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Abstract

We characterize the process that drives the market betas of individual stocks by setting up

a hierarchical Bayesian panel data model that allows a flexible specification for beta. We

show that combining the parametric relationship between betas and conditioning variables

specified by economic theory with the robustness of an autoregressive specification delivers

superior estimates of firm-specific betas. Our model also improves the accuracy of beta

forecasts, which we use to construct optimal portfolios subject to target beta constraints.

We further provide empirical support for the prediction of conditional asset pricing theory

that individual stocks exhibit different risk dynamics. Finally, we document strong cross-

sectional heterogeneity in firm-specific betas within the 25 size-B/M portfolios that are

commonly used to test asset pricing models.
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Introduction

Precise estimates of firm-specific betas are crucial in many applications of modern finance

theory, including asset pricing, corporate cost-of-capital calculations, risk management, and

performance evaluation. For instance, portfolio managers often have to ensure that their market

risk exposure stays within predetermined limits and managers need accurate estimates of a

company’s beta to make optimal capital budgeting decisions. However, existing approaches

to measuring market betas either assume that all stocks within a given portfolio have the

same beta (e.g., Fama and MacBeth (1973)) or yield imprecise estimates of stock-specific betas

because they estimate separate time-series regressions for each firm (e.g, Brennan, Chordia, and

Subrahmanyam (1998)). In addition, although a large body of empirical evidence indicates that

betas vary over time, existing studies do not provide clear guidance how market beta dynamics

should be modeled.

Our main objective in this paper is to obtain more accurate estimates of the market risk of

individual stocks by combining the benefits of the two main approaches to modeling variation in

betas.1 The first one, proposed by Shanken (1990), models conditional betas by allowing them

to depend linearly on a set of conditioning variables. Rational asset pricing theory posits that

the predictive power of firm characteristics and macroeconomic variables for stock returns is due

to their relation with risk. Gomes, Kogan, and Zhang (2003) set up a theoretical framework

in which size and B/M are correlated with the true conditional market beta. Santos and

Veronesi (2004) show within a general equilibrium model that market betas vary substantially

with the state of the economy. Empirical evidence that systematic risk is related to firm

characteristics and business cycle variables is provided by, among others, Jagannathan and Wang

(1996), Lewellen (1999), Ferson and Harvey (1999), Lettau and Ludvigson (2001), and Avramov

and Chordia (2006). While economically appealing, the main drawback of this approach is

that the investor’s set of conditioning information is unobservable. Ghysels (1998) shows that

misspecifying beta risk may result in serious pricing errors that might even be larger than those

produced by an unconditional asset pricing model. In addition, this method produces excessive

variation in betas due to sudden spikes in macroeconomic variables.

1An alternative approach has recently been proposed by Christoffersen, Jacobs, and Vainberg (2007), who
calculate forward-looking betas using the information embedded in option data. A drawback of this method is
that it requires a cross-section of liquid individual stock options, which is not available for many small firms.
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The second, non-parametric, approach to model risk dynamics is based on purely data-driven

filters. Approaches in this category include estimating short-window regressions (Lewellen and

Nagel (2006)), rolling regressions (Fama and French (1997), Hoberg and Welch (2007)), and

modeling beta as a latent autoregressive process estimated using the Kalman filter (Jostova

and Philipov (2005), Ang and Chen (2007)). While these methods preclude the need to specify

conditioning variables it is not clear which factors explain the cross-sectional and time variation

in market beta. In addition, the time series of conditional betas obtained by following a purely

data-driven approach will lag the true variation in beta, because using a window of past returns

to estimate the beta at time t will give an estimate of the average beta during this time window.

Our panel data approach uses both high-frequency return data and cross-sectional firm-level

data to capture the time-series dynamics and cross-sectional heterogeneity in beta. Combining

time-series and cross-sectional information produces superior estimates of firm-specific betas

because previous studies document a strong cross-sectional relationship between beta and firm

characteristics and because Bollerslev and Zhang (2003) show that the use of high-frequency

data yields more precise and timelier estimates of beta than those produced by a rolling window

approach. We implement the MIDAS approach developed by Ghysels, Santa-Clara, and Valka-

nov (2005) to estimate realized betas, which differs from traditional rolling window estimators

of betas by mixing data sampled at different frequencies and by choosing the optimal weights

given to past data.

We estimate the model using a sample of 5,017 NYSE-AMEX stocks over the period July

1964 through December 2006. One of the virtues of using a large panel of individual stocks

is that it allows us to study the cross-sectional characteristics of conditional alphas and betas.

Using individual stocks instead of the commonly used characteristics sorted portfolios offers

several other advantages. First, portfolios conceal individual security characteristics that can

be important determinants of stock returns. Second, it is more interesting to study the betas of

individual firms because these exhibit much more time variation than portfolio betas. A third

important drawback of the portfolio approach is that only a few characteristics can be addressed

simultaneously, because otherwise many portfolios would consist of only a few stocks.

However, despite these benefits the use of individual stocks is still limited compared to the

use of characteristics sorted portfolios. An important reason for this is that although the cross-
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section of firms is often quite large, the time-series dimension of most data sets is rather short.

Due to this small time-series it is difficult to estimate the model parameters with a reasonable

degree of precision. Brennan, Chordia, and Subrahmanyam (1998) use a sample of individual

stocks to test static asset pricing models and Avramov and Chordia (2006) extend this approach

to study the performance of conditional asset pricing models. Because these authors estimate

a separate time series regression for every firm, their beta estimates are noisy.

We contribute to these studies by estimating a Bayesian panel data model that exploits the

large cross-section of firms to obtain more precise parameter estimates. In particular, we model

heterogeneity in parameters by specifying hierarchical priors. Thus, we impose a structure on

coefficients by assuming that they are drawn from a common distribution. This enables us to

capture the cross-sectional variation in market beta without the need to estimate a large number

of parameters. Intuitively, as explained by Hsiao and Pesaran (2007), the Bayes estimator can

be interpreted as a weighted average of the least squares estimator for a given cross-section unit

and the cross-sectional average coefficient. Specifically, the Bayes estimator of the firm-specific

parameters shrinks the least squares estimator towards the cross-sectional mean. When the

number of time series observations for a firm increases, the weight gradually shifts from the

prior to the data. Another benefit of our Bayesian methodology is that it allows for exact

inference, avoiding the need to rely on asymptotic distributions, which can lead to severe small

sample problems as documented by Ang and Chen (2007).

We find that modeling stock-specific betas as a function of both conditioning variables and

realized betas dominates traditional specifications in which betas depend on conditioning vari-

ables or realized betas alone. Combining these specifications produces superior beta estimates

because they capture different aspects of market beta dynamics. Moreover, in contrast to tradi-

tional rolling window estimators of beta that give equal weight to past returns, we show that it

is preferable to give more weight to recent observations. We also show that our model improves

the accuracy of stock-specific beta forecasts, which we use to construct optimal portfolios sub-

ject to target beta constraints. In addition, we provide empirical support for the prediction

of conditional asset pricing theory that individual stocks exhibit significantly different risk dy-

namics. Specifically, we find that the cross-sectional variation in beta increases sharply during

recessionary periods. Finally, we document strong cross-sectional heterogeneity in firm-specific
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betas within the 25 size-B/M portfolios that are commonly used to test asset pricing models.

This violation of the homogeneity assumption underlying the portfolio approach has important

implications for empirical tests of asset pricing models.

The paper proceeds as follows. In section 1 we introduce our specification for modeling firm-

specific conditional betas in a panel data framework. Section 2 discusses our choice of prior

parameter distributions and explains the Bayesian approach to inference. Section 3 describes

the data set. We report our empirical results in section 4. Section 5 concludes.

1 The Model

In this section we describe our conditional beta specification. We set up a hierarchical Bayesian

panel data model that allows a flexible specification for market beta. We start from a model

for excess returns on individual stocks,

rit = αit + βitrMt + εit, (1)

where rit is the excess return on stock i in month t, αit is the risk-adjusted return and represents

model mispricing, βit is the conditional market beta, rMt is the excess market return, and εit is

a zero-mean, normally distributed idiosyncratic return shock.

Our specification for the conditional market beta consists of two components: one part is

the past realized beta, bit−1, and the other part is the past fundamentals-based beta, β∗it−1,

βit = φibit−1 + (1− φi)β∗it−1 + ηit, (2)

where φi and (1−φi) measure the proportion of the beta of firm i that is explained by the past

realized beta and fundamentals-based beta, respectively, and where ηit is a zero-mean, normally

distributed idiosyncratic shock to beta.

bit−1 is the past realized beta that we estimate using daily data according to the Mixed

Data Sampling (MIDAS) approach introduced by Ghysels, Santa-Clara, and Valkanov (2005).

Bollerslev and Zhang (2003) show that the use of high-frequency data yields more precise

estimates of realized betas than those produced by a rolling regressions approach. We choose to

estimate realized betas using daily returns because these provide a reasonable balance between
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efficiency and robustness to microstructure noise. For instance, using intraday returns would

lead to biased estimates of realized betas for less liquid stocks, due to non-synchronous trading

effects (see, e.g., Campbell, Lo, and MacKinlay (1997)). The MIDAS approach differs from

traditional rolling window estimators of betas by mixing data sampled at different frequencies

and by selecting the optimal window for estimating betas using a flexible weighting function.

Ghysels, Santa-Clara, and Valkanov (2005) use the MIDAS approach to estimate the market’s

conditional variance and find that it is superior to traditional GARCH and rolling window

methods because of the extra power that comes from the use of mixed-frequency data and from

the flexible form for the weights on past data.

In particular, our MIDAS estimator of realized betas is given by:

bit =

∑τmax

τ=1 wt−τr
(d)
it−τr

(d)
Mt−τ∑τmax

τ=1 wt−τr
(d)
Mt−τr

(d)
Mt−τ

, (3)

where t refers to a particular month, τ to a particular trading day, and wt−τ to the weight given

to the product of the return on stock i and the market return, r
(d)
it−τr

(d)
Mt−τ , and to the squared

market return, r
(d)
Mt−τr

(d)
Mt−τ , on day t− τ . We set the maximum window length τmax equal to

250 days, which is approximately one year of trading days. We parameterize the weights as a

beta function:

wt−τ =
f

(
τ

τmax , κ1; κ2

)
∑τmax

τ=1 f
(

τ
τmax , κ1; κ2

) , (4)

where f( τ
τmax , κ1; κ2) is the density of a beta distribution.

As pointed out by Ghysels, Santa-Clara, and Valkanov (2005), the specification based on

the beta function has several advantages. First, it ensures that the weights are positive and sum

to one. Second, it is parsimonious because only two parameters need to be estimated. Third,

it is flexible as it can take various shapes for different values of the two parameters. We impose

a downward sloping pattern on the weights by setting κ1 equal to 1, which further reduces the

number of parameters that need to be estimated. κ1 = κ2 = 1 implies equal weights, which

corresponds to a rolling window estimator of beta on daily data. κ1 = 1 and κ2 > 1 correspond

to the case of slowly decaying weights. In general, the higher κ2, the faster the rate of decay.
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β∗it−1 is the fundamentals-based beta, parameterized as a function of conditioning variables,

β∗it−1 = δ0 + δ′1[Zit−1 ⊗BCt−1], (5)

where Zit−1 is a vector that contains L firm characteristics and BCt−1 is a vector that contains

a constant and M business cycle variables. This specification allows the relation between beta

and firm characteristics to vary over the business cycle. Modeling beta dynamics as a linear

function of a set of predetermined instruments goes back to Shanken (1990) and is consistent

with the economic motivation for conditional asset pricing models, in which the stochastic

discount factor is a function of macroeconomic state variables and factor premia.

We model conditional alphas as a linear function of the same set of instruments:

αit−1 = α0i + α′1[Zit−1 ⊗BCt−1], (6)

where α0i is an individual effect that measures time-invariant mispricing.

We include both firm-specific and macroeconomic variables as instruments for conditional

alphas and betas because of their documented predictive power for returns (Fama and French

(1989) and Lewellen (1999)). Empirical evidence that systematic risk is related to firm char-

acteristics and business cycle variables is provided by, among others, Jagannathan and Wang

(1996), Lettau and Ludvigson (2001), and Avramov and Chordia (2006). The theoretical mo-

tivation for choosing firm characteristics as instruments is given by Gomes, Kogan, and Zhang

(2003), who show that the ability of size and book-to-market to explain the cross-section of

returns is due to their correlation with the true conditional market beta. Apart from size and

B/M, we also select firm-specific momentum and turnover as conditioning variables to examine

whether momentum and turnover effects are related to beta dynamics. Theoretical support for

including macroeconomic variables is provided by Santos and Veronesi (2004), who show within

a general equilibrium model that market betas vary substantially with the business cycle. Our

choice of business cycle variables is motivated by previous work (e.g., Ferson and Harvey (1999))

and includes the default spread, dividend yield, one-month T-bill rate, and term spread.
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Substituting equations (2), (5), and (6) into equation (1) leads to the following specification:

rit = α0i + α′1[Zit−1 ⊗BCt−1] + φibit−1rMt + (1− φi)(δ0 + δ′1[Zit−1 ⊗BCt−1])rMt + ηitrMt + εit.

(7)

Our main objective in this paper is to determine whether the time series dynamics and cross-

sectional variation in betas is better explained by firm characteristics and macroeconomic state

variables, by realized betas, or by a linear combination of both. Therefore, we are primarily

interested in the parameter φi and compare three different specifications based on equation (7):

(1) Conditional beta (2) Fundamentals-based beta (φi = 0) (3) Realized beta (φi = 1).

2 Methodology

2.1 Prior Distributions

We specify conditionally conjugate, hierarchical priors that impose a common structure on the

model parameters while still allowing parameters to vary across firms. Thus, our setup combines

the benefits of a portfolio approach to estimating betas (e.g., Fama and MacBeth (1973)) and an

approach in which separate regressions are estimated for each firm (e.g., Avramov and Chordia

(2006)). We use relatively uninformative (diffuse) priors to minimize their influence on the

posterior densities. Following Jostova and Philipov (2005), we specify noninformative prior

distributions for the variance parameters σ2
a0

, σ2
φ, σ2

δ0
, σ2

εi
, and σ2

η by setting the scale and

shape parameters A and B of their inverse gamma (IG) prior distributions equal to 0.001. We

set the degrees of freedom parameters ψ of the Wishart priors for Ω−1
α1

and Ω−1
δ1

equal to the

dimensions of these matrices, because these values give the lowest possible weight to the prior

information (Gelman, Carlin, Stern, and Rubin (2004)). We set the scale matrices S of the

Wishart priors equal to the identity matrix. Furthermore, we give equal prior weight to the

fundamentals-based beta and the realized beta by setting the prior mean of φi equal to 0.5.2

2We also considered specifications with prior mean of φi set equal to 0 or 1. Our results are robust to the
choice of this prior distribution.
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Specifically, our choice of prior distributions is as follows:

α0i ∼ N(0, σ2
α0

) with σ2
a0
∼ IG (0.001, 0.001) ,

α1 ∼ N(0, Ωα1) with Ω−1
α1
∼ Wish

(
[(L + LM)I]−1, (L + LM)

)
,

φi ∼ N(0.5, σ2
φ) with σ2

φ ∼ IG (0.001, 0.001) ,

δ0 ∼ N(0, σ2
δ0) with σ2

δ0 ∼ IG (0.001, 0.001) ,

δ1 ∼ N(0, Ωδ1) with Ω−1
δ1
∼ Wish

(
[(L + LM)I]−1, (L + LM)

)
,

σ2
εi
∼ IG(0.001, 0.001),

σ2
η ∼ IG(0.001, 0.001).

We parameterize the MIDAS weights as a beta function and set κ1 equal to 1. To rule out

cases where more recent data receives less weight than observations in the more distant past,

i.e., when κ2 < 1, we constrain κ2 to the interval [1,26]. When κ2 = 1 all 250 days receive

equal weight in the estimation and when κ2 = 26 the cumulative weight given to the 40 most

recent days is 99%. We implement this restriction by a change of variable, κ2 = 1 + 25κ∗2. For

κ∗2 we choose a uniform prior, κ∗2 ∼ U [0, 1]. Because the conditional posterior density of κ2

has a nonstandard form, we cannot directly sample from it. Therefore, we use the Metropolis-

Hastings algorithm, in which candidate parameter values are drawn from a proposal density

and accepted with a certain probability that is highest in areas of the parameter space where

the posterior density is highest (see Chib and Greenberg (1995)). Details are provided in the

appendix, which also presents the derivation of the joint posterior density and the conditional

posterior distributions.

2.2 Bayesian Inference

We employ Markov Chain Monte Carlo (MCMC) methods to sample from the joint posterior

distribution of the parameter vector θ. The main idea is to construct a Markov chain such that

the chain converges to a unique stationary distribution that is the posterior density, p(θ|y). We

use a particular MCMC algorithm, the Gibbs sampler, which involves the sequential drawing

from the full conditional posterior densities to obtain draws from the joint posterior density. In

particular, first the parameter vector θ is partitioned into B blocks (θ(1), θ(2), ..., θ(B)). At each
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iteration of the Gibbs sampler each block is sampled from its posterior distribution conditional

on all other blocks and the data. After a given number of iterations the chain converges and the

draws are equivalent to draws from the joint posterior. We check convergence by inspecting the

standardized cumsum statistics, suggested by Bauwens, Lubrano, and Richard (1999), applying

the partial means test based on numerical standard errors, explained by Geweke (2005), and

calculating the Gelman-Rubin statistic that compares the variation in output between and

within chains, described by Gelman, Carlin, Stern, and Rubin (2004). These diagnostics indicate

that the parameter chains have converged after 1,000 iterations. In our empirical analysis we

therefore run 5,000 iterations and discard the first 1,000 iterations as burn-in period. The

remaining draws are used to summarize the posterior density and to conduct Bayesian inference.

3 Data

The firm data comes from CRSP and Compustat and consists of the monthly return, size, book-

to-market value, and turnover for a sample of NYSE- and AMEX-listed stocks. To calculate

high-frequency-based realized betas we further retrieve daily returns from CRSP. The sample

covers the period from July 1964 to December 2006. Following Avramov and Chordia (2006), we

include a stock in the analysis for a given month t if it satisfies the following criteria. First, its

return in the current month t and in the previous 36 months has to be available. Second, data

should be available in month t-1 for size as measured by market capitalization, for the book-to-

market ratio, and for turnover. We calculate the book-to-market ratio using accounting data

from Compustat as of December of the previous year. Finally, in line with Fama and French

(1993), we exclude firms with negative book-to-market equity. Imposing these restrictions leaves

a total 5,017 stocks over the full sample period and an average of 1,815 stocks per month.

Table 1 presents summary statistics for the data set. Panel A reports the mean, median,

standard deviation and 5th, 25th, 75th, and 95th percentile values of excess stock returns and

firm characteristics across all data points. The average monthly excess stock return is 0.69%

while the median is -0.16%. The mean (median) firm size is $1.59 (0.16) billion. Because

the book-to-market ratio contains some extreme values, we decide to trim all book-to-market

outliers to the 0.5th percentile and 99.5th percentile values of the distribution. After trimming,

the average (median) book-to-market ratio equals 0.96 (0.75). Average turnover is 5.19% and
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median turnover is 3.06% per month. The cumulative return over the twelve months prior

to the current month, which we use as a proxy for momentum, has a mean of 14.65% and

a median of 8.60%. Because the distributions of the firm characteristics display considerable

skewness, we use their logarithmic transformations in the analysis. Furthermore, we normalize

the characteristics by expressing them as deviations from their cross-sectional means to remove

any time trend in the average value of the characteristics.

We further retrieve data for the four macroeconomic variables that we use as instruments for

the conditional alphas and betas, i.e., the default spread, dividend yield, one-month Treasury bill

rate, and term spread. We define the default spread as the yield differential between bonds rated

BAA by Moody’s and bonds with a Moody’s rating of AAA. The dividend yield is calculated as

the sum of the dividends paid on the value-weighted CRSP index over the previous 12 months

divided by the current level of the index. The term spread is defined as the yield difference

between ten-year and one-year Treasury bonds. Panel B shows descriptive statistics for the

macroeconomic variables. The average default spread is 1.02%, the mean dividend yield equals

3.01%, the average one-month T-bill rate is 5.69%, and the average term spread is 0.85%.

[Table 1 about here.]

4 Market Beta Dynamics

In section 4.1 we examine whether betas are driven by lagged conditioning variables or by past

realized betas. Section 4.2 compares the forecasting power of our conditional beta model to that

of other specifications. Section 4.3 reports cross-sectional characteristics of alphas and betas

and section 4.4 focuses on the time series dynamics of conditional alphas and betas. Section

4.5 discusses the plausibility of the homogeneity assumption underlying the portfolio approach

to testing asset pricing models.

4.1 Fundamental Beta versus Realized Beta

A key objective in this paper is to characterize the process that governs the market betas of

individual stocks. We investigate whether the time-series and cross-sectional variation in con-

ditional betas is best explained by lagged firm characteristics and macroeconomic variables, by

past realized betas, or by a linear combination of both. We address this question by estimating
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the model in equation (7) and examining the posterior distributions of φi, which measures the

proportion of beta explained by past realized beta. Figure 1 shows the cross-sectional distri-

bution of the posterior means of the φi. In this figure we give more weight to the φi that are

estimated with higher precision by weighting each posterior mean by its posterior precision.

The cross-sectional average of the posterior mean is 0.54, which implies that both firm charac-

teristics and macroeconomic variables as well as past realized betas are needed to accurately

model conditional market betas. However, the cross-sectional standard deviation of the poste-

rior means is large (0.36), suggesting that for some firms past realized betas are more important

for explaining betas while for others lagged fundamentals-based betas have a stronger impact

on betas. In sum, Figure 1 indicates that the specification in which beta dynamics are modeled

as a function of both conditioning variables and realized betas dominates specifications in which

betas depend on conditioning variables or realized betas alone.

[Figure 1 about here.]

Since we find that economically-motivated conditioning variables are important determi-

nants of market betas, we now consider the posterior distributions of the parameters of the

fundamentals-based beta. Table 2 presents the mean, median, standard deviation, and 5th,

25th, 75th, and 95th percentile values of the posterior distribution of the δ0 and δ1 param-

eters. The constant term (δ0), which can be interpreted as the average fundamentals-based

beta, has a posterior mean of 1.15 with a standard deviation of 0.02. The most important

determinant of fundamental betas is book-to-market. Firm size has a negative impact on beta

whereas book-to-market is positively related to beta. The finding that firms with a smaller

market capitalization and higher B/M ratio have higher market betas is consistent with the

theoretical work of Gomes, Kogan, and Zhang (2003). In particular, they demonstrate that

size captures the component of a firm’s systematic risk related to its growth options whereas

the book-to-market ratio is a measure of the risk of the firm’s assets in place. Interestingly,

Table 2 further shows that momentum is positively related to market risk, suggesting that past

winners are more risky than losers. In contrast, turnover does not drive variation in betas. The

posterior distributions of the coefficients on the interaction terms between firm characteristics

and macroeconomic variables indicate that the default spread and term spread are the most

important business cycle variables for capturing variation in market betas.
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[Table 2 about here.]

An important feature of our model is that it uses the MIDAS approach of Ghysels, Santa-

Clara, and Valkanov (2005) to estimate realized betas based on daily return data. This approach

incorporates a flexible weighting function that makes it possible to choose the optimal weights

given to past data in estimating realized betas. The optimal window strikes a balance between

giving equal weight to observations to obtain more precise beta estimates and giving more

weight to recent data to obtain betas that are timelier and therefore more relevant. As shown

in equation (4), we use a beta weighting function whose shape is determined by two parameters,

κ1, which we set equal to 1, and κ2, which we estimate using the Metropolis-Hastings algorithm.

κ1 = κ2 = 1 implies equal weights, which corresponds to the traditional rolling window estimator

of beta. κ1 = 1 and κ2 > 1 correspond to the case of slowly decaying weights.

We find that in our conditional beta specification the posterior mean (standard deviation)

of κ2 is equal to 1.16 (0.04). Figure 2 compares the optimal weighting scheme implied by the

posterior mean of κ2 to the equal weighting scheme used by rolling window estimators. The

plot shows that in the optimal scheme the most recent 150 days receive more weight than in the

equal weighting scheme whereas the 100 most distant daily returns receive less weight. Thus, it

is preferable to attach the highest weight to recent returns because these are most informative

for estimating realized betas.

[Figure 2 about here.]

We now turn to the conditional betas produced by our model. We first calculate at each

iteration of the Gibbs sampler the beta for firm i at time t. Subsequently, we compute the

time-series average of these conditional betas. We then calculate for each firm the posterior

mean of its time-series average beta. We give more weight to betas that are estimated with

higher precision by weighting each posterior mean by its posterior precision. Figure 3 shows

the cross-sectional distribution of these precision-weighted average firm betas. The distribution

is centered around one and has a standard deviation of 0.34.3 A 90% confidence interval for

beta ranges from 0.46 to 1.60, which implies that firms differ substantially in their sensitivity

to broad market movements.
3The cross-sectional average of betas deviates slightly from one because we weight firms by posterior precision

and because our sample consists of NYSE-AMEX firms whereas the market index also includes NASDAQ stocks.
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[Figure 3 about here.]

We also observe large cross-sectional differences in conditional alphas. Our calculation of

average firm-specific alphas follows the procedure outlined above for average betas. Figure 4

shows the cross-sectional distribution of precision-weighted average firm alphas. The cross-

sectional average of alpha is equal to 0.08, which implies that on average the model does

a reasonable job in explaining returns. However, the cross-sectional variation in alphas is

considerable, which indicates that for some firms the model leaves large pricing errors.

[Figure 4 about here.]

4.2 Beta Forecasts and Optimal Portfolios

In this section we compare the forecasting power of our conditional beta specification to that of

the realized beta, fundamental beta, and static beta specifications. We assess the accuracy of

the firm-specific beta forecasts produced by each of these models by constructing well diversified

portfolios subject to target beta constraints.4 This application illustrates the practical value of

accurate beta estimates for portfolio management and risk management purposes.

At the end of each month we construct optimal portfolios that minimize the sum of squared

portfolio weights subject to the constraint that the one-month ahead forecast of the portfolio

beta is equal to the target beta. Thus, the portfolio construction at the end of month t-1 uses the

forecasts available at time t-1 of the individual betas at time t. We allow short-selling of stocks

but impose the constraint that portfolio weights have to sum to one, i.e., that the portfolio is

fully invested. We then calculate the time-series of portfolio returns using the optimal weights.

We perform this exercise for two different target portfolio betas, βp = 1 and βp = 0. The first

target corresponds to the situation of a portfolio manager who has to ensure that his portfolio

tracks the market index in terms of systematic risk. The second objective is relevant for hedge

funds that follow a market neutral strategy and need accurate forecasts of firm-specific betas

to neutralize their portfolio’s market beta.

We measure the forecasting power of the four alternative approaches to modeling betas in

two ways. First, we regress the time-series of portfolio returns on the market index and examine
4This application is inspired by Ghysels and Jacquier (2006), who minimize the ex-ante residual portfolio vari-

ance subject to market beta constraints. However, they focus on quarterly beta forecasts, optimize using industry
portfolios rather than individual stocks, and only compare the forecasting power of data-driven specifications of
conditional betas.
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whether the realized portfolio beta equals the target beta. Second, we include interaction terms

between the market index and the one-month ahead forecasts of the portfolio beta produced by

the other three specifications in the regression and test whether these forecasts have explanatory

power. For example, if we construct the optimal portfolio using the beta forecasts of the realized

beta model, we add the beta forecasts for this portfolio generated by the conditional beta,

fundamental beta, and static beta specifications. If a model is superior to alternative models,

deviations from the target beta should not be predictable by these other beta specifications.

Thus, our tests are based on the following time-series regression,

rpt = αp + βprMt + γ′pXpt−1rMt + εpt, (8)

where Xpt−1 is the vector that includes the one-month ahead forecasts of the portfolio beta

produced by the specifications other than the one used to construct the portfolio. Our first test

corresponds to the hypothesis that βp = βtarget. The second test corresponds to the hypothesis

that the parameter vector γ′p = 0.

Table 3 reports the results of this exercise. Panel A shows the regression output for the

portfolios with a target beta of one. The estimates show that for all four specifications the

realized portfolio beta does not significantly differ from the target beta of one. The realized

beta of the portfolio that is based on the beta forecasts of the conditional beta specification is

exactly equal to one. The realized portfolio betas corresponding to the fundamental beta and

realized beta specifications equal 0.99. The realized beta of the portfolio that is constructed

using static betas is 1.06, indicating that the static CAPM leads to the largest deviation (bias)

from the target beta. To test our second hypothesis, we add the forecasts of the portfolio

beta produced by the other specifications to the regression, orthogonalized with respect to

each other and with respect to the beta forecast produced by the model used to construct the

portfolio. The results in panel A show that the only portfolio for which all other beta forecasts

are insignificant is the portfolio constructed using the beta forecasts of the conditional beta

model. For the portfolio formed using the fundamental beta specification, the forecasts of the

conditional and realized beta models are significant at the 1% level. The portfolio based on the

realized beta model has significant exposures to the beta forecasts of the conditional beta model

and the fundamental beta model. Finally, for the portfolio that is constructed using static betas

14



the forecasts of all other three specifications are significant.

These results indicate that the firm-specific beta forecasts produced by the conditional beta

model are superior to those of the realized beta, fundamental beta, and static beta models. It

appears that the realized beta model misses the information contained in the firm-specific and

macroeconomic conditioning variables while the fundamental beta model misses the information

incorporated in past returns. This supports our finding in the previous section that both

specifications capture different aspects of market beta dynamics and that combining the two

produces more accurate estimates of firm-specific betas.

The results for the portfolios with a target beta of zero are reported in panel B. For all four

models the realized betas display a significant upward bias. The smallest bias is produced by

the conditional beta model (βp = 0.02) and the largest bias is generated by the realized beta

model (βp = 0.07). This upward bias in realized betas for portfolios with a target beta equal to

zero is consistent with the results of Ghysels and Jacquier (2006). They attribute the systematic

overshooting of the target beta to estimation errors in betas. Specifically, because the average

beta across all stocks is one, stocks with the lowest betas receive the largest weight in the

optimization in order to set the portfolio beta equal to zero. Ghysels and Jacquier (2006) argue

that the smallest beta estimates contain negative estimation errors. Because the optimization

overweights these stocks, the realized beta of the portfolio will be positive.

Panel B further shows that for the portfolio constructed using the forecasts of the condi-

tional beta model the deviation from the target beta is predictable by the fundamental beta

specification. In turn, the portfolio based on the fundamental beta model loads significantly

on the forecasts of both the conditional beta model and the static beta model. The portfolios

formed using the forecasts of the realized beta and static beta models have significant exposures

to the conditional beta and fundamental beta specifications. Because the portfolio constructed

using the forecasts of the conditional beta specification exhibits the smallest deviation from the

target beta and has a significant exposure to only one of the other beta forecasts, we conclude

that the conditional beta model is also the preferred specification for target betas equal to zero.

[Table 3 about here.]
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4.3 Cross-Sectional Characteristics of Alphas and Betas

One of the virtues of using a large panel of individual stocks is that it allows us to carefully

study the cross-sectional characteristics of conditional alphas and betas. In section 4.1 we doc-

umented considerable cross-sectional variation in the time-series means of alphas and betas. In

this section we examine how the cross-sectional variation in firm-specific alphas and betas and

the correlation between alpha and beta evolve over time. We relate these movements to the

state of the economy.

Figure 5 shows the evolution through time of the cross-sectional standard deviation of con-

ditional betas. The shaded areas in the plot indicate NBER recession periods. The average

cross-sectional standard deviation is 0.43. However, the figure shows that the cross-sectional

variation in market betas exhibits wide swings. An interesting result is that at the end of every

recession period the variation in betas increases sharply. The most striking increase is in the

beginning of the eighties where the cross-sectional variation almost doubled. This pattern is

consistent with the economic motivation for conditional asset pricing models. In particular,

conditional asset pricing theory asserts that firms differ in the sensitivity of their conditional

betas to business cycle variations (see, e.g., Petkova and Zhang (2005) and Zhang (2005)).

[Figure 5 about here.]

Figure 6 compares the cross-sectional characteristics of the betas produced by our conditional

beta specification to those of the betas obtained from the models in which betas depend on

lagged conditioning variables or past realized betas alone. As a benchmark we also present

results for the unconditional CAPM, in which betas are constant. The figure shows that the

average cross-sectional variation in beta is largest in the model that only includes past realized

betas, followed by the specification including both fundamental and realized betas, and the

model that only includes fundamentals-based betas. The static CAPM produces the smallest

cross-sectional variation in betas.5

However, the specification that only includes conditioning variables exhibits the largest

swings in the cross-sectional variation in market risk, especially during recessionary periods.

The high responsiveness of the fundamentals-based beta to macroeconomic conditions implies
5The cross-sectional variation in static betas varies over time only because firms enter and leave the sample.
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that the conditioning variables capture important heterogeneity in risk dynamics across stocks.

In contrast, the cross-sectional variation in realized betas is less responsive to business cycle

variations. Moreover, it appears to react with a lag of a few months, for instance after the 1987

stock market crash. This lag arises because using a window of past returns to estimate realized

betas gives an estimate of the average beta during this period. As expected, the time-series

behavior of the cross-sectional variation in betas produced by the conditional beta specification

in equation (2) is a combination of the dynamics of these two specifications. Thus, it combines

the benefits of both specifications, responding fast to changes in economic conditions without

producing too extreme variations in beta. Finally, due to its static nature the cross-sectional

variation in market betas in the unconditional CAPM does not respond at all to business

cycle variations. As a result, the static CAPM fails to capture changes in the cross-sectional

distribution of stock returns.

[Figure 6 about here.]

In Figure 7 we plot the cross-sectional variation in conditional alphas. The average cross-

sectional standard deviation is 2.65% but again we document a strong, positive relation between

the state of the economy and the cross-sectional standard deviation of alphas. During the oil

crisis in the seventies the cross-sectional standard deviation increases from 2% to more than

6.5% and during the recession in the 1980s the standard deviation reaches 7.5%. We attribute

the sharp increase in the cross-sectional variation in alphas during crisis periods to the ability of

some firms to successfully deal with the circumstances while others go bankrupt. Put differently,

a recession separates the wheat from the chaff. Interestingly, the variation in alphas gradually

declines towards the end of our sample period, suggesting that our model is better able to

explain the cross-sectional variation in stock returns in recent times.

[Figure 7 about here.]

Figure 8 links together the cross-sectional dynamics in conditional alphas and betas by showing

the evolution through time of the cross-sectional correlation between alphas and betas. The

average cross-sectional correlation is slightly negative (-0.13). However, during recession periods

this correlation becomes much more negative, reaching -0.8 in the beginning of the eighties.

Thus, in times of economic distress stocks with the highest market beta tend to earn the lowest
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returns, even after accounting for market risk. Note that towards the end of the sample period

the correlation gradually increases to a level around zero.

[Figure 8 about here.]

4.4 Time Series Dynamics of Conditional Alphas and Betas

The previous section documents that the cross-sectional variation in alphas and betas and the

correlation between alpha and beta vary strongly over time, particularly during recessions. We

now examine the time series dynamics of alphas and betas by calculating for every firm the

time series standard deviation and first-order autocorrelation of alpha and beta.

Panel A in Table 4 reports the cross-sectional distribution of the time-series variation in

alpha. The specification that only includes past realized betas leads to the lowest time-series

standard deviation in pricing errors, whereas the model that only includes fundamentals-based

betas generates the highest standard deviation. In the conditional beta model of equation (7),

the time-series standard deviation of alpha for the average firm is 2.09%. Thus, our conditional

model picks up large fluctuations in pricing errors. Panel A further shows that for some firms

variation in alpha is much more pronounced than for others. The first-order autocorrelation

coefficients in panel B show that for most stocks pricing errors are quite persistent, irrespective

of the specification used for betas. Results in panel C show that the betas produced by the

model that only includes realized betas fluctuate more strongly over time than those obtained

from the other two specifications. In the conditional beta model the standard deviation of beta

is 0.30 for the average firm. The strong time-series variation in market risk exposure provides

support for the use of conditional asset pricing models. However, the time-series variation in

beta differs substantially across stocks, as the cross-sectional standard deviation equals 0.15.

As expected, panel D reveals that betas produced by the realized beta model are most

persistent due to its autoregressive nature, while those generated by the fundamental beta model

are least persistent. The conditional model leads to intermediate results, with an average first-

order autocorrelation coefficient of 0.87. This indicates that our conditional betas represent

the optimal trade-off between realized betas, which move too slow, and fundamentals-based

betas, which change too fast. Although the firm-specific betas generated by our model are

fairly persistent, Ang and Chen (2007) find that the monthly autocorrelation of the conditional
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betas of value and growth portfolios equals 0.99 and Ghysels and Jacquier (2006) report that

quarterly industry portfolio betas have strong autocorrelation on the order of 0.95. These

findings suggest that portfolio betas are more persistent than individual stock betas. Finally,

panel E displays important differences in the average correlation between alpha and beta across

the three specifications. In particular, although this correlation equals -0.51 for the fundamental

beta model, it is -0.06 for the model that only includes realized betas. The average correlation for

the conditional model is -0.28. Hence, an increase in market risk tends to be related to a decrease

in pricing errors. The large cross-sectional standard deviation (0.40) indicates considerable

variation across firms in the relation between alpha and beta.

In sum, our empirical analysis reveals strong time variation in firm-specific conditional

alphas and betas. Moreover, we find that realized betas and fundamentals-based betas exhibit

different cross-sectional characteristics and time-series dynamics. Therefore, combining these

two specifications captures different aspects of market beta dynamics and produces superior beta

estimates. Furthermore, we document strong heterogeneity in risk dynamics across individual

stocks. In the next section we examine the impact of these cross-sectional differences on the 25

size-B/M portfolios that are often used to test asset pricing models.

[Table 4 about here.]

4.5 Heterogeneity within Size-B/M Portfolios

An important assumption underlying the portfolio approach to testing asset pricing models is

that the stocks in a particular portfolio share the same risk characteristics. In case of the widely

used 25 portfolios sorted on firm size and book-to-market, it is assumed that firms are homoge-

neous in their exposure to market risk after controlling for size and B/M. However, a violation

of this assumption can have serious asset pricing implications. In particular, if heterogeneity

within size-B/M portfolios is large, portfolio averages conceal important information contained

in the characteristics of individual stocks. In this section we therefore examine whether firms

that are grouped together in a portfolio have similar risk and return characteristics.

We construct the 25 size-B/M portfolios according to the procedure outlined by Fama and

French (1993). Specifically, at the end of June of each year, we sort all stocks independently

into size and B/M quintiles. The 25 portfolios are then formed as the intersections of the size
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and B/M quintiles. Subsequently, we calculate for every portfolio j and every month t the

equally-weighted cross-sectional average of the posterior means of the firm-specific alphas, be-

tas, and phis, and of the excess returns, market capitalizations, and B/M ratios of the stocks in

that portfolio. Table 5 reports for each portfolio the time-series means of these cross-sectional

averages. Consistent with prior studies (e.g., Fama and French (1996)), the small-growth port-

folio has the lowest average return and a large, negative pricing error. In general, the average

portfolio returns display a strong value premium but a weak size effect. Interestingly, sorting

on firm size and B/M does not produce a wide spread in average market betas across portfo-

lios, since all portfolio betas are close to one. However, Figure 9 shows that value and growth

portfolios exhibit very different risk dynamics. In line with the findings of Ang and Chen (2007)

and Franzoni (2007), the plot indicates that particularly during the 1980s value firms were less

risky than growth stocks. These differences in risk dynamics also explain the sharp increase in

the cross-sectional variation in betas during recessions, shown in Figure 5.6

[Figure 9 about here.]

The φ parameters in Table 5 show that realized betas are more important determinants of the

conditional betas of large cap portfolios. In contrast, for small cap portfolios fundamentals-based

betas have a stronger effect on conditional betas than realized betas. A possible explanation

for this finding is that realized beta estimates for small cap portfolios are affected by non-

synchronous trading effects, since small stocks are often less liquid.

[Table 5 about here.]

Table 6 displays the cross-sectional dispersion in the characteristics of the 25 size-B/M

portfolios. For all characteristics we observe strong heterogeneity within portfolios. On average,

the cross-sectional standard deviation of the alphas of the stocks included in a given portfolio

is around 2%. Especially the firms that are grouped together in small-growth portfolios have

significantly different pricing errors. Thus, even though for these portfolios average alphas

are negative, many firms in the portfolios actually earn positive alphas. The cross-sectional

standard deviation of the betas of the firms in a given portfolio is around 0.40. Clearly, the

6We also formed 10 portfolios based on momentum and find that winner and loser stocks also display opposite
market risk dynamics. In general, winners have higher betas than losers.
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assumption that stocks in the same portfolio share similar risk characteristics is violated. Table

6 also reports strong cross-sectional heterogeneity in φ within portfolios. This implies that for

some firms in a portfolio conditional betas are mainly driven by realized betas whereas for others

fundamentals-based betas are more important.

[Table 6 about here.]

5 Conclusion

In this paper we measure the market beta dynamics of individual stocks. We set up a Bayesian

panel data model that allows a flexible specification of firm-specific betas. Our panel approach

combines high-frequency return data and cross-sectional firm-level data to estimate betas with

greater precision. By specifying hierarchical priors we can capture the cross-sectional hetero-

geneity in market betas without the need to estimate a large number of parameters. We find

that modeling conditional betas as a linear combination of lagged fundamentals-based betas

and past realized betas is preferred over traditional estimators of betas that are based on con-

ditioning variables or data-driven filters alone. Specifically, because fundamentals-based betas

and realized betas exhibit very different time-series dynamics and cross-sectional characteristics,

combining both specifications captures different aspects of market beta. Moreover, in contrast

to rolling window estimators of realized betas that give equal weight to past returns, we find

that it is preferable to give more weight to recent observations.

We show that our model produces superior firm-specific beta forecasts, which we use to

construct optimal portfolios subject to target beta constraints. Our empirical results further

confirm the prediction of conditional asset pricing theory that individual stocks exhibit different

risk dynamics. In particular, we find that the cross-sectional variation in beta increases sharply

during recessions. Our findings also reveal strong cross-sectional heterogeneity in firm-specific

alphas and betas within the 25 size-B/M sorted portfolios that are commonly used to test asset

pricing models. Hence, the traditional portfolio approach to asset pricing, which ignores these

differences within portfolios, leads to imprecise and flawed estimates of alphas and betas.
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A Posterior Distributions

A.1 Joint Posterior Distribution

The joint posterior density is proportional to the product of the likelihood function and the

prior distributions, p(θ|y) ∝ p(y|θ)p(θ). Defining αit and βit as in section 1 and substituting

the prior densities specified in section 2.1, the joint posterior is given by:

p(θ|y) =p(α0i, σ
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A.2 Conditional Posterior Distributions

In order to implement the Gibbs sampler we need to derive the full conditional posterior densities

for each block of parameters. The conditional densities can be derived from the joint posterior

density by ignoring all terms that do not depend on the parameters of interest and then treating

the parameters considered to be known as constants. We then obtain the conditional density

for the parameters of interest by rearranging the remaining terms into the kernel of a known

distribution. We partition the parameter vector θ into the following blocks:

θ(1): MIDAS weight parameter: (κ2)

θ(2): Individual effects: (α0i)

θ(3): Fundamental alpha parameters: (α1)

θ(4): Fundamental beta parameters: (δ0, δ1)

θ(5): Autoregressive beta parameter: (φi)

θ(6): Variance and covariance parameters: (σ2
α0

, Ω−1
α1

, σ2
φ, σ2

δ0
, Ω−1

δ1
, σ2

η, σ
2
εi
)

To generate samples from the conditional posterior of θ(1) we use the Metropolis-Hastings

algorithm. The conditional posteriors for all other blocks have convenient functional forms.

Therefore, we use the Gibbs sampler to iteratively draw from the conditional densities of θ(2),

θ(3), θ(4), θ(5), θ(6). For notational convenience we rewrite the model in matrix form as

ri = α0iιTi + ZBCiα1 + rMbiφi + rM (δ0ιT + ZBCiδ1)(1− φi) + rMηi + εi, (9)

where ri is an T × 1 vector of excess returns, ZBCi is an T × (L + LM) matrix of conditioning

variables, rM an T×T diagonal matrix of excess market returns, and bi an T×1 vector of length

T of realized betas. ηi and εi are T × 1 vectors of zero-mean, normally distributed idiosyncratic

shocks to betas and to returns, respectively.

Since the δ0 and δ1 parameters are both in block θ(4) and have independent priors, we can

rewrite δ0ιT + ZBCiδ1 as Wiδ, where Wi is the T × (1 + L + LM) matrix of the constant term

and the conditioning variables. We combine the corresponding precisions σ−2
δ0

and Ω−1
δ1

into the

matrix Ω−1
δ .
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A.2.1 Metropolis-Hastings algorithm to draw κ2

Since we implement a change of variable, κ2 = 1+25κ̃2, we need to draw values for κ̃2. Because

the conditional posterior density for κ̃2 does not take a standard form, we cannot use the Gibbs

sampler to draw values for κ̃2. Instead, we employ the Metropolis-Hastings algorithm, which is

a general accept-reject algorithm. In fact, Gelman, Carlin, Stern, and Rubin (2004) show that

the Gibbs sampler is a special case of Metropolis-Hastings in which proposed parameter values

are accepted with probability one. The M-H algorithm proceeds as follows.

First, a candidate value κ̃∗2 is drawn from a proposal density q(κ̃2). We apply the Indepen-

dence Chain M-H algorithm, in which the proposal density is independent across draws. We

choose a Beta(1,3) proposal density, which has a mean of 0.25 and standard deviation equal to

0.19. Because the proposal density is not identical to the posterior density, the M-H algorithm

does not accept all proposal draws. When a proposal is rejected the parameter value is set equal

to the current value. Draws are accepted according to the following probability

π(κ̃(g−1)
2 , κ̃∗2) = min

{
1,

p(κ̃∗2|y)q(κ̃(g−1)
2 )

p(κ̃(g−1)
2 |y)q(κ̃∗2)

}
. (10)

This approach ensures that candidate draws with a high posterior density have a higher prob-

ability of being accepted than draws with a low posterior density. Repeating this procedure

produces the required sequence of draws from the posterior distribution.
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A.2.2 Conditional posterior α0i

Using Bayes’ theorem, we can write:

p (α0i|y) ∝ p (y|α0i) p (α0i)

∝ exp
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We derive all other conditional posteriors in the same way, which leads to the following results:
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A.2.3 Conditional posterior α1

α1|θ−(α1), y ∼ N (ᾱ1, Vα1) ,
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and where Xα1i = ri − (α0iιTi + rMbiφi + rMWiδ(1− φi) + rMηi).

A.2.4 Conditional posterior δ
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A.2.5 Conditional posterior φi
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A.2.6 Conditional posteriors σ2
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Table 1: Summary Statistics for Firm Characteristics and Macroeconomic Variables

This table presents descriptive statistics for stock returns, firm characteristics, and macroeconomic variables for
510 months from July 1964 through December 2006. Panel A reports the mean, median, standard deviation
and 5th, 25th, 75th, and 95th percentile values of firm characteristics for a total of 5,017 stocks over the full
sample period and an average of 1,815 stocks per month. We include a stock in the sample for a given month
t if it satisfies the following criteria. First, its return in the current month, t, and over the past 36 months has
to be available. Second, data should be available in month t-1 for size as measured by market capitalization,
for the book-to-market ratio, and for turnover. We exclude firms with negative book-to-market equity. XRET
is the return in excess of the risk-free rate, MV represents the market capitalization in billions of dollars, and
BM is the book-to-market ratio, for which values smaller than the 0.5th percentile and values greater than the
99.5th percentile are set equal to the 0.5th percentile and 99.5th percentile values, respectively. MOM is the
cumulative return over the twelve months prior to the current month. TURN is monthly share turnover, defined
as trading volume divided by the numbers of shares outstanding. Panel B shows the the mean, median, standard
deviation and 5th, 25th, 75th, and 95th percentile values of macroeconomic variables. DEF is the default spread,
defined as the yield differential between bonds rated BAA by Moody’s and bonds with a Moody’s rating of AAA.
DY is the dividend yield on the value-weighted CRSP index. The dividend yield is calculated as the sum of
the dividends paid on the index in the previous year divided by the current level of the index. TBILL is the
one-month Treasury bill rate. TERM is the term spread, defined as the yield difference between ten-year and
one-year Treasury bonds.

Mean Std. dev. 5th 25th Median 75th 95th
Panel A: Firm characteristics

XRET (%) 0.69 12.31 -17.48 -5.99 -0.16 6.42 21.29
MV ($ billions) 1.59 5.60 0.01 0.03 0.16 0.81 6.67
BM 0.96 0.82 0.18 0.44 0.75 1.22 2.45
MOM (%) 14.65 49.29 -49.12 -14.24 8.60 34.46 96.30
TURN (%) 5.19 6.36 0.47 1.41 3.06 6.37 17.15

Panel B: Macroeconomic variables
DEF (%) 1.02 0.43 0.55 0.73 0.90 1.21 1.92
DY (%) 3.01 1.10 1.30 2.02 2.96 3.77 4.84
TBILL (%) 5.69 2.70 1.56 4.08 5.16 6.96 10.57
TERM (%) 0.85 1.14 -1.14 0.08 0.78 1.69 2.83
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Table 2: Posterior Distribution of Fundamentals-Based Beta Parameters

This table reports the Bayesian posterior distribution of the determinants of the fundamentals-based beta, which
is parameterized as a linear function of lagged firm characteristics and business cycle variables,

β∗it−1 = δ0 + δ′1[Zit−1 ⊗BCt−1],

where Zit−1 is a vector that contains L firm characteristics and BCt−1 is a vector that contains a constant and

M business cycle variables. The table presents the mean, median, standard deviation and 5th, 25th, 75th, and

95th percentile values of the posterior distribution, based on 5,000 iterations of the Gibbs sampler and a burn-in

period of 1,000 iterations.

Mean Std. dev. 5th 25th Median 75th 95th
Intercept 1.15 0.02 1.12 1.14 1.15 1.17 1.19
MV -0.12 0.02 -0.15 -0.13 -0.12 -0.11 -0.09
BM 0.85 0.07 0.72 0.79 0.84 0.90 0.97
MOM 0.18 0.15 -0.07 0.08 0.18 0.28 0.42
TURN -0.02 0.01 -0.03 -0.02 -0.02 -0.01 -0.01
MV*TBILL 0.01 0.01 0.01 0.01 0.01 0.02 0.02
MV*TERM 0.03 0.01 0.02 0.02 0.03 0.03 0.03
MV*DEF 0.00 0.01 -0.02 -0.01 0.00 0.00 0.01
MV*DY 0.00 0.00 0.00 0.00 0.00 0.01 0.01
BM*TBILL -0.06 0.01 -0.08 -0.07 -0.06 -0.05 -0.03
BM*TERM -0.08 0.02 -0.11 -0.10 -0.08 -0.07 -0.05
BM*DEF -0.50 0.05 -0.59 -0.54 -0.50 -0.47 -0.42
BM*DY -0.04 0.01 -0.05 -0.04 -0.04 -0.03 -0.02
MOM*TBILL 0.01 0.03 -0.04 -0.01 0.01 0.03 0.06
MOM*TERM -0.06 0.05 -0.14 -0.09 -0.06 -0.03 0.02
MOM*DEF -0.16 0.07 -0.27 -0.20 -0.15 -0.11 -0.04
MOM*DY 0.02 0.03 -0.03 0.00 0.02 0.04 0.07
TURN*TBILL 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TURN*TERM -0.01 0.00 -0.01 -0.01 -0.01 -0.01 -0.01
TURN*DEF 0.06 0.01 0.05 0.06 0.06 0.07 0.08
TURN*DY 0.00 0.00 -0.01 0.00 0.00 0.00 0.00
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Table 3: Forecasting Power of Alternative Approaches to Modeling Betas

This table reports regression estimates for optimal portfolios that minimize the sum of squared portfolio weights

subject to the constraint that the one-month ahead forecast of the portfolio beta equals the target beta. The

portfolio are constructed at the end of month t− 1 using the forecasts of the stock-specific betas at time t. We

compare the forecasting power of four different beta specifications, i.e., the full conditional beta given by equation

(2), the realized beta in equation (3), the fundamentals-based beta in equation (5), and the static beta in the

unconditional CAPM. We measure the accuracy of the beta forecasts by regressing the time-series of portfolio

returns on the market index and on the interaction terms between the market index and the forecasts of the

portfolio beta produced by the beta specifications other than the one used to construct the portfolio,

rpt = αp + βprMt + γ′pXpt−1rMt + εpt.

Test 1 investigates whether the realized portfolio beta equals the target beta. Test 2 examines whether deviations

from the target beta are predictable by the other beta specifications. Panel A shows the regression results for

the portfolios with a target beta of one and panel B shows the estimates for portfolios with a target beta of zero.

t-statistics are in parentheses and computed using Newey-West heteroskedasticity and autocorrelation robust

standard errors. The t-statistic for the coefficient on rM in panel A corresponds to the null hypothesis that this

coefficient equals one. The sample period is September 1964 through December 2006 (508 months).

Conditional Fundamental Realized Static
Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

Panel A: Target Portfolio Beta = 1
Intercept 0.13 0.14 0.14 0.15 0.13 0.14 0.23 0.24

(1.16) (1.28) (1.11) (1.31) (1.15) (1.28) (1.75) (1.97)
rM 1.00 1.01 0.99 1.02 0.99 0.97 1.06 1.08

(0.10) (0.25) (0.17) (0.66) (0.43) (1.02) (1.50) (2.28)
βconditional ∗ rM 68.16 32.73 84.74

(6.55) (2.24) (4.94)
βfundamental ∗ rM -7.55 13.05 -3.91

(-1.64) (2.02) (-2.35)
βrealized ∗ rM 5.62 40.16 46.97

(1.13) (6.62) (5.06)
βstatic ∗ rM -0.88 0.53 3.58

(-1.26) (1.60) (1.88)
Adj. R2(%) 81.5 81.8 78.3 81.4 80.6 81.0 77.7 79.9

Panel B: Target Portfolio Beta = 0
Intercept 0.07 0.06 0.07 0.05 0.06 0.07 0.01 0.01

(3.92) (4.48) (3.05) (3.46) (3.25) (3.97) (0.85) (2.26)
rM 0.02 0.00 0.05 0.00 0.07 0.00 0.03 0.01

(3.42) (0.47) (5.19) (0.41) (9.80) (-0.20) (6.41) (2.64)
βconditional ∗ rM 2.86 3.24 1.20

(3.02) (4.65) (4.00)
βfundamental ∗ rM -0.80 -1.16 -0.42

(-3.23) (-4.33) (-2.86)
βrealized ∗ rM -0.50 0.26 -0.01

(-1.36) (0.48) (-0.06)
βstatic ∗ rM 0.28 -0.76 0.11

(1.12) (-2.35) (0.53)
Adj. R2(%) 8.3 23.7 21.7 50.4 44.8 54.0 32.1 69.7
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Table 4: Time-Series Dynamics of Alphas and Betas

This table reports time-series characteristics of conditional alphas and betas produced by three different specifi-

cation for beta. Specifically, we compare the conditional beta given by equation (2), the realized beta in equation

(3), and the fundamentals-based beta in equation (5). We first calculate at each iteration of the Gibbs sampler

the conditional alpha and beta for firm i at time t. Subsequently, we compute for every firm and every date the

average alpha and beta over all iterations (posterior mean). We then compute the time-series standard deviation

and first-order autocorrelation of alpha and beta and the correlation between alpha and beta for every firm i.

Panels A and B report the mean, median, standard deviation and 5th, 25th, 75th, and 95th percentile values of

the cross-sectional distribution of the time-series standard deviation and autocorrelation of alphas, respectively.

Panels C and D present the cross-sectional distribution of the time-series standard deviation and autocorrelation

of betas, respectively. Panel E shows the cross-sectional distribution of the correlation between alphas and betas.

Model Mean Std. dev. 5th 25th Median 75th 95th
Panel A: Time-Series Variation in Alphas

Conditional Beta 2.10 1.41 0.46 1.02 1.81 2.86 4.71
Realized Beta 1.78 1.17 0.40 0.89 1.54 2.40 3.93
Fundamental Beta 2.45 1.65 0.52 1.18 2.11 3.33 5.50

Panel B: Autocorrelation in Alphas
Conditional Beta 0.82 0.15 0.52 0.77 0.86 0.92 0.96
Realized Beta 0.82 0.15 0.52 0.77 0.86 0.92 0.96
Fundamental Beta 0.81 0.15 0.51 0.77 0.86 0.92 0.96

Panel C: Time-Series Variation in Betas
Conditional Beta 0.30 0.15 0.11 0.19 0.27 0.37 0.58
Realized Beta 0.41 0.20 0.15 0.27 0.37 0.51 0.78
Fundamental Beta 0.30 0.16 0.11 0.19 0.27 0.38 0.59

Panel D: Autocorrelation in Betas
Conditional Beta 0.87 0.13 0.59 0.84 0.92 0.95 0.98
Realized Beta 0.93 0.06 0.81 0.92 0.95 0.97 0.98
Fundamental Beta 0.70 0.19 0.32 0.60 0.74 0.84 0.92

Panel E: Correlation between Alphas and Betas
Conditional Beta -0.28 0.40 -0.84 -0.61 -0.34 0.01 0.46
Realized Beta -0.06 0.34 -0.60 -0.30 -0.06 0.18 0.52
Fundamental Beta -0.51 0.39 -0.92 -0.79 -0.63 -0.34 0.35
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Table 5: Average Characteristics of 25 Size-B/M Portfolios

This table presents the time-series averages of characteristics of 25 size-B/M sorted portfolios. The portfolios are

constructed annually by sorting stocks independently into size and B/M quintiles at the end of June. The 25

portfolios are then formed as the intersections of these five size and B/M quintiles. Subsequently, we calculate for

every portfolio j at every time t the equally weighted cross-sectional average of the posterior means of the firm-

specific alphas, betas, and phis, and of the excess returns, market capitalizations, and B/M ratios of the stocks in

the portfolio. Firm size and B/M are expressed as natural logarithms and as deviations from their cross-sectional

means. The table shows for every portfolio the time-series means of these cross-sectional averages.

Size Book-to-Market equity (B/M) quintiles
quintiles Low 2 3 4 High Low 2 3 4 High

Alpha Beta
Small -2.28 -0.40 0.17 0.65 1.28 1.23 1.08 0.99 0.90 0.84
2 -1.27 -0.06 0.39 0.86 1.42 1.31 1.13 1.03 0.97 0.95
3 -0.94 0.02 0.40 0.81 1.38 1.32 1.13 1.02 0.97 1.01
4 -0.96 -0.06 0.36 0.74 1.41 1.24 1.10 1.00 0.94 0.97
Big -0.88 -0.20 0.17 0.58 1.17 1.19 1.07 0.99 0.93 0.96

Phi Return
Small 0.39 0.41 0.42 0.45 0.46 0.18 0.54 0.67 0.97 0.93
2 0.47 0.49 0.51 0.52 0.52 0.72 0.83 0.80 0.83 0.85
3 0.55 0.54 0.55 0.58 0.61 0.67 0.69 0.76 0.95 0.87
4 0.59 0.57 0.60 0.63 0.64 0.65 0.62 0.72 0.84 0.94
Big 0.61 0.61 0.65 0.70 0.72 0.48 0.46 0.59 0.72 0.84

Size B/M
Small -2.58 -2.57 -2.58 -2.61 -2.81 -1.12 -0.30 0.07 0.40 1.01
2 -1.09 -1.08 -1.08 -1.10 -1.17 -1.06 -0.30 0.07 0.39 0.90
3 0.03 0.01 -0.02 -0.02 -0.05 -1.01 -0.30 0.06 0.38 0.88
4 1.13 1.12 1.10 1.08 1.04 -1.01 -0.31 0.06 0.38 0.83
Big 2.92 2.69 2.64 2.55 2.46 -1.06 -0.31 0.05 0.37 0.80
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Table 6: Cross-Sectional Variation in Characteristics of 25 Size-B/M Portfolios

This table presents the time-series averages of the cross-sectional variation in characteristics of 25 size-B/M sorted

portfolios. The portfolios are constructed annually by sorting stocks independently into size and B/M quintiles

at the end of June. The 25 portfolios are then formed as the intersections of these five size and B/M quintiles.

Subsequently, we calculate for every portfolio j at every time t the cross-sectional standard deviation of the

posterior means of the firm-specific alphas, betas, and phis, and of the excess returns, market capitalizations,

and B/M ratios of the stocks in the portfolio. Firm size and B/M are expressed as natural logarithms and as

deviations from their cross-sectional means. The table shows for every portfolio the time-series means of these

cross-sectional standard deviations.

Size Book-to-Market equity (B/M) quintiles
quintiles Low 2 3 4 High Low 2 3 4 High

Alpha Beta
Small 3.67 2.57 2.38 2.24 2.51 0.47 0.39 0.38 0.38 0.40
2 3.24 2.35 2.11 2.01 2.33 0.45 0.39 0.38 0.37 0.38
3 2.96 2.19 1.93 1.88 2.14 0.46 0.40 0.39 0.38 0.38
4 2.57 1.91 1.73 1.58 1.74 0.43 0.38 0.38 0.37 0.37
Big 2.17 1.66 1.47 1.35 1.51 0.35 0.31 0.32 0.32 0.30

Phi Return
Small 0.32 0.32 0.32 0.32 0.31 15.56 13.84 13.11 12.50 13.83
2 0.33 0.32 0.31 0.30 0.31 12.98 11.16 10.40 10.13 11.34
3 0.32 0.32 0.31 0.30 0.28 11.03 9.83 9.04 8.89 9.82
4 0.31 0.30 0.29 0.30 0.28 9.26 8.26 7.83 7.51 8.33
Big 0.26 0.29 0.29 0.28 0.24 7.27 6.93 6.57 6.35 6.56

Size B/M
Small 0.61 0.60 0.62 0.63 0.74 0.59 0.12 0.09 0.10 0.35
2 0.34 0.34 0.34 0.35 0.35 0.50 0.12 0.09 0.10 0.30
3 0.30 0.30 0.30 0.31 0.31 0.45 0.12 0.09 0.10 0.29
4 0.34 0.34 0.33 0.33 0.33 0.43 0.13 0.09 0.10 0.24
Big 0.88 0.74 0.72 0.64 0.55 0.42 0.13 0.09 0.10 0.20
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Figure 1: Cross-Sectional Distribution of Posterior Mean of Phi

This figure shows the cross-sectional distribution of the posterior mean of the parameter φi, which measures the
proportion of beta explained by past realized beta,

βit = φibit−1 + (1− φi)β
∗
it−1 + ηit,

where bit−1 is firm’s i past realized beta and where β∗it−1 is the lagged fundamentals-based beta of firm i. We give

more weight to the φi that are estimated with higher precision by weighting each posterior mean by its posterior

precision. This figure shows the cross-sectional distribution of these precision-weighted posterior means.
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Figure 2: Optimal versus Equal Weighting Scheme for Estimating Beta

This figure compares the equal weights in the traditional rolling window estimator of realized betas to the weights

implied by the estimated MIDAS weighting function in equation (4) for the model in equation (7). We set the

maximum window length equal to 250 trading days.
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Figure 3: Cross-Sectional Distribution of Firm Betas

This figure shows the cross-sectional distribution of average firm betas. We first calculate at each iteration of the

Gibbs sampler the beta for firm i at time t based on the model in equation (7). Subsequently, we compute the

time-series averages of these conditional betas. We then calculate for each firm the posterior mean of its time-series

average beta. We give more weight to betas that are estimated with higher precision by weighting each posterior

mean by its posterior precision. This figure shows the cross-sectional distribution of these precision-weighted

posterior means.
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Figure 4: Cross-Sectional Distribution of Firm Alphas

This figure shows the cross-sectional distribution of average firm alphas. We first calculate at each iteration

of the Gibbs sampler the alpha for firm i at time t based on the model in equation (7). Subsequently, we

compute the time-series averages of these conditional alphas. We then calculate for each firm the posterior mean

of its time-series average alpha. We give more weight to alphas that are estimated with higher precision by

weighting each posterior mean by its posterior precision. This figure shows the cross-sectional distribution of

these precision-weighted posterior means.
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Figure 5: Cross-Sectional Variation in Firm Betas

This figure shows the evolution through time of the cross-sectional standard deviation of conditional firm betas.

We first calculate at each iteration of the Gibbs sampler the conditional beta for firm i at time t based on

the model in equation (7). Subsequently, we compute for every firm and every date the average beta over all

iterations (posterior mean). Shaded areas indicate NBER recession periods.
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Figure 6: Comparison of Cross-Sectional Variation in Firm Betas

This figure compares the evolution through time of the cross-sectional standard deviation of different specifica-

tions for beta. Specifically, we compare the conditional beta given by equation (2), the realized beta in equation

(3), the fundamentals-based beta in equation (5), and the static beta in the unconditional CAPM. Shaded areas

indicate NBER recession periods.
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Figure 7: Cross-Sectional Variation in Firm Alphas

This figure shows the evolution through time of the cross-sectional standard deviation of conditional firm alphas.

We first calculate at each iteration of the Gibbs sampler the conditional alpha for firm i at time t based on

the model in equation (7). Subsequently, we compute for every firm and every date the average alpha over all

iterations (posterior mean). Shaded areas indicate NBER recession periods.
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Figure 8: Correlation between Firm Alphas and Betas

This figure shows the evolution through time of the correlation between conditional firm alphas and betas. We

first calculate at each iteration of the Gibbs sampler the conditional alpha and beta for firm i at time t based on

the model in equation (7). Subsequently, we compute for every firm and every date the average alpha and beta

over all iterations (posterior mean). We then calculate for every period the cross-sectional correlation between

these alphas and betas. Shaded areas indicate NBER recession periods.
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Figure 9: Conditional Market Betas of Value and Growth Portfolios

This figure plots the evolution over time of the conditional market beta for value and growth portfolios. We

first construct 25 size-B/M portfolios by sorting stocks independently into size and B/M quintiles at the end of

June. The 25 portfolios are then formed as the intersections of these five size and B/M quintiles. Subsequently,

we calculate for every portfolio j at every time t the equally weighted cross-sectional average of the betas of

the stocks in the portfolio. Beta for the value portfolio is defined as the average conditional beta of the five

portfolios with highest B/M (Sx/B5) and beta for the growth portfolio is the average conditional beta of the

five portfolios with lowest B/M (Sx/B1).
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