝑇𝑇   1.057 (0.049)  1.055 (0.049)  1.034 (0.065)   

𝑋𝑋2,𝑇𝑇   0.983 (0.179)  0.999 (0.176)  1.160 (0.233) 

𝑋𝑋1,𝑇𝑇   1.237 (0.131)  1.216 (0.116)  0.944 (0.136) 

𝑋𝑋3,𝑇𝑇−1   -0.844 (0.183)  -0.868 (0.140)  -0.306 (0.106) 

𝑋𝑋2,𝑇𝑇−1   -0.528 (0.295)  -0.533 (0.282)  0.572 (0.226) 

𝑋𝑋1,𝑇𝑇−1   -0.696 (0.199)  -0.712 (0.172)  0.060 (0.090) 

MA   0.071 (0.282) 

 

RMSE   2838.5   2840.7   3897.9 
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Figure 1: Total new registrations all vehicles in the Netherlands, 2007Q1-2015Q4 
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Figure 2: Total new registrations of all vehicles in the Netherlands, 2007Q1-2015Q4, and new 

registrations of new passenger cars in months 3, 2 and 1 of the quarters 
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