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10 Introduction

1.1 Head and neck cancer

Cancer figure among the leading causes of morbidity and mortality worldwide®. Of the
patients suffering from cancer worldwide approximately 5% have tumors in the head and
neck (H&N) region’. In the Netherlands H&N cancer incidence represents approximately
3% of all cancers?. H&N cancers are often categorized based on the region in which they
originate, resulting in five regions, as illustrated in Figure 1.1:

1. oral cavity

2. pharynx, including the nasopharynx, oropharynx and hypopharynx
3. larynx

4. paranasal sinusus and nasal cavity

5. salivary glands

Head and Neck Cancer Regions
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§inuses

I Nasal cavity
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y . Oral cavity
.-'{-
Pharynx| Oropharynx ﬂngue
Salivary glands
-
_Hypopharynx 4
| §- Larynx
L 1
g

Figure 1.1: Head and neck cancer regions. Image from www.cancer.gov

The prognosis for patients with advanced H&N cancer is very poor and treatment is
challenging'*™. These patients are standardly treated with radiotherapy with or without
chemotherapy. The treatments are associated with a high treatment toxicity. Side effects
often reported are loss of swallowing and salivary function leading to difficulties in speak-
ing and eating'®%%.
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1.2 Hyperthermia treatment

In a hyperthermia treatment, electromagnetic (EM) energy is transferred into the patient
to obtain a therapeutic result. The treatment can be for superficial targets (upto 4 cm
depth from the skin surface) or deep targets (deeper than 4 cm from the skin surface),
depending on the technique that is used!!'. Deep hyperthermia can be applied in the
pelvic region or in the H&N region. The goal of a hyperthermia treatment is to elevate
the target temperature to 39—44°C where the optimum temperature is around 43°C!%,
It is known that hyperthermia causes a number of biological and physiological effects
such as DNA repair inhibition and changes in blood flow and oxygenation'»7%>%58.65 For
multiple tumor sites, clinical studies have shown that the addition of a local hyperthermia
treatment to a (chemo)radiation treatment signifcantly improves the treatment outcome
without increasing treatment late toxicity®”°"!%, For H&N hyperthermia, several pro-
spective randomized phase III trials indicate that adding a hyperthermia treatment to
the standard (chemo)radiation treatment improves clinical outcome without adding extra
toxicity 232123100113 © Apy gverview of the findings of these studies for H&N hyperthermia
can be found in Table 1.1.

Table 1.1: Overview of phase III clinical trials that show the effect on H&N cancers of
adding a hyperthermia treatment to the conventional chemoradiation treat-
ment. CR: complete response, LC: local control, OS: overall survival, RT:
radiotherapy, CRT: chemoradiation, HT: hyperthermia, Loc. Adv.: local ad-
vanced, SCC: squamous cell carcinoma, Nr. P: Number of patients included
in the study.

Study Nr. P Tumor (C)RT (C)RT only (C)RT +HT Toxicity

Datta® 65 SCC RT CR: 10% CR: 50% —
(stage III — IV)
Valdagni'® 41 Loc. adv. H&N RT LC(5y): 24% LC(by): 69%  Similar

cancer + N3 nodes OS(5y): 0%  OS(5y): 54%
Huilgol > 56 Loc. Adv. H&N RT CR: 42% CR: 79% Similar
cancer
Hua®" 180 Nasopharynx RT CR: 81% CR: 96% Similar
LC(5y): 79% LC(5y): 91%
Zhao!'!? 83 Nasopharynx CRT  OS(3y): 54% OS(3y): 73%  Similar

In a recent study, the results of these randomized H&N studies as well as several controlled
non-randomized trials are summarized?*. This review reported in a total of 717 patients
with H&N cancer a statistical significant difference (p < 0.001) in favor of the hyper-
thermia group, i.e. complete local response was 50.3% (183/364) for (chemo)-radiation
versus 75.3% (266/353) for (chemo)-radiation combined with hyperthermia, with an odds
ratio of 3.71 (95% confidence interval, 2.55 - 5.38). This means that the probability of a
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local response in a (chemo)-radiation treatment including hyperthermia is 3.71x higher
compared to probability of a local response in a (chemo)-radiation treatment without
hyperthermia. For H&N cancers, Zhao et al. also reports an improvement in quality of
life and overall survival when using hyperthermia''®. These findings plea for the addition
of hyperthermia to a H&N (chemo)-radiation treatment.

For long, heating of H&N tumors was only possible at superficial locations. In 2007,
the Erasmus MC developed the first hyperthermia applicator for the treatment of deep
H&N cancers ™. With this applicator it was possible to heat tumors deeper than 4 cm
from the skin surface, using EM waves originating from multiple antenna elements™.
This applicator was called the HYPERcollar of which images are shown in Figure 1.2a
and 1.2b. Note that all the work in this thesis is done for the HYPERCcollar, since at the
time of the research all patients were treated with that applicator. Recently, an improved
version of the HYPERcollar is developed called HYPERcollar3D %% as shown in Figure
1.2c. However, since the HYPERcollar3D can heat target regions even more conformal
and precise, the impact of the work described in this thesis for this device will be even
greater.

y)

Figure 1.2: The HYPERcollar(a), the treatment room(b) and the HYPERcollar3D(c)

1.3 Hyperthermia treatment planning (HTP)

1.3.1 HTP rationale

The development of the HYPERcollar resulted in the technological possibility of heating
deeply seated tumors in the H&N region. The clinical use of the HYPERcollar requires
hyperthermia treatment planning (HTP) for multiple reasons. First, the H&N region
includes many thermosensitive tissues in which the temperature increase should remain
under specific thresholds, like 40°C for the spinal cord*®. Second, the H&N region includes
many different tissues and since each tissue affects the EM and temperature distribution
differently, HTP is crucial for an accurate estimation of these distributions. Third, due to
the many different tissues there are many tissue transitions that cause heterogeneities in
the SAR distribution which can be predicted with HTP. Fourth, the applicator includes
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twelve antenna elements from which the EM waves originate. Due to this multi-channel
applicator, HTP is required to optimise amplitude and phase settings for each individual
channel. Last, dosimetry using thermometry sensors is limited and HTP can give an
estimate of the 3D dose distribution. Therefore, in the clinical use of the HYPERcollar,
HTP is not only used for pre-treatment and real-time treatment optimization, but also
for treatment monitoring, treatment evaluation and tissue dose assessment "%,

1.3.2 HTP procedure

In HTP, EM and temperature simulations are used to predict the EM or temperature
distribution inside the patient. Input for these simulations is a 3D distribution of the (EM
and temperature) tissue properties. In current clinical practise, literature tissue property
values are assigned to 3D tissue regions that are segmented from Computed Tomography
(CT) or Magnetic Resonance Imaging (MRI) scans. On these scans the normal, critical
and target tissues are delineated, which results in a full 3D patient model. This patient
model is positioned inside a detailed 3D model of the HYPERcollar applicator such that
it matches the actual treatment situation. The EM field for each of the twelve antennas
of the HYPERcollar is simulated pretreatment. The amplitude and phase of each antenna
is optimized such that the absorbed power, called the specific absorption rate (SAR), is
the highest in the target while sparing the normal and critical (thermo-sensitive) tissues
from an excessive thermal dose. An illustration of this proces is illustrated in Figure 1.3.

CT (and MRI) Segmentation 3D patient model Optimized 3D SAR (or T)

Figure 1.3: The hyperthermia treatment planning proces: start with CT (and MRI)
images, delineate the tissues, create a 3D patient model, optimize 3D SAR
based on the EM simulations and simulate the 3D temperature (T).

1.3.3 Application of HTP

Hyperthermia treatment planning can be used for many purposes. In the past it was
mainly used to design new hyperthermia applicators % or to determine the effect of
a parameter on the treatment outcome in sensitivity studies'®''. Until recent, it was
not standard to use imaging data as input for the treatment plan and therefore gen-
eral shapes”” or a model of another patient was used as input®. When computer power
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increased and images were routinely acquired, patient-specific modeling became the stand-
ard. Further developments made it even possible to apply real-time optimisation during

treatment in complaint-adaptive hyperthermia®’.

1.3.4 HTP status

At the start of the project, HTP was being used for the treatment of patients with
tumors in the H&N region. At that time, 3D patient models for HTP were created using
manual and/or semi-automatic procedures for segmenting tissues on CT images. The
standard method included Hounsfield unit (HU) based thresholding of muscle, fat and
bone tissues while critical tissues were segmented manually. Due to the manual aspect
of tissue segmentation, the intra- and interobserver variation affect the accuracy of the
patient model. The proces of generating a full 3D patient model of the H&N region took
usually about one working day (5-8 hours). The commercially available tool iSeg was
used for this proces, which is part of the EM simulation platform SEMCAD X (Schmid
& Partner Engineering AG (SPEAG), Zurich, Switzerland). iSeg includes algorithms for
manual and semi-automatic segmentation of images. It has more advanced tools compared
to the more widely used HTP platform Sigma HyperPlan, that is specifically designed for
deep hyperthermia with the commercial BSD 2000 applicator **.

At the start of this project, no temperature simulations were used for HTP. It was
fully based on SAR predictions. For H&N HTP these predictions were done in SEM-
CAD X. This platform includes EM and thermal solvers similar to HyperPlan, while also
providing some extra functionalities like Discrete Vascular (DIVA) modeling.

1.4 Approach

The aim of this project was the development of accurate and efficient patient model
generation for patient-specific HTP based on EM and temperature modeling.

1.4.1 3D patient modeling

The first step in the accurate and efficient patient modeling was the 3D solid model
generation. Hereto we developed and validated an atlas-based automatic segmentation
tool. This automatic segmentation should replace most of the manual and semi-automatic
procedures, reduce the segmentation workload of 5-8 hours, be at least as accurate as
manual segmentations but more reproducible since manual segmentations are prone to
intra- and interobserver variability. First, the relevant tissues that have to be segmented
by the tool were determined. Hereto the following points were considered: 1) the contrast
and visibility of the tissue on the image; 2) the relative difference in tissue property values
with respect to other tissues; 3) the relevance of the tissue type for the optimization
algorithm, i.e. the organs at risk.
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To further improve patient model accuracy, we explored the possibility of including
MRI information. In radiotherapy treatment planning, MRI has shown to be a useful
supplement to the CT data especially for more accurate target’®*®% and soft-tissue de-
lineation®*. Using MRI still requires CT images as they are geometrically more accurate
than MRI and they provide crucial proton density information for radiotherapy treatment
planning. Typically, the requirements for the detail of segmentation for hyperthermia are
higher than, for example, in radiotherapy, as more tissues need to be distinguished to
correctly capture the important impact of dielectric and thermal tissue properties. Thus,
by combining CT and MRI and introducing sophisticated atlas-based registration and
segmentation algorithms®*, the aim was to replace the manual operations and facilitate
a fast, accurate and reproducible generation of patient specific patient models for HTP.
This is the topic of chapter 2 and 3 of this thesis.

1.4.2 Temperature modeling

The accuracy of the 3D patient model is not only dependent on the location of the tissue
obtained from the segmentation tool, but also on the tissue property values that are
assigned to the tissues. Hence, a 3D patient model consists of a number of segmented
tissues and per tissue a definition of the tissue property values. The accuracy of EM
and temperature simulations is dependent on those tissue property values because they
can vary between patients, within the patient, within each tissue, over time and as a
non-linear function of tissue temperature. Upto now in HTP, EM simulations are used to
predict the SAR in the patient. However, since clinical studies have shown that treatment
outcome is related to thermal-dose®®”*, we decided in the project to focus on the accuracy
improvement of temperature simulations. This is the topic of chapter 4 and 5 of this thesis,
where we choose to optimize thermal tissue property values using the input of temperature
sensors and simulations.

1.5 Scope and outline of this thesis

The research presented in this thesis is the result of a close collaboration between the
Hyperthermia Unit (Erasmus MC - Cancer Institute) and the Biomedical Imaging Group
Rotterdam (Erasmus MC - BIGR), which is a cooperation between the departments of
Radiology and Medical Informatics. This thesis focuses on one hand on the validation of
image processing tools developed for H&N patient model generation from CT and MRI
and on the other hand on improving temperature simulations in HTP for H&N cancer
patients.

In chapter 2 the automatic tissue segmentation tool is validated by comparing
the impact of manual and automatic normal and critical tissue segmentation on HTP.
The impact was evaluated using both the SAR dose distribution and the HTP quality.
In addition, the effect of tissue segmentation was compared to other sources of patient
model uncertainties, such as the grid step and uncertainties in tissue properties.
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In chapter 3 the relevance of including MRI in addition to CT images for H&N
patient modeling is investigated. To quantify this relevance, the predicted maximum tem-
perature and the corresponding SAR in the segmented tissues of CT based patient models
were compared to CT and MRI based patient models.

In chapter 4 the first step in improving temperature simulations for H&N HTP
is described. A technique is developed for patient-group specific optimization of thermal
tissue properties based on invasively measured temperatures.

In chapter 5 the technique of chapter 4 is improved further and used to assess the
feasibility of 3D dosimetry based on patient-specific temperature simulations and sensory
feedback.

In chapter 6 the general conclusions and future perspectives are provided to finalize
the scientific content of the thesis.



CHAPTER 2

CT-based patient modeling:
manual vs. automatic tissue segmentation

This chapter has been published as:

RF Verhaart, V Fortunati, GM Verduijn, T van Walsum, JF Veenland, MM Paul-
ides, “CT-Based Patient Modeling for Head and Neck Hyperthermia Treatment Planning:
Manual versus Automatic Normal-Tissue Segmentation”, Radiother Oncol, Vol. 111, No.
1, pp. 158-163, 2014.
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Abstract

Purpose: Clinical trials have shown that hyperthermia, as adjuvant to
radiotherapy and/or chemotherapy, improves treatment of patients with
locally advanced or recurrent head and neck (HEN) carcinoma. In Rotterdam,
hyperthermia treatment planning (HTP) guided HESN hyperthermia is being
investigated, which requires patient specific 3D patient models derived from
Computed Tomography (CT)-images. To decide whether a recently developed
automatic-segmentation algorithm can be introduced in the clinic, we compared
the impact of manual- and automatic normal-tissue-segmentation variations
on HTP quality.

Materials and methods: CT images of seven patients were segmented
automatically and manually by four observers, to study inter-observer and
intra-observer geometrical variation. To determine the impact of this vari-
ation on HTP quality, HTP was performed using the automatic and manual
segmentation of each observer, for each patient. This impact was compared
to other sources of patient model uncertainties, i.e. varying gridsizes and
dielectric tissue properties.

Results: Despite geometrical variations, manual and automatic generated
3D patient models resulted in an equal, i.e. 1%, variation in HTP quality.
This variation was minor with respect to the total of other sources of patient
model uncertainties, i.e. 11.7%.

Conclusion: Automatically generated 3D patient models can be introduced
in the clinic for HEN HTP.
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2.1 Introduction

Hyperthermia, i.e. raising tissue temperature to 39—44°C, has been shown to improve clin-
ical outcome when added to radiotherapy or chemotherapy for several tumor sites®°7103,
including the head and neck®°%%2. We recently developed a hyperthermia applicator to
investigate the benefit of deep local heating of head and neck tumors™™. The clinical
use of this device requires hyperthermia treatment planning (HTP) based on electromag-
netic simulations for pre-treatment and real-time treatment optimization and tissue dose
assessment. Crucial input for HTP are full 3D patient models incorporating all normal
tissues and the gross tumor volume (GTV). These models are generated by segment-
ing tissue regions on computed tomography (CT) images®. We recently developed an
automatic-segmentation algorithm for head and neck HTP that has shown to be accur-
ate, reproducible and substantially reduces operator time®*. A clinical introduction of the
algorithm requires a comparison of the impact of automatic segmentation on the hyper-
thermia treatment quality with the actual clinical standard, which is based on manual
segmentations. Manual segmentations are prone to observer variation, and the patient
model influences the accuracy of HTP for deep hyperthermia in the pelvic region!®!1?.
Due to the large number of small tissue regions in the head and neck region, observer
variation in tissues segmentation may have a substantial impact on the hyperthermia
treatment quality, but, this impact has never been quantified.

CT-based observer variation in tissue segmentation has already been assessed for
head and neck radiotherapy treatment planning'*™. However, while HTP requires a full
3D patient model, these studies included only a limited number of tissues, and many
reported either inter-observer or intra-observer variation. But, although not complete,
these studies provide an excellent reference to compare the results for separate organs.

Assessments of the exposure by electromagnetic sources of the human body also
involve 3D human models. These studies often summarize causes of simulation uncertain-
ties in an uncertainty budget, which includes uncertainties such as variations in dielectric
tissue properties and variations in the gridsize”™. Observer dependent tissue segmenta-
tion might also influence the simulated electromagnetic field, however this confounding
influence usually is not included in the uncertainty budget.

In this paper we report the manual and automatic CT-based segmentation variation
for the tissues included in the 3D patient models for head and neck HTP. In addition,
we compared the impact of the manual and automatic segmentation variation on the
HTP outcomes, i.e. the planned hyperthermia dose and HTP quality. To quantify the im-
portance of segmentation variations, we compare their influence to those of other sources
of patient-modeling variation, i.e. gridsize and dielectric tissue-property uncertainties.
The decision, whether or not to introduce the automatic-segmentation algorithm into the
clinic, can be based on these results.
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2.2 Methods

2.2.1 Patient selection

The analysis presented in this paper covers 7 of the 34 patients treated with head and
neck hyperthermia thus far. The patients were selected to represent the patient population
eligible for head and neck hyperthermia, i.e. the patients included were balanced per tumor
site, and both small (T2) and large (T4) tumors were included (Supplementary Table 2.1).

2.2.2 Computed Tomography (CT) images

CT scans acquired for radiotherapy treatment planning were used for HTP, leading to
advantages in logistics and target region assignment. To make the group of patients for
our study as representative as possible, we included CT scans of patients with distinct
characteristics to span the entire patient population variability.

CT scans of the patients were obtained using a Somatom Sensation Open (Siemens
AG, Erlangen, Germany), except for patient 3, who was scanned with a PQ 5000 (Philips
Healthcare, Best, the Netherlands). The slice spacing varied from 1.5 — 2.5 mm and the
in-plane resolution varied from 0.7 x 0.7 mm to 1.0 x 1.0 mm, with a scan matrix of 512 x
512. For patients 1—5, an intravenous injection of 100 ml contrast agent (Omnipaque 300,
GE Healthcare Inc.) was administered with an injection rate of 1.8 ml/s, and imaging was
performed 45 seconds after injection.

2.2.3 Segmentation protocol

All CT slices are segmented into several normal tissues and the target volume. We used the
clinical target volume (CTV) as the hyperthermia target volume (HTV), and segmented
the GTV in order to assign tumor dielectric tissue properties to this region. The list of
segmented tissues was based on the visibility on CT and the dielectric (and thermal)
property contrast with adjacent tissues. The brain, spinal cord and eyes were segmented
since these are highly thermo-sensitive tissues. Therefore, the thermal dose should be
restricted in these tissues. Note that thresholds were not used in the optimization, and
are only relevant in online steering since absolute SAR level calculations requires the
clinically applied power.

First, an in-house developed tool (implemented in MevisLab v.2.2.1, MeVis Medical
Solutions AG, Bremen, Germany) was used to remove non-patient structures, such as the
patient bed and the patients immobilization mask. Second, Hounsfield (HU) thresholds
were applied to segment bone (HU: 200 to 3000), muscle (HU: 0 to 200), fat (HU: -300
to 0), lungs and internal air (HU: -1000 to -300)*. The lungs were separated from the
internal air by applying the threshold only to the slices that contain lung tissue. Third,
the automatically segmented bone was manually corrected in case of streak artifacts, and
when blood vessels were incorrectly assigned as bone due to the presence of contrast
agent. Fourth, the tissues in the brain (cerebrum, cerebellum, brainstem), the spinal cord
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(myelum), the eyes (sclera, lens, vitreous humor, optical nerve) and the other head and
neck tissues (thyroid gland, thyroid and cricoid cartilage) were segmented manually using
iSeg (v.3.1, Zurich Med Tech AG, Zurich, Switzerland) and automatically using a multi-
atlas approach combined with intensity modeling**. Fifth, the HTV and GTV were both
manually segmented in Focal (v.4.64, Elekta AB, Stockholm, Sweden) by a head and neck
radiation oncologist.

2.2.4 Hyperthermia treatment planning (HTP)

Hyperthermia treatment planning was performed as described by Rijnen et al.®’. For
electromagnetic field simulations, a uniform gridsize of 2 mm was chosen. Dielectric tissue
properties, i.e. relative permittivity (e,), effective conductivity (oeg) and volume density of
mass (p) were assigned to each tissue’**® (Supplementary Table 2.2). The commenly used
lg-averaged and 10g-averaged specific absorption rate (SAR) standards [TEEE/TEC62704-
1] as calculated in SEMCAD X (v.14.8.1, Schmid & Partner Engineering AG, Zurich,
Switzerland) were used for SAR dosimetry.

For the tissue property sensitivity study, we reduced computational time twelve-fold
by performing only one simulation, i.e. a simulation with all antennas exited using optim-
ized phase and amplitude settings instead of a simulation per antenna and a subsequent
weighted summation of the fields. The validity of this approximation for the sensitivity
analysis was verified for three variations (€,: +6%, oeg: +6%, p: +3%), in which we ob-
served an average error in HTP quality (JAHTQ|) of only 0.2% (min — max: 0.02 —
0.6%).

2.2.5 Segmentation evaluation

Three trained medical radiation technologists (observer 1, observer 2, observer 3) and
one radiation oncologist (reference) manually segmented per patient the ten tissues, see
Figure 2.1 for segmentation examples. The reference segmented the seven patient models
only once, while the 3 other observers segmented them twice to investigate intra-observer
variation. The manual tissue segmentation of one patient took on average 5-6 hours,
all segmentations were done within 4 weeks and the time between first and second seg-
mentation of the same patient varied between 1-15 days. The images were anonymized
and supplied in a random order to minimize bias in the manual segmentations. The
automatic-segmentation algorithm took on average 1 hour per patient (3.3 GHz Intel
Core i7-980 processor, with 24 GB of RAM, running 64 bit Windows 7). Since the seg-
mentation of the radiation oncologist is assumed as most accurate, variations from that
segmentation are reported as segmentation inaccuracies. The observer-reference variations
(inter-observer variation: reference-observer 1, reference-observer 2, reference-observer 3),
the variation between two segmentations per observer (intra-observer variation: observer
1-observer 1, observer 2-observer 2, observer 3-observer 3) and the automatic-reference
variations were determined. Observer variation was quantified using the Dice similarity
coefficient®” and the mean surface distance (MSD)(itkContourMeanDistancelmageFilter,
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www.itk.org), i.e. the average distance between two volumes. Since DSC measures the
overlap between volumes, the variation is quantified using 1-DSC. We used DSC instead
of 1-DSC to compare our results to other studies.

a) Cerebrum

€) Vitreous Humor & Lens £) Optical Nerve

Figure 2.1: The segmentations of observer 1 (dark-blue), observer 2 (light-blue), ob-
server 3 (blue), reference (green) and the auto-segmentation (red). The
tissues were segmented on each transverse slice of the image set. For the
head and neck HTP, these segmentations are stacked on top of each other
to generate the 3D patient model. The 3D SAR dose distribution is calcu-
lated on the basis of this model.

2.2.6 Dosimetric evaluation

As temperature dose predictions still come with high uncertainties, we quantified the
effect of segmentation variation on the planned hyperthermia dose using the absolute
SAR difference expressed in two SAR parameters, i.e. [ASARy,| and [ASAR;qg|, and on
HTP quality using |[AHTQ)].

|ASAR,| and |ASAR;o,| are computed per tissue and defined as the SAR difference
between two treatment plans, normalized for 1W total input power. Both values were
averaged over the tissue volume and observers, and were the mean over the seven patients.
Furthermore, the relative difference with respect to the average SAR in the reference is
reported. Absolute SAR values were obtained per power level by multiplication with the
total input power level 7®.

HTQ is computed by using the SAR;, only, and is defined as the average SAR in
the first percentile of the SAR in the healthy tissue, i.e. the average over the highest SAR
values, divided by the average SAR in the target volume'*. The HTQ error (|JAHTQ)) is
defined as the absolute difference in HTQ between two treatment plans.
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A non-parametric Wilcoxon signed rank test was used to test for statistical significant
differences (p<0.05).

2.2.7 Sensitivity analysis

The variation in HTP prediction per observer-dependent segmentation was compared with
other sources of 3D patient modeling variation, i.e. gridsize variation and dielectric tissue
property uncertainties. The uncertainty is quantified in |[AHTQ)| to assess the impact on
HTP quality and in [ASAR;¢.| to compare our results to other studies.

For all seven patients, the effect of the gridsize was investigated by increasing gridsize
(Agrid), i.e. from 1 to 5 mm. For each gridsize, |AHTQ| and |[ASAR;q,| were determined
by using the HTP with Agrid = 1 mm as reference.

Dielectric tissue properties in patients deviate from literature values, e.g. due to
age-dependency ®***%? post-mortem changes'>”?, and measurement uncertainty***%7 as
summarized in Supplementary Table 2.2. The impact of this deviation on HTP quality
was determined in seven patients, for fourteen tissues. For each tissue property, three
different HTPs were generated, i.e. using average and + one standard deviation of the
literature value. |[AHTQ| was determined by using the HTP for the average literature
value as reference. The individual uncertainty per tissues was obtained by taking the
square-root of the sum of squares of the mean value over seven patients.

The individual standard uncertainty (u;) of the gridsize, segmentation variation and
dielectric properties was obtained by determining the confidence interval from plus to
minus one standard deviation. The square-root of the sum of squares was applied to the
individual uncertainties to obtain the combined standard uncertainty (u.). A coverage
factor (k) of 2 was used to obtain the expanded uncertainty U leading to the 95% con-
fidence interval®”. The uncertainties were determined based on the assumption that the
applied variations can be described by a Gaussian probability function.

2.3 Results

Table 2.1 compares manual (inter-observer) and automatic segmentation variation per tis-
sue (MSD) and the impact of this variation on simulated hyperthermia dose (JASAR,]).
It shows for cerebellum, spinal cord, optical nerve, cartilage and thyroid gland a non-
significant difference between manual and automatic generated 3D models in both seg-
mentation variation and tissue specific dose, while a significant difference was found for
cerebrum, brainstem, sclera, lens and vitreous humor (the latter two tissues with respect
to segmentation only).

Local tissue SAR differences varied among both SAR parameters used, e.g. the
manual (inter-observer) segmentation variation of the lens resulted in a |[ASAR;,| of 15
mW /kg (12%) but in a lower |[ASAR;qg| of 3.5 mW/kg (3.8%) (JASAR;| is shown in
Supplementary Table 2.3).

Figure 2.2 shows that simulation accuracy substantially decreased when HTP was
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Table 2.1: Manual (inter-observer) and auto-segmentation variation for the ten selec-
ted tissues. The segmentation variation is quantified by the mean distance
(MSD). The impact of this variation on the simulated hyperthermia dose is
quantified in [ASAR4|, normalized at 1 W total input power. The statistical
significant difference between manual- and auto-segmentation is indicated
with a V. Note that both the manual and auto-segmentation variation are
defined with respect to the reference observer.

Manual Segmentation Auto Segmentation
mean, min—max mean, min—max

mean (rel. diff.)

mean (rel. diff.)

Cerebrum

MSD [mm] 2.4,2.0-2.9 2.9V, 25-3.2

|ASAR ;| [mW /kg] 0.32 (1.2%) 0.44Y (1.6%)
Cerebellum

MSD [mm] 2.2,1.8-2.5 1.9, 1.3-3.4

|ASAR,| [mW /kg] 0.92 (3.1%) 0.94 (3.2%)
Brainstem

MSD [mm] 1.7, 1.1-2.4 2.27,1.7-3.1

|ASAR;,| [mW /kg] 0.87 (6.3%) 1.3Y (9.3%)
Spinal Cord (Myelum)

MSD [mm] 1.0, 0.81-1.3 1.5, 0.82—2.4

|ASAR,| [mW /kg] 0.84 (5.7%) 0.86 (5.8%)
Sclera

MSD [mm] 0.87, 0.63—1.8 1.8V, 1.0-3.8

|ASAR;,| [mW /kg] 3.4 (4.2%) 4.8V (6.0%)
Lens

MSD [mm] 0.66, 0.44—1.2 1.6Y, 0.75—2.9

|ASAR,| [mW /kg] 15 (12%) 15 (12%)
Vitreous Humor

MSD [mm] 0.70, 0.54—1.1 1.2%,0.87—1.8

|ASAR ;| [mW /kg] 3.3 (3.3%) 4.3 (4.3%)
Optical Nerve

MSD [mm] 0.94, 0.62—1.7 1.0, 0.76—1.4

|ASAR ;| [mW /kg] 0.92 (2.9%) 1.2 (3.8%)
Cartilage

MSD [mm] 4.5, 3.1-6.1 5.0, 3.0—6.9

|ASAR,| [mW /kg] 5.8 (6.4%) 6.0 (6.6%)
Thyroid Gland

MSD [mm] 1.9, 0.54—4.7 5.1,1.1-9.3

|ASAR;,| [mW /kg] 0.39 (1.7%) 0.68 (3.0%)
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based on a gridsize of 3 mm or larger. Because the simulation accuracy was stable for a
gridsize in the range of 1.3 — 2.5 mm, we chose a gridsize of 2 mm as trade-off between
HTQ error and simulation time.
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Figure 2.2: The error in hyperthermia-treatment quality parameter (JAHTQ)]), and
simulation time as a function of gridsize (Agrid). The boxplot indicates
the range of the error over seven patients. The insert shows a zoom-in of
Agrid 1.3-2.5 mm. Note that (JAHTQ)|) is determined using the patient
model with Agrid Imm as the reference. On each box of the boxplot, the
central mark is the median, the edges are the 25th and 75th percentiles, the
whiskers extend to the most extreme data points not considered outliers
(99.3%), and outliers are plotted individually(+).

Figure 2.3 shows the impact of tissue property uncertainties on HTP quality (|AHTQ)),
for one patient. HTP quality appeared to be most sensitive to inaccuracies in the dielectric
tissue properties of muscle, fat, and bone regions.

Table 2.2 summarizes the influences of the patient modeling parameters on |AHTQ)],
for the seven patients (JASAR;qg| is shown in Supplementary Table 2.4). The |[AHTQ)|
due to inter-observer variation (1.0%), intra-observer variation (1.0%) (Supplementary
Table 2.3) and automatic-segmentation (1.0%) was similar, but substantially smaller that
the uncorrelated standard combined uncertainty (11.7%) and the expanded uncertainty
(23.4%) for the uncertainties studied.

2.4 Discussion

In this study, we report the CT-based normal-tissue-segmentation variations and the
impact of these variations on HTP, i.e. the planned hyperthermia dose and HTP quality,
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Figure 2.3: The error in hyperthermia-treatment quality parameter (|JAHTQ)]) as a
function of the relative tissue property variation A, for patient 5. Only the
tissues with an individual standard uncertainty > 1.0% are shown.

Table 2.2: Influence of patient modeling parameters on the uncorrelated standard un-
certainty (u.) and the expanded uncertainty (U) as measured with |]AHTQ)|.
k: coverage factor, u;: individual standard uncertainty

Gridsize (Agrid) 4.0
Tissue segmentation
(a) Manual segmentation
(a1) Inter-observer 1.0
(a2) Intra-observer 1.0
(b) Auto-segmentation 1.0
Dielectric tissue properties
(a) Relative permittivity (e;) 4.1

(b) Effective conductivity (oeg)  10.0
(c) Volume density of mass (p) 1.0
e (k=1) 1.7
U (k=2) 23.4

for both manual- and automatic-segmented tissues. For all segmented tissues, the local
tissue SAR differences varied among SAR parameters, i.e. [ASAR;,| and |[ASAR;.|. This
makes tissue dose assessment with these parameters difficult, which forms the rationale
to investigate the impact on simulated temperatures, as soon as temperature simulations
are validated. Although half of the segmented tissues were significantly different after
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manual or auto-segmentation, the impact on HTP quality was similar, but, this impact
was minor compared to the total HTP uncertainty. Furthermore, a considerable reduction
in operator time per patient was achieved when using the automatic segmentation (+
1 hour) instead of the manual segmentation (5-6 hours). Thus, the recently developed
automatic-segmentation algorithm can be introduced in the clinic for pre-treatment and
real-time treatment optimization.

Previous studies that quantified the variations in tissue segmentation for head and
neck radiotherapy treatment planning provide an excellent reference for our results. Brouwer
et al.'? reported in an inter-observer study with five observers that the thyroid gland can
be segmented as accurate as the spinal cord, while we found a difference in accuracy
between these two tissues. This difference can be explained by a difference in the seg-
mentation protocol, i.e. we segmented the thyroid and cricoid cartilage as one structure,
which may have led to larger segmentation inaccuracies. Recently, Nelms et al. ™ quantified
the inter-observer agreement for the brainstem, brain and spinal cord. For the brainstem
(31 observers) they found a lower DSC (mean =+ std) of 0.66 + 0.17, compared to a DSC
of 0.78 £ 0.04 found in our study (Supplementary Table 2.3). For the spinal cord (29
observers) they found 0.80 + 0.07 compared to 0.79 + 0.04 in our study and for the brain
(10 observers) they found 0.98 + 0.01 compared to 0.94 4+ 0.01 for the cerebrum in our
study. In general, despite some minor differences, the variations in tissue segmentation
reported in our study are similar to the results of previous studies.

In the design of this study, we faced the common difficulty of defining HTP quality®.
Hyperthermia outcome has been correlated to the temperatures, or temperature dose,
achieved *>”*. However, temperature simulations are unsuitable since they have not been
validated yet for head and neck hyperthermia. In pre-treatment and real-time HTP for
head and neck hyperthermia, we therefore optimize the target SAR. For simulated SAR,
Paulides et al. verified from treatment data of three patients, on a per-patient basis, a
linear relation with measured temperatures (R*> = 0.59 — 0.94)™. For HTQ, Canters
et al.' showed for deep hyperthermia in the pelvis a linear correlation with simulated
steady state temperatures. Hence, in the absence of validated temperature predictions,
both parameters: 1) HTQ to quantify HTP quality, and 2) the standardly used averaged-
tissue SAR to quantify tissue dose, have potential as surrogate for simulated temperatures.

The dose differences reported in Table 2.1 were all determined for 1 W total input
power. An average input power of 400 W is applied during a standard head and neck
treatment ™. Hence, the reported dose values should be multiplied by 400 if the results
need to be translated to a standard head and neck treatment. For example, the maximum
|ASAR 4| was found in the lens: 0.0151 W /kg, which leads to a |[ASARy,| of 6.0 W/kg
at 400W. Note that in this case the maximum SAR;, in the lens is 254.7 W/kg. Future
studies are needed to clarify if the resultant temperatures go beyond the defined thermal
thresholds.

The reported individual standard uncertainty in [ASAR;q.| of the gridsize was estim-
ated as 3.2% (Supplementary Table 2.4), which is lower than the 6.2% (0.26 dB) found
by Murbach et al.™ and the 5.5% found by Bakker et al.”. However, the frequency and
gridsizes studied (64 MHz and 1.5 — 3 mm™, 10 — 5600 MHz and 0.7 — 10 mm") differed
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from our settings, limiting the comparability. Our estimation of the individual standard
uncertainty in |[ASAR;q,| for dielectric tissue parameters (e: 3.4%, oes: 6.2%) was in
agreement with previously reported values (e;: 2.1% ™, 8.7%", oeg: 3.5% ™, 8.7%7). Our
individual standard uncertainty in |[ASAR;o,| for p (4.4%) is lower than previously repor-
ted values (6.2% ™, 5% ). The differences in uncertainty for the dielectric tissue properties
and p can also be explained by the difference in frequency, but probably also because we
employed tissue specific uncertainties while others applied one common uncertainty for
all tissues. We expected the uncertainty in segmentation variation and gridsize to be in
the same range, since both are changing the 3D patient model. From other studies” ™, we
know that especially dielectric tissue properties have a high influence, but this had never
been shown for head and neck HTP.

2.5 Conclusion

As the uncertainty in HTP quality for manual and automatic segmentation is similar
and minor when comparing it to the total HTP uncertainty, we conclude that the re-
cently developed automatic-segmentation algorithm can be introduced in the clinic for
pre-treatment and real-time treatment optimization. However, tissue dose assessment,
used for safety assessment and pre-treatment and real-time decision making, remains dif-
ficult since local tissue SAR estimates vary among different SAR parameters. This forms
a rationale for future studies to investigate the impact on simulated temperatures, as soon
as temperature simulations are validated.
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Supplementary Table 2.1: Patient, tumor and treatment characteristics. F: female,
M: male, r: recurrent, c: clinical, p: pathology, CBK: cy-
berknife, IMRT: intensity modulated radiation therapy,

BT: brachytherapy

Patient Gender Age  Tumor Site  TNM classification Hyperthermia Radiotherapy
1 F 38  Nasal Cavity rT4bNOMO 3x 5x5.5 Gy (CBK)
2 F 58 Thyroid rT4N1bMO 4x 16x3.13 Gy (IMRT)
3 F 74  Nasopharynx rT4NOMO 3x 6x6 Gy (CBK)
4 M 51  Oropharynx c¢T2NOMO 6x 4, 10x3, 4 Gy (BT)
5 F 59  Oropharynx c¢T2NOMO 9x 35x2 Gy (IMRT)
6 M 60 Thyroid pT4aN1bMO 4x 16x3.13 Gy (IMRT)
7 M 54  Oropharynx rT2NOMO 1x 6x5.5 Gy (CBK)




Supplementary Table 2.2: Dielectric tissue properties and their uncertainties at 434 MHz. €,: relative permittivity, oeg:
effective conductivity, p: volume density of mass, GTV: gross target volume, o: standard

0€

deviation.
Tissue e [-] e [%)] Range Studied [%] oeg [S m™!] oesr [%0] Range Studied [%)]
Range(30) Range(o) Range(30) Range(o)

Muscle 56.9 -10-18 -3—6 -30—30 0.81 -10-18 -3—6 -30—30
Fat 11.6  -10—-120 -3—40 -30—150 0.08 -10—250 -3—-83 -30—270
Bone 13.1 -10—-90 -3—-30 -30—150 0.09 -10—190 -3—63 -30—270
Lung 23.6 -10—-18 -3—6 -30—30 0.38 -10-18 -3—6 -30—30
Air 1.00 — - — 0.00 = — —
Cerebrum 56.8 -10-18 -3—6 -30—30 0.75 -10-18 -3—6 -30—30
Cerebellum 55.1 -10—-18 -3—6 -30-30 1.05 -10—-18 -3—6 -30—30
Brainstem 41.7 -10—-20 -3-7 -30—40 0.45 -10—-20 -3-7 -30—-78
Spinal Cord (Myelum) 35.0 -10-30 -3—-10 -30—40 0.46 -10—-40 -3—-13 -30—78
Sclera 57.4 -10—-18 -3—6 -30—30 1.01 -10-18 -3—6 -30—30
Lens 37.3 -10-39 -3—-13 -30—40 0.38 -10-75 -3—-25 -30—78
Vitreous Humor 69.0 -10—-18 -3—6 -30—30 1.53 -10—18 -3—6 -30—30
Optical Nerve 35.0 -10—-30 -3—-10 -30—40 0.46 -10—40 -3—-13 -30—78
Thyroid Gland 61.3 -10—-18 -3—6 -30—30 0.89 -10-18 -3—6 -30—30
Cartilage 45.1 -10-18 -3—6 -30-30 0.60 -10-18 -3—6 -30—-30
GTV 59.0 — — — 0.89 — — —
Deionized Water 78.0 - — — 0.04 = = =
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Supplementary Table 2.3:

Manual (inter-observer and intra-observer) and auto-segmentation variation for the ten se-

lected tissues. The segmentation variation is quantified by the 1- Dice similarity coefficient
(1-DSC) and the mean distance (MSD). The difference in simulated hyperthermia dose
(|ASARg| and |[ASARog|, normalized at 1 W total input power) in each tissue is shown.
The statistical significant difference between inter-observer and intra-observer variation(®)
and between auto-segmentation and inter-observer(V) or intra-observer(*) variation is de-
termined using a non-parametric Wilcoxon signed rank test. Note that the inter-observer
and auto-segmentation variation is defined with respect to the reference observer.

Manual (inter-observer) Manual (intra-observer) Auto-Segmentation

mean, min—max
mean, min—max

mean (rel. diff.) & mean (rel. diff.)

mean, min—max
mean, min—max

mean (rel. diff.) & mean (rel. diff.)

mean, min—max
mean, min—max

mean (rel. diff.) & mean (rel. diff.)

Cerebrum

1-DSC

MSD [mm]

|ASAR14|&|ASAR10g| [mW /kg]
Cerebellum

1-DSC

MSD [mm]

|ASAR14|&|ASAR10g| [mW /kg]
Brainstem

1-DSC

MSD [mm]

|ASAR 14 |&|ASAR10g| [mW /kg]
Spinal Cord (Myelum)

1-DSC

MSD [mm]

|ASAR1¢|&|ASAR10g| [mW /kg]
Sclera

1-DSC

MSD [mm]

|ASAR14|&|ASAR10g| [mW /kg]
Lens

1-DSC

MSD [mm]

|ASAR14|&|ASAR10g| [mW /kg]
Vitreous Humor

1-DSC

MSD [mm]

|ASAR1¢|&|ASAR10g| [mW /kg]
Optical Nerve

1-DSC

0.059, 0.052—0.069
2.4, 2.0-2.9
0.32 (1.2%) & 0.23 (0.90%)

0.14, 0.12—0.16
2.2,1.8-25
0.92 (3.1%) & 0.60 (2.2%)

0.22, 0.15—0.27
1.7,1.1-2.4
0.87 (6.3%) & 0.59 (3.7%)

0.21, 0.16—0.27
1.0, 0.81-1.3
0.84 (5.7%) & 0.42 (3.6%)

0.52, 0.44—0.70
0.87, 0.63—1.8
3.4 (4.2%) & 1.6 (2.4%)

0.32, 0.24—0.45
0.66, 0.44—1.2
15 (12%) & 3.5 (3.8%)

0.14, 0.11-0.18
0.70, 0.54—1.1
3.3 (3.3%) & 2.0 (2.6%)

0.40, 0.34—0.50

0.010°, 0.010—0.013
0.43°, 0.36—0.54

0.24° (0.87%) & 0.18 (0.70%)

0.065°, 0.046—0.086
0.88°, 0.62—1.2

0.63° (2.1%) & 0.40° (1.5%)

0.16°, 0.15—0.18
1.1°, 0.92—1.2
0.68 (4.9%) & 0.45 (2.8%)

0.15°, 0.13—0.16
0.55°, 0.51—0.60
0.43 (2.9%) & 0.18 (1.6%)

0.37°, 0.33—0.38
0.51°, 0.45—0.60
1.9° (2.4%) & 0.84 (1.3%)

0.20°, 0.15—0.25
0.32°, 0.23—0.44
3.4° (2.6%) & 1.3 (1.3%)

0.086°, 0.076—0.096
0.38°, 0.35—0.43
1.9° (1.9%) & 1.0° (1.3%)

0.30°, 0.24—0.35

0.058*, 0.050—0.068
2.9%7,2.5-3.2

0.44%Y (1.6%) & 0.35%7 (1.4%)

0.13*, 0.088—0.20
1.9%,1.3-3.4
0.94% (3.2%) & 0.57* (2.1%)

0.24*, 0.19—0.32
2.2%Y,1.7-3.1
1.27%Y (9.3%) & 0.69* (4.3%)

0.24%, 0.18—0.34
1.5%, 0.82—2.4
0.86* (5.8%) & 0.35 (3.0%)

0.62*V, 0.45—0.76
1.8%V,1.0-3.8
4.857 (6.0%) & 2.1* (3.1%)

0.50%7, 0.34—0.64
1.6%7,0.75—2.9
15% (12%) & 4.1 (4.4%)

0.20%7, 0.16—0.28
1.2%7,0.87—1.8
4.3* (4.3%) & 2.5 (3.2%)

0.42*, 0.37—-0.51

Continued on mext page

so[qe], Arejuowaiddng 9-g

1€



Supplementary Table 2.3 — Continued from previous page

Manual (inter-observer) Manual (intra-observer) Auto-Segmentation
mean, min—max mean, min—max mean, min—max
mean, min—max mean, min—max mean, min—max

mean (rel. diff.) & mean (rel. diff.) mean (rel. diff.) & mean (rel. diff.) mean (rel. diff.) & mean (rel. diff.)

MSD [mm] 0.94, 0.62—1.7 0.57°, 0.36—0.71 1.0%,0.76—1.4

|[ASAR14|&|ASAR10g| [mW /kg] 0.92 (2.9%) & 0.39 (0.90%) 0.59° (1.9%) & 0.33 (0.80%) 1.2* (3.8%) & 0.63 (1.4%)
Cartilage

1-DSC 0.41, 0.28—0.54 0.22°, 0.12—0.29 0.51*%Y, 0.45—0.61

MSD [mm] 4.5,3.1-6.1 0.67°, 0.35—1.2 5.0%, 3.0—6.9

|ASAR 1 |&|ASAR10g| [mW /kg] 5.8 (6.4%) & 3.0 (2.9%) 1.4° (1.6%) & 0.92° (0.90%) 6.0* (6.6%) & 2.8* (2.7%)
Thyroid Gland

1-DSC 0.24, 0.11-0.47 0.16, 0.085—0.29 0.43, 0.20—0.63

MSD [mm] 1.9, 0.54—4.7 0.80, 0.39—1.8 5.1, 1.1-9.3

|ASAR14|&|ASAR10g| [mW /kg] 0.39 (1.7%) & 0.33 (1.2%) 0.37 (1.6%) & 0.32 (1.2%) 0.68 (3.0%) & 0.47 (1.7%)

Supplementary Table 2.3 shows a complete overview of the results, including the intra-observer variation and the para-
meters (1-DSC and |[ASAR;og|). This table shows that the cerebellum, brainstem, spinal cord and vitreous humor could be
segmented with a mean 1-DSC of < 0.24 and a mean MSD of < 2.2 mm, leading to a mean |[ASAR;,| and |[ASAR; 0| up
to 4.3 mW /kg (4.3%). The cerebrum, sclera, lens, optical nerve, cartilage and thyroid gland were segmented less accurate
with a mean 1-DSC of > 0.24 and/or a mean MSD > 2.2 mm, corresponding to a higher mean |ASARy,| and |ASAR; ]|
up to 15.1 mW /kg (11.7%). For most tissues, the intra-observer variation caused significantly less segmentation and tissue
specific dose variation compared to the inter-observer variation. Local tissue SAR differences varied among both SAR
parameters used, e.g. the inter-observer variation of the lens resulted in a [ASAR,| of 15 mW /kg (12%) but in a lower
|ASAR;0g| of 3.5 mW /kg (3.8%).
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Supplementary Table 2.4: Influence of patient modeling parameters on the uncor-

related standard uncertainty (u.) and the expanded un-
certainty (U) as measured with |[AHTQ| and |ASAR¢g|.
k: coverage factor.

(w) [%]
IAHTQ| |ASARg]

Gridsize (Agrid) 4.0 3.2
Tissue segmentation
(a) Manual segmentation

(a1) Inter-observer 1.0 1.5

(az) Intra-observer 1.0 1.2

(b) Auto-segmentation 1.0 2.0
Dielectric tissue properties

(a) Relative permittivity (er) 4.1 34

(b) Effective conductivity (o) 10.0 6.2

(c) Volume density of mass (p) 1.0 4.4

e (k=1) 11.7 9.3

U (k=2)

23.4 18.7
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CHAPTER 3

Relevance of MRI for H&N HTP:
CT vs CT&MRI based patient models

This chapter has been published as:

RF Verhaart, V Fortunati, GM Verduijn, A van der Lugt, T van Walsum, JF Veenland,
MM Paulides, “The relevance of MRI for patient modeling in head and neck hyperther-
mia treatment planning: a comparison of CT and CT-MRI based tissue segmentation on
simulated temperature”, Med Phys, Vol. 41, No. 12, pp. 123302, 2014.
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Abstract

Purpose: In current clinical practice, head and neck (HEN) hyperthermia
treatment planning (HTP) is solely based on computed tomography (CT)
images. Magnetic resonance imaging (MRI) provides superior soft-tissue
contrast over CT. The purpose of our study is to investigate the relevance of
using MRI in addition to CT for patient modeling in HESN HTP.

Materials and methods: CT and MRI scans were acquired for eleven
patients in an immobilisation mask. Three observers manually segmented on
CT, MRI T1 weighted (MRI-T1w) and MRI T2 weighted (MRI-T2w) images
the following thermo-sensitive tissues: cerebrum, cerebellum, brainstem,
myelum, sclera, lens, vitreous humor and the optical nerve. For these tissues
that are used for patient-modeling in HEN HTP, the inter-observer variation
of manual tissue segmentation in CT and MRI was quantified with the mean
surface distance (MSD).

Next, we compared the impact of CT and CT € MRI based patient models
on the predicted temperatures. For each tissue, we selected the modality that
led to the lowest observer variation and inserted this in the combined CT &
MRI based patient model (CT & MRI), after a deformable image registration.
In addition, a patient model with a detailed segmentation of brain tissues
(including white matter, grey matter and cerebrospinal fluid) was created (CT
& MRIy,). To quantify the relevance of MRI based segmentation for HEN
HTP we compared the predicted maximum temperatures in the segmented
tissues (Tmax) and the corresponding specific absorption rate (SAR) of the
patient models based on 1) CT, 2) CT & MRI and 3) CT & MRl
Results: In MRI, a similar or reduced inter-observer variation was found
compared to CT (mazimum of median MSD in CT: 0.93 mm, MRI-T1w:
0.72 mm, MRI-T2w: 0.66 mm). Only for the optical nerve the inter-observer
variation is significantly lower in CT compared to MRI (median MSD in CT:
0.58 mm, MRI-T1w: 1.27 mm, MRI-T2w: 1.40 mm). Patient models based
on CT (Tmax :38.0°C) and CT € MRI (Thax :38.1°C) result in similar
simulated temperatures, while CT & MRIg, (Tmax : 38.5°C) resulted in signi-
ficantly higher temperatures. The SAR corresponding to these temperatures
did not differ significantly.

Conclusions: Although MRI reduces the inter-observer wvariation in most
tissues, it does mot affect simulated local tissue temperatures. However, the
improved soft-tissue contrast provided by MRI allows generating a detailed
brain segmentation, which has a strong impact on the predicted local temper-
atures and hence may improve simulation guided hyperthermia.
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3.1 Introduction

During hyperthermia, the tumor temperature is elevated towards 39—44°C to sensitize it
for chemo- or radiotherapy. Clinical studies have proven that hyperthermia improves treat-
ment outcome in several tumor sites®3751525%103 " without adding toxicity. These studies
stimulated the development of a hyperthermia applicator, called the HY PERcollar, which
is specificly designed and validated for the non-invasive treatment of patients with a head
and neck (H&N) tumor ™. A HYPERcollar treatment requires hyperthermia treatment
planning (HTP) for pre-treatment and real-time treatment optimization and tissue dose
assessment®’. Crucial input for HTP is a full 3D patient model, which is usually created by
a manual, slice-by-slice tissue segmentation of computed tomography (CT) images. The
generated 3D patient model together with a detailed model of the applicator are used to
calculate the distribution of the electric field and the specific absorption rate (SAR) in the
patient. This SAR distribution can be used as input for a temperature model to predict
the temperature distribution. To effectively improve temperature simulation accuracy, we
recently presented H&N hyperthermia patient-group specific tissue property values'’”.
Further, H&N HTP was recently improved by the development and clinical validation of
a CT-based automatic-segmentation tool for H&N HTP. This tool has shown to be a fast,
reproducible and accurate replacement of the current tedious manual procedure**!%. The
purpose of this study is to investigate whether tissue segmentation on magnetic resonance
imaging (MRI) may further improve CT-based H&N HTP.

MRI is used more and more for hyperthermia, especially due to the development of
non-invasive 3D MRI thermometry for treatment control***%%. Anatomical MRI scans
may be usefull to improve tissue segmentation for patient model generation in HTP. The
advantage of using MRI instead of CT images for segmentation is the superior soft-tissue
contrast in MRI. Other advantages are the reduction of dental-inlay artefacts compared
with CT images and improved target segmentation®3*®%. A disadvantage of MRI for
segmentation is the relatively long scan-time, making MRI more prone to motion artifacts
caused by swallowing and tongue movements. Other disadvantages are the susceptibility
artifacts caused by air-tissue interfaces and the decreasing non-uniformity of the main
magnetic field outside the center of the scanner leading to geometrical incorrectness in
the regions distal from the center of the scanner. Hence, being aware of these disadvantages
of MRI, there is a potential benefit to add MRI data to CT-based H&N HTP.

Although the relevance of MRI in radiotherapy treatment planning (RTP) has been
shown previously, this study is the first to report on the relevance of MRI for HTP. Most
RTP studies focused on the relevance of MRI for improving the segmentation of the target
volume*0%%% while only a limited number were focused on the improvement for other
tissues™*2. Typically, requirements for normal tissue delineation in HTP are far higher
than for RTP, as more tissues need to be distinguished to correctly capture the impact of
strong dielectric and thermal tissue property gradients between tissues®”*’. Nevertheless,
the limited subset of studies on normal tissue delineation for RTP serves as an excellent
reference to compare the results for matching tissues in our more extensive tissue list.



38 Relevance of MRI for H&N HTP: CT vs CT&MRI based patient models

In clinical practice, H&N HTP is currently based on the prediction of the SAR
inside the patient. However, clinical outcome and toxicity is related to the thermal dose
in the target and normal tissues*®”*. Hence, temperature predictions may provide a better
assessment of the thermal dose in the target and normal tissues. We recently showed that,
due to the strong thermo-regulatory response of H&N tissues, region specific thermal
tissue properties are required to improve accuracy in temperature predictions. In the
current study, we applied the tissue properties of that study to investigate the effect
on temperature of using combined CT-MRI based segmentation. This allowed a much
better assessment of the impact of segmentation uncertainties on treatment planning
reproducibility.

In this paper, we determined the manual inter-observer segmentation variation in
CT and MRI for tissues used in H&N HTP. From that result, we selected for each tissue
the modality that led to the lowest observer variation for building a combined CT- and
MRI based patient model. In addition, to study the benefit of using the better soft-tissue
contrast of MRI, we generated a patient model that also included a detailed segmentation
of the brain. To investigate whether MRI based segmentation is relevant for H&N HTP, we
compared the predicted temperatures and the corresponding SAR of the patient models
based on 1) CT, 2) CT-MRI and 3) CT-MRI including the detailed brain segmentation.

3.2 Methods

3.2.1 Patient data and scan protocols

CT and MRI scans from 11 patients with a tumor in the H&N region were included in
this study. All patients were treated with radiotherapy, but the patients were selected
such that they are representative for the patient-group eligible for hyperthermia, i.e.
tumor sites oropharynx (8 patients) and nasopharynx (3 patients). During acquisition
with both modalities and during treatment, a patient-specific immobilization mask was
used to synchronize patient positioning. Informed consent was obtained from all patients
included in the study.

CT scans were obtained using a Somatom Sensation Open (Siemens AG, Erlangen,
Germany) system. Scans were preceded by a single injection of 100 ml contrast agent
(Omnipaque 300, GE Healthcare Inc.) with an injection rate of 1.8 ml/s, and imaging
was performed 45 s after injection. Scans parameters were: acquisition matrix: 512 x 512,
slice-thickness: 3 mm, tube voltage: 120 kV, tube current: 150 mAs, pitch: 0.55 mm,
rotation time: 1.0 s. The reconstructed voxel resolution was 0.98 x 0.98 x 2.5 mm.

Axial MRI-T1 weighted (MRI-T1w) and MRI-T2 weighted (MRI-T2w) images were
acquired on a 1.5 T scanner (Optima MR450w, GE Healthcare, Waukesha, WI). In 8 pa-
tients, a six channel flex coil was used to synchronize imaging and treatment positioning.
At the start of the study this coil was unavailable, therefore the images of the first 3 pa-
tients were acquired using a 24 channel H&N coil that required a modified immobilization
mask. Halfway the study, we realized that a 250 mm field-of-view (FOV) in frequency
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encoding direction was too small for large patients, therefore we increased it to 350 mm
resulting in a change of the voxel resolution from 0.49 x 0.49 x 3 mm (5 patients) to
0.68 x 0.68 x 3 mm (6 patients). For the T1w scans we used a Fast Spin Echo sequence
with TE/TR: 10.8/465 ms and for the T2w scans we used a Fast Recovery Fast Spin
Echo sequence with TE/TR 106.8/7060 ms. The other scan parameters were: acquisition
matrix: 384x224, number of slices: 66, Flip angle: 90°. The total scan duration for either
the MRI-T1w or MRI-T2w scan was 6 minutes.

3.2.2 Segmentation protocol

Three trained medical radiation technologists (observer 1-3) manually segmented for each
patient the following thermo-sensitive tissues in CT, MRI-T2w and MRI-T1w images us-
ing ITK-SNAP ''2: cerebrum, cerebellum, brainstem, myelum, sclera, lens, vitreous humor
and the optical nerve. The medical radiation technologists were trained using a clear and
strict delineation protocol that is defined in cooperation with a senior radiation onco-
logist specialized in H&N cancers and a senior radiologist specialized in H&N imaging.
During segmentation of CT, the observers were blinded for the MRI and vice versa, how-
ever, MRI-T1w segmentations were obtained by using MRI-T2w as a starting point for
time-saving reasons. The manual CT and MRI segmentations took on average 8h per
patient. All segmentations were done within 5 weeks and the time between CT and MRI
segmentation of the same patient was at least 6 days; the segmentation of MRI-T1w and
MRI-T2w were done on the same day. The images were anonymized and supplied in a
random order to minimize bias in the manual segmentations.

During segmentation of the tissues on CT images, the observers were asked to use
fixed display windowing settings*’. For the cerebrum, cerebellum, brainstem and myelum
they used a window level (WL) of 0 houndsfield units (HU) and a window width (WW)
of 80 HU. For the sclera, lens, vitreous humor and optical nerve they used a WL of -125
HU and a WW of 350 HU.

HTP requires a full 3D patient model, hence, besides the tissues segmented by the
observers, also a segmentation is needed of the target volume and normal tissues such
as muscle, fat, bone, air, lung, thyroid gland, cricoid and thyroid cartilage. The target
volume was manually segmented using Focal (v.4.64, Elekta AB, Stockholm, Sweden) by a
H&N radiation oncologist. The other tissues were obtained using our CT-based automatic
segmentation tool based on a multi-atlas approach combined with intensity modeling**.

To study the effect on the HTP of a detailed segmentation of the brain we used an
existing automatic brain segmentation method'™?> and applied it to the T2w images. The
detailed automatic-segmentation included cerebro-spinal fluid (CSF), grey matter (GM),
and white matter (WM), as shown in Figure 3.1. The cerebrum in the CT-MRI patient
model generated by observer one was replaced by those three tissues to generate a 3D
patient model with a detailed brain segmentation (CT & MRIops ap). We also included
the CSF surrounding the myelum into this model.
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Figure 3.1: A slice of an MRI-T2w image (a) with the automatic detailed brain seg-
mentation (b), including white matter (white), grey matter (grey) and
cerebrospinal fluid (blue).

3.2.3 Temperature simulation settings

MRI-based models were compared to the current clinical standard, i.e. automatic CT-
based patient model generation (CT,yu,), based on the predicted temperatures. For the
MRI-based models, we choose per tissue the imaging modality that led to the lowest
inter-observer variability to generate the combined CT and MRI based patient models,
using the manual segmentations either from observer 1 (CT & MRIps; ), observer 2 (CT &
MRI,ps2) or observer 3 (CT & MRI,ps3). Together with the patient model with the detailed
brain segmentation (CT & MRIgps1 ap) this resulted in the following patient models:

1. CTauto,

2. CT & MRIgps1,
3. CT & MRI s,
4. CT & MRIgpe3,
5. CT & MRIgps1 ab-

The manual MRI segmentations of each observer were registered to the CT coordinate
system by a deformable image registration using optimized parameters for our image set®°.
HTP was performed as described by Rijnen et al.®” and the gridsize was as in Verhaart et
al.'%. Temperature simulations settings were equal to Verhaart et al.'’", and the dielectric
and thermal tissue properties are shown in Table 3.1. Since the thermal conductivity
(k) and perfusion (w) of the segmented tissues under thermal stress is unknown, we
mimicked this increase by appling the same increase as the increase in muscle tissue when
going from a baseline value (no thermal stress)*” to the optimized value under thermal
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stress'?” leading to 11.7 fold (k) and 14.4 fold (w) increase, resulting to the values shown
in Table 3.1. For the HTP based on the CT,,, patient model, the total input power
was increased until the simulated temperature in normal tissue exceeded 45 °C® or the
manually segmented thermo-sensitive tissues exceeded 40 °C*®. This optimized total input
power was applied to the HTP based on the CT & MRI patient models.

Table 3.1: Electromagnetic and thermal tissue properties. *: value in*” scaled 11.7 fold,
*: value in?" scaled 14.4 fold.

Tissue €r Ooft D C k Q w
internal air 1.0 0.0 1.2 - - - -
lung 23.6 0.38 394 - - - -
muscle 56.9 0.81 1090 3421 5.75 0.96 563.6
fat 11.6 0.08 911 2348 0.38 0.51 76.7
bone 13.1 0.09 1908 1313 0.32 0.15 10.0
cerebrum 56.8 0.75 1045 3696 6.40* 15.57 10992

grey matter 56.8 0.75 1045 3696 6.40* 15.5% 10992
white matter 41.7 0.45 1041 3583 5.63* 4.34t 3072

CSF 70.6 2.26 1007 4096 6.71* - -
cerebellum 55.1 1.05 1045 3653 5.92* 157t 11088
brainstem 41.7 1.05 1046 3630 6.00* 1147 8043
myelum 35.0 0.46 1075 3630 6.00* 248"t 2309
sclera 57.4 1.01 1032 4200 6.79* 5.89%T 5472
lens 37.3 0.38 1076 3133 4.97F - -

vitreous humor 69.0 1.53 1005 4047 6.96* - -
optical nerve 35.0 0.46 1075 3613 b5.73* 2487 2309

cartilage 45.1 0.60 1100 3568 0.49 0.54 35.0
thyroid gland 61.3 0.89 1050 3609 0.52 87.1 5624.3
tumor 59.0 0.89 1050 3950 0.97 - 1146.0

& relative permittivity [-], oeg: effective conductivity [S m™!],
p: density [kg m~3], c: specific heat capacity [J kg=! °C~1],

k: thermal conductivity [W m~! °C~!], Q: metabolic heat
generation rate [W kg=!], w: perfusion rate [ml min=! kg~!],
GTV: gross tumor volume, Blood heat capacity (ppcp,) =
4.1-10° [Jm=3 °C71].

3.2.4 Evaluation parameters

To quantify the inter-observer variation in tissue segmentation for each imaging modality,
we used the modified 3D Hausdorff surface distance®!, which we will call mean surface
distance (MSD). For each imaging modality, patient and tissue, MSD is determined for
observer 1 - observer 2, observer 1 - observer 3 and observer 2 - observer 3. The average
over these three MSD values was reported as the inter-observer variation of the tissue
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segmented in that imaging modality. The range of this average value per patient was
reported using a box plot.

To quantify the effect on HTP of the CT and CT & MRI based patient models, we
evaluated different temperature measures, i.e. Ty ax, Tmean, 110, T20, T50 and T90. T,y
and T\ean were defined as the maximum and mean temperature in the manually segmented
thermo-sensitive tissues. The T10, T20, T50 and T90 were defined as the temperature
which is exceeded by either 10%, 20%, 50% or 90% of the simulated temperatures values
inside the manually segmented thermo-sensitive tissues. In case of the CT & MRIbs1 ab
patient model, the thermo-sensitive tissues also includes the grey matter and white matter,
but not the CSF because there are no nerves in CSF and therefore we do not regard it
as a thermo-sensitive tissue. Since SAR is the current clinical practice, we report along
with these temperature measures the corresponding peak SAR, using the commonly used
lg-averaged standard [IEEE/IEC62704-1] as calculated in SEMCAD X (v. 14.8.6, Schmid
& Partner Engineering AG, Zurich, Switzerland).

Similar to previous studies®**!%¢  statistical significant difference (p<0.05) was tested
using a non-parametric Wilcoxon signed rank test %%,

3.3 Results

In Figure 3.2 the observer variation in segmentation of the tissues in CT, MRI-T1 and
MRI-T2w images is quantified with the MSD. A significant reduction in segmentation
variation was found when using MRI for: cerebellum (MRI-T1w or MRI-T2w), brainstem
(MRI-T1w or MRI-T2w), myelum (MRI-T1w or MRI-T2w, but MRI-T2w was signi-
ficantly lower than MRI-T1w) and vitreous humor (MRI-T2w). Segmenting the sclera
on MRI-T2w images gave a significant reduction in segmentation variation compared to
MRI-T1w images, but not compared to CT images. Using CT images for segmentation
of the optical nerve significantly reduced segmentation variation compared to MRI-T1w
and MRI-T2w images. Therefore, for the temperature simulations, we choose to segment
all tissues from MRI-T2w images except the optical nerve since for this tissue a lower
variation was obtained using CT images.

Figure 3.3 shows examples of the manual segmented tissues of observer 1, 2 and 3
on CT, MRI-T1w and MRI-T2w. Figure 3.3a-c illustrates that the cerebrum could be re-
producibly segmented on all modalities. Figure 3.3d-f illustrates that the lowest variation
in cerebellum and brainstem could be found in MRI-T1w and MRI-T2w images. Since
cerebellum and brainstem were more reproducibly segmented on MRI, also the cerebrum
was segmented more reproducible in this region, but this did not lead to significant differ-
ences for the segmentation of cerebrum. Figure 3.3g-i illustrates that the myelum could
be segmented with the lowest variation in MRI-T2w images, which is probably due to
the bright contrast of CSF surrounding the myelum. Figure 3.3j-1 illustrates that there
was not much difference between CT and MRI for segmentation of the lens. Further,
it illustrates that the sclera and vitreous humor could be segmented most reproducible
on MRI-T2w. Figure 3.31 illustrates that large observer variation in segmentation of the



3.3 Results 43

optical nerve could be found when using MRI.

Figure 3.4. shows the maximum temperature (Tp.x) and the corresponding peak
1g-SAR in the eight manually segmented thermo-sensitive tissues for five different patient
models: 1) CThuto, 2-4) CT & MRIgpsi—3, 5) CT & MRIjpsan- A significant difference in
predicted temperature was obtained when including the detailed brain structures. This
significant difference was not found in the corresponding SAR. We only report T\, since
the evaluation of the other temperature measures led either to no significant changes
(i.e. T10, T20, T50 and T90) or similar significances (Tpean) as for Tiax. The reported
temperatures were obtained after a, per-patient, optimization of the total input power,
which was on average over all patients 617 + 152 W (mean + 1 standard deviation).

Figure 3.5 exemplifies the impact of tissue segmentation on the simulated temper-
ature. It shows for one patient, the temperature profile overlaid on the CT scan for a
patient model generated using CT only, CT & MRI and CT & MRI including a detailed
brain segmentation. The temperature profile does not change when using either CT only
or combined CT & MRI segmentation, however, the simulated profiles are effected when
including also GM, WM and CSF to the CT & MRI segmentation.

T

T T T T T T
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Figure 3.2: The manual inter-observer segmentation variation quantified by the mean
surface distance for the cerebrum, cerebellum, brainstem, myelum, sclera,
lens, vitreous humor and optical nerve. Statistical significant differences
and p-values are indicated for CT vs. MRI-T1w (>), CT vs. MRI-T2w
(A), MRI-T1w vs. MRI-T2w (57). In the box-plots, the central mark is
the median, the edges are the 25th and 75th percentiles, the whiskers
extend to the most extreme data points not considered outliers (99.3%)
and outliers are plotted individually ().
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&

a) CT: CefeBrum

(d) CT: Cerebellum & (e) MRI-T1w: Cerebellum (f) MRI-T2w: Cerebellum
Brainstem & Brainstem & Brainstem

\

|
i) MRI-T2w: M

b

(g) CT: Myelum h) MRI-T1w: Myelum yelum

(j) CT: sclera, vitreous (k) MRI-T1lw: sclera, vit- (1) MRI-T2w: sclera, vit-
humor, optical nerve & reous humor, optical nerve reous humor, optical nerve
lens(insert) & lens(insert) & lens(insert)

Figure 3.3: Example of manual segmentations on CT, MRI-T1w and MRI-T2w images

for cerebrum (a-c), cerebellum and brainstem (d-f), myelum (g-i) and for
sclera, vitreous humor, optical nerve and lens (j-1). The colors indicate
the segmentation of each observer: observer 1 (green), observer 2 (red),
observer 3 (yellow).
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Figure 3.4:

CTauto CT & MRIgh1 CT & MRIhs2 CT & MRI 3 CT & MRIghs1 b
(b)

The patient-specific (blue) and patient-group averaged (red) values are
shown for the specific absorption rate, SAR (a), and the maximum temper-
ature, Tyax (b), in the eight manually segmented thermo-sensitive tissues.
The SAR and Tp,.x are shown for patient models based on tissue segment-
ations from CT, CT & MRI observer 1, 2 and 3 (CT & MRIys1, CT &
MRIyps2 and CT & MRIgps3) and CT & MRI with detailed brain including
white matter, grey matter and CSF (CT & MRIgps1,ab). In case of the CT
& MRIgps1,ap patient model, the thermo-sensitive tissues also includes the
grey matter and white matter, but not the CSF because there are no nerves
in CSF and therefore we do not regard it as a thermo-sensitive tissue. The
reported SAR is the peak 1g-SAR corresponding to the reported Tinax.
Statistical significant differences and p-values are indicated with respect
to CT (<), CT & MRIgps1 (>), CT & MRIgps2(A) and CT & MRIohs3(V).
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(b) T: CTauto (similar to
CT & MRIyps1_3)

(C) T: CT & MRIobsl,db

Figure 3.5: Example of simulated SAR (a) and temperature (T) (b,c) profiles projected
on an axial slice of the CT. The red contour indicates the target and
the yellow contour indicates the myelum. In the temperature maps three
hotspots in normal tissue are visible: two at the bottom and one in the
mandible caused by metal implants. In the temperature profile of CT &
MRIps1,ap the temperature in the myelum is increased due to the presence
of GM, WM and CSF. Note that the SAR at the skin does not result in high
temperatures at the skin due to cooling by the waterbolus. The colorscale
of the SAR distribution is from black (0 W/kg) to white (537 W/kg) and
for the T distribution from black (38 °C) to white (43 °C).

3.4 Discussion

In this study, we investigated the CT and MRI based inter-observer segmentation vari-
ation and the effect of this variation on the simulated temperature, using either CT or
combined CT and MRI based patient models. MRI based segmentation led to a similar or
higher reproducibility for segmentation of the cerebrum, cerebellum, brainstem, myelum,
sclera, lens and vitreous humor, while CT-based segmentation is more reproducible for
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the segmentation of the optical nerve. This could be explained, because the optical nerve
appears different on MRI compared to CT. The layer surrounding the optical nerve, i.e.
the dura, is also visible in MRI due to the improved soft-tissue contrast, while in CT the
optical nerve and dura both have the same contrast, which leads to a lower segmenta-
tion variation when comparing CT with MRI. Although segmentation on MRI was more
reproducible for most of the tissues, there was no significant difference in the simulated
temperature between CT and MRI-based models. However, when extending the tissue list
with GM, WM and CSF a significant change in the simulated temperature was found. The
corresponding SAR did not change significantly. This indicates that the current clinical
patient model generation for H&N HTP, i.e. automatic CT-based segmentation, can be
improved by extending it with MRI based detailed brain segmentation when temperature
predictions are used.

Previous studies that quantified the manual inter-observer variation for H&N ra-
diotherapy treatment planning provide an excellent reference for our results regarding
segmentation variation. Ahmed et al.® concluded that MRI-based segmentation of the
brainstem and the myelum significantly improves organ definition, which is in agreement
with our results. For the myelum, this advantage was also found by Geets et al.*>. They
quantified the inter-observer variation with a coefficient of variation (CV) which is defined
as the ratio between the standard deviation and the mean of the tissue volume. A CV
of 5.8% for MRI-T1w and 10.2% for CT based segmentation of myelum (19 patients, 3
observers) was reported, compared to a CV for MRI of 8.4% (MRI-T1w) and 7.0% (MRI-
T2w) and from CT of 14.8%, as found in our study. For the cerebrum, de Boer et al.?
report a manual inter-observer (6 patients and 2 observers) similarity coefficient® of 0.98
using MRI-T1w images, compared to 0.98 (MRI-T2w) and 0.97 (MRI-T1w) in our study.
Note that we determined the evaluation measures CV and the similarity coefficient from
our results and not report them in the results section, but only use them here to be able
to compare our results with literature. In our previous study'“® the CT-based manual
segmentation variation of the same tissues for H&N HTP were determined. When com-
paring those result (7 patients and 3 observers) with the current results, the inter-observer
variation was significantly higher in the previous study for all tissues, except for the op-
tical nerve. In that study, no fixed display windowing settings were applied, which might
explain this difference. Hence, well-defined segmentation protocols reduce segmentation
variation. In general, for those tissues that we could compare, the variations in tissue
segmentation reported by our study are in agreement with the results of previous studies.

As evaluation parameter for HTP quality, we used a temperature based parameter
instead of the more commonly used SAR based parameters. In a previous study ', we
showed that the effect of CT-based inter-observer variation on the SAR-based HTP qual-
ity was minor. The inter-observer segmentation variation in that study was even larger
than reported in this study, both for CT as MRI-based segmentation. Therefore, we ex-
pected that the effects of CT and MRI-based inter-observer variation on SAR-based HTP
quality would be negligible. In hyperthermia, temperature increase has been correlated
with treatment outcome®*”*. Further, temperature simulation accuracy has recently been
improved by the introduction of optimized thermal tissue parameters'’”. Therefore, our
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first choice evaluation parameter is not a SAR-based but a temperature based parameter.
However, we do report SAR as it is still the current clinical practice.

In our previous study '’ we did find an effect, although minor, of segmentation
variation on the local SAR dose. In the current study, for 2 out of 3 observers a significant
but small increase in SAR was found. This increase was not present in the simulated
temperature because thermal conduction spreads out local SAR peaks. This suggests
that small variations in segmentation have more effect on the simulated local SAR than
on the simulated local temperature.

In our results, we report a significant different temperature when comparing patient
models based on CT (Tyay : 38.0 °C) and CT-MRI (Tyay : 38.1 °C) with patient models
based on CT & MRIobst ap (Trmax : 38.5 °C). This means that the predicted temperature
increases 0.5 °C with respect to CT based models, which is the current clinical standard.
As the goal of hyperthermia is to heat tumors from 37 °C to 43 °C, this 0.5 °C is thus 8%
of the total aimed temperature increase of 6 °C (43 - 37 °C), hence a clinically relevant
increased predicted temperature®®. Note that a 0.5 °C difference at 38 °C may not have
clinical significance, but the temperature uncertainties obtained in this study can be
relevant for treatment planning guided hyperthermia. The 0.5 °C is an average increase,
and this increase can exceed 1 °C in specific patients. The relevance of this increase for
treatment planning guided hyperthermia was demonstrated by simulations for an example
patient with an advanced nasopharynx tumor close to thermo-sensitive tissues. Note that
this patient is a representative example since nasopharynx tumors nearby one of the
thermo-sensitive tissues are present in approximately 10% of the patients treated with
head and neck hyperthermia combined with re-irradiation thus far. For this patient, total
input power on the CT-based patient model was optimized using the thresholds as in the
paper, i.e. 40 °C (thermo-sensitive tissue) and 45 °C (normal tissue). Optimization resulted
in an optimized maximum temperature in the target of 42.9 °C, which was constrained
by the threshold of 40 °C in thermo-sensitive tissue. Since no MRI was available for this
patient, we applied a temperature difference of 40.5 °C and -0.5 °C on the threshold of
the thermo-sensitive tissues to mimic the case of a MRI-based patient model including a
detailed brain. This led to a maximum target temperature of 41.7 °C (-0.5 °C) and 440C
(4+0.5 °C). Thus, as soon as thermo-sensitive tissues become a limiting factor in the total
input power optimization, a 0.5 °C change can be detrimental for the thermal dose in the
target. In general, we can state that subtle changes in predicted temperatures can strongly
influence the predicted thermal dose in the target since thermal dose is exponentially
dependent on temperatures above 43 °C, i.e. according to Arrhenius’ CEM43 dose .
Hence, even small errors in temperature predictions affect the effectiveness of dosimetry,
and possibly optimization, in temperature simulation guided hyperthermia.

Although improved accuracy has not been validated using measurements, we hy-
pothesize that adding brain tissues will increase accuracy since tissue heterogeneity, i.e.
the number and location of tissue transitions, is more realistically captured?®™"% In
future studies, the actual tissue temperatures could be measured to verify our findings.
Note that such validation is difficult by using the invasive probes that we now use in the
clinic. 3D MRI thermometry may have more potential for capturing all influences of tissue
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transitions, but such technology is currently unavailable for head and neck hyperthermia.

In previous studies, the uncertainty of tissue parameters on the predicted temperat-
ures have been reported. For temperature simulations in deep hyperthermia in the pelvic
region, Canters et al'®. reported a temperature change of & 1 °C caused by the uncertainty
of thermal tissue parameter values that ranged from 1-30 %. In the same region, de Greef
et al.?” found deviations upto 2.9 °C when varying the tissue perfusion & 25 % and + 50
%. In another study, de Greef et al.?® investigated the combined effect of perfusion and
dielectric uncertainty on simulated temperature, which resulted in temperature increases
of 0.5 upto 1.5 °C. In our study, the reported inter-observer variation in segmentation of
MRI led to a temperature difference of 0.2 £ 0.2 °C (mean + 1 standard deviation). This
is obtained by computing the mean and 1 standard deviation over the differences in T\«
using CT & MRI based patient models of observer 1, 2 and 3, as shown in Figure 3.4.
In general, this uncertainty is slightly lower as the uncertainty caused by tissue property
variations as reported in previous studies.

It could have been expected that the simulated temperatures increase in patient
models that include a detailed brain segmentation. In patient models with a detailed
brain segmentation, the cerebrum and cerebellum are replaced by GM, WM and CSF.
The increased number of tissues results in more tissue inhomogeneities, and hence SAR
hotspots at tissue transitions. Further, the perfusion in cerebrum (763.3 ml min~! kg™1)
is equal or higher than the perfusion in GM (763.3 ml min~! kg=!), WM (213.3 ml min~!
kg™!) and CSF (0 ml min~! kg™'). The effective conductivity of CSF is three times higher
as in the cerebrum, resulting in an increased storage of energy, and probably a high local
SAR in this tissue. Together with the lack of perfusion in CSF, this results in increased
temperatures in this tissue and thus also in those patient models that include a detailed
brain segmentation, as confirmed by our analysis.

3.4.1 Limitations of the study

A number of factors could have influenced our results. First, in our MRI protocol the
first three patients were scanned with a H&N coil, while the other patients were scanned
in a surface coil. In the surface coil, their is a considerable bias in image contrast in
every slice, as can be seen in Figure 3.3, which could have influenced the manual seg-
mentation. However, we found no significant difference in inter-observer variation when
comparing those three patients to the others. In addition, the advantage of using this
coil is that patients can be scanned in treatment position using the immobilization mask.
Second, halfway the study we had to adapt the MRI protocol to increase the field of
view for larger patients. This slightly changed the in-plane resolution of the MRI, which
might have influenced the results. However, also no significant difference was observed in
inter-observer segmentation variation when comparing the group with the lower in-plane
resolution with the group with the higher in-plane resolution, indicating that also this
influence was minor. Third, the T1w images were not segmented from scratch, but by
using the MRI-T2w segmentation as a starting point, while CT and MRI-T2w images
were segmented from scratch. Therefore, there might be a bias in the segmentation of
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the MRI-T1w images with respect to the MRI-T2w images. Although these factors might
have influenced our results, the conclusion that the use of MRI segmentation reduces
inter-observer segmentation variation for most of the segmented tissues remains valid.

3.5 Conclusion

We investigated the relevance of using MRI in addition to CT for patient modeling in H&N
HTP. Although MRI reduces the inter-observer variation in most tissues, we found no ef-
fect on the predicted local tissue temperatures and a minor effect on the local tissue SAR.
Inclusion of detailed brain structures does not affect the SAR, however, it does affect the
temperature predictions. These findings make MRI relevant for patient modeling in H&N
HTP. Therefore, we will now develop a combined CT and MRI based auto-segmentation
tool to improve the reproducibility, and possibly also the accuracy, of H&N HTP.
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Abstract

Purpose: Hyperthermia treatment planning (HTP) is used in the head
and neck (HEN) region for pre-treatment optimization, decision making and
real-time HTP-guided adaptive application of hyperthermia. In current clinical
practice, HTP is based on power-absorption predictions, but thermal-dose-
effect relations advocate extension to temperature predictions. Ezxploitation
of temperature simulations requires region- and temperature-specific thermal
tissue properties due to the strong thermo-regulatory response of HEN
tissues. The purpose of our work was to develop a technique for patient-group
specific optimization of thermal tissue properties based on invasively measured
temperatures, and to evaluate the accuracy achievable.

Materials and methods: Data from 17 treated patients were used to
optimize the perfusion and thermal conductivity values for the Pennes-
bioheat-equation-based thermal model. A leave-one-out approach was applied
to accurately assess the difference between measured and simulated temper-
ature (AT). The improvement in AT for optimized thermal tissue property
values was assessed by comparison with the AT for values from literature, i.e.
baseline and under thermal stress.

Results: The optimized perfusion and conductivity values of tumor, muscle
and fat leads to an improvement of simulation accuracy (AT: 2.1+1.2°C)
compared with the accuracy for baseline (AT: 12.7+11.1°C) or thermal stress
(AT: 4.4£3.5°C) property values.

Conclusions: The presented technique leads to patient-group-specific tem-
perature property values that effectively improve simulation accuracy for the
challenging HEN region, thereby making simulations an elegant addition to
inwvasive measurements. The rigorous leave-one-out assessment indicates that
improvements in accuracy are required to rely only on temperature-based HTP
in the clinic.
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4.1 Introduction

Phase-III clinical evidence shows a substantially improved clinical outcome when hyper-
thermia, i.e. induced elevation in tissue temperature to 39—44°C, is added to radiotherapy
treatment of head and neck (H&N) tumors, without inducing additional toxicity %109,
Based on this evidence, we developed the HYPERcollar applicator system to extend the
treatment of H&N tumors to regions deeper than 4cm from the skin®. The HYPERcollar
is a ring-shaped phased array hyperthermia applicator consisting of twelve antennas uni-
formly divided over two rings of six antennas, which can be individually controlled and
operate at a frequency of 434MHz. Treatments with this applicator are pre-planned using
hyperthermia treatment planning (HTP) for settings optimization and decision making,
and to apply our real-time adaptive hyperthermia strategy '*%%%° Currently, HTP is based
on electromagnetic (EM) simulations for predicting the energy deposition, i.e. specific ab-
sorption rate (SAR), in the patient. However, clinical outcome is related to the thermal-
dose?®?*, which advocates using temperature predictions. In clinical practice, temperature
simulations are not used for H&N HTP due to the absence of a sound validation.

Various simulation models to predict temperature have been developed®. In hy-
perthermia, temperature modeling is commonly based on the Pennes bioheat equation
(PBHE)®*2. The PBHE models perfusion by a heat sink; but the direction of blood flow
and heat exchange between large vessels and tissues are not included. The discrete vascu-
lar (DIVA) model® is a more physiologically correct model as it includes vessel networks.
However, the integration of representative vessel networks in the simulation is a lengthy
and tedious procedure, which prevents application of this approach in clinical practice.

Thermal tissue parameters of normal*” and tumor®°%7® tissue, at rest and under
thermal stress”’, are used as input for the temperature model. These parameters are
usually taken from literature. The reported values vary substantially, especially regarding
perfusion and thermal conductivity, which have been shown to deteriorate temperature
simulation accuracy®'°.

The purpose of this study is to develop a technique for rigorous optimization of
thermal tissue properties, and to establish the accuracy of temperature simulations for
H&N hyperthermia patients when applying these patient-group specific properties.

4.2 Methods

4.2.1 Patient selection

Over the past 7 years, 45 patients have been treated with H&N hyperthermia in our
institution. In 18 patients, catheters for invasive temperature monitoring were inser-
ted for measurements using a fiber-optic temperature probe system (FISO evolutions:
www.fiso.com). One patient with an anaplastic carcinoma of the thyroid gland was ex-
cluded from this study, since this tumor is too heterogeneous to allow assuming homogen-
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eity in tissue properties in the tumor. In total 17 patients (25 treatments) were included in
the study and the tumors were in the following locations: thyroid gland, trachea, parotid
gland, larynx, oropharynx and nasopharynx (Table 4.3).

4.2.2 Computed Tomography (CT) Images

Two CT scans were made for each patient™: CT1) for treatment planning, acquired ap-
proximately one week before treatment (CTyrp); CT2) for reconstruction of the temperat-
ure measurement points from the catheter track, acquired at the day of catheter placement
(CTrcat). CTreat has a higher resolution (in-plane between 0.3x0.3mm 1.0x1.0mm, slice
thickness between 0.5-3.0mm) than CTyrp (in-plane between 0.8x0.8mm 1.0x1.0mm,
slice thickness between 1.5-3.0mm).

4.2.3 Reconstruction of Temperature Measurement Points

The catheter track was reconstructed by manually clicking points on CTrpey, from the
skin towards the tip of the catheter. Then, the points were transformed to CTyrp using
an image-based registration strategy®*. A cubic spline was fitted through the points on
CTyrp to determine the length of the catheter track. The insertion depth was measured
prior to treatment. During treatment, a FISO probe with measurement points spaced
2cm apart, were inserted in the catheter. The locations of these points, the spline and
the insertion depth allowed to reconstruct the location of the measurement points and to
import them into our treatment planning software SEMCAD X (v. 14.8.4, Schmid & Part-
ner Engineering AG, Zurich, Switzerland). The sensitivity of this procedure was assessed
using CT's of 13 patients and showed an inter-observer reproducibility of 2.5+1.3mm.

4.2.4 Hyperthermia Treatment Planning (HTP)

CTyurp was converted into a 3D patient model by automatically segmenting normal and
critical tissues using a multi-atlas approach combined with intensity modeling®*. The tu-
mor and the target were both manually segmented by an H&N radiation oncologist, as
in'%. EM and thermal tissue properties were assigned according to the values reported
in Table 4.1. HTP was performed as described by Rijnen et al.®,

4.2.5 Temperature simulation

The steady state PBHE-based thermal solver (grid size: 2mm, maximum iterations: 1000,
relative tolerance: 1le-8) in SEMCAD X was used to simulate the temperature in the
tissues listed in Table 4.1. To account for energy losses, we applied a mix of convect-
ive and Neumann (fixed flux) boundary conditions at interfaces of tissue-surrounding air
(convection coefficient: 8 [W m~2 °C~1]®)] tissue-internal air and tissue-lung (convection
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Table 4.1: EM and thermal tissue properties at 37°C, baseline. For normal tissue we
used the database from®” and for tumor tissue we used the average values
reported in 55:56,59,76,78

Tissue €r Oeff p C k Q w
internal air 1.0 0.0 1.2 - - - -

lung 23.6 0.38 394 - - - -
muscle 56.9 0.81 1090 3421 See Table 4.2 0.96 See Table 4.2
fat 11.6  0.08 911 2348 See Table 4.2 0.51  See Table 4.2
bone 13.1 0.09 1908 1313 0.32 0.15 10.0
cerebrum 56.8 0.75 1045 3696 0.55 15.5 763.3
cerebellum 55.1 1.05 1045 3653 0.51 15.7 770.0
brainstem 41.7 0.45 1046 3630 0.51 11.4 558.6
myelum 35.0 0.46 1075 3630 0.51 2.48 160.3
sclera, 57.4 1.01 1032 4200 0.58 5.89 380.0
lens 37.3 0.38 1076 3133 0.43 - -
vitreous humor 69.0 1.53 1005 4047 0.59 - -
optical nerve 35.0 0.46 1075 3613 0.49 2.48 160.3
cartilage 45.1 0.60 1100 3568 0.49 0.54 35.0
thyroid gland 61.3 0.89 1050 3609 0.52 87.1 5624.3
tumor 59.0 0.89 1050 3950 See Table 4.2 - See Table 4.2

& relative permittivity [-], oeg: effective conductivity [S m~!], p: density [kg m~3],
c: specific heat capacity [J kg=! °C™1], k: thermal conductivity [W m~! °C~1],

Q: metabolic heat generation rate [W kg~!], w: perfusion rate [ml min—! kg~!],
GTV: gross tumor volume, Blood heat capacity (ppep) = 4.1 - 10% [J m=3 °C~1].

coefficient: 50 [W m~2 °C~!],®), and tissue-waterbolus (convection coefficient: 82 [W m ™2
°C~1,19%). The initial temperature in the tissues was set to 37°C while the temperature
of the surrounding air and the waterbolus was set to 20°C. By definition, a steady state
temperature (Tgg) was reached when the temperature did not change more than 0.2°C in
maximal 40 seconds before a power-off. The power and phase settings at Tgg were applied
to each antenna and the resulting SAR served as a source to the temperature simulation,
assuming an antenna efficiency of 100%. Throughout this paper, we used four sets of
values for thermal tissue properties, i.e. perfusion (w) and thermal conductivity (k): 1)
baseline values from literature; 2) thermal stress values from literature; 3) patient-group
optimized values; and 4) patient-specific optimized values. In figure 4.1, for one patient,
the treatment power, measured temperature with Tgg points and CT with simulated tem-
perature distribution at one Tgg for patient-group optimized values is shown.

4.2.6 Parameter optimization

Perfusion (w) and thermal conductivity (k) were simultaneously optimized for muscle, fat
and tumor by minimizing the cumulative error between measured and simulated temper-
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Figure 4.1: Example (patient 4) of the total power applied to the 12 antennas and
measured temperature for one probe during treatment. The red circles in-
dicate occasions where the temperature profile was relatively flat, i.e., the
steady-state temperature (Tgg) points. On the right, the temperature dis-
tribution at Tgg=59min for optimized thermal tissue properties is shown
on top of the CT HTP. The red line indicates the target region. Note: the
target region is not completely covered, which might have been corrected
for when temperature predictions were clinically available.

ature points at Tgg. A constrained non-linear optimization function® ’fminsearchbnd’
in MATLAB (v. R2013a, MathWorks, Natick, Massachusetts, USA) was used with a
lower bound perfusion: 1 [ml min~—! kg™!], lower bound thermal conductivity: 0.01 [J kg™*
°C71], maximum iterations: 150, relative tolerance: le-1. Figure 4.2 shows an example
of the optimization and its results. Note that one optimization, including 150 iterations,
took approximately 1.5 hours.

Per patient, we aimed for an equal number (420) of measurements points as input
for the optimization (Topi—input), but this was not possible for all patients due to a lim-
ited number of probe measurement points (T;,eqs). The number of T inpue points was
increased by including multiple Tgg points were we chose to include the Tgg points with
the most T,,..s points. The optimized patient-specific thermal tissue parameters were
obtained by averaging over all these Tgg. Note that Tgg could be taken from different
treatments, causing a change in T,,..s due to different insertion depth or broken probes
(thus # 1 neas X #Tss # #Topi—input). For all patients, this resulted in a total of 313
Topt—input points. These points were distributed over muscle (56%), fat (27%) and tumor
(17%) tissue, of which 42% are located superficial (probe depth < 1cm), 46% intermediate
(lem < probe depth < 4cm) and 12% deep (probe depth > 4cm), relative to the skin
surface. Examples of the exact measurement locations were indicated in Paulides et al. ™.
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Figure 4.2: Example (patient 8) of the optimization process to show the convergence
rate. Reduction in the cumulative error for all measured and simulated
probes at Tgg (top left), and measured and simulated temperatures for
one measurement point (top right), at each iteration in the optimization.
Perfusion (w) (bottom left) and thermal conductivity (k) (bottom right)
versus iteration number for tumor, muscle and fat tissue.

4.2.7 Parameter validation

The optimized perfusion and thermal conductivity parameters in muscle, fat and tumor
were validated in a leave-one-out experiment. In this experiment we used the data of a
single patient as the test data, and the data of the remaining patients as the training
data. This was repeated such that each single patient data was used once as the test data.
In this way, we could use all patients in our limited patient group for training and testing,
while we avoided over-tuning of the parameters with respect to our group of patients,
such that the validation holds for new patients.

To the test-set, we applied the average patient-specific perfusion and thermal conduct-
ivity over all patients, except its own. With these patient-group thermal tissue parameters
we determined the average temperature error for the evaluated measurement and simu-
lated temperature points (AT, o). The improvement in ATy,,,, was assessed by com-
parison to the temperature error for tissue property values from literature, i.e. baseline
(ATpaserine) as well as under thermal stress (ATTstress).

In addition, we determined the average temperature error between the evaluated
measurement and simulated temperature points using patient-specific optimized para-



58 Thermal tissue property optimization technique

47,55,59,76 95

Table 4.2: Literature values for baseline and thermal stress””’, as well as
the optimized patient group values from this study for perfusion (w) and
thermal conductivity (k) in tumor, muscle and fat tissue.

Wtumor ~ Wmuscle Wrat Ktumor Kmuscle Keat
Literature: baseline 400.0 39.1 32.7 0.51 0.49 0.21
Literature: thermal stress  80.0 300.0 200.0 0.64 0.64 0.21
Optimized (this study) 1146.0 563.6 76.7 0.97 5.75 0.38

w: perfusion rate [ml min~! kg~!], k: thermal conductivity [W m~! °C~1]

meters (ATpatient). AT patient T€Presents the maximum accuracy you can attain with this
technique. Furthermore, it was used to compare our results to other studies. We report
the average temperature difference, and the averaged absolute temperature difference.
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Figure 4.3: The range of patient-specific optimized perfusion (left) and thermal con-
ductivity (right) values for tumor, muscle and fat. In addition, the baseline
(squares) and thermal stress (diamonds) literature values are shown. On
each box of the boxplot, the central mark is the median, i.e., the patient
group values, the edges are the 25th and 75th percentiles, the whiskers
extend to the most extreme data points not considered outliers (99.3%)
and outliers are plotted individually (+).



Table 4.3: Results of the leave-one-out experiment. Per patient we report the tumor location, number of probe measure-
ment points (Tyeqs) in & patient, number of optimizations (Tgg) and the number of probe measurement points
used as input for the optimization (Topt—mput)- For all probes per patient, the average error between measured
and simulated temperature (AT) is given. In addition, the patient-averaged difference and patient-averaged
absolute difference are given together with their one standard deviation.

Patient Tumor nr. nr. nr. ATiterature[°C]| AT pptimized]°C]
nr. location Tmeas TSS Topt—input ATbaseline ATT—stress ATg?"oup ATpatient
1 Larynx 3 3 5 1.3 0.6 1.1 -0.5
2 Oropharynx 5 ) 23 -31.0 -12.2 -2.6 -0.2
3 Nasopharynx 4 7 28 -5.2 -5.9 0.2 0.2
4 Thyroid gland 7 4 28 -1.6 0.5 2.3 -0.7
5 Trachea 2 2 4 -1.1 -5.2 1.1 0.1
6 Oropharynx 5 4 17 -17.1 -1.9 -0.5 -0.3
7 Nasopharynx 2 7 14 -4.1 -0.9 0.8 -0.1
8 Parotid gland 4 ) 20 -15.2 -2.4 0.0 0.4
9 Oropharynx 11 2 21 -27.2 -9.6 -3.0 0.4
10 Oropharynx 3 6 12 -0.9 1.6 2.9 -0.4
11 Oropharynx 6 4 23 -15.0 -3.8 -1.6 0.3
12 Thyroid gland 5 4 20 -24.0 -3.7 -0.5 -1.3
13 Oropharynx 7 3 21 -36.4 -11.8 -5.2 0.2
14 Thyroid gland 6 4 23 -4.2 -0.7 1.5 0.1
15 Thyroid gland 6 4 21 -6.6 -0.4 0.9 1.0
16 Nasopharynx 5 6 23 -2.0 -3.9 -0.3 -0.1
17 Oropharynx 1 10 10 -12.8 -1.5 2.3 -0.0
Average difference + one standard deviation -12.0£11.7  -3.6£4.2  0.0x2.1 0.0£0.5
Average absolute difference + one standard deviation 12.74+11.1 4.4+3.5 2.1+£1.2 1.040.7

ATpgseline simulated temperature based on literature baseline values, AT _ 455 simulated temperatures
based on literature thermal stress values, ATy, o, simulated temperatures based on patient group optimized
values, using a leave-one-out approach, AT}qtient simulated temperatures based on patient-specific optimized
values.

SPOUIOIN T'F

6S



60 Thermal tissue property optimization technique

7 150/ IO K paseine ((13:2£14.2)
-m’kthermal stress (-4.05.6)

-w'koptimized patient-group (0-3£2-8)

1007|:|w'koptimized patient-specific (0.0+1.7) i

a
o

Nr. of T measurement points [

-65 —60 -55 —50 —45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15
AT [°C]

Figure 4.4: Histogram of the error between measured and simulated temperature (AT)
when using the baseline (blue), thermal stress (pink), patient group op-
timized (orange), or patient specific optimized (yellow) perfusion (w) and
thermal conductivity (k) values including all 313 evaluated points. In the
inset the mean 4+ one standard deviation of each histogram is given.

4.3 Results

Figure 4.3 shows the spread of the average patient-specific optimized perfusion and
thermal conductivity values for tumor, muscle and fat. Most of the optimized median,
i.e. patient-group, values were in the same range as the literature baseline and thermal
stress values, but the tumor perfusion and muscle thermal conductivity were considerably
larger, as shown in Table 4.2. When these patient-group optimized tissue property val-
ues for tumor, muscle and fat were used in a simulation, the average absolute difference
between measured and simulated temperatures (AT, oyp: 2.1+1.2°C, mean =+ one standard
deviation) was reduced compared to using literature baseline (ATpgserine: 12.7£11.1°C) or
thermal stress (AT7_siress: 4.4£3.5°C) values in the simulation, as shown in Table 4.3.
The maximum accuracy that can be obtained with this technique, when using the patient-
specific optimized property values, is even higher (ATpgtiens: 1.0£0.7°C). For the literature
baseline and thermal stress values the average differences are below 0°C, i.e. for literature
values the simulations yield higher temperatures than the measurements. Figure 4.4 sum-
marizes the results of Table 4.3 by showing for all 313 evaluated temperature measurement
points the distribution of the average AT for literature baseline, literature thermal stress,
patient-group and patient-specific optimized tissue property values.

4.4 Discussion

A technique to determine thermal tissue property values using temperature simulations
was introduced and the effect of using these values in temperature simulations is evalu-
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ated in H&N hyperthermia patients. Most of the optimized values were in the same range
as the baseline and thermal stress values in literature; however the tumor perfusion and
muscle thermal conductivity were considerably larger. The discrepancy in tumor perfusion
can be caused by differences in tumor pathology and physiology: baseline literature val-
ues were from brain tumors™ and tumor (and normal tissue) values under thermal stress
were from abdominal tumors, i.e. cervix, prostate, rectum”’. The deviation in muscle
thermal conductivity may be caused by the high vascularization of muscles in the H&N
area, which may result in a higher perfusion and, especially during thermal stress, also in
higher thermal conduction compared to the abdomen. Another explanation is the tem-
perature dependence of the muscle properties; causing a large spread in the obtained
patient-specific optimized values and the increased temperature may have increased the
median patient-group optimized value. However, in the presented study, we were aiming
to improve accuracy of temperature simulations and not necessarily with physiological
correct thermal tissue parameters.

A number of items have an impact on the performance of the technique. Firstly,
100% transfer of power from the antenna connectors into the patient is assumed, which
is not valid since parameters like the waterbolus shape affect this applicator efficiency.
This might also explain the high optimized thermal tissue property values in muscle and
fat, because a lower efficiency results in a lower predicted applied SAR resulting in lower
optimized thermal tissue property values. Secondly, temperature measurement points are
assumed to be accurately reconstructed. However, manual tracking of the catheter on
CTreat (2.5+1.3mm) and errors from the registration (<1.5mm?**) affect reconstruction
accuracy. A third limitation is the number of measurement points included (313); we
aimed for around 20 measurement points for the evaluation (training and testing) per
patient since this led to a reasonable optimization time (on average 7.5h/patient). Time
constraints also hamper the use of the entire time-temperature profile, but increase in
computational power will allow optimizations using the temperature profiles of the en-
tire treatment. Lastly, since we included only H&N patient data as input, the optimized
thermal tissue property values only hold for PBHE simulations at these settings and for
H&N patients. However, it is possible to use another model for simulations, i.e. extending
the PBHE simulations with DIVA to increase simulation accuracy, or to apply it to an-
other patient-group, since the presented technique is generic and provides the means to
re-optimize thermal tissue properties when temperature measurements and simulations
are available for the respective patient-group, leading to optimal temperature prediction
accuracy.

With the presented technique, temperature simulation can become more accurate
and it therefore has a strong potential in the field of hyperthermia, i.e. to improve pre-
treatment optimization, pre-treatment decision making and real-time adaptive application
of hyperthermia. Figure 4.1 shows that there is room for improvement in the SAR-based
target coverage, which can hopefully be improved using temperature instead of SAR-based
treatment control. In addition, the technique can be useful in other applications where
temperature simulations are important and probe or 3D thermometry data is available,
e.g. EM radiation exposure assessment or high intensity focused ultrasound (HIFU).
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As an alternative to our technique, Waterman et al. and Roemer et al. described a
technique”'% that allows to determine the effective perfusion, i.e. a combination of per-
fusion and thermal conductivity, from the measured temperature decay at power off, e.g.
at the end of treatment. This technique has been applied to superficial hyperthermia only,
however, the application to head and neck hyperthermia is subject of an ongoing study.
This technique has been used by Raaymakers et al®” to iteratively optimize the tissue
perfusion for the temperature simulation of each single patient. Over seven patients, they
found a patient-averaged temperature difference of -0.1+£1.7°C (average + one standard
deviation) and absolute difference of 1.3+1.1°C. We found a patient-averaged temper-
ature difference of 0.0+£0.5°C and absolute temperature difference of 1.0+0.7°C over 17
patients if we use patient-specific thermal tissue property values. However, when using
patient-group specific parameters the error increases, as verified with the leave-one-out ex-
periment. This difference in AT, using either patient-specific or patient-group parameters,
indicates that there is room for improvement in our temperature predictions. In future
studies, thermal tissue properties could be optimized at the first treatment, and then
be used to predict the temperature for the following treatments. This approach requires
invasive thermometry probes for the first treatment only, instead of the complete treat-
ment series. Thus, although the current technique outperforms existing techniques, further
improvement of simulation accuracy is required to warrant introduction of temperature-
based HTP for dosimetry in the clinic as replacement of invasive thermometry.

4.5 Conclusion

We presented a technique for patient-group specific optimization of thermal tissue proper-
ties. Application of this technique to invasive temperature measurement data of patients
treated with H&N hyperthermia led to patient-group specific tissue property values that
effectively improved temperature simulation accuracy. Current accuracy makes simula-
tions a valuable tool as additive to invasive measurements; improvements in accuracy are
required to rely on only temperature-based HTP in the clinic.
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Abstract

Purpose: Dosimetry during deep-local hyperthermia treatments in the head
and neck currently relies on a limited number of invasively placed temperature
sensors. The purpose of this study was to assess the feasibility of 3D dosimetry
based on patient-specific temperature simulations and sensory feedback.
Materials and methods: This study included ten patients in which tnvasive
thermometry was applied in at least two treatments. Based on the invasive
thermometry, we optimized patient-group thermal conductivity and perfusion
values for muscle, fat and tumor using a leave-one-out approach. Next, we
compared the accuracy of the predicted temperature (AT) and the hyperthermia
treatment quality (AT50) of these patient-group properties to patient-specific
properties, which were optimized using previous treatment measurements.
As a robustness check, and to enable comparisons with previous studies, we
optimized the parameters not only for an applicator efficiency factor of 40%,
but also for 100% efficiency.

Results: The accuracy of predicted temperature (AT) improved significantly
using patient-specific properties, i.e. 1.0°C (inter-quartile range (IQR):
0.8°C) compared to 1.3°C (IQR: 0.7°C) for patient-group averaged tissue
properties for 100% applicator efficiency. A similar accuracy was found
for optimizations using an applicator efficiency factor of 40%, indicating
the robustness of the optimization method. Moreover, in eight patients with
repeated measurements in the target region, AT50 significantly improved, i.e.
AT50 reduced from 0.9°C (IQR: 0.8°C) to 0.4°C (IQR: 0.5°C) using an
applicator efficiency factor of 40%.

Conclusions: This study shows that patient-specific temperature simulations
combined with tissue property reconstruction from sensory data provides
accurate minimally invasive 3D dosimetry during hyperthermia treatments:
T50 in sessions without invasive measurements can be predicted with a median
accuracy of 0.4°C.
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5.1 Introduction

Patients with a tumor in the head and neck (H&N) region are often treated with radio-
therapy and/or chemotherapy. At our institute H&N patients can also be treated with
radiotherapy combined with hyperthermia, i.e. elevating tissue temperature to 39—44°C.
For this combined treatment, phase III clinical evidence shows a substantially improved
clinical outcome without inducing additional toxicity°>**!% For the hyperthermia treat-
ments we used the HY PERcollar applicator system, which is specifically designed to treat
tumors in the H&N region that are located deeper than 4cm from the skin ™. The HYPER-
collar is a ring-shaped phased array hyperthermia applicator consisting of 12 antennas
uniformly divided over two rings of six antennas, which can be individually controlled
and operate at a frequency of 434MHz ™.

Prior to the first treatment with this applicator, a hyperthermia treatment plan
(HTP) is made for system settings optimization, for decision-making, and to apply our
real-time adaptive hyperthermia strategy®. In our current HTP, electromagnetic (EM)
simulations are used to predict the energy deposition, i.e. the specific absorption rate
(SAR), in the patient. Clinical studies have shown that treatment outcome is related to
thermal dose®®%*, which advocates the use of temperature predictions instead of SAR
predictions. In a previous study'” a technique was presented that optimizes temperature
simulation parameter values by fitting the simulated temperatures to the measured tem-
peratures during treatment. The technique used only temperatures at steady state, while
for evaluation of the complete treatment a transient temperature simulation is required.

The great strength of temperature simulations over the sparse data from the currently
applied invasive thermometry is the possibility of generating temperature maps for the
entire 3D volume. Further, temperature simulations provide an economic alternative for
3D magnetic resonance temperature imaging (MRTI)**, which has not been demonstrated
in the head and neck and which might prove challenging due to motion and susceptibility
artefacts®!.

The purpose of this study was to assess the feasibility of 3D dosimetry based on
patient-specific temperature simulations and sensory feedback. In addition, we established
the accuracy of replacing invasive temperature measurements in each hyperthermia session
by temperature predictions combined with invasive temperature data of the first session.
First, we optimized the thermal conductivity and perfusion patientgroup parameter val-
ues for muscle, fat and tumor, and assessed the accuracy of the transient temperature
simulation in a leave-one-out approach. Next, we compared the accuracy of the predicted
temperature (AT) and the hyperthermia treatment quality (AT50) of the optimizations
based on the patient-group parameter values to those based on patient-specific parameter
values. The parameters were optimized using an applicator efficiency factor of 40% and
100%. The accuracy of the optimization with an applicator efficiency factor of 100% was
used only for comparison with previous studies and as a robustness check of the optimiz-
ation technique.
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5.2 Methods

In our view there are two approaches to validate the 3D simulated temperature using
sensory measurements. The first approach is to validate within one treatment by apply-
ing a leave-one-out experiment on the measurements points in the 3D volume. In such
an experiment, the simulated 3D temperature can be optimized on a number of measure-
ment probes and tested on a measurement probe that is not used in the optimization. In
theory, for the best accuracy this approach requires at least two measurement points per
tissue, i.e. six or more for fat, muscle and tumor, to provide validation of the 3D temper-
ature distribution for one treatment only. In an alternative approach we optimized the
patient-specific 3D temperature using all probes of the first treatment to predict the tem-
perature for subsequent treatments. This approach not only provides an estimate of the
3D temperature prediction accuracy, including repeatability uncertainty, but also allows
for improving patient comfort since at subsequent treatments it provides the accuracy of
replacing invasive probes by predictions.

5.2.1 Treatment procedure

Patients were treated once or twice a week with deep, local H&N hyperthermia depend-
ing on the radiotherapy radiation schedule. Before the hyperthermia treatment, closed-tip
thermometry catheters were placed interstitially, intraluminally and/or at the skin. The
interstitial catheters were assumed to be located in tumor, muscle or fat tissue. They were
placed under computed tomography (CT) guidance or under anaesthesia in an operating
room. In the hyperthermia treatment room the patient was positioned in the same orient-
ation with respect to the applicator as in the HTP. After patient positioning, fibre-optic
temperature sensors (FISO, Quebec, Canada) were inserted into the closed-tip catheters.
The hyperthermia treatment was started by applying 200W of total input power with
antenna phase and power settings from the HTP. Power was increased in steps of 30W,
till one of the tolerance limits was reached ™ or when the patient indicated a hot-spot at
a site without thermometry. During the treatment, two phases were defined: 1) power-up
phase, and 2) plateau-phase, and the transition was assumed to be always after 15min of
heating.

5.2.2 Patient data

Over the past 7 years, 45 patients have been treated with deep local H&N hyperthermia in
our institution. From these patients we selected the patients that had invasive temperature
monitoring for at least two treatments. In total 10 patients (35 treatments) were included
in the study with tumors in the oropharynx, nasopharynx, parotid gland and thyroid
gland (Table 5.1).
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Table 5.1: Patient and treatment characteristics, i.e. tumor location, number of treat-
ments and number of probes per tissue as used in the evaluation, thus ex-
cluding the first treatment since this data was already used for parameter
optimization. Note that for all treatments invasive probe measurements
were available.

total no. of probes
patient no. tumor location no. of treatments tumor muscle fat

1 Oropharynx 2 4 7 0
2 Nasopharynx 2 4 4 0
3 Parotid gland 3 0 9 3
4 Oropharynx 6 8 29 4
5 Oropharynx 1 0 1 1
6 Oropharynx 4 4 17 1
7 Thyroid gland 3 0 7 6
8 Oropharynx 1 1 4 2
9 Thyroid gland 1 0 2 1
10 Thyroid gland 2 0 2 4

5.2.3 EM-based hyperthermia treatment planning (HTP)

Approximately 1 week before treatment a CT scan was acquired for EM-based HTP
purposes. This CT was converted into a 3D patient model by automatically segmenting
normal and critical tissues using a multi-atlas-based approach®*. Then the tumor and the
target were manually segmented by an H&N radiation oncologist, as in Verhaart et al. '
EM tissue property values were assigned as indicated in Table 5.2. The EM-based HTP
procedure was applied using simulation settings as in Rijnen et al.®.

The locations of the closed-tip catheters were reconstructed using a second CT scan.
The measurement points were distributed over muscle (65%), fat (18%) and tumor (17%)
tissue, of which 28% are located superficially (probe depth < lem), 62% intermediately
(Iem < probe depth < 4cm) and 10% deep (probe depth > 4cm), relative to the skin
surface. An example of the reconstructed probe location can be seen in Figure 5.1a, further
examples can be found in the report of Paulides et al.” and a detailed description of the
reconstruction can be found in the report of Verhaart et al.'"".

5.2.4 Temperature simulations

SEMCAD X (version 14.8.5, Schmid & Partner Engineering, Zurich, Switzerland) was used

to predict the 3D temperature distribution according to the Pennes bioheat equation®’:

aoT
pesr =V (kVT) + pQ + pS — preppw (T = Ty) (5.1)

where T [°C] is the temperature, ¢ [s] is the time, p [kg m~3] is the volume density of mass,
¢ [J kg™! °C™1] is the specific heat capacity, & [W m™ °C™!] is the thermal conductivity,
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Figure 5.1: Predicted 3D temperature distribution on the planning CT shown together
with the catheter track (solid green line) with a measurement probe at the
tip inside the challenging-to-heat nasopharynx tumor (a). The temperature
colormap is also included (b). As illustration, we show the temperature
during treatment (c) for the temperature measured at the tip (solid black)
compared with the predicted temperatures using Group (dash-dot purple),
Patient (dashed red) and Session (solid orange) parameter values, when six
parameters were optimized using an applicator efficiency factor of 100%.
Results for an applicator efficiency factor of 40% were similar and therefore
not shown.

w [mL min~! kg™!] is the volumetric blood perfusion rate, @ [W kg™!] is the metabolic
heat generation rate, S [W kg™!] is the SAR and the subscript , denotes a blood property.
To account for temperature losses, we applied a mix of convective and Neumann (fixed
flux) boundary conditions:

kC;—T + WMT — Toutsiaze) = F (5.2)
n
where n is the direction normal to the surface [m|, Tyusiqe is the temperature outside the
boundary [°C], h is the heat transfer coefficient due to convective and radiative losses
[W m™2 °C~!] and F is the fixed heat flux due to perspiration [W m~2]. The boundary
conditions were applied at the following interfaces: tissue — surrounding air (Asurroundingair
= 8W m™2 °C~1)7), tissue — waterbolus (hyyp = 82W m™2 °C~1 192)  tissue — internal
air, tissue — lung and tissue — metal implants (hinternatair/metar = 50W m~2 °C~1.7). The
initial temperature in the tissues was set to 37°C while the temperature of the surrounding
air and the waterbolus was set to 20°C, as measured during hyperthermia treatments.
To apply actual treatment power steering in the temperature simulation, user-defined
sources were created when the applied treatment power and/or phase changed more than
+5W or 5°C respectively. For the user-defined source, the treatment phase and amplitude
settings were applied to each antenna and the combined EM field was used to compute
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Table 5.2: Literature values of EM and thermal tissue properties for T simulations
at 37°C, baseline"75:°6:59.76.78 ' See Table 5.3 for 'thermal stress’(T-stress)

and ’steady state optimized’ (SSopt) values.

Tissue €r Ooff p c k Q w
internal air 1.0 0.0 1.2 - - - -
lung 23.6 0.38 394 - - - -
muscle 56.9 0.81 1090 3421 0.49 0.96 39.1
fat 11.6 0.08 911 2348 0.21 0.51 32.7
bone 13.1 0.09 1908 1313 0.32 0.15 10.0
cerebrum 56.8 0.75 1045 3696 0.55 15.5 763.3
cerebellum 55.1 1.05 1045 3653 0.51 15.7 770.0
brainstem 41.7 0.45 1046 3630 0.51 11.4 558.6
myelum 35.0 0.46 1075 3630 0.51 2.48 160.3
sclera, 57.4 1.01 1032 4200 0.58 5.89 380.0
lens 37.3 0.38 1076 3133 0.43 - -
vitreous humor 69.0 1.53 1005 4047 0.59 - -
optical nerve 35.0 0.46 1075 3613 0.49 2.48 160.3
cartilage 45.1 0.60 1100 3568 0.49 0.54 35.0
thyroid gland 61.3 0.89 1050 3609 0.52 87.1 5624.3
tumor 59.0 0.89 1050 3950 0.51 - 400.0

& relative permittivity [-], oeg: effective conductivity [S m~1],
p: density [kg m™3], c: specific heat capacity [J kg=! °C~1],

k: thermal conductivity [W m~! °C~!], Q: metabolic heat

generation rate [W kg~1], w: perfusion rate [ml min—! kg~!],

GTV: gross tumor volume, Blood heat capacity (ppcp) =
4.1-105 [J m=3 °C~1).

the SAR. The scaling factor of the source was the applicator efficiency factor (n). Thus, n
determines the fraction of the power from the antenna connectors that is transferred into

the patient.

5.2.5 Optimization procedure of thermal tissue parameter val-

ues

To optimize thermal tissue parameter values we started with the initial temperature simu-
lation parameter values that solved the Pennes bioheat equation. The resulting simulated
temperatures (Tgimulatea) Were compared with the measured temperatures (Tyeasured)- At
each iteration of the optimization procedure the parameter values were modified in order
to minimise the difference (AT) between T peasured a0d Tsimulated- Figure 5.2 shows a block

scheme of this procedure.
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Figure 5.2: Block scheme of the optimization procedure

Optimizations based on transient temperature simulations were run using two differ-
ent applicator efficiencies:

o Tro,e n:40%
o Tr,,. n:100%

In both optimizations six thermal tissue parameters were optimized, i.e. Wiumor,
Winuscle, Wats Ktumor; Kmuscle and Kge. In the first optimization an applicator efficiency of
40% was used, which was obtained for the HYPERcollar applicator by Adibzadeh et al.?
using the power-off method”:'%®, Since the patients included in our study were all treated
with the HYPERcollar applicator we used the result of this optimization to determine
the feasibility of 3D dosimetry. In the second optimization a perfect applicator efficiency
of 100% was assumed. The result of this optimization was used only for comparison with
previous studies and as a robustness check of the optimization technique.

The temperature simulation parameter values were optimized by minimising the
cumulative differences between measured and simulated temperature points over all probes
and the complete treatment time, excluding the first 15min of the power—up phase. A
constrained non—linear optimization function® ’fminsearchbnd’ in MATLAB (version
R2013a, MathWorks, Natick, MA, USA) was used with a maximum number of iterations
300, relative tolerance 0.1 and constraints w € (1,00) mL min~! kg=!, k € (0.01,00) W
m~! °C~!. The initial values for w and k were chosen as in Verhaart et al.'’” (Table
5.3: baseline values). Each simulation took on average 48+28min for Tro,. 7 : 100% and
28+15min for Trop 7 : 40% at a standard desktop computer with i7 3930K processor for
a simulation consisting of 15MCells using a double precision solver.
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5.2.6 Evaluation of optimized thermal tissue parameter values

Patient—group values To quantify the predicted temperature accuracy using transient
temperature simulations we validated the patient—group optimized temperature simula-
tion parameter values (Group) in a leave-one-out experiment. In this experiment the data
of a single patient was used as the test data, and the data of the remaining patients as
the training data to optimize the parameter values. During the test the median value
of the optimized parameter values of the training set was applied to the test set. This
procedure was repeated such that each single patient data was used once as the test data.
The advantage of this experiment was that all patients in our limited patient group could
be used for training and testing, while we avoided over-tuning of the parameter values
with respect to our group of patients, such that the validation held for new patients.

Patient—specific values Patient-specific optimized thermal tissue property values (Pa-
tient) were obtained by applying the optimization procedure to the first treatment. These
patient—specific optimized values were applied to the next treatments (Table 5.1) to in-
vestigate the accuracy of temperature simulation.

Session—specific values The session—specific optimized values (Session) were ob-
tained by applying the optimization procedure to a treatment and using the resulting
optimized thermal tissue parameter values to the same treatment. These session—specific
optimized values result in the best accuracy you could obtain with the optimization pro-
cedure, i.e. it describes how well the (optimized) model fits the data.

Overview of analysis First, the accuracy of the patient-group optimized parameter
values of Trop 7 1 100% and Trope 1 : 40% were compared with the accuracy of using literat-
ure parameter values, i.e. from steady-state temperature simulations using six parameters
(SSopt), baseline values at 37°C (Baseline) and values scaled due to the thermal stress (T-
stress). Second, the accuracy of temperature simulation was compared between Patient,
Group and Session parameter values. Third, the accuracy between Tro,, 7 : 100% and
Trope 1 0 40% was compared to check the robustness of the optimization technique. Since
the patients included in our study were all treated with the HYPERcollar applicator, we
used the result of Trop 7 : 40% to determine the feasibility of 3D dosimetry.

The accuracy of temperature simulation was reported by the median and the inter-
quartile range (IQR) of the absolute temperature difference (AT) between measured and
simulated temperature points over all treatments, all probes and the complete treatment
duration, excluding the first 15min of the power-up phase. IQR is the difference between
the 75th and the 25th percentiles of the samples in AT, as indicated by the edges of the
box-plots in Figures 5.3 and 5.4. The feasibility of 3D dosimetry is quantified by AT50,
defined as the difference between the measured and simulated T50 in the target. T50 is
a frequently used hyperthermia treatment quality parameter and is defined as the tem-
perature exceeded by 50% of the monitored probes in the whole target and averaged over
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Table 5.3: Patient-group optimized values of transient temperature simulations using
an applicator efficiency factor of n:100% and 7 :40%. For comparison,
we also show literature values for these thermal tissue properties for T
simulations at 37°C: Baseline7:75:°6:59.760.78 ' thermal stress (T-stress)”® and

steady-state optimized (SSept) values!?7.

n:100% n:40% Baseline T-stress  SSept
Weumor 2933.1 848.0 400.0 80.0 1146.0
Wmuscle 785.6 442.8 39.1 300.0 9563.6

Wiat 5244 255.0 32.7 200.0 76.7
Keumor 3.3 1.5 0.51 0.64 0.97
Kynuscle 4.1 0.4 0.49 0.64 5.75
Keat 2.3 0.5 0.21 0.21 0.38

w: perfusion rate [ml min~! kg~!], k: thermal conductivity
[W m~! °C~1], n : applicator efficiency factor.

all treatments per patient®®. Note that AT and AT50 are in fact measures of inaccur-
acy; however, for readability reasons we used the term accuracy. We tested for statistical
significance (p<0.05) using the non-parametric Wilcoxon signedrank test '%%.

5.3 Results

Table 5.3 shows the patient-group optimized values for transient temperature simulations
using an applicator efficiency factor of 1 : 100% and 71 : 40%. The values of 7 : 40% agree
most with the literature values.

Figure 5.3 shows three results. First, it compares the accuracy of the predicted
temperature using Group parameter values optimized using either steady-state temper-
ature simulations (SS,pt) or transient temperature simulations (Tropy 7 0 100% and Trop
n : 40%). The accuracy improved when replacing steady-state by transient optimized para-
meters, i.e. AT reduces from 1.6°C (IQR 1.2°C) for SSyp; to 1.3°C (IQR 0.7°C) for Ty,
n:100% and 1.4°C (IQR 0.9°C) Trep 1 : 40%. Overall, our optimized parameter values
strongly improved the accuracy compared to the accuracy based on literature values:
10.9°C (IQR 11.5°C) for baseline values and 2.9°C (IQR 3.4°C) for T-stress values (not
shown). Second, Figure 5.3 provides the accuracy of the optimization procedure using
either Group, Patient or Session parameter values for transient temperature simulations
using an applicator efficiency factor of 7 : 100% and 7 : 40%. A significant improvement in
accuracy was found when using patient—specific parameter values of the first treatment
for temperature predictions in following treatments for Troy 7 : 100%, i.e. AT significantly
reduced from 1.3°C (IQR 0.7°C) to 1.0°C (IQR 0.8°C). Although not significant, Trqpy
n : 40% shows a similar improvement, i.e AT reduced from 1.4°C (IQR 0.9°C) to 1.1°C
(IQR 1.4°C). Third, Figure 5.3 compares Trop 1 : 100% with Trop 1 : 40%. In general,
the optimized parameter values resulted in similar accuracies, indicating the robustness
of the optimization method.
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Figure 5.3: Comparison of the transient temperature simulation accuracy (AT) when
applying Group, Patient or Session parameter values from transient sim-
ulations using an applicator efficiency factor of 100% (Trope 1 : 100%) or
40% (Tropt 1 : 40%). As a cross-check, the Group parameter values from
steady-state simulations (SSopt) are given. Statistically significant differ-
ences are indicated for Group versus Patient (A), Group versus Session
(<) and Patient versus Session (>). In the box-plots, the central mark is
the median, the edges are the 25th and 75th percentiles, the whiskers ex-
tend to the most extreme data points not considered outliers (99.3%), and
outliers are plotted individually ().

Figure 5.1a illustrates the improvement in simulation accuracy when using patient-
specific parameter values of the first treatment for temperature predictions in following
treatments, since it clearly shows that the Patient values predicted the measured temper-
ature better than the Group parameter values. Note that the Session parameter values
resulted in an almost complete match with the measured temperatures.

Figure 5.4 further stresses the improvement in 3D temperature simulation with the
frequently used hyperthermia treatment quality parameter T50 in the target, for the eight
patients that had invasive measurements available inside the target. It shows a signific-
antly reduced median difference between measured and predicted T50 in the target when
comparing the application of Group versus Patient parameters, i.e. AT50 significantly

reduced from 0.9°C (IQR 0.8°C) to 0.4° (IQR 0.5°C).
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Figure 5.4: The feasibility of 3D dosimetry quantified by the difference in measured
and simulated T50 in the target (AT50) using transient temperature simu-
lations with an applicator efficiency of 40% when applying Group, Patient
or Session parameter values. Note that the T50 could only be computed
for eight patients since they received invasive measurements inside the
target. Statistically significant differences are indicated for Group versus
Patient (A), Group versus Session (<) and Patient versus Session (). In
the box-plots, the central mark is the median, the edges are the 25th and
75th percentiles, the whiskers extend to the most extreme data points not
considered outliers (99.3%), and outliers are plotted individually (+).

5.4 Discussion

5.4.1 3D temperature simulation accuracy

In this study we assessed the feasibility of 3D dosimetry based on patient-specific tem-
perature simulations and sensory feedback. The temperature simulations using patient-
specific tissue properties in combination with patient-specific 3D models significantly im-
proved temperature prediction accuracy compared to patient-group averaged properties.
In a set of eight patients, the 3D median tumor temperature (T50) can be predicted
with a median accuracy of 0.4°C (IQR 0.5°C) using these patient—specific properties.
This makes our patient-specific temperature simulations a promising tool for minimally
invasive 3D dosimetry during hyperthermia treatments.

Other approaches that investigated accuracy of 3D temperature dosimetry were based
on the power-off method”"!%® or MRTI. The power-off technique allows SAR or the effect-
ive perfusion to be determined, i.e. a combination of perfusion and thermal conduction
from the measured temperature decay at power-off, e.g. at the end of the treatment. Raay-
makers et al.®” used this technique to iteratively optimize the tissue perfusion parameter
value for the temperature simulation of each single patient. For seven patients they found
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a patient average absolute temperature difference of 1.3+£1.1°C (68% of data values).
We should compare this with our accuracy of the Session values: median: 0.5°C (IQR
1.0°C) for Tropt 1 : 100%, and median: 0.5°C (IQR 0.8°C) for Trop 7 : 40% (50% of data
values). There are several possible explanations for this difference between both studies:
the difference in the region of interest: prostate versus head and neck, difference in the
less accurate probe reconstruction due to a courser imaging (ultrasound 5mm versus CT
0.3x0.3x0.5mm — 1xIx3mm) and a less accurate temperature simulation due to a less
detailed patient-model (MRI versus CT+MRI).

MRTT is a non-invasive temperature imaging technique, which provides an accuracy
in the extremities or in the pelvic lower than 1°C?"**. However, accuracy has not been
demonstrated for the H&N and MRTT in this region is expected to be challenging due
to motion and susceptibility artefacts®. Hence, our transient temperature simulation
optimization technique combined with limited invasive thermometry currently provides
the best option for 3D temperature dosimetry during head and neck hyperthermia.

A number of limitations may have affected our results. Firstly, to reduce simulation
time, metal implants were not modelled as volumes with metal properties, but instead
as inactive while mimicking their impact by a mixed boundary condition. An additional
investigation in one patient model showed that this only affected the predicted temper-
atures <0.5cm from metal, and hence only a small impact on overall simulation accuracy
can be expected. Secondly, the reconstruction of the temperature sensor locations was
assumed to be 100% accurate. However, earlier we showed that manual tracking and
registration errors affect reconstruction accuracy'’”, and thus possibly also the optim-
ized parameter values and reported accuracy. Thirdly, most measurement sensors were
available in oropharynx patients, where reconstruction and measurement accuracy is the
poorest ™. Since this region is a worst-case estimate, measurements in other regions should
be better. Fourthly, temperature dependency of perfusion is to be expected, but not incor-
porated in our study. Therefore our optimized values are expected to be less accurate for
higher temperatures. Lastly, our results and conclusions are based on H&N hyperthermia
treatment data only, but the optimization of temperature simulations using sensory data
is a generic method that can be applied to other sites as well.

5.4.2 Optimized tissue property values

The six optimized parameter values (w and k for tumor, muscle and fat tissue) using
an applicator efficiency factor of 100% (Tropt 1 : 100%) were all much larger, i.e. one or
two orders of magnitude, than previously reported in literature?”>%:5%75:9  However, they
are in agreement with the values previously found with the steady-state simulation-based
technique'°”. The values of these parameters became lower and closer to physiological val-
ues when an applicator efficiency factor of 40% (Trop 1 : 40%) was used (Table 5.3). In this
optimization the largest deviations in tissue properties were found in tumor tissue. This
discrepancy in tumor tissue properties could be caused by differences in tumor pathology
and physiology. Baseline literature values were from brain tumors™ and thermal stress
values were from pelvic tumors, i.e. cervix, prostate, rectum®’. Nevertheless, note that in
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the present study we aimed to assess the feasibility of 3D dosimetry using patient-specific
temperature simulation and not necessarily with physiological thermal tissue parameter
values.

Despite the variation in optimized tissue property values using an applicator efficiency
factor of 40% or 100%, a similar T50 accuracy was found. As treatment decisions are
based on T50, these decisions will not be dependent of the applicator efficiency used.
However, note that a re-optimization of the tissue property values is needed when a
different applicator efficiency factor than 40% or 100% is used.

In one of our optimizations we used an applicator efficiency factor of 40%. Applicator
quality assurance measurements showed that 30% can be explained by mismatches and
heat generation in the antenna and connector. Hence, a large proportion of SAR modeling
uncertainty is caused by an incorrectly modelled water-bolus shape. In our new applicator
the HYPERcollar3D??, we therefore implemented a much more reproducible and conform-
able waterbolus shape in order to substantially improve the accuracy of simulations. Such
a reproducible set-up should further improve the applicability of the method presented
here, and hence the clinical potential of this procedure.

5.5 Conclusion

In this study we assessed the feasibility of 3D dosimetry based on patient-specific temper-
ature simulations and sensory feedback. The hyperthermia T50 treatment quality para-
meter in the target can be predicted with a median accuracy of 0.4°C (IQR 0.5°C) using
patient-specific properties. Our analysis clearly shows the potential of patient-specific
temperature simulations combined with sensory data as a promising tool for minimally
invasive 3D dosimetry during hyperthermia treatments.
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General discussion and future perspectives
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6.1 3D patient model generation

6.1.1 Evaluation of the approach

In our approach we used advanced image processing tools for tissue segmentation. To these
segmented tissue regions, literature based tissue property values are applied as input for
EM and temperature simulations. We exploited our experience with image processing
tools to make the HTP proces similar to the radiotherapy treatment planning proces,
making it more straight foreward to implement in the clinical routine. Our approach
differed from other studies as they do not discriminate tissues based on the contrast in
the image, but on the dielectric tissue property that is measured in a certain region.
This is for example possible with a MRI scanner using a technique called electrical prop-
erty tomography (MRI-EPT). An advantage of MRI-EPT is that it uses patient-specific
dielectric properties™!" instead of general, literature based tissue property values. Several
studies**!1% have shown that surface models, i.e. tissue segmentation, each with assigned
homogenous dielectric properties, shows benefits compared to models that attempt to
derive heterogeneous dielectric properties directly from CT data. Similar results were ob-
tained from attempts that use MRI-derived heterogeneous tissue models®*™. Of course,
when research continues, it has a potential to become an adequate technique to obtain
patient specific dielectric tissue property values. However, at this moment, MRI-derived
heterogeneous tissue models (e.g. using MRI-EPT) has some more drawbacks. First, a
clinical validation is missing. Second, an analysis on the effect of the required extra MRI
scans and extra scan time on the clinical routine is missing. Last, definition of optimiz-
ation regions, e.g. organs as risk, remains required for HTP, hence tissue segmentation
remains needed. Therefore, surface models are the current standard for HTP.

6.1.2 Future work and perspectives

In my work a 3D patient model was created by stacking segmented tissues that are
segmented from routinely acquired scans. At the start of my project, this model was
created by manually segmenting numerous organs from CT and occasionally additionally
also from MRI. Manually segmenting these organs for each patient requires many man-
hours, which hinders clinical acceptance. For this reason, an automatic segmentation tool
was developed and clinically validated that increased segmentation speed and reduced
operator times, i.e. a 3D patient model can be generated within one hour. At this moment
our automatic segmentation tool is successfully used in hyperthermia treatment planning
for treatments with the HYPERcollar and HYPERcollar3D applicator.

A possible application of the segmentation tool in the future is to combine it with
techniques that measure dielectric tissue properties, e.g. MRI-derived heterogeneous tissue
models using MRI-EPT. Although the use of heterogeneous tissue models have been shown
to have drawbacks as discussed before, it remains an adequate technique to obtain patient
specific dielectric tissue property values”!'’. One could use measured patient specific tissue-
averaged property values and apply these to the tissues segmented using our automatic
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segmentation tool. Of course, the exact influence and impact of this approach on additional
scanning time, patient discomfort and HTP accuracy remains to be determined.

In theory, H&N hyperthermia is not the only application for our automatic seg-
mentation tool. In the future, it might for example also be used for superficial or deep
hyperthermia or in radiotherapy treatment planning. Further, it can also be used in studies
that assess the exposure by electromagnetic sources of the human body, since those stud-
ies also use 3D human models. Since the tool is based on a multiatlas approach combined
with intensity modeling, a requirement for the use of our tool is a library of accurately
segmented patient models that incorporate all the relevant tissue-shape variations. When
other tissues than the current tissues are added to the library, an optimization of the
intensity model parameters is needed for these tissues to obtain accurate patient models,
i.e. 1% variation in HTP quality for our tool (chapter 2). Ideally, also a clinical validation
should be done as described for the current tool in chapter 2.

6.2 Temperature modeling

6.2.1 Evaluation of the approach

After development and clinical validation of the CT and MRI based segmentation tool to
create patient models, the tools were ready to improve temperature modeling by optim-
izing thermal tissue property values using the temperature sensor data and simulations.
In our approach, we focussed on improving temperature simulations instead of EM
simulations as in our view temperature is a better measure for treatment outcome since
clinical studies®®“* have shown that treatment outcome is related to thermal-dose. An
approach to obtain temperature information is to use invasive thermometry. A drawback
of invasive thermometry is that usually only sparse measurement points are available. The
great strength of temperature simulations over the sparse data from invasive thermometry
is the possibility of generating temperature maps for the entire 3D volume. Another way
of generating 3D temperature maps is by using magnetic resonance temperature ima-
ging (MRTI)*. MRTTI is a non-invasive imaging technique to measure temperature. It
has shown to provide a good accuracy in the extremities and in the pelvic?"**. How-
ever, accuracy has not been demonstrated in the H&N and MRTTI in this region might
prove challenging due to motion and susceptibility artefacts”®'. Hence, currently the
best option for 3D temperature dosimetry during H&N hyperthermia is our temperature
simulation optimisation technique combined with limited invasive thermometry.

6.2.2 Future work and perspectives

Various simulation models to predict temperature have been developed®. In hyperther-
mia, temperature modeling is commonly based on the Pennes Bioheat equation (PBHE)®2.
The PBHE models perfusion by a heat sink, but the direction of blood flow and the
heat exchange between large vessels and tissues are not included. The discrete vascular
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(DIVA) model is a more physiologically correct model as it includes vessel networks®!.
Unfortunately, the integration of representative vessel networks in the simulation is a
lengthy and tedious procedure, which prevents application of this approach in clinical
practice upto now. In the future, vessel segmentation methods could be developed and
integrated into our segmentation tool. It is important that specific CT and/or MRI pro-
tocols are used to be able to improve vessel contrast on these images, which improves
vessel (auto)segmentation. With current imaging techniques it is possible to segment ves-
sels with a diameter of upto 0.6mm?°, whereas heat exchange is thermally significant
in vessels down to 0.2mm in diameter. Therefore, several attempts have been made to
generate artificial vessels or to combine vessel tree data with perfusion maps!%04:8586,104,
Since the probes of my investigation were always distant from large vessels, the improve-
ment on temperature prediction by DIVA could be studied by comparing temperature
predictions based on our current patient-specific models with and without blood vessels.
These approaches have upto now never been applied to the challenging and well perfused
H&N region. Thus, future research should focus on adding DIVA to the PBHE model to
incorporate influences of large vessels.

Since measurement-guided (MRTI) and simulation-guided (temperature simulations)
temperature dosimetry supply complementary information it might be wise to make use
of each others advantages. An advantage of MRTT is that it supplies many measurement
points, while our technique uses only sparse thermometry points. A second advantage of
MRTT is that MRTT is non-invasive, while our temperature simulation optimisation tech-
nique uses invasive thermometry measurement points. An advantage of simulation-guided
temperature dosimetry is that it is more comfortable for the patient because family and
friends can be close to the patient during treatment, while in a MRI room the patient is
alone. Also the hyperthermia staff appreciates direct contact with the patient for example
to have better control over the patient, which is easier in simulation-guided temperature
dosimetry as with MRTI. A second advantage of simulation-guided temperature dosimetry
is that claustrophobic patients have no problem with this technique, while those patients
generally have problems going into the bore of the MRI scanner. A third advantage of
simulation-guided temperature dosimetry is that it is easier to apply a combined hyper-
thermia and radiotherapy treatment, which is a challenge when this combined treatment
is given in the MRI scanner. Nevertheless, studies are ongoing that investigate the in-
tegration of a linear accelerator inside a MRI scanner®? which gives us in the future the
possibility to apply radiotherapy in a MRI scanner. A fourth advantage of simulation-
guided temperature dosimetry is its cost-efficiency. A prerequisite for MRTT is a MRI
scanner, which is commercially available and allows simultaneous treating and measur-
ing. An MRI scanner, and especially a hybrid MRI, is still rather expensive to purchase,
making MRTI a capital intensive technique. Therefore, temperature simulations provide
an economic alternative for MRTT. In the future, a combination of both techniques could
be used to make use of each others advantages. Our technique can be used to optimise
simulated temperatures based on measured temperatures from MRTI. When doing so for
the first session of the hyperthermia treatment, the MRTI can be avoided for the next
sessions of the patient, since our optimization technique could provide the 3D predicted
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temperatures. In case of a claustrophobic patient that is unable to go into the MRI scan-
ner, simulation-guided temperature dosimetry with invasive measurement points remains
the only option. An additional and interesting reason to combine both techniques is to
investigate how thermal tissue properties of the target might change during the series of
a treatment session with radiotherapy and/or chemotherapy and/or hyperthermia. Even-
tually when all temperature related characteristics of tissues and especially tumor tissue
is collected, future scenarios might be to better predict the 3D temperature-time profile
for these tissues with no or minimal verification required.

In the future, temperature modeling will continue to mature and will be used to
prospectively compare treatment options, optimise treatments and to enrich temperature
measurement data. In the case that MRTI is a possibility for a treatment, a temperature
model can be improved with fast optimisation feedback control algorithms to correct for
the model errors and uncertainties. In the case that MRTTI is not possible, temperature
modeling will be critical to improve treatment quality since it is the only instrument
available for treatment guidance. Since both temperature modeling and MRTI obtain
overlapping and complementary information that is crucial for a successfull hyperthermia
treatment, further innovation in temperature modeling should and will go hand in hand
with developments in MRTT.
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The prognosis for patients with advanced head and neck (H&N) cancer is very poor
and treatment is challenging'®". These patients are standardly treated with radiotherapy
with or without chemotherapy. These treatments are associated with a high treatment
related late toxicity that affects the quality of life and social contacts in 20% of the
patients'!®. Side effects reported in all studies concern loss of swallowing and salivary
function leading to difficulties in speaking and eating'®%®. Clinical studies??>1:3:100,113
have shown that the addition of a local hyperthermia treatment to a (chemo)radiation
treatment signifcantly improve the treatment outcome without increasing treatment re-
lated late toxicity. Application of hyperthermia in the challenging H&N region using
multi antenna-element applicators requires hyperthermia treatment planning (HTP). This
thesis focuses on the development of an accurate and efficient patient model generation
for patient-specific HTP based on electromagnetic (EM) and temperature modeling. The
first two chapters include the automatic generation of 3D patient-models from Computed
Tomography (CT) scans (chapter 2) or CT and Magnetic Resonance Imaging (MRI) scans
(chapter 3). Chapter 4 and 5 include temperature simulation guided H&N hyperthermia
using optimized thermal tissue property values.

3D patient model generation

Crucial input for accurate hyperthermia treatment planning is an accurate 3D patient
model. This model is created by manually segmenting numerous organs from CT and/or
MRI. Manual segmenting these organs for each patient requires many man-hours, which
hinders clinical acceptance. For this reason, we developed an automatic segmentation tool.

In chapter 2, we validated the tool by comparing the manual- and automatic seg-
mented tissues. We showed that despite geometrical variations, manual and automatic
generated 3D patient models have a similar impact (1%) on variation in HTP quality. This
impact was low with respect to the other sources of patient model uncertainties (11.7%).
Furthermore, a considerable reduction in operator time per patient was achieved when
using the automatic segmentation (£ 1 hour) instead of the manual segmentation (5-6
hours). Thus, it was decided to introduce the recently developed automatic-segmentation
algorithm in the clinic for pre-treatment and real-time treatment optimization. In the
future, this tool can also be extended to other regions than H&N hyperthermia. Since the
tool is based on a multiatlas approach combined with intensity modeling, a requirement
for the use of our tool is a library of accurately segmented patient models that incorporate
all the relevant tissue-shape variations. When other tissues than the current tissues are
added to the library, an optimization of the intensity model parameters is needed for these
tissues for accurate patient models. Ideally, also a validation of the new tool should be
done as described for the current tool in this chapter.

In chapter 3, we investigated the relevance of using MRI in addition to CT for patient
modeling in simulation guided hyperthermia. Hereto, we compared the impact of CT and
CT & MRI based patient models on predicted temperatures, using tissue properties as
optimized in chapter 4. We showed that although MRI reduced segmentation variation
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in most tissues, it does not affect simulated local tissue temperatures in thermo-sensitive
tissues. However, the improved soft-tissue contrast provided by MRI allows generating a
detailed brain segmentation, which has a strong impact on the predicted local temperat-
ures in the thermo-sensitive tissues. For that reason, a detailed brain segmentation based
on MRI was also integrated in the automatic segmentation tool®.

Temperature modeling

Currently, in our clinical practise HTP is based on EM simulations for predicting the
energy deposition (i.e. SAR) in the patient, but clinical outcome is related to the thermal
dose?®?*, In clinical practice, temperature simulations are not used for H&N HTP due to
the absence of a sound validation. This lack is caused by the sparse measurement points
available for validation and the uncertainties in the thermal properties of tissue, which
vary between patients, within the patient, within each tissue, over time, and is dependent
on tissue temperature. To overcome this problem, we developed a technique based on a
leave-one-out approach that allows good training and evaluation of the thermal tissue
property values with a sparse dataset.

In chapter 4, the technique for patient-group optimization of thermal tissue properties
based on invasively measured temperatures is presented and the achievable accuracy is
evaluated. The thermal tissue property values for perfusion and thermal conductivity were
optimized in fat, muscle and tumor tissue to match predicted and measured temperatures.
In a dataset of H&N cancer patients treated with invasively measured temperatures, we
applied a leave-one-out approach to assess the difference between measured and simulated
steady-state temperature. Since the difference between measured and simulated ’steady-
state’ temperature (AT) for the patient-group optimized properties (AT: 2.1+£1.2°C)
was lower than commonly used literature-based tissue property values!"9%:%976:95 (AT:
12.7411.1°C) we were able to show that the optimization technique can be used to improve
temperature simulation accuracy.

In chapter 5, the thermal tissue property optimization technique as presented in
chapter 4 was further improved. First, by using transient instead of steady-state temper-
ature simulations to be able to evaluate the complete treatment. As a cross-check, we
compared the accuracy of temperature simulations using either transient or steady-state
optimized property values. Second, by optimizing patient-specific instead of patient-group
tissue property values. We showed that the accuracy of steady-state and transient tem-
perature simulations is similar. The temperature simulations accuracy of patient-specific
tissue property values was improved compared to patient-group tissue property values.
The study shows that patient-specific temperature simulations combined with tissue prop-
erty reconstruction from sensory data provides accurate minimally invasive 3D dosimetry
during hyperthermia treatments: T50 in sessions without invasive measurements can be
predicted with a median accuracy of 0.4°C. At this moment, when considering the avail-
able data and the current accuracy of other approaches”™#:7 this is the best accuracy
achievable for H&N hyperthermia treatments.
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Patiénten met gevorderde tumoren in het hoofd-hals (HH) gebied hebben een slechte prog-
nose en een goede behandeling blijft lastig'®™. Meestal worden deze patiénten behandeld
met radiotherapie soms in combinatie met chemotherapie. Deze behandelingen gaan vaak
samen met aan de behandeling gerelateerde late toxiciteit die de kwaliteit van leven en
sociale contacten van 20% van de patiénten aantast!!?. Veel gerapporteerde bijwerken van
deze behandelingen zijn verlies van de slikfunctie en een aangetaste speekselproductie wat
spraak- en eetproblemen geeft'®%. Klinische studies?*°1:°%190:113 hebben aangetoond dat
de toevoeging van een hyperthermie behandeling de uitkomst van de behandeling signifi-
cant verbeterd zonder extra bijwerkingen. De toepassing van hyperthermie in het lastige
en uitdagende HH gebied met een systeem dat bestaat uit meerdere antenne elementen
vereist hyperthermie behandel planning (HTP). Dit proefschrift beschrijft de ontwikke-
ling van nauwkeurige en efficiénte tools om een patiént model te genereren voor patiént
specifieke HTP die gebaseerd is op elektromagnetische (EM) en temperatuur modellering.
De eerste twee hoofdstukken gaan over het automatisch genereren van 3D patiént model-
len vanuit Computed Tomography (CT) scans (hoofdstuk 2) of vanuit CT en Magnetic
Resonance Imaging (MRI) scans (hoofdstuk 3). Hoofdstuk 4 en 5 gaan over temperatuur
simulatie gestuurde HH hyperthermie waarbij gebruik wordt gemaakt van geoptimali-
seerde thermische weefsel eigenschappen.

3D patiént modellen

Cruciale input voor nauwkeurige HTP is een representatief 3D patiént model. Dit model
wordt gemaakt door handmatig een aantal weefsels in te tekenen op CT en/of MRI. De
handmatige intekening van weefsels voor iedere patiént vereist veel tijd waardoor het niet
zo snel geaccepteerd wordt in de kliniek. Om deze reden hebben we een tool ontwikkeld
waarbij weefsels automatisch ingetekend kunnen worden.

In hoofdstuk 2 hebben we de tool gevalideerd door de automatische intekeningen
te vergelijken met handmatige intekeningen. We hebben laten zien dat ondanks kleine
geometrische variaties, handmatig en automatisch gegenereerde 3D patiént modellen een
vergelijkbare impact (1%) hebben op de variatie in HTP kwaliteit. Deze impact was klein
als je het vergelijkt met andere mogelijke onzekerheden in het patiént model (11.7%).
Verder verkort de automatische segmentatie tool de benodigde tijd van de intekenaar,
namelijk van 5-6 uur voor handmatige intekeningen naar ongeveer 1 uur voor de auto-
matische intekening. Om deze redenen is besloten de automatische inteken tool te gaan
gebruiken in de kliniek. In de toekomst kan de tool ook uitgebreid worden voor gebruik in
andere locaties dan HH hyperthermie. Een vereiste is dan wel dat dan ook een bibliotheek
van nauwkeurig ingetekende patiént modellen aanwezig is waarin alle relevante variaties
van de weefsels zitten. Als andere weefsels toegevoegd worden dan degene die nu al in
de bibliotheek zitten, dan moet een heroptimalisatie van de parameters van de autoseg-
mentatie methode plaatsvinden voor nauwkeurige patiént modellen. Idealiter moet er ook
weer een validatie gedaan worden zoals gedaan is voor de huidige tool en zoals beschreven
in dit hoofdstuk.



89

In hoofdstuk 3 hebben we onderzocht wat de relevantie is van de toevoeging van
MRI beelden bij patiént modellering voor simulatie gestuurde hyperthermie. Om dit te
onderzoeken hebben we de impact op de voorspelde temperatuur verdeling vergeleken voor
CT gebaseerde patiént modellen en patiént modellen gebaseerd op CT & MRI. Voor de
temperatuur simulaties hebben we gebruik gemaakt van de weefseleigenschappen zoals we
die geoptimaliseerd hebben in hoofdstuk 4. We hebben laten zien dat ondanks het feit dat
er op MRI minder inteken variatie is, dit geen effect heeft op de lokaal voorspelde weefsel
temperaturen in temperatuur gevoelige weefsels. Echter, doordat je op MRI beelden goed
zachte weefsels in kan tekenen was het mogelijk om ook de hersenen gedetailleerder in te
tekenen. Uit de resultaten bleek dat als de gedetailleerde hersenintekening meegenomen
werd in het model dat dit een groot effect had op de voorspelde lokale temperaturen
in temperatuur gevoelige weefsels. Om die reden hebben we onze automatische inteken
tool uitgebreid met de functionaliteit om op MRI beelden gedetailleerde hersenweefsels
automatisch in te kunnen tekenen?°.

Temperatuur modelering

Op dit moment is HTP gebaseerd op EM simulaties waarbij de energie afgifte (ook wel
SAR genoemd) in het weefsel wordt bepaald. Echter, klinische studies hebben aangetoond
dat het klinische resultaat gerelateerd is aan de thermische dosis**”*. In de klinische prak-
tijk worden temperatuur simulaties niet gebruikt voor HH HTP omdat een goede validatie
mist. De reden dat temperatuur simulaties nooit gevalideerd zijn is omdat er maar een
beperkt aantal meetpunten beschikbaar zijn. Verder zijn er ook veel onzekerheden in de
thermische weefsel eigenschappen die variéren tussen patiénten, binnen een patiént, bin-
nen een weefsel, gedurende de tijd en ze zijn afhankelijk van de weefsel temperatuur. Om
dit probleem te verhelpen hebben we een techniek ontwikkeld die gebaseerd is op een
"leave-one-out’ aanpak waarbij het mogelijk is om een goede training en evaluatie van
thermische weefsel eigenschappen uit te voeren op een beperkte dataset.

In hoofdstuk 4 wordt de techniek, waarbij invasief gemeten temperaturen worden
gebruikt voor de optimalisatie van patiént groep geoptimaliseerde thermische weefsel ei-
genschappen, gepresenteerd en de nauwkeurigheid geévalueerd. De thermische weefsel ei-
genschappen voor perfusie en thermische geleiding werden geoptimaliseerd in vet, spier en
tumor weefsel. We gebruikte een dataset van HH kanker patiénten die tijdens de behande-
ling invasief aangebrachte katheters hadden voor het meten van de temperatuur. Op deze
dataset paste we de 'leave-one-out’ methode toe om het verschil te bepalen tussen geme-
ten en gesimuleerde ’steady-state’ temperatuur. Uit de resultaten bleek dat het verschil
tussen gemeten temperatuur en gesimuleerde 'steady-state’ temperatuur (AT) waarbij we
onze patiént groep geoptimaliseerde weefseleigenschappen gebruikte veel kleiner was (AT:
2.1£1.2°C) dan bij het toepassen van de algemeen gebruikte literatuur gebaseerde weef-
seleigenschappen 77997695 (AT: 12.7411.1°C). Hiermee was dus aangetoond dat deze
aanpak de nauwkeurigheid van temperatuur simulaties kan verbeteren.

In hoofdstuk 5 hebben we de techniek uit hoofdstuk 4 verder verbeterd. In eerste
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instantie door in plaats van 'steady-state’ simulaties nu tijdsathankelijke temperatuur si-
mulaties te optimaliseren. Dit maakt het namelijk mogelijk om de gehele behandeling
te kunnen evalueren. Als een cross-check vergeleken we de nauwkeurigheid van tempera-
tuur simulaties waarbij we ’steady-state’ of tijdsathankelijke geoptimaliseerde weefselei-
genschappen gebruikte. Een tweede verbetering van de techniek is dat we in plaats van
patiént groep nu ook patiént specifiek de weefseleigenschappen optimaliseerde. Uit de re-
sultaten kwam dat de nauwkeurigheid van 'steady-state’ en tijdsathankelijke temperatuur
simulaties vergelijkbaar was. De nauwkeurigheid van temperatuur simulaties gebaseerd
op patiént specifieke weefseleigenschappen was beter dan wanneer je patiént groep weef-
seleigenschappen gebruikt. In deze studie tonen we dus aan dat je met patiént specifieke
temperatuur simulaties in combinatie met reconstructie van weefseleigenschappen vanuit
gemeten temperaturen een nauwkeurige tool hebt voor minimaal invasieve 3D dosimetrie
tijdens hyperthermie behandelingen, want de T50 in behandel sessies zonder invasieve
metingen kunnen worden voorspeld met een gemiddelde nauwkeurigheid van 0.4°C. Met
de huidige beschikbare data en huidige nauwkeurigheid van andere technieken %7 is
dit de beste nauwkeurigheid die je kunt behalen voor HH hyperthermie behandelingen.
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