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The first part of the thesis zone picking systems are studied, one of the most popular conveyor-based 
picker-to-parts order picking methods used in practice. We model the various elements of the system 
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on subnetworks, and with the dynamic block-and-recirculate protocol. The resulting model is most 
suitable to support rapid and optimal design of complex zone picking systems. In the second part of 
the thesis, milkrun picking systems are investigated. In this system an order picker picks multiple orders 
that arrive in real-time and integrates them in the current picking cycle. This subsequently changes 
dynamically the stops on the order picker’s picking route. Using polling models, we study order 
throughput times for various picking policies, and the effect of product allocation. The results of the 
model show that when the order arrival rate is high milkrun order picking significantly improves system 
performance compared to conventional batch picking. In addition, the best product allocation improves 
the order throughput time considerably.
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1 Introduction

Warehouses are a key factor in any supply chain. Their main function is to buffer
against variability between supply and demand caused by factors such as seasonality
in demand, production scheduling, transportation, consolidation of items, and value-
added-processes (Gu et al., 2010). In order to stay competitive in a dynamic business
environment full of uncertainties, warehouse operations nowadays need lower delivery
costs, shorter customer response times, and higher customer service. Thus, a better
understanding of the impact of uncertainties that occur in warehouse processes can
contribute to the success of any supply chain.

(a) Automated picking (b) Batch picking (c) Zone picking

Figure 1.1: Various warehousing systems (photographs by author).

In Figure 1.1 various warehousing systems are shown. A warehouse is typically divided
into functional areas to support daily operations. Figure 1.2 shows a schematic
representation of the main functional areas; receiving, reserve and forward storage,
and shipping. Activities in the receiving area include the unloading of products
from transport carriers; quantity and quality control; repackaging (e.g. full pallets
to cases, or standardized bins); and the transfer of products either to storage or
directly to the shipping area via cross-docking. The storage area often consists of two
parts: the reserve and forward storage area. In the reserve area products are stored
in bulk (e.g. pallet racking system), whereas the forward area is used for picking
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high-demand, fast moving products. In the order picking process, products are
retrieved from their storage locations and this process can either be done manually or
(semi-)automated. Depending on the demand and product characteristics, different
order picking methods can be applied, e.g. pallet picking, case picking, or broken
case picking. In case of a stock-out in the forward area, products are replenished
from the bulk stock stored in the reserve area. After the picking process, the orders
are sorted, accumulated, and packed. Finally, at the shipping area, the orders are
consolidated and loaded onto transport carriers.

Forward storage areaReserve storage area

Receiving area Shipping area

Inspection
and receiving

Storage in the
reserve area

Case picking Broken case
picking

Sortation, accumulation, and packing

Shipping

Pu
ta
w
ay

Replenishment Replenishment

Pu
taw

ay

Cross docking

Figure 1.2: Typical warehouse functions and flows (Tompkins et al., 2003).

Out of all these activities, order picking is the most labor-intensive and costly activity
in warehouses due to its high contribution (about 55%) to the total operating cost
(Drury, 1988). In order for a warehouse to operate efficiently, the order picking
process needs to be robustly designed and optimally controlled (De Koster et al.,
2007). Any under performance in order picking can lead to unsatisfactory service
and high operational cost for the warehouse, and consequently for the whole supply
chain. Therefore, many warehouses invest heavily in state-of-the-art order picking
solutions to increase productivity and reduce any uncertainty associated with order
picking. However, this has increased the complexity of today’s warehouse operations
(Frazelle, 2001). As a consequence, conventional models studying the order picking
process are no longer sufficient.
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In this thesis, we develop new stochastic models for the performance evaluation of
several highly state-of-the-art warehousing systems that, in particular, adequately
describe and predict the consequences of variability in, e.g. order arrivals, and picking
times on the performance of a warehousing system. Stochastic models provide an
indispensable tool for this task and have already proved to be extremely valuable
for areas such as manufacturing, communication, and computer systems. Also for
warehousing systems, the stochastic models provide valuable guidance in the rapid
comparison of key features of different design alternatives and allow operations to be
optimized in order to meet prespecified performance targets.

This chapter is structured as follows. Section 1.2 will describe the various factors that
contribute to uncertainty in the order picking process. Section 1.2 and Section 1.3
introduce the two order picking solutions, zone picking and milkrun order pick-
ing, studied in this thesis and discuss their popularity in practice, the causes and
consequences of variability within these solutions, and finally address the research
questions. Section 1.4 presents the contributions of the thesis and gives an overview
of the following chapters.

1.1 Uncertainties in order picking

Due to the growing popularity and availability of new complex warehouse systems,
there is a strong need to make these systems manageable for warehouse operators. In
particular, a clear understanding of causes and consequences of the variability in the
various warehouse processes is essential, since uncertainty propagates throughout the
whole supply chain and leads to inefficient processing and non-value adding activities
(Van der Vorst & Beulens, 2002).

Gong & De Koster (2011) classify three groups of types of uncertainty that occur in
warehouse operations; unpredictable rare events (e.g. strikes, natural disasters, politi-
cal changes), predictable events (e.g. demand seasonality), and internal variability.
Much of the internal variability is caused by stochastic behavior in the order picking
process, e.g. varied order batches, differences in order picking times, etc. Therefore,
in order to improve productivity and reduce cost within a warehouse and the entire
supply chain, studying the order picking process is essential.
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Order picking is the process of retrieving customer orders from their storage locations.
A customer order can consist of multiple order lines, that determine which products
and in what quantity they need to be picked. Nowadays, a single warehouse often
consists of multiple order picking systems to satisfy customer demand (De Koster et al.,
2007). These systems mainly vary in the degree of automation employed, in the type
of products that need to be handled by the system, and in the number of orders and
order lines that need to be processed from the system. The most common solutions are
picker-to-parts systems where an order picker has to travel/drive to the pick locations
containing the stored products in, e.g. bin shelves or flow racks. Triggered by the need
for faster customer response times and lower internal variability, automated systems
have grown in popularity in recent years. In parts-to-picker systems the products
to be picked are automatically brought to the order picker. Examples are carousels
and miniload automated storage-and-retrieval systems. Recently more automated
order picking systems have become available on the market, e.g. automated A-frame
dispenser systems, and robot picking (Marchet et al., 2015).

Order picking uncertainty

Arrival process Service process Departure process

Order arrivals

Order sizes

Product arrivals

Batching

Traveling

Routing

Picking

Congestion

Quality inspection

Accumulation

Sorting

Staging

Figure 1.3: Examples of uncertainties that influence the order picking process.

Within all these systems variability plays an important role. From a stochastic
viewpoint, uncertainty in the order picking process can occur in the arrival, service,
and/or departure process. In terms of order picking, the arrival process is mainly
associated with incoming products and customer orders, whereas the service process
concerns the internal warehouse activities. Finally, the departure process consists of
the outbound flow in the warehouse. In Figure 1.3 the same three groups are used
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to classify sources of uncertainty that influence the order picking process. In the
arrival process, incoming product arrivals can vary because of the inventory levels
at suppliers and the mode of transportation used. On the other hand, customer
orders arrive typically at irregular intervals with a varying demand for products and
the arrival rate can change over time. In addition, orders might need to be batched
until the next pick tour starts, e.g. due to relatively long walking distances. In the
service process variability is caused by varying traveling distances, e.g. of the order
picker walking/driving to the current pick locations, of an order tote traveling on a
conveyor to its next station, or of a robot picking up a specific order bin and bringing
it to a workstation. Also, the time to reach the destination strongly depends on the
routing mechanism being used. The actual picking times at the pick locations depend
on the time to find the right amount of products, extracting the products, putting
them down, and verifying that the correct amount of products has been picked.
Finally, especially when the order picking system is heavily utilized, congestion and
even blocking can occur during the order picking process. Examples include order
pickers that cannot pass each other because of narrow aisles, or pick zones become
saturated. Lastly, the departure process depends on how long it takes until all the
customer orders are accumulated and sorted for a shipment, making sure no mistakes
were made during the order picking process, and waiting in the staging area for the
shipment to depart.

In the academic literature different stochastic models have been proposed to study
different kinds of order picking systems. An excellent overview is given by De Koster
et al. (2007). The authors clearly state the importance of stochastic models, since
deterministic models may lead to wrong conclusions if underlying processes are
variable and can reduce the warehouse operator’s competitiveness significantly. Still,
the area of order picking is a rapidly growing industry and since the processes
associated are inherently stochastic, stochastic modeling of these systems should be
explored even further.

In this thesis we will focus on order picking systems that are mainly left unexplored,
but that are highly relevant in practice. Two of such systems are zone picking and
milkrun picking. In the next two sections, we show how uncertainty affects the
performance of these systems and how it can be modeled in order to optimally design
and control these systems.
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1.2 Zone picking systems

Zone picking is one of the most popular picker-to-parts order picking methods used
in practice. It is particularly popular in companies with a fairly large number of
customer orders, picked from a large assortment of relatively small-sized products,
and low to moderate number of picks per order. In such a system the order picking
area is zoned, where in each zone an order picker is responsible for picking products
from his or her dedicated part of the warehouse. Because of zoning, the pickers have
to spend little traveling time between locations to pick the required products and
have an increased familiarity with the products in the zone (Gu et al., 2010). Zones
are usually connected with automated conveyors and products are typically stored
in flow racks or shelves.

Zone picking systems can be categorized in systems with parallel and sequential zone
picking. In a parallel zone picking system, a batch of customer orders, which each
can consist of several order lines, is picked simultaneously in multiple zones and a
downstream sorting process consolidates the picked order lines into the customer
orders after the picking process has finished. In sequential zone picking (or pick-and-
pass picking), shown in Figure 1.4, an order is assigned to an order tote or order
carton that travels on the conveyor and sequentially enters the buffer of a zone where
products are stored that should be added to the order. Order totes travel between
the zones and visit only those zones where the required products are stored. At a
zone, each picker picks for only one tote at a time. The advantage of sequential zone
picking is that order integrity is maintained and no sorting and product consolidation
is required. However, since an order has to visit the zones in a sequential order the
order throughput time is usually higher than in parallel zone picking due to the
transport times between zones and the individual set-up times at each zone.

In most practical environments zone picking systems exhibit highly variable behavior,
due to differences of work profiles of the orders in the various zones. Some orders may
require much work at one particular zone, whereas other orders may require more work
at other zones. Even depending on the time or day, work profiles can vastly vary. In
sequential zone picking this can lead to congestion and even blocking situations; order
totes on the conveyor cannot be diverted to a zone, thereby (temporarily blocking) the
conveyor, which can lead to reduced throughput and causes unpredictable throughput



1.2 Zone picking systems 7

Segment 1

Segment 2

Dispatch
Main conveyor

Segment recirculation
Entrance

Zone

Figure 1.4: A zone picking system with multiple segments (Vanderlande, 2007).

times. Often, blocking on the conveyor is avoided by providing a recirculation option
for blocked totes. The automated conveyor will transport totes to another zone
where other products can be picked. Eventually the totes return to the blocked
zone that might then be unblocked in the meantime. Blocking also can occur when
two conveyor flows merge into one single flow, e.g. totes leaving a zone merge with
the totes on the conveyor. The tote must wait for a sufficiently large space on the
conveyor in order to prevent collisions. Under low utilization, the time required for
a sufficiently large space on the conveyor to show up is negligible. However, many
systems are highly utilized during peak hours. In such a case, this space can become
very scarce leading to long merge times and a loss in overall system performance. In
addition, the waiting totes can stop the order picker from continuing to work on the
next tote in line.

Despite its popularity in practice, sequential zone picking has not received much
attention in the literature. The previous works assume that no blocking occurs in
the system, e.g. Yu & De Koster (2009) and Melacini et al. (2010). This is, however,
not very realistic. In peak periods zones can become congested, leading to blocking
of totes which may propagate over the entire network. Such blocking effects have
serious impact on the performance of a zone picking system. Besides blocking there
are many open questions from industry which are highly relevant for zone picking
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systems (Apple, Jr. et al., 2010). These include questions like, should a tote pick (or
not) and pass through all zones or bypass zones without activity, and should a zone
provide recirculation or provide long accumulation buffers for totes?

In this thesis we will answer the following research questions related to zone picking
systems;

• How to determine the performance measures of a given zone picking system,
e.g. zone utilization, the average overall order throughput, system throughput
time, or the probability of a tote blocked by a full zone?

• How much influence do congestion and blocking related to limited zone buffer
sizes and conveyor merges have on the performance of a zone picking system?

• Given an order profile, what is the best product allocation policy for a zone
picking system such that it maximizes the performance measures and what are
the trade-offs?

In Chapters 2, 3 and 4 of this thesis we study zone picking systems, with the following
features;

• Zone skipping of order totes; order totes that encounter a full zone, skip the
zone and return later (Chapter 2 and Chapter 3).

• Single- or multi-segment routing (Chapter 2).

• Priority merging of multiple conveyor flows; order totes with the least priority
should wait until they can merge on the conveyor (Chapter 3).

• The effect of different product allocation policy methods (Chapter 4).

The corresponding models will describe a zone picking system more accurately than
any of the previous models currently available in literature. Using queueing networks
and verified by discrete event simulation techniques we will develop an approximation
model for analyzing and evaluating the performance of a zone picking system. The
method can be used to rapidly analyze and design zone picking systems for a particular
performance. In Chapter 4 the performance measures of the approximation model
will be compared to a real-world system.
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1.3 Milkrun picking systems

Recent technological advances and trends in distribution and manufacturing have led
to a growth in complexity of warehousing systems. In order to stay competitive and
flexible, warehouse managers have started to incorporate the concepts of lean in their
warehouse to continuously improve their operations and eliminate as much waste
as possible. One of the biggest sources of waste in warehouses is associated with
material handling, e.g. a customer order waiting for the next pick cycle to start so
that it can be picked, waiting of pallets for pickup and transport, and order pickers
waiting for work due to blocking at upstream processes. A way of reducing non-value
added processes is by standardizing material flows by incorporating a milkrun.

A milkrun refers to the scheduled pickup or supply of materials to a number of
customers or suppliers by a single vehicle which visits them according to a fixed
round trip (Baudin, 2004). The advantage is that the milkrun reduces transportation
costs due to consolidated transportation, allows for better synchronization with the
customers or suppliers, and improves general response times and system efficiency
(Brar & Saini, 2011). The same milkrun concept can also be used for internal logistics,
e.g. manufacturing or warehousing, to transport raw materials, work-in-process, and
finished goods between different locations within the facility.

Most internal milkrun systems use tugger trains to transport materials between
storage and production areas. The tugger train, pulling multiple trailers, follows a
fixed delivery route where at different locations on the route materials are loaded or
unloaded given the demand of the particular location. Compared to a system that
uses forklifts to supply materials in assembly or production lines, tugger trains are
more efficient, safer because of less traffic, and significantly reduce the number of
empty runs. Furthermore, a milkrun system can lead to considerable savings in labor
costs and operating costs, which have led that milkrun systems are also being used
for order picking (Gong & De Koster, 2008).

In a milkrun order picking system, an order picker picks orders that arrive in real
time during the picking process, by dynamically changing the stops on the picker’s
current picking route. The picker is constantly moving through the warehouse and
receives, using modern order-picking aids like pick-by-voice techniques, or a handheld
terminal, new pick instructions that allow new orders or order lines to be included
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Depot
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Figure 1.5: A milkrun picking system.

in the current pick route. After a pick cycle has been completed, the order picker
disposes all the picked order lines centrally at the depot where the orders can be
sorted and packed and immediately starts a new pick cycle. The advantage of milkrun
picking is that it reduces order picking set-up time and worker travel time compared
to conventional batch picking systems. However, despite the fixed pick route, a
milkrun picking system still exhibits variability, not only in order arrivals, but also
in the pick process.

In the literature milkrun picking systems are scarcely researched. Gong & De Koster
(2008) studied a milkrun picking system (referred as a dynamic order picking system
in the paper) using polling models and showed that the use of a milkrun picking
system has a considerable advantage over conventional batch picking. Boon et al.
(2010) considered an efficient enhancement to an ordinary milkrun picking system
that allows products stored at multiple locations. The location of the picker would
then determine where specific order lines need to be picked. However, both papers
only considered waiting times of order lines, which is the time between the arrival of
a customer order and the start of a pick of a product unit within in the picking area.
A key for the quality of a milkrun picking system is that the system achieves low
(average) order throughput times, i.e. the time between a customer order, consisting
often of multiple order lines, entering the system and when the whole order is delivered
at the depot. Short order throughput times in milkrun systems can allow for faster
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customer response and improved customer satisfaction. Currently, the analysis of
order throughput times in milkrun picking systems is unexplored in the literature.

The modeling and analysis of order throughput times in a milkrun picking system
considerably benefits from the available theory on polling systems. There is consid-
erable literature on polling models (see Vishnevskii & Semenova (2006) and Boon
et al. (2011)), which are used to model an abundant set of systems in a wide field
of different applications. On the other hand, studying order throughput times (or
batch sojourn-times in a general context) can also enrich the literature on polling
systems by providing new insights such as under which conditions the throughput
times are minimized.

Finally, the order throughput time strongly depends on the product allocation, since
a customer order often contains several order lines, each for a different product that
can only be stored at certain locations within the order picking area. A product
(or storage) assignment method is a set of rules used to assign products to storage
locations. In order to achieve short order throughput times, it is essential to take
the correlation between order lines into consideration and place order lines that are
strongly correlated in an optimal way in order to reduce the probability that the
order will be completed in the next pick tour. Assigning the products to the optimal
location would lead to shorter order throughput times, and consequently to faster
customer response.

In this thesis we will answer the following research questions related to milkrun
picking systems;

• How to calculate order throughput times in a milkrun system?

• How much does the picking policy (e.g. pick all outstanding order lines at a
location, or pick all outstanding order lines and just arrived incoming order
lines at a location before moving to the next location) influence the order
throughput times?

• Given an order profile, what is the best storage assignment method that achieves
the shortest order throughput times?

In Chapters 5 and 6 of this thesis we study milkrun systems, with the following
features;
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• The general framework used to analyze the order throughput times in a milkrun
system (Chapter 5).

• The effect of different service disciplines on order throughput times (Chapter 5
and Chapter 6).

• Optimal product allocation in a milkrun picking system (Chapter 6).

These chapters create the opportunity to model and analyze a milkrun picking system
accurately and the corresponding model can be used to rapidly analyze and design a
milkrun picking system and determine optimal product allocations.

1.4 Contribution and thesis outline

The systems that we analyze in this thesis using stochastic models are commonly used
in warehouse practice. First, often the real-world cases that have been implemented
have not been optimized; i.e. implementations primarily take care of feasibility rather
than optimal performance. Second, most of the existing models used in practice to
analyze these systems rarely take into account the inherent variable behavior that
typically occurs. The models developed in the thesis will help both designers and
managers to create optimal design and control methods to improve the performance
of such systems. They can also help designers to avoid major mistakes, because they
expand the designer’s intuitive understanding of what determines system performance.
These models will help to improve the performance of these systems and, on other
hand, enrich the current literature on warehousing systems.

We summarize the following chapters of this thesis as follows:

Chapter 2: Modeling and performance analysis of sequential zone picking
systems

This chapter develops an analytical model of sequential zone picking systems. The
systems belong to the most popular internal transport and order picking systems in
practice, due to their scalability, flexibility, high-throughput ability, and fit-for-use
for a wide range of products and order profiles. The major disadvantage of such
systems, though, is congestion and blocking under heavy use, leading to long order
lead times. In order to diminish blocking and congestion most systems make use
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of a dynamic block-and-recirculate protocol. The various elements of the system,
like conveyor lanes and the pick zones, are modeled as a network of queues with
multiple order classes and with capacity constraints on subnetworks, including the
dynamic block-and-recirculate protocol. Due to this protocol, however, the stationary
distribution of the queueing network is highly intractable. Therefore, an innovative
approximation method, using jump-over blocking is proposed to accurately assess
key performance statistics such as throughput and recirculation. Multi-class jump-
over networks admit a product-form stationary distribution, and can be efficiently
evaluated by Mean Value Analysis (MVA) and use of Norton’s theorem. The method
is most suitable to support rapid and optimal design of complex zone picking systems,
in terms of number of segments, number and length of zones, buffer capacities, and
storage allocation of products to zones, in order to meet prespecified performance
targets. Comparison of the approximation results to simulation show that for a wide
range of parameters the mean relative error in the system throughput is typically
less than 1%.

Chapter 3: An accurate model for conveyor merges in zone picking sys-
tems

Sequential zone picking systems are popular conveyor-based picker-to-parts order
picking systems that divide the order picking area in work zones. When designing a
zone picking system, it is important to know whether the throughput capability of the
system is able to meet customer demand. However, the performance and maximum
throughput capability of a zone picking system is largely determined by congestion
and blocking that occurs at the various conveyor merges in the system. In this chapter
we develop an analytical model to study the impact of conveyor merges in sequential
zone picking systems. Due to finite buffers, blocking, recirculation, and merging,
the resulting queueing model does not have a product-form stationary queue-length
distribution which makes exact analysis practically unfeasible. Therefore, we develop
an approximate solution by using an aggregation technique and matrix-geometric
methods to study the throughput capability of the system. The model is suitable
to support rapid and optimal design of complex zone picking systems, in terms of
number and length of zones, input and output buffer capacities, and storage allocation
of products to zones, in order to meet prespecified performance targets. Comparison
of the approximation results to simulation show that for a wide range of parameters
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the mean relative error in the system throughput is typically less than a few percent.
The model accurately predicts the loss in throughput due to congestion and blocking
at the merges, and can be used to allocate input and output buffer spaces in order
to maximize the throughput capability of the system.

Chapter 4: Case study: product allocation methods in zone picking sys-
tems

When designing a new zone picking system many decisions have to be taken on
different strategic, tactical, and operational levels. However due to the complex
nature of a zone picking system, these decisions are not always in line with each
other and affect the performance of the system in different ways. In addition, when
in practice a new zone picking system is designed and implemented its feasibility,
i.e. within budget and structure wise, is often of main concern rather than optimal
performance and the inherent variability of the system. In this chapter we investigate
the performance of a current zone picking system of a large wholesaler supplying
non-food items to supermarkets with the analytical methods we developed in the
previous chapters. We test a product allocation method that minimizes the number of
segments a tote on average has to visit and a method that applies workload balancing
between segments in order to reduce congestion and potential blocking in the system.
In addition, we combine both methods into a single method that tries to minimize
simultaneously the average number of segments a tote visits and applies workload
balancing between segments. In particular, a product allocation that only applies
workload balancing between segments reduces the system throughput on average
by 8% compared to a product allocation that minimizes the number of segments a
tote on average has to visit. On the other hand, blocking of zones and segments is
significantly reduced by a product allocation that applies workload balancing, e.g.
segments are blocked 7.6% on average when a product allocation that minimizes the
number of segments is used to 0.3% on average in the other case. As such, it provides
a valuable tool for initial product allocation decisions for zone picking systems and
the consequences strategic decisions can have on the overall performance of the
system.
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Chapter 5: The analysis of batch sojourn-times in polling systems

We consider a cyclic polling system with general service times, general switch-over
times, and simultaneous batch arrivals. This means that at an arrival epoch, a batch
of customers may arrive simultaneously at the different queues of the system. For
the locally-gated, globally-gated, and exhaustive service disciplines, we study the
batch sojourn-time, which is defined as the time from an arrival epoch until service
completion of the last customer in the batch. We obtain for the different service
disciplines exact expressions for the Laplace-Stieltjes transform of the steady-state
batch sojourn-time distribution, which can be used to determine the moments of
the batch sojourn-time, and in particular, its mean. However, we also provide an
alternative, more efficient way to determine the mean batch sojourn-time, using
Mean Value Analysis. Finally, we compare the batch sojourn-times for the different
service disciplines in several numerical examples. Our results show that the best
performing service discipline, in terms of minimizing the batch sojourn-time, depends
on the system load and the ratio between service/switch-over times.

Chapter 6: Optimizing product allocation in a milkrun picking system

E-commerce fulfillment competition evolves around cheap, speedy, and time-definite
delivery. Milkrun order picking systems have proven to be very successful in providing
handling speed for a large, but highly variable, number of orders. In this system,
an order picker picks orders that arrive in real time during the picking process; by
dynamically changing the stops on the picker’s current picking route. The advantage
of milkrun picking is that it reduces order picking set-up time and worker travel time
compared to conventional batch picking systems. This paper is the first in studying
order throughput times of multi-line orders in a milkrun picking system. We model
this system as a cyclic polling system with general service times, general switch-over
times, and simultaneous batch arrivals. We determine the mean order throughput
time for three picking strategies; exhaustive, locally-gated, and globally-gated. These
results allow us to study the effect of different product allocations in an optimization
framework. We show in several numerical examples that, depending on the system
parameters, the picking strategy that achieves the shortest order throughput times
varies. In addition, for a real world application we show that milkrun order picking
reduces the order throughput time significantly compared to conventional batch
picking.
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2 Modeling and performance analysis
of sequential zone picking systems

2.1 Introduction

Order picking, the process of picking products to fill customer orders, is the most
labor-intensive and costly activity in warehouses due to its high contribution (about
55%) to the total operating cost (Drury, 1988). Recent trends in distribution and
manufacturing, like e-commerce, have increased the importance of efficient order
picking even more (Le-Duc & De Koster, 2007). The focus of this chapter is on the
modeling and (approximate) analysis of sequential zone picking systems, with single
or multi-segment routing.

Zone picking is one of the most popular picker-to-parts order picking method, where
the order picking area is zoned. In each zone, an order picker is responsible for
picking from his or her dedicated part of the warehouse (Petersen, 2002; Gu et al.,
2010). In practice, the zones are often connected by conveyors to reduce travel times.
Major advantages of zone picking systems are high-throughput ability, scalability
and flexibility in handling both small and large order volumes, and fit-for-use for
different product sizes, with a different number of order pickers. These systems are
often applied in warehouses handling customer orders with a large number of order
lines and with a large number of different products kept in stock (Park, 2012). A
disadvantage of such systems, however, is congestion and blocking under heavy use,
leading to long order throughput times.

Zone picking systems can be categorized in systems with parallel or sequential zone
picking (De Koster et al., 2007). In a parallel zone picking system, a customer
order, which can consist of several order lines, is picked simultaneously in multiple
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Figure 2.1: A sequential multi-segment zone picking system (Vanderlande, 2007).

zones and a downstream sorting process consolidates the picked order lines into the
customer orders after the picking process has finished. In sequential zone picking (or
pick-and-pass picking), shown in Figure 2.1, an order is assigned to an order tote or
order carton that travels on the conveyor. Upon arrival at a zone, the tote enters
the buffer if the zone stores products that should be added to the order, or it is
passed to the next zone. At a zone, each picker picks for only one tote at a time.
The advantage of sequential zone picking is that order integrity is maintained and
no sorting and product consolidation is required (Petersen, 2000).

There are two types of sequential zone picking systems that can be distinguished:
single-segment routing and multi-segment routing. In single-segment routing, the
conveyor forms one circular loop that connects all the zones, whereas in multi-segment
routing, zones are grouped in segments and per segment the zones are connected to
a conveyor with a recirculation loop, like in Figure 2.1. The different segments are
then connected by a central (or main) conveyor that diverts totes to the required
segments. Multi-segment routing improves system throughput significantly due to
shorter conveyor loops that avoid unnecessary long order tote travel times. However,
the investment costs and space requirements are higher compared to single-segment
routing.
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De Koster (1994), Yu & De Koster (2008, 2009), and Melacini et al. (2010) model
a zone picking system as a network of queues. In order to estimate performance
statistics, such as the utilization, throughput rate of a zone, and, the mean and
standard deviation of the throughput time of the totes, they use Whitt’s queueing
network analyzer (Whitt, 1982). A crucial aspect, however, that is not taken into
consideration is blocking. In most environments, the workloads of the zones exhibit
variability, due to differences in work profiles of the orders. In peak periods, zones can
become congested, leading to blocking of order totes which may propagate through
the entire network, such that zones become starved and order throughput times
significantly increase. Such blocking effects may have considerable impact on the
performance of a zone picking system and should not be ignored. Identification and
quantification of the effects of blocking is challenging and crucial in the design of a
zone picking system.

In a zone picking system blocking and congestion occurs at zones as well as at
segments. Zones can become congested due to finite buffer space, since only a limited
number of totes can be stored before they are processed by the order picker. Also
segments can become congested if too many totes visit the segment at once. To
resolve this, workload control is applied by which the system will prevent incoming
totes from entering the segment until sufficiently many totes have left. In both cases,
zone picking systems use a dynamic block-and-recirculate protocol: a blocked tote
recirculates on the conveyor loop when the destination buffer is full or a segment
is congested in order to avoid temporarily blocking all upstream totes. The tote
potentially visits other zones or segments before attempting to enter the place where
it was blocked previously. Queueing networks that attempt to model systems with
the block-and-recirculate protocols are highly intractable: no exact results for the
stationary distribution exist. In the literature, different blocking protocols have been
investigated for various types of applications (see Schmidt & Jackman (2000), Hsieh
& Bozer (2005), and Osorio & Bierlaire (2009) for recent references in manufacturing
systems with automated conveyors). For an extensive review on blocking in queueing
networks, the reader is referred to the books of Perros (1994), Balsamo et al. (2001),
and Papadopoulos et al. (1993). A variation of the block-and-recirculate protocol
for flexible manufacturing systems (FMS) was first studied by Yao & Buzacott
(1987). According to their definition, a blocked part returns to the end of the queue
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where it came from such that it can try to enter for a second time. The authors
derive product-form solutions for FMS networks with finite buffers and recirculation,
including networks with a central server (e.g. the material handling system) and
networks with zero-buffer stations. These networks, however, are not suitable to
model zone picking systems, since a blocked tote does not try to enter the buffer
of the zone immediately again, but is transported to the next zone in line where it
tries to enter this zone’s buffer if still products need to be picked from this zone. By
recirculation, the tote tries to enter the blocked station again. This process repeats
until the order is fully picked.

The objective of this chapter is to develop an analytical model for sequential zone
picking systems (hereafter zone picking) with either single-segment routing, or multi-
segment routing, and with finite buffers and segment capacities. This model is
used to study the effects of design choice, loading, and storage on blocking and
congestion of this commonly used order picking method. It considerably extends
the models of De Koster (1994); Yu & De Koster (2008, 2009) and Melacini et al.
(2010) that only consider zone picking systems with single-segment routing and no
blocking. We develop a queueing model that incorporates the dynamic block-and-
recirculate protocol and use the model to estimate the key performance statistics.
Because an exact analysis of the queueing model with blocking is not feasible, we
iteratively estimate the blocking probabilities from a multi-class queueing network,
with jump-over blocking (Van Dijk, 1988; Economou & Fakinos, 1998). We show
that this Markovian blocking protocol admits a product-form stationary queue-
length distribution for a network with both jump-over nodes and with jump-over
sub-networks. Key to the approximation is to equip the jump-over queueing network
with Markovian routing that correctly reflects the relation to the block-and-recirculate
queueing network, i.e., the flows in both networks should match. It appears that the
jump-over queueing network provides very accurate estimates of the key performance
statistics and allows us to study the sources of blocking and congestion in complex
systems containing many zones and many different order classes. As such, it provides
a powerful tool for system design, e.g., to determine the required number of segments,
number and size of the zones, buffer capacities, or storage allocation of products to
zones, in order to meet target performance levels.
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The organization of this chapter is as follows. Section 2.2 presents the model for single-
segment routing zone picking systems and discusses the corresponding approximation
and analysis. The model is generalized to multi-segment routing zone picking systems
in Section 2.3. We extensively analyze the results of both models in Section 2.4 via
computational experiments for a range of parameters and validate them for a real-life
system. In the final section we conclude and suggest some extensions of the model
and further research topics.

2.2 Single-segment zone picking systems

In a zone picking system with single-segment routing, three different elements can
be distinguished: the entrance/exit of the system, the conveyors, and the zones.
These elements of a single-segment zone picking system with two zones are shown in
Figure 2.2a. For now, the assumption is made that totes enter and leave the system
at the same location.

At the entrance of the system, a customer order is assigned to a new order tote.
The tote is released into the system as soon as it is allowed by the workload control
mechanism (Park, 2012). This mechanism sets an upper bound on the number of
totes in the system and only releases a new order (with a tote) when a tote with all
required order lines leaves the system. This workload control mechanism prevents
the conveyor to become the bottleneck of the system. After release of an order it is
merged with a tote at the entrance station and it receives all necessary paperwork
(e.g. a packing list). The tote then moves to the buffer of a requested zone and
enters if the buffer of that zone is not full. A blocked tote will stay on the conveyor
and visits potentially other zones before returning. When the picking process has
finished in a zone, the picker pushes the tote back on the conveyor. The waiting time
for a sufficiently large space on the conveyor is considered to be negligible due to the
workload control mechanism. This assumption is relaxed in Chapter 3. The conveyor
then transports the tote to the next zone to be visited. A completeness check at
the end of the conveyor loop ensures that the tote contains all the required order
lines; otherwise, the tote is sent back to the beginning of the loop such that the tote
will return to the zones it was blocked previously. When the tote has visited all the
required zones, it leaves the system at the exit and a new order tote is immediately
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Figure 2.2: A zone picking system with single-segment routing and its corresponding
queueing network.
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released into the system. This is a valid assumption for zone picking system design,
which aims at studying the throughput capacity of the system. Operational issues,
like the effect of varying customer order arrival rates and customer order waiting
times are not in the scope of this chapter, although they could be studied using a
similar approach.

To model this system, a queueing network is proposed, the topology of which is shown
in Figure 2.2b in case of two zones. The zone picking system is modeled as a closed
queueing network with one entrance/exit, M zones andM+1 nodes that describe the
conveyor between either two adjacent zones or between the entrance/exit and the first
or last zone. The nodes are labeled in the following manner: the system entrance/exit
is denoted as e, Z = {z1, . . . , zM} denotes the set of zones, and C = {c1, . . . , cM+1} is
the set of conveyors in the network. Finally, let S = {e} ∪ C ∪ Z be the union of all
the nodes in the network. The following assumptions are adopted for the network:

• There is an infinite supply of totes at the entrance of the system. This means
that a leaving tote can always be replaced immediately by a new tote. Each
tote has a class r ⊆ Z, e.g., r = {z2, z3} means that the tote has to visit the
second and third zone.

• The total number of totes or totes to be released in the system is constant N .
As long as the total number of totes in the zones and conveyor nodes is less
than N , new totes are released one-by-one at an exponential rate µe at the
system entrance, which is the rate at which a tote is prepared to enter the
system (unfolding, adding labels and packing list, etc.).

• The conveyor nodes are assumed to be delay nodes with a deterministic delay
time 1/µi, i ∈ C.

• Each zone has di (≥ 1), i ∈ Z servers, which represent the order pickers in the
zone. The order picking time is assumed to be exponentially distributed with
rate µi, i ∈ Z, that captures both variations in the pick time per tote and
variations in the number of order lines to be picked; this assumption is relaxed
in Remark 2.3.

• When the order pickers are busy, incoming totes are stored in a finite input
buffer of size qi, i ∈ Z. Incoming totes are blocked when the total number of
totes in the buffer equals qi.
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The state of the queueing network is defined as x = (xi : i ∈ S), where xi =
(ri1, . . . , ril, . . . , rini

) represents the state of node i with ri1 as the class of the
first tote in the node, and rini

as the class of the last tote in the node. Let S (N) be
the state space of the network, i.e., the sets of states x for which the number of totes
in the system is equal to ∑i∈S ni = N and the number of totes in each zone satisfies
ni ≤ di + qi, i ∈ Z.

The routing of totes through the network proceeds as follows. A new tote of
class r ⊆ Z is released at the system entrance with probability ψr. These release
probabilities correspond to a known order profile that can be obtained using e.g.,
historical order data or forecasts. After release, a tote of class r moves from the
system entrance to the first conveyor node c1. In general, after conveyor node ci,
the tote will either enter the input buffer of zone i if zi ∈ r and the buffer is not
full, or move to the next conveyor node ci+1. In case the tote needs to enter and
the buffer is full, the tote skips the zone and also moves to the next conveyor ci+1,
while it keeps the same class. If the buffer is not full, the tote enters the buffer of
the zone and, after possibly waiting some time in the buffer, the order picker picks
the required order lines. After all picks are completed, the tote will enter the next
conveyor node in line and changes its class to s = r\ {zi}. After visiting the last
conveyor node cM+1, all the totes with r 6= ∅ are routed to the first conveyor node c1;
the other totes move to the exit and are immediately replaced by a new tote which
is waiting for release at the entrance.

Summarizing, the state dependent routing probability pir,js (x) that a tote of class r

is routed from node i to node j which it enters as a class s tote, given that the
network is in state x, can be specified as follows:

pe∅,c1r (x) = ψr, (2.1)

pcir,zir (x) = 1, i = 1, . . . ,M, zi ∈ r and nzi
< dzi

+ qzi
, (2.2)

pcir,ci+1r (x) = 1, i = 1, . . . ,M, zi /∈ r or nzi
= dzi

+ qzi
, (2.3)

pzir,ci+1s (x) = 1, i = 1, . . . ,M, s = r\ {zi} , (2.4)

pcM+1∅,e∅ (x) = 1, (2.5)

pcM+1r,c1r (x) = 1, r 6= ∅, (2.6)

where the other routing probabilities are equal to 0.
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The stationary distribution of this queueing network is intractable due to the finite
buffers (Stidham, Jr., 2002) and the block-and-recirculate mechanism. This justifies
the attempt to develop an approximate analysis of this queueing network.

In order to accurately estimate the performance statistics of the queueing network
of Section 2.2, it is approximated in Section 2.2.1 by a network with the jump-over
blocking protocol. This jump-over network exhibits a product-form steady state
distribution, as will be shown in Section 2.2.2. Another property of the network,
shown in Section 2.2.3, is that closed-form formulas of the visit ratios exist. The
performance statistics of the jump-over network can be easily calculated exactly using
e.g., mean value analysis (MVA), as explained in Section 2.2.4. Section 2.2.5 shows
how the jump-over network is used to approximate the original network. Finally, the
quality of the single-segment approximation is presented in Section 2.2.6.

2.2.1 Jump-over network

Assume a tote that intends to visit zone zi is “tagged” after zi with either the label
visited zi or skipped zi. In the real system, and hence in the queueing network of
Section 2.2, a tote is tagged as visited zi if the tote entered zi and received service.
On the other hand, a tote is tagged as skipped zi if the tote skipped the zone because
the buffer was full.

The idea of the jump-over network is to introduce a Bernoulli process that tags each
tote that intends to visit zi randomly, and independent of whether the tote actually
visited zi or not. The probability of tagging with either one of the two labels is
taken as the fraction of totes receiving a specific tag in the original queueing network,
such that the fraction of totes that are tagged with skipped zi equals the blocking
probability bi, i ∈ Z of the original network that a tote that tries to enter zone i but
encounters it to be full (ni = di + qi).

Naturally, blocking probabilities are not known in advance, but will be estimated
iteratively after an initial guess from the approximation, as shown in Section 2.2.5.
Hereafter, bi is assumed to be known beforehand in the jump-over network.

The routing probabilities in the jump-over network are state independent. In partic-
ular, the routing probabilities (2.1)-(2.6) in the block-and-recirculate network are
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replaced by state independent probabilities in the jump-over network. That is, after
ci each tote with zi ∈ r is routed to zi regardless whether the buffer of the zone is
full. The tote will enter the buffer if it is not full, otherwise the tote instantaneously
skips the zone. Then for each class r tote, independent of whether the tote visited or
skipped zi (because of a full buffer), pzir,ci+1r = bzi

, i = 1, . . . ,M . This means that a
tote of class r is tagged as skipped zi and routed to the next conveyor node ci+1 with
the same class with probability bzi

, and otherwise, with probability 1− bzi
, the tote

is tagged as visited zi and the class of the tote changes to s = r\ {zi}. Summarizing,
the routing probabilities (2.2)-(2.4) are replaced by

pcir,zir = 1, i = 1, . . . ,M, zi ∈ r, (2.7)

pcir,ci+1r = 1, i = 1, . . . ,M, zi /∈ r, (2.8)

pzir,ci+1r = bzi
, i = 1, . . . ,M, (2.9)

pzir,ci+1s = 1− bzi
, i = 1, . . . ,M, s = r\ {zi} . (2.10)

Since the tagging process is made independent of the state of the buffer, the block-
and-recirculate protocol is replaced by the jump-over blocking protocol (Van Dijk,
1988). Under this protocol, each tote of class r leaving zi, either after service or
skipping, continues to follow the same Markovian routing. The advantage of the
jump-over blocking protocol, also known as “overtake full stations, skipping, and
blocking and rerouting”, is that closed-form analytic results for single-class queueing
networks are available in the literature (Pittel, 1979; Schassberger, 1984; Van Dijk,
1988; Economou & Fakinos, 1998).

2.2.2 Product-form of the stationary distribution

A powerful tool to prove the existence of product-form solutions in the multi-class
jump-over network is the concept of quasi-reversibility (Kelly, 1979); when a queueing
network with Markovian routing can be decomposed in terms of nodes that are quasi-
reversible, the stationary distribution of the network can be written as the product
of the stationary distributions of these individual nodes.
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Let λir be the visit ratio of a class r tote to node i satisfying the traffic equations

λir =
∑
j∈S

∑
s⊆Z

λjspjs,ir, i ∈ S, r ⊆ Z. (2.11)

The equations (2.11) determine the visit ratios λir up to a multiplicative constant.

Theorem 2.1. The jump-over network with state space S (N) has a product-form
stationary distribution of the form

π (x) = 1
G

∏
i∈S

πi (xi) , (2.12)

where G is a normalization constant and πi (xi) are the marginal probabilities defined
as

πi (xi) =


∏ni
l=1

(
λiril

µi

)
, i = e,∏ni

l=1

(
λiril

µi

)
1
ni! , i ∈ C,∏ni

l=1

(
λiril

µi

)
1

γ(ni) , i ∈ Z,

(2.13)

with λiril
is a solution of the traffic equations (2.11) and γ (ni) given as

γ (ni) =

ni!, if ni ≤ di,

di! (di)ni−di , if ni > di.

Proof. The proof is restricted to the case of conveyor nodes with exponential delays.
The extension to deterministic delays is standard. Similar as in the BCMP theorem
(Baskett et al., 1975), the deterministic delay of a conveyor node is approximated by
a tandem of k conveyor nodes, each with an exponential delay with rate kµi, and
then k is taken to infinity.

To verify that the jump-over network with transition rates q (x, y), x, y ∈ S (N)
has a product-form stationary distribution of form (2.12), it is sufficient to find
non-negative numbers q̄ (y, x) and a collection of positive numbers π (x) summing to
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unity, such that the following two conditions are fulfilled (Kelly, 1979)

q̄ (x) = q (x) , x ∈ S (N) , (2.14)

π (x) q (x, y) = π (y) q̄ (y, x) , x, y ∈ S (N) , (2.15)

where q (x) = ∑
y∈S(N) q (x, y) and q̄ (x) = ∑

y∈S(N) q̄ (x, y). Then q̄ (y, x) are the
time-reversed transition rates and π (x) is the product-form stationary distribution
of the network.

Whenever state x does not contain a blocked zone, q̄ (y, x) is defined similarly as in
a regular multi-class queueing network without jump-over blocking (Nelson, 1995).
Each node in the jump-over network has exponential service times and is either a
multi-class single/multi-server node, or a multi-class infinite server node which are
well-known to be quasi-reversible. Then it can easily be verified that conditions
(2.14) and (2.15) hold and π (x) is given by the product form of Equation (2.12). In
case state x contains a blocked zone and a transition that involves a tote skipping
a zone occurs, the transition rates q (x, y) and q̄ (y, x) can be described as follows.
When a tote of class r departs from the lth position of conveyor node i and moves
to zone i with rate µci

, it immediately jumps over the zone since it encounters a full
buffer. The tote will move to the next conveyor node ci+1 with probability 1, where
it joins the end of the node. When arriving in ci+1 the tote is either tagged as visited
zi with probability 1 − bi such that its class becomes s = r\ {zi} or as skipped zi
with probability bi while the class of the tote remains the same.

The transition rates of a tote skipping zone i are given as follows,

q
(
x, x− rcil + rci+1nci+1+1

)
= µci

bzi
, l = 1, . . . , nci

, (2.16)

q
(
x, x− rcil + sci+1nci+1+1

)
= µci

(1− bzi
) , l = 1, . . . , nci

, (2.17)

where state x − rcil + sci+1nci+1+1 denotes the removal of a class r tote at the lth
position in ci and an arrival of a class s tote in ci+1 at the last position.

In the time-reversed process a tote of class r or s departs from the last position
in ci+1 with rate

(
nci+1 + 1

)
µci+1 and joins at position l in ci as class r with prob-

ability λcircil
bzi
/λci+1rci+1nci+1 +1 if it was tagged as skipped zi and with probability
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λcircil
(1− bzi

) /λci+1sci+1nci+1 +1 otherwise,

q̄
(
x− rcil + rci+1nci+1+1, x

)
= µci+1

nci+1 + 1
nci

λcircil
bzi

λci+1rci+1nci+1 +1

, l = 1, . . . , nci
, (2.18)

q̄
(
x− rcil + sci+1nci+1+1, x

)
= µci+1

nci+1 + 1
nci

λcircil
(1− bzi

)
λci+1sci+1nci+1 +1

, l = 1, . . . , nci
. (2.19)

Inserting (2.12)-(2.13) and (2.16)-(2.19) and canceling identical terms, it can be
verified that (2.15) holds. By considering also transitions that do not skip a zone, it
can be shown that q (x) = q̄ (x) = µeI(ne>0) +∑

i∈Z min {di, ni}µi +
∑
i∈C niµi, where

I(.) is an indicator function. As a result, this means that the jump-over network has
a product-form stationary distribution of the form of Equation (2.12).

Theorem2.1 provides a detailed description of the state of the network by specifying
the order of totes in the nodes. However, knowledge of the aggregate state, i.e. the
total number of totes in a node, is sufficient to determine performance statistics as
the throughput and waiting times in the zones. For the description of the aggregate
state, it is convenient to transform the class dependent visit ratios λir into chain
visit ratios

Vi =
∑

r⊆Z λir∑
r⊆Z λer

, i ∈ S, (2.20)

where Vi can be interpreted as the average number of times an arbitrary tote visits
node i before moving to the exit node. Note that the jump-over network only has
one chain of classes, with a population of N totes, due to the fact that every tote
will be replaced by a tote of a possibly different class at the exit.

Corollary 2.1. The jump-over network with state space S (N) has a product-form
stationary distribution, in aggregated form given by

π (n̄) = 1
G

∏
i∈S

(
Vi
µi

)ni ∏
i∈C

1
ni!

∏
i∈Z

1
γ (ni)

, (2.21)

where G is a normalization constant and n̄ = (ni : i ∈ S) with ni as the number of
totes in node i and ∑i∈S ni = N .



30 Modeling and performance analysis of sequential zone picking systems

Remark 2.1. The definition of quasi-reversibility by Kelly (1979) was further
generalized by e.g. Chao & Miyazawa (2000) and Henderson & Taylor (2001). They
show that quasi-reversibility can also be applied to obtain product form results for
queueing networks with signals, negative customers, transitions involving three or
more nodes, and batch movements. This framework can also be used to describe the
jump-over network.

2.2.3 Chain visit ratios

To obtain the chain visit ratios Vi, i ∈ S, first linear system (2.11) must be solved.
This might, however, require a large computational effort if the queueing network
consists of many nodes. Also, the number of different tote classes, 2M , grows
exponentially with the number of zones. Another way to obtain the chain visit ratios
Vi is to calculate them directly per node type, i.e. entrance/exit, conveyor node or
zone. Clearly, Ve is 1 by (2.20). Then the chain visit ratios of the conveyors nodes
and the zones can be calculated as follows.

2.2.3.1 Conveyor nodes.

A tote visits all the conveyor nodes the same number of times during its stay in
the system. As a result, the chain visit ratios of the conveyor nodes Vi, i ∈ C are
equal and given by the average number of circulations an arbitrary tote makes in
the system before moving to the exit.

To calculate the average number of circulations, absorbing Markov chain {Xl, l ≥ 0}
with a state space consisting of all subsets of Z and transition matrix Φ is defined.
The chain starts in state X0 = r with probability ψr, which is the probability that a
tote of class r is released in the system. State Xl defines the class of the tote at the
last conveyor node after the lth circulation. Then the average number of circulations
is equal to the expected number of transitions before entering the absorbing state ∅,
i.e., the class for which all the order lines have been picked such that the tote leaves
the system. The transition probability from state r at the start of the circulation to



2.2 Single-segment zone picking systems 31

s at the end of the circulation, Φr,s, is given by

Φr,s =
∏
j∈s

bj
∏
i∈r\s

(1− bi) , s ⊆ r ⊆ Z,

and zero otherwise.

Markov chain {Xl, l ≥ 0} has one absorbing state, and transitions are only possible to
a state with fewer zones to visit, i.e., the states of transition matrix Φ can be ordered
in such a way that Φ is an upper triangular matrix. This implies that transition
matrix Φ can be rewritten in canonical form as

Φ =
Θ Υ

0 1

 , (2.22)

where Θ is an upper triangular sub-matrix of the transition probabilities between
the transient states, and Υ is a column vector of the transition probabilities between
the transient states and the absorbing state. The last row of Φ corresponds to the
absorbing state of the Markov chain. The expected number of transitions until
absorption in a Markov chain with one absorbing state is given by (Wolff, 1989)

Vi = ψ (I −Θ)−1 1, i ∈ C, (2.23)

where I is an identity matrix, 1 a column vector with ones, and ψ = (ψr : r ⊆ Z\∅)
a row vector with the initial release probabilities ordered in the same way as Θ.
Since (I −Θ) is an upper triangular matrix, its inverse can easily be determined by
back-substitution. Denote ω = (I −Θ)−1 1, then the jth element of ω can be found
by the following recursion,

ωj = (1 +
2M−1∑
k=j+1

Θj,kωk)/ (1−Θj,j) , j = 2M − 1, 2M − 2, . . . , 1.

Remark 2.2. When the location of the system entrance and exit do not coincide,
the chain visit ratios of the conveyor nodes are not all equal. Now, a tote visits the
conveyor nodes from the system entrance going to the system exit a single time more
often than the conveyor nodes going the opposite way. Vi, i ∈ C can still be found
using the previous analysis, except that the Markov chain will now start in state
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X0 = r′ with corresponding probability ψ̃r′ , where r′ ⊆ Z is the class of the tote
when reaching the system exit for the first time. Then, Equation (2.23) will give the
average number of recirculations in the system, which equals the chain visit ratios of
the conveyor nodes from the system exit to the system entrance. These should be
incremented with 1 for the other conveyor nodes.

2.2.3.2 Zones.

The chain visit ratios of the zones Vi, i ∈ Z are equal to the mean number of times
an arbitrary tote visits zone i before leaving the system. In the jump-over network,
the number of times the tote visits zone i follows a geometric distribution with a
probability of actually being tagged as visited zone i equal to 1− bi. Hence, the chain
visit ratios of zone i are

Vi =
∑

r: i∈r⊆Z

ψr

1− bi
, i ∈ Z. (2.24)

2.2.4 Mean value analysis

Amean value analysis (MVA) algorithm (Reiser & Lavenberg, 1980) can be formulated
that efficiently computes exactly the key performance statistics of the jump-over
network by iterating over the total number of totes n = 1, . . . , N in the system.
MVA is based on the arrival theorem which can be shown to hold also for multi-class
jump-over networks by exploiting their product-form distribution. The algorithm
iteratively calculates the mean throughput time E (Ti (n)), which is the expected
time a tote will spend in node i per visit given that there are n totes in the system,
the system throughput X (n), the mean number of totes in a node E (Li (n)), and
the marginal queue length probabilities πi (j|n) of having j totes in zone i given that
there are n totes in the network.

First, initialize E (Li (0)) = 0, i ∈ S and πi (0|0) = 1, πi (j|0) = 0 for j = 1, . . . , di+qi
if i ∈ Z. Then, the mean throughput time E (Ti (n)) of the entrance/exit and conveyor
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nodes can be calculated by

E (Ti (n)) =


1
µi

(1 + E (Li (n− 1))) , if i = e,

1
µi
, if i ∈ C.

(2.25)

This directly follows from the arrival theorem and the fact that the entrance/exit is
a single-server node and the conveyor nodes are infinite server nodes.

The mean throughput time of the zones can be calculated by

E (Ti (n)) =
di+qi−1∑
j=di

(j + 1− di)
1
diµi

πi (j|n− 1)

+ 1
µi

(1− πi (di + qi|n− 1)) , i ∈ Z. (2.26)

The first term of Equation (2.26) denotes the average waiting time conditioned on
the number of totes, j, in the zone on arrival, and the second term is the tote’s own
average service time. When the buffer of the zone is full, the throughput time is 0,
since the tote skips the zone.

The system throughput X (n) can be calculated using E (Ti (n)), i ∈ S, (Reiser &
Lavenberg, 1980)

X (n) = n∑
i∈S ViE (Ti (n)) , (2.27)

where the denominator denotes the average time a tote spends in the system, i.e.
system throughput time.

Applying Little’s law gives the mean number of totes in a node

E (Li (n)) = ViX (n)E (Ti (n)) , i ∈ S. (2.28)

Finally, the marginal queue length probabilities can be determined by balancing the
number of transitions per time unit between state j− 1 and j, where j is the number
of totes in zone i. The rate from j to j − 1 is given by min (j, di)µiπi (j|n) and, by
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the arrival theorem, the rate from j − 1 to j is ViX (n) πi (j − 1|n− 1). Hence,

πi (j|n) = ViX (n)
µi min (j, di)

πi (j − 1|n− 1) , j = 1, . . . , di + qi, i ∈ Z, (2.29)

and where πi (0|n) follows from normalization

πi (0|n) = 1−
di+qi∑
j=1

πi (j|n) , i ∈ Z. (2.30)

Equation (2.30) has often been reported as the cause of numerical instability in MVA
(Chandy & Sauer, 1980). An alternative approach is to use Equation (27) of Reiser
(1981) which is known to be numerically stable.

Sequentially applying Equations (2.25)-(2.30) allows for an iterative procedure for
obtaining the performance statistics. In the last step of the MVA, the system
throughput time, the fraction of time a tote encounters zone i blocked, i.e. bi =
πi (di + qi|N − 1), and the utilization of the nodes ρi can be obtained, which is given
by

ρi =


X (N) /µi, if i = e,

ViX (N) /µi, if i ∈ C,

1−∑di−1
j=0 ((di − j) /di) πi (j|N) , if i ∈ Z,

(2.31)

where ρe and ρi, i ∈ Z, are the fraction of time the entrance/exit or the pickers in
the zones are busy and where ρi, i ∈ C is the average number of totes at a conveyor
node.

Remark 2.3. In a jump-over network with non-exponential picking times, MVA
will no longer be exact. Still, closed queueing networks are known to be robust to
the service distribution of a node (Bolch et al., 2006). Hence, the arrival theorem
can be adopted as an approximation. When the picking times are non-exponentially
distributed, the throughput time of a zone is equal to the tote’s own service time
if not all the order pickers are busy. If all the order pickers are busy, then a newly
arriving tote has to wait for the first departure at the zone and then continues to
wait for as many departures as there were totes waiting on arrival before it is served.
The throughput time of a tote that encounters the zone full is still zero. Combining
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these results, Equation (2.26) is replaced in the approximate MVA with,

E (Ti (n)) = Qi (n− 1) E (Ri)
di

+
di+qi−1∑
j=di

(j + 1− di)
E (Bi)
di

πi (j|n− 1)

+ E (Bi) (1− πi (di + qi|n− 1)) , i ∈ Z, (2.32)

where E (Bi) is the expected service time of zone i, E (Ri) = E (B2
i ) / (2E (Bi)) is

the expected residual service time of zone i, and Qi (n− 1) = ∑di+qi
j=di

πi (j|n− 1) is
the probability that all order pickers are busy in zone i upon an arrival instant.
When the picking times are generally distributed, πi (j|n) can be approximated by
the corresponding probabilities in a zone where each order picker has an exponential
service rate 1/E (Bi).

2.2.5 Iterative algorithm for calculating blocking probabilities

In the jump-over network, totes are tagged independently from the state of the buffer
using blocking probabilities bi, i ∈ Z. However, these blocking probabilities are not
known in advance. The probability bi can be iteratively estimated by the probability
that the buffer of zone i is full using the following algorithm.

First, initialize the blocking probabilities b(1)
i , i ∈ Z to 0. Then, calculate the

marginal queue length probabilities using Equations (2.29) and (2.30) and take the
fraction of totes that find the zone containing di + qi totes as a new estimate for the
blocking probability. Thus, by the arrival theorem,

b
(m+1)
i = π

(m)
i (di + qi|N − 1) , i ∈ Z, (2.33)

where the superscript indicates in which iteration the quantities have been calculated.
Based on this new estimate for bi, the routing probabilities and subsequently the
chain visit ratios are updated for the zones and conveyor nodes. Equation (2.33)
can be evaluated again after applying MVA in order to get a better estimate of
the blocking probabilities and so on. By repeating this process until for all i the
differences between b(m+1)

i and b(m)
i is less than a small ε, the algorithm terminates

and the performance statistics are calculated. In our experience, convergence is
reached fast, and does not depend on the initial starting values of bi.



36 Modeling and performance analysis of sequential zone picking systems

2.2.6 Example of the single-segment routing model

In order to illustrate the performance and accuracy of the iterative algorithm of
Section 2.2.5, consider the zone picking system with two zones shown in Figure 2.2.
In total there are 22 different tote classes, due to class changing after a zone or
at the entrance. The release probabilities are set to ψ∅ = 0 and ψ{z1} = ψ{z2} =
ψ{z1,z2} = 1/3, the service times for the entrance/exit are exponentially distributed
with mean µ−1

e = 5 seconds, the travel times on the conveyor nodes are deterministic,
µ−1
c1 = µ−1

c2 = µ−1
c3 = 100 seconds, and the service times in the zones are exponentially

distributed with mean µ−1
z1 = µ−1

z2 = 15 seconds. The number of order pickers in
both zones dz1 = dz2 are equal to 1 and the buffer sizes of the zones are respectively
qz1 = 2 and qz2 = 1.

Table 2.1 gives the average time in seconds a tote spends on the conveyor E (TC (N))
and at the zones E (TZ (N)), and the overall throughput rate per hour X (N). These
statistics are shown for the jump-over network (Jump), the same closed queueing
network but with infinite buffers in the zones (CQN ) and the approximation of Yu &
De Koster (2008) (YdK ). YdK uses an open queueing network in its analysis. Using
bisection, the arrival rate of this approximation is set such that the average number
of totes in the open network is equal to N . The results show that the jump-over
network produces very accurate results compared to the simulation of the original
queueing network (Sim), where the half width of the 95% confidence interval is given
between brackets and the errors are calculated by; (x− Sim) /Sim× 100% where
x is Jump, CQN, or YdK. In all cases, the algorithm stopped after 5 iterations
with ε = 10−3. Both CQN and YdK assume infinite buffers, which means that they
cannot estimate the blocking probabilities. The run times for the Jump, CQN, and
YdK methods is less than a second on a Core i7 with 2.4 GHz and 8 GB of RAM,
whereas the simulation for N = 100 takes around 30 seconds.

When the total number of totes in the system N is small, the errors of the jump-over
network are negligible and relatively small for CQN and YdK. This is obvious since
almost no blocking occurs in the system, i.e. only 5% of the totes that intends to visit
the second zone are blocked. This means the jump-over network will have almost the
same performance as CQN and the original queueing network. However, a higher N
increases the blocking probability and the number tote recirculations.
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When the number of totes in the system equals N = 40 or 50, blocking becomes more
prominent. Since every zone is visited with the same frequency, the totes are more
often blocked at zone 2 than at zone 1, due to the buffer sizes of the zones. Moreover,
the system throughput time starts to increase rapidly, while the throughput rate
stabilizes because all the zones become saturated. CQN and YdK produce large
errors in the average time a tote spends at the zones and conveyor nodes, which
is due to the assumption of infinite buffers in the zones. This does not happen in
the jump-over network. Because of recirculation, the conveyor nodes act as buffers
for totes that cannot enter a zone. When N = 100, blocking seriously impacts the
performance of the system and totes spend twice as long in the system compared to
N = 50.

2.3 Multi-segment zone picking systems

In this section, the single-segment routing model is extended to multi-segment
routing. In a zone picking system with multi-segment routing, each segment consists
of a number of zones connected by a conveyor with recirculation. The segments
are connected to the main conveyor, which forms the center of the zone picking
system. In order to analyze the system, again three different types of elements can be
distinguished: the entrance/exit stations, the conveyors, and the zones. Furthermore,
the entrance/exit stations are divided in the system entrance/exit and the segment
entrance stations, and the conveyor nodes are split into main and segment conveyor
nodes. An example of a zone picking system with multi-segment routing is shown in
Figure 2.3, which has six segments that contain a different number of zones.

A zone picking system with multi-segment routing works very similar to the system
described in Section 2.2. Upon release at the system entrance, a tote is transported
to the first segment where order lines have to be picked. The tote enters this segment
via the segment entrance station and stays in the segment until it has visited all the
required zones within the segment. When finished, the tote leaves the segment and
is transported either to another segment or to the system exit in case the picking
process has finished. When a segment is considered in isolation, it is equivalent
to the single-segment model, except that the entrance station is now modeled as a
conveyor.
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System
entrance/exit

Segment

Main conveyor

Segment conveyor

Segment
entrance/exit

Zone

Figure 2.3: A multi-segment zone picking system with six segments and seventeen
zones.
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The workload control mechanism controls both the maximum number of totes in the
system and, in addition, the maximum number of totes within each segment. If a
tote tries to enter a segment that is fully saturated, the control mechanism withholds
the tote from entering. The blocked tote will skip the segment and stay on the main
conveyor, potentially visiting other segments before again attempting to enter this
segment. This is very similar to the situation when a tote is blocked by a zone, but
now blocking depends on the number of totes within an entire segment instead that
of a single zone.

The queueing network of Section 2.2 is extended to a zone picking system with
multi-segment routing. Let the extended model consist of K segments. Denote
the entrance/exit stations by E = {e0, e1, . . . ek, . . . , eK} where e0 is the system
entrance/exit station and ek the entrance station of segment k, that represents the
conveyor connecting the segment with the main conveyor. Let Z = ∪Kk=1Zk be the
union of zones, where Zk =

{
zk1 , . . . , z

k
mk

}
are the zones within segment k, such

that ∑K
k=1m

k = M . Denote C = ∪Kk=0Ck as the union of the conveyor nodes where
C0 =

{
c0

1, . . . , c
0
K+1

}
are the main conveyor nodes and Ck =

{
ck1, . . . , c

k
mk+1

}
the

segment conveyor nodes within segment k. Finally, let S = E ∪ C ∪ Z be the union
of all the nodes in the network. Figure 2.4 shows the topology of the multi-segment
routing queueing network with K segments.

The system is partitioned into K + 1 subsystems:
{
H0,H1, . . . ,Hk, . . . ,HK

}
, where

H0 = {e0} ∪ C0 consists of the system entrance/exit and the nodes on the main
conveyor, and Hk = {ek} ∪ Ck ∪ Zk the set of nodes belonging to the kth segment.
The following additional assumptions are adopted for the network:

• Each tote has a class r ⊆ Z defining the zones the tote should visit. Let
rk ⊆ Zk, k = 1, . . . , K describe the zones a class r tote has to visit within
segment k. A tote will enter segment k if and only if rk 6= ∅.

• The entrance station ek to segment k is assumed to be an infinite-server node
with a deterministic service of rate µek

, k = 1, . . . , K that accounts for the
time the tote needs for entering and leaving the segment.

• The maximum number of totes allowed in segment k, k = 1, . . . , K is Nk ≤ N ,
which is controlled by the workload control mechanism.
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Figure 2.4: A multi-segment zone picking queueing network with K segments.
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At the system entrance, new totes of class r ⊆ Z are released with probability ψr.
After release, a tote of class r is transported from the system entrance to the first
main conveyor node c0

1. From c0
k, the tote is either transported to segment entrance

ek if rk 6= ∅ or move to the next main conveyor node c0
k+1. Whenever the number

of totes in segment k equals Nk, the tote skips the segment and also moves to c0
k+1,

while its class remains the same. In case the tote actually enters the segment, it
resides in the segment until it has visited all the required zones. Then the tote leaves
the segment via ckmk+1 and its class has changed from r to s = r\rk. After visiting
the last main conveyor node c0

K+1, all totes with r 6= ∅ are routed to the first main
conveyor node c0

1; the other totes are transported to the exit and are immediately
replaced by a new tote which waits for release at the entrance.

Summarizing, the state dependent routing probability for the multi-segment system
are defined as follows:

pe0∅,c0
1r (x) = ψr, (2.34)

pc0
k

r,ekr (x) = 1, k = 1, . . . , K, rk 6= ∅ and
∑

i∈Hk
ni ≤ Nk, (2.35)

pc0
k

r,c0
k+1r (x) = 1, k = 1, . . . , K, rk = ∅ or

∑
i∈Hk

ni = Nk, (2.36)

pc0
K+1r,e0r (x) = 1, r = ∅, (2.37)

pc0
K+1r,c0

1r (x) = 1, r 6= ∅, (2.38)

pekr,ck
1r (x) = 1, k = 1, . . . , K, (2.39)

pck
i r,zk

i r (x) = 1, k = 1, . . . , K, i = 1, . . . ,mk, zki ∈ r and nzk
i
< dzk

i
+ qzk

i
, (2.40)

pck
i r,ck

i+1r (x) = 1, k = 1, . . . , K, i = 1, . . . ,mk, zki /∈ r or nzk
i

= dzk
i

+ qzk
i
, (2.41)

pzk
i r,ck

i+1s (x) = 1, k = 1, . . . , K, i = 1, . . . ,mk, s = r\
{
zki
}
, (2.42)

pck
mk+1

r,c0
k+1r (x) = 1, k = 1, . . . , K, rk = ∅, (2.43)

pck
mk+1

r,ck
1r (x) = 1, k = 1, . . . , K, rk 6= ∅. (2.44)

Just as before, the first step of the analysis is to approximate the multi-segment
queueing network of Section 2.3 by a network with jump-over blocking in Section 2.3.1
and Section 2.3.2. In Section 2.3.3 it is shown that the visit ratios of the multi-segment
jump-over network again have closed form expressions. The performance statistics of
this jump-over network are calculated in Section 2.3.4 using flow equivalent servers
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(Chandy et al., 1975) and MVA. The iterative algorithm for estimating the blocking
probabilities is presented in Section 2.3.5.

2.3.1 Jump-over network

In the multi-segment queueing network, totes can be blocked either by a zone or by a
segment. A similar approach as described in Section 2.2 can be used to approximate
segment blocking. In the real system totes of class r that have to visit segment k
are “tagged” after segment k with the labels visited segment k or skipped segment k
depending on whether they received service or skipped the segment. This is now
approximated by tagging a tote randomly and independently of whether the tote
actually visited segment k or not. This approximation renders a jump-over network,
where a tote skipping segment k will immediately move from the start to the end of
the segment, which is indicated by a cross in Figure 2.4. Here, the skipping tote will
act as a “regular” tote that actually visited the segment so rk is set to ∅.

When a tote is tagged as skipped segment k, the class of the tote should revert to its
class when it entered the segment. However, for all totes leaving the segment there
is no knowledge about which zones the tote visited in the segment. Therefore, in the
jump-over network, the classes are extended such that they also include the initial
class of the tote when it entered the system. Denote the new classes by r̄ = {h, r},
where h ⊆ Z is the initial class of the tote and r ⊆ Z the current set of zones the
tote still needs to visit. The initial class h only changes when the tote is replaced by
a new tote, whereas r changes to s = r\

{
zki
}
if zone i in segment k is tagged as

visited.

Let blocking probability Bk, k = 1, . . . , K be the fraction of totes that receive the
skipped segment k tag in the real system. Then, for each class s̄ = {h, s} tote leaving
segment k, i.e., when sk = ∅, independent of whether the tote visited segment k or
not (because of a fully saturated segment), pck

mk+1
s̄,c0

k+1r̄ = Bk, k = 1, . . . K, where

r̄ =
{
h, s ∪ hk

}
and hk are the zones the tote was required to visit in segment k.

This means that a tote is tagged as skipped segment k and is routed to next main
conveyor node c0

k+1 leaving segment k with the same class r̄ as it entered the segment.
Otherwise, the tote is tagged as visited segment k and the class of the tote does not
change, i.e, pck

mk+1
s̄,c0

k+1s̄ = 1−Bk, k = 1, . . . K. Just as in Section 2.2.1, the blocking
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probabilities Bk are not known in advance and need to be estimated, as is shown in
Section 2.3.5.

2.3.2 Product-form of the stationary distribution

In case of the multi-segment jump-over network, a state of the network x is defined in
the same way as in Section 2.2.2. Let S̄ (N) be the state space of the network where
in each state x the number of totes in the system is N and where the number of totes
in each zone and segment satisfy both ni ≤ di + qi, i ∈ Z and ∑i∈Hk ni ≤ Nk, k =
1, . . . , K respectively. The existence of a product-form solution in the network can
again be proven using conditions (2.14) and (2.15).

Theorem 2.2. The jump-over network with state space S̄ (N) has a product-form
stationary distribution of the form

π (x) = 1
G

∏
i∈S

πi (xi) , (2.45)

where G is a normalization constant, πi (xi) is the stationary distribution of node i,
i ∈ S given by (2.13), where λiril

is replaced by λir̄il
.

Proof. As in the proof of Theorem2.1, we restrict the proof to the case of conveyor
nodes with an exponential delay with rate µi, i ∈ C. Whenever state x does not
contain a blocked segment, it was shown in Theorem2.1 that conditions (2.14) and
(2.15) hold. In case state x contains a blocked segment and a transition that involves
a tote skipping a segment occurs, the transition rate q (x, y) is given as follows. A
tote of class r̄ departs from the lth position of main conveyor node c0

k with rate
µc0

k
and it immediately jumps over the entire segment. The tote will move to the

next main conveyor node c0
k+1 with probability 1, where it joins the end of the node.

When arriving in c0
k+1 the tote is tagged with either as visited segment k or skipped

segment k. Hence,

q
(
x, x− r̄c0

k
l + r̄c0

k+1nc0
k+1

+1

)
= µc0

k
Bk, l = 1, . . . , nc0

k
, (2.46)

q
(
x, x− r̄c0

k
l + s̄c0

k+1nc0
k+1

+1

)
= µc0

k
(1−Bk) , l = 1, . . . , nc0

k
. (2.47)
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The time-reversed transition rates q̄ (y, x) are analogous to (2.18) and (2.19). Then
it can be verified, similarly as in Theorem2.1, that conditions (2.14) and (2.15) hold
and the jump-over network has a product-form stationary distribution of the form of
Equation (2.45).

Theorem2.2 again provides a detailed description of the state of the jump-over
network. Since performance statistics as the throughput and mean waiting times in
the zones are of interest, the aggregated state of the network will suffice and can be
obtained similar as in Corollary 2.1.

2.3.3 Chain visit ratio

The chain visit ratios of the jump-over network can be computed directly per node
type similar as in Section 2.2.3. Let the chain visit ratio of the system entrance/exit
be normalized to Ve0 = 1. Next, the chain visit ratios are derived in the following
order for the main conveyor nodes, segment entrances, segment conveyor nodes, and
the zones.

2.3.3.1 Main conveyor nodes and segment entrances.

The chain visit ratios of the main conveyor nodes and the segment entrances can
be computed as the conveyor nodes and the zones in the single-segment routing
model. This follows from the fact that a tote needs to visit all the main conveyor
nodes the same number of times during its stay in the network, and the number of
visits to the segment entrances depends on the number of times a tote intends to
visit a segment. The difference is now that the visit ratios depend on the blocking
probabilities of the segments Bk, instead of those of the zones. The chain visit ratios
of the main conveyor nodes Vi, i ∈ C0 are given by Section 2.2.3.1 and the segment
entrances Vi, i ∈ E\ {e0} by Section 2.2.3.2. For both, the tote classes r ⊆ Z are
replaced by the aggregated segment classes k ⊆ {1, . . . , K} that define the segments
a tote should visit. The corresponding release probabilities of the segment classes ψ̂k

can be obtained by summing over all the class specific release probabilities of totes
that need to visit the segments contained in k. Finally, the blocking probabilities of
the zones bi are replaced by the blocking probabilities of the segments Bk.
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2.3.3.2 Segment conveyor nodes and zones.

Within a segment, the network behaves exactly the same as in the single-segment
routing model. This means that the chain visit ratios of the nodes in Hk, only
depend on the blocking probabilities of the zones in Zk. The chain visit ratios of the
segment conveyor nodes Vi, i ∈ Ck are given by Section 2.2.3.1 where the tote classes
are now replaced by rk ⊆ Zk. The corresponding release probabilities for segment k
are ψk =

(
ψkrk : rk ⊆ Zk\∅

)
, where ψkrk = ∑

s⊆Z ψsI(sk=rk)/
∑

s⊆Z ψsI(sk 6=∅) is the
normalized sum of all tote classes that need to visit the zones rk ⊆ Zk and I(.) an
indicator function. Then by calculating the expected number of transitions until
entering the absorbing state, i.e. when the tote has to leave the segment, Vi, i ∈ Ck

is obtained by multiplying the number of times the tote intends to visit the segment
Vek

with the average number of circulations a tote makes within segment k

Vi = Vek
ψk
(
I −Θk

)−1
1, i ∈ Ck, k = 1, . . . , K, (2.48)

where Θk is defined similar as in (2.22).

A similar argument holds for the chain visit ratios of the zones Vi, i ∈ Z which are
given by Section 2.2.3.2. Hence,

Vi = Vek

∑
rk: i∈rk⊆Zk

ψkrk

1− bi
, i ∈ Zk, k = 1, . . . , K. (2.49)

2.3.4 Aggregation technique

In order to analyze the jump-over network, an extended version of the MVA presented
in Section 2.2.4 can be formulated. However, it is more efficient to aggregate the
jump-over network by replacing all segments by flow equivalent server centers with
load-dependent service rates (Chandy et al., 1975). Norton’s theorem states that
the stationary distribution of the rest of the network remains unchanged after this
modification (Chandy et al., 1975; Walrand, 1983; Boucherie, 1998).

Based on the product-form of Section 2.3.2 and the fact that each tote enters or
leaves a segment via a single input/output node, an equivalent queueing network can
be analyzed along the same lines as the analysis of the single-segment routing model.
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The first step of the aggregation technique is to replace all segments by flow equiva-
lent servers with load-dependent service rates. These rates can be determined by
calculating the throughput Xk (n) of subsystem Hk in isolation when varying the
number of totes n from 1 up to Nk. The isolated subsystem can be obtained by
short-circuiting all nodes that are not in Hk. As a result, a tote leaving subsystem
Hk will instantaneously be routed back to the entrance of the subsystem. Since every
subsystem Hk, k = 1, . . . , K in isolation is (almost) equivalent to the single-segment
routing model, it can be analyzed using the MVA presented in Section 2.2.4, where
only the entrance station is now an infinite server node.

Next, an equivalent queueing network can be constructed by replacing each subsystem
Hk, k = 1, . . . , K in the jump-over network by a flow equivalent server center. The
server rates of the kth flow equivalent server are equal to the throughputs Xk (n) of
the isolated subsystems, so

µFESk
(n) = Xk (n) , n = 1, . . . , Nk, k = 1, . . . , K. (2.50)

System
entrance/exit e0

Main
conveyor c0

1
FES 1 FES K

Main
conveyor c0

K

Main
conveyor c0

K+1

... ... ...· · ·

Figure 2.5: The equivalent network of the jump-over network. Segments are replaced
by flow equivalent service centers with load-dependent service rates.

In Figure 2.5 the equivalent network of Figure 2.4 is shown, which is identical to
Figure 2.2b except that the zones are replaced by flow equivalent service centers. The
MVA of Section 2.2.4 can be applied to analyze the system, where (2.26) should be
replaced by the mean throughput time of a tote in subsystem Hk (Reiser, 1981),

E (TFESk
(n)) =

Nk−1∑
j=1

j

µFESk
(j)ΠFESk

(j − 1|n− 1) , k = 1, . . . , K, (2.51)

where the marginal queue length probabilities ΠFESk
(j|n) of having j totes in the kth

flow equivalent server in a network with n circulating totes. These can be obtained
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similar as in (2.29) by

ΠFESk
(j|n) = VFESk

X (n)
µFESk

(j) ΠFESk
(j − 1|n− 1) ,

j = 1, . . . , Nk, k = 1, . . . , K, (2.52)

where VFESk
is the visit ratio of the kth flow equivalent server, which is equal to

the visit ratio of segment entrance ek. Equation (2.51) is obtained by application of
Little’s law to the kth flow equivalent server and substitution of (2.52).

The performance statistics obtained from the equivalent (aggregate) network cor-
respond with the aggregated performance statistics of the segments in the original
jump-over network, e.g. the mean throughput time of subsystem Hk, E (TFESk

(N)),
and the marginal queue length probabilities ΠFESk

(j|N) of having j totes in subsys-
tem Hk when there are N totes in the system.

The detailed performance statistics of the nodes within the segments can be obtained
by a disaggregation step. Let the marginal queue length probabilities of subsystem
Hk analyzed in isolation be πki (j | n), where j is the number of totes in node i in
segment k, given the number of totes in segment k is n. Then, the detailed marginal
queue length probabilities πi (j|N) are given by (Baynat & Dallery, 1993)

πi (j|N) =

Πi (j|N) , if i ∈ H0,∑Nk

l=1 π
k
i (j | l) ΠFESk

(l|N) , if i ∈ Hk.
(2.53)

The performance statistics of all the nodes can now be calculated. The utilization of
the system entrance (with di = 1) and zones can be calculated as

ρi = 1−
di−1∑
j=0

di − j
di

πi (j|N) , i ∈ e0 ∪ Z. (2.54)

The mean number of totes in a node is given by

E (Li (N)) =
σi∑
j=1

jπi (j|N) , i ∈ S, (2.55)
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where σi equals the number of totes in the system N if i ∈ H0, the segment capacity
Nk if i ∈ Hk\Zk and di + qi if i ∈ Z.

Applying Little’s law gives the mean throughput time in a node

E (Ti (N)) = E (Li (N)) /ViX (N) , i ∈ S, (2.56)

where X (N) is the overall throughput rate from the equivalent aggregate network.

2.3.5 Iterative algorithm for calculating the blocking
probabilities

As in Section 2.2.4, totes are tagged independently from the state of the network
using the blocking probabilities; bi, i ∈ Z and Bk, k = 1, . . . , K. These blocking
probabilities are not known in advance, but they can be iteratively estimated by the
probabilities that the buffer of the zone is full or a segment is saturated.

First, blocking probabilities b(1)
i , i ∈ Z and B(1)

k , k = 1, . . . , K are initialized to 0.
Then, calculate the marginal queue length probabilities of the equivalent network
and use the fraction of arrivals that see a segment being saturated as a new estimate
for the blocking probabilities of the segments, so by the arrival theorem,

B
(m+1)
k = Π(m)

FESk

(
Nk|N − 1

)
, k = 1, . . . , K, (2.57)

where the superscript denotes the iteration number. Using the detailed marginal
queue length probabilities of Equation (2.53) and by calculating the fraction of
arrivals in segment k that encounter a full buffer in zone i, the new estimates for the
blocking probabilities of the zones are given by

b
(m+1)
i = π

(m)
i

(
di + qi|Nk − 1, N − 1

)
,

=
Nk−1∑
l=1

πki (di + qi | l) ΠFESk
(l|N − 1) , i ∈ Z. (2.58)

which is the probability of encountering a full buffer in zone i in a network containing
N − 1 totes, where in segment k a maximum of Nk − 1 totes is allowed. Note the
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remarkable feature that a tote arriving at a zone sees the network in equilibrium
without itself and in which the capacity of the segment is reduced by 1.

With (2.57) and (2.58), the routing probabilities and subsequently the visit ratios
are updated for all nodes in the network. Applying the MVA equations, (2.57) and
(2.58) are updated to obtain better estimates. By repeating this process until for all i,
the differences B(m+1)

i −B(m)
i and b(m+1)

i − b(m)
i are less than a small ε, the algorithm

terminates and the performance statistics are calculated.

2.4 Numerical results

In order to investigate the performance of the jump-over network, the approximation
is evaluated for a large test set and compared with the results of a discrete-event simu-
lation of the real queueing network. This section is split into two parts. Section 2.4.1
and Section 2.4.2 discuss the accuracy of the approximation for a large test set for
single-segment and for multi-segment routing systems.

Both the jump-over network and the discrete-event simulation were implemented in
Java. For each case, the simulation model was run 10 times for 1,000,000 seconds,
preceded by 10,000 seconds of initialization for the system to become stable, which
guaranteed that the 95% confidence interval width of the system throughput time is
less than 1% of the mean value for all the cases. All experiments are run on Core i7
with 2.4 GHz and 8 GB of RAM.

2.4.1 Single-segment models

In this section the performance of the approximation is investigated for the single-
segment routing model. A test set was generated for which the parameters are listed
in Table 2.2. The number of zones in the system M varied between 1 and 8 and the
number of totes N between 10 and 80. Furthermore, it is first assumed that every
zone and every conveyor node are identical to the other nodes of the same type and
that all possible tote classes are released into the system with the same probability.
This ensures that the work-load of all zones in the system is balanced. In the test
set, the mean conveyor times, µ−1

i , i ∈ C are varied between 20 and 60 seconds and
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the mean zone times, µ−1
i , i ∈ Z between 10 and 30 seconds. The number of order

pickers di, i ∈ Z and buffer places qi, i ∈ Z varied between 1 and 3, and 0 and 1,
respectively. In total, this leads to 8× 8× 5× 5× 3× 2 = 9, 600 different cases.

In addition, the effect of work-load imbalance among order pickers and zones is
tested. Imbalance can be introduced by either changing the release probabilities or
the parameters of a zone, e.g., the mean zone times. The latter approach was chosen
for the imbalanced test set. In this test set, the mean conveyor times µ−1

i , i ∈ C are
equal to 30 seconds and both the number of order pickers di, i ∈ Z and buffer places
qi, i ∈ Z are equal to 1. Four different scenarios were created for the mean zone
times. In the first scenario, the mean zone times are equal, whereas in the other
three scenarios they increase by either 2, 5, or 10 seconds per subsequent zone. This
leads to an additional 7× 8× 4 = 224 cases. The run time per case for the analytical
model is less than a second, whereas the simulation takes at most 30 seconds in case
of the larger systems.

Table 2.2: Parameters of the single-segment routing model test set.

(a) Balanced test set (9,600 cases)

Parameter Value

Nr. of zones, M 1, 2, 3, 4, 5, 6, 7, 8

Nr. of totes, N 10, 20, . . . , 80

Mean conveyor times, µ−1
i , i ∈ C 20, 30, 40, 50, 60

Mean zone times, µ−1
i , i ∈ Z 10, 15, 20, 25, 30

Nr. of order pickers, di, i ∈ Z 1, 2, 3

Buffer size of a zone, qi, i ∈ Z 0, 1

(b) Imbalanced test set (224 cases)

Parameter Value

Nr. of zones, M 2, 3, 4, 5, 6, 7, 8

Nr. of totes, N 10, 20, . . . , 80

Mean zone times, µ−1
i , i ∈ Z 1) 10, 10, 10, . . .

2) 10, 12, 14, . . .

3) 10, 15, 20, . . .

4) 10, 20, 30, . . .

The results of the balanced test set are summarized in Table 2.3, Table 2.4, Table 2.5,
and Table 2.6. Each table lists the average of the relative error between the approxi-
mation and the simulation for the system throughput (thr) in hour−1, the average
number of circulations a tote makes in the system before moving to the exit, and
the mean of the sum of throughput times of the zones; (x− Sim) /Sim × 100%.
Each table also gives the percentage of cases that fall in three different error-ranges.
From the tables it can be concluded that the approximation produces very accurate
results for the three performance statistics. The overall average error in the system
throughput is 0.54%, it is 0.65% for the mean number of circulations, and 0.30%
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for the average mean throughput times of the zones. Almost all of these errors fall
between 0− 1%, with only a few larger than 5%.

Table 2.3 and Table 2.4 show that the largest errors occur when the system has three
or four zones and when the number of totes in the system is high. An explanation is
that the blocking probabilities increase when the number of zones M decreases or if
the number of totes in the system N increases. Moreover, if blocking is prevalent, a
higher M means the approximation needs to estimate more blocking probabilities,
which creates more room for error. Eventually, M is high enough that blocking is
almost fully absent for any N . The approximation becomes exact since the network
will behave precisely as the original queueing network where totes are never blocked.

Table 2.5 and Table 2.6 show that the largest errors occur with low mean conveyor
times and high mean zone times. Here the product-form assumption that each
node can be analyzed in isolation does not describe the real behavior sufficient.
For example, if a tote is blocked by a zone, it can circulate through the whole
system and eventually encounter the zone still working on the same tote. This will
create dependencies between successive visits to the nodes which are not captured
by the approximation. However, this situation is very unlikely in practice. The total
recirculation time is usually much higher than the time a tote will spend in a zone.

Table 2.7 presents the results of the imbalanced test set. The errors of the three
performance statistics are slightly larger than those of the balanced test set. In
particular, the errors increase when there is more imbalance between the zones. Totes
that need to visit the slowest zone now spend more time in the system since the
probability of being blocked is higher, which increases errors, as seen in the previous
tables. Still, on average the errors for the three statistics are well below 1%.

2.4.2 Multi-segment models

For the multi-segment routing model, a new test set is created, the parameters of
which are listed in Table 2.8. In all test cases, the number of zones M equals 18, but
the number of zones per segment mk can vary between 3, 6, and 9. Furthermore, it is
assumed that within every segment the zones and conveyor nodes are identical, i.e.,
µ−1
i = 30, i ∈ C\C0, µ−1

i = 15, i ∈ Z, and qi = di = 1, i ∈ Z. The release probabilities
ψr are assumed to be the same for all r, and the service means of all entrances are
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Table 2.3: Results balanced test set with a varying number of zones M .

M
Error (%) in system thr. Error (%) in nr. of circulations Error (%) in thr. times zones

Avg 0− 1 1− 5 > 5 Avg 0− 1 1− 5 > 5 Avg 0− 1 1− 5 > 5

1 0.08 100.0 0.0 0.0 0.08 100.0 0.0 0.0 0.09 100.0 0.0 0.0
2 0.67 70.0 29.8 0.2 0.78 69.0 29.8 1.3 0.44 83.9 16.1 0.0
3 0.78 68.2 31.7 0.2 0.94 67.2 30.3 2.5 0.44 86.2 13.8 0.0
4 0.73 71.9 27.8 0.3 0.90 71.3 25.9 2.8 0.38 90.3 9.8 0.0
5 0.64 76.6 23.3 0.2 0.80 75.0 22.4 2.6 0.32 93.2 6.8 0.0
6 0.54 80.4 19.5 0.1 0.68 78.6 18.9 2.5 0.28 94.9 5.1 0.0
7 0.45 83.8 16.2 0.0 0.57 82.4 15.8 1.8 0.25 96.9 3.1 0.0
8 0.38 86.7 13.3 0.0 0.48 85.2 13.5 1.3 0.23 97.7 2.3 0.0

Table 2.4: Results balanced test set with a varying number of totes N .

N
Error (%) in system thr. Error (%) in nr. of circulations Error (%) in thr. times zones

Avg 0− 1 1− 5 > 5 Avg 0− 1 1− 5 > 5 Avg 0− 1 1− 5 > 5

10 0.24 95.0 4.8 0.2 0.29 93.1 5.9 1.0 0.21 99.8 0.3 0.0
20 0.40 86.8 12.9 0.3 0.53 85.5 12.3 2.2 0.21 97.9 2.1 0.0
30 0.52 81.7 18.1 0.3 0.67 80.0 17.5 2.5 0.24 95.6 4.4 0.0
40 0.59 77.6 22.3 0.2 0.74 76.7 20.8 2.6 0.28 93.0 7.0 0.0
50 0.62 75.3 24.8 0.0 0.77 74.2 23.7 2.2 0.32 91.8 8.3 0.0
60 0.64 74.1 25.9 0.0 0.76 73.0 25.1 1.9 0.36 89.6 10.4 0.0
70 0.64 73.6 26.4 0.0 0.75 72.9 25.7 1.4 0.38 88.8 11.3 0.0
80 0.64 73.6 26.4 0.0 0.72 73.3 25.7 1.0 0.41 86.7 13.3 0.0

Table 2.5: Results balanced test set with varying mean conveyor times µ−1
i , i ∈ C.

µ−1
i

Error (%) in system thr. Error (%) in nr. of circulations Error (%) in thr. times zones

Avg 0− 1 1− 5 > 5 Avg 0− 1 1− 5 > 5 Avg 0− 1 1− 5 > 5

20 0.91 66.5 33.0 0.5 1.21 65.3 28.1 6.7 0.47 85.4 14.6 0.0
30 0.64 74.1 25.9 0.0 0.79 72.7 25.2 2.2 0.33 91.0 9.0 0.0
40 0.47 81.4 18.6 0.0 0.55 80.3 19.4 0.4 0.27 94.4 5.6 0.0
50 0.36 86.3 13.7 0.0 0.41 85.5 14.5 0.0 0.23 96.3 3.8 0.0
60 0.29 90.2 9.8 0.0 0.31 89.2 10.8 0.0 0.21 97.3 2.7 0.0
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Table 2.6: Results balanced test set with varying mean zone times µ−1
i , i ∈ Z.

µ−1
i

Error (%) in system thr. Error (%) in nr. of circulations Error (%) in thr. times zones

Avg 0− 1 1− 5 > 5 Avg 0− 1 1− 5 > 5 Avg 0− 1 1− 5 > 5

10 0.24 93.0 7.0 0.0 0.23 92.7 7.3 0.0 0.17 98.2 1.8 0.0
15 0.40 84.9 15.1 0.0 0.46 83.5 16.1 0.4 0.23 95.5 4.5 0.0
20 0.55 78.4 21.6 0.0 0.67 76.8 21.7 1.5 0.30 92.7 7.3 0.0
25 0.68 72.9 27.0 0.2 0.86 71.8 25.3 2.9 0.37 90.1 9.9 0.0
30 0.80 69.3 30.3 0.4 1.05 68.1 27.3 4.5 0.43 87.8 12.2 0.0

Table 2.7: Results imbalanced test set with varying mean zone times µ−1
i , i ∈ Z.

µ−1
i

Error (%) in system thr. Error (%) in nr. of circulations Error (%) in thr. times zones

Avg 0− 1 1− 5 > 5 Avg 0− 1 1− 5 > 5 Avg 0− 1 1− 5 > 5

10,10,10,... 0.20 100.0 0.0 0.0 0.20 100.0 0.0 0.0 0.15 100.0 0.0 0.0
10,12,14,... 0.23 100.0 0.0 0.0 0.24 100.0 0.0 0.0 0.16 100.0 0.0 0.0
10,15,20,... 0.35 98.2 1.8 0.0 0.36 94.6 5.4 0.0 0.21 100.0 0.0 0.0
10,20,30,... 0.40 89.3 10.7 0.0 0.45 85.7 14.3 0.0 0.32 100.0 0.0 0.0

equal to µ−1
i = 5, i ∈ E . The number of totes in the system is varied between 10

and 80 and the capacities of the segments Nk between 10 and 40 totes as long as
N ≥ Nk. Finally, the mean main conveyor times, µ−1

i , i ∈ C0 varied between 10 and
60. This leads to 1,320 different test cases. The run time per case for the analytical
model is around 10 seconds, whereas the simulation takes at most 1 minute for the
largest systems with N = 80.

The results of the multi-segment test set are summarized in Table 2.9 and Table 2.10.
The overall average error in the system throughput is 0.21%, for the mean number
of circulations on the main conveyor 0.93%, and for the average throughput times of
the zones 0.24%. The tables show that the errors are the largest in cases with a low
number of segments and a fast main conveyor. In these cases, totes are more likely
to be blocked by a segment such that they need to recirculate on the main conveyor
multiple times. As seen in the previous results, the errors increase when there is
more blocking in the system. When varying the segment capacities Nk similar results
can be seen.
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Table 2.8: Parameters of the multi-segment routing model test set (1,320 cases).

Parameter Value Parameter Value

Nr. of segments, K 2, 3, 4, 5, 6 Nr. of zones per segment, mk 1) 9, 9

Nr. of totes, N 10, 20, . . . , 80 2) 6, 6, 6

Mean main conveyor times, µ−1
i , i ∈ C0 10, 20, . . . , 60 3) 3, 6, 3, 6

Segment capacity, Nk, k = 1, . . . ,K 10, 15, . . . , 40 4) 3, 3, 6, 3, 3

5) 3, 3, 3, 3, 3, 3

Table 2.9: Results multi-segment routing test set with a varying number of zones
per segment mk.

mk

Error (%) in system thr. Error (%) in nr. of circulations Error (%) in thr. times zones

Avg 0− 1 1− 5 > 5 Avg 0− 1 1− 5 > 5 Avg 0− 1 1− 5 > 5

9,9 0.21 99.6 0.4 0.0 2.27 66.3 20.1 13.6 0.23 100.0 0.0 0.0
6,6,6 0.25 100.0 0.0 0.0 1.23 72.0 21.6 6.4 0.23 100.0 0.0 0.0
6,3,6,3 0.19 100.0 0.0 0.0 0.43 84.8 15.2 0.0 0.24 100.0 0.0 0.0
3,3,6,3,3 0.16 100.0 0.0 0.0 0.28 89.8 10.2 0.0 0.25 100.0 0.0 0.0
3,3,3,3,3,3 0.23 99.2 0.8 0.0 0.43 86.7 12.5 0.8 0.23 100.0 0.0 0.0

Table 2.10: Results multi-segment routing test set with varying mean conveyor
times µ−1

i , i ∈ C0.

µ−1
i

Error (%) in system thr. Error (%) in nr. of circulations Error (%) in thr. times zones

Avg 0− 1 1− 5 > 5 Avg 0− 1 1− 5 > 5 Avg 0− 1 1− 5 > 5

10 0.28 99.1 0.9 0.0 2.23 66.8 22.3 10.9 0.23 100.0 0.0 0.0
20 0.24 100.0 0.0 0.0 1.15 75.5 18.6 5.9 0.23 100.0 0.0 0.0
30 0.21 100.0 0.0 0.0 0.77 77.3 18.2 4.5 0.24 100.0 0.0 0.0
40 0.19 99.5 0.5 0.0 0.58 83.6 14.5 1.8 0.24 100.0 0.0 0.0
50 0.18 100.0 0.0 0.0 0.45 86.8 11.8 1.4 0.24 100.0 0.0 0.0
60 0.16 100.0 0.0 0.0 0.37 89.5 10.0 0.5 0.24 100.0 0.0 0.0
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Comparing the systems with each other, in case the main conveyors are slow (µ−1
i ≥ 50

seconds) and the number of totes in the system is low (N ≤ 20), the systems with
mk = 9, k = 1, 2 obtain the highest throughput, because of less conveying times. On
the other side, if the segment capacity Nk ≤ 20 is low, then mk = 3, k = 1, . . . , 6 has
the highest throughput, because the probability that a tote is blocked by segment is
lower and less recirculation of totes is required.

2.5 Conclusion and further research

In this chapter, we developed an analytical model for sequential zone picking systems
with either single-segment, or multi-segment routing. The model provides a valuable
tool for rapid design of complex zone picking systems in order to meet specific
performance levels and it can be used to study and reduce the sources of blocking
and congestion. We developed a queueing model to estimate the performance of
the system. Because an exact analysis of this queueing model is not feasible, we
approximate the blocking behavior with the jump-over protocol which yield product-
form results, and we use MVA, and an aggregation technique to obtain rapidly
very accurate estimates of the key performance statistics of a zone picking system.
Comparison of the approximation results to simulation for a wide range of parameters
showed that the mean relative error for statistics as the system throughput and the
mean number of circulations in the system is less than 1%.

The model lends itself to several modifications and extensions left for future research.
The approximation can be used to evaluate and compare operational policies such as
order batching and order splitting on system performance, like in Yu & De Koster
(2008). In addition, a general optimization framework can be formulated for allocating
products to zones in order to maximize, for example, the system throughput. Also,
when the zone picking system is too heavily loaded, congestion occurs when two
conveyor streams merge, e.g. totes flowing out of a zone with totes on the conveyor.
Totes should wait for a sufficiently large space on the conveyor before merging,
which decreases the performance of the system due to long waiting times. It is also
possible to incorporate this type of blocking-after-service to set achievable targets, e.g.
the system throughput time, and predict when the system is overloaded. Another
relevant extension is the situation where order pickers can help each other when the
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workload in one zone is high or leave when there is little work such that one order
picker becomes responsible for picking products at multiple zones. Furthermore,
the model may provide a starting point in order to approximate higher moments or
the distribution of performance statistics such as the zone, segment, and, system
throughput time and as a building block for a semi-open queueing analysis approach
(closed for totes and open for orders in the system) when studying a zone picking in
an operational setting.

Our approach to model and analyze queueing networks with finite capacities and the
dynamic block-and-recirculate protocol has shown to give very accurate approxima-
tions. There are many potential applications beyond zone picking systems where
our method might be applied successfully, e.g., end-of-aisle picking systems, AGV
transportation systems, and vehicle-based compact storage systems.





3 An accurate model for conveyor
merges in zone picking systems

3.1 Introduction

Conveyor systems are a critical component of many order picking and sorting systems,
responsible for moving products from one location to another. One of the most
important functions of conveyor systems is to consolidate multiple flows of products
into one single flow (a merge operation). These merges are often potential points
of congestion which can lead to blocking and increased order throughput times.
Obviously, the performance of the merges strongly influences the performance of
the overall system. In sequential zone picking, a very popular order picking method
in practice, conveyor merges occur frequently and need to be considered when
determining the maximum throughput capability of the system.

Zone picking is a picker-to-parts order picking method, which divides the order
picking area in work zones, each operated by one or multiple order pickers (Petersen,
2002; Gu et al., 2010). The major advantages of zone picking systems are the high-
throughput ability, scalability, and flexibility in handling various order volumes and
product sizes, with a varying number of order pickers (Van der Gaast et al., 2012).
These systems are often applied in e-commerce warehouses handling customer orders
with a large number of order lines and with a large number of different products kept
in stock (Park, 2012).

In a sequential zone picking system, orders are transported via a tote on a conveyor
to the zones. When an order reaches a zone, it is diverted from the conveyor into
the zone whenever required products are stored within the zone. Orders that do
not require products from the zone remain on the conveyor and are transported
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to the next zone in line. After picking, the orders in the zone need to be merged
back onto the conveyor. Under heavy loads, congestion and blocking can occur at
these conveyor merges due to limited free space on the conveyor. This congestion
leads to reduced throughput and causes unpredictable throughput times. As a direct
consequence, orders cannot be shipped on time, which leads to delayed customer
deliveries and loss in revenue. Especially e-commerce warehouse companies deal with
very strict delivery lead times since the customer’s demand fast delivery, often within
24 hours.

Besides the delivery lead times, throughput is one of the key performance indicators
in zone picking systems. Throughput, measured as the number of completed orders
or order lines per period of time, is used to judge whether the order picking system
is capable of meeting a certain customer demand. It is also used to determine the
cut-off time so that orders are guaranteed to be shipped during the next delivery
cycle. However, estimating the throughput of a zone picking system, or any conveyor
system with one or multiple merges is very complicated due to congestion at the
merges and proliferation of congestion over the merges. This holds even stronger in
the presence of job variability, variability of the performance of components, and of
human operators.

The objective of this chapter is to quantify the impact of merge operations on the
throughput of zone picking systems in order to determine their maximum throughput
capability. Zone picking systems with merges can be analyzed by simulation models
and by testing various scenarios. Simulation allows for very accurate modeling, but
it is time-consuming to build and evaluate each scenario or lay-out design, especially
when the system is highly utilized and blocking occurs frequently. Also, the accuracy
of the simulation depends strongly on the quality of the calibration data (Osorio &
Bierlaire, 2009). Another approach to analyze zone picking systems are queueing
networks. Queueing networks are in general much faster, easier to modify, and less
data expensive in estimating the performance of a zone picking system. They can be
used as evaluation tools in the initial design phase to help designers quickly evaluate
many design alternatives and to narrow down the available design space (Gu et al.,
2010). They can also be used to optimize the system in later design (or control)
phases in terms of order release rules and workload allocation.
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The system is therefore modeled as a closed queueing network that describes the
conveyor, the pick zones, and the merge locations. We assume that the arrival
rate of new orders is higher than the rate at which totes are completed, such that
each completed order can be immediately replaced by a new one. This is a valid
assumption for zone picking system design, which aims at finding the maximum
throughput capacity of a system. In addition, when the order arrival rate is low, zone
picking systems are not used (or inappropriate), because they tend to be expensive,
and cheaper and more effective order picking methods exist for these situations (e.g.
sort-while-pick parallel picking, see De Koster et al. (2007)). Due to finite buffers,
blocking, recirculation and merging, the resulting queueing model does not have
a product-form stationary queue-length distribution which makes exact analysis
practically infeasible. Therefore, we approximate the performance of the model
using an aggregation technique (Chandy et al., 1975) and matrix-geometric methods
(Latouche & Ramaswami, 1999). We show that the approximation model produces
very accurate estimates of the maximum throughput capability of a zone picking
system with merge operations when compared with simulation. The model is, in
particular, well suited to evaluate many design alternatives, in terms of number of
zones, zone input and output buffer lengths, and maximum number of totes in the
systems. Our results show that throughput drops dramatically when congestion
and blocking at the merges increase, and that if the number of totes in the system
increases, it becomes more beneficial to increase the size of the output buffer rather
than the input buffer of the zones.

The organization of this chapter is as follows. In Section 3.2, we discuss zone picking
systems. An overview of existing models for both zone picking and conveyor systems
with recirculating loops and merge operations is given in Section 3.3. The queueing
model is presented in Section 3.4. In Section 3.5 we explain our approximation method
and verify its performance in Section 3.6 via computational experiments for a range
of parameters. In the final section, we conclude and suggest some extensions of the
model.
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3.2 Zone picking systems

In zone picking systems, the order picking area is zoned so that each order picker is
responsible for picking products only from his or her zone. Zone picking systems can
be categorized in either parallel or sequential zone picking (De Koster et al., 2007).

In a parallel zone picking system, multiple pickers, in multiple zones, can work
simultaneously on one order (or a batch of orders). The picked products are sent
downstream to a designated consolidation area where they are combined into orders.
In sequential zone picking (also called pick-and-pass systems), an order is assigned to
an order tote or order carton that travels on the conveyor and is passed sequentially
to the next zone where order lines that need to be added to the order may (or may
not) be stored. At a zone, each picker picks for only one tote at a time and after each
pick the tote is merged back on the main conveyor. The advantage of sequential zone
picking is that order integrity is maintained and no sorting and product consolidation
is required (Petersen, 2000). These advantages make sequential zone picking systems
highly popular in practice, especially in e-commerce warehouses. In this chapter, we
only consider sequential zone picking (hereafter zone picking).

Storage
Input buffer

Zone

Order picker

System
entrance/exit

Completeness check

Storage

Output buffer

Main conveyor

Input buffer

MergeTote Divert

Merge

Figure 3.1: A zone picking system with two zones.
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In Figure 3.1 is a schematic representation of a zone picking system, where the picking
area is divided into two zones. These zones are connected by conveyors enabling
automatic transportation of customer orders through the system. A customer order
is released into the system at the system entrance as an order tote, which contains a
list of products to be picked and their locations within the picking area. The tote
only enters the system when the workload control mechanism allows it to do so (Park,
2012). This mechanism sets an upper bound on the number of totes in the system
and only releases a new tote when a picked tote leaves the system. After release,
the tote travels on the main conveyor to the required zones, i.e. where a product
that still needs to be picked for the tote’s order is stored and enters the input buffer
when reaching one of these zones. The order picker then starts picking the required
products that are stored within the zone. After all picks are completed, the order
picker places the tote in the output buffer, where the tote waits until there is enough
space on the main conveyor so that it can travel to a next zone. When the tote has
visited all the required zones, it leaves the system at the exit and, if available, a new
order tote is immediately released into the system.

Many different configurations of zone picking systems exist. These variants include,
e.g. workstation type, pick-face design, buffer lengths, storage system lay-out, and
conveyor configuration. Especially the conveyor configuration is of great importance,
since it affects how and when totes arrive at the zones. In most zone picking systems,
a tote can skip a zone if it does not need to pick up order lines from the zone. Also,
combined with a closed-loop conveyor, totes can skip a zone if the zone’s input buffer
is fully occupied. The tote can then return to this zone after visiting other zones or
after recirculating on the conveyor (a completeness check at the end of the conveyor
ensures that the tote does not leave the system before visiting all the required zones).
The advantage of this dynamic block-and-recirculate protocol is that it prevents
congestion on the main conveyor and balances workload across the various zones. For
a detailed analysis of this protocol in zone picking, the reader is referred to Van der
Gaast et al. (2012).

The maximum throughput capability of a zone picking system is largely determined
by the performance of the merges. After entering the system and after each zone,
totes merge on the main conveyor in order to move to their next location. At a merge
location, totes that are already on the main conveyor have absolute priority (the
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main conveyor moves continuously without possibilities for accumulation). Therefore,
in order to allow a tote to leave the output buffer, its predecessors from the same
buffer should have left, and a sufficiently large space on the main conveyor must
be available to prevent collisions. Under low utilization, the time required for a
sufficiently large space on the conveyor to show up is negligible when determining
the performance of the system. However, many systems are highly utilized during
peak hours, e.g. in e-commerce environments. In such a case, this space can become
very scarce leading to long merge times and a loss in overall system performance. In
addition, the output buffer can become full and stop the order picker or the entrance
station from continuing to work on the next tote in line. The order picker or entrance
station can resume its work only if there is at least one empty place in the output
buffer. Finally, some zone picking systems do not have an output buffer; in these
cases, the order picker or entrance station must always wait until the processed tote
has entered the main conveyor before starting to work on the next tote in line.

3.3 Existing literature

Literature on zone picking systems is still very limited; however, it has gained
popularity in recent years. Gray et al. (1992) used a hierarchical approach to evaluate
economic tradeoffs of equipment selection, storage assignment, number of zones,
picker routing, and order batching when designing a zone picking system. De Koster
(1994) modeled a zone picking system without recirculation as a Jackson queueing
network, which allows for fast early-stage estimation of design alternatives in terms of
order throughput times and average work-in-process. Malmborg (1996) developed a
model to study the tradeoffs in space requirements and retrieval costs with dedicated
and randomized storage in a zone picking system. Jane (2000) studies workload
balancing in zone picking systems and proposed several heuristic methods to adjust
the number of zones so that each picker remains balanced. Petersen (2002) performed
a simulation study to investigate the shape of the zone and showed that the size
or storage capacity of a zone, the number of items on the pick list, and the storage
policy have a significant effect on average walking distances. Jewkes et al. (2004)
studied the assignment of products to zones and the location of the picker home
base in order to minimize the expected order cycle time. The authors developed a
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dynamic programming algorithm for fixed product locations that optimally determines
the product and server locations. Yu & De Koster (2008) analyzed zone picking
systems without recirculation and presented an approximation method based on
a G/G/m queueing network. Eisenstein (2008) analyzed product assignments and
depot locations in a zone picking system where single or dual depots are allowed
along the pick line. Pan & Wu (2009) used Markov chain analysis and proposed
three heuristics that optimally allocate items to a single picking zone, a picking line
with unequal-sized zones, and a picking line with equal-sized zones. Melacini et al.
(2010) modeled a zone picking system as a network of queues. In order to estimate
performance statistics, such as the utilization, throughput rate of a zone, and the
mean and standard deviation of the throughput time of the totes, they used Whitt’s
queueing network analyzer (Whitt, 1982). Van der Gaast et al. (2012) studied a
single/multi-segment zone picking system with the block-and-recirculation protocol.
They showed that the system can be very accurately approximated by a related
product-form queueing network with the jump-over protocol.

In contrast, the analysis of conveyor systems has received much more attention. The
models from the literature can be categorized as either deterministic or stochastic.
Deterministic conveyors models were studied by for example, Kwo (1958); Muth
(1977); Bastani & Elsayed (1986); and Bastani (1988) who investigated feasibility
conditions, such as loading/unloading rates and conveyor lengths, for various simple
closed-loop conveyors. However, these models fail to capture the effects that random
fluctuations in either the input and/or output can have on the design and performance
of a conveyor system.

For stochastic models, Disney (1962) studied the behavior of a conveyor system as a
multichannel queueing system with ordered entry. This model served as the basis
for many other studies about conveyor systems (see Muth & White (1979) for a
survey of these models). Sonderman (1982) studied a conveyor system with a single
loading and unloading station where loads can recirculate. The author uses Whitt’s
queueing network analyzer (Whitt, 1982) to approximate the output process at the
unloading station and to study the effect of recirculation. Sonderman & Pourbabai
(1987) extended the model of Sonderman (1982) by allowing random access on the
conveyor.
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Coffman, Jr et al. (1988) studied a conveyor system for flexible manufacturing systems
and investigated the effect of the distance of input and output points of workstations
at which items leave and rejoin the conveyor. In order to study the performance
of the system, the conveyor queue was modeled by a Markov process. Schmidt &
Jackman (2000) modeled a recirculating conveyor as an open network of queues.
The system consists of one loading station, one unloading station, with two servers
performing the same service on loads entering the system, and a loop conveyor divided
into segments. Zijm et al. (2000) analyzed an automated kit transportation system
and studied a number of key elements of the system separately and subsequently
combined the results of this analysis in an Approximate Mean Value Analysis (AMVA)
algorithm. Bozer & Hsieh (2005) and Hsieh & Bozer (2005) modeled a conveyor
as a unidirectional closed loop consisting of discrete spaces or windows of equal
size, which hold at most one load or unit. They considered different machines that
are located around the conveyor with a pair of unloading and loading stations per
machine, modeling them as output and input queues.

All these papers analyze only particular aspects of a zone picking system, such as
recirculation and merging conveyor flows. In the next section, we integrate these
various aspects into a single model.

3.4 Queueing model for zone picking systems

Figure 3.2 shows the model for zone picking systems with merges, for the case of
two zones. Van der Gaast et al. (2012) studied a similar model, but they did
not model the merges. The zone picking system is modeled as a closed queueing
network with one entrance/exit, W zones, W + 1 merges, and W + 1 nodes that
describe the conveyor between a merge location and a zone or the entrance/exit. The
nodes are labeled in the following manner: the system entrance/exit is denoted as e,
Z = {z1, . . . , zW} denotes the set of zones,M = {m1, . . . ,mW+1} denotes the set of
merges, and C = {c1, . . . , cW+1} is the set of conveyors in the network. Finally, set
S = {e} ∪ C ∪M∪ Z is the union of all the nodes in the network. The following
assumptions are adopted for the network:
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System
entrance/exit e Conveyor c1 Zone z1

Zone z2

...

Conveyor c2

...

Conveyor c3

...

Merge m1 Merge m2

Merge m3

qz1

qz2

lm1 lm2

lm3

Figure 3.2: The corresponding queueing network with system entrance/exit station e,
conveyors C = {c1, c2, c3}, mergesM = {m1,m2,m3} and, zones Z = {z1, z2}.

• There is an infinite supply of totes at the entrance of the system. This means
that a leaving tote can always be replaced immediately by a new tote. Each
tote has a class r ⊆ Z, e.g., r = {z2, z3} means that the tote has to visit the
second and third zone.

• The total number of totes in the system or to be released is constant, N . As
long as the total number of totes in the zones, merges, and conveyor nodes is
less than N , new totes are released one-by-one at the system entrance where the
inter-release times are exponentially distributed with rate µe. The assumption
of a constant number of totes in the system is not restrictive, since our objective
is to study the maximum throughput capability of the system. In addition, zone
picking systems, especially in e-commerce warehouses, are typically heavily
utilized. This means that sufficiently many customer orders needing to be
picked at any point in time are available.

• The conveyor nodes are assumed to be infinite-server nodes with a deterministic
delay 1/µi, i ∈ C.

• Each zone has one order picker. The order picking time is assumed to be
exponentially distributed with rate µi, i ∈ Z, that captures both variations in
the pick time per order line and variations in the number of order lines to be
picked. The assumption of the exponential distribution can be relaxed to a
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phase-type distribution at the cost of a more complex state space. The same
holds for the number of order pickers per zone.

• When the order picker is busy, incoming totes at his or her station are stored
in a finite input buffer of size qi (≥ 0), i ∈ Z. Incoming totes are blocked when
the total number of totes in the input buffer equals qi.

• The merge nodes are assumed to be single server preemptive non-identical
repeat priority stations where totes on the main conveyor (high priority) have
absolute priority over the totes flowing out of the zones/entrance (low priority).
Whenever a high priority tote enters the merge, it will preempt any low priority
tote currently in service. After the high priority tote has left and no other tote
of high priority is currently at the merge, the low priority tote will repeat its
service. The time required to pass the merge, either for low or high priority
totes, is assumed to be exponentially distributed with rate µHi for high priority
totes and µLi for low priority totes, i ∈ M. Similar as for the zones, the
assumption of the exponential distribution can be relaxed.

• Each merge has a limited capacity of size li (≥ 0), i ∈ M to store low pri-
ority totes. This corresponds with the limited output buffer found after the
zones/entrance. When there are li low priority totes waiting at the merge node,
no incoming low priority tote will be accepted by the merge node and the low
priority tote has to wait at its current node, subsequently blocking the order
picker/entrance station from starting to work on the next tote in line. We can
distinguish two distinct cases for the unblocking procedure. In case li ≥ 1, the
tote leaves its current node and unblocks the order picker/entrance station,
only when there is at least one open position for low priority totes at the merge
node. Whenever there is no output buffer (li = 0), the order picker/entrance
station only unblocks after the current tote has passed the merge.

Let S (N) be the state space of the network, i.e. the set of states x = (xi; i ∈ S) for
which the number of totes in the system equals ∑i∈S ni = N . The state of node i ∈ C
is xi = (ri1, . . . , rini

), with ri1 as the class of the first tote in the node, and rini
as the

class of the last tote in the node. The state of node i ∈ {e}∪Z is xi = (ri1, . . . , rini
; yi)

where yi = 1 if the order picker/entrance is blocked since a tote has finished service
but cannot leave the zone since the merge is occupied and yi = 0 otherwise. The
state of merge node i ∈ M, is defined as xi =

(
rHi1, . . . , r

H
inH

i
; rLi1, . . . , r

L
inL

i

)
with
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ni = nHi + nLi as the number of totes with high and low priority respectively. The
number of low priority totes in each merge should not exceed the capacity of the
merge’s output buffer li; nLi ≤ li, i ∈M. Finally, the number of totes in each zone
satisfies the capacity constraint ni ≤ qi + 1, i ∈ Z, which implies that a tote cannot
enter the zone if the input buffer is full and the order picker is occupied/blocked.

A new tote of class r ⊆ Z is released at the system entrance with given probability ψr.
These release probabilities correspond to a known order profile that can be obtained
using, e.g., historical order data or forecasts. After release, a tote of class r moves
from the system entrance to the first merge node m1 with low priority. In general
after merging, a tote travels to conveyor node ci. After transport at conveyor node
ci, the tote will either enter the input buffer of zone zi if zi ∈ r and its input buffer
is not full, or move to the next merge mi+1 with high priority. In case the tote needs
to enter and the buffer is full, the tote skips the zone and also moves to the next
merge mi+1, while it keeps the same class and again with high priority. If the buffer
is not full, the tote enters the buffer of the zone and, after possibly waiting some
time in the buffer, the order picker picks the required order lines. After all picks are
completed, the tote will enter the merge node with low priority and changes its class
to s = r\ {zi}. When the tote successfully passes the merge, it is routed to conveyor
node ci+1. After visiting the last conveyor node cW+1, all the totes with r 6= ∅ are
routed to the first merge node m1 with high priority; the other totes with r = ∅
move to the exit and are immediately replaced by a new tote which is waiting for
release at the entrance. Denote by pir,js (x) the state dependent routing probability
that a tote of class r is routed from node i to node j and enters as a class s tote
given that the network is in state x. Then, the routing probabilities are:

pe∅,m1r (x) = ψr, (3.1)

pmir,cir (x) = 1, i = 1, . . . ,W, (3.2)

pcir,zir (x) = 1, i = 1, . . . ,W, zi ∈ r and nzi
< qzi

+ 1, (3.3)

pcir,mi+1r (x) = 1, i = 1, . . . ,W, zi /∈ r or nzi
= qzi

+ 1, (3.4)

pzir,mi+1s (x) = 1, i = 1, . . . ,W, s = r\ {zi} , (3.5)

pcW +1∅,e∅ (x) = 1, (3.6)

pcW +1r,m1r (x) = 1, r 6= ∅, (3.7)
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where every other probability is equal to 0.

Exact analytic methods to analyze queueing networks are only known for a very
limited set of models that satisfy certain conditions. The majority of these models
have a product-form stationary distribution (Jackson, 1963; Gordon & Newell, 1967;
Baskett et al., 1975). For these models, it can be proven that the stationary
distribution of the network can be expressed as a product of factors describing the
state of each node. Based on this independence assumption, exact efficient analysis
algorithms such as the convolution algorithm (Buzen, 1973) and the mean-value
analysis (MVA) (Reiser & Lavenberg, 1980) can be applied to analyze the models.

However, the previously described queueing network does not have a product-form
stationary distribution, because of the priorities at the merge nodes (Bryant et al.,
1984), and because of the dynamic block-and-recirculate protocol (Van der Gaast
et al., 2012). Also, direct analysis of the resulting underlying Markov chain is not
feasible due to state-space explosion which prevents analysis of the Markov chain
within reasonable time and storage. Usually, non-product-form queueing networks
are studied using approximation analysis. An overview of many general techniques
is presented in Bolch et al. (2006).

Van der Gaast et al. (2012) show that the queueing network without merges can be
very accurately approximated by a related product-form queueing network with the
jump-over protocol. The idea of the approximation is to replace the state dependent
routing with state independent routing in such a way that the flows in the new
network match the flows of the original network. This is done by introducing a
Bernoulli process that randomly determines for every tote that intends to visit zi,
i ∈ Z and independently of whether the tote actually visited zi or not, whether
the tote should return to zi. The probability bi of the Bernoulli process that a tote
should return to zi is chosen in such a way that it corresponds with the probability
that a tote is blocked by a zone in the original network. Naturally, the blocking
probabilities are not known in advance, but they are estimated iteratively after an
initial guess from the approximation.

The queueing network with merges and the dynamic block-and-recirculate protocol
can be transformed into a queueing network with jump-over blocking as follows.
First, routing probabilities (3.1)-(3.7) become state independent. This means after
service at ci, each tote with zi ∈ r is routed to zi regardless of whether the buffer of
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the zone is full (3.8)-(3.9). The tote will enter the buffer if it is not full; otherwise
the tote instantaneously skips the node. Then for each class r tote, independent
of whether the tote visited or skipped zi (because of a full buffer), pzir,mi+1r = bzi

and pzir,mi+1s = 1 − bzi
, i = 1, . . . ,M , where s = r\ {zi}. This means that a tote

of class r is tagged as skipped zi and routed to the next merge node mi+1 with the
same class with probability bzi

, and otherwise, the tote is tagged as visited zi with
probability 1− bzi

and the class of the tote changes to s = r\ {zi}. Summarizing,
the routing probabilities (3.3)-(3.5) are replaced by

pcir,zir = 1, i = 1, . . . ,W, zi ∈ r, (3.8)

pcir,mi+1r = 1, i = 1, . . . ,W, zi /∈ r, (3.9)

pzir,mi+1r = bzi
, i = 1, . . . ,W, (3.10)

pzir,mi+1s = 1− bzi
, i = 1, . . . ,W, s = r\ {zi} . (3.11)

Since the recirculation process is made independent of the state of the buffer, es-
sentially the block-and-recirculate protocol is replaced by the jump-over blocking
protocol (Van Dijk, 1988). Under this protocol, each tote of class r leaving zi, either
after service or skipping, continues to follow the same Markovian routing. The
advantage of the jump-over blocking protocol, also known as “overtake full stations,
skipping, and blocking and rerouting”, is that closed-form analytic results for single-
class queueing networks are available in the literature (Pittel, 1979; Schassberger,
1984; Van Dijk, 1988; Economou & Fakinos, 1998).

However, this jump-over network still has no product-form due to the finite capacity
priority queues. In this chapter, we develop a decomposition-based approximation
by studying each merge and zone location in isolation. Our method progressively
aggregates parts of the network and replaces the aggregated subnetwork by a flow
equivalent single node. The approximation directly solves the global balance equations
of the underlying Markov chain of the subnetworks for its steady-state distribution.
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3.5 Approximate aggregation method

3.5.1 Aggregation technique

The aggregation technique was introduced by Chandy et al. (1975) to study the
performance of product-form queueing networks (Baskett et al., 1975). The technique
has been extended for more general multi-class queueing networks by Kritzinger et al.
(1982), Walrand (1983), Hsiao & Lazar (1989), and Boucherie & van Dijk (1993).
Based on Norton’s theorem, the idea of the aggregation technique is to decompose
the queueing network into subnetworks and to replace each subnetwork by a flow
equivalent single server with load-dependent service rates. The rates of the flow
equivalent server (FES) are obtained by studying the subnetwork in isolation, i.e. by
short-circuiting all nodes that are not in the subnetwork. The service rate of the
kth FES fk when n totes are present is taken equal to Xk (n) the throughput of the
closed subnetwork with population n;

µfk
(n) = Xk (n) , n = 1, . . . , N. (3.12)

The aggregation method is proven to be exact if the queueing network has a product-
form stationary distribution (Chandy et al., 1975), and can be used as a basis to
analyze non-product form queueing networks (Bolch et al., 2006).

Figure 3.3a presents the queueing network of Section 3.4. It is analyzed by the
approximate aggregation method as shown in Figure 3.3b, where the nodes are
partitioned into W + 2 subnetworks as follows;

H0 = C, (3.13)

H1 = {f0} ∪ {e} ∪ {m1} , (3.14)

Hk+1 = {fk} ∪ {zk} ∪ {mk+1} , k = 1, . . .W. (3.15)

The first step of the approximation is to determine the chain visit ratios Vi that a
tote visits node i;

Vi =
∑

r⊆Z λir∑
r⊆Z λer

, i ∈ S, (3.16)
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entrance/exit e Conveyor c1 Zone z1
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(a) Original queueing network
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(b) Approximation steps

Figure 3.3: The approximate aggregation technique applied to a zone picking system
with W zones, where each subnetwork is replaced by a flow equivalent server with
load-dependent service rates.
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where λir is the class dependent visit ratio of a class r tote to node i satisfying the
traffic equations (up to a multiplicative constant)

λir =
∑
j∈S

∑
s⊆Z

λjspjs,ir, i ∈ S, r ⊆ Z. (3.17)

The next step is to study subnetwork H0 in isolation. Since subnetwork H0 only
consists of conveyor nodes with deterministic service, the average throughput of the
subnetwork with population n is simply given by;

X0 (n) =
∑
i∈H0

n

Vi/µi
, n = 1, . . . , N. (3.18)

The marginal queue-length probabilities π0
i (j|n), n = 1, . . . , N , i ∈ H0, can be

calculated in a similar fashion as a service center of Type-3 (infinite server with
general distributed service times) in a BCMP network (Baskett et al., 1975).

Then for each subsequent subnetwork Hk, the previous subnetwork is aggregated into
FES fk−1 with service rates given by (3.12) and analyzed in isolation together with
the nodes in Hk. For each of these networks, we only need to know the visit ratio of
totes that visit the entrance/zone or not, and the ratio of totes that skip the zone,
which depends on bzi

(see Section 3.3.2 of Van der Gaast et al. (2012)). This process
is repeated until the last subnetwork HW+1 from which the overall performance
statistics such as the throughput are obtained. The performance of the individual
nodes can now be calculated by disaggregating the network using the marginal queue
length probabilities obtained from each subnetwork (see Section 3.5.3).

Our approximation method differs from other aggregation heuristics, e.g. Marie
(1979) and Neuse & Chandy (1982). These heuristics start by replacing each node
that does not satisfy the product-form assumption by an equivalent product-form
node. Then these heuristics solve the subnetwork iteratively and better estimates
for the equivalent node are found. This is repeated until it resembles the original
node up to a certain prespecified threshold. However, convergence might be slow
and many iterations may be required, while the number of iterations of our approach
is equal to the number of subnetworks, and the underlying Markov chain is solved
only once.
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Section 3.5.2 shows how the other subnetworks Hk, k = 1, . . . ,W + 1 can be studied.
The full approximate method is presented in Section 3.5.3.

3.5.2 Solving subnetworks k ≥ 1

In this section, we describe the analysis of subnetwork H1 till HW+1. Each of
these subnetworks consists of a node with preemptive non-identical repeat priority;
the merge, and thus cannot be analyzed using conventional product-form solution
techniques (Bryant et al., 1984). Using aggregation, we reduce the size of the problem
to a small system that we can efficiently model as a finite Markov process and directly
solve the global balance equations of the underlying Markov chain for its steady-
state. This allows us to calculate for a given n = 1, . . . , N the throughput Xk (n) of
subnetwork Hk.

For each subnetwork Hk, k = 1, . . . ,W + 1 we define a Markov process with state
space Wk (n) with states (i, j, l) and the number of totes in the subnetwork is n. The
state variable i denotes the number of totes waiting at the input buffer or in service
either in e or zk−1, state variable j represents the number of totes with low priority
at merge mk and includes the totes that finished service in e or zk−1 but cannot enter
the output buffer or cross the merge. Finally, state variable l denotes the number of
totes with high priority at the merge. Note that the number of totes at the FES fk−1

for any state is implicitly given by u = n− i− j − l.

Let the transition rates from state (i, j, l) to state (i′, j′, l′) be given by q(i,j,l)(i′,j′,l′).
For a tote leaving FES fk, the rates for Hk, k > 1 can be written as follows:

q(i,j,l)(i+1,j,l) = Vzk−1µfk−1 (u) , u < n, i+ yzk−1 < qzk−1 + 1, (3.19)

q(i,j,l)(i,j,l+1) =
[
Vmk
− Vzk−1

]
µfk−1 (u) , u < n, i+ yzk−1 < qzk−1 + 1, (3.20)

q(i,j,l)(i,j,l+1) = Vmk
µfk−1 (u) , u < n, i+ yzk−1 = qzk−1 + 1. (3.21)

Transition rate (3.19) is the rate at which a tote from FES fk−1 enters the zone. A
tote can only enter the input buffer if the number of totes at the zone is lower than
the zone’s maximum capacity qzk−1 +1. The number of totes currently in zk−1 is equal
to i plus an additional tote yzk−1 = 1{j=lmk

+1}, where the indicator function 1{.} is
equal to one if there is a tote which just received service and is waiting to leave the
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zone, but cannot since the output buffer is full (j = lmk
+ 1). Transition rate (3.20)

denotes the rate at which a tote moves to merge mk if the tote does not need to visit
the zone. If the zone is blocked (i+ yzk−1 = qzk−1 + 1), the totes that are supposed to
go to the zone are directly transported to the merge (3.21) with high priority. The
rates for H1 are defined similarly, except (3.21) is not defined since the input buffer
of the entrance station is assumed to be infinite.

The rate at which a tote leaves the zone or the merge is given as follows:

q(i,j,l)(i−1,j+1,l) = µzk−1 , i > 0, j < lmk
+ 1, (3.22)

q(i,j,0)(i,j−1,0) = µLmk
, j > 0, (3.23)

q(i,j,l)(i,j,l−1) = µHmk
, l > 0. (3.24)

Transition rate (3.22) denotes the rate of a service completion of a tote at zone zk−1,
whereas (3.23) and (3.24) denote the rate of a service completion of a tote at merge
mk for low and high priority totes, respectively. A low priority tote can only complete
its service when there is no high priority tote at the merge. Again, the rates for H1

are defined similarly.

Figure 3.4 shows the Markov chain of subnetwork Hk on state space Wk (n) where
the number of output buffer places equals lmi

= 1. From Figure 3.4, we can see that
the Markov chain is irreducible and that it is possible to partition state space Wk (n)
such that

Wk (n) =
n⋃
l=0

Wk
l (n) , Wk

l (n) =
{
wkl,1 (n) , . . . , wkl,sl

(n)
}
,

Wk
l (n)

⋂
Wk

l′ (n) = ∅ for l 6= l′,

where partition Wk
l (n) consists of sl states where the number of high priority totes

at merge mk is equal to l.
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Then the states of Wk (n) can be arranged such that the generator matrix of (3.19)-
(3.24) is of block-tridiagonal form, that

Q =



Q00 Q01

Q10 Q11 Q12

Q21 Q22 Q23
. . . . . . . . .

Qn−1,n−2 Qn−1,n−1 Qn−1,n

Qn,n−1 Qnn


, (3.25)

where Qij ∈ Rsi×sj . In this case, the Markov process is said to be a finite level-
dependent quasi-birth-and-death (LDQBD) process, and, l = 1, . . . , n, the sub-
set Wk

l (n) of states is referred to as the process level with level number l (La-
touche & Ramaswami, 1999). In Bright & Taylor (1995) an efficient procedure
is given to compute the stationary distribution π of a LDQBD process. The pro-
cedure partitions stationary distribution π = (π0, π1, . . . , πi, . . . , πn), with πi =(
πk (0, 0, i) , πk (1, 0, i) , πk (0, 1, i) , . . .

)
and uses the fact that

πi+1 = πiRi, i ≥ 0, (3.26)

with non-negative matrices Ri ∈ Rsi×si+1 that depend on the level. The basic idea
behind the procedure is to exploit the fact that these matrices satisfy the infinite
recurrence scheme

Ri = −Qi,i+1 (Qi+1,i+1 +Ri+1Qi+2,i+1)−1 , (3.27)

and where π0 is a solution of the equation

π0 (Q00 +R0Q10) = 0. (3.28)

Bright & Taylor (1995) show that the inverse matrices in (3.27) exist, and that
Q00 +R0Q10 has the characteristics of a generator matrix of an irreducible CTMC
with a finite state space. The solution of π0 is unique up to a multiplicative constant
and can be chosen to be non-negative.
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The boundary condition at maximum level n is given by

Rn−1 = −Qn−1,nQ
−1
nn . (3.29)

Thus, an exact algorithm for computing the stationary distribution of finite LDQBDs
proceeds as follows. Determine Rn−1, then compute Ri for i = n − 2, . . . , 0 using
(3.27). Determine π0 by choosing a nontrivial solution of (3.28), and use (3.26) for
computing π1, π2, . . . , πn. Finally, normalize π.

After obtaining the marginal distribution of the Markov chain with transition matrix
(3.25) it is now possible to calculate the marginal distribution of the nodes in
subnetworkHk. Let πki (m|n) be the marginal distribution of node i in subnetworkHk

where there are m totes in the node and the population size is n. The marginal
distribution for the three nodes in the subnetwork is given as follows:

πkfk−1
(m|n) =

∑
w∈Wk(n):m=n−i−j−l

πk (i, j, l) , (3.30)

πkzk−1
(m|n) =

∑
w∈Wk(n):m=i+yzk−1

πk (i, j, l) , (3.31)

πkmk
(m|n) =

∑
w∈Wk(n):m=l+j−yzk−1

πk (i, j, l) . (3.32)

Given the marginal queue-length probabilities, the average throughput of the subnet-
work with population n is given by;

Xk (n) =
n∑
j=1

πkfk
(j|n)µfk

(j) , n = 1, . . . , N, (3.33)

which is used as input to analyze subnetwork Hk+1.

After analyzing the last subnetwork, the marginal queue-length probability for each
node in the queueing network can be obtained by a disaggregation step using the
marginal queue-length probability of the subnetworks. The marginal probability
πi (j|l) of j totes present at node i given that the number of totes in the system is l
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can be obtained as follows:

πi (j|l) =


N∑

mk=0
πki (j|mk)

W∏
p=k+1

 N∑
mp=0

πpfp
(mp−1|mp)

πW +1

fW
(mW |l), i ∈ Hk,

πW+1
i (j|l), i ∈ HW+1.

(3.34)

Using the marginal queue-length probabilities performance statistics, such as the
system throughput, node utilization, queue lengths can now easily be calculated.

3.5.3 Algorithm

In this section, we summarize the approximation procedure for analyzing the queueing
network of Section 3.4. As shown in Section 3.5.1 and Section 3.5.2, we analyzed the
queueing network by progressively aggregating parts of the network. However, in
the first step of the algorithm, the visit ratios are calculated using the jump-over
approximation and the unknown blocking probabilities of the zones bi, i ∈ Z,
(see Section 3.4). In order to analyze the queueing network, we use a modified
version of the algorithm presented in Van der Gaast et al. (2012). Similar as in the
original algorithm, the blocking probabilities bi, i ∈ Z are initialized by 0 and are
subsequently updated until all the differences between the current and the previous
blocking probability are smaller than a small value ε. In each iteration of the current
version of the algorithm, the blocking probabilities are obtained by analyzing the
subnetworks Hk, k = 0, . . . ,W + 1.

The approximation procedure can now be summarized as follows:

Step 1: Analyze the subnetwork H0 for different population sizes n = 1, 2, . . . , N .
For each n, obtain the marginal queue length probabilities π0

i (m|n), i ∈ H0

and throughput X0 (n) (3.18).

Step 2: For k = 1, . . . ,W + 1. Construct FES fk−1 using (3.12) and analyze Hk for
different population size n = 1, 2, . . . , N . Obtain the marginal queue length
probabilities πki (m|n) and throughput Xk (n) (3.33).

Step 3: The throughput rate of the system is given by X (N) = XW+1 (N) and the
blocking probabilities are bi = πi (qi + 1|N − 1) , i ∈ Z (3.34).
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Step 4: Go back to Step 1 with the new estimates for blocking probabilities bi,
continue until convergence of all the blocking probabilities.

3.6 Numerical results

In this section, we compare the results of our approximation method with a discrete-
event simulation of the real queueing network. We test the performance of the
approximation method for a zone picking system without recirculation in Section 3.6.1
and test it with recirculation in Section 3.6.2. In Section 3.6.3, we analyze whether
the order in which the subnetworks are analyzed in the approximation method has
a significant effect on the performance statistics. Finally, in Section 3.6.4, we study
the effect of additional places in either the input or output buffer of a zone on the
performance of the system.

For each run, the simulation model was run 10 times for 1,000,000 seconds, preceded
by 10,000 seconds of initialization for the system to become stable, which guaranteed
that the 95% confidence interval width of the average throughput is less than 1% of
the mean value for all the runs. In the algorithm ε = 10−3, and convergence usually
occurs within a few iterations.

3.6.1 Zone picking system without recirculation

In order to study the performance and accuracy of the algorithm of Section 3.5.3, we
start by considering a zone picking system with 2, 4, or 6 zones without recirculation.
The iterative algorithm of Van der Gaast et al. (2012) does not need to be used in
case of no recirculation, since bi = 0, i ∈ Z. In a system with W zones, a tote can
visit a total of 2W possible combinations of zones. We assume that each combination
of zones (a class) has the same probability of being released into the system, except
the empty set, e.g., ψ∅ = 0 and ψr = 1/

(
2W − 1

)
. Furthermore, we assume that

each zone, merge, and conveyor is identical to a node of the same type. The time
required to prepare a new tote to be launched into the system at the entrance station
is equal to µ−1

e = 5 seconds. Each conveyor node requires a fixed deterministic time
to cross of µ−1

i = 60 seconds, i ∈ C, whereas the time required to pass a merge node
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is equal to
(
µLi
)−1

=
(
µHi
)−1

= 3 seconds, i ∈M. The time to pick products for a
tote at a zone is µ−1

i = 30 seconds, i ∈ Z. The number of order pickers in each zone
is equal to 1 and the input buffer sizes of each zone is respectively qi =∞, i ∈ Z,
which means that an incoming tote is always accepted by the buffer of the zone.
Finally, it is assumed that there is no output buffer after a zone and the entrance
(li = 0, i ∈M). The order picker or the entrance station can only start to work on
the next tote in line when the current tote has crossed the merge.

Table 3.1: Results of the average throughput X (N) per hour of the approximation
model and simulation for a zone picking system with 2, 4, and 6 zones without
recirculation.

2 zones 4 zones 6 zones

N Approx Simulation Error Approx Simulation Error Approx Simulation Error

5 70.77 71.03(±0.10) -0.37 45.39 45.39(±0.03) -0.01 32.77 32.77(±0.03) 0.02
10 119.34 120.49(±0.32) -0.95 86.20 86.23(±0.08) -0.04 63.47 63.50(±0.07) -0.05
15 141.93 142.91(±0.40) -0.69 120.84 120.83(±0.15) 0.01 91.56 91.45(±0.07) 0.12
20 150.14 150.82(±0.40) -0.45 148.03 148.19(±0.20) -0.11 116.49 116.54(±0.10) -0.04
25 153.70 153.89(±0.32) -0.13 167.62 167.69(±0.42) -0.04 137.84 137.86(±0.15) -0.01
30 155.64 155.94(±0.22) -0.19 180.88 181.07(±0.36) -0.11 155.41 155.49(±0.29) -0.05
35 156.87 157.12(±0.34) -0.16 189.69 189.91(±0.40) -0.12 169.36 169.24(±0.34) 0.07
40 157.71 157.99(±0.47) -0.18 195.68 195.88(±0.30) -0.10 180.18 180.13(±0.28) 0.02
45 158.33 158.66(±0.38) -0.21 199.91 199.95(±0.52) -0.02 188.47 188.67(±0.35) -0.11
50 158.80 158.83(±0.43) -0.02 203.02 202.86(±0.65) 0.08 194.84 194.96(±0.33) -0.06
55 159.17 159.22(±0.35) -0.03 205.39 205.60(±0.42) -0.10 199.80 199.79(±0.39) 0.00
60 159.47 159.47(±0.42) 0.00 207.25 207.28(±0.33) -0.02 203.72 203.76(±0.41) -0.02

Table 3.1 presents the results of both the approximation method and the simu-
lation method in terms of the average throughput X (N) per hour for different
numbers of totes in the system. The numbers in parentheses represent the stan-
dard deviations of the ten different runs of the simulation model and the col-
umn error shows the relative error between the approximation and the simulation;
(Approx−Simulation)/Simulation×100%. The results show that the approximation
method accurately predicts the average throughput of the system for each of the
three configurations since all the errors are within 1%. Also, for any N , the average
throughput will never decrease due to the assumption of infinite input buffers for
the zones.
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3.6.2 Zone picking system with recirculation

For the next comparison, we test the performance and accuracy of the algorithm of
Section 3.5.3 for a zone picking system with recirculation. It is assumed that all the
parameters are the same as in Section 3.6.2, with the exception that each zone now
has a finite input buffer of size qi = 3, i ∈ Z.

Table 3.2 presents the results of the three configurations for both the approximation
method and the simulation in terms of the average throughput X (N) per hour.
The approximation slightly overestimates the average throughput when reaching
the maximum average throughput capability of the system. For example, in the
configuration with two zones, the maximum throughput capability that can reached
is ±106 totes per hour if N = 30. Afterwards the average throughput starts to
decrease because totes flowing out of a zone have to wait a long time until they
can be merged on the main conveyor, and therefore prevent the order picker from
continuing his/her work on the next tote in line and prevent the entrance station
from releasing new totes. On the other hand, totes on the main conveyor recirculate
until there is an open position in the input buffer of the zone. A similar effect can
be seen in the configuration with 4 and 6 zones.

Figure 3.5 shows the same results for the average throughput, as well as, the results
of the approximation method where the merge node is replaced by a single-server
queueing node with an infinite buffer and with the same service distribution as the
current merge node. This means that totes entering the merge are served on a
first-come first-served basis and the order picker/entrance station is never blocked
because of a full output buffer. The figure shows that for the approximation without
the merges large errors are made when the number of totes N becomes large. In fact,
the throughput will never decrease since any additional tote that enters the system
can always enter the conveyor. Eventually, the throughput stabilizes at a point when
the utilization of the order pickers equals 1. It can be concluded that modeling the
merge operation in detail is of great importance because otherwise the maximum
throughput capability of the system cannot be determined correctly. This can lead
to the expectation that the system has a much higher throughput capability than
what is possible in reality.
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Figure 3.5: Results of the average throughput X (N) per hour of the approximation
model and the simulation model with and without merges modeled for 2, 4, and 6
zones without recirculation.
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Table 3.2: Results of the average throughput X (N) per hour of the approximation
model and simulation for a zone picking system with 2, 4, and 6 zones with
recirculation.

2 zones 4 zones 6 zones

N Approx Simulation Error Approx Simulation Error Approx Simulation Error

5 54.33 54.73(±0.15) -0.74 36.60 36.99(±0.11) -1.05 26.68 27.17(±0.10) -1.80
10 80.04 79.56(±0.21) 0.60 59.67 59.85(±0.17) -0.30 44.76 45.34(±0.11) -1.29
15 94.31 93.26(±0.22) 1.13 76.28 75.95(±0.29) 0.45 58.81 58.95(±0.13) -0.24
20 102.42 101.08(±0.30) 1.33 88.77 87.79(±0.24) 1.12 70.20 69.98(±0.12) 0.32
25 106.55 105.37(±0.34) 1.12 98.33 96.91(±0.20) 1.47 79.64 79.07(±0.17) 0.71
30 107.74 106.53(±0.32) 1.13 105.65 103.89(±0.23) 1.70 87.54 86.54(±0.15) 1.16
35 106.46 105.28(±0.30) 1.12 111.19 109.07(±0.17) 1.94 94.20 92.89(±0.21) 1.41
40 102.96 102.00(±0.25) 0.95 115.23 112.84(±0.18) 2.12 99.80 98.28(±0.26) 1.54
45 97.40 96.54(±0.26) 0.89 117.98 115.40(±0.22) 2.23 104.50 102.70(±0.18) 1.75
50 89.98 89.28(±0.29) 0.79 119.54 117.10(±0.32) 2.09 108.39 106.32(±0.28) 1.95
55 81.10 80.45(±0.34) 0.80 120.01 117.12(±0.32) 2.47 111.57 109.29(±0.22) 2.09
60 71.36 70.84(±0.14) 0.73 119.45 116.75(±0.26) 2.31 114.09 111.66(±0.17) 2.18

3.6.3 Order of solving the subnetworks

In the algorithm of Section 3.5.3, Section 3.6.1, and Section 3.6.2, it was assumed that
the subnetworks were solved starting from the subnetwork with all the conveyors,
then the subnetwork with the entrance/exit station until the subnetwork with the
last zone. However, any other sequence of analyzing the subnetwork is also feasible,
but based on Norton’s theorem this will not lead to the exact same results because
the queueing network does not have a product-form solution. In this section, we test
how the sequence of solving the subnetworks has an effect on the average throughput
of the system.

We ran experiments for a zone picking system with W = 4 zones with a varying
number of totes in the system N = 2, . . . , 40. The input/output buffer sizes of the
zones are assumed to be equal, and varied between 1, 2, and 3 positions. All the
other parameters are similar as in Section 3.6.1. We test two extreme cases; solve
the subnetworks starting the conveyor subnetwork up to the subnetwork with the
last zone (forward) and the reverse situation where the conveyor subnetwork is again
analyzed first, but then the subnetwork with the last zone up till the subnetwork
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Figure 3.6: Relative errors in the average throughput X (N) for solving the subnet-
works in a forward or backward sequence for a zone picking system with W = 4
compared with the simulation model.

with the entrance/exit are analyzed (backward). In total, this gives 234 different
cases (117/117 cases forward/backward).

Figure 3.6 shows the relative errors ∆% for both the forward and the backward
method with simulation for the average throughput X (N). Both approximations
obtain results that are all within 3% compared to the simulation results. If we
compare the results from the forward and backward method, we can see that they
almost fit perfectly on an increasing 45 degree line. This means that even when
analyzing the subnetworks in a different sequence, almost exactly the same results
are obtained for the average throughput. This also holds for other node specific
statistics such as the utilization and average queue lengths.

3.6.4 Effect of buffer sizes of the zones

Finally, we test the effect of additional input and output positions in the buffer of
the zones on the performance of a zone picking system with W = 2 zones. This
is important for warehouse managers since additional conveyor space is expensive
and requires space. Therefore, deciding on the optimal number of input and output
positions is essential for system performance, as well as, for budget constraints. We
assume that zones are located parallel to the main conveyor (as shown in Figure 3.1)
and that adding each additional buffer position increases the time required to travel
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the conveyor by 3 seconds. The number of positions in the input/output buffer of
the zones, qi and li, is varied from 0 to 2 and are assumed to be the same across
all zones in the system. All the other parameters are the same as in Section 3.6.2,
except that the time required to pass a merge node

(
µLi
)−1

=
(
µHi
)−1

, i ∈M varies
between 1, 3, and 5 seconds.

Figure 3.7 presents the results for the average throughput for the three different
merge times and the seven configurations of input/output buffer sizes. Only the
results from the approximation model are shown, but the relative errors compared to
simulation model are of the same magnitude as in Section 3.6.2. If we compare the
three figures, we can see the maximum throughput capability increases as the merge
times decrease when comparing the same input/output buffer positions. In addition,
in Figure 3.7c the average throughput decreases much faster than in Figure 3.7a and
Figure 3.7b.

Also, in all three figures it can be seen that when N is low it is more beneficial to
have an additional position in the input buffer, since it decreases the possibility that
a tote is rejected from entering the buffer of the zone and has to recirculate on the
main conveyor. However, when N increases, it becomes more attractive to have an
additional output buffer position, since the average time required to merge and the
fact the order picker is stopped more often becomes higher than the time it takes
for a tote to recirculate once. Also, when the system is heavily utilized, the supply
of new totes to the zones stalls due to congestion at the merges. As a consequence,
increasing the length of the output buffer is more attractive than increasing the size
of the input buffer. This can especially be seen when comparing li = 0, qi = 1 with
li = 1, qi = 0, i ∈ Z.

3.7 Conclusion and further research

In this chapter, we developed an analytical model for studying the merge operation
in zone picking systems. A decomposition-based approximation was used to study
each merge and zone in isolation. Our method progressively aggregated parts of the
network and replaced the aggregated subnetwork by a flow equivalent single node.
The approximation directly solved the global balance equations of the underlying
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Figure 3.7: Results of the average throughput X (N) per hour of the approximation
model and the simulation model for a zone picking system with 2 zones with
different merging times and different input/output buffer sizes qi and li.
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Markov chain of the subnetworks for its steady-state distribution. The results show
that for a wide range of parameters, the approximation was able to predict the
maximum throughput capability of a zone picking system very accurately compared
to simulation. The model is capable of predicting the loss in throughput given the
level of congestion and blocking in the system, and can be used to allocate input and
output buffer spaces in order to maximize the throughput capability of the system.
A topic for further research would be to apply the approximation to study conveyor
merges in other order picking and sorting systems.





4 Case study: product allocation
methods in zone picking systems

4.1 Introduction

Due to the need for lower delivery costs, shorter customer response times, and higher
customer service, the importance of warehousing in the supply chain has grown
significantly. In order to increase warehouse performance and to achieve higher
customer satisfaction, a warehouse should be adequately and robustly designed and
controlled (De Koster et al., 2007). Out of all the activities carried out in a warehouse,
order picking, the process of retrieving customer orders from their storage locations,
is the most labor-intensive and costly of them all.

When designing a new order picking system and, afterwards, controlling the system,
many decisions have to be taken on different strategic, tactical, and operational levels
(Rouwenhorst et al., 2000). Strategic decisions include the level of automation, how
to organize the material flow, as well as, which storage and material handling system
to use. Tactical decisions, on the other hand, consist of the layout dimensions, and
the product allocation. Finally, operational decisions include, e.g., which picking
policies to use (discrete picking, batching, or zoning), the routing of order pickers
(e.g. S-shaped, largest gap), and how and when to release a new customer order that
needs to be picked. However due to the complex nature of an order picker system,
these decisions are not always in line with each other and affect the performance of
the order picking system in different ways. For example, the efficiency of the order
picking process can be increased by large pick batches, but at the same time the
responsiveness of the order picking process will decrease since customer orders have
to wait longer before the next picking cycle starts. In addition, when in practice
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a new order picking system is designed and implemented, feasibility is often of
main concern rather than optimal performance. Moreover, the performance of an
order picking system is largely dependent on the variability that occurs within the
system, e.g. by varying customer order arrivals, by different order profiles, and by
varying pick times. Therefore, analytical models that properly describe variability in
order picking systems are extremely valuable in early design phases to test various
design alternatives and decisions. In addition, in later phases they can help both
designers and managers to create optimal design and control methods to improve
the performance of the systems.

In this chapter, we investigate how the performance of a current order picking system
of a large wholesaler supplying non-food items to supermarkets is affected by different
product allocation methods. The system consists of a zone picking system with
dynamic storage. Zone picking is one of the most popular picker-to-parts order
picking methods for companies with a fairly large number of customer orders, picked
from a large assortment of relatively small-sized products, and low to moderate
number of picks per order (Van der Gaast et al., 2012). Dynamic storage refers to
the situation that per zone only a fraction of the products is stored in the picking
area (Yu & De Koster, 2010). An automated Storage and Retrieval (S/R) machine
then retrieves products, when they are requested, from the bulk storage area which is
located behind the zone. In this chapter, we compare, in particular, different product
allocation methods and test their influence on system performance. We test a product
allocation method that minimizes the number of segments a tote on average has to
visit and a method that applies workload balancing between segments, i.e. zones
connected by a recirculating conveyor, in order to reduce congestion and potential
blocking in the system. In addition, we combine both methods into a single method
that tries to minimize simultaneously the average number of segments a tote visits
and applies workload balancing between segments. Using the analytical framework
of Van der Gaast et al. (2012) and verifying with simulation, we find that product
allocation methods can significantly influence the performance of a zone picking
system. In particular, a product allocation that only applies workload balancing
between segments reduces the system throughput on average by 8% compared to
a product allocation that minimizes the number of segments a tote on average has
to visit. On the other hand, blocking of zones and segments is significantly reduced
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by a product allocation that applies workload balancing, e.g. segments are blocked
7.6% on average when a product allocation that minimizes the number of segments
is used to 0.3% on average in the other case. As such, it provides a valuable tool for
initial product allocation decisions for zone picking systems and the consequences
strategic decisions can have on the overall performance of the system.

The organization of this chapter is as follows. In Section 4.2 a detailed description
of the real-life system is given. In Section 4.3 several different methods of product
allocation are presented in order to test their influence on system performance. We
extensively analyze the results of the product allocation methods in Section 4.4 for
the real-life system. Finally, in Section 4.5 we conclude and suggest some extensions
of the model and further research topics.

4.2 System description

The lay-out of the order picking area in the warehouse studied in this chapter is
shown in Figure 4.1. The part of the warehouse dedicated to picking is divided into
four interconnected closed-loop segments of which three are on the first floor and one
is on the second floor; see Figure 4.1a. When a new customer tote is released into the
system at the entrance station, the first segment it encounters is segment p, which
consists of three zones, {zp1 , zp2 , zp3}. In these zones the order pickers pick products from
pallets. The other three segments, 1, 2, 3, each consists of eight zones, {z1

1 , . . . , z
1
8},

{z2
1 , . . . , z

2
8}, {z3

1 , . . . , z
3
8}, where each zone uses pick-to-light and products are picked

from product bins that are reshuffled when needed by the dynamic storage system. In
each zone an order picker is responsible for picking products from his or her dedicated
part of the system. On a normal working day order picking lasts for 9 hours and
there are in total 220 totes simultaneously in the system that need to be served. On
busy days, this number can increase to 280 before the conveyor becomes congested
and long merge times start to occur. In addition, the workload control mechanism
sets an upper limit of 95 totes that can be present in each segment at the same time.

In Figure 4.1b a zone is shown together with the dynamic storage system. Products
are stored at two locations; the picking area and the bulk storage area. Products
stored in the picking area are easily accessible by the order picker and are used to
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Figure 4.1: Overview of the system lay-out of the order picking system.
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fulfill customer totes that are waiting at the zone. All the other products are stored
in the bulk storage area, which is situated behind the picking area. Whenever a
product is needed for picking, the Automated Storage and Retrieval (S/R) machine
retrieves it from the bulk area, just in time (Yu & De Koster, 2010). Whenever the
product is not needed anymore, the S/R machine brings it back to the bulk area.
The advantage of a dynamic storage system is that only a fraction of the products
is stored in a compact picking area which leads to reduced walking distances and
increased ergonomics as it requires less manual lifting and carrying products than a
conventional zone picking system. Also, the S/R machine can be used for automated
replenishment reducing the chances of congestion in aisles by manual replenishment
(Yu & De Koster, 2010).

For five representative picking days (9th-10th and 13th-15th of February 2012),
data about release probabilities and service times of the zones were obtained after
analyzing system logs from the Warehouse Management System (WMS). In Table 4.1
for each of the five picking days the number of order lines picked per zone and the
number of times a tote visited a zone are given. It can be seen that the zones in
the three pick-to-light segments have about the same number of picks and visits.
However, the number of picks and visits in the zones of the pallet pick segment p is
considerably lower, mainly due to the longer time it requires to pick products from
pallets compared to the zones in the pick-to-light segments. Also, the pallet pick
segment contains less popular products and oddly shaped products which decreases
the probability that a tote has to visit this segment and which increases the picking
effort.

Figure 4.2 shows for all the orders of the five picking days the percentages of how
many zones are visited (Figure 4.2a), the number of order lines (unique products)
are picked (Figure 4.2b), and the number of individual units of products picked per
customer order (Figure 4.2c). The number of zones visited per customer order is on
average 5.3, whereas the number of order lines to pick is 8.7. Finally, the average
number of product units required per customer order is 46.7. Note that this large
number of units can result in a substantially smaller number of picks per line, since
products may be packed in boxes of 10–12 units.

Table 4.2 shows the fraction of all orders that visit a particular zone (given in a
row), given that it also visits one of the other zones (given in a column). From
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Table 4.1: Number of order lines picked per zone and the number of times a tote
visited a zone for the five picking days.

Zone Day 1 Day 2 Day 3 Day 4 Day 5 Overall

Picks Visits Picks Visits Picks Visits Picks Visits Picks Visits Picks Visits

zp
1 260 224 222 180 270 232 323 273 272 236 1347 1145

zp
2 362 298 230 198 340 275 412 344 365 290 1709 1405

zp
3 276 249 168 154 272 249 287 261 241 220 1244 1133

zl1
1 1561 962 1124 718 1268 830 1817 1125 2141 1233 7911 4868

zl1
2 1506 1016 1150 796 1696 1069 1829 1191 1910 1248 8091 5320

zl1
3 1073 734 1114 749 1521 969 1369 903 1424 933 6501 4288

zl1
4 1478 940 972 657 1498 987 1676 1084 1769 1125 7393 4793

zl1
5 1256 883 929 645 1348 941 1356 957 1340 947 6229 4373

zl1
6 1366 928 970 698 1333 945 1447 1008 1500 1043 6616 4622

zl1
7 1497 942 1023 701 1430 972 1496 994 1720 1114 7166 4723

zl1
8 979 719 788 575 992 764 1332 951 1407 1025 5498 4034

zl2
1 1163 765 786 542 1043 698 1298 867 1484 959 5774 3831

zl2
2 1594 976 1134 734 1471 959 1538 968 1684 1094 7421 4731

zl2
3 1188 829 884 604 1356 936 1194 826 1323 904 5945 4099

zl2
4 1595 1034 1126 736 1381 918 1677 1029 1763 1132 7542 4849

zl2
5 1423 940 1113 746 1390 864 1542 1032 1617 1080 7085 4662

zl2
6 1103 737 887 624 1074 767 1271 853 1533 1000 5868 3981

zl2
7 1560 1014 1243 815 1284 847 1554 1016 1666 1088 7307 4780

zl2
8 1074 792 910 675 1139 844 1353 973 1488 1040 5964 4324

zl3
1 965 522 655 387 939 509 907 469 1205 704 4671 2591

zl3
2 1636 835 1136 617 1357 719 1411 726 1752 915 7292 3812

zl3
3 1323 640 919 472 1162 596 1243 630 1798 892 6445 3230

zl3
4 1560 817 1129 562 1526 753 1427 742 2051 1032 7693 3906

zl3
5 1573 843 1392 689 1563 789 1624 808 1905 989 8057 4118

zl3
6 1985 839 1342 566 1823 742 1681 727 2391 1049 9222 3923

zl3
7 2177 957 1642 797 1927 874 2087 897 2496 1180 10329 4705

zl3
8 2747 907 2026 771 2514 819 2694 957 3456 1247 13437 4701

Total 36,280 21,342 27,014 16,408 34,917 20,867 37,845 22,611 43,701 25,719 179,757 106,947
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Figure 4.2: Descriptive statistics of all the orders of the five picking days.
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the table it can be clearly seen that totes often need to visit multiple zones within
the same segment. Totes that visit the pallet pick segment also regularly visit the
first pick-to-light segment, whereas a tote that needs to visit the first pick-to-light
segment also has a high chance to visit the second pick-to-light segment and vice
versa. The totes that need to visit the third pick-to-light segment normally only visit
this segment, mainly because the company stores a distinct product range only on
the second floor.

Finally, in Table 4.3a the mean and coefficient of variation of the empirical order
picking time distribution obtained from the log files for each zone is given, as well as,
the number of order pickers and input buffer sizes per zone. In each zone the number
of order pickers di equals 1, while the input buffer size qi depends on the location of
the zone. For the zones that use pick-to-light, qi = 11, except for the first and last
zone in each segment for which qi is either 8 or 9. The buffer sizes of the zones in the
first segment are 12, 17, and, 19 respectively. Order pickers have to manually push
the order totes back on the conveyor, which means that there is no output buffer
after a zone. In addition, the mean picking times vary between 18 seconds in the
pick-to-light zones and 33 seconds in the pallet pick zones.

In Table 4.3b the deterministic conveying times between the various components in
the system are given. The times vary between 25 up to 180 seconds per conveyor
segment depending on the location of the conveyor. The time spent in the segment
entrance stations equals 5 seconds.

4.3 Product allocation in zone picking systems

In this section we present the different product allocation methods. In particular, we
change the product allocation by interchanging zones between the three pick-to-light
segments. We exclude the zones in the pallet pick segment since they cannot be
shifted to a pick-to-light segment because of the unique characteristics of the products
in these zones and the fact that pallets cannot be stored in the dynamic storage
system and vice versa. Also, we assume that product allocation to a shifted zone
remains the same, because otherwise the empirical picking distribution of Table 4.3a
is not valid anymore and the S/R machine might start to become a bottleneck. Also,



4.3 Product allocation in zone picking systems 99

T
ab

le
4.

2:
Th

e
pe

rc
en
ta
ge

of
co
-o
cc
ur
re
nc

e
th
at

wh
en

a
cu

st
om

er
or
de

r
ne

ed
s
to

vi
sit

a
zo
ne

(c
ol
um

n)
it

al
so

ne
ed

s
to

vi
sit

an
ot
he
r
zo
ne

(r
ow

).

P
al
le
t
pi
ck

P
ic
k-
to
-li
gh

t
1

P
ic
k-
to
-li
gh

t
2

P
ic
k-
to
-li
gh

t
3

z
p 1

z
p 2

z
p 3

z
1 1

z
1 2

z
1 3

z
1 4

z
1 5

z
1 6

z
1 7

z
1 8

z
2 1

z
2 2

z
2 3

z
2 4

z
2 5

z
2 6

z
2 7

z
2 8

z
3 1

z
3 2

z
3 3

z
3 4

z
3 5

z
3 6

z
3 7

z
3 8

z
p 1

1.
00

0.
40

0.
28

0.
39

0.
17

0.
27

0.
43

0.
12

0.
36

0.
19

0.
32

0.
05

0.
06

0.
05

0.
06

0.
06

0.
05

0.
05

0.
04

0.
00

0.
03

0.
02

0.
01

0.
01

0.
01

0.
02

0.
03

z
p 2

0.
33

1.
00

0.
23

0.
37

0.
20

0.
23

0.
41

0.
13

0.
32

0.
18

0.
33

0.
10

0.
10

0.
07

0.
10

0.
11

0.
11

0.
09

0.
08

0.
00

0.
03

0.
04

0.
02

0.
01

0.
01

0.
02

0.
03

z
p 3

0.
29

0.
28

1.
00

0.
32

0.
22

0.
24

0.
33

0.
18

0.
28

0.
20

0.
28

0.
13

0.
13

0.
10

0.
15

0.
13

0.
12

0.
12

0.
10

0.
01

0.
05

0.
05

0.
03

0.
02

0.
03

0.
03

0.
05

z
1 1

0.
09

0.
11

0.
07

1.
00

0.
52

0.
39

0.
46

0.
40

0.
43

0.
47

0.
42

0.
34

0.
39

0.
34

0.
40

0.
40

0.
35

0.
38

0.
34

0.
01

0.
13

0.
09

0.
09

0.
06

0.
04

0.
13

0.
10

z
1 2

0.
04

0.
05

0.
05

0.
48

1.
00

0.
38

0.
46

0.
45

0.
40

0.
50

0.
38

0.
37

0.
45

0.
38

0.
46

0.
43

0.
38

0.
42

0.
39

0.
03

0.
16

0.
09

0.
12

0.
10

0.
05

0.
14

0.
11

z
1 3

0.
07

0.
08

0.
06

0.
45

0.
48

1.
00

0.
45

0.
38

0.
44

0.
44

0.
35

0.
29

0.
39

0.
36

0.
41

0.
39

0.
35

0.
40

0.
36

0.
02

0.
10

0.
06

0.
08

0.
07

0.
03

0.
10

0.
07

z
1 4

0.
10

0.
12

0.
08

0.
47

0.
51

0.
40

1.
00

0.
44

0.
45

0.
48

0.
37

0.
35

0.
41

0.
35

0.
42

0.
38

0.
33

0.
36

0.
34

0.
02

0.
15

0.
07

0.
12

0.
10

0.
04

0.
13

0.
09

z
1 5

0.
03

0.
04

0.
05

0.
44

0.
54

0.
38

0.
48

1.
00

0.
42

0.
49

0.
36

0.
40

0.
47

0.
38

0.
48

0.
44

0.
37

0.
42

0.
38

0.
02

0.
17

0.
08

0.
13

0.
12

0.
05

0.
14

0.
09

z
1 6

0.
09

0.
10

0.
07

0.
45

0.
46

0.
41

0.
46

0.
40

1.
00

0.
43

0.
36

0.
34

0.
42

0.
36

0.
40

0.
38

0.
33

0.
36

0.
35

0.
02

0.
11

0.
07

0.
08

0.
08

0.
03

0.
10

0.
09

z
1 7

0.
05

0.
05

0.
05

0.
49

0.
56

0.
40

0.
49

0.
46

0.
42

1.
00

0.
38

0.
39

0.
47

0.
43

0.
48

0.
46

0.
39

0.
43

0.
38

0.
02

0.
16

0.
08

0.
13

0.
10

0.
04

0.
13

0.
09

z
1 8

0.
09

0.
11

0.
08

0.
50

0.
50

0.
37

0.
44

0.
39

0.
42

0.
44

1.
00

0.
36

0.
40

0.
33

0.
39

0.
40

0.
36

0.
37

0.
34

0.
02

0.
12

0.
09

0.
09

0.
05

0.
04

0.
09

0.
10

z
2 1

0.
02

0.
04

0.
04

0.
44

0.
51

0.
32

0.
44

0.
46

0.
41

0.
49

0.
37

1.
00

0.
55

0.
47

0.
58

0.
51

0.
49

0.
52

0.
46

0.
02

0.
15

0.
10

0.
11

0.
06

0.
05

0.
12

0.
13

z
2 2

0.
01

0.
03

0.
03

0.
40

0.
51

0.
35

0.
42

0.
43

0.
41

0.
47

0.
34

0.
45

1.
00

0.
48

0.
55

0.
54

0.
48

0.
55

0.
48

0.
03

0.
18

0.
09

0.
14

0.
12

0.
05

0.
15

0.
10

z
2 3

0.
01

0.
02

0.
03

0.
41

0.
49

0.
38

0.
40

0.
40

0.
40

0.
50

0.
33

0.
44

0.
55

1.
00

0.
53

0.
52

0.
45

0.
49

0.
46

0.
04

0.
17

0.
10

0.
12

0.
09

0.
05

0.
14

0.
10

z
2 4

0.
01

0.
03

0.
04

0.
40

0.
50

0.
37

0.
41

0.
44

0.
39

0.
47

0.
32

0.
46

0.
54

0.
44

1.
00

0.
52

0.
44

0.
55

0.
47

0.
03

0.
17

0.
09

0.
14

0.
12

0.
05

0.
17

0.
11

z
2 5

0.
02

0.
03

0.
03

0.
42

0.
49

0.
36

0.
39

0.
41

0.
38

0.
47

0.
35

0.
42

0.
55

0.
46

0.
54

1.
00

0.
45

0.
55

0.
44

0.
03

0.
18

0.
09

0.
14

0.
12

0.
06

0.
16

0.
12

z
2 6

0.
01

0.
04

0.
03

0.
43

0.
51

0.
38

0.
40

0.
40

0.
39

0.
46

0.
37

0.
47

0.
57

0.
46

0.
54

0.
53

1.
00

0.
57

0.
52

0.
03

0.
14

0.
11

0.
10

0.
06

0.
05

0.
11

0.
12

z
2 7

0.
01

0.
03

0.
03

0.
38

0.
47

0.
36

0.
37

0.
39

0.
35

0.
43

0.
31

0.
42

0.
55

0.
42

0.
56

0.
53

0.
47

1.
00

0.
47

0.
03

0.
18

0.
09

0.
15

0.
12

0.
05

0.
17

0.
11

z
2 8

0.
01

0.
03

0.
03

0.
38

0.
48

0.
36

0.
38

0.
39

0.
37

0.
41

0.
31

0.
41

0.
52

0.
44

0.
53

0.
47

0.
48

0.
52

1.
00

0.
05

0.
16

0.
10

0.
12

0.
10

0.
06

0.
14

0.
11

z
3 1

0.
00

0.
00

0.
01

0.
03

0.
07

0.
03

0.
03

0.
03

0.
03

0.
04

0.
03

0.
03

0.
05

0.
06

0.
06

0.
06

0.
04

0.
05

0.
08

1.
00

0.
56

0.
61

0.
66

0.
65

0.
65

0.
50

0.
56

z
3 2

0.
01

0.
01

0.
01

0.
16

0.
22

0.
11

0.
19

0.
19

0.
14

0.
20

0.
12

0.
15

0.
22

0.
18

0.
22

0.
23

0.
15

0.
23

0.
18

0.
38

1.
00

0.
53

0.
64

0.
51

0.
47

0.
46

0.
44

z
3 3

0.
01

0.
02

0.
02

0.
14

0.
15

0.
08

0.
11

0.
11

0.
10

0.
12

0.
11

0.
12

0.
14

0.
13

0.
14

0.
13

0.
13

0.
14

0.
13

0.
49

0.
63

1.
00

0.
67

0.
51

0.
60

0.
44

0.
52

z
3 5

0.
00

0.
01

0.
01

0.
11

0.
16

0.
08

0.
15

0.
15

0.
10

0.
15

0.
09

0.
11

0.
17

0.
12

0.
17

0.
17

0.
11

0.
18

0.
14

0.
44

0.
62

0.
56

1.
00

0.
54

0.
55

0.
46

0.
45

z
3 5

0.
00

0.
00

0.
00

0.
07

0.
13

0.
07

0.
12

0.
12

0.
08

0.
11

0.
05

0.
06

0.
14

0.
09

0.
14

0.
14

0.
06

0.
14

0.
11

0.
41

0.
48

0.
40

0.
51

1.
00

0.
56

0.
57

0.
56

z
3 6

0.
00

0.
00

0.
01

0.
05

0.
07

0.
03

0.
05

0.
05

0.
04

0.
05

0.
04

0.
05

0.
06

0.
05

0.
07

0.
07

0.
05

0.
06

0.
07

0.
43

0.
46

0.
49

0.
55

0.
59

1.
00

0.
54

0.
63

z
3 7

0.
01

0.
00

0.
01

0.
13

0.
16

0.
09

0.
13

0.
13

0.
10

0.
13

0.
07

0.
10

0.
15

0.
12

0.
17

0.
16

0.
09

0.
17

0.
13

0.
28

0.
38

0.
30

0.
38

0.
50

0.
45

1.
00

0.
65

z
3 8

0.
01

0.
01

0.
01

0.
11

0.
13

0.
06

0.
09

0.
08

0.
08

0.
09

0.
08

0.
10

0.
10

0.
09

0.
11

0.
12

0.
10

0.
11

0.
10

0.
31

0.
36

0.
36

0.
38

0.
49

0.
53

0.
65

1.
00



100 Case study: product allocation methods in zone picking systems

Table 4.3: Overview parameters zones and conveyor nodes.

(a) Zone parameters, di; number of order pickers, qi; input buffer size, µ−1
i ; empirical mean order

picking time in seconds, cvi; coefficient of variation of the empirical order picking time

Zone di qi Empr. dist. Zone di qi Empr. dist. Zone di qi Empr. dist.

µ−1
i cvi µ−1

i cvi µ−1
i cvi

zp
1 1 12 26.5 1.06 z1

7 1 11 21.5 0.98 z2
8 1 8 24.5 0.91

zp
2 1 17 28.4 1.11 z1

8 1 8 23.1 0.96 z3
1 1 8 25.2 0.89

zp
3 1 19 32.9 1.16 z2

1 1 9 24.6 0.87 z3
2 1 11 26.7 0.86

z1
1 1 9 18.3 0.79 z2

2 1 11 25.4 0.87 z3
3 1 11 26.0 0.92

z1
2 1 11 19.8 0.89 z2

3 1 11 26.2 0.92 z3
4 1 11 25.3 0.85

z1
3 1 11 21.6 0.95 z2

4 1 11 24.2 0.83 z3
5 1 11 22.2 0.78

z1
4 1 11 21.0 0.93 z2

5 1 11 24.6 0.87 z3
6 1 11 21.9 0.88

z1
5 1 11 22.5 0.82 z2

6 1 11 24.0 0.90 z3
7 1 11 23.4 0.83

z1
6 1 11 21.2 0.91 z2

7 1 11 26.4 0.91 z3
8 1 8 25.4 0.84

(b) Conveyor node parameters, µ−1
i ; empirical conveying time in seconds

(deterministic)

Conveyor µ−1
i Conveyor µ−1

i Conveyor µ−1
i Conveyor µ−1

i

cm
1 37 c1

1 37 c2
1 37 c3

1 37
cm

2 37 c1
2 37 c2

2 37 c3
2 37

cm
3 70 c1

3 37 c2
3 37 c3

3 37
cm

4 180 c1
4 37 c2

4 37 c3
4 37

cm
5 180 c1

5 62 c2
5 62 c3

5 62
cp

1 43 c1
6 37 c2

6 37 c3
6 37

cp
2 43 c1

7 37 c2
7 37 c3

7 37
cp

3 43 c1
8 37 c2

8 37 c3
8 37

cp
4 130 c1

9 25 c2
9 25 c3

9 25
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we only consider the assignment of zones to a segment, instead assigning the zones
to a specific location. Within the segment we can neglect the location assignment,
because the order the zones are visited within a segment has no significant effect
on the performance of the system. This is due to the unidirectional design of the
conveyor in the segment that requires totes to visit all zones before leaving the
segment. Finally, we assume that the order picker never has to wait for the S/R
machine to reshuffle a product bin from the bulk storage area to the picking area.
This will allow us to study the performance of the zone picking system, without the
interference of other related processes.

This section is structured as follows. In Section 4.3.1 the notation used in the
allocation methods is given. The next three sections describe three product allocation
methods, where the first minimizes the average number of segments a tote has to
visit. The second method balances the total number of visits per segment on average,
and whereas the third method combines the previous two models into a single model.

4.3.1 Notation

K: The set of pick-to-light segments, {1, 2, 3}.

Z: The set of pick-to-light zones, {1, 2, . . . , 24}.

N : The set of customer tote classes. The class of a customer tote n ∈ N
indicates which zones the tote has to visit, e.g., n = {1, 3} means that
the tote has to visit the first and third zone.

Dn: The fraction of customer tote class n ∈ N per day or over the five picking
days.

M : A large number (big M).

δni:

1, if customer tote class n ∈ N needs to visit zone i ∈ Z,

0, otherwise.

xik:

1, if zone i ∈ Z is assigned to segment k ∈ K,

0, otherwise.

vnk:

1, if customer tote class n ∈ N needs to visit segment k ∈ K,

0, otherwise.
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4.3.2 Minimized segment visits model

In the current situation the zones are allocated to the segments such that the number
of segments a tote has to visit on average is minimized. The advantage of this
method is that it reduces the total order tote travel distance, since the conveyor
topology allows that large parts of the system can be cut short. However, it may
cause congestion in a segment, since certain zones with popular items are visited
more often than others. If these zones are placed in the same segment, the probability
of a tote being blocked by a segment increases.

The model used to minimize the number of segments a tote visits is defined as the
following integer programming model;

minimize
∑
n∈N

∑
k∈K

vnkDn (4.1)

subject to
∑
k∈K

xik = 1 ∀i ∈ Z (4.2)
∑
i∈Z

xik = 8 ∀k ∈ K (4.3)
∑
i∈Z

xikδni ≤Mvnk ∀n ∈ N , k ∈ K (4.4)

xik, vnk ∈ {0, 1} ∀i ∈ Z, j ∈ N , k ∈ K (4.5)

The objective of the first model (4.1) is to minimize the average number of segments a
customer tote has to visit. Constraints (4.2) ensure that each zone is assigned to one
of the three segments. On the other hand, constraints (4.3) define that each segment
should contain eight assigned zones. Constraints (4.4) ensure if order class n ∈ N
has to visit segment k ∈ K, then vnk is equal to one, otherwise vnk will be zero. Since
each segment should contain eight zones, the smallest big M possible is 8. Finally,
constraints (4.5) are the integrality constraints.

A problem encountered when trying to solve the program is that the IP is symmetric,
because the zone allocation to segments can be permuted in such a way the structure
of the problem does not change. Therefore, in order to reduce symmetry, a common
approach is to add symmetry-breaking constraints (Sherali & Smith, 2001). In our
case we add the following constraints that ensure that zone i can be assigned to
segment k only if zone 1, . . . , i− 1 are assigned to segment 1, . . . , k− 1, k. This gives
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the following symmetry breaking constraint,

i∑
l=1

2i−lxl,k−1 ≥
i∑
l=1

2i−lxlk i ∈ Z, k ∈ K\ {1} . (4.6)

A proof of the validity of this constraint in a more general context is given in
Proposition 2 in Sherali & Smith (2001).

4.3.3 Balanced workload model

The second method is to store products in the zones such that the average workload
between the segments is balanced. The product allocation balances the workload
between segments by that it increases or decreases the number of totes that visit a
particular segment on average. This will lower the probability that a segment and
its zones become a bottleneck and, ultimately, will increase the performance of the
order picking system. A downside of this policy is that a tote can spend more time
in the system, since the probability of visiting more segments increases.

The model used to balance the average workloads between the segments is defined
as the following integer programming model;

minimize
2∑

k=1

3∑
k′=k+1

∣∣∣∣∣∑
n∈N

vn,kDn −
∑
n∈N

vn,k′Dn

∣∣∣∣∣ (4.7)

subject to
∑
k∈K

xik = 1 ∀i ∈ Z (4.8)
∑
i∈Z

xik = 8 ∀k ∈ K (4.9)
∑
i∈Z

xikδni ≤Mvnk ∀n ∈ N , k ∈ K (4.10)
∑
i∈Z

xikδni ≥ vnk ∀n ∈ N , k ∈ K (4.11)

xik, vnk ∈ {0, 1} ∀i ∈ Z, j ∈ N , k ∈ K (4.12)

The objective of the second model (4.7) is to minimize the differences between the
total number of totes that visit the three segments. Constraints (4.8)-(4.12) have the
same interpretation as constraints (4.2)-(4.5). Additionally constraints (4.11) are
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needed to make sure that vnk is only set to 1 if totes of tote class n actually visits
segment k.

The model cannot be directly solved by a IP solver, because of the absolute value
the objective function (4.7) is nonlinear. However, we can easily linearize the model
by introducing non-negative variables y+

k , y
−
k , k ∈ K and by modifying the objective

function to

minimize
∑
k∈K

y+
k + y−k (4.13)

and by adding the following constraints to the model,

∑
n∈N

vn,1Dn −
∑
n∈N

vn,2Dn = y+
1 − y−1 (4.14)

∑
n∈N

vn,1Dn −
∑
n∈N

vn,3Dn = y+
2 − y−2 (4.15)

∑
n∈N

vn,2Dn −
∑
n∈N

vn,3Dn = y+
3 − y−3 (4.16)

y+
k + y−k ≥ 0 ∀k ∈ K (4.17)

Finally, symmetry breaking constraint (4.6) can also be applied in this model.

4.3.4 Combined model

The last model combines the objective function of the previous two models given a
prespecified scaling factor α. The objective of this model is given by

minimize α
2∑

k=1

3∑
k′=k+1

∣∣∣∣∣∑
n∈N

vn,kDn −
∑
n∈N

vn,k′Dn

∣∣∣∣∣
+ (1− α)

∑
n∈N

∑
k∈K

vnkDn (4.18)

The constraints of the model are the same for the first model. Again, because of
the absolute value the objective has to be linearized as in Section 4.3.3. In addition,
constraints (4.6) are used for improved solver performance.
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4.4 Numerical results

In this section the performance effects of the different product allocation methods
will be tested for the real zone picking system. In Section 4.4.1 the results of zone
allocation of the three methods is presented and in Section 4.4.2 the different allocation
will be tested in a simulation of the real zone picking system and compared with the
analytical model of Van der Gaast et al. (2012).

All the results were obtained on a Core i7 with 2.4 GHz and 8 GB of RAM. The IP-
models were solved in Gurobi 6.0.4. The discrete-event simulation was implemented
in Java. The simulation model was run 15 times for 1,000,000 seconds, preceded by
10,000 seconds of initialization for the system to become stable, which guaranteed
that the 95% confidence interval width of the system throughput time is less than
1% of the mean value for all the cases.

4.4.1 Product allocation methods

In this section the results of the three product allocation methods are presented.
First, for each of the five picking days the number of unique customer classes n ∈ N
and their occurrence were obtained from the log files. In Table 4.4 the number of
unique customer classes are shown for each of the five picking days, as well as, the
overall where all the picking data was aggregated over all the days.

Table 4.4: The number of unique customer tote classes per picking day and overall.

Day 1 Day 2 Day 3 Day 4 Day 5 Overall

|N | 392 271 436 385 408 1596

The results of solving the three models for each individual day, as well as, aggregated
over all the picking days is shown in Table 4.5. Model 1 corresponds with the
minimized segment visits model of Section 4.3.2, Model 2 with the balanced workload
model of Section 4.3.3, and Model 3 with the combined model of Section 4.3.4. All
the models were solved to optimality within a couple of minutes for the individual
days and two hours for the overall model. It can be seen that for Model 1 the
product allocation is almost identical every day and is similar to current allocation
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presented in Section 4.2. However, the allocation of Model 2 varies a lot per day as
it tries to balance the workload on a day-to-day basis which can differ significantly
as seen from Table 4.1. Finally, for Model 3 two different scaling factors α were used.
Similar as Model 1, both allocations differ slightly per day, as well as, for all the
picking days combined. This implies that both scaling factors favor the second part
of objective (4.18) more.

Table 4.5: Results of the zone allocation to segments of the different product
allocation methods.

Zones

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

D
ay

1

Model 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3

Model 2 1 2 1 3 3 1 3 1 3 2 3 1 1 3 2 1 2 2 3 2 2 2 3 1

Model 3 (α = 0.5) 1 1 2 1 1 2 1 1 2 1 2 2 2 1 2 2 3 3 3 3 3 3 3 3

Model 3 (α = 0.2) 1 1 2 1 1 2 1 1 2 1 2 2 2 1 2 2 3 3 3 3 3 3 3 3

D
ay

2

Model 1 1 1 2 1 1 1 1 1 2 2 2 1 2 2 2 2 3 3 3 3 3 3 3 3

Model 2 1 1 1 2 3 2 3 1 2 2 3 1 1 1 2 2 2 3 3 3 1 2 3 3

Model 3 (α = 0.5) 1 1 2 1 2 1 1 1 1 2 2 2 2 1 2 2 3 3 3 3 3 3 3 3

Model 3 (α = 0.2) 1 1 2 1 2 1 1 1 1 2 2 2 2 1 2 2 3 3 3 3 3 3 3 3

D
ay

3

Model 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3

Model 2 1 2 3 2 1 3 3 3 1 2 3 1 3 2 2 3 2 1 1 2 2 3 1 1

Model 3 (α = 0.5) 1 1 1 2 1 2 1 2 2 2 1 2 1 2 1 2 3 3 3 3 3 3 3 3

Model 3 (α = 0.2) 1 1 1 2 1 2 1 2 2 2 1 2 1 2 1 2 3 3 3 3 3 3 3 3

D
ay

4

Model 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3

Model 2 1 2 3 2 1 2 1 1 2 3 2 1 1 2 2 1 3 3 3 3 3 2 1 3

Model 3 (α = 0.5) 1 2 1 1 2 2 1 2 1 1 2 1 2 2 1 2 3 3 3 3 3 3 3 3

Model 3 (α = 0.2) 1 1 1 2 1 2 1 2 1 2 2 1 1 2 2 2 3 3 3 3 3 3 3 3

D
ay

5

Model 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3

Model 2 1 1 2 2 1 1 3 3 3 2 2 3 2 2 1 3 1 1 3 3 2 1 3 2

Model 3 (α = 0.5) 1 1 2 2 1 2 1 1 1 1 2 1 2 2 2 2 3 3 3 3 3 3 3 3

Model 3 (α = 0.2) 1 1 2 2 1 2 1 1 1 2 2 1 1 2 2 2 3 3 3 3 3 3 3 3

O
ve
ra
ll

Model 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3

Model 2 1 1 2 1 3 3 2 3 1 3 3 1 3 1 2 2 2 1 2 2 3 3 1 2

Model 3 (α = 0.5) 1 2 2 1 1 2 1 1 1 1 2 2 1 2 2 2 3 3 3 3 3 3 3 3

Model 3 (α = 0.2) 1 1 2 2 2 1 1 1 1 2 2 1 2 1 2 2 3 3 3 3 3 3 3 3
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Figure 4.3 shows for the four allocations the visiting probability ψ̃k = ∑
r⊆Z ψrI(rk 6=0)

of pick-to-light segment k for the aggregated picking data. On average, totes will visit
1.61 pick-to-light segments in case of the allocation of Model 1, 2.33 for Model 2, and
1.70 for both α = 0.5 and α = 0.2 of Model 3. The aggregated visiting probabilities
ψ̃k of the allocation of Model 1 show that totes on average visit the first and third
pick-to-light segment on average 0.43 and 0.49 times respectively. However, the
second pick-to-light segment is only visited on average 0.29 times. The objective
of Model 2 was to balance the workload between segments; from the results it can
be clearly seen that this is accomplished by having totes visiting each pick-to-light
segment on average 0.68 times. The results for allocations of Model 3 are similar to
Model 1 except that the second pick-to-light segment is visited now more often.

Segment 1 Segment 2 Segment 3
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Figure 4.3: The aggregated probabilities ψ̃k of a tote visiting pick-to-light segment k
for the four overall product allocations.

4.4.2 Validation with real zone picking system

The performance of the four product allocations is compared by varying the number
of totes in the system N from 220 up to 300 for the aggregated picking data. The
simulation uses the empirical picking time distributions of Table 4.3. Figure 4.4 shows
for the four allocations the impact on the system throughput X (N) when increasing
the number of totes in the system. The 95% confidence interval is shown for the
simulation results of each policy. The mean average error in the system throughput
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is 1.26% for the allocation of Model 1, 0.67% for the Model 2, and 1.23% and 1.18%
for α = 0.5 and α = 0.2 for Model 3. The errors are slightly higher than in the
previous chapters, due to the use of empirically instead of exponentially distributed
picking times in the simulation (cf. Remark 2.2). For the four allocations, for high
N the approximated system throughput is always higher than the one obtained from
simulation, since the approximation tends to underestimate the blocking probabilities
as seen in the previous chapters.

Table 4.6: The mean and maximum blocking percentages for N = 300 for the zones
and segments for the MVA and the simulation.

(a) Zones

MVA Simulation

Mean Max Mean Max

Model 1 5.2 50.5 6.0 51.9

Model 2 2.2 8.0 3.0 14.7

Model 3 (α = 0.5) 4.3 43.0 5.2 42.4

Model 3 (α = 0.2) 3.7 22.8 4.8 36.8

(b) Segments

MVA Simulation

Mean Max Mean Max

Model 1 1.9 5.0 7.7 19.8

Model 2 0.0 0.2 0.0 0.4

Model 3 (α = 0.5) 1.2 3.4 4.7 13.4

Model 3 (α = 0.2) 0.4 2.0 1.6 7.9

When N = 220 zones and segments become rarely congested. This implies that
minimizing the mean number of segments a tote has to visit, which also minimizes
the mean total travel distance of a tote, yields the highest throughput. Clearly, this
is the case for the allocation of Model 1, whereas the throughput of the other three
allocations are lower due to totes traveling larger distances. Increasing N , increases
the probability that a tote is blocked by a full zone or a segment. When N = 300,
the system throughput of Model 1 and Model 3 with α = 0.2 are close to each
other, whereas the other two allocations obtain significantly lower throughput rates.
Especially, in Model 2 the system throughput on average is 8% lower than Model 1.

In Table 4.6 the mean and maximum blocking probability for the zones and segments
when the number of totes N = 300 for the MVA and the simulation of the four
allocations is shown. In this case the number of totes in the system is higher than
the real-world system limit (280 totes) set by management. From the results it can
be clearly seen that some zones and segments are blocked too often than what would
be acceptable in practice. Still, under the allocation of Model 1, totes are more often
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Figure 4.4: The system throughput of the four product allocations for the approxi-
mation and the simulation when varying the number of totes N .
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blocked by zones and segments than for the other allocations. Since a blocked tote
has to recirculate on the main conveyor, the mean total travel distance of a tote
increases and the system throughput decreases. By balancing the work-load between
segments, congestion starts to occur later, which is especially true for Model 2.

4.5 Conclusion and further research

In this chapter, we compared different product allocation methods and tested their
influence on system performance on a real-world zone picking system. We tested
three product allocation methods and found that a product allocation that only
applies workload balancing between segments reduces the average system throughput
on average 7% compared to a product allocation minimizing the number of segments
a tote on average has to visit. On the other hand, blocking of zones and segments is
significantly reduced by a product allocation that applies workload balancing, e.g.
segments are blocked 7.6% on average when a product allocation that minimizing
the number of segments is used to 0.3% on average in the other case. As such,
it provides a valuable tool for initial product allocation decisions for zone picking
systems and the consequences strategic decisions can have on the overall performance
of the system.

A topic for further research would be to investigate product allocation to zones
instead of shifting entire zones to another segment. This would make it possible to
balance the workload better between the zones, instead of only between segments.
Furthermore, the S/R machine in the dynamic storage has proven to significantly
influence the performance of the zone picking system when not properly controlled
(Yu & De Koster, 2010). For this it would be interesting to study how to reshuffle
the product bins to make sure the order picker never has to wait for an incoming
product bin.



5 The analysis of batch
sojourn-times in polling systems

5.1 Introduction

Polling models are multi-queue systems in which a single server cyclically visits
queues in order to serve waiting customers, typically incurring a switch-over time
when moving to the next queue. Polling systems have been extensively used for
decades to model a wide variety of applications in areas such as computer and
communication systems, production systems, and traffic and transportation systems
(Takagi, 2000; Boon et al., 2011). In the majority of the literature on polling systems,
it is assumed that in each queue new customers arrive via independent Poisson
processes. However, in many applications these arrival processes are not necessarily
independent; customers arrive in batches and batches of customers may arrive at
different queues simultaneously (Van der Mei, 2002). It is important to consider the
correlation structure in the arrival processes for these applications, because neglecting
it may lead to strongly erroneous performance predictions, and, consequently, to
improper decisions about system performance. In this chapter, we study the batch
sojourn-time in polling systems with simultaneous arrivals, that is, the time until all
the customers in a single batch are served after an arrival epoch.

Batch sojourn-times are of great interest in many applications of polling systems
with simultaneous arrivals. Below we describe some examples in manufacturing,
warehousing, and communication. The first example is the stochastic economic
lot scheduling problem, which is used to study the production of multiple products
on a single machine with limited capacity, under uncertain demands, production
times, and setup times (Federgruen & Katalan, 1999; Winands et al., 2011). In
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case of a cyclic policy, there is a fixed production sequence such that the order in
which products are manufactured is always known to the manufacturer. Whenever
a customer has placed an order for one or multiple products, the machine starts
production. After the requested number of products has been produced, including
possible demand for the same product of orders that just came in, the machine starts
to process the next product in the sequence. In this way, the machine polls the
buffers of the different product categories to check whether production is required.
In this example, the server represents the machine, a customer represents a unit of
demand for a given product, and a batch arrival corresponds to the order itself. The
batch sojourn-time is defined as the total time required for manufacturing an entire
order.

Q5

Q3

Q1

Q6

Q4

Q2

Q7Q8

Q9Q10

Q11Q12

Q18Q17

Q15 Q16

Q13 Q14

Q19Q20

Q21Q22

Q23 Q24

Depot
Order picker

Figure 5.1: A milkrun order picking system with one order picker and 24 different
storage locations.

The second example comes from the area of warehousing. In a milkrun order picking
system, an order picker is constantly moving through the warehouse (e.g. with
a tugger train) and receives, using modern order-picking aids like pick-by-voice,
pick-by-light, or hand-held terminals, new pick instructions that allow new orders
to be included in the current pick route (Gong & De Koster, 2011). In Figure 5.1
a milkrun order picking system is shown, where different products are stored at
locations Q1, . . . , QN . Assume that a single order picker is constantly traveling
through the aisles with the S-shape routing policy (Roodbergen & De Koster, 2001)
and picks all outstanding orders in one pick route to a pick cart, which has sufficient
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capacity. An order consists of multiple products that have to be picked at multiple
locations in the warehouse. Demand for products that are located upstream of the
order picker will be picked in the next picking cycle. When the order picker reaches
the depot, the picked products are disposed and sorted per customer order (using a
pick-and-sort system) and a new picking cycle will start. The server is represented by
the order picker, a new customer order by a batch arrival, a product within an order
by a customer in the polling system. The batch sojourn-time is the time required to
pick a customer order.

The last example from the area of computer-communication systems is an I/O
subsystem of a web server. Web servers are required to perform millions of transaction
requests per day at an acceptable Quality of Service (QoS) level in terms of client
response time and server throughput (Van der Mei et al., 2001). When a request
for a web page from the server is made, several file-retrieval requests are made
simultaneously (e.g., text, images, multimedia, etc). In many implementations these
incoming file-retrieval requests are placed in separate I/O buffers. The I/O controller
continuously polls, using a scheduling mechanism, the different buffers to check for
pending file-retrieval requests to be executed. The web page will be fully loaded when
all its file-retrieval requests are executed. In this application, the server represents
the I/O controller, a customer represents an individual file-retrieval request, a batch
of customers that arrive simultaneously corresponds to each web page request, and
the batch sojourn-time is the time required to fully load a web page.

In the literature, polling systems with simultaneous arrivals have not been studied
intensively. Shiozawa et al. (1990) study a two-queue polling system where customers
arrive at each station according to an independent Poisson process and, in addition,
customers can arrive in pairs at the system and each join a different queue. The
authors derive the Laplace-Stieltjes transform of the waiting time distribution of an
individual customer and the response time distribution of a pair of customers that
arrive simultaneously. Levy & Sidi (1991) study polling models with simultaneous
batch arrivals. For models with gated or exhaustive service, they derive a set of linear
equations for the expected waiting time at each of the queues. They also provide
a pseudo-conservation law for the system, i.e., an exact expression for a specific
weighted sum of the expected waiting times at the different queues. Chiarawongse
& Srinivasan (1991) also derive pseudo-conservation laws, but in their model all
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customers in a batch join the same queue. Finally, Van der Mei (2001) considers an
asymmetric cyclic polling model with mixtures of gated and exhaustive service and
general service time and switch-over time distributions and studies the heavy traffic
behavior. The results were further generalized in Van der Mei (2002).

The objective of this chapter is to analyze the batch sojourn-time in a cyclic polling
system with simultaneous batch arrivals. The contribution of this chapter is that we
obtain exact expressions for the Laplace-Stieltjes transform of the steady-state batch
sojourn-time distribution for the locally-gated, globally-gated, and exhaustive service
disciplines, which can be used to determine the moments of the batch sojourn-time,
and in particular, its mean. However, we provide an alternative, more efficient way
to determine the mean batch sojourn-time by extending the Mean Value Analysis
approach of Winands et al. (2006) for the cases of exhaustive and locally-gated service
disciplines. We compare the batch sojourn-times for the different service disciplines
in several numerical examples and show that the best performing service discipline,
minimizing the batch sojourn-time, depends on system characteristics. From the
results we conclude that there is no unique best service discipline that minimizes
the expected batch sojourn-time. As such, our results provide a starting point for a
framework to minimize batch sojourn-times for a given polling system.

The organization of this chapter is as follows. In Section 5.2 a detailed description of
the model and the corresponding notation used in this chapter is given. Section 5.3
analyzes the batch sojourn-time for exhaustive service, Section 5.4 does this for
locally-gated service, and in Section 5.5 for globally-gated service. We extensively
analyze the results of our model in Section 5.6 via computational experiments for a
range of parameters. Finally, in Section 5.7 we conclude and suggest some further
research topics.

5.2 Model description

Consider a polling system consisting of N ≥ 2 infinite buffer queues Q1, . . . , QN

served by a single server that visits the queues in a fixed cyclic order. For the
ease of presentation, all references to queue indices greater than N or less than 1
are implicitly assumed to be modulo N , e.g., QN+1 is understood as Q1. Assume
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that a new batch of customers arrives according to a Poisson process with rate λ.
Each batch of customers is of size K = (K1, . . . , KN), where Ki represents the
number of customers entering the system at Qi, i = 1, . . . , N . The random vector
K is assumed to be independent of past and future arriving epochs and at least
one element of vector K is larger than 0 and the other elements are larger than or
equal to 0, i.e. each batch contains at least one customer. The support with all
possible realizations of K is denoted by K and let k = (k1, . . . , kN) be a realization
of K. The joint probability distribution of K, π (k) = P (K1 = k1, . . . , KN = kN)
is arbitrary and its corresponding probability generating function (PGF) is given
by K̃ (z) = E

(
zK1

1 zK2
2 . . . zKN

N

)
. The PGF of the marginal batch size distribution

at Qi is denoted by K̃i (z) = K̃ (1, . . . , 1, z, 1, . . . , 1), |z| ≤ 1, where the z occurs
at the i-th entry. The arrival rate of customers to Qi is λi = λE (Ki), and let
E (Kij) = E (KiKj) for i 6= j and E (Kii) = E (K2

i )−E (Ki). The total arrival rate
of customers arriving in the system is given by Λ = ∑N

i=1 λi.

The service time of a customer in Qi is a generally distributed random variable Bi with
Laplace-Stieltjes transform (LST) B̃i (.), and with first and second moment E (Bi)
and E(B2

i ), respectively. The workload at queue Qi, i = 1, . . . , N is defined by ρi =
λiE (Bi); the overall system load by ρ = ∑N

i=1 ρi. In order for the system to be stable,
a necessary and sufficient condition is that ρ < 1 (Takagi, 1986). In the remainder
of this chapter, it is assumed that the condition for stability holds. When the server
switches from Qi to Qi+1, it incurs a generally distributed switch-over time Si with
LST S̃i (.), and first and second moment E (Si) and E(S2

i ). Let E (S) = ∑N
i=1E (Si)

be the total switch-over time in a cycle and E(S2) = ∑N
i=1E(S2

i ) +∑i 6=j E (Si)E (Sj)
its second moment.

Vi Si Vi+1 Si+1 Vi+N−1 Si+N−1 Vi
· · ·

Cycle Ci

Visit beginning / Switch-over completion
Visit completion / Switch-over beginning
Service beginning
Service completion

Figure 5.2: Description of a cycle, visit periods, and switch-over times.

The cycle time Ci of Qi is defined as the time between two successive visits beginning
of the server at this queue. A cycle consists of N visit periods each followed by
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a switch-over time; Vi, Si, Vi+1, . . . , Vi+N−1, Si+N−1 (see Figure 5.2). A visit period,
Vi, starts whenever there are customers waiting at Qi with a service beginning and
ends with a service completion. Its duration equals the sum of service times of the
customers served during the current visit to Qi. By definition, a visit beginning always
corresponds with a switch-over completion, whereas a visit completion corresponds
with a switch-over beginning. In case there are no customers waiting at Qi, these
two epochs coincide. It is well known that the mean cycle length is independent
of the queue involved (and the service discipline) and is given by (see, e.g., Takagi
(1986)) E (C) = E (S) / (1− ρ).

In this chapter three different service policies are considered that satisfy the branching
property (Resing, 1993). Under the exhaustive policy, when a visit beginning starts
at Qi the server continues to work until the queue becomes empty. Any customer
that arrives during the server’s visit to Qi is also served within the current visit.
However, under the locally-gated policy, the server only serves the customers that
were present at Qi at its visit beginning; all customers that arrive during the course
of the visit are served in the next visit to Qi. The final policy is the globally-gated
policy; according to this policy the server will only serve the customers who were
present at all queues at the visit beginning of a reference queue, which is normally
assumed to be Q1. Customers arriving after this visit beginning will only be served
after the server has finished its current cycle. This policy strongly resembles the
locally-gated policy, except that all queues are gated at the same time instead of one
per visit beginning.

QN

Q1

Q2

QiQj

... ...

. . .S

1

2
3

Vj Sj Vi
· · ·

Sojourn time customer 1

· · · V1 Si−1

1 2 3S

Sojourn time customer 2
Sojourn time customer 3 / Batch sojourn time

S
1 2 3

Service completion
Server

Customers

Figure 5.3: Description of the batch sojourn-time.
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The batch sojourn-time of a specific customer batch k, denoted by Tk and its LST
by T̃k (.), is defined as the time between its arrival epoch until the service completion
of the last customer in the arrived batch; see Figure 5.3. In this example assume
that when the server is in a visit period of Qj, a batch of three customers arrives
in Q1 and Qi. Then the batch sojourn-time of this batch equals the residual time
in Vj, switch-over times Sj, . . . , Si−1, visit periods Vj+1, . . . , Vi−1, and the time until
service completion of the last customer of the batch in Vi. By definition, the batch
sojourn-time corresponds with the sojourn-time of the last customer that is served
within the batch. It is important to realize that the queue where the batch finishes
service depends on the location of the server of the arrival of the batch and there is
no fixed order in which the customers need to be served. The order in which the
customers are served in this example is the same for the three service policies, but
varies between disciplines depending on the location of the server. Finally, the batch
sojourn-time of an arbitrary customer batch is denoted by T and its corresponding
LST by T̃ (.).

Throughout this chapter we make references to the server path from Qi to Qj , which
should be understood in a cyclic sense; e.g. Qi, Qi+1, . . . , Qj if i ≤ j, and otherwise
Qi, Qi+1, . . . , QN , Q1, . . . , Qj if i > j. For the ease of notation, we define a cyclic
sum and, analogously, a cyclic product as (Boxma et al., 1990)

j∑′

l=i
xl :=


j∑
l=i
xl, if i ≤ j,

N∑
l=i
xl +

j∑
l=1

xl, if i > j,

j∏′

l=i
xl :=


j∏
l=i
xl, if i ≤ j,

N∏
l=i
xl ×

j∏
l=1

xl, if i > j,

and alternatively,

j−i∑′

l=0
xi+l :=


j−i∑
l=0

xi+l, if i ≤ j,

j+N−i∑
l=0

xi+l, if i > j,

j−i∏′

l=0
xl :=


j−i∏
l=0

xi+l, if i ≤ j,

j+N−i∏
l=0

xi+l, if i > j.

Finally, let Ki,j be a subset of support K where the last customer of an arbitrary
arriving customer batch is served in Qj and all its other customers are served in
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Qi, . . . , Qj . By definition, a batch will complete its service in one of the queues, such
that ⋃Nj=1Ki,j = K, i = 1, . . . , N . The corresponding probability of subset Ki,j is
given by,

π (Ki,j) =

P (Kj > 0, Kj+1 = 0, . . . , Ki−1 = 0) , j = 1, . . . , N, i 6= j + 1,

P (Kj > 0) , otherwise.

In addition, let E (Kl|Ki,j) be the conditional expected number of customers that have
arrived in Ql, l = 1, . . . , N given subset Ki,j . We define K̃ (z|Ki,j) as the conditional
PGF of the distribution of the number of customers that arrive in Qi, . . . , Qj given
Ki,j,

K̃ (z|Ki,j) =
∑

k∈Ki,j

π (k)
π (Ki,j)

j∏′

l=i
zkl
l , (5.1)

such that K̃ (z) = ∑N
j=1 π (Ki,j) K̃ (z|Ki,j), i = 1, . . . , N .

5.3 Exhaustive service

In this section, we start by deriving the LST of the batch sojourn-time distribution
of a specific batch of customers in case of exhaustive service. The batch sojourn-time
distribution is found by conditioning on the numbers of customers present in each
queue at an arrival epoch and then studying the evolution of the system until all
customers within the batch have been served. For this analysis, we first study the
joint queue-length distribution at several embedded epochs in Section 5.3.1. We
use these results to determine the LST of the batch sojourn-time distribution for
both a specific and an arbitrary batch of arriving customers in Section 5.3.2, and
present a Mean Value Analysis (MVA) to calculate the mean batch sojourn-time in
Section 5.3.3.



5.3 Exhaustive service 119

5.3.1 The joint queue-length distribution

In the polling literature, the probability generating function (PGF) of the joint
queue-length distribution at various epochs is extensively studied (e.g. Takagi (1986);
Kleinrock & Levy (1988); Levy & Sidi (1990)). Let L̃B(Vi) (z) and L̃C

(Vi) (z) be
the joint queue-length PGF at visit beginnings and completions at Qi, where z =
(z1, . . . , zN) is an N -dimensional vector with |zi| ≤ 1 . Similarly, let L̃B(Si) (z) and
L̃C

(Si) (z) be the joint queue-length PGFs at switch-over beginnings and completions
at Qi, respectively. Because of the branching property (Resing, 1993), these PGFs
can be related to each other as follows,

L̃C
(Vi) (z) =L̃B(Vi) (z1, . . . , zi−1,

B̃P i

(
λ− λK̃ (z1, . . . , zi−1, 1, zi+1, . . . , zN)

)
, zi+1, . . . , zN

)
, (5.2)

L̃B
(Si) (z) =L̃C(Vi) (z) , (5.3)

L̃C
(Si) (z) =L̃B(Si) (z) S̃i

(
λ− λK̃ (z)

)
, (5.4)

L̃B
(Vi+1) (z) =L̃C(Si) (z) , (5.5)

where i = 1, . . . , N and B̃P i (.) is the LST of a busy-period in Qi equals that of an
MX/G/1 queue initiated by the service of a customer and is given by,

B̃P i (ω) = B̃i

(
ω + λ− λK̃i

(
B̃P i (ω)

))
. (5.6)

Equations (5.2)-(5.5) are referred in the polling literature as the laws of motion.
The interpretation of (5.2) is that the queue-length in Qj, j 6= i at the end of visit
period Vi is given by the number of customers already at Qj at the visit beginning
plus all the customers that arrive in the system during visit period Vi. For Qi, all
customers that are already in Qi or arrive during Vi will be served before the end
of the visit completion, and, therefore, Qi will contain no customers at the end of
the visit period. Equation (5.3) simply states that the PGF of a visit completion
corresponds to the PGF of the next switch-over beginning (see also Figure 5.2).
Finally, the queue-length vector at a switch-over completion corresponds to the sum
of customers already present at the switch-over beginning plus all the customers
that arrive during this switch-over period (5.4), and by definition the queue-length
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vector at a switch-over completion is the same for the next visit beginning (5.5).
Note that equations (5.2)-(5.5) can be differentiated with respect to z1, . . . , zN to
compute moments of the queue-length distributions on embedded points (Levy &
Sidi, 1991) or numerically inverted for the queue-length probability distributions (e.g.
Choudhury & Whitt (1996) for the case for non-simultaneously arrivals).

Let L̃B(Bi) (z) and L̃C(Bi) (z) be the joint queue-length PGFs at service beginnings
and completions at Qi. Eisenberg (1972) proved, that besides the laws of motion,
there exists a simple relation between the joint queue-length distributions at visit-
and service beginnings and completions. He observed that each visit beginning
either starts with a service beginning, or with a visit completion in case there are
no customers at the queue. Similarly, each visit completion coincides with either a
visit beginning or a service completion. Eisenberg (1972) only considered polling
systems either with exhaustive or gated service at all queues and individual arriving
customers, but Boxma et al. (2011) has proven that the relation is not restricted
to a particular service discipline and also holds for general branching-type service
disciplines. In this section, we generalize this result for the case of simultaneous
batch arrivals. Similar as in Eisenberg (1972), the four PGFs are related as follows,

L̃B
(Vi) (z) + λiE (C) L̃C(Bi) (z) = λiE (C) L̃B(Bi) (z) + L̃C

(Vi) (z) , (5.7)

where the term 1/ (λiE (C)) is the long-run ratio between the number of service be-
ginnings/completions and visit beginnings/completions in Qi, for every i = 1, . . . , N .

Furthermore, the joint queue-length distribution at service beginnings and completions
are related via,

L̃C
(Bi) (z) = L̃B

(Bi) (z)
[
B̃i

(
λ− λK̃ (z)

)
/zi
]
. (5.8)

Substituting (5.8) in (5.7) and rearranging terms, the joint queue-length distribution
at a service beginning can be written as,

L̃B
(Bi) (z) =

zi

(
L̃C

(Vi) (z)− L̃B(Vi) (z)
)

λiE (C)
(
B̃i

(
λ− λK̃ (z)

)
− zi

) . (5.9)
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Next, we can find the PGFs of the joint queue-length distributions at an arbitrary
moment during Vi and Si, denoted by L̃(Vi) (z) and L̃(Si) (z), by noticing that the
queue-length at an arbitrary moment in Vi or Si is equal to the queue length at
service/switch-over beginning plus the number of customers that arrived in the past
service/switch-over time,

L̃(Vi) (z) = L̃B
(Bi) (z)

1− B̃i

(
λ− λK̃ (z)

)
E (Bi)

(
λ− λK̃ (z)

) , (5.10)

L̃(Si) (z) = L̃B
(Si) (z)

1− S̃i
(
λ− λK̃ (z)

)
E (Si)

(
λ− λK̃ (z)

) . (5.11)

Finally, let L̃ (z) be the PGF of the joint queue-length distribution at an arbitrary
moment. By conditioning on periods V1, S1, . . . , VN , SN and using (5.10) and (5.11)
L̃ (z) can be written as,

L̃ (z) = 1
E (C)

N∑
i=1

(
E (Vi) L̃(Vi) (z) + E (Si) L̃(Si) (z)

)
, (5.12)

with E (Vi) = ρiE (C) as the expected visit time to Qi.

The conditioning approach of Equation (5.12) will also be used in the next section
to determine the batch sojourn-time distribution. The next theorem will show how
(5.12) can be reformulated and used to find the marginal queue-length distributions.

Theorem 5.1. Let L̃ (z) be the probability generating function of the joint queue-
length distribution at an arbitrary time in steady-state. Then, L̃ (z) can be written
as follows,

L̃ (z) =
N∑
i=1

λi (1− zi) L̃C
(Bi) (z)

λ− λK̃ (z)
. (5.13)

Proof. First, we start by rewriting (5.10) and (5.11). Equation (5.10) can be rewritten
using (5.9). Hence,

L̃(Vi) (z) =
zi

(
L̃C

(Vi) (z)− L̃B(Vi) (z)
)

λiE (C)
(
B̃i

(
λ− λK̃ (z)

)
− zi

) 1− B̃i

(
λ− λK̃ (z)

)
E (Bi)

(
λ− λK̃ (z)

) . (5.14)
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Similarly, (5.11) can be rewritten using (5.3)-(5.5),

L̃(Si) (z) = L̃C
(Vi) (z)− L̃B(Vi+1) (z)
E (Si)

(
λ− λK̃ (z)

) . (5.15)

Substituting (5.14) and (5.15) into (5.12) gives

L̃ (z) = 1
E (C)

N∑
i=1

zi
(
L̃C

(Vi) (z)− L̃B(Vi) (z)
)

B̃i

(
λ− λK̃ (z)

)
− zi

1− B̃i

(
λ− λK̃ (z)

)
λ− λK̃ (z)

+ L̃C
(Vi) (z)− L̃B(Vi+1) (z)

λ− λK̃ (z)

 . (5.16)

Next, (5.16) can be rewritten into (5.13) as follows. First, by rearrangement it holds
that,

N∑
i=1

L̃C
(Vi) (z)− L̃B(Vi+1) (z)(

λ− λK̃ (z)
) =

N∑
i=1

L̃C
(Vi) (z)− L̃B(Vi) (z)(
λ− λK̃ (z)

) .

Then, using (5.16), (5.8), and (5.9),

N∑
i=1

zi
(
L̃C

(Vi) (z)− L̃B(Vi) (z)
)

B̃i

(
λ− λK̃ (z)

)
− zi

1− B̃i

(
λ− λK̃ (z)

)
λ− λK̃ (z)

+ L̃C
(Vi) (z)− L̃B(Vi+1) (z)

λ− λK̃ (z)



=
N∑
i=1

1 +
zi
(
1− B̃i

(
λ− λK̃ (z)

))
B̃i

(
λ− λK̃ (z)

)
− zi


(
L̃C

(Vi) (z)− L̃B(Vi) (z)
)

λ− λK̃ (z)

=
N∑
i=1

(1− zi) B̃i

(
λ− λK̃ (z)

)
B̃i

(
λ− λK̃ (z)

)
− zi

(
L̃C

(Vi) (z)− L̃B(Vi) (z)
)

λ− λK̃ (z)

=
N∑
i=1

(1− zi)λiE (C) L̃C(Bi) (z)
λ− λK̃ (z)

,

and multiplying with 1/E (C) gives (5.13).
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Remark 5.1. Boxma et al. (2011) derived L̃ (z) for a polling system with individually
arriving customers. In case of individually arriving customers, λ− λK̃ (z) reduces
to ∑N

i=1 λi (1− zi) in (5.13), which corresponds with Equation (10) in Boxma et al.
(2011).

Remark 5.2. From Theorem5.1 the marginal queue-length distributions L̃i (z)
immediately follows by setting zi = z and zj = 1, for j 6= i. Then, from (5.13),

L̃i (z) = λi (1− z) L̃C(Bi)
i (z)

λ− λK̃i (z)

= E (Ki) (1− z)
1− K̃i (z)

L̃C
(Bi)
i (z) . (5.17)

where L̃C(Bi)
i (z) = L̃C

(Bi) (1, . . . , 1, z, 1, . . . , 1), where the z occurs at the i-th entry.

Remark 5.3. When N = 1, the system reduces to a MX/G/1 queueing system
with multiple vacations (Baba, 1986). Batches of customers arrive at the system
according to a compound Poisson process. As soon as the system becomes empty,
the server takes an uninterruptible vacation (switch-over time) for a random length
of time. After returning from that vacation, the server keeps on taking vacations
until there is at least one customer in the system. With use of (5.8), (5.9), and
(5.13) it is easy to determine the PGF of the stationary queue size distribution of
the MX/G/1 multiple vacation model,

L̃ (z) = λE (K) (1− z) L̃C(B) (z)
λ− λK̃ (z)

=
(1− ρ) (1− z) B̃

(
λ− λK̃ (z)

)(
L̃C

(V ) (z)− L̃B(V ) (z)
)

(
λ− λK̃ (z)

)
E (S)

(
B̃
(
λ− λK̃ (z)

)
− z

)
=
(1− ρ) (1− z) B̃

(
λ− λK̃ (z)

)
B̃
(
λ− λK̃ (z)

)
− z

1− S̃
(
λ− λK̃ (z)

)
E (S)

(
λ− λK̃ (z)

)
 , (5.18)

where we use the fact that L̃C(V ) (z) = 1, since the server only goes on a vacation if
the queue is empty. Equation (5.18) can be interpreted as follows. The first term is
the PGF of the stationary queue-length distribution of the standard MX/G/1 queue
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without vacations, whereas the second term is the PGF of the number of customers
that arrive during the residual duration of the vacation time (Choudhury, 2002).

5.3.2 Batch sojourn-time distribution

In order to determine the LST of the steady-state batch sojourn-time distribution,
we follow the method of Boon et al. (2012) by conditioning on the location of the
server and determining the time it takes until the last customer in a specific batch is
served. These results are then used to determine the batch sojourn-time distribution
of an arbitrary batch. Boon et al. (2012) developed this method to study the steady-
state waiting time distribution for polling systems with rerouting. For these kinds
of models, the distributional form of Little’s Law (Keilson & Servi, 1988) cannot
be applied, since the combined processes of internal and external arrivals do not
necessary form a Poisson process. However, by studying the evolution of the system
after a customer arrival this problem can be avoided and the waiting time distribution
can be obtained. Important in their analysis is the concept of descendants from
the theory of branching processes, which is defined as all the customers who arrive
during the service of a tagged customer, plus the customers who arrive during the
service of those customers, etc (i.e. the total progeny of the tagged customer).

The approach of Boon et al. (2012) is very suited to determine the steady-state batch
sojourn-time distribution, since for a specific customer batch the location where the
last customer in the batch will be served varies on the location of the server at the
arrival of the batch (e.g. in Figure 5.3 depending of the location of the server the
batch is either fully served in Q1 or Qi). Similar as in (5.12) we explicitly condition
on the location of the server; the LST of the batch sojourn-time distribution of a
specific customer batch k can be written as,

T̃k (ω) = 1
E (C)

N∑
j=1

(
E (Vj) T̃ (Vj)

k (ω) + E (Sj) T̃ (Sj)
k (ω)

)
, (5.19)

where T̃ (Vj)
k (.) is the LST of the batch sojourn-time for customer batch k given that

the batch arrived during Vj, and whereas T̃ (Sj)
k (.) is given when the customer batch

arrived during Sj. The remainder of this section will focus on how to determine
T̃

(Vj)
k (.), T̃ (Sj)

k (.), and the LST of an arbitrary batch T̃ (.).
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From the theory of branching processes, we denote Bj,i i, j = 1, . . . , N , as the service
of a tagged customer in Qj plus all its descendants that will be served before or
during the next visit to Qi. Combining this gives the following recursive function,

Bj,i =


BPj, if i = j,

BPj +
i∑′

l=j+1

Nl(BPj)∑
m=1

Blm,i, otherwise,
(5.20)

where BPj is the busy period initiated by the tagged customer in Qj, Nl (BPj)
denotes the number of customers that arrive in Ql during this busy-period in Qj,
and Blm,i is a sequence of (independent) Bl,i’s. Let B̃j,i (.) be the LST of Bj,i, which
is given by,

B̃j,i (ω) =B̃P j

(
ω + λ(1− K̃(Bj+1,i))

)
, (5.21)

where Bj+1,i is an N -dimensional vector defined as follows,

(Bj,i)l =

B̃l,i (ω) , if l = j, . . . , i, and j 6= i+ 1,

1, otherwise.
(5.22)

A similar LST can also be formulated for a switch-over time Sj and the service of all
its descendants that will be served before the end of the visit to Si,

S̃j,i (ω) = S̃j
(
ω + λ(1− K̃(Bj+1,i)

)
, (5.23)

Finally, let B∗
j,i be an N -dimensional vector defined as,

(B∗
j,i)l =

B̃i (ω) , if l = i,

(Bj,i−1)l, otherwise.
(5.24)

The key difference with (5.22) is that (5.24) excludes any new customer arrivals in
Qi. This is needed to omit customers that arrive in Qi after the batch arrival; these
customers do not influence the batch sojourn-time of the arriving customer batch
since they will be served afterwards.
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We first focus on the batch sojourn-time of a customer batch that arrives during
a visit period. Assume than an arriving customer batch k enters the system while
the server is currently within visit period Vj and the last customer in the batch will
be served in Qi. Formally, this means ki > 0 and all the other customer arriving in
the same batch should be served before the next visit to Qi; kl ≥ 0, l = j, . . . , i− 1,
and kl = 0 elsewhere. Whenever all the customers arrive in the same queue that is
currently visited; then ki = kj > 0, and kl = 0 elsewhere.

The batch sojourn-time of customer batch k consists of the (i) residual service time in
Qj, (ii) the service of all the customers already in the system in Qj, . . . , Qi, (iii) the
service of all new customer arrivals that arrive after customer batch k in Qj, . . . , Qi−1

before the server reaches Qi, (iv) switch-over times Sj, . . . , Si−1, and (v) the service
of the customers in the customer batch k. From (5.10) we know that at the arrival
of the customer batch, the PGF of the joint queue-length distribution is the equal to
the queue lengths at a service beginning, L̃B(Bj) (.), plus the number of customers
that arrived in the past part of the service time, B̃P

j (.). On the other hand, we
also need to consider the residual part of the service time, B̃R

j (.), and if i 6= j the
arrivals that occur in Qj, . . . , Qi−1 during this period as well. Therefore similar as
in Boon et al. (2012), we need to consider the PGF-LST of the joint queue-length
distribution at an arrival epoch and the residual service time; L̃(Vi) (z, ω). First, since
the number of customers that arrive in the past and residual part of the service time
are independent of each other and from the queue lengths at a service beginning, we
can write the LST of the joint distribution of B̃P

j (.) and B̃R
j (.) as (Cohen, 1982)

B̃PR
j (ωP , ωR) = B̃j (ωP )− B̃j (ωR)

E (Bj) (ωR − ωP ) ,

Then because of independence between B̃PR
j (ωP , ωR) and L̃B(Bj) (z), we have

L̃(Vj) (z, ω) = L̃B
(Bj) (z) B̃PR

j

(
λ− λK̃ (z) , ω

)
. (5.25)
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Proposition 5.1. The LST of the batch sojourn-time distribution of batch k condi-
tioned that the server is in visit period Vj and the last customer in the batch will be
served in Qi is given by,

T̃
(Vj)
k (ω) = L̃(Vj)

(
B∗

j,i, ω + λ(1− K̃(Bj,i−1))
)

×
i−j∏′

l=1
S̃j+l−1,i−1 (ω) 1

(B∗
j,i)j

i∏′

l=j
(B∗

j,i)
kl
l . (5.26)

Proof. Consider the system just before the arrival of the customer batch and assume
that the batch does not finish service in the current visit period, i.e. i 6= j. Then,
let n1, n2, . . . , nN be the number of customers present in the system at the arrival
epoch of the customer batch and k1, . . . , kN be the number of customers per queue
that arrived in batch k. Since the batch arrives in Vj, it first has to wait for the
residual service time of the customer currently in service. During this period, new
customers can arrive before the next visit to Qi which bring in additional work
with λ(1 − K̃(Bj,i−1)). Afterwards, each customer already in the system at the
arrival of the customer batch in Qj, . . . , Qi and each customer in batch k will make
a contribution of (B∗

j,i)l, l = j, . . . , i to the batch sojourn-time. Finally, in the
switch-over periods between Qj and Qi, new customers can arrive that will be served
before the service of the last customer in the batch. Combining this, gives the LST
of the batch sojourn-time distribution of batch k conditioned that n1, n2, . . . , nN

customers are already present in the system, the server is in visit period Vj, and the
last customer in the batch will be served in Qi,

E(e−ωT
(Vj)
k |n1, n2, . . . , nN) = B̃R

j

(
ω + λ(1− K̃(Bj,i−1))

)
B̃j,i−1 (ω)nj−1+kj

×
i−1∏′

l=j+1
B̃l,i−1 (ω)nl+kl

i−1∏′

l=j
S̃l,i−1 (ω) B̃i (ω)ni+ki . (5.27)

Unconditioning this equation gives (5.26).

Now, consider a customer batch that arrives during a switch-over period. Assume
an arriving customer batch k enters the system while the server is currently within
switch-over period Sj−1 and the last customer in the batch will be served in Qi. The
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reason that we consider Sj−1 is that batch k will finish service in the same queue
had it arrived in Vj because of the exhaustive service discipline.

In this case, the batch sojourn-time consists of the same components (ii), (iii), (iv),
and (v) on page 126. Component (i) is however different and is now defined as the
residual switch-over time between Qj−1 and Qj. Similarly, we define L̃(Sj−1) (z, ω)
as the PGF-LST of the joint queue-length distribution of customers present in the
system at an arbitrary moment during Sj−1 and the residual switch-over time S̃Rj−1 (.).
From (5.11) we have the joint queue-length distribution at a switch-over beginning,
L̃B

(Sj−1) (.), and the number of customers that arrived in the past part of the switch-
over time, S̃Pj−1 (.). Similar to B̃PR

j (.), we define S̃PRj−1 (ωR, ωP ) as the LST of the
joint distribution of the past and residual switch-over time Sj−1 as

S̃PRj−1 (ωP , ωR) = S̃j−1 (ωP )− S̃j−1 (ωR)
E (Sj−1) (ωR − ωP ) .

Then due to independence, the PGF-LST of the joint queue-length distribution
present at an arbitrary moment during Sj−1 and the residual switch-over time is
given by,

L̃(Sj−1) (z, ω) = L̃B
(Sj−1) (z) S̃PRj−1

(
λ− λK̃ (z) , ω

)
. (5.28)

Proposition 5.2. The LST of the batch sojourn-time distribution of batch k con-
ditioned that the server is in switch-over period Sj−1 and the last customer in the
batch will be served in Qi is given by,

T̃
(Sj−1)
k (ω) = L̃(Sj−1)

(
B∗

j,i, ω + λ(1− K̃(Bj,i−1))
)

×
i−j∏′

l=1
S̃j+l−1,i−1 (ω)

i∏′

l=j
(B∗

j,i)
kl
l . (5.29)

Proof. Similar as in Proposition 5.1, let n1, n2, . . . , nN be the number of customers
present in the system at the arrival epoch, k1, . . . , kN be the number of customers per
queue in batch k, and i 6= j. Then, the first component of the batch sojourn-time is
the residual switch-over time in Sj−1 and the contribution of the arrival of potential
new customers before the next visit to Qi with λ(1− K̃(Bj,i−1)). Afterwards, each
customer in Qj, . . . , Qi already in the system at the arrival of the customer batch
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and each customer in batch k will make a contribution of (B∗
j,i)l, l = j, . . . , i to the

batch sojourn-time. Finally, in the switch-over periods between Qj and Qi, new
customers can arrive that will be served before the service of the last customer in
the batch. Combining this, gives the LST of the batch sojourn-time distribution of
batch k conditioned that n1, n2, . . . , nN customers are already present in the system,
the server is in visit period Sj−1, and the last customer in the batch will be served in
Qi,

E(e−ωT
(Sj−1)
k |n1, n2, . . . , nN) = S̃Rj−1

(
ω + λ(1− K̃(Bj,i−1))

)
×

i−1∏′

l=j
B̃l,i−1 (ω)nl+kl

i−1∏′

l=j
S̃l,i−1 (ω) B̃i (ω)ni+ki . (5.30)

Unconditioning this equation gives (5.29).

From Proposition 5.1 and Proposition 5.2, it can be seen that the LST of the batch
sojourn-time distribution of batch k conditioned on a visit/switch-over period is
comprised of two terms; a term independent of batch k and a term that corresponds
to the additional contribution batch k makes to the batch sojourn-time;

T̃
(Vj)
k (ω) =

N∑
i=1

1(k∈Kj,i)W̃
(Vj)
i (ω)

i∏′

l=j
(B∗

j,i)
kl
l , (5.31)

T̃
(Sj−1)
k (ω) =

N∑
i=1

1(k∈Kj,i)W̃
(Sj−1)
i (ω)

i∏′

l=j
(B∗

j,i)
kl
l , (5.32)

where 1(k∈Kj,i) is an indicator function that is equal to one if for batch k all its
customers are served in Qj, . . . , Qi and the last customer will be served in Qi, and
zero otherwise. The terms W̃ (Vj)

i (ω) and W̃ (Sj−1)
i (ω) can be considered as the time

between the batch arrival epoch and the service completion of the last customer in Qi

that was already in the system at the arrival of the customer batch, excluding batch k

and any arrivals to Qi after the arrival epoch, conditioned on the location of the
server. In case there are only individually arriving customers this would correspond
to the LST of the waiting time distribution of a customer arriving in Qi conditioned
that the server is in a visit or switch-over period.
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The LST of the batch sojourn-time distribution of a specific customer batch k can
now be calculated using (5.19), and alternatively using (5.31) and (5.32) by,

T̃k (ω) = 1
E (C)

N∑
j=1

N∑
i=1

1(k∈Kj,i)
(
E (Vj) W̃ (Vj)

i (ω) + E (Sj−1) W̃ (Sj−1)
i (ω)

)

×
i∏′

l=j
(B∗

j,i)
kl
l . (5.33)

Finally, we focus on the LST of the batch sojourn-time of an arbitrary batch T̃ (.).

Theorem 5.2. The LST of the batch sojourn-time distribution of an arbitrary batch
T̃ (.), in case of exhaustive service, is given by:

T̃ (ω) =
∑
k∈K

π (k) T̃k (ω) , (5.34)

where T̃k (ω) is given by (5.19) or (5.33). Alternatively, we can write (5.34) as,

T̃ (ω) = 1
E (C)

N∑
j=1

N∑
i=1

(
E (Vj) W̃ (Vj)

i (ω) + E (Sj−1) W̃ (Sj−1)
i (ω)

)
× π (Kj,i) K̃

(
B∗

j,i|Kj,i
)
. (5.35)

Proof. It can be easily seen that (5.34) follows by enumerating all possible realizations
of customer batches and the law of total probability.

Next for (5.35), we can partition K into Kj,i and write (5.34) using (5.19) as,

T̃ (ω) = 1
E (C)

N∑
i=1

N∑
j=1

∑
k∈Kj,i

π (k)
(
E (Vj) T̃ (Vj)

k (ω) + E (Sj−1) T̃ (Sj−1)
k (ω)

)
. (5.36)

From (5.31) and (5.32) it can be seen that when the server is either in Sj−1 or Vj,
then for two different customer batches that both finish service in the same queue
their LST of the batch sojourn-time distribution only varies in the contribution the
batch makes to the batch sojourn-time.
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Then, by (5.33) and (5.1), we have by rearrangement

∑
k∈Kj,i

π (k)
(
E (Vj) T̃ (Vj)

k (ω) + E (Sj−1) T̃ (Sj−1)
k (ω)

)

=
(
E (Vj) W̃ (Vj)

i (ω) + E (Sj−1) W̃ (Sj−1)
i (ω)

)
π (Kj,i)

∑
k∈Kj,i

π (k)
π (Kj,i)

i∏′

l=j
(B∗

j,i)
kl
l

=
(
E (Vj) W̃ (Vj)

i (ω) + E (Sj−1) W̃ (Sj−1)
i (ω)

)
π (Kj,i) K̃

(
B∗

j,i|Kj,i
)
.

Substituting the last equation in (5.36) gives (5.35).

Differentiating (5.35) will give the mean batch sojourn-time, however in the next
section an alternative, more efficient way to determine the mean batch sojourn-time
is presented.

5.3.3 Mean batch sojourn-time

In this section, we derive the mean batch sojourn-time of a specific batch and an
arbitrary batch using Mean Value Analysis (MVA). MVA for polling systems was
developed by Winands et al. (2006) to study mean waiting times in systems with
exhaustive, gated service, or mixed service. The main advantage of MVA is that it
has a pure probabilistic interpretation and is based on standard queueing results, i.e.,
the Poisson arrivals see time averages (PASTA) property (Wolff, 1982) and Little’s
Law (Little, 1961). Furthermore, MVA evaluates the polling system at arbitrary
time periods and not on embedded points such as visit beginnings, like in the buffer
occupancy method (Takagi, 1986) and the descendant set approach (Konheim et al.,
1994).

Central in the MVA of Winands et al. (2006) is the derivation of E
(
L̄

(Sj−1,Vj)
i

)
, the

mean queue-length at Qi (excluding the potential customer currently in service) at
an arbitrary epoch within switch-over period Sj−1 and visit period Vj;

E
(
L̄

(Sj−1,Vj)
i

)
= E (Sj−1)
E (Sj−1) + E (Vj)

E
(
L̄

(Sj−1)
i

)
+ E (Vj)
E (Sj−1) + E (Vj)

E
(
L̄

(Vj)
i

)
, (5.37)
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where E
(
L̄

(Sj−1)
i

)
and E

(
L̄

(Vj)
i

)
are the expected queue-length in Qi during, re-

spectively, a switch-over/visit period. Subsequently, with E
(
L̄

(Sj−1;Vj)
i

)
the mean

queue-length E
(
L̄i
)
in Qi can be determined,

E
(
L̄i
)

=
N∑
j=1

E (Sj−1) + E (Vj)
E (C) E

(
L̄

(Sj−1,Vj)
i

)
, i = 1, . . . , N, (5.38)

and by Little’s law, also the mean waiting time E (Wi) of a random customer in Qi,
which is defined as the time in steady-state from the customer’s arrival until the
start of his/her service.

For notation purposes we introduce θj as shorthand for the intervisit period (Sj−1, Vj);
the expected duration of this period E (θj) is given by,

E (θj) = E (Sj−1) + E (Vj) , j = 1, . . . , N. (5.39)

Notice that ∑N
j=1E (θj) = E (C). In addition, we define θj,i as the duration of an

intervisit period starting in θj and ending in θi, the expected duration of this period
E (θj,i) is equal to,

E (θj,i) =
i∑′

l=j
E (θl) , i = 1, . . . , N, j = 1, . . . , N, (5.40)

and where E
(
θRj,i
)

= E
(
θ2
j,i

)
/2E (θj,i) is the mean residual duration of this period.

However, E
(
θ2
j,i

)
is unknown and not straightforward to derive directly. In the MVA,

based on probabilistic arguments, E
(
θ2
j,i

)
will be expressed in terms of E

(
L̄

(θj)
i

)
.

We denote E (Bj,i) as the mean service of a customer in Qj and all its descen-
dants before the server starts serving Qi. Let E (Bj,j) = E (Bj) and E (Bj,j+1) =
E (Bj) / (1− ρj) be the expected busy-period initiated by a customer in Qj. Then,
E (Bj,j+2) equals the busy-period in Qj plus all the customers that arrive during this
busy period in Qj+1 and the busy periods that they trigger,

E (Bj,j+2) = E (Bj)
1− ρj

(
1 + ρj+1

1− ρj+1

)
= E (Bj)

(1− ρj) (1− ρj+1) .
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In general we can write E (Bj,i) for i 6= j,

E (Bj,i) = E (Bj)∏′i−1

l=j (1− ρl)
, i = 1, . . . , N, j = 1, . . . , N. (5.41)

Also, let E (Sj,i) is denoted by the switch-over in Qj and the service of all the
customers that arrive during E (Sj) and their descendants before the server starts
serving Qi. Then E (Sj,j+1) = E (Sj) and, in general, for i 6= j + 1,

E (Sj,i) = E (Sj)∏′i−1

l=j+1 (1− ρl)
, i = 1, . . . , N, j = 1, . . . , N. (5.42)

Finally, E
(
BR
j,i

)
is the mean residual service of a customer in Qj and all its de-

scendants before the server starts serving Qi and is given by replacing E (Bj) by
E
(
BR
j

)
= E

(
B2
j

)
/2E (Bj) in E (Bj,i). In addition, E

(
SRj,i

)
is defined as E (Sj,i)

and by replacing E (Sj) by E
(
SRj
)

= E
(
S2
j

)
/2E (Sj).

In the MVA a set of N2 linear equations is derived for E
(
L̄i
)
in terms of unknowns

E
(
L̄

(θj)
i

)
. For this we have to consider the waiting time of an arbitrary customer and

make use of the arrival relation and the PASTA property. Assume that an arbitrary
customer enters the system in Qi. The waiting time of the customer consists of (i)
the service of E

(
L̄i
)
customers already at Qi upon its arrival to the system, (ii)

the service of E (Kii) /2E (Ki) customers that arrived in the same customer batch,
but are placed before the arbitrary customer in Qi, (iii) if the server is currently in
intervisit period θi, then the arbitrary customer has to wait with probability ρi for the
residual service time E

(
BR
i

)
and with probability E (Si−1) /E (C) for the residual

switch-over time E
(
SRi−1

)
. Finally, (iv) whenever the server is not in intervisit period

θi, the arbitrary customer has to wait for the expected residual duration before the
server returns at Qi. Based on these components, the mean waiting time E (Wi) of
a customer in Qi, i = 1, . . . , N is given by,

E (Wi) = E
(
L̄i
)
E (Bi) + E (Kii)

2E (Ki)
E (Bi) + ρiE

(
BR
i

)
+ E (Si−1)

E (C) E
(
SRi−1

)
+
(
1− E (θi)

E (C)
) (
E
(
θRi+1,i−1

)
+ E (Si−1)

)
. (5.43)



134 The analysis of batch sojourn-times in polling systems

The next step to derive the equations is to relate unknowns E
(
θRi+1,i−1

)
to E

(
L̄

(θj)
i

)
.

Consider E
(
θRj,i
)
the expected residual duration of an intervisit period starting in

θj and ending in θi given that an arbitrary customer batch just entered the system.
Then with probability E (θl) /E (θj,i), the server is during this period in intervisit
period θl, l = j, . . . , i, and the expected residual duration until the intervisit ending
of θi, conditioned that the server is in intervisit period θl, is defined as follows. First,
with probability E (Vl) /E (θl) the server is busy serving a customer in Ql and with
probability E (Sl−1) /E (θl) the server is in switch-over period Sl−1. During the
residual service/switch-over time new customers can arrive that will be served before
the intervisit ending in θi, which equals E

(
BR
l,i+1

)
and E

(
SRl−1,i+1

)
respectively. In

addition, the expected number of customers in Qn given the server is in θl, E
(
L̄(θl)
n

)
,

and the expected number of customers E (Knl) /E (Kn) that arrived in Qn in the
arbitrary customer batch will increase the duration of E

(
θRj,i
)
by E (Bn,i+1). Finally,

the customer also has to wait for all the switch-over times E (Sn,i+1), n = j, . . . , i

between Qn to Qn+1 plus the customers that arrive during the switch-over times and
their descendants that will be served before the end of E

(
θRj,i
)
. Combining this gives

the following expression for i 6= j − 1,

E
(
θRj,i
)

=
i∑′

l=j

E (θl)
E (θj,i)

(
E (Vl)
E (θl)

E
(
BR
l,i+1

)
+ E (Sl−1)

E (θl)
E
(
SRl−1,i+1

)

+
i∑′

n=l

[
E (Knl)
E (Kn) + E

(
L̄(θl)
n

)]
E (Bn,i+1) +

i−l∑′

n=1
E (Sl+n−1,i+1)

)
, (5.44)

It is now possible to set up a set of N2 linear equations. First, after the server has
visited Qi, there will be no customers present in the queue. Therefore, the number
of customers in Qi given an arbitrary moment in an intervisit period starting in θi+1

and ending in θj equals the number of Poisson arrivals during the age of this period
(Winands et al., 2006). Because the age is equal to the residual time in distribution,
we have for i = 1, . . . , N, j = 1, . . . , N , and i 6= j,

j∑′

l=i+1

E (θl)
E (θi+1,j)

E
(
L̄

(θl)
i

)
= λiE

(
θRi+1,j

)
. (5.45)
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Second, by (5.43) and using Little’s Law, λiE (Wi) = E
(
L̄i
)
, into (5.38) gives, for

i = 1, 2 . . . , N ,

N∑
j=1

E (θj)
E (C)E

(
L̄

(θj)
i

)
= λi

1− ρi

(
E (Kii)
2E (Ki)

E (Bi) + ρiE
(
BR
i

)
E (Si−1)
E (C) E

(
SRi−1

)
+
(
1− E (θi)

E (C)
) (
E
(
θRi+1,i−1

)
+ E (Si−1)

))
. (5.46)

With (5.45) and (5.46) a set of N2 linear equations for unknowns E
(
L̄

(θj)
i

)
are now

defined. Solving the set of linear equations and by (5.38) and (5.43) will give the
expected queue-lengths and waiting times.

In order to derive the mean batch sojourn-time E (Tk) of customer batch k, E
(
L̄

(θj)
i

)
also plays an integral role. Similar as in (5.19), in order to calculate the expected
batch sojourn-time distribution of a specific customer batch k, we explicitly condition
on the location on the server,

E (Tk) = 1
E (C)

N∑
j=1

E (θj)E
(
T

(θj)
k

)
, (5.47)

where E
(
T

(θj)
k

)
is the expected batch sojourn-time distribution of a specific customer

batch k given that the server is in intervisit period θj. E
(
T

(θj)
k

)
can be derived

in a similar way as (5.44). First, if the last customer will be served in Qi, then
with probability E (Vj) /E (θj) and E (Sj−1) /E (θj) the arriving customer batch has
to wait for the residual service/switch-over time during which new customers can
arrive that will be served before the visit beginning in Qi. Note that the customers
arriving at Qi during these residual times will not affect the batch sojourn-time of
batch k since they will be served after the last customer in the batch is served. Then
each customer already in the system and in batch k in Ql, l = j, . . . , i will make a
contribution of E (Bl,i) to the batch sojourn-time. Finally, the batch also has to wait
for all the switch-over times between Qj to Qi and all their descendants that will be
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served before the server reaches Qi. This gives the following expression,

E
(
T

(θj)
k

)
= E (Vj)
E (θj)

E
(
BR
j,i

)
+ E (Sj−1)

E (θj)
E
(
SRj−1,i

)
+

i∑′

l=j
E
(
L̄

(θj)
l

)
E (Bl,i)

+
i∑′

l=j
klE (Bl,i) +

i−j∑′

n=1
E (Sj+n−1,i) , (5.48)

Note that the same decomposition as (5.31) and (5.32) also holds for the expected
batch sojourn-time,

E
(
T

(θj)
k

)
=

N∑
i=1

1(k∈Kj,i)

E (W (θj)
i

)
+

i∑′

l=j
klE (Bl,i)

 ,
where E

(
W

(θj)
i

)
is the expected time between the batch arrival epoch and the service

completion of the last customer in Qi that is already in the system, excluding any
arrivals to Qi after the arrival epoch. The term

∑′i

l=j klE (Bl,i) can be interpreted
as the total contribution batch k makes to the batch sojourn-time.

Finally, the expected batch sojourn-time of an arbitrary customer batch is obtained
by multiplying E (Tk) with the probability that a particular batch k enters the
system,

E (T ) =
∑
k∈K

π (k)E (Tk) . (5.49)

However if there are many different realizations of customer batches possible, (5.49)
might not be computational feasible to consider, since for every k we have to determine
the mean batch sojourn-time given that the server starts in intervisit period θj and
ends in θi; in total there are then |K| ×N ×N combinations to consider, where |K|
denotes the size of support K. Instead, by using E (Kl|Kj,i) we can rewrite (5.49) as
follows,

E (T ) = 1
E (C)

N∑
j=1

N∑
i=1

∑
k∈Kj,i

π (k)E (θj)E
(
T

(θj)
k

)

= 1
E (C)

N∑
j=1

N∑
i=1

E (θj)
∑

k∈Kj,i

π (k)
E (W (θj)

i

)
+

i∑′

l=j
klE (Bl,i)


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= 1
E (C)

N∑
j=1

N∑
i=1

E (θj)π (Kj,i)
E (W (θj)

i

)
+

i∑′

l=j
E (Kl|Kj,i)E (Bl,i)

 .
The advantage is that the number of combinations reduces to N ×N , and π (Kj,i)
can be determined in |K| steps.

5.4 Locally-gated service

In this section, we study batch sojourn-times in a polling system with locally-
gated service. In Section 5.4.1 and Section 5.4.2 we will study the joint queue-length
distribution and the LST of the batch sojourn-time distribution. Instead of providing
a thorough analysis, we present the differences with the analysis of Section 5.3. Finally,
in Section 5.4.3 a Mean Value Analysis (MVA) is presented to calculate the mean
batch sojourn-time.

5.4.1 The joint queue-length distributions

Similar as in Section 5.3.1, we start by defining the laws of motions in case of locally-
gated service. For this we distinguish between customers that are standing behind of
the gate and those who are standing before the gate (Boon et al., 2012). Customers
that are standing behind the gate will be served in the current cycle, whereas
customers before the gate will only be served in the next cycle. Let L̃B(Vi) (z),
L̃B

(Si) (z), L̃C(Si) (z), and L̃C(Vi) (z) be the joint queue-length PGF at visit/switch-
over beginnings and completions at Qi, for i = 1, . . . , N , where z = (z1, . . . , zN , zG)
is an N + 1 dimensional vector. The first N elements correspond with the number of
customers that are standing behind gate Qi, i = 1, . . . , N , whereas element N + 1,
zG, is used during visit periods to correspond with the number of customers that are
currently standing before the gate at the queue that is currently being visited.

Then the law of motions for locally-gated service are as follows,

L̃C
(Vi) (z) =L̃B(Vi) (

z1, . . . , zi−1, B̃i

(
λ− λK̃ (z1, . . . , zi−1, zG, zi+1, . . . , zN)

)
,

zi+1, . . . , zN , zG) , (5.50)
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L̃B
(Si) (z) =L̃C(Vi) (z1, . . . , zN , zi) , (5.51)

L̃C
(Si) (z) =L̃B(Si) (z) S̃i

(
λ− λK̃ (z1, . . . , zi−1, zi, zi+1, . . . , zN)

)
, (5.52)

L̃B
(Vi+1) (z) =L̃C(Si) (z) , (5.53)

Equation (5.50) states that the queue-length in Qj, j 6= i at the end of visit period
Vi is composed of the number of customers already at Qj at the visit beginning plus
all the customers that arrived in the system during the current visit period. However
for Qi, only the customers that were standing behind the gate are served before the
end of the visit completion; customers that arrived to Qi during this visit period are
placed before the gate and will be served during the next visit to Qi. In (5.51) it
can be seen that the PGF of a visit completion corresponds to the PGF of the next
switch-over beginning, except that the customer standing before the gate in Qi are
now placed behind the gate. Finally, the interpretation of (5.52) and (5.53) is the
same as for (5.4) and (5.5).

In order to define the PGF of the joint queue-length distribution, Eisenberg’s rela-
tionship (5.7) is also valid for locally-gated service. However, the joint queue-length
distribution at service beginnings and completions (5.8) should be modified to,

L̃C
(Bi) (z) = L̃B

(Bi) (z)

×
[
B̃i

(
λ− λK̃ (z1, . . . , zi−1, zG, zi+1, . . . , zN)

)
/zi
]
, (5.54)

since during a service period in Qi arriving customers who join Qi are placed before
the gate. A similar modification also applies for the PGF of the joint queue-length
distributions at an arbitrary moment during Vi,

L̃(Vi) (z) = L̃B
(Bi) (z)

1− B̃i

(
λ− λK̃ (z1, . . . , zi−1, zG, zi+1, . . . , zN)

)
E (Bi)

(
λ− λK̃ (z1, . . . , zi−1, zG, zi+1, . . . , zN)

) . (5.55)

Then, all the other results from Section 5.3.1 can be easily modified for locally-gated
service.
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5.4.2 Batch sojourn-time distribution

In the following section we derive the LST of the steady-state batch sojourn-time
distribution for locally-gated service. Assume an arriving customer batch k enters
the system while the server is currently within visit period Vj−1 or switch-over period
Sj−1 such that the last customer in the batch will be served in Qi. This means ki > 0
and all the other customers arriving in the same batch should be served before the
next visit to Qi; kl ≥ 0, l = j, . . . , i− 1, and kl = 0 elsewhere. Whenever a customer
arrives in the same queue that is currently being visited, then this customer will be
placed before the gate. As a consequence, this customer will be served last in the
batch since the server will visit first all the other queues before serving this customer.

Similar as for exhaustive service, let Bj,i i, j = 1, . . . , N , be the service of a tagged
customer in Qj plus all its descendants that will be served before or during the next
visit to Qi. Since during a service period in Qj incoming customers to Qj are placed
before the gate, we have

Bj,i =


Bj if i = j,

Bj +
i∑′

l=j+1

Nl(Bj)∑
m=1

Blm,i, otherwise,
(5.56)

where Bj is the service time of the tagged customer in Qj , Nl (Bj) denotes the number
of customers that arrive in Ql during the service time of the tagged customer in Qj,
and Blm,i is a sequence of (independent) Bl,i’s. Let B̃j,i (.) be the LST which is given
by,

B̃j,i (ω) = B̃j

(
ω + λ(1− K̃(Bj+1,i))

)
, (5.57)

where Bj+1,i is an N -dimensional vector similar defined as (5.22). We define B∗
j,i as

an N + 1-dimensional vector defined as follows,

(B∗
j,i)l =


B̃i (ω) , if l = i,

1, if l = N + 1,

(Bj,i−1)l, otherwise.

(5.58)
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Finally, let BG
j,i, i, j = 1, . . . , N , be an N + 1-dimensional vector defined as for j 6= i,

(BG
j,i)l =

(Bj,i)l if l = j, . . . , i,

1, otherwise,
(5.59)

and for j = i,

BG
i,i =

(
B̃1,i−1 (ω) , . . . , B̃i−1,i−1 (ω) ,

B̃i

(
ω + λ(1− K̃(B̃1,i−1 (ω) , . . . , B̃i (ω) , . . . , B̃N,i−1 (ω)))

)
, B̃i+1,i−1 (ω) , . . . , B̃N,i−1 (ω) , B̃i (ω)

)
, (5.60)

The interpretation of BG
j,i, j 6= i is similar to (5.22). On the other hand, BG

i,i contains
the service times of a complete cycle starting in Qi. This includes the service times
of all the customers that are standing behind the gate in Qi, the service times of
all the customers in Qi+1, . . . , Qi−1 that were already in the system on the arrival
of the customer batch or entered the system before the next visit to Qi, and when
the server reaches Qi again the service times of all the customers that were standing
before the gate when the cycle in Qi started.

We first focus on the batch sojourn-time of a customer batch that arrives during a
visit period Vj−1. The batch sojourn-time of customer batch k that arrives when
the server is in visit period Vj−1 consists of the (i) residual service time in Qj−1, (ii)
the service of all the customers behind the gate in Qj−1, . . . , Qi, (iii) the service of
all new customer arrivals that arrive after customer batch k in Qj, . . . , Qi−1 before
the server reaches Qi, (iv) switch-over times Sj−1, . . . , Si−1, (v) the service of the
customers in customer batch k, and (vi) if i = j − 1 also the customers before the
gate in Qi. Because incoming customers are placed before the gate when the server
is in visit period Vj−1, we have to modify (5.25) to,

L̃(Vj−1) (z, ω) = L̃B
(Bj−1) (z)

× B̃PR
j−1 (λ− λK (z1, . . . , zj−2, zG, zj, . . . , zN) , ω) . (5.61)

Then, the LST of batch sojourn-time distribution of batch k given that the server is
in visit period Vj−1 is given in the next proposition.
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Proposition 5.3. The LST of the batch sojourn-time distribution of batch k condi-
tioned that the server is in visit period Vj−1 and the last customer in the batch will
be served in Qi is given by,

T̃
(Vj−1)
k (ω) = L̃(Vj−1)

(
BG

j−1,i, ω + λ(1− K̃(Bj,i−1))
)

×
i−1∏′

l=j−1
S̃l,i−1 (ω) 1

(BG
j−1,i)j−1

i∏′

l=j
(B∗

j,i)
kl
l . (5.62)

Proof. During visit period Vj−1 incoming customers to Qj−1 are placed before the
gate and will be served in the next visit. Taken this into account, the same steps as
in the proof of Proposition 5.1 can be used to derive (5.62).

Next, we derive the LST of batch sojourn-time distribution of batch k given that
the server is in switch-over period Sj−1. For this we modify (5.28) to,

L̃(Sj−1) (z, ω) = L̃B
(Sj−1) (z)

× S̃PRj−1

(
λ− λK̃ (z1, . . . , zj−2, zj−1, zj, . . . , zN) , ω

)
. (5.63)

Proposition 5.4. The LST of the batch sojourn-time distribution of batch k con-
ditioned that the server is in switch-over period Sj−1 and the last customer in the
batch will be served in Qi is given by

T̃
(Sj−1)
k (ω) = L̃(Sj−1)

(
B∗

j,i, ω + λ(1− K̃(Bj,i−1))
)

×
i−j∏′

l=1
S̃j+l−1,i−1 (ω)

i∏′

l=j
(B∗

j,i)
kl
l . (5.64)

Proof. Similarly, the same steps as in the proof of Proposition 5.2 can be used to
derive (5.64).

From Proposition 5.3 and Proposition 5.4, it can be seen that the LST of the batch
sojourn-time distribution of batch k conditioned on a visit/switch-over period can
be decomposed into two terms;

T̃
(Vj−1)
k (ω) =

N∑
i=1

1(k∈Kj,i)W̃
(Vj−1)
i (ω)

i∏′

l=j
(B∗

j,i)
kl
l , (5.65)
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T̃
(Sj−1)
k (ω) =

N∑
i=1

1(k∈Kj,i)W̃
(Sj−1)
i (ω)

i∏′

l=j
(B∗

j,i)
kl
l , (5.66)

where W̃ (Vj−1)
i (ω) and W̃ (Sj−1)

i (ω) can be considered as the time between the batch
arrival epoch and the service completion of the last customer in Qi that is already in
the system, excluding any arrivals to Qi after the arrival epoch and contribution of
the batch.

The LST of the batch sojourn-time distribution of a specific customer batch k can
now be calculated using (5.19) or alternatively by (5.19),

T̃k (ω) = 1
E (C)

N∑
j=1

N∑
i=1

1(k∈Kj,i)
(
E (Vj−1) W̃ (Vj−1)

i (ω) + E (Sj−1) W̃ (Sj−1)
i (ω)

)

×
i∏′

l=j
(B∗

j,i)
kl
l . (5.67)

Finally, we focus on the LST of the batch sojourn-time of an arbitrary batch T̃ (.).

Theorem 5.3. The LST of the batch sojourn-time distribution of an arbitrary batch
T̃ (.), if this queue receives locally-gated service, is given by:

T̃ (ω) =
∑
k∈K

π (k) T̃k (ω) , (5.68)

where T̃k (ω) is given by (5.19) or (5.67). Alternatively, we can write (5.68) as,

T̃ (ω) = 1
E (C)

N∑
j=1

N∑
i=1

(
E (Vj−1) W̃ (Vj−1)

i (ω) + E (Sj−1) W̃ (Sj−1)
i (ω)

)
× π (Kj,i) K̃

(
B∗

j,i|Kj,i
)
. (5.69)

Proof. Using the definition of Kj,i, the proof is almost identical to the one of
Theorem5.2.
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5.4.3 Mean value analysis

In this section, we will use MVA again to derive the mean batch sojourn-time of a
specific batch and an arbitrary batch. Central in the MVA for locally-gated service is
E
(
L̄

(Vj ,Sj)
i

)
, the mean queue-length at Qi (excluding the potential customer currently

in service) at an arbitrary epoch within visit period Vj and switch-over period Sj.
First, for notation purposes we introduce θj as shorthand for intervisit period (Vj, Sj);
the expected duration of this period E (θj) is given by,

E (θj) = E (Vj) + E (Sj) , j = 1, . . . , N. (5.70)

The big difference with Section 5.3.3 is that we know have to consider the customers
that stand before the gate and those who stand behind. For this we introduce
variables E

(
L̃

(θj)
i

)
as the expected number of customers standing before the gate

the gate in Qi during intervisit period θj and E
(
L̂

(θi)
i

)
as the expected number of

customers standing behind the gate the gate in Qi during intervisit period θi. In the
MVA all incoming customers are placed before the gate, and only placed behind the
gate when a visit period begins. Note this is a slight difference with Section 5.4.1
where only customers arriving to the same queue that is being visited are placed
before the gate. Then the mean queue-length in Qi, E

(
L̄

(θj)
i

)
, given that the server

is not in intervisit period θi, i.e. i 6= j, is equal to the mean number of customers
standing before the gate E

(
L̃

(θj)
i

)
. Otherwise, when i = j the mean queue length

in Qi is the sum of the number of customers standing in front and behind the gate.
Thus we can write E

(
L̄

(θj)
i

)
as,

E
(
L̄

(θj)
i

)
=

E
(
L̃

(θj)
i

)
+ E

(
L̂

(θi)
i

)
, i = j,

E
(
L̃

(θj)
i

)
, otherwise.

Subsequently, the mean queue-length in Qi is given by,

E
(
L̄i
)

=
N∑
j=1

E (θj)
E (C)E

(
L̃

(θj)
i

)
+ E (θi)
E (C)E

(
L̂

(θi)
i

)
, i = 1, . . . , N. (5.71)

We denote by E (Bj,i) the mean duration of a service time Bj and its descendants
before the server starts service in Qi given that the server is currently in Qj. Let
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E (Bj,j+1) = E (Bj) be the expectation of Bj and E (Bj,j+2) = E (Bj) (1 + ρj+1) be
the sum of the service time Bj and the service of all the customers that arrive in
Qj+1 during this service. In general we can write E (Bj,i) for i 6= j + 1 as,

E (Bj,i) = E (Bj)
i−1∏′

l=j+1
(1 + ρl) , i = 1, . . . , N, j = 1, . . . , N. (5.72)

Finally, E (Sj,i), E
(
BR
j,i

)
, and E

(
SRj,i

)
are given by E (Bj,i) and replacing E (Bj)

with E (Sj), E
(
BR
j

)
, and E

(
SRj
)
respectively.

Again, we consider the waiting time E (Wi) of an arbitrary customer and make
extensively use of Little’s Law and the PASTA property. When the customer enters
the system at Qi, it has to wait for the next visit to Qi. Even if the customer enters
the system while the server is in intervisit period θi, the customer is placed before
the gate and will only be served when the server returns to this queue in the next
cycle. The average duration of the server returning to Qi equals E

(
θRi,i−1

)
. Then at

Qi, the customer first has to wait for the service of the average number of customers
E
(
L̃i
)

= ∑N
j=1 [E (θj) /E (C)]E

(
L̃

(θj)
i

)
that are in front of the customer when it

arrived in the system, as well as, the service of E (Kii) /2E (Ki) customers that
arrived in the same customer batch, but are placed before the arbitrary customer in
Qi. This gives the following expression for the mean waiting time E (Wi),

E (Wi) = E
(
L̃i
)
E (Bi) + E (Kii)

2E (Ki)
E (Bi) + E

(
θRi,i−1

)
, (5.73)

Applying Little’s law gives,

E
(
L̄i
)

= ρiE
(
L̃i
)

+ ρi
E (Kii)
2E (Ki)

+ λiE
(
θRi,i−1

)
. (5.74)

The next step to derive the equations is to relate unknowns E
(
θRi,i−1

)
to E

(
L̃

(θj)
i

)
and E

(
L̂

(θi)
i

)
. Consider E

(
θRj,i
)
the expected residual duration of an intervisit period

starting in θj and ending in θi given that an arbitrary customer batch just entered
the system. Then with probability E (θl) /E (θj,i), the server is during this period in
intervisit period θl, l = j, . . . , i, and the expected residual duration until the intervisit
ending of θi, conditioned that the server is in intervisit period θl, is defined as follows.
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First, with probability E (Vl) /E (θl) the customer has to wait for the server serving
a customer in Ql and switch-over period Sl and with probability E (Sl) /E (C) the
customer has to wait for a residual switch-over period in Sl. Also, E

(
L̂

(θj)
l

)
customers

are standing behind the gate in Ql that need to be served. During this period new
descendants can arrive in the system that will be served before the intervisit ending
in θj. In addition, for each queue Qn, n = j + 1, . . . , i, the expected number of
customers in the Qn given that the server is in θl, E

(
L̃(θl)
n

)
, and the expected number

of customers that arrived in Qn in the arbitrary customer batch E (Knl) /E (Kn)
will increase the duration of E

(
θRj,i
)
by E (Bn,i+1). Finally, the switch-over times

between Qn to Qn+1 plus all its descendants that will be served before the end of
the period contribute with E (Sn,i+1). Combining this gives the following expression,

E
(
θRj,i
)

=
i∑′

l=j

E (θl)
E (θj,i)

(
E (Vl)
E (θl)

(
E
(
BR
l,i+1

)
+ E (Sl,i+1)

)

+ E (Sl)
E (θl)

E
(
SRl,i+1

)
+ E

(
L̂

(θl)
l

)
E (Bl,i+1)

+
i−l∑′

n=1

(
E (Kl+n,l)
E (Kl+n) + E

(
L̃

(θl)
l+n

))
E (Bl+n,i+1) + E (Sl+n,i+1)

)
. (5.75)

It is now possible to set up a set of N (N + 1) linear equations in terms of unknowns
E
(
L̃

(θj)
i

)
and E

(
L̂

(θi)
i

)
. First, the number of customers in Qi before the gate given

an arbitrary moment in an intervisit period starting in θi and ending in θj equals the
number of Poisson arrivals during the age of this period. Since the age is in distribution
equal to the residual time, the following equation holds, i = 1, . . . , N, j = 1, . . . , N ,

j∑′

l=i

E (θl)
E (θi,j)

E
(
L̃

(θl)
i

)
= λiE

(
θRi,j
)
. (5.76)

Second, by (5.73) and using Little’s Law λiE (Wi) = E
(
L̄i
)
into (5.74) gives, for

i = 1, 2 . . . , N ,

(1− ρi)
N∑
j=1

E (θj)
E (C)E

(
L̃

(θj)
i

)
+ E (θi)
E (C)E

(
L̂

(θi)
i

)
− ρi

E (Kii)
2E (Ki)

= λiE
(
θRi,i−1

)
. (5.77)
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With (5.76) and (5.77) a set of N (N + 1) linear equations are now defined. Solving
the set of linear equations and by (5.74) and (5.73) will give the expected queue-
lengths and waiting times.

It is now possible to derive the mean batch time E (Tk) of customer batch k us-
ing (5.47). For this we need to calculate E

(
T

(θj−1)
k

)
. When customer batch k

enters the system and the server is in intervisit period θj−1, then with probability
E (Vj−1) /E (θj−1) and E (Sj−1) /E (θj−1) the arriving customer batch has to wait
for the residual service and a switch-over or a residual switch-over time during in
which new customer can arrive that will be served before the visit completion in Qi−1.
Then each customer already in the system and in batch k in Ql, l = j − 1, . . . , i and
their descendants will increase the batch sojourn-time. Finally, the batch also has to
wait for all the switch-over times between Qj to Qi−1 and all their descendants that
will be served before the server reaches Qi. This gives the following expression,

E
(
T

(θj−1)
k

)
= E (Vj−1)
E (θj−1)

(
E
(
BR
j−1,i

)
+ E (Sj−1,i)

)
+ E (Sj−1)
E (θj−1)E

(
SRj−1,i

)

+ E
(
L̂

(θj−1)
j−1

)
E (Bj−1,i) +

i−j∑′

l=1

(
E
(
L̃

(θj−1)
j+l−1

)
+ kj+l−1

)
E (Bj+l−1,i)

+ E (Sj+l−1,i) +
((
L̃

(θj−1)
i

)
+ ki

)
E (Bi) , (5.78)

Notice that the same decomposition as (5.31) and (5.32) also holds for the expected
batch sojourn-time,

E
(
T

(θj−1)
k

)
= E

(
W

(θj−1)
i

)
+

i−j∑′

l=1
kj+l−1E (Bj+l−1,i) + kiE (Bi) , (5.79)

where E
(
W

(θj−1)
i

)
is the expected time between the batch arrival epoch and the

service completion of the last customer in Qi that is already in the system, excluding
any arrivals to Qi after the arrival epoch.
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Finally, the expected batch sojourn-time of an arbitrary customer batch is given by
(5.49). Similarly, we can rewrite (5.49) by taking the expectation of Kj,i and using
(5.79),

E (T ) = 1
E (C)

N∑
j=1

N∑
i=1

E (θj)π (Kj,i) (E
(
W

(θj−1)
i

)

+
i−j∑′

l=1
E (Kj+l−1|Kj,i)E (Bj+l−1,i) + E (Ki|Kj,i)E (Bi)).

5.5 Globally-gated service

In this section the batch sojourn distribution under globally-gated service is studied
in Section 5.5.1, and the mean batch sojourn-times in Section 5.5.2.

5.5.1 Batch sojourn distribution

Under the globally-gated service discipline all the customers that were present at
the visit beginning of reference queue Q1 will be served during the coming cycle.
Meanwhile, customers that arrive in the system during this cycle have to wait and will
be served in the next cycle. The advantage of the globally-gated service discipline is
that closed-form expressions can be easily derived for the delay distribution compared
to exhaustive and locally-gated (Boxma et al., 1992).

Let random variables n1, . . . nN denote the number of customers in the queues at the
beginning of an arbitrary cycle C and let C̃ (ω) = E

(
e−ωC

)
be its LST. Then, the

length of the current cycle will equal the sum of all switch-over times and the total
sum of all the service times of the customers present at the beginning of the cycle.
Combining this gives,

E
(
e−ωC |n1, . . . , nN

)
= S̃ (ω)

N∏
j=1

B̃
nj

j (ω) , (5.80)

where S̃ (ω) = ∏N
j=1 S̃j (ω).
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On the other hand, the length of a cycle determines the joint queue-length distribution
at the beginning of the next cycle (Boxma et al., 1992),

E (zn1
1 · · · z

nN
N ) = E (E (zn1

1 · · · z
nN
N |C = t))

= E
(
exp

(
−
(
λ− λK̃ (z)

)
t
))

= C̃
(
λ− λK̃ (z)

)
. (5.81)

With use of (5.80) and (5.81), we have

C̃ (ω) = S̃ (ω)E
(
B̃n1

1 (ω) · · · B̃nN
N (ω)

)
= S̃ (ω) C̃

(
λ− λK̃

(
B̃1 (ω) , . . . , B̃N (ω)

))
. (5.82)

Let CP and CR be the past and residual time, respectively, of a cycle. We can write
the LST of the joint distribution of CP and CR as (Cohen, 1982),

C̃PR (ωP , ωR) = C̃ (ωR)− C̃ (ωP )
E (C) (ωP − ωR) , (5.83)

and

C̃P (ω) = C̃R (ω) = 1− C̃ (ω)
ωE (C) . (5.84)

Finally, let Bj,i be an N -dimensional vector with the LST of the service times of Ql

on elements l = j, . . . , i,

Bj,i =
(
1, . . . , B̃j (ω) , B̃j+1 (ω) , . . . , B̃i (ω) , 1, . . . , 1

)
.

With the previous results, we can now derive the LST of the batch sojourn distribution
of specific batch of customers.
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Proposition 5.5. The LST of the batch sojourn-time distribution of batch k is given
by,

T̃k (ω) = 1
E (C)

C̃
(
λ− λK̃ (B1,i)

)
− C̃

(
λ− λK̃ (B1,i−1) + ω

)
ω − λ

(
1− K̃ (Bi,i)

)
 i−1∏
j=1

S̃j (ω)

×
i∏

j=1
kiB̃j (ω) . (5.85)

Proof. Assume an arbitrary customer batch k where the number of customer arrivals
per queue is k1 ≥ 0, . . . , ki > 0 and ki+1 = 0, . . . , kN . Due to the globally-gated
service discipline, any arriving customer batch will be totally served in the next cycle,
which implies that the customer batch will be fully served after its last customer
in Qi is served. Then, the batch sojourn-time of customer batch k is composed
of; (i) the residual cycle time CR, (ii) the service times of all customers who arrive
at Q1, . . . , Qi−1 during the cycle in which the new customer batch arrives, (iii) the
switch-over times of the server between Q1, . . . , Qi−1, (iv) the service times of all
the customers who arrive at Qi during the past part CP of the cycle in which the
customer batch arrives, and (v) the service times of all the customers in the batch at
Q1, . . . , Qi. Combining this gives,

Tk = CR +
i−1∑
j=1

Nj(CP +CR)∑
m=1

Bjm +
i−1∑
j=1

Sj +
Ni(CP )∑
m=1

Bim +
i∑

j=1

kj∑
m=1

Bjm , (5.86)

where Nj

(
CP + CR

)
denotes number of arrivals in Qj during the past and residual

time of the current cycle and Ni

(
CP

)
denotes the number of arriving customers in

Qi during CP . Note that the mean cycle length in which the customer batch arrives
is not equal to E (C), but is atypical of size E

(
CP

)
+ E

(
CR

)
(Boxma et al., 1992).

By taking the LST of (5.86) we obtain,

T̃k (ω) =
i−1∏
j=1

S̃j (ω)
ˆ ∞
tP =0

ˆ ∞
tR=0

e−ωtRe−(λ−λK(B1,i−1))(tP +tR)

× e−(λ−λK̃(Bi,i))tP dPr
(
CP < tP , C

R < tR
) i∏
j=1

kjB̃j (ω)
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=
i−1∏
j=1

S̃j (ω)E
(
exp

(
−
(
λ− λK̃ (B1,i)

)
CP −

(
λ− λK̃ (B1,i−1) + ω

)
CR

))

×
i∏

j=1
kjB̃j (ω) ,

Using the LST of the joint distribution of CP and CR of (5.83), we obtain (5.85).

We can now find the LST of the batch sojourn-time distribution of an arbitrary
batch.

Theorem 5.4. The LST of the batch sojourn-time distribution of an arbitrary batch
T̃ (.), if this queue receives globally-gated service, is given by:

T̃ (ω) =
∑
k∈K

π (k) T̃k (ω) , (5.87)

where T̃k (ω) is given by (5.19). Alternatively, we can write (5.85) as,

T̃ (ω) = 1
E (C)

N∑
i=1

C̃
(
λ− λK̃ (B1,i)

)
− C̃

(
λ− λK̃ (B1,i−1) + ω

)
ω − λ

(
1− K̃ (Bi,i)

)


×
i−1∏
j=1

S̃j (ω) π (K1,i) K̃ (B1,i|K1,i) . (5.88)

Proof. In case of globally-gated an incoming customer batch can only be served
in the next cycle. Therefore, independently on the location of the server the last
customer in the batch to be served is located in the queue that is the farthest located
from the reference queue. Thus, we can write

T̃ (ω) =
∑
k∈K

N∑
i=1

1(k∈K1,i)π (k) T̃k (ω) .

Finally, by inserting (5.85) and (5.1) we obtain (5.88).

5.5.2 Mean batch sojourn-time

In this section we determine E (Tk), the expected batch sojourn-time for a specific
customer batch k. Instead of using MVA, as was the case for exhaustive and locally-
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gated, we can directly calculate E (Tk) similar as for the mean waiting time (Boxma
et al., 1992). Taking the expectation of (5.86) gives the following expression,

E (Tk) = E
(
CR

)
+

i−1∑
j=1

λjE (Bj)
(
E
(
CP

)
+ E

(
CR

))
+

i−1∑
j=1

E (Sj)

+ ρiE
(
CP

)
+

i∑
j=1

kjE (Bj) . (5.89)

What is left is to derive the mean past and residual time of the cycle time, E (CP )
and E (CR). Differentiating (5.82) once and twice yields closed-form expressions for
the first two moment of the cycle time,

E (C) = E (S)
(1− ρ) , (5.90)

E
(
C2
)

= 1
(1− ρ2)

E (S2
)

+ 2ρE (S)E (C) +
N∑
j=1

λjE
(
B2
j

)
E (C)

+
N∑
i=1

N∑
j=1

λE (Kij)E (Bi)E (Bj)E (C)
 . (5.91)

and the expected past and residual cycle time is given by

E
(
CP

)
= E

(
CR

)
= E (C2)

2E (C) = 1
(1 + ρ)

[
E (S2)
2E (S) + ρE (S)

(1− ρ)

+
∑N
j=1 λjE

(
B2
j

)
+∑N

i=1
∑N
j=1 λE (Kij)E (Bi)E (Bj)

2 (1− ρ)

 . (5.92)

Using (5.92), we can rewrite (5.89) as follows,

E (Tk) =
1 + 2

i−1∑
j=1

ρj + ρi

 E (C2)
2E (C) +

i−1∑
j=1

E (Sj) +
i∑

j=1
kjE (Bj) . (5.93)

Finally, we can derive E (T ) the expected batch sojourn-time of an arbitrary customer
batch. Multiplying E (Tk) with all possible realizations of k and using K1,i gives,

E (T ) =
N∑
i=1

∑
k∈K1,i

π (k)
[1 + 2

i−1∑
l=1

ρl + ρi

]
E (C2)
2E (C) +

i−1∑
j=1

E (Sj) +
i∑

j=1
kjE (Bj)


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=
N∑
i=1

π (K1,i)
[1 + 2

i−1∑
l=1

ρl + ρi

]
E (C2)
2E (C) +

i−1∑
j=1

E (Sj)
+

N∑
j=1

E (Kj)E (Bj)

= E (C2)
2E (C) +

N∑
i=1

(
ρi
E (C2)
E (C) + E (Si)

)
·

1−
i∑

j=1
π (K1,j)


+ ρi

E (C2)
2E (C)π (K1,i) + E (Ki)E (Bi) .

5.6 Numerical results

In the following section we investigate the batch sojourn-times for the three server
disciplines. In Section 5.6.1 we study a symmetrical polling system with two queues
and derive a closed form solution for the expected batch sojourn-times and show
under which parameters settings, which service discipline has the lowest expected
batch sojourn-time. In Section 5.6.2 we study asymmetrical systems and show that
the service discipline that achieves the lowest expected batch sojourn-time depends
on the system parameters.

5.6.1 A symmetrical polling system with two exponential queues

Consider a symmetrical polling system with two queues where all customers arrive
in pairs and each of them joins another queue as shown in Figure 5.4. Assume
that the arrival rate is λ, the expected service time of a customer in Q1 or Q2 is
E (B1) = E (B2) = b, and the expected switch-over time from Q1 to Q2 and vice
versa is E (S1) = E (S2) = s. In addition, we make the assumption that both service
times and switch-over times are exponentially distributed; i.e. E

(
BR

1

)
= E

(
BR

2

)
= b

and E
(
SR1
)

= E
(
SR2
)

= s. Since customers arrive in pairs, E (K1) = E (K2) = 1,
and E (K12) = E (K21) = 1 and E (K11) = E (K22) = 0. Finally, the overall system
load is ρ = ρ1 + ρ2 = 2bλ.

First, consider the expected batch sojourn-time E
(
TEX

)
in case of exhaustive service.

When a new pair of customers enter the system, they will encounter with equal
probability the system either in intervisit period θ1 = (S2, V1) or θ2 = (S1, V2).
Because of exhaustive service, the first customer will be served within the current
intervisit period, whereas the second will be served in the following intervisit period.
Because the queues are symmetrical, with probability ρ the pair of customers should
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Q1

Q2

λ

Figure 5.4: A symmetrical polling system with two exponential queues.

wait for the remaining service of a customer and the service of new arrivals to the
same queue total duration of which is b/ (1− 0.5ρ) and with probability 1− ρ they
should wait for the remaining duration of a switch-over period and the busy period it
triggers of duration s/ (1− 0.5ρ). In addition, there are L̄S = L̄

(θ1)
1 = L̄

(θ2)
2 customers

waiting at the queue that are served within the current intervisit period each of
which trigger a busy period of b/ (1− 0.5ρ) and, in addition, one of the arriving
customers will be taken into service and trigger a busy period of b/ (1− 0.5ρ). After
this, the server moves to the other queue which takes a switch-over time s. Then at
the other queue, first the customers that were already in the queue before the pair of
customers arrived at the system L̄O = L̄

(θ2)
1 = L̄

(θ1)
2 will be served and afterwards

the other arriving customer is served. Hence, the average batch sojourn-time in case
of exhaustive service is given as follows,

E
(
TEX

)
= 1

1− 0.5ρ
[
ρb+ (1− ρ) s+ b+ L̄Sb

]
︸ ︷︷ ︸

Intervisit 1

+ s+ L̄Ob+ b.︸ ︷︷ ︸
Intervisit 2

(5.94)

Solving the linear equations of (5.45) and (5.46) gives,

L̄S = λ(1.5ρb− 1.5ρs+ 2s)
1− ρ , L̄O = λ (0.5ρb− 0.5ρs+ b+ s)

1− ρ ,

and by substituting L̄S and L̄O in (5.94), we obtain the expected batch sojourn-time
in case of exhaustive service,

E
(
TEX

)
= 0.25ρ2b− 0.25ρ2s− ρs+ 2b+ 2s

1− ρ . (5.95)
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Second, consider the expected batch sojourn-time in case of locally-gated service. In
this case, neither of the arriving customers will be served during the current intervisit
period, since both customers are placed before a gate. The residual duration of the
current intervisit period is ρ (b+ s) + (1− ρ) s+ L̂Sb, where L̂S = L̂

(θ1)
1 = L̂

(θ2)
2 are

the average number of customers standing before the gate on the arriving of the
customer pair. Then, in the next intervisit period, L̃O = L̃

(θ2)
1 = L̃

(θ1)
2 customers will

be served, as well as, all the customers that arrived to this queue during the previous
intervisit period and the one of the arriving customers. Afterwards, the server returns
to the other queue again and serves first the L̃S = L̃

(θ1)
1 = L̃

(θ2)
2 customers that

were standing before the gate when the pair of customers entered the system and
finally the other arriving customer. Then, the average batch sojourn-time in case of
locally-gated service is given as follows,

E
(
TLG

)
=
[
ρ (b+ s) + (1− ρ) sR + L̂Sb

]
︸ ︷︷ ︸

Intervisit 1

+

+
[
ρ (b+ s) + (1− ρ) s+ L̂Sb

]
0.5ρ+ L̃Ob+ b+ s︸ ︷︷ ︸

Intervisit 2

+ L̃Sb+ b︸ ︷︷ ︸
Intervisit 3

, (5.96)

Solving the linear equations of (5.76) and (5.77) gives,

L̂S = (0.5ρ3 + 0.25ρ2 + 1.5ρsλ)
(1 + 0.5ρ) (1− ρ) , L̃O = λ (0.5ρb− 0.5ρs+ b+ 2s)

1− ρ ,

L̃S = λ (−0.25ρ2b+ 0.25ρ2s+ ρb− 0.5ρs+ s)
(1 + 0.5ρ) (1− ρ) ,

and by substituting L̂S, L̃S, and L̃O in (5.96), we obtain the expected batch sojourn-
time in case of locally-gated service,

E
(
TLG

)
= −0.125ρ3b+ 0.125ρ3s+ 0.25ρ2b− 0.5ρ2s+ 0.5ρb+ ρs+ 2b+ 2s

(1 + 0.5ρ) (1− ρ) . (5.97)

Finally, consider the expected batch sojourn-time in case of globally-gated service.

E
(
TGG

)
= (1 + 1.5ρ) E (C2)

2E (C) + s+ 2b, (5.98)
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Then by (5.92), we obtain the expected batch sojourn-time in case of globally-gated
service,

E
(
TGG

)
= 0.5ρ2b− 0.5ρ2s+ 3ρb+ 5.5ρs+ 4b+ 5s

2 (1 + ρ) (1− ρ) . (5.99)

Now, we can compare the expected batch sojourn-times E
(
TEX

)
, E

(
TLG

)
, and

E
(
TGG

)
and investigate under which parameters settings which service discipline

achieves the lowest expected batch sojourn-time. Figure 5.5 shows for two different
total arrival rates, Λ, the areas where a specific service discipline achieves the lowest
expected batch sojourn-time. From the figures it can be seen that when the switch-
over times are longer compared to the service times, the exhaustive service discipline
achieves the lowest expected batch sojourn-time, since it is more beneficial to serve
all customers at the current queue first before moving to the other queue. However,
if the service times are longer than the switch-over times it is better to switch to
the other queue more often, because otherwise the server will spend too much time
serving customers in one queue and it will take a long time before a customer batch
is completely served. In this case, both gated policies perform better than exhaustive
service. For both Λ the same pattern can be observed.
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Figure 5.5: The expected batch sojourn-time for symmetrical polling system with
two queues.
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5.6.2 Asymmetrical polling systems with multiple queues

Table 5.1: Parameters for three polling models.

Model a Model b Model c
Qi 1 2 3 1 2 3 1 2 3

E (Bi) 1.00 1.00 1.00 1.00 1.00 1.00 0.10 0.40 0.90
E
(
B

(2)
i

)
2.00 2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00

E (Si) 0.10 0.10 0.10 1.00 1.00 1.00 1.00 1.00 1.00
E
(
S

(2)
i

)
0.02 0.02 0.02 2.00 2.00 2.00 1.00 1.00 1.00

k ∈ K π (1, 1, 0) = 1/4 π (1, 0, 0) = 1/3 π (1, 1, 0) = 4/5
π (3, 0, 1) = 3/4 π (0, 1, 0) = 1/3 π (1, 0, 3) = 1/5

π (0, 0, 1) = 1/3

In the previous section, we have shown that depending on the system parameters
exhaustive service or locally-gated service minimizes the expected batch sojourn-time.
However, it can be shown that any of the three service disciplines studied in this
chapter can minimize the expected batch sojourn-time. In Table 5.1 the parameters
of three systems with N = 3 are given. Model a has short switch-over times, Model b
is a system with individual arriving customers and equal switch-over times and
service times, and in Model c the last queue is the slowest and receives most of the
work. Using the results of Section 5.3.3, Section 5.4.3, and Section 5.5.2 the expected
batch sojourn-times for the three different models can be calculated. The batch
sojourn-times are shown in Figure 5.6 for 0 ≤ ρ < 1. The results of Model a in
Figure 5.6a show that locally-gated achieves the lowest expected batch sojourn-times,
which is similar as in Section 5.6.1 when the switch-over times were short. From the
results of Model b shown in Figure 5.6b, it can be seen that exhaustive service has the
lowest expected batch sojourn-times. Here it is beneficial to serve a customer arriving
to the same queue that is currently being served, since otherwise this customer has
to wait a full cycle which increases the mean batch sojourn-time. Finally, Model c
in Figure 5.6c shows that globally-gated service achieves the lowest expected batch
sojourn-times, since for this policy the server will switch more often between the
queues and finish service for all customers in a batch during one cycle, compared to
the other disciplines.
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Figure 5.6: The expected batch sojourn-time for various utilizations for three
different systems.
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5.7 Conclusion and further research

In this chapter we analyzed the batch sojourn-time in a cyclic polling system with
simultaneous batch arrivals and obtained exact expressions for the Laplace-Stieltjes
transform of the steady-state batch sojourn-time distribution for the locally-gated,
globally-gated, and exhaustive service disciplines. Also, we provided a more efficient
way to determine the mean batch sojourn-time using the Mean Value Analysis.
We compared the batch sojourn-times for the different service disciplines in several
numerical examples and showed that the best performing service discipline, minimizing
the batch sojourn-time, depends on system characteristics.

A further research topic would be to determine for each of the three policies, under
what conditions for the system parameters, its mean batch sojourn-time is smaller
than that of the other two and whether alternative service disciplines can achieve
even lower batch sojourn-times. Another interesting further research topic would be
to study how the customers of an arriving customer batch should be allocated over
the various queues in order to minimize the batch sojourn-times.



6 Optimizing product allocation in a
milkrun picking system

6.1 Introduction

Recent technological advances and trends in distribution and manufacturing have
led to a growth in complexity of warehousing systems. Today’s warehouse operations
face challenges like the need for shorter lead times, for real-time response, to handle
a larger number of orders with greater variety, and to deal with flexible processes
(Gong & De Koster, 2011). Staying competitive requires efficient and flexible order
picking systems in warehouses.

Batch picking is a common way to organize the picking process, in case daily a large
number of customer orders needs to be picked. Batch picking is a picker-to-parts
order picking system in which the demand from multiple orders is used to form
so-called pick batches (De Koster et al., 2007). Eventually, a pick batch is released
and an order picker collects all the individual products that form the batch with a
pick cart while traveling through the warehouse in an efficient picking path. When
finished, he or she disposes the picked products centrally where they are sorted per
customer order. A drawback of this approach is that batch formation takes time,
and, as the number of daily orders to be processed increases and as the required lead
time becomes shorter, more efficient ways to organize the order picking process exist.
In this chapter we study an alternative method of order picking served by milkrun
logistics that allows shorter order throughput times compared to conventional batch
picking systems particular for high order arrival rates.

Milkrun logistics refers to the scheduled pickup or delivery of materials at a number
of customers or suppliers by a single vehicle that visits them according to a fixed
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round trip (Baudin, 2004). Originating from the dairy industry, a milkrun reduces
costs due to consolidated transportation. It allows for better pick up or drop off
coordination with the customers or suppliers, and it improves general response times
and system efficiency (Brar & Saini, 2011). The same milkrun concept can also be
used for internal logistics, e.g. manufacturing or warehousing, for the transport of raw
materials, work in process, or finished goods between different locations within the
building (Kovács (2011), Kilic et al. (2012), Bozer & Ciemnoczolowski (2013), and
Staab et al. (2015)). Furthermore, milkrun systems can lead to considerable savings
in labor costs and operating costs and, compared to a system that uses forklifts to
transport materials in assembly or production lines, a milkrun is more efficient, safer
because of less traffic, and significantly reduces the number of empty runs (Kilic
et al., 2012). Therefore, order picking can also benefit from milkrun logistics (Gong
& De Koster, 2008).

In a milkrun picking system, an order picker picks orders in batches that arrive
in real-time and integrates them in the current picking cycle. This subsequently
changes dynamically the stops on the order picker’s picking route. The picker is
constantly traveling through the warehouse and receives, using modern order-picking
aids like pick-by-voice techniques or by a handheld terminal, new pick instructions
that allow new orders to be included in the current picking cycle. This way of order
picking saves set-up time and worker travel time, particularly for high order arrival
rates which are often experienced in warehouses of e-commerce companies (Gong &
De Koster, 2011).

A key for the quality of any order picking system is that the system achieves short
(average) order throughput times, i.e. the time between a customer order entering
the system and when the whole order is delivered at the depot from where it can
be subsequently shipped to the customer. Short order throughput times in milkrun
systems allow for faster customer response and improved customer satisfaction, which
is important as companies are inclined to set their order cut-off times as late as
possible while still guaranteeing that orders can be delivered next day or in some
cases even the same day. It is important to note that the order throughput time
strongly depends on the product allocation in the order picking area. A product
(or storage) allocation method is a set of rules used to assign products to storage
locations. Typically, an incoming customer order consists of one or more order
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lines, each for a product stored at a different location within the order picking area.
Therefore, in order to achieve short order throughput times in a milkrun picking
system, it is essential to take the correlation between products that are ordered
simultaneously into consideration and to place products that are strongly correlated
in an optimal way in order to increase the probability that an incoming customer
order can be included and fully picked in the current picking cycle.

In this chapter, we will study the average order throughput time in milkrun picking
systems, i.e. the time between a customer order entering the system until the
whole order is delivered at the depot. We determine the mean order throughput
time of a customer order for three picking strategies; exhaustive, locally-gated, and
globally-gated. We do this by applying and extending the framework of Van der Gaast
et al. (2015) for studying batch sojourn-times in polling systems with simultaneous
arrivals. Next, we propose an optimization framework for product allocation in a
milkrun picking system in order to minimize the average order throughput time
and compare the various strategies with each other. This chapter is the first in
studying the average order throughput time of multi-line orders in a milkrun picking
system. It considerably extends the work of Gong & De Koster (2008) who only
considered waiting times of single-line orders, which is the time between the arrival
of a customer order and the start of the pick of the single order line within the
picking area. We model the milkrun picking system more accurately, which allows to
help both designers and managers to create optimal design and control methods to
improve the performance.

The organization of this chapter is as follows. In Section 6.2, milkrun picking systems
are discussed and in Section 6.3 an overview of existing models for milkrun picking
systems and product allocation in order picking systems is presented. In Section 6.4
a detailed description of the model and the corresponding notation used in this
chapter is given. In Section 6.5 the analysis of the mean order throughput time for
different picking strategies is provided. In Section 6.6 and Section 6.7 the optimization
framework is presented which is used to decide how products should be allocated
to the various storage positions in order to minimize the order throughput time of
an incoming customer order. We extensively analyze the results of our model and
optimization framework in Section 6.8 via computational experiments for a range of
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parameters. Finally, in Section 6.9 we conclude and suggest some extensions of the
model and further research topics.

6.2 Milkrun picking systems

Milkrun picking systems are a new method of order picking and are characterized by
an order picker who is constantly traveling a fixed route along the aisles of a part or
the entire order picking area, while picking all outstanding customer orders in batches
that arrive in real-time. The order picker uses a pick cart or a tugger-, tow-train
which typically has sufficient capacity to accommodate all these picks. In the case
of online retailers, the route often finishes before the cart or train is full (Gong &
De Koster, 2008). On the route the picker stops at all locations where products are
located that need to be picked to fulfill the current outstanding customer orders.
Afterwards, when the order picker reaches the depot, the products are disposed and
sorted per customer order (i.e. a pick-and-sort system is used) and a new picking
cycle will start.

In a milkrun system new picking instructions can be included in the current picking
cycle that will dynamically change the locations where the order picker needs to stop.
Using modern order-picking aids (e.g. a pick-by-voice system), the picker constantly
receives updated information about incoming customer orders. In case a line of an
incoming customer order is either located at the current stop or further downstream
of the picking route, the picker can pick this line during the current picking cycle
which allows for increased customer response. Otherwise, the requested order line is
located upstream and will be picked in the next picking cycle.

Figure 6.1 highlights the differences between order throughput time, waiting time,
and order sojourn time. When a new customer order is received, it generates demand
for multiple order lines. The waiting time of an order line corresponds with the time
between the customer order arrival and the start of the order picker picking the order
line in the picking area. The order sojourn time corresponds with the time required
picking all the order lines and, by definition, corresponds with the sojourn time of the
last order line that is picked by the order picker (Van der Gaast et al., 2015). Finally,
the order throughput time is the sum of the order sojourn time and the amount of
time required after the last pick for the order picker to return to the depot.
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Figure 6.1: The differences between waiting times, order sojourn times, and order
throughput times in a milkrun picking system.

Figure 6.2 compares a milkrun picking system with a batch picking system. In case
of batch picking the order picker waits at the depot until sufficient customer orders
have entered the system and then starts a new picking tour. Typically, the route is
constructed to minimize the total travel time traveled by the order picker, e.g. in
Gademann & Van de Velde (2005). Examples of such picking routes are denoted by
1, 2, and 3 in Figure 6.2a. In Figure 6.2b the milkrun picking system is shown. In
this case, the order picker visits the picking locations according to a strict S-shape
routing policy in a cyclic sequence and immediately starts a new cycle after dropping
off the picked products at the depot (Gong & De Koster, 2008). This means that
every aisle is completely traversed during a picking cycle, because new customer
orders can enter the system in real-time which subsequently change the stops where
the order picker needs to pick products. Therefore, the order picker cannot skip
entering an aisle like in conventional batch picking. The advantage of this is that
after a picking cycle has started, a new arrived customer order can still be included
in the current picking cycle if all its picking locations are downstream in the picking
cycle. In a batch picking system the incoming customer order would only be picked
in one of the following picking cycles. A drawback of a milkrun picking system can
be increased travel distances for the order picker. However, when the arrival rate of
new customer orders is high, like for e-commerce companies, the order picker in a
batch picking system most likely also has to visit all aisles similar as in the milkrun
picking system which will result in similar travel distances.
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Figure 6.2: Comparison of batch and milkrun picking.
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Figure 6.3: Product allocation in a milkrun picking system, where indicates
products which are picked during the current picking cycle and indicates products
which are picked during the next picking cycle.
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A milkrun picking system with multi-line customer orders arriving in real-time can be
accurately modeled using polling systems with simultaneous batch arrivals. Polling
systems are multi-queue systems served by a single server who cyclically visits the
queues in order to serve the customers waiting at these queues. Typically, when
moving from one queue to another the server incurs a switch-over time. Polling
systems have been applied in many areas such as computer and communication
systems, production systems, and traffic and transportation systems (Takagi, 2000;
Boon et al., 2011). In a milkrun picking system, the server is represented by the order
picker and a queue by a storage location. At an arrival epoch, multiple customers
enter the system and arrive in different queues at once. In the milkrun picking system
this corresponds with an arriving multi-line customer order for which the order picker
needs to pick multiple order lines at various storage locations in the order picking
area.

In a milkrun picking system, the product allocation in the order picking area is
important for performance. The product allocation method determines how products
are assigned to the storage locations and directly influences the required time to pick
a customer order. For example, in Figure 6.3, an incoming customer order arrives
at the system which consists of demand for two products, A and B. In Figure 6.3a
product A is located at a storage position which has already been visited in the
current picking cycle and, therefore, cannot be picked anymore in the current picking
cycle. Only at the end of the next picking cycle the incoming customer order will be
delivered at the depot. On the other hand, in Figure 6.3b both locations where A
and B are stored still need to be visited. Therefore, the incoming customer order
can be included in the current picking cycle which allows the customer order to be
picked faster. From this example it seems intuitive to store products or combinations
of products that are requested frequently at the end of the picking route in order to
increase the probability an incoming customer order can be fully picked during the
current picking cycle. However, when the number of storage locations and different
types of customer orders increases, finding the best product allocation becomes
more complicated and requires the use of sophisticated methods as will be shown in
Section 6.6 and Section 6.7.
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6.3 Literature review

In the literature milkrun picking systems have not been researched often. Most
papers on milkrun systems for internal logistics concern a production setting and in
Section 6.3.1 we present a brief overview of these papers. Afterwards, in Section 6.3.2
we discuss product allocation in order picking systems, which has been studied
intensively over the last decades. We will focus on correlated product assignment
strategies for multi-line orders, similar as the setting studied in this chapter.

6.3.1 Milkrun systems for internal logistics

The literature on milkrun systems for internal logistics can be categorized into papers
that study system performance using simulation methods, and the ones that use
analytical models. Simulation methods are by far the most applied. Hanson &
Finnsgård (2014) performed a case study in the automotive industry where forklifts
were replaced by tow-trains operating according to a milkrun, as well as, where
pallets were replaced by smaller plastic containers. The authors found that the
milkrun increased smoothness in the material flows and increased the utilization of
the warehouse workers. Staab et al. (2015) also studied a milkrun in the automotive
industry and focused on different routing strategies to decrease the probability of
congestion and blocking of tow-trains in order to improve the system performance.
Korytkowski & Karkoszka (2015) examined a milkrun in an assembly line and studied
the robustness of the system under various disturbances, such as delays in the supply
cycle. They conclude that a milkrun system leads to a very stable supply of parts to
the assembly line.

Analytical models for milkrun systems for internal logistics are more scarce. Bozer
& Ciemnoczolowski (2013) and Ciemnoczolowski & Bozer (2013) analyzed a milkrun
system that uses a Kanban system that tells which and how many materials should
be delivered next to the work centers. The authors derive stability conditions for the
system, since the number of materials that can be delivered per cycle is limited. They
also studied the distribution of the number of containers delivered per milkrun, the
effect of the number of Kanbans, and work station starvation. Emde & Boysen (2012)
developed a nested dynamic programming procedure for studying the joint tow train
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routing and scheduling problem in milkrun system for an automobile manufacturer.
In Kilic & Durmusoglu (2013) a mixed-integer linear program was developed to
analyze a milkrun system with equal cycle times. Due to the combinatorial structure
of the problem, the authors propose a heuristic to minimize the work in process
and transportation costs. Kovács (2011) studied storage assignment optimization
in warehouses served by milkrun logistics. He showed that the milkrun system can
achieve up to 36-38% improvement in order cycle time. In addition, the average
picking effort was reduced compared if the classical cube-per-order index based
strategy is used to allocate products..

The first to study milkrun picking systems (referred as a dynamic order picking
system in the paper) is Gong & De Koster (2008). The authors used polling models
and showed that the use of a milkrun picking system has a considerable advantage
in on-time service completion over traditional batch picking. Boon et al. (2010)
considered an efficient enhancement to an ordinary milkrun picking system that
allows products stored at multiple locations. The location of the picker would then
determine where specific order lines need to be picked. However, both papers only
considered waiting times of order lines (or single-lined orders), which is the time
between the arrival of a customer order and the start of a pick of an arbitrary order
line within in the picking area. This statistic, however, does not capture the required
time that is necessary for the order picker to return to the depot, neither does it
provide the required time to pick a multi-line order. In this chapter a detailed analysis
of the order throughput time will be provided.

6.3.2 Product allocation in order picking

A product allocation strategy is a set of rules used to assign products to their storage
locations. Multiple strategies exist, each having a different impact on the performance
of the order picking system, e.g. the required travel time to retrieve customer orders.
In the literature, four strategies can be identified; randomized storage, dedicated
storage, class-based storage, and correlated storage (Van den Berg, 1999). Especially
the last policy is of great interest in case of multi-line orders, since information is
used of which products are ordered together such that they can be stored together
in order to reduce travel times for order picking.
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Frazelle (1990) was the first to study correlated storage where pairs of products
that are ordered the most frequent are stored close together. In order to solve the
problem, the author formulated an integer program and proposed a two-phase heuristic
algorithm. Kim (1993) also studied correlated storage and jointly determined storage
locations and space requirements. The author showed that the algorithm developed in
this paper outperforms the algorithm of Frazelle (1990). Garfinkel (2005) developed
a mathematical model to minimize multi-zone orders while considering small-sized
orders which can be picked in one route. The author proposed a Lagrangian relaxation
solution approach and several heuristics to calculate upper bounds for the model.
Lastly, Xiao & Zheng (2011) studied a correlated storage policy that stores products
with demand dependencies together in order to minimize zone visits when picking
materials or parts in a production line.

6.4 Model description

Consider a milkrun picking system as shown in Figure 6.4. We assume the order
picking area to have a parallel aisle lay-out, with A aisles and L storage positions
at each side of an aisle (a rack). Within an aisle, the order picker applies two-
sided picking, i.e. simultaneous picking from the right and left sides within an aisle
(De Koster et al., 1999). We denote the storage locations by Q1, . . . , QN , where the
number of storage locations N equals 2AL. Each storage location can be considered
as a queue for order lines requesting the product stored on that location. Without
loss of generality, we assume that the number of storage locations equals the number
of different products stored in the warehouse, which can be accomplished by either
increasing or decreasing the size of the order picking area. For the ease of presentation,
all references to queue indices greater than N or less than 1 are implicitly assumed
to be modulo N , e.g., QN+1 is understood as Q1. The order picker visits all queues
in a cyclic sequence and picks all required products for the outstanding customer
orders to a pick cart or tow-train. We assume the number of products the order
picker can pick per picking cycle is unconstrained, as for online retailers the route
often finishes before the cart or train is full (Gong & De Koster, 2008). Therefore,
we model the milkrun picking system as a polling system with simultaneous batch
arrivals (Van der Gaast et al., 2015).
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Figure 6.4: Overview of the milkrun picking system.

New customer orders arrive at the system according to a Poisson process with rate λ.
Each customer order is of size D = (D1, . . . , DN), where Dj , j = 1, . . . , N represents
the number of units of product j is requested. Let K = Φ (D), where Φ : NN → NN .
Mapping Φ defines the product allocation of the products to their storage locations
and is given as follows,

Φ (D) = Dx, (6.1)

where xij ∈ NN×N with xij = 1 if product j is allocated to storage location i and 0
otherwise. Then, for each order K = (K1, . . . , KN) where Ki represents the number
of units that need to be picked at Qi, i = 1, . . . , N . The random vector K is assumed
to be independent of past and future arriving epochs and for every realization at
least one product needs to be picked. The support with all possible realizations
of K is denoted by K and let k = (k1, . . . , kN) be a realization of K. The joint
probability distribution of K is denoted by π (k) = P (K1 = k1, . . . , KN = kN). The
arrival rate of products that need to be picked at Qi is denoted by λi = λE (Ki).
The total arrival rate of products to be picked for the customer orders arriving in
the system is given by Λ = ∑N

i=1 λi. The order throughput time of a customer order
k = (k1, . . . , kN) is denoted by Tk and is defined as the time between its arrival
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epoch until the order has been fully picked and delivered at the depot. The order
throughput time of an arbitrary customer order is denoted by T .

At each queue, the picker picks the product units on a First-Come First-Served
(FCFS) basis. The picking times are assumed to be independent and identically
distributed random variables with finite first and second moments. The picking time
of a product unit in Qi is a generally distributed random variable Bi with first and
second moment E (Bi) and E(B2

i ), respectively. The workload at Qi, i = 1, . . . , N is
defined by ρi = λiE (Bi); the overall system load by ρ = ∑N

i=1 ρi. For the system to
be stable a necessary and sufficient condition is that ρ < 1 (Takagi, 1986), which is
assumed to be the case in the remainder of this chapter.

When the order picker moves from Qi to Qi+1, he or she takes a generally distributed
travel time Si with first and second moment E (Si) and E(S2

i ). Without loss of
generality, we assume that the travel times from side to side are independent and
identically distributed with mean s1 and second moment s2

1, the travel times within
aisles between two adjacent storage locations have mean s2 and second moment s2

2,
whereas the time required to travel from one aisle to the next one has mean s3 and
second moment s2

3. Finally, after visiting the last queue the order picker returns to
the first queue to start a new cycle. On the way, the order picker visits the depot
where he or she will drop off the picked products so that other operators can sort and
transport them. We assume that this time is independent of the number of products
the picker picked and is included in s0 and its second moment s2

0. Summarizing we
have,

E (Si) =



s1, if i = 2jL+ 1, 2jL+ 3, . . . , 2L (j + 1)− 1, j = 0, 1, . . . , A− 1,

s2, if i = 2jL+ 2, 2jL+ 4, . . . , 2L (j + 1)− 2, j = 0, 1, . . . , A− 1,

s3, if i = 2jL, j = 1, . . . , A− 1,

s0, if i = N,
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and for the second moments,

E
(
S2
i

)
=



s2
1, if i = 2jL+ 1, 2jL+ 3, . . . , 2L (j + 1)− 1, j = 0, 1, . . . , A− 1,

s2
2, if i = 2jL+ 2, 2jL+ 4, . . . , 2L (j + 1)− 2, j = 0, 1, . . . , A− 1,

s2
3, if i = 2jL, j = 1, . . . , A− 1,

s2
0, if i = N.

Let E (S) = ∑N
i=1E (Si) be the total expected travel time in a cycle and E(S2) =∑N

i=1E(S2
i ) +∑

i 6=j E (Si)E (Sj) its second moment.

We define a picking cycle from the service beginning at the first queue until the order
picker has delivered all the picked products at the depot and arrives at the first queue
again. Therefore, a picking cycle C consists of N visit periods, Vi, each followed
by a travel time Si; V1, S1, V2, . . . , Vi, Si, . . . , VN , SN . A visit period Vi starts with a
pick of a product unit and ends after the last product has been picked given that
product units need to be picked at Qi, afterwards the order picker travels to the next
picking location of which the duration is Si. In case no product units need to be
picked at Qi the order picker immediately travels to the next picking location. The
total mean duration of a picking cycle is independent of the queues involved (and the
service discipline) and is given by (see, e.g., Takagi (1986)) E (C) = E (S) / (1− ρ).
Finally, we assume replenishment is not required in a picking cycle, and each queue
has infinite buffer capacity.

We consider in this chapter three different picking strategies; exhaustive, locally-gated,
and globally-gated. In Figure 6.5 the differences between the three strategies are
shown for an example. Assume a new customer order enters the system with demand
for three products, 1, 2, and 3, stored at queues Qj, Qi, and QN respectively. The
order picker is currently busy picking products at Qj , which is also where the product
units for product 1 need to be picked.

Under the exhaustive strategy as shown in Figure 6.5a, the order picker picks all
product units at the current queue until no product units need to be picked anymore.
This also includes demand for the product that arrives while the picker is busy picking
at this queue. Therefore, in the example the order picker will pick all three products
within the current cycle. Thus, the order throughput time of this order equals the
residual time in Vj, visit periods Vj+1, . . . , VN , and travel times Sj, . . . , SN .
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On the other hand, under the locally-gated strategy shown in Figure 6.5b, the order
picker only picks the product units that need to be picked at the start of the first
pick at a queue; all demand that arrives during the course of the visit will be picked
in the next visit. In this example, this means products 2 and 3 will be picked in the
current cycle and product 1 in the next cycle. Therefore, the order throughput time
of this order equals the residual time in Vj, visit periods Vj+1, . . . , VN , V1, . . . , VN ,
and travel times Sj, . . . , SN , S1, . . . , SN .

Finally, for the globally-gated strategy shown in Figure 6.5c the picker will not pick
any products of incoming customer orders that arrived during the current picking
cycle. Only after the start of the next picking cycle these incoming orders will be
picked. Note that this strategy is identical to classical batch picking, given that
the order picker has to visit all the picking locations during a picking tour and
immediately goes on a next tour after delivering the products at the depot. Similar
as in batch picking no orders can be included during the current picking cycle. In
the example, no products will be picked during the current cycle and the customer
order will be delivered at the depot at the end of the next cycle.

In the previous example we have seen that whether a customer order is fully picked
in the same cycle it arrives or otherwise in the next cycle depends on the location
of the server and the service discipline. Therefore, let K0

j and K1
j , j = 1, . . . , N be

subsets of support K, defined as

K0
j = {k1 = 0, . . . , kj−1 = 0, kj ≥ 0, kj+1 ≥ 0, . . . , kN ≥ 0} ∈ K,

and K1
j =

(
K0
j

)c
as its complement such that for j = 1, . . . , N we have K0

j ∪K1
j = K

and let the associated probabilities be π
(
K0
j

)
and π

(
K1
j

)
. The interpretation of

k ∈ K0
j is that for an incoming customer order all the products need to be picked

at Qj, . . . , QN . For example, in case of the exhaustive strategy this means if the
order picker is at Q1, . . . , Qj a customer order k ∈ K0

j can be included in the current
picking cycle, whereas if k ∈ K1

j the order will be completed in the next cycle. Finally,
let E

(
Ki|K0

j

)
and E

(
Ki|K1

j

)
be the conditional mean number of product units that

need to picked in Qi, i = 1, . . . , N given subset K0
j or K1

j .
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(a) Exhaustive strategy; all the products are picked during the current cycle
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(b) Locally-gated strategy; product 2 and 3 are picked in the current cycle and product 1 in the

next cycle
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(c) Globally-gated strategy; all the products are picked during the next cycle

Figure 6.5: Description of the order throughput time for different picking strategies,
where indicates products which are picked during the current picking cycle and
indicates products which are picked during the next picking cycle.



174 Optimizing product allocation in a milkrun picking system

6.5 Mean order throughput time

In this section the mean order throughput time will be derived in case of the exhaustive
strategy in Section 6.5.1, locally-gated strategy in Section 6.5.2, and globally-gated
strategy in Section 6.5.3. In Van der Gaast et al. (2015) the batch sojourn time
(order sojourn time) for polling systems with simultaneous batch arrivals has been
studied, but in this chapter we will extend this framework for analyzing the order
throughput time.

6.5.1 Exhaustive strategy

In order to derive the mean order throughput time for the exhaustive strategy
we can use the Mean Value Analysis (MVA) developed by Van der Gaast et al.
(2015) for polling systems with simultaneous arrivals. MVA for polling systems
was originally developed by Winands et al. (2006) to study mean waiting times in
systems with individually arriving customers. Van der Gaast et al. (2015) showed
how this assumption can be relaxed and used to calculate other statistics like the
batch sojourn-time. Compared to other methods as the buffer occupancy method
(Takagi, 1986) and the descendant set approach (Konheim et al., 1994), MVA has the
advantage that it has a pure probabilistic interpretation and is based on standard
queueing results, i.e., the Poisson arrivals see time averages (PASTA) property (Wolff,
1982) and Little’s Law (Little, 1961).

In MVA a set of N2 linear equations is derived for calculating E
(
L̄

(Sj−1,Vj)
i

)
(Equa-

tions (5.45) and (5.46) in Chapter 5), the conditional mean queue-length at Qi

(excluding the potential product unit that is being picked) at an arbitrary epoch
within travel period Sj−1 and visit period Vj, that subsequently can be used to
calculate the mean performance statistics for the system. Therefore, the MVA also
allows us to determine the order throughput time for a specific and arbitrary customer
order.

For notation purposes we introduce θj in this section as shorthand for intervisit
period (Sj−1, Vj); the mean duration of this period E (θj) is given by,

E (θj) = E (Sj−1) + E (Vj) , j = 1, . . . , N, (6.2)



6.5 Mean order throughput time 175

where E (Vj) = ρjE (C) and ∑N
j=1E (θj) = E (C).

θj δj,1 δj,2 δj,3 δj,n· · ·

· · ·

dj,n

Figure 6.6: Description of dj,n.

In addition, we denote byDj,n the total mean work of product units in Qj+1, . . . , Qj+n

which originate from customer orders that arrive per unit of pick time Bj or travel
time Sj−1 and all the subsequent picks that are triggered by these picks before the
picker finishes service in Qj+n. For example, a single product pick in Qj will generate
on average additional work in Qj+1, . . . , Qj+n of duration E (Bj) dj,n. Let dj,0 = 0
and for n > 0 we have,

dj,n =
n∑

m=1
δj,m, j = 1, . . . , N, (6.3)

where δj,m is the contribution for Qj+m. First, δj,1 = ρj+1/ (1− ρj+1) includes
the mean picking times and the consecutive busy periods in Qj+1 of product
units that arrived during a product pick Bj or travel time Sj−1. Then, δj,2 =
(1 + δj,1) ρj+2/ (1− ρj+2) contains the mean picking times of the product units that
arrived in Qj+2 during Bj or Sj−1 and the previous busy periods in Qj+1 plus all
the busy periods that these picks generate in Qj+2. In general we can write δj,n for
n > 0 as (see Figure 6.6),

δj,n =
min(N−1,n)∑

m=1
δj,n−m

ρj+n
1− ρj+n

, j = 1, . . . , N, (6.4)

where δj,0 = 1. Note that δj,n only depends on at most N − 1 previous δj,n−m’s
because if new demand arrives at the queue that is currently being visited it will be
picked before the end of the current visit.
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With the help of E
(
L̄

(θj)
i

)
, where θj = (Sj−1, Vj) and Dj,n it is now possible to

calculate the mean order throughput time E (Tk) for customer order k. We do this
by explicitly conditioning on the location of the order picker and by studying the
evolution of the system through time until the incoming customer order has been
fully delivered at the depot. We can write E (Tk) as,

E (Tk) = 1
E (C)

N∑
j=1

E (θj)
(

1(k∈K0
j)E

(
T

(θj ,0)
k

)
+ 1(k∈K1

j)E
(
T

(θj ,1)
k

))
, (6.5)

where 1(k∈K0
j) and 1(k∈K1

j) are indicator functions that are equal to one if k is in
subset K0

j or K1
j respectively; and zero otherwise. Whenever the order picker is at

intervisit period θj and still can pick all the products of the incoming customer order
(i.e. k ∈ K0

j ), then the order throughput time is equal to E
(
T

(θj ,0)
k

)
which is the

mean time until the order picker reaches the depot during the current cycle while
picking customer order k. Otherwise, one or more products are located upstream
and the order throughput time is equal to E

(
T

(θj ,1)
k

)
which is the expected time

until the order picker reaches the depot in the next cycle while picking customer
order k.

First, we focus on the derivation of E
(
T

(θj ,0)
k

)
. When the customer order enters the

system in intervisit period θj with probabilities E (Vj) /E (θj) and E (Sj−1) /E (θj)
it has to wait for a residual picking time E

(
BR
j

)
= E

(
B2
j

)
/ (2E (Bj)) or residual

travel time E
(
SRj−1

)
= E

(
S2
j−1

)
/ (2E (Sj−1)). Also, it has to wait for E

(
L̄

(θj)
j

)
product units that still need to be picked at Qj, as well as at this queue kj prod-
uct units need be picked for the arriving customer order k. Each of these picks
triggers a busy period of E (Bj) / (1− ρj) and generates additional picks that will
be made before the end of the current cycle of duration dj,N−jE (Bj) / (1− ρj).
This also applies for the residual picking time and residual travel time. Then, for
each subsequent intervisit period θl, l = j + 1, . . . , N , the travel time from Ql−1

to Ql will trigger a busy period and additional picks in Ql, . . . , QN of duration
E (Sl−1) (1 + dl,N−l) / (1− ρl). Similarly, the product units that already needed to
be picked before customer order k entered the system and the kl product units need
be picked for the arriving customer order k will increase the mean order throughput
time by

[
E
(
L̄

(θj)
l

)
+ kl

]
E (Bl) (1 + dl,N−l) / (1− ρl). Finally, the picked order has

to be delivered to the depot the duration of which is E (SN).



6.5 Mean order throughput time 177

Combining this gives the following expression for the mean time until the order picker
reaches the depot during the current cycle while picking customer order k,

E
(
T

(θj ,0)
k

)
=
(
E (Vj)
E (θj)

E
(
BR
j

)
+ E (Sj−1)

E (θj)
E
(
SRj−1

)
+
[
E
(
L̄

(θj)
j

)
+ kj

]
E (Bj)

)

× 1 + dj,N−j
1− ρj

+
N−j∑
l=1

(
E (Sj+l−1) +

[
E
(
L̄

(θj)
j+l

)
+ kj+l

]
E (Bj+l)

)
× 1 + dj+l,N−j−l

1− ρj+l
+ E (SN) . (6.6)

Next we focus on E
(
T

(θj ,1)
k

)
. The derivation is similar to the one of Equation (6.6),

except that we should also consider the additional demand that is generated during
a pick or a switch from queue to queue until the end of the next picking cycle. This
gives the following expression,

E
(
T

(θj ,1)
k

)
=
(
E (Vj)
E (θj)

E
(
BR
j

)
+ E (Sj−1)

E (θj)
E
(
SRj−1

)
+
[
E
(
L̄

(θj)
j

)
+ kj

]
E (Bj)

)

×1 + dj,2N−j
1− ρj

+
N−1∑
l=1

(
E (Sj+l−1) +

[
E
(
L̄

(θj)
j+l

)
+ kj+l

]
E (Bj+l)

)

×1 + dj+l,2N−j−l
1− ρj+l

+
2N−j∑
l=N

E (Sj+l−1) 1 + dj+l,2N−j−l
1− ρj+l

+ E (SN) , (6.7)

From (6.6) and (6.7) we can see that both equations consist of terms independent of
k and terms that depend on k. Therefore, we can rewrite the expressions as follows,

E
(
T

(θj ,0)
k

)
= E

(
C(θj ,0)

)
+

N−j∑
l=0

kj+lE (Bj+l)
1 + dj+l,N−j+l

1− ρj+l
, (6.8)

E
(
T

(θj ,1)
k

)
= E

(
C(θj ,1)

)
+

N−1∑
l=0

kj+lE (Bj+l)
1 + dj+l,2N−j+l

1− ρj+l
, (6.9)

where E
(
C(θj ,0)

)
can be interpreted as the mean residual cycle time given that the

order picker is at intervisit period θj, whereas E
(
C(θj ,1)

)
also includes the duration

of the next cycle. Then, the second terms are the total contribution the incoming
customer order makes to the order throughput time.
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Finally, the mean order throughput time of an arbitrary customer order is obtained
by multiplying E (Tk) with the probability that a particular customer order k is
placed,

E
(
TEX

)
=
∑
k∈K

π (k)E (Tk) . (6.10)

By (6.5) and ∑k∈K π (k) 1(k∈K0
j) = π

(
K0
j

)
and ∑k∈K π (k) 1(k∈K1

j) = π
(
K1
j

)
we can

rewrite (6.10) as follows,

E
(
TEX

)
=
∑
k∈K

π (k)
N∑
j=1

E (θj)
E (C)

(
1(k∈K0

j)E
(
T

(θj ,0)
k

)
+ 1(k∈K1

j)E
(
T

(θj ,1)
k

))
,

= 1
E (C)

N∑
j=1

E (θj)
(
π
(
K0
j

)
E
(
T (θj ,0)

)
+ π

(
K1
j

)
E
(
T (θj ,1)

))
, (6.11)

where for j = 1, . . . , N , E
(
T (θj ,0)

)
and E

(
T (θj ,1)

)
are given as follows,

E
(
T (θj ,0)

)
= E

(
C(θj ,0)

)
+

N−j∑
l=0

E
(
Kj+l|K0

j

)
E (Bj+l)

1 + dj+l,N−j+l
1− ρj+l

,

E
(
T (θj ,1)

)
= E

(
C(θj ,1)

)
+

N−1∑
l=0

E
(
Kj+l|K1

j

)
E (Bj+l)

1 + dj+l,2N−j+l
1− ρj+l

.

Then, E
(
TEX

)
can be evaluated by determining π

(
K0
j

)
, π

(
K1
j

)
, E

(
Ki|K0

j

)
, and

E
(
Ki|K1

j

)
, i, j = 1, . . . , N and using the MVA for the conditional queue length

probabilities E
(
L̄

(θj)
i

)
, i, j = 1, . . . , N . Afterwards, E

(
T (θj ,0)

)
and E

(
T (θj ,1)

)
can

be obtained such that E
(
TEX

)
can be calculated.

6.5.2 Locally-gated strategy

The mean order throughput time in case of the locally-gated strategy can also be
determined using the MVA developed by Van der Gaast et al. (2015). For the
locally-gated policy, per queue all incoming demand is placed before a gate. Only
at the start of a visit period at a queue, all product units that need to be picked
at this location are placed behind the gate which means that the order picker will
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pick these product units in the current picking cycle. For this we slightly redefine
K0
j = {k1 = 0, . . . , kj−1 = 0, kj = 0, kj+1 ≥ 0, . . . , kN ≥ 0} ∈ K to reflect this change.

First, we introduce θj in this section as shorthand for intervisit period (Vj, Sj); the
expected duration of this period E (θj) is given by,

E (θj) = E (Vj) + E (Sj) , j = 1, . . . , N. (6.12)

In contrast to the exhaustive strategy, we have to make a distinction between the
mean number of product units before and behind the gate. We introduce variables
E
(
L̃

(θj)
i

)
, i, j = 1, . . . , N as the conditional mean queue-length of product units

located before the gate in Qi during intervisit period θj and E
(
L̂

(θi)
i

)
, i = 1, . . . , N

as conditional mean queue-length of product units located behind the gate in Qi

during intervisit period θi. In MVA by Van der Gaast et al. (2015) a set of N (N + 1)
linear equations (Equations (5.76) and (5.77) in Chapter 5) is derived for calculating
these conditional mean queue-lengths, which we will use in order to determine the
order throughput time.

Similar as for the exhaustive policy, we introduce dj,n which is defined as (6.3).
Because of the different picking strategy, δj,n is different. First, δj,1 = ρj+1 contains
the mean picking times of all product units in Qj+1 that arrive per unit of a product
pick Bj or a travel time Sj, whereas δj,2 = ρj+2 (1 + δj,1) also includes the mean
picking times of the product units that arrived in Qj+2 during a product pick Bj or
a travel time Sj, as well as in δj,1. In general we can write δj,n for n > 0 as,

δj,n =
min(N,n)∑
m=1

δj,n−mρj+n, j = 1, . . . , N. (6.13)

where δj,0 = 1. In this case δj,n depends on N previous δj,n−m’s because if new
demand arrives at the queue that is currently being visited it will not be picked
during the current cycle.

Conditioning on the location of the order picker, by (6.5) the order throughput time
E (Tk) of customer order k can now be determined. First, we consider E

(
T

(θj ,0)
k

)
in

case customer order k arrives during intervisit period θj and will be fully picked and
delivered to the depot at the end of the current cycle. With probability E (Vj) /E (θj)
the arriving customer order has to wait for the order picker to finish the current pick
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and the travel time to the next queue, whereas with probability E (Sj) /E (θj) the
order only has wait for the residual travel time. Also, there are E

(
L̂

(θi)
i

)
product units

behind the gate that need still to be picked of which each pick has duration E (Bj).
During the residual time in θj new demand is generated at Qj+1, . . . , QN that will
be picked before the end of the current picking cycle. Then, for Ql, l = j + 1, . . . , N ,
E
(
L̃

(θj)
l

)
product units need to be picked for customer orders that entered the system

before order k, as well as kl product units for order k where each pick has duration
E (Bl) and new demand is generated at the queues that still need to be visited during
the current cycle. Similar during all the remaining travel times, new demand is
generated that will be picked before the order picker reaches the depot. This gives
the following expression,

E
(
T

(θj ,0)
k

)
=
(
E (Vj)
E (θj)

(E
(
BR
j

)
+ E (Sj)) + E (Sj)

E (θj)
E
(
SRj
)

+ E
(
L̂

(θj)
j

)
E (Bj)

)

× (1 + dj,N−j) +
N−j∑
l=1

([
E
(
L̃

(θj)
j+l

)
+ kj+l

]
E (Bj+l) + E (Sj+l)

)
× (1 + dj+l,N−j−l) . (6.14)

The derivation of E
(
T

(θj ,1)
k

)
is similar to the one of (6.14), except that customer

order k will be delivered at the depot the next picking cycle. Therefore, we should
also consider the additional demand that is generated during a pick or a switch from
queue to queue until the end of the next picking cycle. This gives the following
expression,

E
(
T

(θj ,1)
k

)
=
(
E (Vj)
E (θj)

(E
(
BR
j

)
+ E (Sj)) + E (Sj)

E (θj)
E
(
SRj
)

+ E
(
L̂

(θi)
i

)
E (Bi)

)

× (1 + dj,2N−j) +
N∑
l=1

([
E
(
L̃

(θj)
j+l

)
+ kj+l

]
E (Bj+l) + E (Sj+l)

)

× (1 + dj+l,2N−j−l) +
2N−j∑
l=N+1

E (Sj+l) (1 + dj+l,2N−j−l) . (6.15)
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The same decomposition as (6.8)-(6.9) also holds for (6.14) and (6.15),

E
(
T

(θj ,0)
k

)
= E

(
C(θj ,0)

)
+

N−j∑
l=1

kj+lE (Bj+l) (1 + dj+l,N−j+l) ,

E
(
T

(θj ,1)
k

)
= E

(
C(θj ,1)

)
+

N∑
l=1

kj+lE (Bj+l) (1 + dj+l,2N−j+l) .

The mean order throughput time of an arbitrary customer order can also be obtained
similarly as for the exhaustive strategy. Therefore using (6.5) and some rewriting,
we have

E
(
TLG

)
= 1
E (C)

N∑
j=1

E (θj)
[
π
(
K0
j

)
E
(
T (θj ,0)

)
+ π

(
K1
j

)
E
(
T (θj ,1)

)]
, (6.16)

where for j = 1, . . . , N , E
(
T (θj ,0)

)
and E

(
T (θj ,1)

)
are given as follows,

E
(
T (θj ,0)

)
= E

(
C(θj ,0)

)
+

N−j∑
l=1

E
(
Kj+l|K0

j

)
E (Bj+l) (1 + dj+l,N−j+l) ,

E
(
T (θj ,1)

)
= E

(
C(θj ,1)

)
+

N∑
l=1

E
(
Kj+l|K1

j

)
E (Bj+l) (1 + dj+l,2N−j+l) .

6.5.3 Globally-gated strategy

The final strategy for which we derive the mean order throughput time is the globally-
gated strategy. This strategy resembles locally-gated except that we only pick the
product units that need to be picked during the start of a picking cycle, instead of
the start of a visit period to a queue. This implies that every incoming customer
order will only be picked during the next picking cycle. As a result, the analysis of
this strategy is more straightforward compared to the other two strategies.

The mean order throughput time of a specific customer order k can be determined
as follows. First, the incoming order first has to wait for the current residual cycle
time. Then, the duration of the next picking cycle equals all the picks for incoming
orders that already arrived at the system before order k in the same cycle and those
that arrived during the residual cycle time. In addition, the duration of all the picks
for order k and the total travel time in one cycle increase the mean order throughput
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time. This gives the following expression,

E (Tk) = E (CR) +
N∑
j=1

λjE (Bj) (E (CP ) + E (CR))

+
N∑
j=1

E (Sj) +
N∑
j=1

kjE (Bj) , (6.17)

where E (CP ) and E (CR) are the mean past and residual cycle time.

From Van der Gaast et al. (2015) we know thatE (CP ) = E (CR) = E (C2) / (2E (C)),
where E (C) = E (S) / (1− ρ) and

E
(
C2
)

= 1
(1− ρ2)

[
E
(
S2
)

+ 2ρE (S)E (C)

+
N∑
j=1

λjE
(
B2
j

)
E (C) +

N∑
i=1

λ
(
E
(
K2
i

)
− E (Ki)

)
E (Bi)2E (C)

+
N∑

i,j:i 6=j
λE (KiKj)E (Bi)E (Bj)E (C)

 . (6.18)

Now, we can rewrite (6.17) as follows,

E (Tk) = (1 + 2ρ) E (C2)
2E (C) + E (S) +

N∑
j=1

kjE (Bj) . (6.19)

Finally, the mean order throughput time E
(
TGG

)
can obtained by multiplying E (Tk)

with all possible demand realizations, which gives

E
(
TGG

)
= (1 + 2ρ) E (C2)

2E (C) + E (S) +
N∑
j=1

E (Kj)E (Bj) . (6.20)

6.6 Optimization model for product allocation

The performance of the milkrun picking system is largely dependent on the product
allocation, as explained in Section 6.2. A good product allocation allows many
customer orders being picked in the current picking cycle and delivering them to the
depot as soon as possible in order to achieve short order throughput times. Therefore,
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given the mapping of (6.1) we formulate an optimization model to find a product
allocation x that minimizes the mean order throughput time. For each of the three
picking strategies we minimize the mean order throughput time E

(
T d (x)

)
, where

d ∈ {EX,LG,GG} denotes the picking strategy and x defines the product allocation
(see (6.1)). As explained in Section 6.4, the mean order throughput time depends on
allocation x since the allocation determines how many units on average should be
picked per storage location, E (Ki), i = 1, . . . , N .

The model to minimize E
(
T d, x

)
is defined as the following integer programming

model;

minimize E
(
T d (x)

)
(6.21)

subject to
N∑
j=1

xij = 1 for all i ∈ N (6.22)

N∑
i=1

xij = 1 for all j ∈ N (6.23)

xij ∈ {0, 1} for all i, j ∈ N (6.24)

The objective of the model (6.21) is to minimize the mean order throughput time
((6.11), (6.16), or (6.20) evaluated for product allocation x) given picking strategy d.
Constraints (6.22) ensure that each storage location has only one type of product
assigned to it. On the other hand, constraints (6.23) define that each type of product
should be stored at only one storage location. Finally, constraints (6.24) are the
integrality constraints.

Since objective function (6.21) is nonlinear, we cannot apply standard integer pro-
gramming techniques to find the product allocation that minimizes the mean order
throughput time. Therefore, in the next section we introduce a meta-heuristic that
overcomes this issue.

6.7 A meta-heuristic for product allocation

In order to solve the nonlinear optimization problem of Section 6.6 we apply a Genetic
Algorithm to obtain a product allocation that minimizes the mean order throughput
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time. Genetic Algorithms (GA) have been used successfully to solve nonlinear
optimization problems for which exact or exhaustive methods are not feasible because
of the prohibitive complexity of the problem and have already been applied in many
different fields (see for examples in the context of order picking Tsai et al. (2008)
and Bottani et al. (2012)). First developed by Holland (1975), a GA is an adaptive
heuristic search algorithm inspired by the laws of natural selection and genetics. The
idea of a GA is to start with an initial population of chromosomes, each representing
a different product allocation, and to calculate the fitness of each chromosome by
evaluating the objective function of (6.21). Then, the chromosomes with the highest
level of fitness have the highest probability of surviving and producing offspring
which in turn will form the basis of the next generation. Over the course of several
generations, fitter chromosomes will be present within the population that will provide
better product allocations.

The first step of the GA is to describe the population of chromosomes, as well as, how
to calculate the fitness of each chromosome. We denote Hg as the g-th generation
population, where

Hg = {yg1 , yg2 , . . . , ygl , . . . , y
g
M} , (6.25)

consists in total of M different chromosomes each representing a product alloca-
tion and chromosome ygl =

{
ygl,1, y

g
l,2, . . . , y

g
l,j, . . . , y

g
l,N

}
, where allele ygl,j denotes the

allocated storage location for product j. In order to calculate the fitness of chromo-
some ygl , we determine its associated product allocation xgl such that we can evaluate
E
(
T d, xgl

)
for a given picking strategy d. For this we define xgl = ψ (ygl ), where

ψ : NN → {0, 1}N×N . The mapping ψ is given as follows,

ψ (ygl ) =
[
eyg

l,1
, eyg

l,2
, . . . , eyg

l,N

]
, (6.26)

where ej denotes a column vector of length N with 1 in the j-th position and 0 in
every other position. The fitness of population Hg, F (Hg), can now be calculated by

F (Hg) = {F (yg1) , F (yg2) , . . . , F (ygM)}

=
{
E
(
T d (ψ (yg1))

)
, E

(
T d (ψ (yg2))

)
, . . . , E

(
T d (ψ (ygM))

)}
. (6.27)
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In order to construct the next generation of chromosomes, we select using the
current generation a survivor and an offspring population that together form the
next generation. First, survivors are chromosomes that are selected from the current
population and are then placed in the next generation. Second, offspring is created
by mutating and/or recombining current chromosomes in order to create new product
allocations. For the offspring population, we select chromosomes based on roulette-
wheel selection, also known as stochastic sampling with replacement (Mitchell, 1998).
This method determines for each chromosome a probability proportional to its fitness
as follows,

pl = F (ygl )∑M
j=1 F

(
ygj
) , l = 1, . . . ,M. (6.28)

Then, chromosomes with a higher probability have a higher chance of being selected
to be used to generate offspring. For the survivor population, we use tournament
selection. In this method tsize chromosomes are randomly selected and then the
chromosome with best fitness will be chosen to generate the survivor population.
Finally, the size of the survivor and offspring population is controlled by parameter
0 ≤ α ≤ 1. In every generation bαMc chromosomes are selected to generate offspring,
whereas M − bαMc selected chromosomes will become the survivor population.

The offspring is generated using a combination of two types of genetic operators;
recombination and mutation. First, recombination generates new chromosomes by
combining different parts of more than one parent chromosomes. The new child
chromosome is constructed by selecting one or more crossover points in the parent
chromosomes, splitting the chromosomes at these points, and then recombining the
parts to construct the new chromosome while ensuring that the new chromosome
provides a feasible product allocation. Second, mutation allows the population to be
diversified which is essential to avoid that the search terminates at a local minimum.
A mutation is carried out by altering one or more alleles from their original state of
a single chromosome in order to form a new allocation.

In general, the structure of the GA can be described as follows;

In line 1 of the algorithm the generation index is set to zero and in line 2 the initial
population of chromosomes is created. The population is initialized with random
product allocations, like most GA applications (Reeves, 2003). The size of the
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Algorithm 6.1 Description of the Genetic Algorithm.
1: g ← 0
2: Initialize the initial population, H0

3: Calculate the initial fitness, F (H0)
4: while maximum number of generations not met or no convergence achieved do
5: g ← g + 1
6: Hg

s ← survivors(Hg−1)
7: Hg

o ← offspring(Hg−1)
8: Hg ← Hg

s ∪Hg
o

9: Calculate the fitness, F (Hg)
10: return ψ (ybest) . The best product allocation over all generations

population equals M and should be big enough to allow enough variation between
the chromosomes, but should not be too big since otherwise it would take a lot
of time to find a good solution. In line 3 the initial fitness of the population is
calculated using Equation (6.27). Then, the generation index is increased at line 5,
whereas in line 6 and 7 the survivor and offspring population are generated. The
genetic operators used to generate the offspring population are applied in sequence
and each operator has a probability that determines how many chromosomes on
average per generation the operator is applied on. Afterwards, both populations
are combined in order to form the next generation. Lines 5-9 are repeated until the
termination condition has been triggered. In our GA the algorithm stops if either the
best solution found by the algorithm has not been improved for Gstable generations or
if the generation index has reached Gmax. Finally, at the last line the best product
allocation over all the generations ψ (ybest) is returned.

The details of each genetic operator will be discussed in the next three sections. These
operators were carefully chosen after running an initial test to allow for sufficient
recombination and mutation in every generation.

6.7.1 Swap mutation (SM)

The first operator used in the GA is the swap mutation (SM). The SM operator
chooses one random allele in a chromosome and swaps it with one of the remaining
alleles of the chromosome. The main function of this operator is to allow the heuristic
to explore different parts of the search space.
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Suppose that in chromosome ygl allele ygl,i and y
g
l,j are selected to be swapped. This

results in a new chromosome yg
′

l ;

yg
l,1 yg

l,2 . . . yg
l,i

. . . yg
l,j

. . . yg
l,N

yg
l,1 yg

l,2 . . . yg
l,j

. . . yg
l,i

. . . yg
l,Nygl yg

′

l

Figure 6.7: Example of the swap mutation operator.

6.7.2 Partially matched crossover (PMX)

The second operator used is a partially matched crossover (PMX). PMX is recom-
bination operator that uses a subset of alleles between two randomly chosen cut
points from one parent and completes the remaining part of the child chromosome
by preserving the order and positions of as many storage locations as possible from
the other parent. In the following figure an example of the PMX operator is shown.

1 2 3 6 4 5 7 8 4 8 2 1 5 7 3 6ygl ygk

(a) Assume two parent chromosomes yg
l and yg

k each consisting of 8 alleles and two cut points per
chromosome.

* * * 6 4 5 * * * * * 1 5 7 * *yg
′

l yg
′

k

(b) By preserving the subset of alleles between the two cuts points two children yg′

l and yg′

k can be
constructed with the following mapping: 6↔ 1, 4↔ 5, 5↔ 7. Let ∗ denote an allele for which
its storage location is not determined yet.

* 8 2 6 4 5 3 * * 2 3 1 5 7 * 8yg
′

l yg
′

k

(c) The empty alleles of yg′

l can be determined (if possible) with alleles from yg
k that are on the

same positions and vice versa.

7 8 2 6 4 5 3 1 6 2 3 1 5 7 4 8yg
′

l yg
′

k

(d) Using the mapping the remaining alleles of yg′

l and yg′

k can be determined such that both child
chromosomes provide a feasible product allocation.

Figure 6.8: Example of the partially matched crossover operator.
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6.7.3 Edge recombination crossover (ERX)

The third operator is the edge recombination crossover (ERX). The idea of the ERX
operator is to construct a new offspring that inherits as many edges (a combination
of two subsequent alleles) as possible from its parent chromosomes. The first step of
the operator is to create for the alleles an edge map based on their neighborhood.
The neighborhood of an allele is defined as the alleles that are adjacent to it either
in the first and/or the second parent. Afterwards, starting from an arbitrary allele,
in each step the next allele is chosen that is in the neighborhood of the previous
allele. If more than one allele is feasible, then randomly the allele with smallest
neighborhood size is selected. This continues until the entire child chromosome is
constructed. In the following figure an example of the ERX operator is shown.

1 2 3 6 4 5 7 8 4 8 2 1 5 7 3 6ygl ygk

(a) Assume two parent chromosomes yg
l and yg

k each consisting of 8 alleles.

1 2, 5, 8 3 2, 6, 7 5 1, 4, 7 7 3, 5, 8
2 1, 3, 8 4 6, 5, 8 6 3, 4 8 1, 2, 4, 7

(b) Based on the two parent chromosomes the edge map can be constructed which contains
for each allele the adjacent alleles from the parent chromosomes.

1 2 * * * * * * 1 2 3 * * * * *yg
′

l yg
′

l

(c) We start by constructing child yg′

l from the first allele of yg
l . Then, the second allele is

either 2, 5, or 8. Both 2 and 5 have three neighbors, whereas 8 has four neighbors. Assume
that 2 is randomly chosen. In the same way 3 is chosen for the third allele.

1 2 3 6 4 5 7 8 4 6 3 2 1 5 7 8yg
′

l yg
′

k

(d) By continuing in the same manner, we finally obtain yg′

l . In case we started with the first
allele of yg

k we would obtain yg′

k .

Figure 6.9: Example of the edge recombination crossover operator.

6.8 Numerical results

In this section we study the mean order throughput time for the three picking
strategies and under which product allocation policies these times are minimized.
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Afterwards, we check for which range of system instances a particular picking strategy
achieves the shortest mean order throughput times.

This section is split in two parts. Section 6.8.1 investigates for a large test set
of different instances the solution quality and accuracy of the meta-heuristic of
Section 6.7. Furthermore, we compare the results of the different picking strategies
and discuss whether products that are often ordered together should be stored close
to each other. Afterwards, Section 6.8.2 discusses a real world application for which
we compare the three picking strategies and product allocation policies.

All the experiments were run on Core i7 with 2.5 GHz and 8 GB of RAM and the
Genetic Algorithm was implemented in Java.

6.8.1 Comparison different system instances

In order to find out which product allocation policy minimizes the mean order
throughput time given one of the picking strategies, a test set was generated for
which the parameters are shown in Table 6.1.

Table 6.1: Parameters of the system instances test set.

Parameter Values

Picking times, b 0.1 sec., 1.0 sec., 2 sec.
Traveling times, s 0.1 sec., 1.0 sec., 2 sec.
Number of different orders, |K| 5 orders, 20 orders, 35 orders
Order sizes, ∑N

i=1 ki 1–2 units, 2–5 units, 5–10 units
Overall system load, ρ 0.1, 0.5, 0.8, 0.95

First, for all instances the number of aisles A was assumed to be equal to 2 and the
storage locations per rack in an aisle L was also equal to 2, which in total gives 8
different storage locations (= 2AL). We have chosen this number since it allows us to
enumerate all possible product allocation policies (8! = 40, 320 different combinations)
in a reasonable time per instance in order to assess the solution quality and accuracy
of the Genetic Algorithm (GA). Next, we assumed all picking times to be equal and
exponentially distributed, i.e. E (Bi) = b and E

(
B

2
i

)
= 2b2 for i = 1, . . . , N , and

the values varied between 0.1, 1.0, and 2.0 seconds. The same assumption was also
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made for the travel times between storage locations, E (Si) = s and E
(
S

2
i

)
= 2s2

for i = 1, . . . , N . Note that the actual values of the picking and traveling times are
not of concern in this section, however we are interested in the situation that the
picking times are faster than the traveling times or vice versa. Furthermore, the
overall system load ρ was 0.1, 0.5, 0.8, or 0.95, such that for the arrival rate it holds
that λ = ρ/

(
b
∑N
i=1E (Ki)

)
which is independent of the current product allocation

and where ∑N
i=1E (Ki) is the expected order size. Next, we varied the number of

different customer orders that arrive at the system at |K| = 5, 20, or 35. For each
of these orders we varied the demanded number of product units, ∑N

i=1 ki, between
only small order sizes (randomly chosen between 1–2 product units), medium order
sizes (2–5 product units), or large order sizes (5–10 product units). In addition,
we generated per number of customer orders |K| and order size ∑N

i=1 ki three sets
of customer order probabilities π (k) summing to 1, where each probability varied
between 2% and 20%. In total this leads to 972 (3 × 3 × 4 × 3 × 3 × 3) different
(symmetric) instances.

In addition, we generated the same amount of (asymmetric) instances in which
the picking and traveling times differ per location. The only difference with the
symmetric instances is that each individual picking and traveling time was randomly
perturbed between −10% and 10% of its current value while ensuring that a product
allocation can be found such that the system is stable. Finally, note that because of
different picking times per storage location the system load is now dependent on the
product allocation (ρ = ∑N

i=1 λE (Ki)E (Bi)).

The parameters used in the GA are shown in Table 6.2.

Table 6.2: Parameters used in the Genetic Algorithm.

Parameter Value Parameter Value

Population size, M 100 Probability pSM 0.15
Stable generations, Gstable 150 Probability pPMX 0.35
Maximum number of generations, Gmax 1, 000 Probability pERX 0.20
Tournament size, tsize 3 Offspring parameter α 0.6

In every generation the size of the population equals M = 100 which allows for
enough variation between chromosomes. The two stopping criteria, Gstable and Gmax

are set equal to 150 and 1, 000 respectively, and the tournament size tsize is set equal
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to 3. Finally, each genetic operator has a probability that determines on how many
chromosomes the operator is applied on average per generation. Since the operators
are applied sequentially some chromosomes in the offspring population might not
be modified and will remain unchanged in the next generation. The probabilities
are 0.15 for the swap mutation, 0.35 for the partially matched crossover, and 0.20
for the edge recombination crossover. These parameters were obtained by running a
sensitivity analysis on a preliminary data set of similar sized instances in order to
avoid over-fitting on the current test set.
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Figure 6.10: The effect of different parameters used in the Genetic Algorithm.

Figure 6.10 shows the effect of different parameters used in the GA for a random
instance in the test set. In Figure 6.10a we apply the GA to find the best allocation
under the exhaustive strategy for three different population sizesM . In all three cases
the optimal solution is found, but it can be seen that the larger the population size
the faster the optimal solution is found in terms of number of generations. Increasing
the population size even further does not lead to finding the optimal solution in a
significant less amount of generations, however it mainly slows down the algorithm
since it requires more time to evaluate all the chromosomes per generation. In
Figure 6.10b the effect of different probabilities for the genetic operators are shown
for the same instance, where default refers to the algorithm using the parameters
listed in Table 6.2. First, by increasing the swap probability to 0.5 the operator
diversifies the population substantially, but decreases the overall solution quality
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on the long run, because good areas in the search space are less explored. When
the probability of the edge recombination crossover is set to 0.5 we observe that
the optimal solution is found slightly later. Typically, by increasing the level of
recombination the algorithm will spend more time investigating a limited part of the
search space, the consequence of which is that the optimal solution is often found
later.

Table 6.3: Solution quality and accuracy of the Genetic Algorithm on the test set.

Exhaustive Locally-gated Globally-gated

Symmetric instances
Average GA time (sec.) 3.26 2.97 < 0.01
Average enumeration time (sec.) 22.19 20.30 < 0.01
Average number of generations 189.2 188.9 -
Solution quality (%) 94 93 100
Relative difference solution (%) 0.21 0.15 -
Asymmetric instances
Average GA time (sec.) 3.12 2.76 0.24
Average enumeration time (sec.) 23.50 19.45 1.35
Average number of generations 184.2 183.3 177.7
Solution quality (%) 93 95 100
Relative difference solution (%) 0.30 0.32 -

In Table 6.3 the solution quality and accuracy of the GA for both the symmetric and
asymmetric test set are shown. The average run time of the GA was around 3 seconds
for the exhaustive and locally-gated strategy, whereas the average time to evaluate
all the 40, 320 product allocations is around 19 – 24 seconds. For the symmetric
instances with the globally-gated strategy, all product allocations have the same mean
order throughput time since in (6.20) both E (C), E (C2), and ∑N

j=1E (Kj)E (Bj)
will always be the same. Therefore, there is no need to run the GA nor to enumerate
all possible allocations for these instances. For the asymmetric instances, this is not
the case and the average run time of the GA is 0.24 seconds and 1.35 seconds for
full enumeration. On average 40 generations are needed to find the best allocation
plus the additional 150 iterations to ensure no better solution is found. In terms of
solution quality, GA was able to find 94% and 93% of the optimal product allocations
for the symmetric and asymmetric instances. For the cases where the optimal solution
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was not found, GA still found solutions very close to the optimal solution; the average
relative difference with the optimal solution value for these cases was 0.21% for the
symmetric and 0.30% for the asymmetric instances. For locally-gated, GA found 93%
and 95% of the optimal allocations for the symmetric and asymmetric instances, and
the relative difference for the non-optimal solutions was 0.15% and 0.32%. Finally,
GA was able to find all the optimal solutions for the asymmetric instances with
globally-gated.

Table 6.4: The joint probabilities, σij , that product i (row) and product j (column)
are picked for a customer order.

(a) Symmetric instances (order size 1–2 product units, locally-gated
and exhaustive strategy)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Q1 - 0.44 0.11 0.67 0.44 0.33 0.56 0.33
Q2 - 0.33 0.44 0.22 0.44 0.56 0.67
Q3 - 0.44 0.11 0.11 0.67 0.22
Q4 - 0.44 0.44 0.33 0.67
Q5 - 0.56 0.56 0.67
Q6 - 0.67 0.33
Q7 - 0.56
Q8 -

(b) Asymmetric instances (order size 1–2 product units, locally-gated
and exhaustive strategy)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Q1 - 0.67 0.11 0.78 0.33 0.11 0.22 0.33
Q2 - 0.22 0.78 0.33 0.33 0.67 0.33
Q3 - 0.22 0.33 0.33 0.56 0.44
Q4 - 0.22 0.56 0.78 0.56
Q5 - 0.11 0.56 0.33
Q6 - 0.67 0.33
Q7 - 0.67
Q8 -

In Table 6.4 the probabilities, σij are shown; σij is the joint probability that product i
(row) and product j (column) are picked for a customer order. These probabilities are
shown for both the symmetric and asymmetric instances in case of an order size 1–2
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products and locally-gated and exhaustive strategies. We excluded globally-gated,
since in case of the symmetric cases all production allocations have the same average
order throughput time. In addition, by only considering small order sizes we can
easily investigate whether products that are often ordered together are stored close
to each other. For the symmetric cases, it can be seen that products that are ordered
together tend to be stored close to each other (σi,i+1), and also occur often with
products at the last two storage locations (σi.7 and σi.8). This can mainly be explained
by the trade-off between workload balancing (the server should not stay at a storage
position too long) and allocating correlated products next to each other (increasing
the probability an order can be picked in the same cycle it arrives). The previous
results can also be observed for the asymmetric instances.

Finally, in Table 6.5 we investigate the range of instances a particular picking strategy
achieves the shortest mean order throughput times. For given system load ρ, traveling
time s, and picking time b, the table presents the fraction of times a particular picking
strategy achieves the shortest mean order throughput times. The results from the
full enumeration have been used to construct this table, however the same results
are obtained if the GA would have been used. First, in Table 6.5a the results for the
symmetric instances are presented. Note that the best allocation of products can
differ per strategy. From the table it can be seen that when the system load is low
and the picking and traveling times are the same the exhaustive strategy achieves
the shortest mean order throughput times. This is also the case for all system loads
when the traveling times are longer than the picking times. In these cases, it is
more beneficial to stay longer at a picking location than to switch to another picking
location. However, the opposite holds when the traveling times are shorter than
the picking times. For these instances both gated strategies perform better and the
higher the load of the system globally-gated performs the best. A reason for this
is that in locally-gated the order picker will already pick many products for orders
that will only be delivered at the depot next cycle, whereas in globally-gated only
products will be picked for orders that will be delivered at the depot at the end of the
cycle. Finally, the same patterns can also be observed for the asymmetric instances
in Table 6.5b.
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Table 6.5: For picking strategy exhaustive (EX), globally-gated (GG), and locally-
gated (LG), the fraction of times this strategy achieves the minimal mean order
throughput time given system load ρ, traveling time s, and picking time b.

(a) Symmetric instances

b 0.10 1.00 2.00
s ρ EX GG LG EX GG LG EX GG LG

0.
10

0.10 0.96 0.00 0.04 0.00 0.41 0.59 0.00 0.63 0.37
0.50 0.74 0.26 0.00 0.00 0.96 0.04 0.00 1.00 0.00
0.80 0.67 0.30 0.04 0.00 1.00 0.00 0.00 1.00 0.00
0.95 0.67 0.33 0.00 0.00 1.00 0.00 0.00 1.00 0.00

1.
00

0.10 1.00 0.00 0.00 0.96 0.00 0.04 0.63 0.04 0.33
0.50 1.00 0.00 0.00 0.74 0.26 0.00 0.37 0.33 0.30
0.80 1.00 0.00 0.00 0.67 0.30 0.04 0.26 0.63 0.11
0.95 1.00 0.00 0.00 0.67 0.33 0.00 0.11 0.63 0.26

2.
00

0.10 1.00 0.00 0.00 1.00 0.00 0.00 0.96 0.00 0.04
0.50 1.00 0.00 0.00 0.96 0.04 0.00 0.74 0.26 0.00
0.80 1.00 0.00 0.00 0.85 0.15 0.00 0.67 0.30 0.04
0.95 1.00 0.00 0.00 0.78 0.22 0.00 0.67 0.33 0.00

(b) Asymmetric instances

b 0.10 1.00 2.00
s ρ EX GG LG EX GG LG EX GG LG

0.
10

0.10 1.00 0.00 0.00 0.00 0.37 0.63 0.00 0.59 0.41
0.50 0.81 0.19 0.00 0.00 0.93 0.07 0.00 1.00 0.00
0.80 0.70 0.26 0.04 0.00 1.00 0.00 0.00 1.00 0.00
0.95 0.59 0.41 0.00 0.15 0.85 0.00 0.15 0.85 0.00

1.
00

0.10 1.00 0.00 0.00 1.00 0.00 0.00 0.74 0.00 0.26
0.50 1.00 0.00 0.00 0.81 0.19 0.00 0.48 0.30 0.22
0.80 1.00 0.00 0.00 0.70 0.26 0.04 0.33 0.56 0.11
0.95 1.00 0.00 0.00 0.59 0.41 0.00 0.41 0.48 0.11

2.
00

0.10 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
0.50 1.00 0.00 0.00 1.00 0.00 0.00 0.81 0.19 0.00
0.80 1.00 0.00 0.00 0.89 0.11 0.00 0.70 0.26 0.04
0.95 1.00 0.00 0.00 0.81 0.19 0.00 0.59 0.41 0.00
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6.8.2 Real world application

In this section we investigate the effects of different product allocations for a real
world milkrun picking system. For this we study the warehouse of an online Chinese
retailer in consumer electronics, the same warehouse considered in case 2 in Gong &
De Koster (2008). However, the authors only compared the product unit waiting
times (see Section 6.2). The retailer sells over 20, 000 products in 226 cities and
provides deliveries within 2 hours upon order receipt in large cities. In order to
meet this service level agreement, orders should start processing within 5 minutes on
average after being received and the order throughput times should be as short as
possible.

Table 6.6: Parameters of the China online shopping warehouse.

(a) Warehouse

Parameter Value

Warehouse area 985 m2

Aisles 8
Number of storage locations per aisle side 30

(b) Order pickers

Parameter Value

Number of order pickers 30
Number of storage locations per picker, N 16
Number of aisles per picker, A 4
Number of storage locations per rack per picker, L 2

(c) Operations

Parameter Value

Travel speed of a picker 0.48 meter/sec.
Mean picking time, E (Bi) 1.51 sec.
Second moment picking time, E (B2

i ) 3.82
Mean traveling time (depot), s0 63.0 sec.
Mean traveling time (side to side), s1 2.00 sec.
Mean traveling time (adjacent storage locations), s2 2.50 sec.
Mean traveling time (adjacent aisles), s3 9.60 sec.
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The company uses a milkrun picking system aided by an information system based
on mobile technology and a call center (order processing center). In Table 6.6 an
overview of the parameters of the warehouse is provided. The total area dedicated
for the milkrun picking system is 985 m2. The total number of aisles is 8 and each
aisle has a width of 1 meter. On each side of the aisle there are 30 storage positions,
where each storage position has a width and depth of 1.2 meter. Altogether there
are 480 (= 2 · 8 · 30) storage locations.

In total there are now 30 order pickers working per shift in the warehouse. Different
from Gong & De Koster (2008) that assumes all order pickers visit sequentially every
storage location and thus follow the same picking route, we assume that the order
picking area is zoned and each picker is responsible for picking products from his or
her zone. This means that there is no overlap in picking routes between order pickers.
Picked products are brought to a central depot location where they are sorted per
customer order. Additionally, we assume small sized orders (64% one product unit
and 36% two product unit) and that every customer order can be fully picked in one
zone. This allows us to study each zone in isolation.

Then, a single order picker is responsible for N = 16 = 2 · 4 · 2 storage locations. The
subsequent picking routes can be realized by adding additional cross-aisles to the
order picking area. Each order picker has a traveling speed of 0.48 meter/seconds.
The mean travel time side to side is s1 = 2 seconds, the mean travel time within
aisles between adjacent storage location is s2 = 2.50 seconds, and the mean travel
time between adjacent aisles is s3 = 9.60 seconds. The average mean traveling times
from the last storage location including the depot time is s0 = 63.0 seconds for all the
pickers. As a result, the total mean traveling time per cycle is E (S) = 182.2 seconds.
All the second moments for the traveling times are s2

i = 0, i = 0, 1, 2, 3. Finally, for
all storage locations the mean picking time per product unit is E (Bi) = 1.51 seconds
and second moment of the picking time is E (B2

i ) = 3.82, i = 1, . . . , N . In the rest
of this section, we focus on one zone but the same conclusion can also be drawn for
the other zones.

In Figure 6.11 the mean order throughput time and mean product unit waiting time
is shown for the three picking strategies for different system utilization. The results
were obtained after running the GA for which the parameters were identical as in
Section 6.8.1. The run time of the algorithm was around 5 minutes per instance and



198 Optimizing product allocation in a milkrun picking system

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

Utilization, ρ

E
(T

)
[m

in
]

Exhaustive
Globally-gated
Locally-gated

ρ 0.1 0.5 0.8 0.95

EX 3.0 min. 4.9 min. 11.0 min. 40.7 min.
GG 3.6 min. 6.4 min. 15.4 min. 60.2 min.
LG 3.1 min. 5.1 min. 11.5 min. 43.2 min.

(a) Mean order throughput time E (T )

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

Utilization, ρ

E
(W

)
[m

in
]

Exhaustive
Globally-gated
Locally-gated

ρ 0.1 0.5 0.8 0.95

EX 1.4 min. 2.2 min. 5.1 min. 19.2 min.
GG 2.0 min. 3.8 min. 9.8 min. 39.5 min.
LG 1.4 min. 2.4 min. 5.6 min. 21.8 min.

(b) Mean product unit waiting time E (W )

Figure 6.11: Results China online shopping warehouse for different utilization ρ
and the three picking strategies.
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around 500 generations were needed to find the best allocation. In Figure 6.11a the
results for the mean order throughput time E (T ) is shown. The exhaustive strategy
always achieves the lowest mean order throughput time, whereas the results of the
locally-gated strategy are slightly above it. However, the globally-gated strategy
performs significantly worse which shows that dynamically adding new customer
orders to the picking cycle reduces the mean order throughput times considerably.
From the results it can also be clearly seen that when the utilization increases, the
higher the mean order throughput time becomes. For the average mean product unit
waiting time E (W ) = 1

Λ
∑N
i=1 λiE (Wi) in Figure 6.11b, similar conclusions can be

drawn. On the other hand, comparing the results with the mean order throughput
time it can be seen that the mean order throughput time is between 50% to 125%
longer. This implies that when considering how long it takes to pick a customer order
it is better to consider the order throughput time instead of product unit waiting
times.

Figure 6.12 shows how much the mean order throughput time varies for several
values of the utilization ρ for a randomly generated set of product allocations. We
generated 3, 000 different allocations which also included the best allocation found
in Figure 6.11 for which we calculated the mean order throughput time E (T ). We
excluded globally-gated from this comparison since E (Bi), i = 1, . . . , N is the same
for every storage location, and therefore all product allocations have the same mean
order throughput time. From the box plots it can be seen that the spread of mean
order throughput times is around 3 minutes in case ρ is high to a couple of seconds
when ρ is low and that the choice of picking strategy can lead to significantly shorter
order throughput times.

6.9 Conclusion and further research

This chapter studied the order throughput time and product allocation in a milkrun
picking system. In this system a picker picks orders that arrive in real time during
the picking process, which subsequently changes dynamically the stops on the order
picker’s current picking route. This chapter is the first in studying order throughput
times of multi-line orders in a milkrun picking system which provide better insights
in the performance of the system and allows to study the effect of different product
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allocations. It considerably extends the work of Gong & De Koster (2008) who only
considered waiting times of single-line orders. We modeled the system as a cyclic
polling system with general service times, general switch-over times, and simultaneous
batch arrivals. For three picking strategies; exhaustive, locally-gated, and globally-
gated, we determined the average order throughput time of a customer order by
studying the evolution of the system through time from the order entering the system
until all its order lines have been picked and delivered at the depot. Afterwards,
we proposed an optimization framework for product allocation in a milkrun picking
system in order to minimize the average order throughput time. Our results showed
that the average order throughput time in a milkrun order system can significantly
vary based on the chosen product allocation and picking strategy. In particular, we
found that the exhaustive strategy obtains the lowest mean order throughput time
when travel times between storage locations are long compared to the picking times,
whereas both gated strategies perform better in the opposite situation.

The model and methods in this chapter lend themselves for further research. First,
the model can be extended by including putaway and replenishment processes,
similar as observed in a production setting. Other interesting topics are relaxing
the assumption of an uncapacitated pick cart and investigating whether other or
combinations of picking strategies can lead to increased picking performance. Also, it
can be worthwhile to investigate whether a local backward routing policy, i.e. picking
a product that arrived in the queue that just has been visited, might increase system
performance. In addition, it is possible to further study a milkrun picking system with
multiple pickers, where the order picking area is zoned and each picker is responsible
for picking products from his/her zone. Interesting other research questions would
be how many zones are required and how should products be allocated in order to
minimize the order throughput time in case an order consists of demand for products
located in multiple zones which all need to be send to a single depot location. Finally,
the model can be generalized for the analysis of different warehouse systems such
as carousels or paternosters, but also for production systems and communication
networks.





7 Conclusions and future outlook

In this thesis, new stochastic models have been developed for the performance
evaluation of several state-of-the-art warehousing systems that describe and predict
the consequences of internal variability. Much of this variability is caused in the
order picking process, e.g. variations in order arrivals, in picking times, and in
availability of workers, pick totes, and other resources. The developed stochastic
models provide valuable guidance in the rapid comparison of key features of different
design alternatives and allow operations to be optimized in order to meet prespecified
performance targets. In addition, they help designers to avoid major mistakes,
because they expand the designer’s intuitive understanding of what determines
system performance.

We focused on two order picking systems that were mainly left unexplored in the
literature, but that are highly relevant in practice namely; zone picking and milkrun
order picking. We analyzed these systems from a stochastic point-of-view, mainly by
using techniques from the field of queueing theory, e.g. closed product-form queueing
networks and polling networks, and applied optimization techniques in order to
compare different design alternatives.

7.1 Conclusions

In the first three chapters of this thesis we studied zone picking systems. Zone
picking systems belong to the most popular conveyor-based picker-to-parts order
picking methods used in practice. In such a system the order picking area is zoned,
where in each zone an order picker is responsible for picking products from his or her
dedicated part of the warehouse. However, from the industry there are many open
questions about zone picking design issues that were not answered by the current
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literature. In Chapter 2, we created an analytical model for zone picking systems
with either single-segment, or multi-segment routing based on queueing theory. The
model provides a valuable tool for rapid design of complex zone picking systems in
order to meet specific performance levels and it can be used to study and reduce
the sources of blocking and congestion. Because an exact analysis of the queueing
model was not feasible, we approximated the blocking behavior with the jump-over
protocol which yields product-form results. This result was proven using the concept
of quasi-reversibility. The product-form results allowed us to efficiently evaluate the
performance of the system using Mean Value Analysis and an aggregation technique.
With these techniques we could rapidly obtain very accurate estimates of the key
performance statistics such as zone utilization, average overall order throughput,
mean system throughput time, and the probability of a tote blocked by a full zone.
We evaluated the performance of the approximation on a large test set of different
zone picking layouts, which varied e.g. on single- or multi-segment routing, number of
zones, mean conveyor times, and the size of the input buffer of a zone. The results of
the approximation were validated with a discrete-event simulation of the real queueing
network. For both the single-segment and multi-segment routing lay-outs, almost all
of the errors for the average system throughput, mean number of circulations, and
the average mean throughput times of the zones fell between 0− 1%, with only a
few larger than 5%.

In Chapter 3, we extended the analysis by also studying the merge operation in zone
picking systems. In case the system is under heavy load, congestion and blocking
occur at conveyor merges due to limited free space on the conveyor. This congestion
leads to reduced throughput and controls the maximum throughput capability of
the system. A decomposition-based approximation was used to study each conveyor
merge and zone in isolation. Our method progressively aggregated parts of the
queueing network and replaced the aggregated subnetwork by a flow equivalent
single node. The approximation directly solved the global balance equations of the
underlying Markov chain of the subnetworks for its steady-state distribution. The
results showed that the approximation is able to predict the maximum throughput
capability of a zone picking system very accurately compared to simulation. Moreover,
the model is capable of predicting the loss in throughput capacity given the level
of congestion and blocking in the system. In addition, we used the model to study
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the allocation of input and output buffer positions to zones in order to maximize
the throughput capability of the system. When the system is not congested, it is
more beneficial to have more input buffer positions, since it decreases the possibility
that a tote is rejected from entering the buffer of the zone and has to recirculate on
the conveyor. However, when congestion and blocking increases, it becomes more
attractive to increase the number of output buffer positions, since the average time
required to merge and the fact the order picker is stopped more often becomes higher
than the time it takes for a tote to recirculate once. Also, when the system is heavily
utilized, the supply of new totes to the zones stalls due to congestion at the merges.

Finally, in Chapter 4 we compared different product allocation methods and tested
their influence on system performance for a real-world zone picking system. In
order to assess the system performance, we extensively used the models of the
previous chapters. We tested several product allocation methods and found that
a product allocation that only applies workload balancing between zone/conveyor
segments reduces the average system throughput on average 7% compared to a
product allocation that minimizes the number of segments a tote on average has to
visit. On the other hand, blocking of zones and segments is significantly reduced
by a product allocation that applies workload balancing, e.g. segments are blocked
7.6% on average when a product allocation that minimizes the number of segments
is used to 0.3% on average in the other case.

In the final two chapters we studied milkrun picking systems. In this system an
order picker picks orders that arrive in real time during the picking process, which
subsequently changes dynamically the stops on the order picker’s current picking
route. The advantage of milkrun picking is that it reduces order picking set-up
time and worker travel time compared to conventional batch picking systems. In
both chapters we focused extensively on the analysis of the order throughput time
(or batch sojourn-time in a general context). This is the time lapse between the
moment a customer order (consisting of multiple order lines) enters the system and
the moment that the whole order is delivered at the depot. In these chapters, we
modeled a milkrun picking system as a cyclic polling system with simultaneous batch
arrivals. In addition, we investigated the effect of product allocation rules to study
under which conditions a particular picking strategy, locally-gated, globally-gated,
and exhaustive, minimizes the order throughput time. This is because the order
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throughput time strongly depends on the product allocation, since a customer order
often contains several order lines, each for a different product that can only be stored
at certain locations within the order picking area.

The framework for analyzing the order throughput time was developed in Chapter 5.
In this chapter we studied the batch sojourn-time for cyclic polling systems with
simultaneous batch arrivals. We obtained exact expressions for the Laplace-Stieltjes
transform of the steady-state batch sojourn-time distribution for the locally-gated,
globally-gated, and exhaustive service disciplines. Also, we provided an alternative,
more efficient way to determine the mean batch sojourn-time using Mean Value
Analysis in case of exhaustive and locally-gated service disciplines. We compared
the batch sojourn-times for the different service disciplines in several numerical
examples and found that the best performing service discipline, minimizing the batch
sojourn-time, depends on system characteristics. The results showed that when the
switch-over times are longer compared to the service times, the exhaustive service
discipline achieves the lowest mean batch sojourn-time, since it is more beneficial
to serve all customers at the current queue first before moving to another queue.
However, if the service times are longer than the switch-over times it is better to
switch to another queue more often, because otherwise the server will spend too
much time serving customers in one queue and it will take a long time before a
customer batch is completely served. In this case, both gated policies perform better
than exhaustive service.

Lastly, in Chapter 6 we study the order throughput time and product allocation in
milkrun picking systems. By using and extending the framework of the previous
chapter, we modeled the system as a cyclic polling system with simultaneous batch
arrivals. For three picking strategies; exhaustive, locally-gated, and globally-gated,
we determined the mean order throughput time of a customer order by studying the
evolution of the system through time from the order entering the system until all
its order lines have been picked and delivered at the depot. We also proposed an
optimization framework for product allocation in a milkrun picking system in order to
minimize the mean order throughput time. We compared the order throughput times
for different service disciplines in several numerical examples and our results showed
that the mean order throughput time in a milkrun order system can significantly
vary based on the chosen product allocation and picking strategy. Similar as for the
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mean batch sojourn-time, we find that the exhaustive strategy obtains the lowest
mean order throughput time when travel times between storage locations are long
compared to the pick times. Both gated strategies perform better in the opposite
situation, where the pick times are longer compared to the travel times.

7.2 Future outlook

In this section, we discuss further research topics and potential extensions for the
analytical models developed in this thesis. In addition, we briefly focus on recent
warehousing trends which have an impact on the two order picking systems studied
in this thesis.

First, zone picking systems will remain in the coming years one of the most popular
order picking solutions, mainly because they can provide the level of flexibility often
required by companies which many automated systems currently do not provide.
This is especially the case for the picking process. Therefore, the analytical models
studied in the first three chapters provide good starting points to evaluate and
compare operational policies in zone picking systems, such as order batching, order
splitting, order release, and more sophisticated product allocation methods, on system
performance. Furthermore, the models may be extended in order to approximate
higher moments or the distribution of performance statistics such as the on-time
completion rate. In addition, when studying the system at an operational level the
arrival rate of new customer orders may vary during the day. Sometimes it can be
lower than the rate at which totes complete their service in the system. This situation
can be analyzed using a semi-open queueing analysis approach (closed for totes and
open for orders in the system), by aggregating the queueing network without the
external queue by a flow equivalent server and then studying an aggregated Markov
chain where its states represent the number of totes inside the network, as well as
the number of waiting orders to be launched in the external queue. This approach
resembles how the merge operation was studied in Chapter 4.

In practice it can be observed that order pickers cooperate when the workload in
one zone is high, or they leave a zone when there is little work. One order picker
then becomes responsible for picking products at multiple zones. It would be of great
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interest to study at an operational level how many order pickers are required during
daily operations, given the trade-off between maximizing performance and minimizing
labor cost. Additionally, the performance of a zone picking system in combination
with dynamic storage is still mainly left unexplored. With dynamic storage only a
fraction of the products is stored in the picking area per zone and an automated
storage and retrieval machine retrieves products, when they are requested, from
the bulk storage area which is located behind the zone. This leads to significantly
reduced walking distances for the order pickers. However, when the S/R machine
is not properly controlled this would cause starvation of the pickers and ultimately
reduce the performance of the system. For this, new algorithms need to be developed
that decide on how and which product bin to reshuffle between the pick area and
bulk storage to ensure the order picker never has to wait for an incoming product
bin. A complicating factor would also be the fact that the S/R machine is often
responsible for reshuffling bins for multiple zones.

On the whole, further research needs to be done to investigate the interactions
of a zone picking system with other warehouse processes, e.g. receiving, putaway,
replenishment, sorting, packing, and shipping. These interactions are extremely
important since the performance of one process directly influences the next process
in line and processing times can vastly vary during daily operations. In addition, we
mainly focused on studying the order throughput (time), however warehouse managers
are often also interested at the same time in measures such as the overall tardiness,
picking cost, and balancing workload between pickers. For this, a comparative design
study for zone picking systems can be carried out to find out which configurations
are the most robust and flexible in terms of these measures. Moreover, performance
increases are possible by dynamically balancing the segments and zones, instead of
only trying to balance workload upon order release. Finally, there are many potential
applications beyond zone picking systems where our methods to study the effects of
blocking and to analyze order throughput times might also be applied successfully,
e.g., end-of-aisle picking systems, sorting systems, AGV transportation systems, and
vehicle-based compact storage systems.

The second system investigated in this thesis was milkrun picking. While the milkrun
concept is still relatively new in order picking, it has already proved to be successful
in manufacturing and production settings. Since picking aids like pick-by-voice
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techniques or handheld terminals are becoming cheaper and reliable, milkrun picking
systems will become more economically viable for companies.

For the general framework of Chapter 5 a further research topic would be to determine
analytically for each of the three policies, under what conditions for the system
parameters, its mean batch sojourn-time is smaller than that of the other two and
whether alternative service disciplines can achieve even lower batch sojourn-times.
Another interesting further research topic would be to study how to dynamically
allocate an arriving customer batch over the various queues in order to minimize
the batch sojourn-times. In other words, a central mechanism decides depending on
the state of the system which queues the customers should join to ensure that the
batch is served as soon as possible. In addition, it might be possible to find simple
approximations for the batch sojourn-time based on low and heavy traffic analysis.

The model and methods for analyzing the order throughput time in milkrun picking
system lend themselves for further research. The model can be extended by including
putaway and replenishment processes, similar as observed in a production setting.
Other interesting topics are relaxing the assumption of an uncapacitated pick cart
and investigating whether other or combinations of picking strategies can lead to
increased picking performance. Also, it can be worthwhile to investigate whether
a local backward routing policy, i.e. picking a product that arrived in the queue
that just has been visited, might increase system performance. In addition, it is
possible to study a milkrun picking system with multiple pickers, where the order
picking area is zoned and each picker is responsible for picking products from his/her
zone. Interesting research questions would be how many zones are required, how
should products be allocated, in order to minimize the order throughput time in
case product units are located in multiple zones and should all be brought to a
central depot location where they are sorted per customer order. Finally, the model
may be generalized for analyzing different warehouse systems such as carousels or
paternosters, but also for production systems and communication networks.
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Summary

Order picking, the process of retrieving customer orders from their storage locations,
is the most critical operation in a warehouse. In order for a warehouse to operate
efficiently, the order picking process needs to be robustly designed and optimally
controlled. Any under performance in order picking can lead to unsatisfactory service
and high operational cost for the warehouse, and consequently for the whole supply
chain. Therefore, many warehouses invest heavily in state-of-the-art order picking
solutions to increase productivity and reduce any uncertainty associated with order
picking, e.g. in order arrivals, and in picking times. However, this has increased the
complexity of today’s warehouse operations.

In this thesis, we develop new stochastic models for the performance evaluation of
two state-of-the-art warehousing systems; zone picking and milkrun order picking
that accurately describe and predict the consequences of variability, in order to create
optimal design and control methods to improve the performance of these systems.

In Chapter 2 we develop an analytical model of zone picking systems, one of the
most popular conveyor-based picker-to-parts order picking methods used in practice.
We model the various elements of the system, like conveyor segments and the pick
zones, as a network of queues with multiple order classes and with the dynamic
block-and-recirculate protocol. An innovative approximation method is proposed to
accurately assess key performance statistics and we show that for a wide range of
parameters the mean relative error compared to simulation in the system throughput
is typically less than 1%.

The previous model is extended in Chapter 3 in order to study the impact of conveyor
merges in highly utilized zone picking systems which strongly influence the maximum
performance of the overall system. Our approximation model, using an aggregation
technique and matrix-geometric methods, produces very accurate estimates of the



228

maximum throughput capability of a zone picking system and shows that throughput
drops dramatically when congestion and blocking at the merges increases.

In Chapter 4 the approximation models of the previous chapters are used to investigate
the performance of a current zone picking system of a large wholesaler supplying
non-food items to supermarkets. We test the impact of various storage allocation
methods on system performance and find that a storage allocation that minimizes
the average number of segments a tote has to visit achieves the highest system
throughput.

In Chapter 5 a general framework is presented that can be used to analyze the order
throughput time in a milkrun picking system. We consider a cyclic polling system
with general service times, general switch-over times, and simultaneous batch arrivals.
For different service disciplines, Exhaustive, Locally-gated, and Globally-gated, we
obtain exact expressions for the Laplace-Stieltjes transform of the steady-state batch
sojourn-time distribution, which can be used to determine the moments of the batch
sojourn-time, and in particular, its mean. We also provide an alternative, more
efficient way to determine the mean batch sojourn-time, using Mean Value Analysis.
Our results show that the best performing service discipline, in terms of minimizing
the batch sojourn-time, depends on system characteristics.

Finally, Chapter 6 studies milkrun picking systems. In such systems orders arrive in
real time during the picking operation and change the stops in the current picking
cycle dynamically. By using and extending the framework of the previous chapter,
we analyze the order throughput times for various picking strategies and test how
these times can be improved by choosing a better product allocation policy. For
this we develop an optimization framework for product allocation to minimize the
average order throughput time in the system. Our results show that the average
order throughput time in a milkrun order system can significantly vary based on the
chosen product allocation and picking strategy.



Samenvatting (Summary in Dutch)

Orderverzamelen, het proces van het verzamelen van klantorders van hun opslag-
locaties, is de meest cruciale operatie in een magazijn. Om een magazijn efficiënt
te exploiteren, moet het orderverzamelproces robuust zijn ingericht en optimaal
worden aangestuurd. Elke onderprestatie in het orderverzamelen kan leiden tot
onbevredigende service en hoge operationele kosten. Veel magazijnen hebben daarom
geïnvesteerd in de nieuwste magazijnoplossingen om productiviteit te verhogen en
stochastiek in het orderverzamelen te verminderen, bijvoorbeeld in order aankomsten
en in verzameltijden. Dit heeft echter geleid tot meer complexiteit in de hedendaagse
magazijnprocessen.

In dit proefschrift ontwikkelen wij nieuwe stochastische modellen voor de prestatie-
evaluatie van twee innovatieve magazijnsystemen; zone picking en milkrun picking.
Deze modellen beschrijven en voorspellen accuraat de consequenties van stochastiek
in het orderverzamelen. Tevens kunnen ze worden gebruikt voor het beantwoorden
van ontwerpvraagstukken en het ontwikkelen van controlemechanismes om systeem-
prestatie te verbeteren.

In hoofdstuk 2 ontwikkelen we een analytisch model om zone picking systemen
te analyseren, één van de meest populaire conveyor-based picker-to-parts order-
verzamelsystemen in de praktijk. We modelleren de verschillende elementen van
het systeem, zoals de transportbaan en de zones, als een netwerk van wachtrijen
met meerdere orderklassen en met het dynamische block-and-recirculate protocol.
Een innovatieve approximatie techniek is ontworpen om accuraat de belangrijkste
prestatie-statistieken te bepalen. We laten zien dat voor een groot aantal parameters
de gemiddelde relatieve fout in systeem doorzet vergeleken met simulatie kleiner is
dan 1%.

Het vorige model is uitgebreid in hoofdstuk 3 om de impact van het samenvoegen
van meerdere transportbanen te bestuderen. In een zwaar belast zone picking
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systeem wordt de maximale prestatie van het systeem sterk beïnvloed door de
samenvoegpunten. Ons approximatie model maakt gebruik van een aggregatie
techniek en matrix-geometrische methoden en geeft nauwkeurige schattingen voor de
maximale doorzet. Ook laten de resultaten zien dat de doorzet significant afneemt
als de congestie en blokkering toeneemt op samenvoegpunten.

In hoofdstuk 4 worden de approximatie modellen van de voorgaande hoofdstukken
gebruikt om de prestatie van een huidig zone picking systeem van een grote distribu-
teur van non-food producten aan supermarkten te bestuderen. We testen het effect
op systeem prestatie van verschillende opslag allocatie methoden en tonen aan dat
een allocatie die het aantal segment bezoeken voor een order bak minimaliseert de
hoogste doorzet oplevert.

In hoofdstuk 5 presenteren wij een generiek framework om de orderdoorlooptijd in een
milkrun picking systeem te analyseren. We bestuderen een cyclisch polling systeem
met algemene bedieningstijden, algemene switch-over tijden, en simultane batch
aankomsten. Voor drie verschillende service disciplines, Exhaustive, Locally-gated, en
Globally-gated, bepalen wij exacte formules voor de Laplace-Stieltjes transformatie
van de steady-state batch sojourn-time distributie. Deze kunnen gebruikt worden
om de momenten van de batch-sojourn time te bepalen, waarvan de belangrijkste het
gemiddelde is. Tevens formuleren wij een alternatieve en meer efficiënte manier om
de gemiddelde batch sojourn-time te bepalen door middel van Mean Value Analysis.
Onze resultaten laten zien dat de best presterende service discipline, in termen van
het minimaliseren van de batch sojourn-time, afhangt van systeem karakteristieken.

Ten slotte, in hoofdstuk 6 staan milkrun picking systemen centraal. In een milkrun
picking systeem komen in real-time klantorders binnen tijdens het orderverzamelen
en kunnen in dezelfde pick cycle worden gepakt door dynamisch de stoppunten in
de huidige verzamelroute aan te passen. Door gebruik te maken van de technieken
van het vorige hoofdstuk, analyseren wij de orderdoorlooptijd voor drie verschillende
verzamelstrategieën. Tevens onderzoeken we of een betere product allocatie deze
tijd kan verminderen. Hiervoor ontwikkelen we een optimalisatie framework voor
product allocatie om zodoende de gemiddelde orderdoorlooptijd in het systeem te
minimaliseren. Onze resultaten laten zien dat de gemiddelde orderdoorlooptijd in
een milkrun picking systeem significant kan verschillen gegeven de gekozen product
allocatie en verzamelstrategie.
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Order picking, the process of retrieving customer orders from their storage locations, is the most critical 
operation in a warehouse. Any under performance in order picking can lead to unsatisfactory service 
and high operational cost for the warehouse, and consequently for the whole supply chain in which the 
company operates. This thesis develops new stochastic models for the performance evaluation of two 
state-of-the art order picking systems: zone picking and polling-based milkrun picking. These models 
adequately describe and predict the consequences of variability on the performance of these warehousing 
systems. 

The first part of the thesis zone picking systems are studied, one of the most popular conveyor-based 
picker-to-parts order picking methods used in practice. We model the various elements of the system 
including conveyor merges as a network of queues with multiple order classes, with capacity constraints 
on subnetworks, and with the dynamic block-and-recirculate protocol. The resulting model is most 
suitable to support rapid and optimal design of complex zone picking systems. In the second part of 
the thesis, milkrun picking systems are investigated. In this system an order picker picks multiple orders 
that arrive in real-time and integrates them in the current picking cycle. This subsequently changes 
dynamically the stops on the order picker’s picking route. Using polling models, we study order 
throughput times for various picking policies, and the effect of product allocation. The results of the 
model show that when the order arrival rate is high milkrun order picking significantly improves system 
performance compared to conventional batch picking. In addition, the best product allocation improves 
the order throughput time considerably.
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