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1. General

West Nile virus (WNV) is a neurotropic, arthropod-borne flavivirus with a single-stranded
positive-sense RNA genome. It belongs to the Japanese encephalitis antigenic complex of
the family Flaviviridae, which also includes other important human pathogens such as
Japanese encephalitis (JEV), Dengue virus (DENV), and Tick-borne encephalitis virus
(TBEV). WNYV is maintained in an enzootic cycle between mosquitoes and birds, but can
also infect and cause disease in mammals such as horses and humans, which serve as
incidental dead-end hosts as viremia in these mammals is generally too low to infect
mosquitoes [1].

The WNV genome is approximately 11 kb in length and translates into a single
polyprotein, which is cleaved by host and viral proteases into three structural proteins
(Envelope E, Pre-membrane/membrane prM/M and Capsid C), and seven non-structural
proteins (NS1, NS2a, NS2B, NS3, NS4A, NS4B and NS5) (Figure 1). The E protein binds
to the host cell surface receptor mediating viral entry and fusion, C encapsulates the viral
RNA, and prM acts as a chaperone for E during intracellular virion assembly by masking
and inactivating E to prevent fusion of premature virions. Non-structural proteins are
implicated in viral transcription, translation, replication, maturation, and immune evasion

[2].
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Figure 1. Structure and genome of West Nile virus
(credited to: http://www.expasy.ch/viralzone/all_by_species/24.html, and Valiakos et al., 2013)

Epidemiological studies indicate that frequency and severity of clinical illness
increases with age [3, 4]. Infection with WNV remains asymptomatic in the majority of
cases while it results in West Nile fever (a mild flu-like illness) in approximately 20 to 30%
of infected individuals [3, 5, 6]. Symptoms are of sudden onset and may include malaise,
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eye pain, headache, myalgia, gastro-intestinal discomfort and rash [5, 7-10]. In a small
percentage (~1%) of cases, WNV-infected patients develop meningitis and/or encephalitis,
which may result in acute flaccid paralysis (AFP) [3, 4], and long-term neurological
sequelae are common in more than 50% of patients who develop encephalitis [11-15]. This
disease manifestation is explained by neuronal damage in several regions of the brain. The
fatality rate for hospitalized encephalitic cases is approximately 10%, with increased risk
for patients with a compromised immune system, of young and old age, and with
underlying conditions such as diabetes mellitus [16].

WNV was first identified in 1937 in a febrile patient in northern Uganda [17] and is
currently one of the most geographically spread arboviruses in the world as it can be found
on every continent except Antarctica [18]. WNV is endemic in parts of Africa, Europe, the
Middle East, Asia [1], and since the turn of the century also in North America. In fact, it is
only following its emergence in New York City in the United States in 1999 that WNV
gained significant attention in the Americas. In late August of that year, an unusual cluster
of encephalitis cases was reported to and investigated by the New York City Department of
Health. At the same time, an epizootic among birds associated with a high fatality rate had
been noted in and around New York City [19]. Sequencing of the virus isolated from brain
tissue of some of these birds, as well as from three human encephalitis cases, all identified
the same lineage 1 strain of WNV [20]. In total, 62 human cases were identified during this
outbreak, including seven deaths [21], while retrospective extrapolation from a household
based study estimated a total of 8200 subclinical infections and 1700 symptomatic
infections. This was the first evidence of WNV activity in the Americas, and since the 1999
outbreak WNV spread across the country from east to west within 5 years, and is now
reported from all over the Americas [22-24].

WNV can be divided into seven distinct genetic lineages [25], of which lineages 1 and
2 are the most frequently recognized. Lineage 1 can be divided into three subclades: WNV-
1a harbors strains from all over the world, including North America and North Africa; the
Australian Kunjin virus is part of subclade 1b, and a few Indian strains constitute subclade
1c. The majority of viruses belonging to lineage 1 are grouped into a cluster called the
“European Mediterranean/Kenyan cluster”, while those responsible for outbreaks in Israel
and in the New World can be grouped into the “Israeli/American cluster.” The former
cluster is made up of two subclusters, of which one subcluster includes strains isolated in
the western Mediterranean basin (WMed; France, Italy, Morocco), while the other includes
strains isolated in the eastern Mediterranean basin (EMed; Israel) and southeastern Europe
(Romania, Volgograd) [26]. Lineage 2, on the other hand, was mainly present in sub-
Saharan Africa and Madagascar, where it was considered to be non-pathogenic for humans
and horses [27, 28]. More recently, however, more virulent lineage 2 strains have also been
observed in South Africa and some European countries, such as Hungary, Austria, Greece,
Romania, Italy, and Serbia, where it has demonstrated its capacity to cause severe clinical
symptoms in humans, equines and wild birds [29-31].
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West Nile virus can be considered an ecological generalist [32] with an exceptionally
complex eco-epidemiology, as in North America it has been found to be transmitted by
numerous species of mosquitoes and is able to infect a highly diverse vertebrate host range
that includes mammals, amphibians, and reptiles [33], while a wide array of bird species act
as primary hosts. Despite this wide host range, not all infected hosts can transmit the virus,
and only those in which the virus replicates efficiently to reach sufficiently high titers in the
blood are able to infect mosquitoes through blood feeding. This is called “host competence”
and is a characteristic of each host species that is part of a specific host-virus-vector system
[34]. In fact, competent hosts for WNV transmission are found almost exclusively among
avian species [35], and a viremia level of >10° PFU/mL has been determined as the lower
limit for efficient infection of feeding Culex (Diptera: Culicidae) mosquitoes found in the
United States [36, 37]. As a result, avian hosts that are competent to transmit the virus to
feeding mosquitoes are also often referred to as “amplifying hosts”. However, this
threshold appears to vary per mosquito species or geographical region, as for example, the
threshold titer for Cx. univittatus in South Africa was reported to be <10*° 50% suckling
mice lethal doses (SMLDso)/mL of blood, and 10*¢ SMLDse/mL of blood for infection of
C. perexiguus in Egypt [38], while some California populations of C. tarsalis, C. pipiens,
and C. erythrothorax can be infected at titers of <10%° PFU/mL [39]. Even though it is
possible that titers below 105° PFU/mL result in fewer infections, it stresses that for a better
insight in the role of different species in transmission, reservoir competence studies should
be conducted for a large range of mosquito and bird species from different geographical
locations.

Bird mortalities among free ranging birds have been the hallmark of WN disease
emergence in North America. Birds of at least 326 different species are known to have died
from WNV disease [40], of which bird species belonging to the order Passeriformes have
been found to be the most susceptible, with the family Corvidae being most affected. In
fact, deaths among American crows (Corvus brachyrynchos) have been used to track the
spread of the virus across many parts of North America [41-43]. In contrast, wild bird
mortality events are very infrequent in the Old World, with small, sporadic episodes
affecting few individual birds, and are often detected in wildlife rehabilitation centers [44].
Despite the proposition of several hypotheses, an explanation for the differences in wild
bird mortality in Europe as compared to North America is still pending.

Among arthropods, WNV replicates in a wide range of mosquitoes, also called
“vectors”, which are considered to serve as a source of (re-)infection of humans, and are
able to sustain a pathogen when it is not infecting humans. WNV has been found to infect
up to 59 different species of mosquitoes in the US [45]. Similar to vertebrate hosts, not all
infected mosquito vectors are able to transmit the virus efficiently, as the ability of
transmission to occur after biting a host is dependent on whether the virus is able to
replicate systematically and reach a high enough viral titer in the salivary glands. This so-
called “vector competence” applies to each vector species in a particular virus-vector
system [34]. Culex mosquitoes, and especially the ornithophilic ones (e.g. Cx. pipiens), play
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an important vector role. However, some non-Culex (non-ornithophilic) species, such as
Aedes albopictus, have been found positive for WNV antigen in a field light trap [46], and
were also identified as competent vectors in the lab [47], but their role in transmission is
still unclear. More importantly, however, at least 12 mosquito species have been implicated
as potential ‘bridge’ vectors or epidemic vectors, which are considered responsible for
transmission to humans [48, 49]. Indirect evidence based on blood-meal analysis and theory
suggest that Cx. pipiens may serve as both an enzootic and an epidemic ‘bridge’ vector [50,
51]. However, most mosquito studies have so far been conducted using North American
mosquitoes, and it is likely that even within the United States vectors that are most
important for transmitting WNV to humans differ per region. As a result, especially for
European mosquitoes, research efforts should continue to focus on studying vector
competence, as well as feeding preferences and behavior.

Interestingly, other arthropods such as ticks have also been found to be susceptible to
WNV infection, as the virus has been isolated from both soft and hard ticks [52-57] and
Ornithodoros moubata ticks became infected and were able to transmit the virus to rodent
hosts in the lab [58]. Even though ticks are unlikely to play a major role as vectors in the
transmission of WNV, these findings suggest that some species still have the potential to
act as a source of infection (“reservoir host”) [58]. As a result, it is likely that this complex
eco-epidemiology, which involves hundreds of different vectors and hosts per location, has
contributed to the broad geographical range of WNV.

2. West Nile virus in Europe

The first indication of the presence of WNV in Europe was in 1958, when specific WNV
antibodies were detected in two Albanians [59]. The first isolations of the virus in Europe
were then recorded in 1963 from patients and mosquitoes in the Rhéne Delta [60] and from
patients and Hyalomma marginatum ticks in the Volga Delta [61, 62]. Cases of WN fever
were observed in the 1960s in southern France [63], southern Russia [64] and Spain [65],
southwestern Romania [66], as well as in the 1970s, 1980s and 1990s in Belarus [67],
western Ukraine [68], southeastern Romania [4, 69] and Czech Republic [70]. Despite this,
however, before the mid-1990s, WNV was only sporadically detected in humans.

The first major outbreak of WNV, which consisted of a high case fatality rate in
humans (~10%), occurred in Romania in 1996 [4, 71]. Since then, the virus has been
isolated from horses, humans and mosquitoes, in several Eastern and Western European
countries [72, 73]. However, with the exception of an outbreak among horses in Camargue,
Southern France in 2000 [74], and a few cases that occurred in Spain [75], significant WNV
activity in Europe has mostly been concentrated in Italy and in southeastern and eastern
Europe rather than in Western Europe.

Detailed phylogenetic analysis of the lineage 1 viruses that had caused the later
outbreaks indicated that those which had been isolated around the western Mediterranean
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were caused by a single strain, referred to as the WMed subtype, and that this virus was a
single introduction that had overwintered for a number of years [76]. It was speculated that
this sub-lineage was transferred between Mediterranean countries by viremic birds,
resulting in the initiation of new outbreaks. A second closely related sub-lineage included
viruses isolated from Romania and Russia, while a more divergent sub-lineage was
responsible for outbreaks in Israel (and North America). It is likely that each sub-lineage
represents a separate introduction of WNV into Europe from Africa [31].

WNYV lineage 2 was first detected in Europe in 2004 and was isolated from the brain
of a goshawk (Accipiter gentiles) in Hungary [28]. Retrospectively, a human case of WNV
lineage 2 infection was confirmed to have occurred in Russia in the same year [77].
Following surveillance of dead birds of prey, especially goshawks, between 2004 and 2009,
led to repeated isolations of the virus across Hungary [30]. Outbreaks of WNV lineage 2
subsequently occurred in a number of other European countries, including Austria, Greece,
Romania, Serbia and Italy, of which the outbreak in Greece was particularly severe. The
virus was first detected there in 2010 [78] in northern Greece, which, in contrast to the
emergence in Hungary, developed into a significant human epidemic. The majority of cases
were reported west of the city Thessaloniki, between the rivers Axios and Aliakmonas. In
total, 262 patients were recorded, with 65 classified as West Nile fever and 197 as
neurological cases, of which 33 died [79]. Subsequent surveillance resulted in the isolation
of WNV lineage 2 from mosquitoes, giving rise to the Nea Santa-Greece 2010 strain [80],
and from wild resident birds [81]. Retrospective serology in humans suggests that this
virus, or at least a closely related one, had been circulating in Greece for several years prior
to the first human cases of WN fever [78]. This seropositivity was at a low level of <1%,
however, and was not accompanied by reports of disease. Following the 2010 outbreak,
further epidemics of WNV lineage 2 infections in Greece occurred during the late summer
of both 2011 and 2012 [82, 83]. Sequencing of viruses detected in humans has confirmed
that the same virus strain was present in both humans and wildlife in each subsequent year,
suggesting endemic persistence of WNV lineage 2 in Greece. So far, this strain appears to
cause disease in humans, and infects wild avian species as determined by serological and
molecular surveillance [81], but with relatively few confirmed reports of disease in equine
species [31] and few confirmed deaths among birds.

WNV lineage 1 has been present in Italy since at least 1998, when the virus was first
detected during an outbreak in horses, in which 14 animals had tested positive for WNV,
with 6 fatal cases [84]. Subsequent evidence of seroconversions in sentinel horses and
chickens was found in different risk areas under serosurveillance in the following years, but
no infections in humans were recorded. The first human cases of neuroinvasive disease
appeared a decade later affecting eight provinces in three Northern regions of Italy (Emilia
Romagna, Veneto, Lombardy) in September-October 2008 [85, 86], where a total of 794
cases of WNV infection in 251 equine stables were detected on the basis of clinical signs
and as a result of serological screening [87]. In addition, wild birds captured or found dead,
including European magpies (Pica pica), carrion crows (Corvus corone), rock pigeons
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(Columba livia) and Eurasian jays (Garrulus glandarius) were found positive by RT-PCR
[87-89], and nine human cases of WNV, which included four characterized by
neuroinvasive disease, were detected in 2008 [90-92]. In 2009, a new epidemic emerged in
the same area as that of the 2008 outbreak, but with new foci of infection in Central Italy.
Since then, WNV lineage 1 has become endemic in Italy, and is often detected in humans,
horses, wild birds, mosquitoes and sentinel chickens, with most WNV epidemic activity
localized in the northeastern part of Italy [86].

Interestingly, the first case of a WNV lineage 2 infection in Italy, in the coastal town
of Ancona on the Adriatic Sea, was reported in 2011 [93], a year after the first detection in
Greece. Shortly after this, six cases of neurological disease resulting from a WNV lineage 2
infection were reported in Sardinia between September and October, 2011 [94], and
mosquito surveillance also detected a lineage 2 WNV strain in Cx. pipiens mosquito pools
and in a collared dove (Streptopelia decaocto) in northern Italy [95], where lineage 1 has
been circulating since 2008 [86]. WNV lineage 2 in Italy continued to be detected in
subsequent years, including in more human cases [86, 95]. The presence of a lineage 2
strain in the same area where a lineage 1 strain is still circulating could potentially create a
new scenario with unpredictable consequences [95].

3. Virulence

The virulence of WNV is mostly associated with its capacity to invade the nervous system
(neuroinvasiveness), its ability to infect neurons and spread within the CNS (neurotropism),
and its tendency to cause disease through infection of the nervous system (neurovirulence).
Even though a neurovirulent virus is usually neuroinvasive, it does not always indicate that
the virus is neurotropic [96] as it may cause disease by triggering immunopathologic
responses. Furthermore, neuroinvasiveness does not always lead to neurovirulence [96] as a
virus may infect the brain without causing disease. As a result, the virulence of WNV
appears to be quite complex and WNV strains may therefore possess varying degrees of
virulence, which may be caused by different underlying mechanisms.

3.1. Molecular basis of virulence

The ability of WNV to persist and cause disease within the host largely depends on its
ability to infect target cells and evade recognition by the immune system. Particular
biological aspects of WNV facilitate its capacity to cause severe disease. Firstly, WNV is
able to productively infect diverse cell populations from many animal species, which
suggests the use of multiple and/or well-conserved receptors [97-103]. Secondly, in vitro,
WNV is cytolytic and induces apoptosis in a variety of cell types, most importantly neurons
[104, 105]. There are several cases in which WNV has been found to cause neuronal
necrosis in vivo, in for example, wolves [106], large falcons [107], raptors [108], squirrels
[109], dogs [110], horses [111] and humans [112]. Studies have indicated that individual
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WNV proteins may contribute to virus-mediated cytotoxicity and may therefore function as
virulence factors. For example, in vitro expression of NS3 or capsid protein induced rapid,
caspase-dependent apoptosis, and in vivo capsid protein expression led to cell death [113,
114]. Further details on mechanisms of cell death will be discussed below, in the section
Pathogenesis.

Genetic variation also influences WNV virulence. Several mutations have been found
to increase or reduce virus pathogenicity via various mechanisms. Of these, some appear to
have a major impact on the replication mechanisms of WNV. Beasley et al. found that
mutations in the envelope protein at residues 154 to 156, which abolished the N-linked
glycosylation motif (N-Y-S/T), attenuated virus pathogenicity for mice. In fact, it was
hypothesized that the enhanced virulence of North American strains of WNV compared to
Old World lineage 1 strains was at least partly related to this envelope protein glycosylation
[115]. They in particular appear to alter the protein such that it cannot be recognized by
oligosaccharyl-transferase, resulting in a loss of glycan [116]. This glycosylation motif is
common to various flaviviruses and spatially it is located close to the center of the fusion
peptide of domain (D) Il (which is one of the three structural domains (DI-I1I) of the E
protein [117, 118]), and has therefore been proposed to increase the stability of the protein
[119, 120], including at high temperatures [121]. Beasley et al. therefore hypothesized that
the decreased neuroinvasive potential of non-glycosylated variants of WNV is due to their
lower stability, which results in less infectious virus in the periphery. This dose of
“infectious virus” additionally contains a larger proportion of noninfectious virus, which
acts as an inactivated antigen that can significantly stimulate innate and adaptive immune
responses. Nonetheless, it is also possible that E glycosylation may have an effect on other
aspects of the WNV replication cycle, such as target cell tropism, virion assembly and
release, and efficient fusion of E protein with target cell membranes [115].

Glycosylation was also found to be important for virus replication in a bird model as E
glycosylated WNV variants inoculated into young chicks were more virulent and replicated
to higher viremia titers than non-glycosylated variants. Furthermore, glycosylated variants
also showed more heat-stable propagation in mammalian (BHK) and avian (QT6) cells.
Interestingly this phenomenon was not seen in mosquito (C6/36) cells [121]. E-protein
glycosylation may therefore also be a requirement for efficient transmission of WNV from
avian hosts to mosquito vectors.

Contrastingly, however, when Moudy et al. mutated the E protein glycosylation site
from NYS to 1YS in a full-length clone of the NY99 genotype, which resulted in a virus
lacking the glycan at aal54 (WNV-N154l), they found that this mutant replicated less
efficiently than WNV-WT in Culex mosquito tissues, although the decrease was more
profound in Cx. pipiens than in Cx. tarsalis. Furthermore, following peroral infection,
mosquitoes infected with WNV-N1541 were less likely to transmit the virus than those
infected with the WT [122]. The contradicting results between the studies by Murata et al.
and Moudy et al. may be due to the fact that the former generated non-glycosylated variants
by specifically mutating aal56 to NYP for one variant, and to NYE for another variant,
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while the latter mutated the site from NYS to 1YS. It is therefore possible that very specific
differences in amino acid sequence have an effect on viral propagation and dissemination in
vector mosquitoes.

Interestingly, multiple amino acid changes at the first glycosylation motif in the NS1
protein also attenuated mouse neuroinvasiveness. Specifically, mutants lacking
glycosylation at either two or three of the three NS1 glycosylation sites (residues 130, 175,
and 203) induced lower viremia and decreased lethality in mice [123]. Additionally
mutating all three amino acids of the NS1i30.132 glycosylation motif (NTT-QQA) gave the
most attenuated strain out of several mutants harboring different mutations in the NS1
glycosylation motif [124]. It therefore appears that substituting amino acids in WNV E as
well as in NS1 glycosylation sites can result in a virus with a highly attenuated phenotype.
A follow-up study using confocal and transmission electron microcroscopy (TEM) found
that the lack of attenuation is due to a lack of NS1 glycosylation that blocks efficient
replication, maturation, and NS1 secretion from the ER, resulting in changes to the virus-
induced ultrastructure [125].

Most of the virulent lineage 1 strains, as well as the recent virulent lineage 2 strains
associated with the Greek outbreak possess the N-glycosylation site, which could implicate
it as a prerequisite for the efficient circulation and amplification of the virus in a mosquito-
avian transmission cycle [81, 126]. However, the role of the NS3 protein in the propagation
of virus between birds and mosquitoes can also not be excluded. The NS3 protein contains
a serine protease at the N-terminal and the RNA helicase, an NTPase and an RTPase at the
C-terminal. Mutations in this protein have so far been found to have the most profound
effect on the virulence of WNV in birds. Specifically, the introduction of a T249P in an
attenuated Kenyan strain was found to be sufficient to generate a phenotype highly virulent
to American crows, while a P249T introduction in the virulent NY99 strain resulted in an
attenuated phenotype [127]. The H249P mutation in the Greek strain that caused the major
WNV disease outbreak in 2010-2011 in Greece, where it was detected in mosquito pools,
corvids and chickens, is considered a contributor to the observed increase in virulence of
this lineage 2 strain, as all other lineage 2 strains contain a histidine at this position [126,
128]. It is therefore possible that both the N-glycosylation site and the presence of a proline
at NS3-249 play a (simultaneous) role in the emergence of virulent strains of WNV.

The exact mechanism through which the NS3-249P mutation would increase the
pathogenicity of WNV is unknown. It is possible that the proline mutation enhances RNA
helicase function, resulting in an increased replication rate, leading to high viremia titers
that may help surpass the bird viremia threshold required for infection of many mosquito
species vectors (> 10° PFU/mL) [129]. Brault et al. did observe that the helicase activity on
the uwinding of short dsSRNA by alternative WNV NS3-249 helicase proteins differed
between amino acid substitutions (249A, 249D, 249H, 249P, 249T); however, they found
that the proline and threonine point mutations separated >80% of the dsRNA strands, while
the NS3-249 proteins containing the alanine and histidine residues unwound more of the
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dsRNA strands (>95%). As a result, these differences did not correlate well with the in vivo
effects observed in American crows, where the 249P mutant replicates to higher viremia
titers [130]. However, further helicase analysis under more biologically relevant
temperatures (< 43°C) [131] may provide more insight in this matter.

WNV has also evolved certain strategies to avoid and/or attenuate innate and adaptive
immune responses. The whole family of Flaviviridae is largely resistant to the antiviral
effects of IFN as soon as cellular infection is established. In particular the flavivirus
nonstructural proteins NS2A, NS2B, NS3, NS4A, NS4B and NS5 have been found to
disable IFN-induced responses at multiple stages within the cell by delayed IRF-3
activation and IFN-B gene transcription, as well as by impairing JAK1 and Tyk2
phosphorylation [132-138]. In particular for WNV, the ability to control the host IFN
response has been linked to the replication fitness and virulence of lineage 1 and 2 strains,
as a pathogenic lineage 1 Texas isolate actively antagonized IFN signaling, whereas an
attenuated lineage 2 strain from Madagascar did not have this ability [139]. However, the
reduced replication and virulence of the lineage 2 isolate was restored in cells and mice
lacking the IFN-a/BR. It therefore appears that inhibition of type I IFN responses are a key
feature in the evolution of pathogenic WNV strains. Consistent with this, a mutation
(A30P) in the NS2A of the Kunjin subtype WNV strain was found to reduce the ability of
the virus to inhibit the IFN response, leading to increased levels of IFN synthesis in
weanling mice, as well as attenuated neurovirulence [140]. Interestingly, introducing this
mutation into a North American (lineage 1) strain did not lead to significant changes in
phenotype, indicating that in many cases the effect of particular mutations can be virus
strain-specific [141].

Several other non-structural proteins have been implicated in virulence. For example,
a study has shown that substitution of cysteine with serine at position 102 of NS4B
(Cys102Ser) leads to a high temperature-sensitive phenotype as well as attenuation of the
neuroinvasive and neurovirulent phenotypes in mice [142]. The first 125 amino acids of the
N-terminal of the NS4B protein of flaviviruses appear to be sufficient for the inhibition of
IFN-a/p signaling [138], and a mutation located in this region of WNV may therefore
interfere with the ability of the virus to inhibit IFN signaling.

Another mutation in NS4B, E249G, also attenuated viral pathogenicity, as
recombinant E249G virus exhibited smaller plaques, slower growth kinetics, and lower
RNA synthesis than the WT in vitro, with the greatest difference in rodent cells (C3H/He
and BHK-21) and the least difference in mosquito cells (C6/36). In addition, mice
experienced no lethality upon inoculation with this virus [143]. A study examining an
NS4B-P38G mutation also observed no lethality in a mouse model, as well as a lower level
of viremia. Furthermore, mutant NS4B-P38G infected in cultured bone marrow-derived
dendritic cells (DCs) exhibited a reduced replication rate but a higher level of innate
cytokine production than WT WNV. This was shown to be related to the induction of
higher innate and adaptive immune responses in mice, with specifically higher type | IFNs
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and IL-1p levels and stronger memory and effector T cell responses. It therefore appears
that the NS4B-P38G mutant strain induces faster and higher protective innate and adaptive
immune responses in mice, which results in a lower viremia and no lethality [144].

Theoretically, amino acid changes that are considered to have a potential effect on the
secondary structure of the proteins include substitutions of hydrophilic to hydrophobic
amino acids or vice versa, and also substitutions of cysteine, glycine, and proline residues
[145]. A study examining complete genome sequences of lineage 2 WNV strains isolated
from patients in South Africa that had suffered mild or severe disease recognized that these
kind of substitutions at NS3 (S160A and R298G), NS4A (A79T) and NS5 protein (T614P,
M625R, M626R) were present in strains of high virulence [146]. They therefore concluded
that mutations in the NS proteins encoding viral replication and protein cleavage
mechanisms are the most likely determinants of differences in virulence.

Flaviviruses have a low-fidelity RNA-dependent RNA polymerase that leads to the
generation of quasispecies. This is because viral RNA polymerases exhibit
characteristically low fidelity mutation rates of approximately 10 mutations per nucleotide
copied, which is much greater than those of nearly all DNA-based viruses and organisms
[147-149]. Given the large population sizes observed in both experimental and natural
infections, it has been estimated that every possible point mutation and many double
mutations are generated during each viral replication cycle and may therefore be present
within the population at any given time [150]. Even a defined molecular clone will rapidly
transform into a collection of related sequences when introduced into cells. This collection
is termed the quasispecies and is organized around a master sequence [151].

WNV has also been demonstrated to exist as quasispecies in nature. WNV was
sampled from ten infected birds and ten infected mosquito pools during the peak of the
2003 transmission season in New York State. Analysis of the E and NS1 revealed that
WNYV infections are derived from a genetically diverse population of genomes, with WNV
sequences in mosquitoes being significantly more diverse compared to those in birds. Non-
consensus clones obtained from two avian specimens were genetically highly similar,
which suggests that WNV genetic diversity may be maintained throughout the enzootic
transmission cycle, rather than arising independently during each infection [152].

In a follow-up study, the mutant spectra that arose as a result of 20 serial in vivo passages in
Cx. pipiens and young chickens was examined in order to determine the impact of
mosquitoes and birds on intra-host WNV population dynamics. Genetic diversity was found
to be greater in mosquito-passaged WNV compared to chicken-passaged WNV.
Furthermore, mortality in mice was significantly negatively correlated with the size of the
WNV mutant spectrum, in the sense that the more variable mosquito-passed strains were
less pathogenic to mice while the genetically more homogenous chicken-passed strains
were as virulent as the parental unpassed WNYV. Together these studies suggest that
mosquitoes serve as sources for WNV genetic diversity, that birds are selective sieves, and
that both the consensus sequence and the mutant spectrum contribute to the WNV

20



phenotype [153]. It is also tempting to speculate that the antigenic variation exerted by
quasispecies allows escape from antibody-mediated neutralization [154], as it is possible
for strains with mutations at the dominant neutralizing epitope in DIII to emerge [155].

3.2. Host genetic determinants of WNV susceptibility

A small number of genetic risk factors have been linked to increased susceptibility to
WNV, and may explain why a certain number of individuals may progress to paralysis,
meningitis, and/or encephalitis after WNV infection. In inbred mouse strains, a truncated
form of the gene for OAS1b has been mapped to susceptibility to infection by flaviviruses
[156, 157]. For humans, a recent study with 33 WNV-infected patients showed an increased
frequency of an OAS splice-enhancer site that could give a dominant-negative protein
[158]. Furthermore, a study by Lim et al. suggests that a hypomorphic allele of the OAS1
human ortholog is associated with both symptomatic and asymptomatic WNV infection
[159]. However, an actual analogous deletion in humans linked to severe WNV infection
has not been identified yet.

Experiments in animals have established that chemokines direct leukocytes to the
brain to clear WNV from infected neurons and promote survival, as a genetic deficiency of
the chemokine receptor CCR5 or the chemokine CXCL10 in mice was associated with
depressed leukocyte trafficking, increased viral burden, and enhanced mortality [160, 161].
Interestingly, a study examining CCR5A32 (a relatively common mutant allele of the
chemokine receptor CCR5) in WNV-infected cohorts found a greater incidence of
CCR5A32 homozygosity in symptomatic and lethal WNV cases. In fact, even though only
about 1% of the general United States population is homozygous for the CCR5A32 allele,
4%-8% of individuals with laboratory-confirmed symptomatic WNV infection were
homozygous for the mutant allele. These studies therefore suggest that CCR5 may function
as an essential host factor for the resistance of neuroinvasive WNV infection [162].
Ultimately this may also have implications for the use of CCR5 antagonists in HIV therapy,
as it could imply that HIV patients are more susceptible to WNV.

4. Pathogenesis

Despite the significance of central nervous system (CNS) pathology in severe disease, the
mechanisms by which WNV and other encephalitic flaviviruses cause neurological signs
and symptoms in vivo have not been completely elucidated. The increased risk for
immunosuppressed patients seems to suggest that an intact immune system is essential for
the control of WNV infection. Even though peripheral immune responses to WNV can
prevent encephalitis, up to 40% of immunocompetent animals infected with a virulent strain
of WNV develop lethal neuroinvasive disease [163, 164]. As a result, the involvement of
the immune system in the pathogenesis of such cases cannot be excluded.
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Most of the knowledge regarding the mechanisms of WNV dissemination and
pathogenesis is derived from studies using rodent models. It is believed that after a
mosquito bite WNV infects keratinocytes [165] and Langerhans cells (LC), of which the
latter migrate to regional lymph nodes where initial replication occurs [166-170]. WNV
then spreads systemically to visceral organs, such as the kidney and spleen, where a second
round of replication takes place, presumably in epithelial cells and macrophages
respectively [171]. WNV can then enter the brain, probably via the blood-brain barrier
(BBB) or another unconfirmed mechanism (as discussed below), and cause meningo-
encephalitis. The envelope glycoprotein of WNV has been implicated in neuroinvasiveness,
particularly DIII of the protein, which constitutes the receptor binding domain [172-174].

It is interesting to note that several other flaviviruses are known to cause neuroinvasive
disease, but little is known about the pathogenic mechanisms. Studies of flaviviruses that
rarely cause neuroinvasive disease may contribute to a better understanding of the
mechanisms involved in viral entry of the brain. For instance, infection with DENV, one of
the most important arboviruses of humans, may result in severe systemic disease,
manifested as haemorrhagic or shock syndrome [175], but this virus is generally considered
non-neurotropic. Recent observations, however, indicate that the clinical profile of DENV
infection may be changing, as neurological manifestations are becoming more frequent
[176, 177].

4.1. Crossing the Blood-brain-barrier (BBB)

The BBB is a diffusion barrier that impedes the influx of compounds from blood to brain. It
is made up of three cellular elements, namely endothelial cells on the capillary basement
membrane (BM), astrocyte end-feet that ensheath the vessels, and pericytes (PCs) that are
embedded in the BM. Tight junctions (TJs) are present between the cerebral endothelial
cells and form the diffusion barrier, which selectively prevents most blood-borne
substances from entering the brain. Lastly, the CNS is populated by three different glial cell
populations: (1) astrocytes, (2) microglia, and (3) oligodendrocytes, which form the
immune system in the brain.

In mice, WNV crosses the BBB and infects the CNS after peak viremia (around day 3)
[178]. How WNV is able to enter the CNS is not completely understood, but several
mechanisms have been proposed: (i) infection or passive transport through the endothelium
or choroid plexus epithelial cells (Wang, 2004, hypothesized only), (ii) infection of
olfactory neurons and spread to the olfactory bulb [179-181], (iii) a “Trojan horse”
mechanism in which the virus is transported by infected immune cells trafficking to the
CNS [99], and (iv) direct axonal retrograde transport from infected peripheral neurons [182,
183]. Even though the cited studies provide indications that such mechanisms may indeed
be employed by the virus to enter the brain, the majority of the studies do not provide actual
clear evidence in support of these hypotheses, as the majority of the conclusions are based
on an over-represented amount of in vitro experiments that lack adequate in vivo validations
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as support. As a result, several gaps remain in the hypothesized routes of WNV
neuroinvasion and need to be investigated further; in addition to the investigation of
alternative routes of neuroinvasion that have thus far received little attention, such as the
role of the arachnoid (meningeal barrier) [184].

In fatal human cases, WNV is most often detected in neurons in the cerebral cortex,
thalamus, brainstem, basal ganglia, cerebellum, and spinal cord (mainly anterior horn), and
in some cases, infection has been detected in the olfactory bulb and hippocampus [185]
(Figure 2). WNV has been detected in the same regions of the brain of experimentally
infected mice as in humans, indicating a similar tropism of WNV in humans and mice
[184]. Histological analysis of samples from fatal human cases also provided evidence of
gliosis, indicating involvement of microglial cells and astrocytes during WNV infection.
Overall, in vitro experiments have shown that WNV can infect primary neurons, human and
mouse neuroblastoma cells [104, 105, 186], human brain cortical astrocytes (HBCA),
human brain microvascular endothelial cells (HBMVE) [187, 188], and oligodendrocytes
[189], while infection of microglia resulted in low viral yield [187]. So far, animal
experiments have only shown infection of neurons by WNV [103, 112, 190, 191] and have
provided limited evidence of in vivo glial cell infection.

A study performed by Verma et al. using HBMVE cells and HBCA, showed that
several matrix metalloproteinases (MMPs), which are produced by monocytes and glia cells
and appear to be involved in the migration of leukocytes to the perivascular space as well as
migration through the glia limitans [192], were significantly induced in WNV-infected
HBCA cells [188]. Incubation of naive HBMVE cells with the supernatant from WNV-
infected HBCA cells resulted in loss of tight junctions. These data provided evidence that
astrocytes represent a source of MMP in the brain, which may lead to disruption of the
BBB. Degradation of components of the glia limitans is another mechanism facilitating
migration of leukocytes into the brain parenchyma. Collagen (a component of glia limitans)
could be degraded by extracellular proteases such as the cysteine protease cathepsins K, S,
and L [193, 194], whereas conversion of plasminogen into plasmin may lead to degradation
of laminin or fibronectin, other important components of the glia limitans [193, 195]. When
the integrity of the BBB is compromised, immune cells may enter the brain, thereby
contributing to WNV viral clearance and immune mediated damage.
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. Most frequently infected
. Less frequently infected

Figure 2. Frequency of infection of several regions of the human brain by West Nile virus
(Lim al., 2011)

4.2. Mechanisms of Cell Death upon Infection

Programmed cell death can be considered a defense mechanism of the host in response to
pathogenic insults. Pathogens may induce cell death to the host either by direct infection of
host cells (e.g. cytolytic viruses) or by releasing toxic products (e.g. bacterial toxins). Cell
death has been generally divided into necrosis, which is accidental, uncontrolled cell death
resulting in an inflammatory response, and programmed cell death, a regulated and
controlled process that has traditionally been considered to be non-inflammatory. Even
though programmed cell death is often used as a synonym for apoptosis, it is more
accurately described as cell death that is dependent on genetically encoded signals or
activities within the dying cell [196, 197]. No cellular activity is required as acute cell
breakdown occurs as a result of the direct action of a damaging stimulus, and programmed
cell death is therefore only prevented by the absence of this stimulus [196].

Recent studies have revealed several pathways that lead to programmed cell death:
apoptosis, pyroptosis, autophagy and oncosis [198]. Apoptosis is mediated by a subset of
cysteine-dependent aspartate specific proteases, or caspases, which can be divided into two
functional subgroups: initiator caspases (caspase-2, -8, -9, and -10) are mainly involved in
activation of the effector caspases-3, -6, and -7, which cleave a variety of cellular
substrates. Apoptosis involves nuclear and cytoplasmic condensation and formation of
membrane-bound cellular fragments or apoptotic bodies. During viral infection,
programmed cell death has an antiviral effect by inducing the death of infected cells.
However, cell death can also have pathological effects if it occurs in non-renewing cell
populations, such as neurons, or late in the process.
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Many studies have shown that WNV induces replication-dependent apoptosis in vitro,
and it has been hypothesized that virus-induced apoptosis contributes to neuronal death and
the pathogenesis of encephalic flaviviruses [104, 114, 199, 200]. Experiments in mice have
been performed to analyze the occurrence of apoptosis in vivo. Most studies used the
terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL)
staining, which detects DNA fragmentation, to confirm that apoptosis occurred in the CNS
of WNV-infected mice.

Recently, evidence has been provided that the cell death of WNV-infected neurons is
caspase-3 dependent [201]. It was shown that WNYV infection induced caspase-3 activation
and apoptosis in the brains of wild-type mice, while congenic caspase-3-/- mice were more
resistant to lethal WNV infection. It is interesting to note that no significant differences in
the tissue viral burdens or the kinetics of viral spread were found, but decreased neuronal
death was observed in the cerebral cortices, brain stems, and cerebella of caspase-3-/- mice.
Consistently, primary neurons derived from the CNS of wild-type mice showed caspase-3
activation and induction of apoptosis after WNV infection, and treatment with caspase
inhibitors resulted in a significant decrease in virus-induced cell death. Nonetheless, a
deficiency in caspase-3 did not completely protect neurons from WNV-mediated death in
vitro or in vivo, indicating that caspase-3-independent pathways also contribute to WNV
pathogenesis. For example, it is possible that the activation of non-caspase proteases, such
as calphain and cathepsin family proteins, is also triggered during WNV infection [202,
203].

Yang et al. (2002) showed that direct expression of the WNV capsid protein in the
striatum of mouse brain or interskeletal muscle caused cell death and inflammation [114].
Similar effects were observed in cultured, SH-SY5Y neuroblastoma cells, which could
eventually be attributed to capsid-induced apoptosis occurring via the mitochondrial
pathway, involving caspase-9 and caspase-3 activation. These studies suggest a role for the
capsid protein of WNV in viral pathogenesis through the induction of the apoptotic
cascade. No role for alternative cell death pathways, such as pyroptosis, parthanatos or
necroptosis, has yet been described in the pathogenesis of WNV. However, WNV has been
shown to induce necrosis in vitro in cells exposed to very high viral inocula [204]. More
effort should be deployed to define the different cell death pathways involved in the
pathogenesis of severe WNV neuroinvasive disease.

The function of caspase-12 in viral immunity has not received much attention.
Previously, it was shown that caspase-12 plays a role in endoplasmic reticulum stress-
induced apoptosis in response to amyloid toxicity [205]. Wang et al. found that caspase-12-
deficient mice had greater mortality, higher viral burden in peripheral (serum, lung, spleen)
and neural (brain, cerebellum, spinal cord) tissues, and a defective type | interferon
response after WNV challenge compared to wild-type mice [206]. In vitro studies of
primary neurons and mouse embryonic fibroblasts further demonstrated that caspase-12
positively modulated the production of type | interferon by regulating E3 ubiquitin ligase
TRIM25-mediated ubiquitination of RIG-1, which is a critical signaling event for the type |
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interferon response to WNV and other viral pathogens. Alternatively, high levels of WNV
non-structural (e.g. WNV-NS2A, 2B, 4A, 4B) or glycoprotein (WNV-E) may result in
endoplasmic reticulum (ER) stress and unfolded protein response induction, resulting in
apoptosis [207].

4.3. Immunopathology

How much cell injury can be attributed to viral cytopathology and how much to the
inflammatory response is not known. Infection of neurons with WNV leads to the induction
of several cytokines and chemokines, which promote leukocyte invasion into the CNS and
neuroinflammation [161, 208]. However, the extent to which this inflammation contributes
to disease pathology remains unclear. In particular, the relative contribution of neurons to
inflammation is subject of intensive research.

Recently, it has been shown that WNV induced the expression of IL-1p, -6, -8, and
tumor necrosis factor (TNF)-a in human neuroblastoma SK-N-SH cells in a dose- and time-
dependent manner, which coincided with increase in virus-induced cell death [209].
Treating cells with anti-IL-1B or anti-TNF-o resulted in a significant reduction of the
neurotoxic effects of WNV. When naive astrocytes were treated with UV-inactivated
supernatant from WNV-infected SK-N-SH cells, expression of glial fibrillary acidic protein
(GFAP) and key inflammatory cytokines were increased. These results suggest that neurons
are a source of pro-inflammatory cytokines in WNV-infected brain, and that pro-
inflammatory mediators are one of the main factors driving WNV-induced neurotoxicity.
Recent studies with Japanese encephalitis virus (JEV; a closely related neurotropic
flavivirus) also support a role of TNF-a in cell death, as increased expression of TNF-a
receptors in neurons directly resulted in the initiation of death cascade via tumor necrosis
factor receptor type 1-associated DEATH domain protein [210].

In animal models of JEV there is some evidence that activation of microglial cells
plays a role in the pathogenesis of encephalitis through the action of pro-inflammatory
mediators, which induce neuronal cell death [211]. Although reactive gliosis (activation of
astrocytes and microglia) has been reported in WNV neuroinvasive disease and is
considered a key pathogenic feature [212-214], the extent to which infection of glial cells
contributes to WNV-induced neurological disease has never been fully investigated. It is
believed that collateral damage is mediated by inflammatory factors that are either
neurotoxic or attract leukocytes into the affected area, which results in a detrimental
inflammatory milieu.

Murine infection models have provided substantial evidence that Toll-like receptor 3
(TLR3) is involved in WNV immunopathogenesis. Firstly, Wang and colleagues
demonstrated that mice deficient in TLR3 experienced a reduced viral load and a reduced
production of antiviral and pro-inflammatory cytokines, as well as reduced mortality rate
upon intraperitoneal WNV challenge [215]. Specifically, the reduced production of the pro-
inflammatory cytokines TNF-a and IL-6 by microglia was associated with their inability to
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promote injury of neuron-like cells and primary mouse neurons, whereas wild-type
microglia released inflammatory cytokines and induced neurotoxicity. The authors
hypothesized that the reduced peripheral inflammatory responses, with in particular TNF-a,
which has a detrimental effect on the permeability of the BBB, is in particular responsible
for the enhanced survival shown by TLR3-deficient mice. These results suggest that the
presence of TLR3 plays an important role in neuroinvasion. A later study, on the other
hand, showed the opposite, namely that a lack of TLR3 enhanced viral replication in
neurons, both in vitro and in vivo. As a result, TLR3 may limit WNV infection in a cell-
type restricted manner [216]. This is supported by another in vitro study, which
demonstrated that TLR3 may be dispensable for WNV recognition in certain cell types
[217].

Interestingly, observational studies suggest that macrophages from young individuals
can down regulate TLR3 following infection with WNV, whereas macrophages of the
elderly cannot [218]. Therefore, it has been hypothesized that failure to down regulate
TLR3 in infected cells results in production of high levels of pro-inflammatory and
vasculogenic cytokines, which may lead to increased BBB permeability. This could
partially explain the increased severity of WNV infection observed in older individuals.
Nonetheless, the role of TLR in immunopathogenesis remains controversial.

A study conducted by van Marle et al. using fatal cases of human WNV encephalitis
suggested that WNV infects both neurons and glia cells, and that infection of these cells, in
particular astrocytes, contributed to neuronal death by releasing neurotoxic mediators [208].
This study also showed induction of neuroinflammatory genes, where a subset of these
genes was specifically induced by the capsid protein of WNV. Particularly CXCL10, IL-1p
and indolamine-2’,3’-deoxygenase (IDO) were shown to be over-expressed in astrocytes ex
vivo and in vivo. Interestingly, production of CXCL10 by astrocytes has also been
implicated in the neuropathogenesis of other viral infections, such as human
immunodeficiency virus [218-222]. Nonetheless, further studies are needed to define the
genetic programs associated with neuroprotection or the neurotoxic action of glial cells
during WNV infection.

Recently, a paradoxical role for neutrophils in WNV pathogenesis has been described.
When Bai et al. investigated the role of chemokines in WNV pathogenesis by infecting
macrophages from mice with WNV, they found that expression of CXCL1 and CXCL2,
which are two CXC-type chemokines that induce the migration of neutrophils, was
dramatically up-regulated [223]. In addition, neutrophils were found to be the most
abundant cell type in the peritoneal cavity as early as 12 hours after WNV inoculation.
These results suggest that neutrophils are the predominant immune cells that are initially
and rapidly recruited to sites of infection with WNV. Contrastingly, however, mice
depleted of neutrophils had significantly lower WNV in their blood on day 2 or 3 after
infection, and increased survival rates were seen. In contrast, when mice were infected with
WNV before the depletion of neutrophils on days 1 and 2 after infection, they showed
higher levels of viral load as well as reduced survival rates. The authors concluded that
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WNV may replicate in neutrophils and increase WNV load in blood early in infection, but
that in the later course of infection these cells contribute to the control of infection.
Although these results should be confirmed, it is tempting to speculate that neutrophils play
a critical role in WNV replication and dissemination in vivo, especially in humans that have
neutrophils as the predominant cell type in blood.

5. Adaptive immune responses against severe WNV infection

Most of the neutralizing antibodies against flaviviruses recognize the structural E protein,
even though a subset binds to the prM/M [224-227]. Interestingly, antibodies to the NS1
protein, which is not part of the virion, are also protective against WNV in vivo [228, 229].
Also antibody responses to the intracellular proteins NS3 and NS5 have been observed
during WNV infection [230], but their significance remains uncertain. Most of the potent
neutralizing antibodies against WNV recognize the upper lateral surface of DIII that is
protruding off the surface of the virion [172, 231, 232]. Even though humans can produce
antibodies of this specificity in response to natural infection [233], studies have indicated
that the human humoral immune response to WNV infection is actually narrower than
anticipated, with the specificity of the antibody focused on determinants around the fusion
loop at the tip of DII. In fact, B-cell repertoire analysis of three WNV-infected humans
showed that only 8% of WNV-specific B-cell clones produced antibodies to DIII, while
almost half produced antibody that bound to determinants in DII, particular the fusion loop
[234]. Moreover, functional studies of the polyclonal response of WNV-infected horses and
humans revealed that the neutralization activity of sera is actually not dependent upon
antibodies directed against the DIll-lateral ridge (Ir) epitope [233, 235].

It has been recognized that the elderly and immunocompromised are especially at risk
for disseminated WNV infection and for developing fatal encephalitis. Even though there
have been several indications, as mentioned earlier, the exact basis for the increased
susceptibility in the elderly remains unclear. Nonetheless, experiments with mice have also
begun to elucidate the role of the different components of the innate and adaptive immune
response in controlling infection, in particular the role of immunoglobulin M (IgM), CD4+
and CD8+ T cells. It is believed that changes in both innate and adaptive immune function
converge in the reduced response to vaccination and protection against infection in the
elderly [236]. For instance, the decline in thymic output of naive T cells diminishes
responses to novel antigens, such as WNV, while clonal expansions leading to defects in
the T cell repertoire are associated with blunted responses of memory T cells to conserved
epitopes of the influenza virus [236].

Use of a well-characterized mouse model of WNV infection, which in many respects
mimics human disease, showed that mice deficient in the production of secreted IgM
(slgM), but still capable of expressing surface IgM were vulnerable to lethal infection, even
after inoculation with low doses of WNV [237]. slgM-/- mice developed higher levels of
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infectious virus in sera compared to wild-type animals. This enhanced viremia correlated
with higher WNV burden in the CNS. Consistently, passive transfer of polyclonal anti-
WNV IgM or IgG protected slgM-/- mice against mortality, while administration of
comparable amounts of a non-neutralizing monoclonal anti-WNV IgM did not provide any
protection. Overall, these results indicate that the induction of a specific, neutralizing IgM
response early in the course of WNV infection limits viremia and dissemination of virus
into the CNS, resulting in protection against lethal infection. Whether the kinetics of the
IgM response to WNV differs between young and the elderly and how it might affect
susceptibility to severe WNV infection in humans is not clear.

Furthermore, it has also been demonstrated that mice with a genetic or acquired
deficiency in CD4+ T lymphocytes display protracted WNV infection in the CNS, leading
to uniform lethality by 50 days after infection [238]. Mice that survived past day 10 had
high-level persistent infection in the CNS compared to wild-type mice, even up to 45 days
after infection. WNV-specific IgM levels decreased about 20-fold at day 15 post-infection
in CD4-deficient mice and 1gG levels were about 100 to 1,000-fold lower throughout the
course of infection compared to wild-type mice. Furthermore, WNV-specific CD8+ T-cell
activation and trafficking to the CNS were markedly compromised at day 15. These results
suggest that the main protective role of CD4+ T cells during primary infection of WNV is
to assist in antibody responses and to sustain WNV-specific CD8+ T cell responses in the
CNS that enable viral clearance.

CD8+ T cells have been shown to directly play a role in controlling WNV infection
and preventing severe disease. When mice lacking CD8+ T cells or classical la major
histocompatibility complex (MHC) antigens were infected with a virulent WNV isolate,
higher viral titers were recovered from the CNS and increased mortality rates were recorded
[239]. In contrast, absence of CD8+ T cells did not affect the quantitative antibody response
and did not alter the kinetics or magnitude of viremia during primary infection.
Interestingly, infectious virus could still be recovered from the CNS of CD8+ T cell-
deficient mice that survived initial WNV challenge for several weeks. However, in spite of
the normal quantitative antibody response, WNV was still able to enter the brain, even
though it has been shown that IgM and IgG are important in preventing dissemination of
WNV into the CNS [237]. These experiments collectively suggest that WNV-specific
antibodies are responsible for reducing viremia and preventing development of severe
disease, while CD8+ T cells play an important role in clearing infection from tissues and
preventing viral persistence. Whether antibodies can prevent neuroinvasion remains to be
determined.

6. Diagnosis of WNV

Even though the majority of people infected with WNV do not suffer from serious disease,
the outcome can be quite severe for the young, elderly and immunocompromised. However,
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if treated quickly, the outlook for West Nile virus recovery can be quite good. As a result, it
is important to diagnose West Nile neuroinvasive disease (WNND) accurately and quickly.
In addition, identifying any case of WNV is important for surveillance, as circulation of the
virus needs to be identified so that important measures can be taken accordingly. Several
diagnostic tools are currently available for the laboratory diagnosis of WNV infections
[240], including many nucleic acid based assays (Table 1). When WNND is suspected, the
diagnosis is generally made by the detection of viral RNA in serum or cerebrospinal fluid
(CSF) samples with real time RT-PCR assays. Detection of the WNV genome in the CSF
or serum during the acute stage of neurological involvement is generally considered to be a
confirmatory diagnostic parameter [241]. When viral RNA is undetectable, identification of
a specific IgM response in either the CSF or serum is accepted as a reliable diagnostic
indicator, and the detection of 1gG (a four-fold or greater increase in the serum) during the
convalescent phase of the infection can subsequently confirm this.

WNV-specific antibodies can be detected by immunofluorescence assay and enzyme
immunoassay (incl. indirect 1gG, IgM antibody-capture and blocking) [240]; however, an
important practical weakness of these techniques is the limited specificity due to the wide-
spread immunological cross-reactions among flaviviruses [242]. As a result, a confirmatory
plaque reduction neutralization test (PRNT) is generally advisable. Unfortunately, due to
the requirement of BSL3 safety conditions [243], only a few laboratories in Europe are able
to routinely perform this confirmatory test. The detection of a specific 1gG response,
usually by enzyme immunoassay, can be valuable in the context of epidemiological studies
as the potential evolving circulation of WNV among humans in Europe can be monitored.

As a response to the emergence of WNV, many countries adopted regulations
regarding blood safety in blood products for direct transfusion. For example, in the USA,
screening for WNV RNA was introduced in 2003 [244]. In Europe, on the other hand, the
Commission Directive 2004/33/EC introduced a temporary 28 days deferral of donors after
leaving an area with ongoing transmission of WNV to humans. Alternatively, blood
donations can be screened using Nucleic Acid Testing (NAT) for WNV [245, 246]. Two
commercially licensed tests are available for the screening of WNV RNAs in both blood
and organ donors [247, 248], of which the first uses real-time RT-PCR, while the second is
based on transcription-mediated amplification technology. A potential concern regarding
the sensitivity of these tests in the detection of WNV in Europe, is the well-documented
genetic variability of the European strains and the recent emergence of human infections
caused by WNV lineage 2 in Europe, which contrasts the more straight-forward North
American situation [93, 249-251].

Fortunately, diagnostic tests are continuously advancing towards improved specificity
and sensitivity. For example, in an effort to improve the detection of lineage 2 viruses,
Linke et al. developed a real-time PCR targeting a conserved region of the 5’-untranslated
region (5’-UTR) and part of the capsid gene of lineage 1 and 2 WNV [252], while Eiden et
al. developed two quantitative RT-PCRs for the detection of lineage 1 and 2 strains using
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primers and probes located in either the 5’-UTR or in NS2a [253]. All assays were able to
detect both lineages with high sensitivity.

Technique Reference

SYBR Green RT-PCR Papin, 2004; Johnson, 2010
TagMan RT-PCR Lanciotti, 2000
TagMan-MGB RT-PCR Chao, 2007

Multiplex RT-PCR Dyer, 2007; Naze, 2009
Molecular beacon RT-PCR Jimenez-Clavero, 2006
RT-PCR/ESI-MS Lee, 2005
RT-PCR/LDR Grant-Klein, 2010
RT-PCR/FRET Rondini, 2008
RT-LAMP Parida, 2004

NASBA Notomi, 2000

Digital PCR Invitrogen

Table 1 Overview of nucleic acid based assays for WNV detection.

7. Prevention

Within Europe, the quality of data concerning the circulation of WNV among vectors, birds
and humans varies between countries. Currently, there are no implemented surveillance
methods or health policies for the application of control measures in the event of disease
outbreaks [254]. However, as precise identification of viral circulation in vectors and
vertebrate hosts within defined geographical areas is essential to defining the risk of WNV
transmission via mosquitoes, blood transfusions and organ donations, ECDC recently
introduced a web-based publication of WNV-affected areas (available at:
http://ecdc.europa.eu/en/healthtopics/west_nile_fever/west-nile-fever-maps/pages/index). On the
basis of these risk maps and the local surveillance data, each European country should be
able to define the areas and seasons for the implementation of vector control measures, as
well as the laboratory screening of blood and organ donations, in order to reduce the risk of
WNYV transmission to humans.

Currently, three licensed equine vaccines against WNV exist for commercial use,
namely a formalin-inactivated, whole West Nile virus, (West Nile Innovator®), another
killed virus vaccine (Vetera® WNV vaccine), and a chimeric recombinant canarypoxvirus
vaccine (Recombitek® Equine West Nile Virus Vaccine) [241]. In contrast, no licensed
vaccination options or other immune prophylaxis for human WNV disease are currently
available. A vaccine preparation developed in the USA (a chimeric vaccine based on the
backbone of Yellow-Fever 17D human vaccine expressing the prM and E genes of the
NY99 strain (ChimeriVax-WNO01)) went successfully through a phase Il trial a few years
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ago; however, the manufacturer decided to stop the development process due to market
uncertainty regarding the potential target population that should receive the vaccine [255].

Nonetheless, many vaccines for WNV that employ different kinds of platforms or
antigens are at early stages of development. The best-known strategy for vaccination uses
purified viral proteins. For example, Martina et al. produced a recombinant domain Il
(rDINI) of the E protein to vaccinate mice, and compared it to a p-propiolactone (BPL)
inactivated WNV vaccine [256]. Neutralizing antibodies against WNV were detected in all
mice and cross-neutralizing 1gG against JEV was also produced. However, survival rates
were lower (80% for WNV and 60% for JEV) in comparison to mice vaccinated with the
BPL inactivated WNV (100% for WNV and 80% for JEV). In fact, even though purified
viral protein vaccines often provide protection against disease in animal models, multiple
injections and/or strong adjuvants are usually required to reach acceptable efficacy. As a
result, many other vaccination platforms are often used for the development of vaccines,
including for WNV.

One common strategy used in WNV vaccination is the recombinant vector vaccine.
For example, Martina et al. evaluated a recombinant influenza virus expressing DIII as a
WNV vaccine candidate in a mouse model. Specifically, the WNV DIII was cloned in the
N-terminal region of the influenza virus neuraminidase (FLU-NA-DIII), which destroys the
functional activity of the influenza protein [257]. Subcutaneous immunization of mice with
the vaccine resulted in high virus-neutralizing and WNV-specific 1gG ELISA titers and a
100% survival rate. Another study created an adenoviral vaccine vector (CAdVax-WNVII)
that expressed WNV proteins C, prM, E and NS1. Despite the proteins being derived from
a lineage 2 virus strain, neutralizing antibodies were produced against both lineage 1 and 2
viruses [258]. In fact, with the emergence of pathogenic lineage 2 strains in Europe, it was
questioned whether the existing WNV vaccines, which are mainly based on lineage 1
strains, would be able to protect against the new circulating lineage 2 strains of WNV.
However, Minke et al. demonstrated that Recombitek® Equine West Nile, a vaccine that
expresses the prM/E genes of lineage 1 in a recombinant canarypox virus, was able to
protect horses against a neurovirulent lineage 2 WNV isolate [259]. Even though the
poxvirus vector Modified Vaccinia Ankara virus (MVA) is a commonly used vaccination
platform, it has not yet been utilized in WNV vaccination studies. This platform will be
discussed in depth in the Discussion section of this thesis.

Another strategy for WNV vaccination is DNA vaccination [260-264]. Davis et al.
were the first to demonstrate that plasmid DNA encoding the WNV membrane and
envelope proteins injected intramuscularly into mice and horses was able to provide
protection against challenge with WNV, resulting in both a humoral response as well as a
strong Thl response [260]. In fact, this study paved the way for the licensing of the first
DNA vaccine for animal use, namely West Nile Innovator® DNA. After this, other
administration routes and carriers for the delivery of WNV DNA vaccines were also
exploited. For example, Dunn et al. evaluated DNA vaccines with derivatives of the WNV
E gene (full length, truncated E or DIII region) that were conjugated to the P28 region of
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the complement protein C3d, vaccinated either intramuscularly or by the gene gun route
[263], while Chang et al. developed a plasmid DNA (pDNA) that after transfection gave
rise to single-round infectious particles (SRIPs) based on WNV [264].

Despite the use of different platforms, a commonly used antigen across platforms is
DIIL. DIl contains predominantly sub-complex- and type-specific epitopes, of which many
induce neutralizing antibodies [118, 265-270]. Many vaccines for WNV based on DIII have
demonstrated immunogenicity and efficacy among different platforms [256, 257, 263, 271-
275]. For example, Spohn et al. chemically coupled recombinantly expressed DIII protein
to VLP derived from bacteriophage AP205 and this conjugate vaccine was found to be
more immunogenic in mice than a mixture of corresponding amounts of free DIII and its
carrier AP205. Moreover, after three injections mice were also fully protected against a
lethal challenge with WNV [273].

Lastly, other vaccination strategies employed for WNV include the use of an
attenuated non-epidemic WNV strain of lineage 2, which was found to be effective against
a virulent epidemic strain of lineage 1 in mice [276]. Another strategy followed by Mason
et al., used a live-attenuated virus, single-cycle WNV (RepliVAX WN) in which the gene
encoding the capsid protein was deleted from the WNV genome. This vaccine induced
protective immunity in mice [277], hamsters [278] and non-human primates [279]. In
addition to the existence of many different types of vaccines in the pre-clinical stages, there
are currently no specific therapeutic treatments for WNV infections. Ribavirin [280],
interferon-a. [281, 282] and WNV-specific immunoglobulin [283, 284] have all been
considered as specific treatments for WNV, yet no rigorously conducted clinical trials have
been completed. As a result, only preventive or supportive care can currently be
administered for WNV disease.
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Aims and scope of this thesis

The once limited geographic and host ranges of many vector-borne diseases are rapidly
expanding. WNV is currently expanding into Southern and Eastern Europe. As a result, it is
necessary to address Europe’s need to prepare for vector-borne diseases such as WNV. This
includes the pursuit of improved ways to monitor the spread of WNV, to diagnose, treat and
also to prevent infections caused by this virus.

The first part of this thesis looks at the virulence and pathogenesis of WNV, which
addresses the question whether the strains circulating in Europe differ in virulence. This
may help to improve Europe’s ability to monitor the spread of WNV infections and provide
a basis for diagnostic and prognostic tools and novel intervention strategies. Chapter 2
compares the neuroinvasive capacity of a selection of WNV strains currently circulating in
Europe. Chapter 3 describes the development and application of a gqRT-PCR assay that
more accurately quantifies replicating WNV and therefore aids in the assessment of
virulence as well as the determination of WNV tropism. Chapter 4 aims to identify
markers of virulence in WNV lineage 2 strains, based on virulence markers known for
lineage 1 strains.

The second part of this thesis focuses on the vertebrate host as part of the enzootic
cycle of WNV, which is aimed at generating knowledge on avian susceptibility that may
lead to important insights necessary for determining the type of surveillance system that
may be appropriate for European countries in order to detect and predict emerging WNV
outbreaks. In Chapter 5, the susceptibility of the European jackdaw is addressed, and in
Chapter 6 the susceptibility of the closely-related Carrion crow.

The third part of this thesis investigates a potential prevention technique that may
eventually be useful as part of an intervention strategy in the preparation of Europe against
WNV. The severity of WNV neuroinvasive disease, the long-term sequelae reported from a
number of cases of infected individuals, as well as the potential negative impact of these
infections on the blood transfusion system may collectively justify the development of a
safe and effective vaccine against WNV. Chapter 7 evaluates the effectiveness of a
vaccine for lineage 1 and 2 WNV based on the MVA vaccination platform. Chapter 8
summarizes and discusses the results of this thesis in the context of the rapidly progressing
field of WNV research.
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ABSTRACT

West Nile virus (WNV) has caused outbreaks and sporadic infections in Central, Eastern
and Mediterranean Europe for over 45 years. Most strains responsible for the European and
Mediterranean basin outbreaks are classified as lineage 1. In recent years, WNV strains
belonging to lineage 1 and 2 have been causing outbreaks of neuroinvasive disease in
humans in countries such as Italy, Hungary and Greece, while mass mortality among birds
was not reported. This study characterizes three European strains of WNV isolated in Italy
(FIN and 1ta09) and Hungary (578/10) in terms of in vitro replication kinetics on
neuroblastoma cells, LDsg values in C57BL/6 mice, median day mortality, cumulative
mortality, concentration of virus in the brain and spinal cord, and the response to infection
in the brain. Overall, the results indicate that strains circulating in Europe belonging to both
lineage 1 and 2 are highly virulent and that Ita09 and 578/10 are more neurovirulent
compared to the FIN strain.
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INTRODUCTION

West Nile virus (WNV) is a positive-sense single-stranded RNA virus, which belongs to
the genus Flavivirus. WNV is transmitted by infected mosquitoes and is maintained in an
enzootic cycle between mosquitoes and birds, but can also infect and cause disease in
horses and humans, which serve as incidental dead-end hosts. Previously, WNV was
considered an Old World virus being endemic in parts of Africa, Europe, the Middle East,
and Asia [1]. However, in 1999, WNV emerged in New York City in the United States and
has since rapidly spread across North America, Mexico, South America, and the Caribbean
[2-4]. No vaccines or specific therapy are currently registered for use in humans.

WNV has caused sporadic outbreaks in Central, Eastern and Mediterranean Europe
for over 45 years. Phylogenetically WNV strains are classified into two major lineages.
Lineage 1 constitutes strains from North America, Africa, the Middle East, Asia, Australia
(Kunjin virus) and Europe. Lineage 2 strains were restricted to sub-Saharan Africa. This
genetic classification has been used frequently to classify WNV obtained during outbreaks.
In this respect, many strains isolated from patients with neuroinvasive disease have been
classified as lineage 1. In 2008, an outbreak affected small numbers of wild birds, horses
and humans in eight provinces in three regions of Italy [5,6]. Subsequently, in 2009, a new
epidemic was reported in the same region, as well as in other neighboring regions in Italy,
with up to 17 confirmed cases of WNV neuroinvasive disease [7]. Several strains of WNV
were isolated from human specimens and sequenced. Phylogenetic analyses on the basis of
the E and NS3/NS5 revealed that these strains belong to lineage 1, clade 1a, and constitute
a distinct group within the western Mediterranean cluster [8]. In 2004, a lineage 2 strain
was isolated from birds of prey in Hungary [9], which established itself in the region and
largely spread throughout the country and into eastern Austria by 2008 [10]. During this
outbreak, cases of human neuroinvasive disease were comparatively rare and rather mild
with no deaths reported [10]. Recently, Greece became the focus of a large outbreak in
summer-autumn 2010 [11]. Up to October 4th, 2010, 192 cases of neuroinvasive disease in
humans, including 32 deaths, had been laboratory diagnosed, all in the elderly. Culex
pipiens mosquitoes trapped in Nea Santa were found to be positive for WNV RNA, and
sequencing of the NS5 gene gave the first indication that this virus belongs to lineage 2, and
that it is highly similar to the strain that emerged in Hungary in 2004 [10]. As of November
2012, 237 confirmed human cases have been reported in the European Union (EU), of
which 161 cases were in Greece, 50 in Italy, 14 in Romania and 12 in Hungary
(http://www.ecdc.europa.eu/en/healthtopics/west_nile_
fever/West-Nile-fever-maps/Pages/index.aspx). These outbreaks were caused by both lineage
1 and 2 strains of WNV.

It is remarkable that many of the outbreaks in humans caused by lineage 1 and 2 were
not preceded by massive bird mortality. WNV-induced wild bird mortality has been
described in Europe but much less intensively compared to the US. The outbreak in 1998 in
Israel and 1999 in New York were the first ones where mortality among birds was reported.
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Because of the higher incidence of WNV neuroinvasive disease seen during the US
outbreak, it was hypothesized that the introduced strain was more virulent. The complete
genomic sequencing of the bird and human virulent 1S-98 and NY99 strains of WNV
revealed that both isolates belong to the same phylogenetic clade, sharing more than 99.8%
nucleotide similarity [12]. We wished to characterize and determine the virulence profile of
the European-derived WNYV strains.

Virulence for WNV has often been associated with envelope (E) protein glycosylation
[13] and glycosylation of the NS1 protein [14]. Other virulence factors described for WNV
include tropism, induction of rapid cell death, resistance to interferon, quasispecies
generation and up-regulation of MHC class | expression [15]. It is therefore clear that
virulence is a multi-factorial process and that many aspects need to be studied in order to
elucidate the pathogenic force of viruses. Several parameters can be used to describe
virulence. In vivo surrogate markers of virulence include immune-interfering properties,
lethal dose 50 (LDso), median survival time (STso), tropism for particular cells or tissues, as
well as the viral burden present in infected tissues. In the present study we characterized the
virulence of three selected European strains of WNV in vitro and also in vivo by infection
of C57BL/6 mice with different doses of these virus strains. We compared their LDso, STso,
cell tropism and pathology in the brain, as well as the response to infection in the brain.
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MATERIALS AND METHODS

Ethics statement

All animal experiments described in this paper have been conducted according to Dutch
guidelines for animal experimentation and approved by the Animal Welfare Committee of
the Erasmus Medical Centre, Rotterdam, The Netherlands. All efforts were made to
minimize animal suffering. The Dutch Animal Experimentation Act (1977) demands that
research establishments request a licence from the Ministry of Welfare, Public Health and
Cultural Affairs before carrying out any experiment. Research plans must be approved by
local ethical review committees that consider the benefit of an experiment and whether this
justifies the distress caused to the animals used in the procedure. The pain assessment is
prospective and a system of research plan review based on the cost-benefit principle is also
in place. A statistical reporting system of all animal experimentation provides the
opportunity to count the number of experiments involving pain or distress to the animals
with or without pain relief drugs.

Cells and viruses

Vero E6 cells were cultured in DMEM with 10% heat-inactivated fetal bovine serum (HI-
FBS), supplemented with 0.75% sodium bicarbonate and 10 mM hepes buffer. C6/36 insect
cells were cultured in Leibovitz-15 medium supplemented with 5% HI-FBS, 10% tryptose
phosphate broth, 0.75% sodium bicarbonate and 10 mM hepes buffer. All media were
supplemented with antibiotics (100 U penicillin, 100 pg/ml streptomycin) and 2 mM L-
glutamine. Cell culture reagents were obtained from LONZA (Lonza Benelux BV, Breda,
the Netherlands). All cell lines tested negative for mycoplasma using a PCR assay as
described [16]. Viruses used in this study and passage history were as follows: two lineage
1 Italian strains, FIN (a kind gift from Dr. Vittorio Sambri, University of Bologna, Italy; P2
on Vero E6) and 1ta09 (accession GU011992.2, kindly provided by Dr. Louisa Barzon,
University of Padova, Italy; P1 on Vero E6) and the Hungarian lineage 2 strain 578/10
(accession KC496015, a kind gift from Dr. Tamas Bakonyi, Szent Istvan University,
Hungary; P2 on Vero EG6) isolated from the brain of a horse that died of WNV-
neuroinvasive disease. Virus stocks used for this study were prepared by growing the
viruses once on C6/36 insect cells and viral titers were determined on Vero E6 cells using
the Spearman & Kérber method [17,18] after determining cytopathic effects five days post
inoculation.

Sequencing of the envelope gene of WNV strains

Viral RNA was isolated from C6/36 derived viral stocks using the MagnaPure LC robot
system and the Total Nucleic acid isolation kit according to the manufacturer’s instructions
(Roche, Almere, The Netherlands). Primers specific for the E protein were designed using
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the Primer Select module of DNASTAR software (DNASTAR, Madison WI, USA) and
adjusted manually to obtain highest similarity with NY99 (Table S1). cDNA was
synthesized using specific primers and Superscript 111 RT enzyme (Invitrogen, Breda, The
Netherlands) and subsequently PCR-amplified using Tag DNA polymerase (Invitrogen)
according to the instructions of the manufacturer. DNA fragments were gel-purified and
cloned into the pCR4-TOPO vector (Invitrogen). The cloning reaction products were
transformed into E. coli (One-Shot Top 10 competent cells; Invitrogen). Positive
transformed bacteria were identified by PCR using M13 primers and sequenced using
specific primers (Table S1). Five bacterial clones were selected to determine the consensus
sequence of the virus stocks. Sequencing was performed in an ABI3130XL sequencer using
ABI PRISM Big Dye® Terminator (Applied Biosystems, Bleiswijk, The Netherlands).
Sequences were analyzed using the SeqMan module of DNASTAR software and aligned to
a reference strain (original sequence of isolate deposited in GenBank) so that the E protein
of the different strains was obtained from the consensus sequence of five bacterial colonies.
The GenBank sequence for the original FIN isolate had not yet been deposited; therefore a
closely related Italian (JF719067) sequence that gave at least 99% identity in BLAST was
used as a reference instead.

Sequencing the complete genome of WNV-FIN

RNA was isolated from the WNV-FIN strain (P2 on Vero E6) with the High Pure RNA
isolation kit (Roche) according to the instructions of the manufacturer. cDNA was
synthesized using random hexamer primers (Invitrogen) or a reverse primer spanning the
last 24 nucleotides of the 3’UTR of published WNV sequences, as well as Superscript 111
RT enzyme (Invitrogen). Fifteen sets of primers spanning the complete genome sequence of
WNV were designed in conserved areas. Primers were designed using the PrimerSelect
module of DNASTAR software (DNASTAR, Madison W1, USA). Primer sequences are
available from the authors upon request. cDNA was amplified using PfuUltra Il Fusion HS
DNA Polymerase (Stratagene) and DNA fragments were purified from gel and sequenced
directly in an ABI3130XL sequencer using the same primers as used for PCR
amplification. Sequences were analysed using the SeqMan module of DNASTAR software.

Next generation sequencing (NGS)

Primers were designed for the E gene that allowed five fragments of sizes between 200-400
nucleotides with about 50 nucleotides of overlap to be generated (Table S1). RT-PCR was
conducted using random primers (Invitrogen) and Superscript 111 (Invitrogen), and DNA
amplification was performed using the specific primers and PFU polymerase (Invitrogen).
Fragments were gel-purified using QIAquick gel extraction kit (Qiagen, Venlo, The
Netherlands) and were organized in libraries of equal concentration. Libraries were created
for each virus without DNA fragmentation (GS FLX Titanium Rapid Library Preparation,
Roche), emPCR (Amplification Method Lib-L) and GS junior sequencing runs were
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performed according to instructions of the manufacturer (Roche). Amplicons were
sequenced in a blinded fashion using 454 technology. Reads from the GS-FLX sequencing
data were sorted by barcode and aligned to reference sequences using CLC Genomics
software 4.6.1. Using the alignment, a SNP table was made with a minimum coverage of 10
reads and a minimum variant frequency of 1.0%. Raw nucleotide sequences were filtered,
aligned, trimmed and translated using pre-specified criteria applied uniformly so that all the
protein E sequences used in the analyses spanned the exo-domain and the transmembrane
region.

Replication kinetics of WNV-FIN, 1ta09 and 578/10 viruses

The replication kinetics of WNV-FIN, Ita09 and 578/10 were studied in vitro by means of a
one-step growth experiment using a multiplicity of infection (MOI) of 5. N2a cells were
cultured overnight in 96-well flat bottom culture plates (10° cells/well) and virus was
added. Viruses were allowed to adsorb for one hour at 37 °C. Cells were subsequently
washed three times with serum-free medium to remove virus inoculums, replenished with
fresh medium and cultured at 37 °C for 24 hours. Culture supernatants were collected in
triplicate at time points 0 and 6 followed by sampling every 2 hours up to 24 hours, and
were subsequently stored in -80 °C until virus titer determination. Studies of replication
kinetics were conducted in parallel to eliminate any confounding effects of host cell culture.

Several parameters were determined using the results of the one-step growth
experiment. The approximate eclipse period was defined as the time point before infectious
virus was detected in the supernatant. The latent period (LTso) was defined as the time point
at which half the number of virus progeny has been released into the environment and was
determined by use of curve fitting to the data points by least squares (ordinary) fit.
Replication rate (RR) is the slope obtained by the linear regression of the natural logarithm
(In) of the titer against time during the period of exponential growth.

Mouse infection and survival studies

Six-week old (age-matched) female C57BL/6 mice (Harlan Laboratories B.V., Venray, The
Netherlands) were inoculated intraperitoneally (i.p.) with several doses of each three virus
strains (n=8 for each dose). Mice were euthanized by cervical dislocation under isoflurane
anaesthesia when they reached humane end-points (immobility and paralysis), after which
the brain was immediately collected for further processing. At 14 days after infection, the
end-point for the survival experiment was reached and the survival rate was analyzed, and
LDso was calculated according to the Reed & Muench [19] and the Probit method [20].
Mice were maintained in specific pathogen-free conditions, had a 12-hour day-night cycle
and were fed ad libitum. Serology studies were conducted using enzyme-linked
immunosorbent assay (ELISA).
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Quantitation of virus in the brain

RNA copy numbers were quantified using a standard curve of in vitro transcribed RNA of
known quantities. Run-off transcripts were generated from a plasmid containing the
sequence of the 3 UTR of WNV-NY99. Plasmid was linearized and run-off transcripts
were generated using the Ambion® MaxiScript T7/T3 kit (Invitrogen). The product was
digested with DNase to remove residual DNA and the reaction was cleaned up using the
Qiagen RNeasy Minikit (Qiagen). In vitro transcribed RNA was diluted to a concentration
at which DNA was no longer detected. In order to quantify viral burden in the brain, half
the brain was weighed and homogenized using a metal bead in 1 mL of DMEM containing
antibiotics (100 U penicillin, 100 pg/mL streptomycin). RNA copy numbers in the brain
homogenates were determined using qRT-PCR with the Tagman® EZ RT-PCR kit
(Applied Biosystems) and primers and probe located on the 3 UTR of WNV (Table S1).
Infectious titers in the brain were determined by titration of the brain homogenates on Vero
E6 cells and calculation of the TCIDsgo.

Immunochistology

Sagittal brain and transverse spinal cord 4-um thick paraffin sections were processed for
streptavidin-biotin-peroxidase immunohistochemistry and immunofluorescence of virus
nonstructural protein and cell-type markers. Sections were deparaffinized in xylene,
rehydrated in descending concentrations of ethanol and incubated for 10 min in 3% H,O,
diluted in PBS to block endogenous peroxidase activity. Antigen exposure was performed
by incubation for 15 min at 121 °C in citrate buffer (0.01 M, pH 6.0). Sections were
incubated overnight at 4 °C with one of the following primary antibodies: goat anti-WNV
NS3 (1:100; R&D Systems, Abingdon, UK), rabbit anti-human CD3 (T cell marker; 1:100;
Dako, Eindhoven, Netherlands), rabbit anti-GFAP (astrocyte marker, 1:500; ZYMED,
Breda, The Netherlands), and rabbit anti-lbal (microglial marker, 1:500; WAKO, Ochten,
The Netherlands). For immunohistochemistry, primary antibodies were detected with
secondary goat anti-rabbit 1gG-PO, rabbit anti-goat 1gG-PO (Dako) or biotinylated goat
anti-polyvalent/streptavidin peroxidase (Thermo Scientific, Etten-Leur, The Netherlands)
antibodies. Sections were counterstained with Mayer’s hematoxylin and mounted with
Kaiser’s glycerin-gelatin and analyzed using a light microscope.

For double staining, immunofluorescence sections were incubated with goat anti-
WNV NS3, and either rabbit anti-lbal, rabbit anti-GFAP or rabbit anti-NeuN (neuronal
marker, 1:500; Millipore, Amsterdam, The Netherlands) was used. Secondary antibodies
directly conjugated to Alexa Fluor 488 (donkey anti-goat) and 555 (donkey anti-rabbit)
(Invitrogen) were used. Nuclei were stained with DAPI. Fluorescence staining was
analyzed using a Zeiss LSM 700 confocal microscope.
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Determination of inflammatory and cell death markers by gqRT-PCR

RNA was isolated from brain homogenates of infected mice using the MagnaPure LC
system according to the manufacturer’s instructions. cDNA was synthesized using oligo dT
primer (Invitrogen) and Superscript 11 enzyme (Invitrogen) according to the instructions of
the manufacturer. Primers specific for matrix metalloprotease (MMP)-3, MMP-9, tumour
necrosis factor (TNF)-a, neuronal pentraxin (Nptx)-1,-2 and pentraxin-related protein (Ptx)-
3 (Applied Biosystems) were used in PCR amplification, and mRNA copy numbers were
quantified relative to p-actin using the following formula: (2-9“®"i%)*100000. Quantity was
determined by subtracting the Ct value of p-actin from the Ct value of the specific marker.

Statistical analysis

P-values equal to or less than 0.05 were considered to be statistically significant. Survival
curves were analyzed with the Log-rank Test, differences between viral loads and
differences in expression of inflammatory and apoptotic markers were assessed using the
Mann-Whitney U test.

RESULTS

The E protein of different WNV strains is not significantly affected by in vitro culture

To determine whether generation of virus stocks, through one extra passage on insect cells,
resulted in changes in the consensus sequence of the respective viruses, the E protein of the
different virus stocks was sequenced using the Sanger method and sequences were
compared to those deposited in GenBank. All virus stocks were 99% identical to the
sequences of the low passage isolates deposited in GenBank (Figure S1). There were no
amino acid changes found in Ita09 and 578/10 compared to the sequences deposited in
Genbank. The FIN isolate, was compared to the highly similar sequence in Genbank
because FIN was not sequenced before. A conservative amino acid substitution (histidine to
tyrosine) was found at position 371. The lineage 2 strain from Hungary (578/10) differed by
20 amino acid substitutions from the lineage 1 strains. We have determined the complete
sequence of the FIN isolate used in this study and the sequence was deposited in GenBank
(accession: KF234080).

Differences in amino acid sequence of closely related strains WNV-FIN and 1ta09

As the lineage 1 strains FIN and 1ta09 are very closely related and completely identical on a
nucleotide level in terms of the envelope, the complete genome of FIN was compared with
[ta09. The complete genome of the WNV-FIN strain (KF234080) was 99.7% identical to
the nucleotide sequence of 1ta09 (GU011992.2). Specifically, nine conservative nucleotide
substitutions were observed throughout the genome compared to 1ta09. In addition, three
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non-conservative amino acid differences were observed in NS3, including the proline
(1ta09) to threonine (FIN) at position 249, a threonine (1ta09) to isoleucine (FIN) change at
position 267 and a histidine (1ta09) to glutamine (FIN) change at position 488.

Dominant virus variants were recovered from viral stocks and the brain of infected
mice

Measuring the virulence of individual variants within a virus stock may misrepresent the
virulence of a quasispecies. Since the virus population diversity is an important component
of virulence, we next characterized the population diversity in our stocks using NGS (deep
sequencing). Between 30-47 x 10° reads were obtained per sample from the virus stocks.
Given the sequence heterogeneity within protein E, the use of strain-specific primer sets
with degeneracy or located in conserved regions resulted in efficient amplification. The
reads generated during sequencing were aligned using the reference sequences deposited in
GenBank. The viral RNA sequences recovered from the brains yielded an average of 23-38
x 108 reads per sample. Coverage of the amplicons was heterogenous and ranged from
2,950 to 30,675 reads for RNA sequences recovered from the viral stocks, and 1,079 to
28,362 reads for viral RNA sequences recovered from the brain. After the filtering steps,
>99.7% of the original sequences were retained.

In FIN virus stock, 52.4% of the baseline viral population consisted of the T form and
47.6% of the C form at reference position 1176 (Figure 1), leading to a conservative amino
acid substitution (H371Y). Furthermore, at position 2118, 92.9% of the variants contained
the C form and 7.1% of the minor mutations were of the T form. Several other low-
frequency mutations were found in the viral stock, ranging from 1% to 6%. In the brain of
FIN-infected animals, all the variants were in similar ratios, while the frequency of the
minor variant at position 2118 increased significantly by 26.1%. This variant, C2118T, also
resulted in a conservative amino acid substitution (H685Y).

The baseline viral stock of 1ta09 consisted of the 62.5% T form and 37.5% of the C
form at reference position 2058 (Figure 1). Several other minor variants were found,
ranging from 1.1% to 4.8%. For all the variants found in the viral stock, only the
predominant variants were detected in the brain of infected animals, with the exception of
the 2058 variant where both mutations were found. The viral stock of 578/10 consisted of
only one variant at position 2270 with 96% of the T form and 4% of the C form (Figure 1).
This variant was found at a similar ratio in the brain. The results indicate that the
predominant variants in all the viral stocks were replicating in the brain of infected animals
and that minor variants were not preferentially selected. The results from the NGS
sequencing also confirmed the consensus sequence that we acquired using the Sanger
method.
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Figure 1. Virus variants recovered from the different WNV stocks and from the brains of
infected mice. Sequences of glycoprotein E were obtained using Next Generation Sequencing
(NGS) and aligned with reference sequences deposited in GenBank. Variant frequencies are
indicated by nucleotide substitution at a particular reference position.

WNV-FIN, 1ta09 and 578/10 have similar replication kinetics in vitro

As the replicative capacity of a virus is considered a surrogate marker for virulence, we
decided to compare the replication kinetics of the different WNV strains using a one-step
growth experiment. This approach assumes that virulent strains produce more progeny
within the host than the avirulent ones, which in turn leads to higher viral densities and
consequently greater virulence levels. The one-step growth curves of the different WNV
strains are summarized in Figure 2A and Table 1. Infectious virus production by the three
virus strains began at approximately 14 hours post-infection. However, in order to obtain a
more accurate estimate of the latent period and facilitate comparisons between the strains,
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we calculated the LTso, which is a mathematically more robust determination of the latent
period. As shown in Table 1, the RR was found to be 1.69, 1.75 and 1.71 for FIN, Ita09 and
578/10, respectively, indicating similar replication rates for the different virus strains. The
LTso was calculated as 16.06, 13.44 and 16.09 hours for FIN, I1ta09 and 578/10,
respectively. This indicates that 1ta09 is released the earliest from the cell, followed by FIN
and 578/10. Furthermore, the burst size of 1ta09 was ten-fold higher compared to the two

other strains.
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%= 578/10

TCID, ¢/mL (log)
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Figure 2. Infectious virus titers recovered from supernatant over 24 hours after infection
of N2a cells with different WNV strains at a high (5) MOI. N2a cells were inoculated with
WNV-FIN, Ita09 and 578/10 at an MOI of 5 TCIDso/cell. Experiments were performed in

triplicate and data represent mean + standard deviation.
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Eclipse Latent Burst size

Virus  oeriod () period () ST M (rciDgy) RR
FIN 12 14 16064002 100 1.69+0.04
1ta09 12 14 13444072 1021 1.75+005

578/10 12 14 1609+111 102 1714002

LT: latent time, RR: replication rate.

Table 1. Analysis of the replication kinetics of WNV-FIN, 1ta09 and 578/10 on N2a cells at
high (5) MOI over 24 hours. Experiments were carried out in triplicate and values for LTs, and
RR are indicated as mean + standard deviation. The LTs, was determined using curve fitting by
least squares (ordinary) fit and the replication rate (RR) is the slope obtained by the linear
regression of the natural logarithm (In) of the titer against time during the period of exponential
growth.

Neuroinvasive properties of WNV-1ta09, FIN and 578/10 strains

As factors such as mortality rate, in vivo tropism, and immune response to infection
constitute important components of virulence in the dynamic host environment, we first
determined the outcome of infection in 6-week old female C57BL/6 mice following i.p.
infection. Mice were infected with three different doses of virus (104, 102 and 10 TCIDsg)
and differences in mortality rates were observed between the respective WNV strains
(Table 2). The cumulative mortality by 14 days after challenge was higher for 578/10
(91%) than FIN (78%) and Ita09 (74%). However, comparison of the cumulative survival
curves of the mice infected with all doses of the various strains revealed no statistically
significant differences (Figure 3B; P = 0.70). By contrast, significantly more mortality was
observed for 1ta09 compared to FIN (P <0.001) and 578/10 (P = 0.001) for the 10* TCIDso
dose of virus (Figure 3A). In addition, the STso for 1ta09 was shorter (8.5 days) followed by
578/10 (11 days) and FIN (11 days).

The LDsp calculated using the Reed & Muench method is in agreement with the probit
method, indicating similar LDs values for FIN and I1ta09, while considerable lower values
were found for the 578/10 strain (Table 3).

61



. . Medi . .
WNV strain  Firstday Last day edian Total Mortality = Cumulative

/ dose mortality mortality mortality mortality (%) mortality (%)
FIN
101 TCIDso 9 11 4/8 50
102 TCIDso 10 12 11 6/7 85.7 78
104 TCIDso 9 11 7/8 87.5
1ta09
101 TCIDso" 12 12 1/8 12.5
101 TCIDso 8 11 5/8 62.5
102 TCIDso 7 12 8.5 6/8 75 74
104 TCIDso 7 9 717 100
578/10
101 TCIDso" 8 11 3/8 37.5
101 TCIDso 9 14 6/8 75
102 TCIDso 9 11 11 8/8 100 91
104 TCIDso 8 12 717 100

Table 2. Mortality of 6-week old i.p. infected C57BL/6 mice using three different doses of
WNV-FIN (n=23), 1ta09 (n=23) and 578/10 (n=23). *These groups were only used to calculate
the LDsp and were not used for determination of median day of mortality and cumulative
mortality percentage.
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Figure 3. Survival curves of mice inoculated intraperitoneally with different WNV strains.
(A) Mice were inoculated i.p. with 10* TCIDsy WNV-FIN (n=8), 1ta09 (n=7) and 578/10 (n=7).
Significant differences in survival were observed between FIN and 1ta09 (P < 0.001), and 1ta09
and 578/10 (P = 0.001). (B) Cumulative survival curves of mice inoculated i.p. with doses of
10! TCIDs, 10% TCIDsp, and 10* TCIDso of WNV-FIN (n=23), 1ta09 (n=23) and 578/10 (n=23).
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No statistical significance was found between the cumulative survival curves (P = 0.70). Mice
were euthanized between days 6-14 upon display of clinical signs of disease.

WNYV strain LDso (Reed & Muench) LDso (Probit)
FIN 1098 TCIDso 10°%7 TCIDso
1ta09 10943 TCIDsy 10975 TCIDsp

578/10 10942 TCIDso 10014 TCIDso

Table 3. LDs calculated with the Reed & Muench and the Probit method of WNV-FIN (n=23),
1ta09 (n=23) and 578/10 (n=23) i.p. infected C57BL/6 mice.

High viral RNA load in brains of mice infected with 1ta09 and 578/10 strains

We further investigated the viral burden in the brain of the mice infected with the different
strains of WNV and euthanized when the humane end points were reached, within 14 days
post infection. RT-PCR analysis of brain homogenates revealed high titers of viral RNA
(10% -10°) for all mice. However, mean viral RNA copies were found to be significantly
higher in brains of mice infected with 1ta09 and 578/10 compared to mice infected with FIN
(P =0.009 and P = 0.02, respectively) (Figure 4A). However, in terms of infectious virus
titers (TCIDsp), no significant differences were observed in the brains of these mice (P
>0.05 for all) (Figure 4B).

Mice that did not develop signs of WNV neuroinvasive disease by day 20 post
infection (n=26) were considered survivors of the infection. Infection was confirmed by the
fact that all these animals developed IgG antibodies to WNV (data not shown). Viral RNA
was detected in the brain of nine survivors (Figure 4C). Specifically, four mice from the
FIN group (one from the 10 one from 102 and two from the 10 TCIDso group), and one
mouse infected with 102 TCIDso of 1ta09. However, viral RNA titers were considerably
lower (10%-10°) in these mice compared to those that died from infection. No significant
differences were found in the number of RNA copies in the brains of these mice compared
to each other (Figure 4C; P >0.05 for all). No viral RNA could be detected in the blood of
any of the animals that survived WNV infection (data not shown), indicating that the
detected RNA was not spillover from blood.
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Figure 4. Viral burden in the brains of mice infected with WNV-FIN, I1ta09 and 578/10.
Mice were euthanized within 6 to 14 days upon reaching humane endpoints and viral burden
was measured in terms of (A) RNA copies per gram of brain, and (B) TCIDs per gram of brain.
(C) Viral RNA copies per gram of brain in mice infected with WNV-FIN, Ita09 and 578/10, and
euthanized on day 20 in the absence of clinical signs of disease. * P <0.05, ** P <0.01.

Histopathology and immunohistochemistry

In order to assess if the viruses differ in their tropism for particular regions of the brain, and
compare the relative damage caused by the different strains, we performed
immunohistochemical staining with anti-WNV-NS3 polyclonal antibody. WNV-NS3
positive cells occurred in brains and spinal cords of all mice that developed neurological
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signs. Most positive cells could be identified as neurons, with the antigen being distributed
in the cell body and proximal dendrites (Figure 5A). Some positive cells showed features of
degenerative processes such as dystrophic neurites, small cell body and pyknotic nuclei
(Figure 5B). In addition, labeling was associated with unidentifiable structures likely
representing neuronal debris. In order to confirm that positive cells were neurons, we
performed double-labeling immunofluorescence with the neuronal marker NeuN (Figure
5C). Most positive cells were positive for NeuN, while no WNV-NS3 positive cell was
positive for glial fibrillary acidic protein (GFAP, astrocytes) or Ibal (microglia), although
in many occasions WNV positive cells and debris-like structures were surrounded by Ibal
positive processes, pointing to an intimate relationship with microglia cells (Figure 5D).

The extent of infection in the brain was determined in terms of infected brain areas

(Table S2). In general, positive neurons occurred in all areas of the brain (Table S2) and the
spinal cord, although the regional distribution and relative density of positive cells was
highly variable between animals injected with the same virus. For instance, animals
infected with 1ta09 virus showed highly sporadic, moderate amounts, or very frequent NS3-
positive neurons in the hippocampal CA1 area (Figure 5A & B). A similar variability was
also observed in other brain areas, including the neocortex, striatum and cerebellar cortex
(Figure 5E & F), and there was no correlation between the amount of positive cells in
different brain areas in the same mouse. Because of the large variability between animals
injected with the same viruses, it was difficult to determine whether systematic differences
occurred in the amount and distribution of positive cells between animals injected with
different viruses. For instance, infection of Purkinje cells in the cerebellum was observed in
sections of some mice infected with 1ta09 (Figure 5H) and 578/10 but not in mice infected
with FIN. However, in view of the potential focal distribution of infected cells, the question
whether this difference holds true for all Purkinje cells of FIN-injected mice would require
the systematic analysis of the entire cerebellum of all mice, which is beyond the scope of
this study. Nevertheless, based on the analyses performed in this study, mice infected with
1ta09 and 578/10 showed more positive cells than mice infected with FIN.
Furthermore, antigen distribution and quantity of positive cells in the spinal cord was also
highly variable, with WNV positive cells occurring in both dorsal and ventral horns.
Although not systematically investigated, spinal motor neurons in the ventral horn were
infected more often than dorsal horn cells, despite their relatively low abundance compared
to other spinal cord cells (Figure 5G).

Analysis of WNV-NS3 expression in the brains of mice that did not develop clinical
disease and that were killed at 20 days post infection revealed no positive cells, which is
consistent with the absence or low abundance of virus antigen in the brains of these mice.
Positive cells were also not found in the spinal cord of these animals.

To determine whether the presence of virus-positive neurons and neuronal debris
correlated with microglia cell activation we stained for Ibal, which is up-regulated in
activated microglia cells [21-24]. Increased Ibal staining, as compared to control mice, was
observed in the nervous system of all mice with virus-positive neurons (Figure 5J). In
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accord with the variability in distribution and quantity of WNV-NS3 positive neurons,
changes in Ibal staining was also variable between different mice infected with the same
virus or different viruses. Remarkably, however, in some cases, areas with high levels of
WNV-NS3 positive cells and debris did not show a strong increase in Ibal positive cells,
indicating that a high level of virus-infected cells is not necessarily paralleled by high levels
of microglia cell activation. Astrocytosis (as demonstrated by increased GFAP-staining)
was seen in all animals and cases ranged from mild to severe for all virus strains (Figure
51). Astrocytosis and microgliosis were also evident in the brains of the survivor mice.
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Figure 5. Histopathology of 6-week old C57BL/6 mice infected with WNV-FIN, 1ta09 and
578/10 and euthanized upon reaching humane endpoints between days 6-14 p.i.
Representative picture of (A) Neurons in the hippocampus of a mouse infected with 1ta09,
stained with anti-WNV NS3 antibody (objective 20x). Antigen is distributed in the cell body
(red arrow) and proximal dendrite (black arrow). Some of the infected neurons appear to be in a
healthy state with normal nuclear, perikaryal and dendritic morphologies (red/black arrow),
while some uninfected neurons appear to be in a moribund state (yellow arrow). (B) Neurons in
the hippocampus of a mouse infected with 1ta09, stained with anti-WNV NS3 antibody
(objective 20x). Antigen-expressing neurons appear to be in a different state of health varying
from healthy appearance with normal nuclear, perikaryal and dendritic morphologies (black
arrow), to dying cells (red arrow). (C) Double staining as seen by confocal microscopy
(objective 20x) showing neurons (stained with NeuN antibody and Alexa Fluor 555 conjugate;
red) infected with 1ta09 (stained with anti-NS3 antibody and Alexa Fluor 488 conjugate; green).
(D) Double staining as seen by confocal microscopy (objective 40x) showing activated
microglia (stained with anti-lbal antibody and Alexa Fluor 555 conjugate; red) engulfing
neurons infected with WNV-Ita09 (stained with anti-NS3 antibody and Alexa Fluor 488
conjugate; green). Nuclei are stained with DAPI (blue). (E) Neo-cortical neurons in the brain of
a mouse infected with WNV-Ita09, stained with anti-WNV NS3 antibody (objective 10x). (F)
Neo-cortical neurons in the brain of a mouse infected with WNV-FIN, stained with anti-WNV
NS3 antibody (red arrows; objective 10x) (G) Spinal cord of a mouse infected with WNV-
578/10, stained with anti-WNV NS3 (objective 4x). Infection of motor neurons (red arrow),
anterior horn (orange arrow) and posterior horn (yellow arrow) was observed. Insert shows
infected motor neuron (objective 20x). (H) Purkinje cell in cerebellum of mouse infected with
1ta09 (red arrow), stained with anti-WNV NS3 antibody (objective 20x). (1) Mild to moderate
activation of astrocytes in the cortex of a mouse infected with WNV-578/10, stained with anti-
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GFAP (objective 20x). (J) Activation of microglia cells in the cortex of the brain of a mouse
infected with WNV-FIN, stained with anti-Ibal (objective 10x).

Finally, we analyzed infiltration of T-cells using anti-CD3 staining (Table S3).
Perivascular cuffing by CD3-positive cells was highly variable and was only evident in
localized regions in a subset of sections examined, consistent with the large variability of
infected areas. Infiltration of the neuropil by T cells (CD3-positive cells) was mainly seen
in animals infected with Ita09 in the cerebrum and brainstem (~1 positive cell per high
power field [HPF]; objective 40x) and in some of the animals infected with FIN or 578/10
(<1 cell per HPF in the brainstem). Interestingly, infiltration of CD3-positive cells into the
cerebrum and brainstem were found in all mice that survived infection with any of the
WNV-strains. In comparison to the mice that had died from infection, all mice that survived
appeared to have more CD3-postive cells in the brain. Taken together, the IHC studies
provide supportive evidence that 1ta09 and 578/10 are more virulent than FIN.

Response to WNV infection in brains of mice

To allow for quantitative comparison of the response to infection with different strains of
WNV, we performed qRT-PCR using half brain homogenates (Figure 6). The survivor
mice were split into two groups based on presence or absence of viral RNA in the brain.
We chose for markers that have been associated with viral encephalitis and
neurodegenerative diseases. The inflammatory marker TNF-a was increased in the brains of
mice infected with FIN (P = 0.002; P <0.0001), 1ta09 (P = 0.007; 0.007) and 578/10 (P =
0.006; 0.003) compared to the survivors positive and negative for viral RNA in the brain,
respectively. One of the markers involved in the breakdown of extracellular matrix, MMP-
3, was significantly up-regulated in the brains of mice infected with FIN (P = 0.004;
0.0009), I1ta09 (P = 0.0007; 0.0007) and 578/10 (P = 0.003; 0.002) compared to
convalescent mice with and without viral RNA in the brain. In addition, MMP-3 transcript
levels were significantly higher in 1ta09 compared to those infected with FIN (P = 0.005).
MMP-9 transcript was increased in mice infected with FIN (P = 0.02) and 578/10 (P =
0.03) only when compared to the convalescent mice positive for viral RNA in the brain.
Nptx-1 (a marker involved in apoptosis) was only up-regulated in the brains of the survivor
mice group with viral RNA in the brain compared to the group without viral RNA (P =
0.05). Nptx-2 and Ptx3, inflammatory markers involved in complement activation and
complement-mediated clearance of apoptotic cells, were not significantly up-regulated in
any of the experimental groups. These data identify some inflammatory markers
significantly elevated during infection of the brain with WNV, but none of the examined
markers correlate with virulence.
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Figure 6. Relative number of RNA transcripts of markers in the brains of mice infected
with WNV-FIN, Ita09 and 578/10. Sick animals were euthanized within days 6-14 upon
reaching humane endpoints or on day 20 post-infection in the absence of clinical signs.
Transcripts were compared with animals that survived WNV infection (day 20 p.i) and that were
either positive or negative for viral antigen in the brain. Mean is indicated by a cross and median
by a line in the boxes. The box represents the interquartile range. * P <0.05, ** P <0.01, *** P
<0.001. Abbreviations: TNF = tumour necrosis factor; MMP = matrix metalloproteinase; Nptx =
neural pentraxin; Ptx = pentraxin.
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DISCUSSION

In this study we have characterized the European WNV strains FIN, 1ta09 (both lineage 1)
and 578/10 (lineage 2). Neurovirulence of the three WNV strains were determined by
comparing in vitro replication Kinetics, median day mortality, cumulative mortality, LDso,
concentration and distribution of virus in the brain, and the response to infection in the
brain.

Despite the fact that WNV has been circulating in Europe for half a century, it is only
in the more recent years that this virus has caused considerable outbreaks in humans, horses
and to a much lesser extent in wild birds. This is in contrast to the emergence of WNV in
North America during which wild birds were heavily affected and significant numbers of
human neuroinvasive disease cases with high mortality were reported. It is possible that this
increase in severity is a result of the movement of the virus into areas with large
immunologically naive populations that consist of a large proportion of elderly and
immunocompromised individuals [25]. However, it has also been suggested that a more
virulent strain of the virus was introduced [26]. It is also hypothesized that the viruses
currently circulating in Europe differ in their virulence profile compared to the North
American strains.

There have been a number of explanations for why viruses are virulent [27,28], and it
is clear that virulence is an adaptive process and that it is the result of the trade-offs
between virus transmissibility, virus pathogenic force, and recovery potential of the host. In
several models it has been shown that changes in virulence are associated with changes in
different aspects of the biology of virus-host interaction, suggesting that virulence of a
given virus may be affected by a potentially large number of factors (reviewed in [29-33]).
Since no single general factor exists that can be used to predict the relative virulence of
viruses, we investigated the virulence of European WNV strains by considering a series of
parameters. Even though it is possible to investigate virulence by conducting a straight
kinetic analysis and examining viral spread in the brain over time, we decided to use
survival as an outcome of disease severity. This is because disease can be a direct
consequence of viral burden, inflammatory response and injury and death of cells in the
CNS, and therefore an appropriate measure of virulence. Following infection, WNV
replicates to high levels during the acute phase, after which the virus typically enters the
brain and causes meningo-encephalitis before the immune system is able to control the
infection. Our aim was to define the virulence profile of European WNV strains by
measuring different markers in vitro and in vivo.

First we determined the population structure (quasispecies) in our virus stocks. We
chose to characterize the stock rather than the dominant variant in the stock that was used to
infect mice. It has been shown that viral quasispecies is more than just a collection of
mutants, but a group of interactive variants, which together contribute to pathogenesis [34].
For instance, it was found that the diversity of the quasispecies of Polio virus correlated
with enhanced pathogenesis in mice [34]. Ciota et al. [35] have shown that the quasispecies
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in WNV populations correspond to substantial phenotypic diversity that differed in relative
fitness in vitro. We have used NGS to determine the population phenotype of our viral
stocks, based on the glycoprotein E gene. This gene was selected because it is the principal
receptor that determines tropism for neurons, contains markers of virulence, and it harbors
areas that allow monitoring of virus evolution. One advantage of the NGS is the possibility
to detect minor variants. In this study, we found that only the dominant variants from the
stock were selected in the brain. One important issue concerning the NGS is the ability to
distinguish between true variants and variants detected as a result of errors introduced
during PCR amplification and/or sequencing. Therefore, within our department, we have
determined the error rate threshold specific for this platform. We found that a threshold of
0.026% (manuscript in preparation) is sufficient to exclude variants detected as a result of
errors. The technical cut-off value of 1% described in this manuscript is therefore well
above the error margin attributed to reverse transcription, amplification and sequencing
errors. Furthermore, emergence of new variants was also detected in the brain, which could
have been a result of mutations arising during the replication cycle. We did not specifically
study whether the population structure of our strains contributed to virulence.

The infection cycle of WNV has not been studied extensively in vitro, so we first
addressed the dynamics of WNV infection in vitro in neuronal cells. We found that only
adherent cells could be infected and infection of N2a cells in suspension was not successful
(data not shown). The reason for this phenomenon is unknown, but may be related to
receptor availability on adherent cells. Currently, there is little known about the host
receptor for flaviviruses. The replication cycle of WNV can be divided into three phases;
(1) dispersal-diffusion-attachment phase, (2) eclipse phase (begins with infection and ends
when the virus progeny matures inside the host), and (3) release phase (the virus offspring
are released from the infected cell). The total number of progeny released in the supernatant
is termed the burst size. Examination of these three stages in virus replication is useful,
because the associated growth parameters (eclipse period, latent period, exponential growth
rate, and burst) yield plausible hypotheses to account for differences in virulence.

A study has shown that large clusters of matured virus of the Sarafend strain appear at
the plasma membrane, as well as in vacuoles, at 10-12 hours post-infection [36]. This is in
line with our results where we determined the eclipse period to be at approx. 12 hours p.i.
The study further showed that maturation of WNV at the plasma membrane, and therefore
budding from infected cells, is the dominant mode of maturation for this virus, but that
during the later stage of infection (from 12 hours p.i.) the virus is also released via
exocytosis, most likely due to advanced cytopathic effects [36]. As a result, it may be
difficult to determine the precise time point of the burst size and we have therefore
additionally determined the LTso. Furthermore, analyzing the RR may shed light on the
potential of WNV strains to overwhelm the target cells. Virions that are able to overwhelm
the system quickly will have an increased chance of colonizing the remaining uninfected
cells, an advantage particularly important in vivo. We found that 1ta09 replicates faster as
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evidenced by the LTso and release of up to ten-fold more virus after the first replication
cycle.

The increase in morbidity and case-fatality rates caused by North American lineage 1
strains relative to lineage 2 strains led to the hypothesis that lineage 1 strains are highly
pathogenic while lineage 2 strains that used to be endemic only to Africa are of low
virulence [4]. Conversely, recent outbreaks in South Africa and Europe indicate that lineage
2 strains may also cause severe disease [37]. This observation was also supported by
experimental studies in mice showing that differences in virulent WNV strains did not
correlate with the phylogenetic lineage, source of isolate, geographic distribution, passage
level or year of isolation, and suggest instead that pathogenicity is not genotype specific
and that both lineage 1 and 2 are neurovirulent [38,39]. Our results indicate that all the
European strains studied are virulent in C57BL/6 mice and that the lineage 1 strain (1ta09)
and lineage 2 strain (578/10), which share similar virulence profiles, are slightly more
virulent than FIN. Two lineage 1 viruses with 99.7% identity (FIN and 1ta09) were found to
share a different virulence profile. These viruses differed in terms of three non-conservative
amino acids. One of the substitutions present in the I1ta09 strain, T249P, is a mutation in the
helicase domain of the NS3 protein and has been associated with increased virulence in
American crows [40]. This mutation has been found in the more recent Italian WNV
isolates from 2008 (15803/08 and 15217/08), while the Italy 1998-equine strain still has the
threonine at this position [41]. Interestingly, the 2010 Greek isolate also contains the
proline, and may be responsible for the increased virulence of this strain compared to other
strains from lineage 2 [10]. However, the virulence properties of this sole substitution in
outbred mice remains unclear, and its role in virulence in humans on a population level is
questionable. For instance, a WNV strain isolated in 2007 from golden eagles in Spain
carrying a T->P mutation did not have increased pathogenicity in mice compared to other
strains [42]. Similarly, the WNV-FIN strain used in this study was isolated from a patient
with neuroinvasive disease. It is possible that the three amino acids differences between
1ta09 and FIN collectively reduced the virulence of FIN.

Mice that had died as a result of infection with 1ta09 and 578/10 were found to have a
significantly higher number of RNA copies in the brain compared to those infected with
FIN. Infectious virus titers, however, were not significantly different. This discrepancy
might be explained by the involvement of immature virus particles, which may also play a
role in the pathogenesis of WNV [43]. It is therefore possible that there was a higher viral
burden in the brains of mice infected with 1ta09 and 578/10 as a result of a larger amount of
immature virus particles, which may explain the higher virulence observed for these virus
strains.

The histopathologic findings observed in the brain and spinal cord samples of the
mice that succumbed to the infection were pathognomonic, with moderate to severe
infection observed in mice infected with 1ta09 and 578/10 strains. In agreement with
previous studies, WNV antigen was found in neurons in the spinal cord, cortex,
hippocampus and brainstem [15,44]. Interestingly, antigen of 1ta09 and 578/10 was found
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also in the Purkinje cells of the cerebellum. Infection of Purkinje cells by North American
strains of WNV has been demonstrated in hamsters [45-47], birds [48,49], macaques [50]
mice [51] and humans [52]. This targeting of Purkinje cells of the cerebellum has been
shown to be a unique pathologic finding in WNV encephalitis, unlike the encephalitides
caused by other closely related flaviviruses [48,53-57]. The higher frequency and intensity
of antigen staining in the central nervous system and the higher mortality observed in the
1ta09 and 578/10-infected groups compared with the FIN-infected group (lineage 1),
suggest that these two strains are more virulent.

Even though some of the mice that survived infection were positive for viral RNA,
IHC staining did not demonstrate antigen in the brain. The intensity of staining found using
IHC did roughly correlate with the amount of RNA found in the brain. As RNA titers in the
brain of the survivor mice were significantly lower compared to mice that died from
infection, it is possible that these low titers, in addition to unsystematic sampling, resulted
in the absence of detection of positively stained cells using IHC in brain samples of the
survivor mice.

We have also measured the response to infection in the brain as a virulence factor.
Although astrocytosis and microgliosis were observed in all mice that died from the
infection, we did not find evidence of infection of these cells. It is believed that activated
microglia and astrocytes contribute to an excessive inflammatory response, which triggers a
process of secondary cell death or functional depression in structurally normal areas distant
from, but connected to the original sites involved. We have found that MMP-3 transcript
was significantly elevated in all animals that developed severe disease. MMPs are capable
of degrading the tight junction proteins of human brain microvascular endothelial cells,
thereby compromising the integrity of the blood-brain barrier. Further studies are necessary
to address the question of whether MMP-3 is a virulence factor triggered by pathogenic
WNYV strains.

To our knowledge, this is the first study to characterize pathogenic properties of WNV
strains circulating in Europe. We have found that all three European strains of WNV are
neurovirulent in C57BL/6 mice; however, the data also suggest that 1ta09 and 578/10 show
an increased virulence in comparison to FIN. Studies are ongoing to determine the
virulence of these strains in European birds and in other outbred animal models.

ACKNOWLEDGMENTS
We would like to thank Tien Nguyen for his assistance with the confocal microscopy. The
research leading to these results has received funding from the European Community's

Seventh Framework Program (FP7/2007 - 2013) under the project "VECTORIE”, EC grant
agreement number 261466.

74



REFERENCES

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Dauphin G, Zientara S, Zeller H, Murgue B (2004) West Nile: worldwide current situation in
animals and humans. Comp Immunol Microbiol Infect Dis 27: 343-355.

Deardorff E, Estrada-Franco J, Brault AC, Navarro-Lopez R, Campomanes-Cortes A, et al.
(2006) Introductions of West Nile virus strains to Mexico. Emerg Infect Dis 12: 314-318.
Komar N, Clark GG (2006) West Nile virus activity in Latin America and the Caribbean. Rev
Panam Salud Publica 19: 112-117.

Lanciotti RS, Ebel GD, Deubel V, Kerst AJ, Murri S, et al. (2002) Complete genome sequences
and phylogenetic analysis of West Nile virus strains isolated from the United States, Europe,
and the Middle East. Virology 298: 96-105.

Rossini G, Cavrini F, Pierro A, Macini P, Finarelli A, et al. (2008) First human case of West
Nile virus neuroinvasive infection in Italy, September 2008 - case report. Euro Surveill 13.
Calistri P, Giovannini A, Savini G, Monaco F, Bonfanti L, et al. (2010) West Nile virus
transmission in 2008 in north-eastern Italy. Zoonoses Public Health 57: 211-219.

Rizzo C, Vescio F, Declich S, Finarelli AC, Macini P, et al. (2009) West Nile virus
transmission with human cases in Italy, August - September 2009. Euro Surveill 14.

Rossini G, Carletti F, Bordi L, Cavrini F, Gaibani P, et al. (2011) Phylogenetic analysis of West
Nile virus isolates, Italy, 2008-2009. Emerg Infect Dis 17: 903-906.

Bakonyi T, Ivanics E, Erdelyi K, Ursu K, Ferenczi E, et al. (2006) Lineage 1 and 2 strains of
encephalitic West Nile virus, central Europe. Emerg Infect Dis 12: 618-623.

Papa A, Bakonyi T, Xanthopoulou K, Vazquez A, Tenorio A, et al. (2011) Genetic
characterization of West Nile virus lineage 2, Greece, 2010. Emerg Infect Dis 17: 920-922.
Papa A, Danis K, Baka A, Bakas A, Dougas G, et al. (2010) Ongoing outbreak of West Nile
virus infections in humans in Greece, July-August 2010. Euro Surveill 15.

Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M, et al. (1999) Origin of the West Nile
virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286:
2333-2337.

Beasley DW, Whiteman MC, Zhang S, Huang CY, Schneider BS, et al. (2005) Envelope
protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1
West Nile virus strains. J Virol 79: 8339-8347.

Whiteman MC, Wicker JA, Kinney RM, Huang CY, Solomon T, et al. (2011) Multiple amino
acid changes at the first glycosylation motif in NS1 protein of West Nile virus are necessary for
complete attenuation for mouse neuroinvasiveness. Vaccine 29: 9702-9710.

Samuel MA, Diamond MS (2006) Pathogenesis of West Nile Virus infection: a balance
between virulence, innate and adaptive immunity, and viral evasion. J Virol 80: 9349-9360.

van Kuppeveld FJM, van der Logt JT, Angulo AF, van Zoest MJ, Quint WG, et al. (1992)
Genus- and species-specific identification of mycoplasmas by 16S rRNA amplification. Appl
Environ Microbiol 58.

Spearman C (1908) The method of right and wrong cases (constant stimuli) with Gauss
formulae. Br J Psychol 2.

Kérber G (1931) Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Arch
Exp Pathol Pharmakol 162.

Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am J Hyg
217.

Finney DJ (1947) Probit analysis; a statistical treatment of the sigmoid response curve. Oxford,
England: Macmillan. xiii 256 p.

75



21.

22.

23.

24.

25.
26.
27.
28.
29.

30.
31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

76

Imai Y, Kohsaka S (2002) Intracellular signaling in M-CSF-induced microglia activation: role
of Ibal. Glia 40: 164-174.

Tran CT, Wolz P, Egensperger R, Kosel S, Imai Y, et al. (1998) Differential expression of
MHC class Il molecules by microglia and neoplastic astroglia: relevance for the escape of
astrocytoma cells from immune surveillance. Neuropathol Appl Neurobiol 24: 293-301.

Mori I, Imai Y, Kohsaka S, Kimura Y (2000) Upregulated expression of Ibal molecules in the
central nervous system of mice in response to neurovirulent influenza A virus infection.
Microbiol Immunol 44: 729-735.

Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y (2001) Enhanced expression of Ibal, ionized
calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke
32:1208-1215.

Campbell GL, Marfin AA, Lanciotti RS, Gubler DJ (2002) West Nile virus. Lancet Infect Dis 2:
519-529.

Deubel V, Fiette L, Gounon P, Drouet MT, Khun H, et al. (2001) Variations in biological
features of West Nile viruses. Ann N 'Y Acad Sci 951: 195-206.

Bull JJ (1994) Perspective: virulence. Evolution 48: 1423-1437.

Ebert D (1998) Experimental evolution of parasites. Science 282: 1432-1435.

Casadevall A, Fang FC, Pirofski LA (2011) Microbial virulence as an emergent property:
consequences and opportunities. PLoS Pathog 7: €1002136.

Weiss RA (2002) Virulence and pathogenesis. Trends Microbiol 10: 314-317.

Casadevall A, Pirofski L (2001) Host-pathogen interactions: the attributes of virulence. J Infect
Dis 184: 337-344.

Casadevall A, Pirofski LA (1999) Host-pathogen interactions: redefining the basic concepts of
virulence and pathogenicity. Infect Immun 67: 3703-3713.

Ebert D, Bull JJ (2007) The evolution and expression of virulence. Evolution in Health and
Disease: Oxford University Press.

Vignuzzi M, Stone JK, Arnold JJ, Cameron CE, Andino R (2006) Quasispecies diversity
determines pathogenesis through cooperative interactions in a viral population. Nature 439:
344-348.

Ciota AT, Ehrbar DJ, Van Slyke GA, Willsey GG, Kramer LD (2012) Cooperative interactions
in the West Nile virus mutant swarm. BMC Evol Biol 12: 58.

Ng ML, Tan SH, Chu JJ (2001) Transport and budding at two distinct sites of visible
nucleocapsids of West Nile (Sarafend) virus. J Med Virol 65: 758-764.

Venter M, Swanepoel R (2010) West Nile virus lineage 2 as a cause of zoonotic neurological
disease in humans and horses in southern Africa. Vector Borne Zoonotic Dis 10: 659-664.
Beasley DW, Li L, Suderman MT, Barrett AD (2002) Mouse neuroinvasive phenotype of West
Nile virus strains varies depending upon virus genotype. Virology 296: 17-23.

Burt FJ, Grobbelaar AA, Leman PA, Anthony FS, Gibson GV, et al. (2002) Phylogenetic
relationships of southern African West Nile virus isolates. Emerg Infect Dis 8: 820-826.

Brault AC, Huang CY, Langevin SA, Kinney RM, Bowen RA, et al. (2007) A single positively
selected West Nile viral mutation confers increased virogenesis in American crows. Nat Genet
39: 1162-1166.

Barzon L, Franchin E, Squarzon L, Lavezzo E, Toppo S, et al. (2009) Genome sequence
analysis of the first human West Nile virus isolated in Italy in 2009. Euro Surveill 14.

Sotelo E, Fernandez-Pinero J, Llorente F, Aguero M, Hoefle U, et al. (2009) Characterization of
West Nile virus isolates from Spain: new insights into the distinct West Nile virus eco-
epidemiology in the Western Mediterranean. Virology 395: 289-297.



43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.
55.

56.

57.

Colpitts TM, Rodenhuis-Zybert 1, Moesker B, Wang P, Fikrig E, et al. (2011) prM-antibody
renders immature West Nile virus infectious in vivo. J Gen Virol 92: 2281-2285.

Hunsperger EA, Roehrig JT (2006) Temporal analyses of the neuropathogenesis of a West Nile
virus infection in mice. J Neurovirol 12: 129-139.

Xiao SY, Guzman H, Zhang H, Travassos da Rosa AP, Tesh RB (2001) West Nile virus
infection in the golden hamster (Mesocricetus auratus): a model for West Nile encephalitis.
Emerg Infect Dis 7: 714-721.

Morrey JD, Siddharthan V, Olsen AL, Roper GY, Wang H, et al. (2006) Humanized
monoclonal antibody against West Nile virus envelope protein administered after neuronal
infection protects against lethal encephalitis in hamsters. J Infect Dis 194: 1300-1308.

Mateo R, Xiao SY, Guzman H, Lei H, Da Rosa AP, et al. (2006) Effects of immunosuppression
on West Nile virus infection in hamsters. Am J Trop Med Hyg 75: 356-362.

Steele KE, Linn MJ, Schoepp RJ, Komar N, Geisbert TW, et al. (2000) Pathology of fatal West
Nile virus infections in native and exotic birds during the 1999 outbreak in New York City,
New York. Vet Pathol 37: 208-224.

Ellis AE, Mead DG, Allison AB, Stallknecht DE, Howerth EW (2007) Pathology and
epidemiology of natural West Nile viral infection of raptors in Georgia. J Wildl Dis 43: 214-
223.

Olberg RA, Barker IK, Crawshaw GJ, Bertelsen MF, Drebot MA, et al. (2004) West Nile virus
encephalitis in a Barbary macaque (Macaca sylvanus). Emerg Infect Dis 10: 712-714.

Samuel MA, Diamond MS (2005) Alpha/beta interferon protects against lethal West Nile virus
infection by restricting cellular tropism and enhancing neuronal survival. J Virol 79: 13350-
13361.

Cushing MM, Brat DJ, Mosunjac MI, Hennigar RA, Jernigan DB, et al. (2004) Fatal West Nile
virus encephalitis in a renal transplant recipient. Am J Clin Pathol 121: 26-31.

Centers for Disease Control and Prevention (1999) Update: West Nile-like viral encephalitis -
New York, 1999. MMWR Morb Mortal Wkly Rep. pp. 890-892.

Komar N (2000) West Nile viral encephalitis. Rev Sci Tech 19: 166-176.

Manulidis EE (1956) Neuropathology of experimental West Nile virus infections in monkeys. J
Neuropath Exp Neurol 15: 448-460.

Sampson BA, Ambrosi C, Charlot A, Reiber K, Veress JF, et al. (2000) The pathology of
human West Nile Virus infection. Hum Pathol 31: 527-531.

Schmidt JR, Elmansoury HK (1963) Natural and Experimental Infection of Egyptian Equines
with West Nile Virus. Ann Trop Med Parasitol 57: 415-427.

77



SUPPORTING INFORMATION

Primer

Sequence (5’to 3’)

Application

#721modified48R
#722modified51F
#723modified57R
#43WNV.EO04F
#44WNV.EO5R

#732WNVI1-870f*

#7133WNVII-
1630r*
WNVE-Deepseq-
F1
WNVE-Deepseq-
R2
WNVE-Deepseq-
F2
WNVE-Deepseq-
R3
WNVE-Deepseq-
F3
WNVE-Deepseq-
R4
WNVE-Deepseq-
F4
WNVE-Deepseq-
F1/853-HUN
WNVE-Deepseq-
R2/854-HUN
WNVE-Deepseq-
F4/859-HUN
WNVE-Deepseq-
723-HUN

3’UTRF

78

AGCTCTTGCCGGCTGATGTC

AGCTTCAACTGCCTTGGAATGAG

TGTCAGCGTGCACGTTCACGGA

CGCCAAATTTGCCTGCTCTAC

AGTTTGAGGAACCACACGCCA

CCTCGTTGCAGCTGTCATTG

TCCATGGCAGGTTCAGATCC

ATGACAAACGTGCTGACC

GTTCACAGTCCACTGTCACCTCTC

CGCCTTCATACACACTAAAG

AGCCTTTGAACAGACGCCAT

GTAGAGTGAAGATGGAAAAATTGC

GCTGTGTCTCCTAGAGCGGC

ACAACCACCCTCAAAGGA

AACGAGAAAAGAGCTGACCCCG

GCTCACAGTCAACCGTGACCTCAC

CCTTTACCACTACACTCAGAGGAGCT

TGTCAGCATGGACGTTGACCGA

CCACCGGAAGTTGAGTAGACG

RT-PCR
PCR/Sequencing
PCR/Sequencing
Sequencing

Sequencing

Sequencing

Sequencing

454 sequencing
454 sequencing
454 sequencing
454 sequencing
454 sequencing
454 sequencing
454 sequencing
454 sequencing
454 sequencing
454 sequencing

454 sequencing

Tagman



3’UTRR TTTGGTCACCCAGTCCTCCT Tagman

3’UTR probe FAM-

TAMRA TGCTGCTGCCTGCGGCTCAACCC Tagman

Supplementary Table 1. Primers used for sequencing the envelope of WNV-NY99, FIN, 1ta09
and 578/10. Primers indicated with * were kindly provided by Dr. Tamas Bakonyi (Szent Istvan
University, Hungary) and were used to sequence the envelope of 578/10.

WNVstrain  CTX CNU TH HY HPF MB 'F\,’(')Ié cB
WNV-FIN 60% 20% 10%  40%  30%  30%  20%  40%
n=10 (died)
n=9 (survived)
WNVRIR09 9000 6096 509  20%  30%  20% 50%  60%
n=10 (died)
n=6 (survived)
WNV'STBII0 7806 509  39% 39%  33%  44%  44%  17%
n=18 (died)

n=3 (survived)

Abbreviations: CTX = cortex; CNU = cerebral nuclei; TH = thalamus; HY = hypothalamus; HPF =
hippocampal formation; MB = midbrain; MY = medulla; CB = cerebellum

Supplementary Table 2. Antigen distribution (described in terms of staining of the NS3
protein) in the brains of mice infected with WNV-FIN, 1ta09 and 578/10, and either euthanized
upon display of clinical signs of disease (between days 6-14) or euthanized on day 20 without
showing signs of illness. Percentage indicates the amount of infected mice that are positive for
antigen in each particular brain region.
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T cell staining (anti-CD3 antibody)
Cerebrum Brainstem Cerebellum
Infiltration Perivascular | Infiltration Perivascular | Infiltration Perivascular
cuffs cuffs cuffs
FIN <1/HPF (in | Neg <1/ HPF Neg Neg Neg
50% of
mice)
Survived 1 layer thick | 1 cell per
in 10% of HPF (10%
mice of mice)
1ta09 1/ HPF (in 1/HPF <1/mouse (1
50% of cell layer
mice) thick)
Survived | Clusters of Clusters of 2 cell layers
positive cells positive cells | thick
(in 33% of (in 33% of
mice) mice)
578/10 Neg Neg <1/HPF (in Neg Neg Neg
50% of
mice)
Survived | <1 cell per <1 cell per
HPF (50% of HPF (50%
the mice) of the mice)

Supplementary Table 3. Detection of CD3 positive cells in the brains of mice infected with WNV-FIN, 1ta09 and 578/10, and either euthanized
upon display of clinical signs of disease (between days 6-14) or euthanized on day 20 without showing signs of illness. Numbers indicate the
number of positive cells; HPF: high power field; objective 40X.
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FIN ref (JF719067.1)
FIN (KC493970)

Ita09 ref (GU011992.2)
Ita09

578/10 (KC496015)
578/10

FIN ref (JF719067.1)
FIH (KC493970)

Ita09 ref (GU011992.2)
Ita09

578/10 (KC496015)
578/10

FIN ref (JF719067.1)
FIN (KC493970)

Ita09 ref (GU011992.2)
Ita09

578/10 (KC496015)
578/10

FIH ref (JF719067.1)
FIH (KC493970)

Ita09 ref (GU011992.2)
Itang

578/10 (KC496015)
578710

FIH ref (JF719067.1)
FIH (KC493970)

Ita09 ref (GU011992.2)
Itaos

578/10 (KC496015)
578710

FIH ref (JF719067.1)
FIH (KC493970)

Ita09 ref (GU011992.2)
Ita09

578/10 (KC496015)
578/10

FIN ref (JF719067.1)
FIN (KC493970)

Ita09 ref (GU011992.2)
Ita09

578/10 (KC496015)
578/10
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Supplementary Figure S1. The sequences of glycoprotein E of the WNV stock used in this
study were determined with the Sanger method. The deduced amino acid sequences were
aligned. The sequence of FIN was deposited in GenBank (KC493970). The sequence of Ita09
and 578/10 were compared to GU011992.2 (Ita09) and KC496015 (578/10) and FIN was
compared to a highly similar sequence (accession JF719067.1; 99% similar to FIN).
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ABSTRACT

Studying the tropism and replication kinetics of West Nile virus (WNV) in different cell
types in vitro and in tissues in animal models is important for understanding its
pathogenesis. As detection of the negative strand viral RNA is a more reliable indicator of
active replication for single-stranded positive-sense RNA viruses, the specificity of qRT-
PCR assays currently used for the detection of WNV positive and negative strand RNA was
reassessed. It was shown that self- and falsely-primed cDNA was generated during the
reverse transcription step in an assay employing unmodified primers and several reverse
transcriptases. As a result, a gRT-PCR assay using the thermostable rTth in combination
with tagged primers was developed, which greatly improved strand specificity by
circumventing the events of self- and false-priming. The reliability of the assay was then
addressed in vitro using BV-2 microglia cells as well as in C57/BL6 mice. It was possible
to follow the kinetics of positive and negative-strand RNA synthesis both in vitro and in
vivo; however, the sensitivity of the assay will need to be optimized in order to detect and
quantify negative-strand RNA synthesis in the very early stages of infection. Overall, the
strand-specific qRT-PCR assay developed in this study is an effective tool to quantify
WNV RNA, reassess viral replication, and study tropism of WNV in the context of WNV
pathogenesis.
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INTRODUCTION

West Nile virus (WNV) is a neurotropic RNA virus with a positive-sense single-stranded
genome that belongs to the genus Flavivirus in the Flaviviridae family. The replication of
WNV proceeds through a negative strand RNA intermediate [1], synthesized by the virus-
encoded RNA-dependent RNA polymerase. The negative strand is used as a template for
the synthesis of new single stranded positive-sense RNA molecules [2]. Therefore,
detection of this negative strand, which is generally significantly outnumbered by the
positive strand, signifies viral replication.

In vitro experiments have shown that cortical astrocytes are susceptible to infection
with WNV while replication in microglia cells was not supported [3]. In vivo, WNV infects
mostly neuronal cells and on occasion has also been shown to infect microglia cells [4]. In
general, however, in vivo tropism of WNV for astrocytes and microglia cells remains
mostly speculative. In order to determine permissibility of these cells to infection by WNV,
synthesis of the negative strand can be assessed using strand-specific quantitative RT-PCR.
Another issue that could be addressed by determining the presence of negative strand is
persistence of WNV, which has been described in several organs and animal species [5-9].
Specific strand detection can therefore be useful in the elucidation of the mechanisms of
persistent infection and may contribute to the further understanding of WNV pathogenesis.

Even though gRT-PCR is the method used most widely for the quantitation of viral
RNA, its major disadvantage is that it provides limited strand specificity. As a result,
standard qRT-PCR cannot determine the absolute quantity of viral RNA copies in a given
sample due to the presence of both positive and negative strands of RNA. This lack of
strand specificity has been attributed to a combination of factors, including self-priming of
the RNA due to secondary hairpin structures [10-15], false priming of the incorrect strand
[10, 16-18] and random priming by contaminating endogenous or exogenous nucleic acids
[13, 16, 19]. Attempts to overcome these problems include performing RT reactions at high
temperatures [20, 21], use of the thermostable RTth enzyme [10, 22-24], use of tagged RT
primers [25-28] or a combination of tagged primers and RTth enzyme [29]. It was shown
that the approach employing tagged primers in combination with high RT temperature
greatly improved the specificity of the RT reactions. So far, quantitation of negative strand
RNA for analysis of positive-sense RNA virus replication has been applied for a number of
viruses, which include hepatitis A [24, 30], hepatitis C [10, 11, 18, 29, 31], hepatitis E [32],
GB virus C [33], dengue [25], O’nyong-nyong and Chikungunya [27], murine norovirus
[28] and foot-and-mouth disease virus [34]. Due to the problems associated with false
detection of negative strand RNA, conclusions derived from assays not optimized for
strand-specific detection of RNA may not be valid [35, 36].

In this study, it was shown that the gRT-PCR system using conventional WNV-
specific primers for the detection of positive and negative strand viral RNAs lacks strand-
specificity due to amplification of both falsely primed cDNA generated from the incorrect
strand, as well as cDNA generated from self-primed RNA, both occurring during the RT
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step. As a result, a gRT-PCR system that employs both tagged primers and the thermostable
RTth enzyme was developed in order to overcome these problems, which greatly improves
the specificity of detection of negative and positive strand viral RNAs for the study of
WNYV replication.

MATERIALS AND METHODS

Cells and viruses

The mouse microglia cell line BV-2 (kindly provided by Dr. M Leist, University of
Konstanz, Germany) was grown in Roswell Park Memorial Institute (RPMI) medium 1640
supplemented with 10% heat inactivated fetal bovine serum (HI-FBS). Virus used in this
study consisted of the NY99 strain (accession AF196835.2, obtained from the Health
Protection Agency, Porton Down, UK; Passage (P) 4 on Vero E6 cells). Virus stock was
prepared by growing the P4 virus stock once on C6/36 insect cells. C6/36 insect cells were
cultured in Leibovitz-15 medium supplemented with 5% HI-FBS, 10% tryptose phosphate
broth, 0.75% sodium bicarbonate and 10 mM hepes buffer. All media were supplemented
with antibiotics (100 U penicillin, 100 pg/ml streptomycin) and 2 mM L-glutamine. Cell
culture reagents were obtained from Lonza, Breda, The Netherlands.

Synthesis of in vitro RNA transcripts

In order to quantify negative and positive strands, run-off transcripts for each strand were
generated from a plasmid (pCR®4-TOPO®; Invitrogen, Breda, The Netherlands) containing
the sequence of the 3’'UTR of WNV. In order to synthesize the positive-sense transcript,
plasmid DNA was linearized using the Notl restriction enzyme. For synthesis of the
negative-sense transcript, DNA was linearized with the Pmel restriction enzyme.
Linearized plasmid DNA was cleaned up using the MinElute Reaction Cleanup kit (Qiagen,
Venlo, The Netherlands) and run-off transcripts were generated using the Ambion®
MaxiScript T7/T3 kit (Invitrogen). The positive sense RNA was transcribed using the T3
polymerase and the negative sense RNA using the T7 polymerase. The product was
subsequently incubated with 2 U of TURBO DNase (Invitrogen) at 37 °C for 15 min to
remove residual DNA and the reaction was cleaned up using the High Pure RNA Isolation
kit (Roche Diagnostics, Almere, The Netherlands), which included an additional DNA
digestion step using 100 U of DNase | (Roche). The RNA transcripts were eluted in 50 pL
and the concentration was determined using spectrophotometer (NanoDrop) readings at
wavelength 260 nm. The stocks of in vitro transcribed RNA were subsequently diluted to a
concentration of 3.7 x 107 copies/pL for the positive sense and 4.5 x 107 copies for the
negative sense RNA, a concentration at which DNA was no longer detected using qRT-
PCR.
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Quantitative RT-PCR of negative and positive strand viral RNAs using unmodified
and tagged primers

Primer and probe sets used in this study are specific to the 3’UTR of WNV and are based
on previously published primers and probe (Meece et al., 2003), but with an additional TgC
triplet added to the probe (Table 1). First, detection of strand-specific RNA was performed
using ‘unmodified primers’. For detection of positive strand RNA, RT was performed with
the R96 primer and for detection of the negative strand RT was done with the F34 primer.
Subsequently, PCR amplification was performed using both the F34 and R96 primers
added to the reaction after cDNA synthesis. Alternatively, ‘tagged primers’ were used for
the RT reaction. To this end, the R96 and F34 primers were tagged by adding a 32-mer-
long sequence of the Grapevine virus A as a tag at the 5’-end of the respective primers
(Table 1; tag sequence indicated in bold). This procedure has been reported to prevent the
amplification of cDNA products made by false priming of either RNA strand as well as the
amplification of cDNA acquired as a result of self-priming [10]. Specific detection of the
WNV-positive RNA strand was performed during cDNA synthesis using the Tag-Rev
primer, complimentary to the positive-sense strand, and the negative strand was detected
using the Tag-Fwd primer, which is complimentary to the negative-sense strand.
Subsequently, the positive strand was amplified using the Tag sequence as the reverse
primer and WNV F34 as the forward primer. In contrast, the negative strand was amplified
using the Tag sequence as a forward primer and WNV R96 as a reverse primer. All RT
reactions contained 30 pmol of primer and were carried out for 2 min at 50 °C and 30 min
at 60 °C using the rTth RT enzyme according to the instructions provided by the TagMan
EZ RT-PCR kit (Applied Biosystems, Bleiswijk, The Netherlands). RT reactions using
unmodified primers contained 5 pL of RNA while those using tagged primers contained 7
puL of RNA. The RT function of the rTth enzyme was inactivated for 15 min at 95 °C. In all
cases, PCR amplification consisted of 30 pmol of primer, 15 pmol of WNV 56 probe in a
total volume of 50 pL, and cDNA was amplified in 40 amplification cycles of 20 sec at 95
°C and 1 min at 60 °C using the rTth enzyme (DNA polymerase function). All reactions
were carried out on a 7500 Fast real time PCR System (Applied Biosystems) and analyzed
using 7500 Software v.2.0 (Applied Biosystems).

The effect of the transcriptase on false-priming and self-priming was also investigated.
To this end, RT-PCRs were carried out using Superscript Il (SSIII; Invitrogen),
MultiScribe (MS; Applied Biosystems) and Avian Myeloblastosis Virus RT (AMV;
Promega). The RT-PCRs for these enzymes were as follows: 15 min at 25 °C, 45 min 50
°C, 15 min 70 °C for SSIII, 30 min at 48 °C for MS, and 60 min at 42 °C for AMV. All
reactions were succeeded by inactivation of the RT at 95 °C for 15 min. The RT reactions
comprised 10 pL of RNA and 20 pmol of reverse primer. Subsequently, 2.5 pL of the
cDNA reaction was added to the TagMan PCR using primers and probe as described above.
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In vitro infection of mouse microglia cells with WNV-NY99

BV-2 cells were cultured overnight in 96-well flat bottom culture plates (10 cells/well) and
virus was added at MOI 0.5. Virus was allowed to adsorb for one hour at 37 °C. Cells were
subsequently washed three times with serum-free medium to remove virus inoculum,
replenished with fresh medium and cultured at 37 °C for 48 hours. Cells were collected in
triplicate at 12, 24, 36 and 48 hours. Culture supernatants were removed and cells were
taken in 100 pL of PBS and lysed with 400 pL of lysis buffer (Roche). RNA was then
extracted using the MagNA Pure LC Total Nucleic Acid Isolation Kit (Roche) and an
automated nucleic acid robotic workstation (Roche) according to the manufacturer’s
instructions. RNA was eluted in 50 pL of elution buffer (Roche) and stored at -80 °C until
used. Synthesis of cDNA was initiated with 7 pL of total RNA using the rTth enzyme and
tagged primers to detect the presence of both positive and negative strand viral RNA. The
loguo titrated in vitro RNA transcript standard curve (T3: 3.7 X 107 copies; T7: 4.5 x 107
copies) was reverse transcribed at the same time as the cell culture RNA samples.

Mouse infection with WNV-NY99

Nine-day old female C57BL/6 mice (Harlan Laboratories B.V., Venray, The Netherlands)
were inoculated intraperitoneally (i.p.) with 10° TCIDsy of WNV-NY99. Mice were
euthanized by cervical dislocation under isoflurane anaesthesia on days 3, 4, 5 and 6 post-
inoculation, after which the brain was immediately collected for further processing. Mice
were maintained in specific pathogen-free conditions, had a 12-hour day-night cycle and
were fed ad libitum. Animal experiments were approved by the Animal Ethics Committee
of Erasmus Medical Center.

In order to quantify viral RNA copies in the brain, half the brain was weighed and
homogenized using a metal bead in 1 mL of DMEM containing antibiotics (100 U
penicillin, 100 pg/mL streptomycin) using a tissue homogenizer. 100 pL of brain
homogenate was added to 400 uL of lysis buffer (Roche). RNA was then extracted as
indicated above and stored at -80 °C until used. Synthesis of cDNA was initiated with 7 pL
of total RNA and brain homogenates were examined for the presence of both positive and
negative strand. The logo titrated in vitro RNA transcript standard curve (T3: 3.7 x 107
copies; T7: 4.5 x 107 copies) was reverse transcribed at the same time as the tissue RNA
samples. The total number of RNA copies was determined per gram of brain.

RESULTS

Contribution of different reverse transcriptases to self- and false-priming using
unmodified and tagged primers

The role of the RT enzyme in self-priming and false-priming using unmodified and tagged
primers was investigated (Table 1). To this end, SSIlI, MS, AMV, and rTth were used for
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the RT reaction and only one concentration of in vitro RNA transcript depending on the
input RNA for the specific assay. First, the occurrence of self-priming, measured by
synthesis of cDNA in the absence of RT specific primers was assessed (Table 2). The RT
reaction was followed by PCR amplification using either unmodified or tagged primers.
When SSIII, MS, AMV and rTth were used for RT followed by PCR containing
unmodified primers, occurrence of self-priming of both strands could be detected. The use
of unmodified primers for specific RT could therefore not circumvent self-priming. Self-
priming of the negative strand also occurred when tagged primers were used in combination
with AMV. However, when the other RT enzymes were used in combination with the
tagged primers, self-priming was not observed. This suggests that the tagged primers
largely circumvent detection of self-priming, but that this phenomenon is still RT enzyme-
dependent.

Secondly, generation of cDNA as a result of false-priming by unmodified or tagged
primers using both the positive and negative strand as a template was evaluated (Table 2).
In the RT reaction, positive and negative sense RNA transcripts were used in combination
with the non-complementary unmodified primers. Following PCR with the corresponding
pair of unmodified primers, it was possible to detect the positive strand at a concentration
of 3.72 x 107 copies for SSIIl and AMV, 1.49 x 107 copies for MS and 1.86 x 107 copies
for rTth. Using a positive strand specific RT-PCR, the negative strand was detected at a
concentration of 4.54 x 107 copies for SSIII and AMV, 1.82 x 107 for MS and 2.27 x 107
copies for rTth. When tagged primers were used, however, no WNV specific cDNA
produced by false-priming was detectable at these concentrations of RNA.

89



Name  Application  Nucleotide sequence (5’ to 3°)*
WNV  PCR CCACCGGAAGTTGAGTAGACG
F34 amplification
WNV  PCR TTTGGTCACCCAGTCCTCCT
R96 amplification
WNV  PCR TGCTGCTGCCTGCGGCTCAACCC (5’'FAM-3'TAMRA)
56 amplification
Tag- RT primer TTTGCTAGCTTTAGGACCTACTATATCTACCTCCA
Fwd negative- CCGGAAGTTGAGTAGACG
sense
Tag- RT primer TTTGCTAGCTTTAGGACCTACTATATCTACCTTTT
Rev positive- GGTCACCCAGTCCTCCT
sense
Tag PCR TTTGCTAGCTTTAGGACCTACTATATCTACCT
amplification

* The non-WNYV (tag) sequences are indicated in bold while WNV-specific sequences are in regular

font.

Table 1. Nucleotide sequence of primers and probe used for either reverse transcription or
quantitative PCR.

Unmodified primers Tagged primers
£ S 32 If | |
> EBC = Self- False- Self-priming False-
c S > 5 priming priming priming
w o ¥ ©
el © © © © © © ©
C c c c c c c c
~f 8 ~8 8§ ~8 &8 ~g _¢
58 &8 Ty &8 T8 8 TH
SSllI 50 Reduced Yes Yes Yes Yes No No No No
MS 48 Reduced Yes Yes Yes Yes No No No No
AMV 42 Yes Yes Yes Yes  Yes No yes No No
rTth 60 Yes Yes Yes Yes Yes No No No No

Table 2. The presence of self- or false-priming events during reverse transcription (RT) of
positive and negative strand RNA transcript using four different RT enzymes in combination
with unmodified or tagged primers.
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Lack of strand-specificity of qRT-PCR using unmodified WNV-specific primers for
the detection of positive or negative strand RNAs: contribution of self- and falsely-
primed cDNAs to PCR amplification

First the sensitivity of the unmodified primers was addressed. The transcripts were diluted
to a concentration of 2.61 x 107 of positive and 3.18 x 107 of negative-sense RNA and
serially diluted on a 10-fold scale so that a final concentration of 2.61 and 3.18 copies was
reached, respectively. The limit of detection with the unmodified primers was found to be
at 26 and 32 copies (106 dilutions) of positive strand and negative strand RNA, respectively
(Fig. 1A and B).

Positive strand detection Negative strand detection
40+ -
a A Positive strand © I
i Negative strand A
30 P 30 o
4
3 A
S 201 1 20-
- A
[&] a
104 10
c T T T T T T Ll 1 c T T T T T T T 1
0o 1 2 3 4 5 6 T 8 0 1 2 3 4 5 6 7 8
A Copy numbers (log) B Copy numbers (log)

Figure 1. The sensitivity and specificity of the strand-specific gRT-PCR for detection of
negative- and positive-sense RNA transcripts using unmodified primers. The strand-specific
reverse transcription was initiated with a standard curve of 2.61 x 107 copies of the positive
strand and 3.18 x 107 of the negative strand serially diluted ten-fold up to 2.61 and 3.18 copies,
respectively. The log of the RNA copies is plotted against the cycle threshold (Cr). Only data
points where amplification occurred are included in the graph. (A) Positive and negative strand
RNA was detected using positive strand-specific primers. (B) Positive and negative strand RNA
was detected using negative strand-specific primers. Graphs depict mean + standard deviation
(SD).

Next the contribution of self- and false-priming events during the reverse transcription
step of WNV negative and positive strand RNAs using unmodified primers in combination
with the rTth enzyme was quantified. WNV-specific RT reactions were performed in the
absence of the unmodified strand-specific RT primers (Table 1). cDNAs generated during
the RT step were then amplified by PCR using both primers. In the absence of RT specific
primer, both strands could be amplified, with a detection limit of 2.61 x 10 copies for the
positive strand and a detection limit of 3.18 x 10* copies (10° dilutions) for the negative
strand, indicating the presence of self-priming for both strands.
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Strand-specificity of these primers was also assessed by performing the RT step in the
presence of the uncomplimentary (incorrect) strand. The detection limit of the negative
strand using the positive strand detection system was 32 copies (10° dilution), and the limit
of detection for the positive strand was 2.61 x 10* copies (10° dilution) using the negative
strand detection system (Fig. 1A and B). This indicates occurrence of false-priming of the
incorrect strand during strand-specific RT-PCR with a significantly larger contribution in
detection of the negative strand.

The RT-PCR was also performed testing both negative and positive-stranded RNA in
the presence of unmodified dengue virus (DENV)-specific forward or reverse primer and
rTth enzyme. This was followed by PCR amplification using the WNV-specific unmodified
F34 and R96 primers. For this purpose, only one concentration of in vitro RNA transcript
(T3:1.86 x 107 copies; T7: 2.27 x 107 copies) was used. The positive strand was detected
at the indicated RNA concentration with a Ct value of 34 in the presence of the DENV-
specific forward primer. This result confirms the occurrence of self-priming during the RT
step.

Validation of the strand-specific tagged primer gRT-PCR for WNV using RNA
transcripts

The sensitivity and reproducibility of the strand-specific qRT-PCR assay using tagged
primers was evaluated using synthetic positive- and negative-sense RNA transcripts. The
transcripts were diluted to a concentration of 2.61 x 107 copies per reaction for the positive
strand and 3.18 x 107 for the negative strand. The RNA transcripts were then serially
diluted on a ten-fold scale so that an end concentration of 2.61 and 3.18 copies was reached,
respectively. Minimum level of detection for either the positive or negative strand varied
between 261-2610 and 318-3180 copies, respectively (Fig. 2A, B). In order to determine
the sensitivity of the tagged primers more precisely, the RNA transcripts were subsequently
diluted on a two-fold scale reaching an end concentration of 25.5 and 31.1 copies. Using
this standard curve, the minimum level of detection was found to be around 815 copies for
the positive strand and 497 copies for the negative strand.

False priming of the uncomplimentary strand was not detected at any of the dilutions
tested. Although detection of the positive and negative strand was fairly similar, detection
of the negative strand was more sensitive and less variable. The standard deviation at each
dilution was on average 2.88 Cr values for the positive strand, and 0.64 Cr values for the
negative strand. The difference in variability is also reflected by the coefficient of variation
percentages, where the values for negative strand detection are much lower compared to
positive strand detection (Table 3). The displayed PCR efficiency was on average 102% =+
13 for positive strand detection and 109% =+ 13 for negative strand detection. The range of
the R? value for the standard curves constructed from the logyo serially diluted RNA was
0.9-0.999 and 0.957-0.997, respectively. No amplification was observed in the controls
lacking RT primer, RNA or reverse transcriptase.
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Figure 2. The sensitivity of the strand-specific gRT-PCR for detection of negative- and
positive-sense RNA transcripts using unmodified and tagged primers. The strand-specific
reverse transcription was initiated with 2.61 x 107 copies of the positive strand and 3.18 x 107 of
the negative strand serially diluted ten-fold up to 2.61 and 3.18 copies, respectively. The log of
the RNA copies is plotted against the cycle threshold (C+). Only data points where amplification
occurred are included in the graph. (A) Positive strand RNA was detected using positive strand-
specific unmodified (square) and tagged (closed circle) primers. (B) Negative strand RNA was
detected using negative strand-specific unmodified (square) and tagged (closed circle) primers.
Graphs depict mean + SD.

Copy numbers of positive strand Copy numbers of negative strand
RNA transcript RNA transcript

10® 104 10° 108 107 108 104 108 108 107

Intra-assay

variability 6,44 4,04 418 217 169 289 199 0,73 114 149
(CV%)

Inter-assay

variability 6,92 105 123 168 214 1,32 151 097 434 186
(CV%)

Table 3. Intra- and inter-assay reproducibility of the real-time polymerase chain reaction
(PCR) employing tagged primers at different concentrations of positive or negative RNA
transcript. CV = coefficient of variation calculated based on the Ct values obtained from seven
independent experiments.

The sensitivity of the strand-specific gRT-PCR was also evaluated by testing the
tagged primers in the presence of excess complimentary (correct) or uncomplimentary
(incorrect) RNA strand (Fig. 3A and B), with the addition of 200 ng of Vero E6 RNA (Fig.
2C and D), or a combination of both. Five dilutions of the positive-sense RNA transcript
were made, resulting in 107, 10%, 105, 10* and 10® copies, which were additionally mixed
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with 107 copies of negative-sense RNA transcript. Alternatively, 200 ng of Vero E6 RNA
was added to the reactions. These ratios were then tested using the gRT-PCR for the
positive strand. The reverse experiment was also performed where five dilutions of the
negative-sense transcript were mixed with 107 copies of positive-sense transcript, with and
without Vero E6 RNA. It was found that positive and negative strand detection was
generally unaltered in the presence of the high numbers of uncomplimentary strand, with a
maximum increase of 1.22 Cy value, which occurred at a ratio of 1:10 positive
strand:negative strand and a maximum increase of 0.28 Cy value at a ratio of 1:10
negative:positive (Fig. 3A and B).

Furthermore, the addition of 200 ng of Vero E6 RNA also did not change the
efficiency of detection of the positive or negative strand as only a maximum increase of
0.71 and 0.07 Cr value was observed, respectively (Fig. 3C and D). The addition of the
opposite strand plus Vero E6 RNA led to a maximum increase in Ct value of 1.22 for the
positive strand at a ratio of 1:10 (positive:negative) and 0.28 for the negative strand at a
ratio of 1:10 (negative:positive). As the described variation in Cy values are within the
normal limits of intra-assay variability, these results suggest that the presence of
uncomplimentary RNA does not inhibit the accurate quantification of the positive or
negative strand of WNV.

Quantitation of viral positive and negative strands of WNV RNA in cell culture

To investigate the susceptibility of the microglia cell line BV-2 to WNV infection and to
understand the dynamics of RNA synthesis during virus replication in cell culture, the
strand-specific qRT-PCR was used to characterize the kinetics of negative and positive
strand synthesis during WNV replication. BV-2 cells were infected at MOI of 0.5 and cells
were harvested for RNA extraction every 12 hours post-infection for a total of 48 hours.
RNA extracted from the infected cells at the indicated time points were subjected to the
strand specific qRT-PCR as described above. The number of RNA copies was determined
with the use of a standard curve. It was found that the BV-2 cells were susceptible to
infection by WNV as the amount of positive and negative strand RNA as determined by
strand-specific gRT-PCR varied over time. Between 0 and 12 hours post-infection, the
amount of positive strand increased by approx. 2 logio RNA copies and then continued to
increase steadily up to approx. 6 logio RNA copies by 48 hours post infection (Fig. 4). In
contrast, 3.5 logio of negative strand RNA was first detected at 24 hours post infection and
increased to approx. 4.5 logio RNA copies within 48 hours.
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Figure 3. Quantitation of positive and negative-sense RNA transcripts combined with the
opposite strand at various ratios or with the addition of 200 ng of Vero E6 RNA. The qRT-
PCRs were performed using tagged primer as described in the materials and methods. The log of
the RNA copies is plotted against the cycle threshold (C+). (A) Quantification of positive-sense
RNA transcript starting at a concentration of 2.61 x 107 copies and diluted ten-fold to 2.61
copies with and without the presence of 3.18 x 107 copies of negative-sense RNA transcript. (B)
Quantification of negative-sense RNA transcript starting at a concentration of 3.18 x 107 copies
and diluted ten-fold to 3.18 copies with and without the presence of 2.61 x 107 copies of
positive-sense RNA transcript. (C) Quantification of positive-sense RNA transcript starting at a
concentration of 2.61 x 107 copies and diluted ten-fold to 2.61 copies with and without the
presence of 200 ng of Vero E6 RNA. (D) Quantification of negative-sense RNA transcript
starting at a concentration of 3.18 x 107 copies and diluted ten-fold to 3.18 copies with and
without the presence of 200 ng of Vero E6 RNA.
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Quantitation of viral positive and negative strands of WNV RNA in infected mouse
brains

In order to understand the dynamics of WNV titers in the brain over the course of infection,
this assay was used to characterize the kinetics during replication in brain of C57BL/6
mice. Mice infected with 10° TCIDso of WNV were sacrificed per groups of five on day 3,
4, 5 and 6 irrespective of clinical symptoms, but no later than when humane endpoints were
reached. Brains were harvested for the determination of RNA copy numbers over time. The
negative strand increased between days 3 and 4 by about 3.5 logio RNA copies, and then
remained constant until day 6 (Fig. 5B), whilst the positive strand steadily increased across
days 3 to 6 from approx. 8.3 logio to 9.7 logio RNA copies (Fig. 5A). In general, the amount
of positive strand RNA detected in the brain was higher than the amount of negative strand
RNA. The ratio of negative to positive strand RNA was found to be on average 1:2.5 x 10°
on day 3, 1:2220 on day 4, 1:470 on day 5 and 1:800 on day 6. This indicates that the
largest amount of positive strand per negative strand was generated on day 3.
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Figure 4. Quantitation of WNV positive and negative-sense RNA during replication in cell
culture using tagged primers. BV-2 cells were infected at MOI of 0.5 and samples for RNA
isolation were harvested in triplicate at indicated time points post-infection. The production of
positive and negative-sense RNA was estimated by extrapolation of standard curves as
generated in Fig. 2 and the log of RNA copies recovered from the cells was plotted against time
points post-infection.
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Figure 5. Quantitation of WNV positive and negative-sense RNA in brains of mice infected
with 10° TCIDso of WNV-NY99 (n=5). Mice were euthanized on day 3, 4, 5 and 6 post-
infection and brains were collected and homogenized for RNA isolation. The amount of positive
and negative-sense RNA was estimated by extrapolation of standard curves as generated in Fig.
2 and calculated per gram of brain. The log of RNA copies was plotted against time points post-
infection. (A) The amount of positive-sense RNA copies present in the brains of mice between
days 3 and 6 post-infection. (B) The amount of negative-sense RNA copies present in the brains
of mice between days 3 and 6 post-infection.

97



DISCUSSION

An assay that allows for the specific detection of negative strand viral RNA is a useful tool
for studying viral replication and kinetics, in particular for single-stranded positive-sense
RNA viruses, which use the negative strand RNAs as a template for the synthesis of
positive stranded RNAs [1, 37]. In this study, a strand-specific gRT-PCR using tagged
primers and a thermostable rTth has been developed for the accurate quantitation of both
positive and negative sense RNA of WNV. It was shown that this qRT-PCR assay is
suitable for the study of viral replication in cell culture, but also in experimentally infected
mice. The results of both the in vitro and in vivo study clearly show an increase in both
positive- and negative-sense RNA over time.

Many studies have reported the synthesis of non-specific cDNA during an RT
reaction, which interfere with strand-specific detection of RNAs [10, 16, 25, 38]. However,
recent developments in gRT-PCR assays, such as high temperature reverse transcriptase
enzymes and the use of tagged RT primers, have allowed for more accuracy in the detection
of specific RNA strands.

In the attempt to develop a strand-specific qRT-PCR for studying WNV replication,
the accuracy of a current standard gRT-PCR system using unmodified primers and rTth for
the detection of positive or negative strand RNAs of WNV was first investigated. Using
synthetic positive and negative RNA transcripts, it was shown that self-primed cDNAs are
generated during the reverse transcription step in the absence of primers and that false-
priming occurs in the presence of unmodified primers. These self- and falsely-primed
cDNAs are subsequently amplified in PCR to amplicons that are indistinguishable from
positive or negative-strand specific cDNAs.

To further elucidate these observations, four different reverse transcriptases that
function at different temperatures were compared. It was found that both self- and false-
priming occurred in the presence of SSIII, AMV, MS and rTth. When these same reactions
were carried out in the presence of tagged primers, false-priming was no longer observed.
Self-priming was only evident when tagged primers were used in combination with AMV.
This suggests that the tagged primers largely circumvent self-priming, but that this
phenomenon is also RT enzyme-dependent. This is supported by the fact that very few
positive strand RNA was detected when unmodified uncomplimentary primer was used in
combination with rTth, as this reaction was carried out at a temperature of 60 °C. The
results in this study are in agreement with published data [29] demonstrating reduced
strand-specificity when using tagged primers in combination with AMV or untagged
primers in combination with rTth-RT, and further highlight the importance of combining
the thermostable rTth enzyme with tagged primers.

As a result, a gRT-PCR assay was developed to overcome self- and false-priming in
the detection of WNV-specific RNA that uses rTth enzyme in combination with tagged
primers. Even though tagged primers alone have proven to be successful in some studies
[25-28], this study shows that a combination of tagged primers with thermostable rTth is
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necessary to circumvent these problems for the detection of WNV-specific RNA. This
combination greatly improved the specificity of the positive and negative strand-specific
gRT-PCR as self-primed and falsely-primed RNAs were no longer detected.

When using tagged primers, it was found that with a logio titration of the RNA
transcripts the minimum level of detection for the positive strand was 2.61 x 10° RNA
copies at 67% of the time and 3.18 x 102 copies for the negative-strand at 75% of the time.
This assay is therefore approx. 2 logio less sensitive than the assay using unmodified
primers. This extra sensitivity, however, is most likely the result of self- or false-priming,
as it was possible to detect both strands of RNA at a minimum concentration of 10* copies
in the absence of primers, and at 10* and 10! copies of positive and negative stranded RNA,
respectively, in the presence of uncomplimentary primer. This therefore suggests that a
large portion of the amplification detected originates from self- and falsely-primed cDNA.

In comparison to the tagged primers that this study has specifically investigated, some
other studies investigating tagged primers (using a 10-fold dilution scale) have
demonstrated a similar sensitivity in the order of 10° copies per reaction [25], or a higher
sensitivity of 102 [11, 26, 28] or even 10' RNA copies per reaction [24]. In another study
[34], positive and negative strand of foot-and-mouth disease virus were detected up to a
sensitivity of 1 x 10?2 and 1 x 10° copies/uL, respectively. However, despite the use of
tagged primers, the complimentary primer was still able to detect the opposite strand at 1 x
107 copies/uL. This low rate of incorrect strand detection in the presence of high
concentrations of target RNA despite the use of tagged primers was also demonstrated in
other studies [11, 18, 29]. This therefore suggests that the sensitivity of some tagged
primers occurs at the expense of specificity. In this particular assay, however, it was found
that in the presence of high concentrations of the opposite strand or cellular RNA, the
tagged primers only detected the complimentary strand of RNA, demonstrating the high
specificity and effectiveness of these primers.

The positive strand-specific assay was found to exhibit much greater variability than
the negative strand-specific assay. This was reflected in the standard deviation of the Cr
values as well as in the coefficient of variation percentages. In addition, the displayed
efficiency range of the positive strand-specific assay was also greater than that for the
negative strand-specific assay. PCR efficiency can be dependent on the assay, the master
mix performance, and sample quality. In general, an efficiency range of 90-110% is
considered to be acceptable [39]. It is possible that the inter-assay variability for the
positive strand was caused by the quality of the synthetic positive-sense RNA transcripts.

The application of the strand-specific assay was tested in vitro and in vivo in order to
study WNV replication. First the strand-specific assay as described above was used to
characterize the in vitro replication kinetics of WNV in BV-2 microglia cells. This
microglia cell line was found to be susceptible to infection. The amount of positive strand
increased from 0 to 48 hours. On the other hand, the negative strand was not detectable at 0
hours post-infection and was only detected at 24 hours post-infection. As a full replication
cycle of West Nile virus takes approx. 12 hours (unpublished data), it seems unlikely that
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no negative strand is yet present at this point in the cell. The largest increase in positive
strand was measured between 0 and 12 hours post-infection, indicating that negative strand
synthesis must have occurred. As the negative strand-specific assay was found to have a
detection limit of 497 copies of RNA, it is possible that negative strand was present in the
cell but in amounts that fall below the detection limit of this assay. The lack of detection of
negative strand in the first 12 hours of the replication cycle therefore appears to be a
limitation of this assay.

Furthermore, the mouse experiment characterizing the positive and negative strand
kinetics over the course of six days showed low amounts of negative strand RNA copies on
day 3 post-infection for 2 out of 5 mice (in the order of 2 logio RNA copies). As the ratio of
positive to negative strand is highest on this day, it suggests that the largest amount of
positive strand per negative strand was produced on this day. However, it is unlikely that
the largest amount of positive per negative strand is produced in the brain as early as day 3,
as this is usually the first time-point at which virus can be detected in the brain (Halevy et
al., 1994; Hunsperger et al., 2006). Instead, it is more likely that most of the positive
stranded RNA detected in the brain was the result of contamination with virus that
replicated in the periphery instead of de novo virus production. Several studies have shown
that by day 4-5 after infection, there is no more virus present in the blood [40, 41]
(unpublished observation). It is therefore more likely that the largest amount of positive
stranded RNA per negative strand is produced in the brain on day 4.

In conclusion, despite the possible limitation of the strand-specific quantitative RT-
PCR assay developed in this study, this assay is a useful tool for the evaluation of tropism
and replication kinetics of WNV over a longer period of time in vitro and in vivo.
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ABSTRACT

West Nile virus (WNV) strains may differ significantly in neuroinvasiveness in vertebrate
hosts. In contrast to genetic lineage 1 WNVSs, molecular determinants of pathogenic lineage
2 strains have not been experimentally confirmed so far. A full-length infectious clone of a
neurovirulent WNV lineage 2 strain (578/10; Central Europe) was generated and amino
acid substitutions that have been shown to attenuate lineage 1 WNVs were introduced into
the nonstructural proteins (NS1 (P250L), NS2A (A30P), NS3 (P249H) NS4B (P38G,
C102S, E249G)). The mouse neuroinvasive phenotype of each mutant virus was examined
following intraperitoneal inoculation of C57BL/6 mice. Only the NS1-P250L mutation was
associated with a significant attenuation of virulence in mice compared to the wild-type.
Multiplication kinetics in cell culture revealed significantly lower infectious virus titres for
the NS1 mutant compared to the wild-type, as well as significantly lower amounts of
positive and negative stranded RNA.
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INTRODUCTION

West Nile virus (WNV) is one of the most widely distributed members of the genus
Flavivirus within the family Flaviviridae. The virus can cause general, febrile and severe
encephalitic disease in humans and a number of animal species. It possesses a capped and
non-polyadenylated positive-sense, single-stranded RNA genome, approximately 11 kb in
length, which contains a single open reading frame (ORF) encoding a polyprotein precursor
that is co- and post-translationally processed by viral and host cell proteases to three
structural proteins (capsid protein C, pre-membrane protein prM/M, envelope protein E)
and seven non-structural (NS) proteins (glycoprotein NS1, NS2A, protease cofactor NS2B,
protease and helicase NS3, NS4A, NS4B and polymerase NS5).

WNV strains have been divided into at least eight distinct genetic lineages [1-3]. The
first WNV strain, isolated in Uganda in 1937 [4], belongs to lineage 2 and this lineage has
been confined to sub-Saharan Africa and Madagascar [5]. Until the early 1990s, WNV
infections beyond Africa were caused by lineage 1 WNV strains that caused mainly mild
clinical symptoms with sporadic encephalitis in humans. Lineage 1 WNV as the causative
agent of lethal encephalitis was reported in 1994, in Algeria, followed by a high number of
neuroinvasive cases in Romania, in 1996, and more frequent encephalitis cases in several
other Eastern and Western European countries [6]. Moreover, in 1999, WNV emerged in
the continental United States and rapidly spread throughout North America and also into
South America, causing increased mortality among humans and animals as well [7-9].

Lineage 2 strains did not appear to be as pathogenic as lineage 1 isolates, as they
generally caused no deaths, and only mild clinical signs of infection [10]. The first proven
case of a lineage 2 virus infection with fatal outcome outside of Africa was detected in a
goshawk (Accipiter gentilis) in Hungary, in 2004 [11,12]. This exotic WNV lineage 2 strain
caused subsequent infections, illnesses and deaths in wild birds, horses and humans [11-
13], and rapidly spread to Austria [14-16], Greece [17,18] and Italy [19,20]. Based on
phylogenetic reconstruction, lineage 2 viruses isolated in Russia [21,22] and Romania [23]
cluster together, but are distinct from the Hungarian strain [16].

Several studies have aimed at identifying the molecular markers of virulence in
lineage 1 WNV strains [24-27]. A number of lineage 1 viruses of moderate virulence in
mice and exhibiting inefficient growth in cell culture have been identified so far [28].
Reverse genetic systems were established to investigate nucleotide and amino acid
alterations in the WNV lineage 1 genome that led to decreased neurovirulence and
neuroinvasiveness in mice [29,30]. Mutations in the NS protein genes, such as NS1 [31],
NS2A [24,26,32], NS3 [33], NS4B [30,34-36] and NS5 [34], were found to be associated
with the attenuation of these viruses.

In contrast to lineage 1 viruses, molecular determinants of pathogenic WNV lineage 2
strains have not been confirmed experimentally. Virulence markers have only been
identified in silico by analyzing and comparing full genome sequences of highly or less
neuroinvasive lineage 2 strains [37], or by comparing those that have emerged and
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increased in virulence over time (1937-2011) [38]. The aim of the present study was to
investigate the in vitro (in cell culture) and in vivo (in a mouse model) effects of selected
nucleotide substitutions of the NS protein coding genes, known to be attenuating for lineage
1, in a neurovirulent WNV lineage 2 strain (578/10) isolated in Central Europe with the
help of reverse genetic methods and site-specific mutagenesis.

MATERIALS AND METHODS

Cells and viruses

Transfection was carried out on baby hamster kidney 21 (BHK-21) cells (ATCC®: CCL-
10™) cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 5%
foetal bovine serum (FBS). Virus stocks were propagated and titrated on Vero E6 cells
(ATCC®: CRL-1586™) cultured in DMEM supplemented with 0.75% sodium bicarbonate,
10 mM hepes buffer and 10% FBS. All media was supplemented with antibiotics (100 U
penicillin, 100 pg/mL streptomycin) and 2 mM L-glutamine. The WNV-578/10 strain
(GenBank accession number: KC496015) was originally isolated in Hungary from a horse
showing clinical signs of encephalitis, which had died in 2010.

RNA extraction and cDNA synthesis

Total RNA was extracted from virus pellet using the QlAamp Viral RNA Mini Kit
(QIAGEN, Hilden, Germany) following the manufacturer’s instructions. To obtain long
cDNA copies of the viral genome, reverse transcription was performed using the high
fidelity SuperScript 111 First-Strand Synthesis System (Invitrogen, Carlsbad, CA, USA) and
gene-specific reverse primers (Table 1). In the first step, 0.5 pL of each primer (10 pM) and
1 uL RNA in 7.5 pL RNase-free water were heated to 65 °C for 5 minutes and then cooled
down to 4 °C for 10 minutes. In the second step, 11 pL reaction mixture (2 pL reaction
buffer, 4 uL MgCl,, 2 pL dithiothreitol (DTT), 1 uL RNase OUT inhibitor, 1 pL SSIII
enzyme and 1 pL dNTP mixture) were added and after 30 minutes at room temperature and
the final 20-pL reaction mixture was heated to 50 °C for 90 minutes, followed by 85 °C for
5 minutes, and finally cooled down to 4 °C. Before amplification, cDNA was treated with
RNase H (1 uL RNase H was added to 20 uL of the above-mentioned solution and was
heated to 37 °C for 20 minutes).
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Nucleotide

Primer code Nucleotide sequence (5°—3°) position (57)*

1F+ GAGCTCGTTTAGTGAACCGTAGTAGTTCGCCT 1
GTGTGAGC

1FRCY GCTCACACAGGCGAACTACTACGGTTCACTA 20
AACGAGCTC

4750F CACACACTATGGCACACCACTAAGG 4750

5426R GACATCAGCCTGTGTGTGAGAGTGG 5426

8190F AGACTGGCTGCACAGAGGACCTAAG 8190

9175R GGTCTTCATTGAGGAATCCGAGAGC 9175
ATCCGCGGTCTAGAGATCCTGTGTTCTAGCA

3’XbaSaclIRt CCACAG 11026

t Bases in italics are part of cytomegalovirus (CMV) promoter. * Primer positions corresponding to
the sequence of WNV-578/10 strain. T Bases in italics are the extra restriction enzyme cleavage sites.

Table 1. List of primers used to generate overlapping fragments of the West Nile virus (WNV)
genome in order to construct the full-length clone pWNV-578/10.

Sequence analysis

The complete genome of WNV-578/10 was determined by sequencing of overlapping PCR
fragments amplified with Phusion Hot Start High-Fidelity DNA Polymerase (Finnzymes,
Espoo, Finland). Amplification products were directly sequenced with the ABI Prism
BigDye Terminator V3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA,
USA) and an automated ABI 377 DNA Sequencer (Applied Biosystems). Sequence
assembly and comparison were performed with SeqMan and MegAlign programs
(Lasergene, Madison, WI, USA), respectively. The full-length WNV clone was sequenced
with the ABI Prism BigDye Terminator V3.1 Cycle Sequencing Kit (Applied Biosystems)
and an ABI Prism 310 genetic analyzer (Applied Biosystems), as described in Bakonyi et
al., 2004 [39].

Full genome sequencing of WNV clones with the incorporated modifications was
carried out by using semiconductor sequencing technology. Briefly, overlapping PCR
fragments were generated as described above. Equimolar amounts of the amplicons from
each clone were used for preparation of lon Torrent compatible libraries. Clonal
amplification of library DNA (with 200 bp inserts) by emulsion PCR on an lon One Touch
v2 (Life Technologies, Thermo Fisher Scientific, Waltham, MA, United States) equipment
was followed by enrichment on an lon OneTouch ES pipetting robot, and then by
sequencing on a 316 Chip using lon Torrent PGM (Life Technologies). Raw reads were
curated and then consensus genomic sequences were assembled using the CLC Genomics
Workbench version 7 (www.clcbio.com).
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Plasmids and bacteria strains

Plasmid pBeloBAC TGE [40] was kindly provided by L. Enjuanes (Centro Nacional de
Biotecnologia, Department of Molecular and Cell Biology, Madrid, Spain). The plasmid
was propagated in Max Efficiency DH10B competent Escherichia coli cells (Invitrogen)
that were transformed by heat shock according to the manufacturer’s instructions.
Modifications, such as deletion of the Xhol site downstream of the 3’ accessory sequences
and insertion of a multiple cloning site containing Sfil, Sfol, BstBI, Clal, BamHI, Xhol,
AsiSI, Avrll and Sacll, were described earlier [41]. For large-scale DNA preparation, the
BAC vector and recombinant BACs were isolated with the QIAGEN Large Construct Kit
(QIAGEN) according to the manufacturer’s specifications.

Generation of the full-length clone of WNV-578/10

To amplify long, overlapping PCR products, ranging between 1 and 5.5 kb covering the
whole genome in three fragments (Fragment I, 1l and Il1), PCRs were performed using
genome-specific primers (Figure 1). Long-range PCR assays were implemented using the
Phusion Hot Start High-Fidelity DNA Polymerase (Finnzymes). The construction of
Fragment |1 was performed in two steps. First, the CMV promoter sequence from the
PBeloBAC (with primers 5°SfilF and 1FRC), as well as the 5’ side of 5426 nucleotides of
WNV-578/10 strain (with primers 1F and 5426R), were amplified. Primers 1F and 1FRC
were reverse complements. In the second step that joined together the two amplicons, a
fusion PCR utilizing the overlapping sequences of the above-mentioned primers was
performed with Phusion Hot Start High-Fidelity DNA Polymerase (Finnzymes). Fragment
Il was amplified by using primers 4750F and 9175R. For amplification of Fragment I1l, a
specific reverse primer containing two extra restriction sites (Xbal and Sacll) in addition to
the 3’ conservative end of WNV-578/10 strain (3’XbaSaclIR) and forward primer 8190F
was used. Sequences of all the primers used to generate the full-length clone are listed in
Table 1. All fragments were separated and purified from 0.8% agarose gel using the
QIAquick Gel Extraction kit (Qiagen).

Restriction enzyme cleavage and cloning steps were performed according to standard
protocols [42]. Restriction endonucleases and DNA modifying enzymes were purchased
from Fermentas (Vilnius, Lithuania) and New England Biolabs (Beverly, MA, USA). The
cDNA fragments were ligated with T4 DNA Ligase (Invitrogen Life Technologies). After
the digestion of pBeloBac and fragment I11 with Avrll and Sacll restriction endonucleases,
fragment 111 was cloned into the pBeloBac to obtain WNV-3. Fragment Il was digested
with BstBI and Avrll restriction endonucleases, and was cloned into WNV-3 to get WNV-
3-2. Fragment | was digested with Sfil and BstBI restriction endonucleases, and was cloned
into WNV-3-2 to obtain the final full-length clone pWNV-578/10. All recombinant
plasmids were stable in bacteria, and no toxicity was observed. All the sequences of
molecular constructs were confirmed by restriction endonuclease pattern analysis and
PCRs.
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Figure 1. Cloning strategy for the WNV-578/10 genome and positions of the generated
mutations. Black numbers represent nucleotide positions in WNV genome/PBeloBac plasmid
genome. Red numbers indicate nucleotide positions of restriction enzyme cleavage sites in
WNYV genome. Green numbers in boxes represent nucleotide positions of inserted mutations.
Names of used primers are in blue.

Generation of mutant full-length WNV clones

Point mutations were inserted in the genome of WNV using PCR-based mutagenesis
utilizing specific oligonucleotides (forward and reverse, complementary oligos) containing
the altered nucleotides (Table 2). Depending on the position of the mutation in the genome,
new fragments | or Il were synthesized using the mutated complementary oligos in fusion
PCRs. In the next step, the original fragment | or fragment Il was removed from the
PWNV-578/10 clone and was replaced with the newly synthesized fragment | or fragment
I, containing the respective mutations in the pWNV-578/10 clone. The generated
mutations were as follows: C3218T in NS1 protein gene (P250L), G3613C in NS2A
protein gene (A30P), C5357A in NS3 protein gene (P249H), and three mutations in the
NS4B protein gene: CC7030-31GG (P38G), G7223C (C102S) and A7664G (E249G)
(Figure 1).
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Primer . s Nucleotide

code Nucleotide sequence (5°—3’) Position (5)*

NS1F CATCACCTTGGCAGGACTCAGAAGCAATCATAA 3201
CAGGAGACC
GGTCTCCTGTTATGATTGCTTCTGAGTCCTGCCA

NSIR AGGTGATG 3201
TTCGCAAGAGGTGGACGCCCAAGATCAGCATTC

NS2AF CAGCTATCA 3596
TGATAGCTGGAATGCTGATCTTGGGCGTCCACC

NS2AR TCTTGCGAA 3596

NS3F GGTACCAAACCTCAGCAGTGCACAGAGAGCAC 5336
AGTGGAAATGA
TCATTTCCACTGTGCTCTCTGTGCACTGCTGAGG

NS3R TTTGGTACC 5336
TTCTTGCTTGATCTGCGGGGGGCTACAGCATGG

38NS4BF TCTCTCTAT 7012
ATAGAGAGACCATGCTGTAGCCCCCCGCAGATC

38NS4BR AAGCAAGAA 7012
TCAGCTCTCTTGCTGGCGGCCGGGTCCTGGGGC

102NS4BF CAAGTGACCCTG ACTGTGACT 7198
AGTCACAGTCAGGGTCACTTGGCCCCAGGACCC

102NS4BR GGCCGCCAGCAAGAGAGCTGA 7198
GGACTCTCATCAAAAACATGGGGAAACCAGGC

249NS4BF CTCAAGAG 7643

249NSABR CTCTTGAGGCCTGGTTTCCCCATGTTTTTGATGA 7643

GAGTCC

* Primer positions corresponding to the sequence of WNV-578/10. Triplets in italics are the loci of

mutations, modified nucleotides are in italics and bold.

Table 2. List of primers used to insert point mutations into the genome of WNV-578/10.

Transfection and recovery of the recombinant viruses from the cDNA clones

Before transcription, the CMV-WNV clone was double digested with Sfil and Xbal

restriction endonucleases. To remove the single-stranded nucleotide overhang generated by

the digestion, Mung Bean Nuclease (New England Biolabs) was used. In order to get the
purified expression cassette, pieces from digestion were separated on a 0.8% agarose gel

and the approximately 12 kb cassette was purified with QlAquick Gel Extraction Kit

(QIAGEN). Four micrograms of double-stranded cDNA was transfected into BHK-21 cells
using Turbofect in vitro Transfection Reagent (Thermo Scientific, Waltham, MA USA).
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Briefly, 4 ug of plasmid DNA were transfected into an approximately 60% confluent
monolayer of BHK-21 cells on a 6-well culture plate after a 20 minute incubation period
with the Turbofect reagent. The plates were incubated for 4 h at 37 °C, then the supernatant
was removed, and fresh DMEM (Sigma-Aldrich, Saint Louis, MO, USA) supplemented
with 10% FBS was added. The cells were incubated at 37 °C for 48-96 h until a visible
cytopathic effect (CPE) appeared. At this time point, supernatant was harvested, clarified
by centrifugation at 1000 x g for 5 min, and stored at —80 °C. To increase infectious virus
titres for use in in vitro and in vivo experiments, virus stocks of the recombinant wild type
(WT) and mutant viruses were incubated on 80% monolayers of Vero E6 cells in cell
culture flasks. At the point of maximum CPE (4-5 days after inoculation), supernatants
were harvested, clarified by centrifugation at 1000 x g for 5 min, and stored at —-80 °C.
Infectious titres of the virus stocks were determined by logso titration on Vero E6 cells and
calculating the TCIDsp using the Spearman-Kéarber method [43,44] after determination of
CPE 5 days p.i.

Subsequent full genome sequencing of each stock was performed by semiconductor
sequencing as detailed in Section 2.3.

Multiplication curves in cell culture

Growth curves of the wild-type virus and the mutated clones were generated in Vero E6
cells at 37 °C in two independent experiments. Vero E6 cells were seeded at 10* cells/well
in flat-bottom 96-well plates, incubated overnight at 37 °C and 80% monolayers were
infected in triplicate with 100 uL of virus diluted in serum-free DMEM at multiplicity of
infection (MOI) 0.1. Cells were incubated for 1 h at 37 °C and subsequently washed three
times with serum-free medium before adding 120 pL of DMEM supplemented with 10%
FCS. At 0, 12, 24, 36, 48, 72 and 96 h post-infection (p.i.), supernatants were removed and
70 pL was frozen at —80 °C until used for infectious virus titre determination, while the
remaining 50 pL was added to 350 pL of lysis buffer (Roche Diagnostics, Almere, The
Netherlands) for RNA extraction. Cells were also collected for RNA extraction in 50 pL of
lysis buffer at time points 0, 12, 36 and 48 h p.i. Harvested supernatant infectious virus
titres were determined by logso titration on Vero E6 cells as described previously.

Quantitation of viral RNA titres

In order to quantify viral RNA copies in the supernatant and cells, RNA was extracted
using the MagNA Pure LC Total Nucleic Acid Isolation Kit (Roche Diagnostics) and an
automated nucleic acid robotic workstation (Roche Diagnostics) according to the
manufacturer’s instructions. RNA was eluted in 50 pL of elution buffer and used
immediately in quantitative real-time PCR (gRT-PCR). Within in vivo experiments, viral
RNA copies in half-brains were quantified after weighing and homogenization using a
metal bead in DMEM containing antibiotics (100 U penicillin, 100 pg/mL streptomycin)
using a tissue homogenizer. One hundred microliters of tissue homogenate was added to
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400 pL of lysis buffer (Roche Diagnostics) and RNA was extracted as indicated above.
RNA copy numbers were determined in a strand-specific qRT-PCR assay [45] using a
standard curve of in vitro transcribed RNA of positive and negative strand of known
quantities, which were generated from a plasmid (pCR®4-TOPO®; Invitrogen, Breda, The
Netherlands) containing the sequence of the 3’'UTR of WNV. Plasmid was linearized and
run-off transcripts were generated using the Ambion® MaxiScript T7/T3 kit (Invitrogen).
The positive sense RNA was transcribed using the T3 polymerase and the negative sense
RNA using the T7 polymerase. The product was digested with DNase to remove residual
DNA and cleaned-up using the High Pure RNA Isolation kit (Roche Diagnostics). In vitro
transcribed RNA was diluted to a concentration at which DNA was no longer detected.

Mouse virulence studies

Six-week-old female C57BL/6 mice (Harlan Laboratories B.V., Venray, The Netherlands)
were inoculated intraperitoneally (i.p.) with average doses of 10 and 10* TCIDs, per mouse
of wild-type infectious clone-derived CMV-WNV as well as the mutant viruses (n = 8 per
clone, per dose; Table 3). Mice were observed twice daily and were euthanized by cervical
dislocation under isoflurane anesthesia when humane endpoints were reached (immobility
and paralysis), after which brains were immediately collected for further processing. At 14
days p.i., the end-point for the survival experiment was reached and all remaining mice
were euthanized and brains and kidneys were collected from those that had been infected
with the highest viral dose. Mice were maintained in specific pathogen-free conditions, had
a 12-hour day-night cycle and were fed ad libitum. Animal experiments were approved by
the Animal Ethics Committee of Erasmus Medical Centre and carried out under protocol
number 122-13-19.

Statistical analysis

Data analysis was performed using GraphPad Prism v5 software statistical analysis. The
ANOVA test was used for the comparison of more than two groups. Statistical significance
between individual groups was determined using the Mann-Whitney U test, and statistical
significance was accepted at p < 0.05.
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RESULTS

Comparison of the genome sequences of WNV Lineage 1 (NY99) and lineage 2
(578/10) strains

The complete genome sequence of the 578/10 strain (GenBank accession number
KC496015) exhibits 2236 nucleotide (nt) differences (21%) compared to the WNV NY99
strain (accession number AF202541). The nucleotide substitutions are distributed fairly
equally within the genome (5’UTR: 0 substitutions (0%), C protein gene: 59 substitutions
(16%), preM-M protein gene: 102 substitutions (21%), E protein gene: 309 substitutions
(21%), NS1 protein gene: 227 substitutions (22%), NS2A protein gene: 153 substitutions
(23%), NS2B protein gene: 82 substitutions (22%), NS3 protein gene: 382 substitutions
(21%), NS4A protein gene: 80 substitutions (22%), 2K gene: 13 substitutions (19%), NS4B
protein gene: 184 substitutions (25%), NS5 protein gene: 560 substitutions (21%), and
3’UTR: 90 substitutions (20%)). Within the putative polyprotein precursor, 203 amino acid
(aa) alterations (6%) are found (C protein: 12 substitutions (10%), preM-M protein: 7
substitutions (5%), E protein: 22 substitutions (5%), NS1 protein: 33 substitutions (10%),
NS2A protein: 24 substitutions (11%), NS2B protein: 7 substitutions (6%), NS3 protein: 25
substitutions (5%), NS4A protein: 7 substitutions (6%), 2K protein: 1 substitution (5%),
NS4B protein: 19 substitutions (8%), and NS5 protein: 46 substitutions (6%)). Due to this
high level of sequence diversity, it is not possible to test the potential effect of each
substitution in all combinations. As a result, within this study we only tested the effect (in a
neuroinvasive WNV lineage 2 strain) of the nucleotide substitutions that have already been
identified as virulence markers in WNV lineage 1 strains.

Rescue of recombinant viruses

In order to investigate whether molecular markers of virulence identified in lineage 1 WNV
strains attenuate the Hungarian neuroinvasive lineage 2 WNV-578/10 strain in vitro or in
vivo, infectious cDNA clones encoding each substitution of interest were constructed and
transfected into BHK-21 cells. After transcription by CMV promoter, CPE had reached the
maximum level at 72-96 h after transfection. Supernatants were harvested and passed on
Vero E6 cells, which resulted in the generation of at least 6 logio TCIDso/mL virus stocks.
When the titre did not reach the desired level, one more passage in Vero E6 cells was
performed. All mutations of interest were verified by Sanger sequencing of each stock
before in vitro and in vivo characterization. The NS4B102 mutant recombinant WNV was
unable to multiply to a sufficient titre in BHK-21 cells nor after passage in Vero E6 cells,
and this mutant clone was therefore excluded from the functional analyses.
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Full genome sequence analysis of recombinant virus stocks

To determine whether passaging the virus stocks led to the introduction of additional
mutations, the full genome of the wild type and modified clone virus stocks were
sequenced. One nucleotide alteration was found in addition to the mutated sites for three
mutant clones, of which two out of three nt changes were silent: G to A on locus 627 of the
NS1 clone, and A to G on locus 6768 of the NS4B38 clone. One nt alteration in the genome
of the NS4B249 clone resulted in a Valine to Isoleucine change in the NS4B protein at
locus 188 (G to A on locus 7480). The in vitro and in vivo characterization was
subsequently carried out using the generated clones.

Multiplication kinetics of the recombinant wild type (WT) and mutant WNVSs in cell
culture

The multiplication kinetics of the mutant WNVs were compared to those of the WT
infectious clone-derived WNV-578/10 in Vero E6 cells infected in triplicate at an MOI of
0.1 at 37 °C, sampling every 12 hours. Overall, the infectious virus titers of the clones were
significantly different at all time points between 12 h and 96 h p.i. (one way ANOVA, p <
0.02). More specifically, infectious virus titres for WT were significantly higher at 24 h p.i.
compared to all the mutated viruses; NS1 (p = 0.005), NS2A, NS3, NS4B38, and NS4B249
(p = 0.03). Moreover, NS1 infectivity titres were found to be significantly lower compared
to NS2A (p = 0.03) and NS4B38 (p = 0.03) (Figure 2). At 36 h p.i., WT infectivity titres
were only significantly higher compared to NS1 (p = 0.002), NS2A and NS3 (both p=
0.02). At this time point, the difference in infectious virus titres between WT and NS1 was
the largest, at approx. 2500-fold. In addition, NS1 titres remained significantly lower
compared to all the other viral clones (all, p = 0.03). At 48 h p.i., WT infectious titres were
still significantly higher compared to NS1 (p = 0.005), NS2A and NS3 (p = 0.03), while
NS1 titres were only significantly lower compared to NS2A (p = 0.04) and NS4B249 (p =
0.03). At 72 and 96 h p.i., WT infectious titres remained only significantly higher compared
to NS1 (p = 0.005; 0.02, respectively), while NS1 titres were significantly lower compared
to all the other WNV strains at 72 h p.i. (p < 0.04), and compared to NS4B38 and NS4B249
at 96 h p.i. (p < 0.04).
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Figure 2. Growth kinetics of infectious virus of the wild type (WT) virus and mutant viruses
after triplicate infection of Vero E6 cells at an MOI of 0.1. The titres are given as the mean
(logio TCIDse/mL); error bars represent standard deviation.

Quantification of positive and negative strand RNA for WT and NS1 mutant in vitro

In order to assess whether the in vitro replication differences between the WT and NS1
mutant can be attributed to differences in positive and negative strand RNA synthesis, we
determined the amount of positive and negative strand RNA copies in the supernatant and
cells of the in vitro multiplication kinetics experiment using a strand-specific qRT-PCR
assay [45]. The amount of positive strand present in the supernatant was more than 1 logio
higher for NS1 compared to WT at 12 h p.i., albeit not statistically significant (p > 0.05)
(Figure 3A). At 24 h p.i., positive strand titres were approx. 0.9 logio RNA copies higher
for the WT compared to NS1 (p = 0.002). This difference increased to approx. 1.4 logio
RNA copies by 36 h p.i. (p = 0.002) and 1.3 logio at 48 h p.i. (p = 0.002). At t = 72, titre
differences had decreased to 0.8 logio (p = 0.002) and at 96 h p.i. positive strand titres were
only 0.6 logio RNA copies higher for WT compared to NS1, although still significantly
different (p = 0.04) (Figure 3A).

Positive strand intracellular RNA titres were initially also higher for NS1 compared to
WT for the first 12 h p.i. (Figure 3B). However, after 24 h p.i., WT positive strand RNA
titres had become approx. 0.9 logio RNA copies higher compared to NS1 (p = 0.002), with
the most pronounced difference of approx. 1 logio RNA copies after 36 h p.i. (p = 0.002).
At 48 h p.i., positive strand RNA titres were still significantly higher for the WT compared
to NS1 (p = 0.004) but the difference had decreased to approx. 0.6 logio RNA copies
(Figure 3B).
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For intracellular negative strand RNA copies, titres for NS1 were already significantly
lower compared to the WT at 12 h p.i. (p = 0.02) (Figure 3C). NS1 negative strand RNA
copies remained significantly lower compared to the WT with a difference of approx. 1.2
logio RNA copies at both 24 and 36 h p.i. (p = 0.002). After 48 h p.i., titre differences
decreased to approx. 0.4 logio RNA copies, at which point the difference was no longer
statistically significant (p = 0.06) (Figure 3A).
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Figure 3. Quantification of (A) extracellular positive strand RNA (B) intracellular positive
strand RNA, and (C) negative strand RNA for WT and NS1 mutant after triplicate infection of
Vero E6 cells at an MOI of 0.1. Copy numbers are given as the mean of two independent
experiments (logio TCIDso/mL); error bars represent standard deviation.

Mouse neuroinvasiveness of the different mutant WNV strains

The mouse neuroinvasive phenotype of each mutant WNV was examined following i.p.
inoculation of six-week-old female C57BL/6 mice. Compared to the WT (100% and 75%
mortality at high and low doses, respectively), only the NS1 mutant proved to be
significantly attenuating since all mice infected with either the high or low dose of this
virus survived the infection (0% mortality for both) (Table 3; Figure 4A and 4B). In
contrast, mice infected with the highest dose of the other mutant strains experienced
substantial mortality, with rates of 100% (8/8) for NS4B38, 88% (7/8) for NS2A, 75% (6/8)
for NS3, and 63% (5/8) for NS4B249, respectively (Figure 4A). Statistical analysis
confirmed the attenuation of the NS1 mutant, as significant differences were found between
the survival curves of mice infected with the highest dose of NS1 as compared to the WT
(p<0.0001), NS2A (p = 0.0004), NS3 (p = 0.003), NS4B38 (p = 0.0002) and NS4B249 (p =
0.008). On the other hand, the high dose survival curves of the other mutant WNVs showed
no significant differences in comparison to the WT, or compared to each other.

Mortality rates of mice infected with the lowest viral dose of the other mutant strains
were 75% (6/8) for NS2A, 63% (5/8) for NS4B38, 50% (4/8) for NS4B249 and 38% (3/8)
for NS3 (Table 3; Figure 4B). The lower dose survival curves of NS1-infected mice were
also significantly different when compared to the WT (p = 0.002), NS2A (p = 0.002),
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NS4B38 (p = 0.009) and NS4B249 (p = 0.03). In contrast, the survival curves of the other
mutants were not significantly different compared to the WT, or each other.
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Figure 4. Survival of six-week-old female C57/BL6 mice after i.p. inoculation, with (A) high
dose (10* TCIDso) and (B) low dose (10 TCIDso) of recombinant WNVs.
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Virus Dose (TCIDso)  Total mortality Mortality (%) Median day

WT 10”5 8/8 100 10.5
WT 10" 6/8 75 11
NS1 10n4 0/8 0 NA
NS1 10" 0/8 0 NA
NS2a 1075.5 7/8 88 9
NS2a 10" 6/8 75 115
NS3 1073 6/8 75 10.5
NS3 1070 3/8 38 11
NS4B38 10n4 8/8 100 11
NS4B38 1070 5/8 63 11
NS4B249 10n4 5/8 63 9
NS4B249 10" 4/8 50 115

Table 3. Mortality data of six-week-old female C57BL/6 mice inoculated i.p. with high and low
doses of the WT and mutant lineage 2 WNVs.

Sequencing of recombinant WNV in organs of euthanized and survivor mice

All mice euthanized due to illness were found to be positive for viral RNA in the brain
(data not shown). To determine whether the mutant strains detected in the brains of mice
euthanized due to illness after infection with the highest viral dose had retained the original
mutation, viral RNA obtained from two mouse brains per group was sequenced. It was
found that the consensus sequences of the virus strains present in the selected mouse brains
still contained the original mutation and therefore had not reverted to the wild-type.
Additionally, we also determined the presence of persisting virus in the brain and kidney of
all mice that had survived infection (euthanized on day 14 p.i.) with the highest dose of the
different mutant virus strains (NS1, n=8; NS2A, n=1; NS3, n=2; and NS4B249, n=3) using
gRT-PCR. All brains positive for viral RNA were sequenced in order to check for the
presence of the original mutation. Out of the eight mice that survived infection with NS1,
only one mouse was found to be positive for virus in the brain, which had reverted to the
wild-type. For NS2A, the one survivor mouse was found to be positive for viral RNA in the
kidney, which still contained the original mutation. Out of the two mice that had survived
infection with NS3, and out of the two mice surviving infection with NS4B249, only one
mouse in each group was positive for viral RNA in the brain, which was also found to have
retained the original mutation.
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DiscussION

The aim of this study was to generate a full-length infectious clone of the WNV lineage 2
strain 578/10 that has recently been detected in central Europe, in order to improve our
understanding on the genetic background of WNV pathogenicity. Infectious cDNA clones
are useful tools to investigate genetic determinants of flavivirus virulence, for studying its
replication, creating subgenomic replicons, and using gene expression or gene of interest
insertions [46-48]. Full-length infectious WNV clones are often constructed by fusion
(stitching) polymerase chain reactions or plasmid-based methods [49-52]. Since assembly
of full-length flavivirus clones in plasmid vectors have proven to be toxic, or unstable and
deleterious for bacterial hosts, on several occasions [53-56], we cloned the
full-length genome of WNV-578/10 using a bacterial artificial chromosome (BAC) [57].
This system contains the cytomegalovirus (CMV) immediate-early promoter that allows
transcription of WNV RNA in the nucleus by cellular RNA polymerase I, eliminating the
step of in vitro transcription.

WNVs belonging to lineage 2 were previously considered as agents of low
pathogenicity [10]; however, numerous neuroinvasive and highly pathogenic members have
recently been identified in horses and humans suffering from severe encephalitis in South
Africa [58]. WNV strains belonging to lineage 2 have also been reported in Hungary and
surrounding countries since its first proven appearance outside of Africa in 2004. During
the last decade, several fatal cases among horses and humans were confirmed as West Nile
encephalitis caused by these lineage 2 viruses in the Central European region [15,20]. The
changing epidemiology and pathogenicity of WNV outbreaks in Europe highlight our need
to further understand how Central European WNV lineage 2 strains differ in their capacity
to cause severe disease compared to lineage 1 strains. Furthermore, this study may also
provide invaluable information for the development of safe and efficacious vaccines.

Several studies have identified and proven the role of genetic markers in the NS
proteins of lineage 1 WNYV strains in pathogenicity and virulence studies [24,26,30,31,33—
36]. On the other hand, virulence markers of lineage 2 WNV strains have so far only been
identified in silico by analyzing and comparing full genome sequences [37,38]. Thus far, it
is known that flaviviral NS proteins are essential for virus replication; NS1, NS3, NS4A
and NS4B can reorganize cellular membranes to generate virus-induced membrane
structures (IMS) for site of replication [59]. Furthermore, NS2A [24], NS2B, NS3, NS4A
[60], NS4B [61,62] and NS5 [63] play a role in virion assembly and evasion of host innate
immune responses by blocking the interferon (IFN) signal transduction pathway [64—66].

The flavivirus nonstructural protein NS1 is a glycoprotein with three conserved N-
linked glycosylation sites, and has an essential role in viral RNA replication. Normally,
NS1 exists as a heat labile homodimer that associates with cellular organelle membranes
and is transported to the cell surface [67,68]. Cell surface associated NS1 appears to have
an immunomodulatory function via the decrease of the complement activation by different
routes [69,70]. NS1 is also secreted by mammalian cells as a soluble hexamer [71,72].
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Inclusion of the mutation P250L in a conserved region of the Kunjin virus NS1 gene
has been shown to affect the structure of the polypeptide, resulting in the inhibition of
dimer formation but still allowing its secretion in the monomeric form. The conformational
change resulting from the P250L mutation may have led to the decreased levels of
infectious virus titres observed in Vero cells in the early phase of replication (100-fold
lower between 12-24 h p.i., compared to the WT); however, this difference gradually
decreased and eventually disappeared by 48 h p.i. [73]. Similar to this study, our NS1
mutant also showed a 100-fold decrease in infectious virus; however, this was starting from
24 h p.i. lasting until 48 h p.i., after which the difference was approx. 10-fold until 96 h p.i.
We investigated these observations further by quantifying the amount of positive and
negative stranded RNA during the first 48 hours of replication in order to determine
whether the mutation affected the replication process. We found that the NS1 mutant
exhibited significantly slower replication as measured by an approx. 10-fold reduced
amount of both negative and positive stranded RNA in the cells, as well as positive
stranded RNA in the supernatant.

A role for the importance of NS1 in the process of RNA synthesis has already been
described in previous studies. Youn et al. found that WNV RNA lacking intact NS1 genes
was efficiently translated but did not form canonical replication complexes early after
infection, resulting in a failure to replicate viral RNA and consequently significantly lower
amounts of positive and negative stranded RNA in the cells [74]. As we also found a
reduced amount of negative and positive stranded RNA for the NS1 deletion mutant as
compared to the WT during the first 48 hours of infection, it suggests that the P250L
mutation potentially affects the activity or the stability of the NS1 protein for the formation
of replication complexes during infection.

In the study by Hall et al., 10-fold more virus of the WNV-KUN P250L mutant was
required to produce disease in mice. Our results, however, show that this mutation
completely abolished the neuroinvasiveness of the lineage 2 WNV-578/10 strain, since no
mice died after challenge with either the high or low dose of the virus. This means that in
contrast to the Kunjin virus, neuroinvasiveness had decreased at least 10,000 fold for our
mutant virus. It is possible that the different mouse model used in the aforementioned study
(BALB/c mice) or the different age (18-20 days of age) of the mice explains the
discrepancy between our results. However, it can also not be excluded that the silent
mutation on locus 627 of the NS1 clone that we identified during full genome sequencing
influenced the attenuated phenotype of this mutant. Furthermore, the presence of certain
loci in the genome of the lineage 2 virus may have also augmented the attenuating effect of
the P250L mutation observed in our study as compared to those involving lineage 1.
Studies involving the introduction of this mutation into other, virulent lineage 1 or 2 WNV
strains may provide more insight into the importance of this mutation.

Nonetheless, the significantly reduced replication of the NS1 mutant that we observed
in cell culture may explain the reduced neuroinvasiveness observed in our study, as it may
allow for early control of the immune system followed by elimination of the virus before it
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has reached the central nervous system. Even though only one mouse out of eight infected
with the NS1 mutant was found to have virus in the brain at day 14 p.i. (albeit lacking the
original mutation), we cannot rule out with certainty that the virus had still entered the brain
in the majority of the mice but had simply been cleared by day 14 p.i. due to its reduced
neurovirulence. Future experiments involving intracranial injections of the NS1 mutant
could confirm the reduced neurovirulent or neuroinvasive capacity of the virus.

NS2A is a small, hydrophobic, membrane-associated protein of WNV, believed to
anchor the RNA replication complex by intercalating into the endoplasmic reticulum (ER)
membrane [75]. The NS2A protein plays an important role in virus assembly and in the
inhibition of the cellular antiviral response via the inhibition of IFN-beta promoter-driven
transcription [32,76]. In one study, a NY99 mutant virus was less virulent in four-week-old
Swiss-Webster outbred mice when the NS2A locus was derived from the Kunjin virus and
harbored an introduced A30P mutation [26]. In contrast, Rossi et al. found only a slight
decrease in virulence of the NS2A A30P mutant NY99 strain compared to the WT virus in
five-week-old Swiss-Webster mice [25]. Our results are in line with the latter study, as we
observed no significant differences in the replication kinetics of the mutant compared to the
wild type virus, and no significant attenuation was detected in mice after challenge.

The full length NS3 protein is a multifunctional enzyme (the N terminal residues
encode trypsin-like serine protease, the C terminal residues encode RNA triphosphatase,
NTPase and helicase) that possesses various activities in both viral polyprotein processing
and RNA replication [77,78]. NS3 is suggested to be involved in virus assembly as well,
but in cooperation with NS2A [79]. In corvids, the lineage 1 NY99 virus containing a
proline to threonine substitution at the NS3-249 locus was particularly attenuating (100% to
12.5%), while the introduction of a proline at this site in a low virulent strain led to an
increase in virulence (31% to 94%), likely related to an increased capacity of the virus to
replicate in corvids [33]. This site therefore appears to be a key virulence determinant of the
lineage 1 N'Y99 strain in corvids; however, the influence of this mutation in a mouse model
has been minimal [80].

Genetic comparison of the goshawk-Hungary-2004 strain with the closely related
lineage 2 Nea Santa-Greece-2010 identified an H249P mutation, which was speculated to
play a role in the increased virulent phenotype of this Greek strain [18]. Interestingly, like
the Greece-10 strain, our Hungarian lineage 2 WNV-578/10 strain also contains a proline at
this position (data not shown). As a result, we investigated whether the NS3-249P mutation
may contribute to increased virulence by introducing an NS3-P249H substitution and
testing its attenuation in a mouse model. Here, this substitution proved to be slightly
attenuating, but this was not statistically significant. Interestingly, infectious virus titres
obtained in cell culture were found to be significantly lower for NS3 compared to the wild-
type at three time-points. It should be noted, however, that this was also the case for several
of the other mutants, such as NS2A, which had not shown any attenuation in our mouse
model. It therefore appears that infectious virus titres in vitro do not correlate with
attenuation in vivo. Indeed, in a study by Langevin et al., despite the NS3-P249T mutation
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contributing to a 6 logioc PFU/mL lower titre in corvids, there were no significant
differences observed in mean peak infectious viral titres on Vero cells at 37 °C for this
mutant when compared to the NS3-249P virus [80]. As we were interested in examining the
effect of the different mutations in a murine model, no thermosensitivity experiments at
temperatures higher than 37 °C were undertaken for any of the clones; however, further
studies testing the different mutants in cell culture at a higher temperature (41-44 °C) or in
a corvid model might prove to be insightful as well, as in particular mutations at the NS3-
249 locus seem to play an important role in the virulence of WNV in bird species.

Flaviviral NS4B is a predominantly helical, hydrophobic, membrane-associated NS
protein, which plays a crucial role in blocking host cell antiviral responses. It acts as an
interferon antagonist, since expression of NS4B, contributed by the activity of NS4A and
NS2A, strongly inhibits the IFN-induced signal transduction cascade by blocking STAT-1
phosphorylation [61]. Amino acid mutations in the coding region of NS4B can alter the
inhibitory effect on interferon signaling [62].

The P38 residue of NS4B is predicted to localize to the junction of an ER-luminal
region and a transmembrane domain. A study by Welte et al. found that the P38G mutation
in the NS4B protein induced a lower level of viremia and no lethality in six- to ten-week-
old C57BL/6 mice, while inducing higher type 1 IFNs and interleukin (IL)-1 as well as
stronger effector and memory T cell responses [35]. A later study by Wicker et al. found
the NS4B-P38G substitution to be associated with a temperature-sensitive phenotype of the
lineage 1 NY99 strain, which involved a significant delay in multiplication in Vero cells at
41 °C, but not at 37 °C, as well as attenuation for neuroinvasiveness with an i.p. LDso value
of greater than 10,000 PFU in three- to four-week-old NIH Swiss mice. Importantly,
however, two unexpected additional mutations were found at NS4B-T1161 and NS3-
N480H and actually none of the mutations alone were attenuating in mice [36]. In our
study, the P38G mutation did not affect replication in Vero E6 cells and the virus was
equally virulent in mice as the WT, where we used the same mouse strain and age as Welte
et al. Furthermore, full genome sequencing revealed that the NS4B-T1161 and NS3-N480H
mutations were not present in our NS4B38 clone. Even though it is tempting to speculate
that the P38G mutation may therefore not be so important for a lineage 2 WNV strain, we
cannot exclude that the presence of other co-mutations, such as the silent mutation at the
6768 locus that we identified during full genome sequencing, or other mutations
specifically present in the lineage 1 genetic backbone, are important for the attenuating
effect of the NS4B-P38G mutation.

The C102S substitution of the NS4B protein in the NY99 strain has demonstrated
thermosensitivity at 41 °C in vitro and was found to attenuate mouse neuroinvasiveness and
neurovirulence [29]. The same substitution in the 578/10 construct dramatically reduced the
replicative ability of the virus in vitro as such that no virus could be rescued, and therefore
its further in vitro and in vivo effect could not be assessed. The hypothesized mechanism of
C102S attenuation of the NY99 strain was a reduced ability in inhibiting the IFN signaling
pathway [29]. However, the C102S mutant 578/10 clone was not able to replicate in BHK-
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21 and Vero E6 cells, even though the IFN-a and -p pathways are not functioning in these
cell lines. Therefore, probably other factors contributed to the lethal effect of this
substitution in the lineage 2 WNV strain.

The NS4B-E249G mutation has been observed in several natural WNV isolates
[81,82]. Furthermore, it was shown that a mutant lineage 1 WNV containing the E249G
residue replicated at a lower level in C3H/He and BHK-21 cell cultures, but only slightly
lower in Vero cell culture. In addition, the E249G mutant lineage 1 WNV was significantly
attenuating in six-week-old C3H/HeN mice after footpad inoculation (100% mortality vs.
50%) [30]. On the other hand, a study by Rossi et al. reported that a WNV lineage 1 virus
harboring the NS4B-E249G mutation demonstrated a WT phenotype with foci identical in
size to the WT, as well as a similar LDso value in i.p. inoculated five-week-old Swiss-
Webster mice [25]. Our results are closer to those obtained by Rossi et al. [25], as the
E249G mutant lineage 2 WNV propagated to similar titres in Vero E6 cells as the WT and
showed reduced mortality in mice (63%) that was not significantly different. It cannot be
excluded, however, that the non-conservative mutation found at NS4B188 played an
important role in decreasing the attenuated phenotype exerted by the NS4B-E249G
mutation.

In summary, our results have shown that in mammalian in vitro and in vivo models the
NS1-P250L mutation contributed to significant attenuation of lineage 2 WNV, while the
NS3-H249P and NS4B-E249G mutations conferred a partial, but not statistically significant
reduction of virulence in mice. In contrast, the NS2A-A30P and NS4B-P38G were not
attenuating at all in vivo. Even though it might be possible to conclude that the mutation at
the NS1 locus could be an important marker of virulence in lineage 2 WNV strains, the fact
that lineage 1 mutation studies as cited herein often showed varying results means that such
results should still be addressed with caution. For example, mouse genotype and age may
have an important influence on the outcome of mutational studies in vivo. The influence of
other mutations in the particular genetic backbone used in certain studies may also play an
important role. To be specific, the genetic backbone of the lineage 2 virus that we used may
play a role in decreasing the attenuation of some of the markers that we have investigated,
as well as in increasing the attenuation of the NS1 mutation. As a result, future studies
investigating details of the NS1-P250L substitution should be performed in another
vertebrate model, and also studies involving the introduction of this particular NS1
mutation into the genome of other lineage 2 viruses, or introducing the entire WNV-578
NS1 locus harboring this particular mutation into a lineage 1 strain, may prove to be
insightful.

The infectious clone described in this study provides a useful tool for testing the effect
of hypothetical virulence marker loci in in vitro and in vivo model systems. Within the last
decade, virulent lineage 2 WNV strains have emerged in Europe. For example, a
descendant of the strain that had emerged in 2004 in Hungary caused an epidemic with an
unforeseen large amount of neuroinvasive cases in Greece, in 2010. Another lineage 2
strain (Reb_VLG_07_H, GenBank accession FJ425721) emerged in the VVolgograd region
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of Russia and caused human neurological cases [21,22]. In 2010, this strain also emerged in
south-east Romania [23] and survived for at least three years [83]. As a result, genetic
comparisons of different emergent isolates may help to identify and predict potential
virulence markers. In this regard, our study has provided more insight into genetic markers
that may contribute to the virulence of lineage 2 WNV strains.
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ABSTRACT

Mass bird mortality has been observed in North America after the introduction of West Nile
virus (WNV), most notably massive die-offs of American crows (Corvus brachyrhynchos).
In contrast, WNV epidemic activity in Europe has been characterized by very low
incidences of bird mortality. As the general susceptibility of European corvids to strains of
WNV remains in question, European jackdaws (Corvus monedula) were inoculated with
WNV strains currently circulating in Greece (Gr-10), Italy (FIN and 1ta09) and Hungary
(578/10), as well as a North American (NY99) genotype with a demonstrated corvid
virulence phenotype. Infection with all strains except WNV-FIN resulted in mortality.
Viremia was observed for birds inoculated with all strains and virus was detected in a series
of organs upon necropsy. These results suggest that jackdaws could potentially function as
a sentinel for following WNV transmission in Europe; however, elicited viremia levels
might be too low to allow for efficient transmission of virus to mosquitoes.
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INTRODUCTION

West Nile virus (WNV) is a flavivirus (family: Flaviviridae) that is maintained in an
enzootic cycle between mosquitoes and birds, but may also infect humans and horses,
which serve as incidental dead-end hosts. WNV is endemic in many parts of Africa,
Australia, the Middle East and Asia, and more recently emerged in North America in 1999,
and has since rapidly spread across North America, Mexico, South America, and the
Caribbean. Since 2008, WNV has emerged as a serious veterinary and public health
problem in central and south-eastern Europe, affecting countries such as Greece [1-3], Italy
[4-7], Hungary, Austria [8] and Romania [9].

Birds were considered to be less susceptible to WN disease until high mortality rates
were recorded in flocks of young domestic geese in Israel in 1998 [10, 11], after which
WNV has been implicated in deaths of members of 326 species of birds in North America
[12]. Among the passeriform birds, the family Corvidae is ranked as the most highly
susceptible species to WNV [13], and particularly deaths among the American crow
(Corvus brachyrhynchos) have been used to track the spread of the virus in North America
[14, 15].

In contrast to the mass bird mortality observed in North America, sporadic isolated
death events and low mortality rates have been reported among European birds, even
during severe human and equine WN outbreaks [16-19]. Possible explanations for the lack
of reporting of bird mortality could be that European birds are less susceptible to WNV-
induced disease, or that the North American strain of WNV exhibits an increased capacity
for eliciting avian virulence. Other theories include: poor detection of bird carcasses (due to
their small size or scavenging) [20], limited monitoring of wild bird mortality, or
development of herd immunity due to local transmission spurred by avian migration
through WNV endemic areas of the Middle East and Africa [21].

To date, the susceptibility of European jackdaws to WNV isolates circulating in
Europe has not yet been addressed. In order to examine the role of a bird that is found
ubiquitously across Europe as a natural reservoir for the transmission of WNV disease or as
a potential sentinel for WNV activity, European jackdaws were inoculated with four
different WNV isolates clinically relevant to Europe, including lineage 1 isolates 1ta09 and
FIN from Italy, as well as lineage 2 isolates from Greece and Hungary. The NY99 strain
was used to assess and compare the susceptibility of the European birds to a strain known
to be highly virulent in North American corvids, especially in American crows.
Susceptibility was assessed in terms of mortality, median survival time, duration and
magnitude of viremia, and dissemination of virus to the different organs.
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MATERIALS AND METHODS

Source of Virus and Birds

Five different isolates of WNV were utilized (Table 2): The NY99-4132 strain (lineage 1a)
[22] was originally isolated from the brain of an American crow and was passed two times
in Vero cells before being used in this study. The lineage 2 Greek strain (Nea Santa-
Greece-2010; accession HQ537483.1) was isolated from a pool of Culex pipiens
mosquitoes [23] and passaged once on Vero cells. Two lineage la Italian strains, FIN
(provided by Dr. Vittorio Sambri, University of Bologna, Italy; two Vero E6 passages;
accession KF234080) and 1ta09 (provided by Dr. Luisa Barzon, University of Padova, Italy,
one Vero E6 passage; accession GU011992.2) were both isolated from a patient with
neuroinvasive disease [4]. The Hungarian lineage 2 strain 578/10 (provided by Dr. Taméas
Bakonyi, Szent Istvdn University, Hungary, two passages on Vero E6 cells; accession
KC496015) was isolated from the brain of a horse that died of WNV-neuroinvasive disease.
Virus stocks used in this study (not including the NY99 and Greece-10 strain), were
prepared by growing the viruses once in C6/36 insect cells (Table 1).

Jackdaws were captured using walk-in traps in the municipality of Rotterdam, The
Netherlands. They were transported to indoor housing where they were kept in groups of
seven or eight in isolators under negative pressure. Only seronegative birds were used in
this study. All birds were cared for in animal holding facilities at the National Institute for
Public Health and the Environment (RIVM), Bilthoven, The Netherlands.

Virus Strain Source Pfe\ssage Location Qenetlc
history? lineage
NY99  Nvgo-413p  American crow V2 USA 1a
(brain)
Nea Santa- .
Greece-10 Greece-2010 Culex pipiens V1 Greece 2
FIN FIN Patient with v2,Cl ltaly 1a
neuroinvasive disease
1ta09 1ta09 Patient with VL, Cl  taly 1a
neuroinvasive disease
Hungary 578/10 Horse (brain) V2,Cl1  Hungary 2

aViruses were propagated in Vero (V) or C6/36 insect cells (C). Numbers following passage source
represent the number of viral passages.

Table 2. West Nile virus strains used for susceptibility studies in European jackdaws.
Detection of Preexisting WNV Antibodies

To confirm that jackdaws had not previously been exposed to WNV, the birds were bled
before experimental infection and serum was tested for neutralizing antibodies using tissue
culture infectious dose 50 (TCIDsp) neutralization assays. Serum was heat-inactivated at 56
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°C for 30 min, serially diluted two-fold and incubated with an equal volume of virus (strain
NY99, originally isolated from a dead Chilean flamingo at the Bronx Zoo in New York,
obtained from the Health Protection Agency, Porton Down, UK; P5 on Vero E6 cells;
accession AF196835.2) to a final concentration of 100 TCIDso/0.1 mL. Samples were
incubated at 37 °C for 1 hr and subsequently added to an 80% confluent monolayer of Vero
E6 cells in CELLSTAR® 96-well plates (Greiner Bio-One, Alphen aan den Rijn, The
Netherlands). Plates were incubated at 37 °C for 5 days. Samples were read and a 100%
reduction in cytopathic effect (CPE) as compared to the serum-negative control was used
for the determination of neutralization. Detection of any neutralizing activity to WNV in
the serum of any bird precluded its use for experimental inoculation.

Experimental Infection and Sampling Protocol

Jackdaws were subcutaneously inoculated in the thigh region with 2000 TCIDsp of virus/0.1
mL of Dulbecco’s Modified Eagle Medium (DMEM) containing no fetal bovine serum
(FBS). Jackdaws were injected with NY99-1432 (n=7), Greece-10 (n=8), FIN (n=7), I1ta09
(n=7) and 578/10 (n=7). Blood was collected from all birds (~0.1 mL) at 2-day intervals for
a period of 8 days post-infection (dpi). Coagulated blood was centrifuged at 1300 x g for 5
min in MiniCollect® vials (Greiner Bio-One) in order to separate serum, which was
subsequently stored at -80 °C. All jackdaws were examined for signs of disease twice daily
for 14 days following inoculation and euthanized under isoflurane anesthesia upon display
of clinical symptoms. Additionally, two birds per group were euthanized at day 4 post-
infection (p.i.) for monitoring the dissemination of virus to the organs at the approximate
time of peak viremia, as well as all surviving birds at day 14 p.i.

Necropsies were performed on all euthanized birds and the following tissues were
collected: heart, liver, spleen, kidney, bone marrow and brain. A small section of each
tissue was collected and subsequently weighed and homogenized using a metal bead in 1
mL of DMEM containing antibiotics (100 U penicillin, 100 pg/mL streptomycin). The
remaining portion of the tissues was collected in formalin for use in immunohistochemical
staining.

Determination of Viral Loads

To determine viral loads in the serum samples and tissue homogenates, we used
quantitative real-time polymerase chain reaction (QRT-PCR) to measure viral RNA titers
(serum and tissue), and TCIDs titration for the calculation of infectious virus titers (serum
only). Briefly, RNA was isolated from 50 pL of serum or 100 uL of homogenized tissue
using the MagNA Pure LC Total Nucleic Acid Isolation Kit (Roche, Almere, The
Netherlands) and an automated nucleic acid robotic workstation (Roche) according to the
manufacturer’s instructions. RNA was eluted in 100 pL of elution buffer (Roche) and
stored at -80 °C until assayed. RNA copy numbers were quantified as described in Lim et
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al. using unmodified primers [24]. The limit of detection of the assay was 0.95 logio RNA
copies.

Infectious titers in the serum were determined by logso titration of the serum samples
on Vero E6 cells and calculating the TCIDs using the Spearman & Kérber method [25, 26]
after the determination of CPE 5 days p.i. Initial 1:10 dilution of serum resulted in a limit of
detection of 1017 TCIDso/mL.

Immunohistochemistry

Sagittal organ 4-um thick paraffin sections were processed for peroxidase
immunohistochemistry of virus nonstructural protein markers. Sections were deparaffinized
in xylene, rehydrated in descending concentrations of ethanol and incubated for 10 min in
3% H,0, diluted in PBS in order to block endogenous peroxidase activity. Antigen
exposure was performed by 15 min incubation at 121 °C in citrate buffer (0.01 M, pH 6.0).
Sections were incubated overnight at 4 °C with primary goat anti-WNV NS3 (1:100; R&D
Systems, Abingdon, UK) or goat serum (1:100; Dako, Eindhoven, The Netherlands) for
isotype controls, and detected with secondary rabbit anti-goat 1gG-PO (Dako) antibody.
Sections were counterstained with Mayer’s hematoxylin, mounted with Kaiser’s glycerin-
gelatin and analyzed using a light microscope.

Statistical Analyses

Survival curves were analyzed using the Log-rank (Mantel-Cox) test. All other statistical
analyses were performed by Kruskal-Wallis one-way analysis of variance (ANOVA) and
any significant difference found was more closely analyzed between the groups using the
Mann-Whitney U test.

RESULTS

Morbidity and Mortality

During a 9-day period, lethargy, low activity, anorexia and ruffled feathers were observed
among some of the jackdaws inoculated with NY99, Greece-10, 1ta09 and 578/10. Birds
died within 24-48 hours after onset of clinical symptoms. Among the five jackdaws that
were inoculated with NY99 and I1ta09 and followed for survival, three (60%) died; and of
the five inoculated with 578/10, two (40%) died. Among the six jackdaws inoculated with
Greece-10, three died (50%). In contrast, all five birds inoculated with FIN survived the
infection (Table 1). Comparison of the survival curves of the birds inoculated with the
different virus strains revealed a significant difference between the survival curves of
jackdaws infected with FIN compared to 1ta09 (Figure 1; P = 0.05). Median day of death
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was 7 dpi for birds that succumbed due to infection with NY99, 1ta09 and 578/10, and 8 dpi
for birds that died due to infection with Greece-10 (Table 1).

Mean Mean peak
. . - . Mean Mean
. Mortality: Median day viremia? .
Virus - - day peak duration
rou no. died day of onset viral viremia  viremia®
group IN(%)  death  viremia RNA/mL +
+SD +SD
+SD SD
NY99 3/5 (60) 7 200 6.2+19 40+0 52=x10
Greece-10 3/6 (50) 8 200 59+13 33+10 6.0%£12
FIN 0/5 (0) NA 3210 4007 40+13 64x08
1ta09 3/5 (60) 7 28+1.0 47+15 40+13 52+16
578/10 2/5 (40) 7 200 50+1.3 40+22 64+15

aViral titers are expressed as logio RNA copy numbers/mL of sera.
bDuration is expressed in days.
NA = not applicable.

Table 1. Clinical profile of five or six European jackdaws infected with West Nile virus strains

NY99, Greece-10, FIN, 1ta09 and 578/10.
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Figure 1. Survivorship of five or six European jackdaws, each inoculated with 2,000 TCIDs, of
West Nile virus strains NY99, Greece-10, FIN, Ita09 or 578/10. Jackdaws were monitored daily

for signs of disease up to 14 dpi.
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Viremia Profiles

We determined WNV viremia profiles for the jackdaws inoculated with the five different
virus strains and found that all birds developed viremia within 96 hours p.i (Table 1; Figure
2). For NY99-infected birds, peak viremia titers ranged from 4.1 logio to 9.6 logio RNA
copies/mL of serum (mean peak viremia titer = 6.2 logio RNA copies/mL). Birds infected
with the Greece-10 strain had peak viremia titers ranging from 4.2 logio to 8.4 logio RNA
copies/mL of serum (mean = 5.9 logio RNA copies/mL). For FIN-infected birds, peak
viremia titers ranged from 3.3 logio to 5.1 logio RNA copies/mL of serum (mean = 4.0 logio
RNA copies/mL). I1ta09-infected birds displayed peak viremia titers ranging from 3.4 logio
to 7.5 logio RNA copies/mL of serum (mean = 4.7 logic RNA copies/mL). Among
jackdaws infected with the 578/10 strain, peak viremia titers ranged from 3.1 logio to 6.9
logio RNA copies/mL of serum (mean = 5.0 logio RNA copies/mL).

These data demonstrate that birds inoculated with NY99 and Greece-10 had the
highest peak viremia titers, followed by 578/10 and Ita09, with the lowest viremia peaks for
FIN-infected birds. Mean peak viremia titers were significantly different between Greece-
10 and FIN (P = 0.02) and NY99 and FIN (P = 0.03). Onset of viremia occurred
significantly later for FIN-infected birds compared to Greece (P = 0.02), NY99 and 578/10
(P = 0.03, for both) (Table 1). The peak of viremia was reached the earliest by birds
inoculated with Greece-10, followed by the other viral strains (Table 1), but differences
were not statistically significant (P = 0.8). In terms of duration, viremia lasted the longest
for FIN and 578/10, followed by Greece-10, NY99 and 1ta09 (Table 1), but these
differences were also not statistically significant (P = 0.4).

Determination of the viremia profiles in terms of infectious virus (TCIDsp) titers was
only successful for a limited set of birds. The infectious titers successfully recorded were
for the birds with the highest peak viremia titer (in terms of viral RNA) in each group.
These titers were specifically 1083 TCIDso/mL (10%¢ RNA copies) for the NY99-infected
bird with the highest peak viremia, 1052 TCIDso/mL for the Greece-10- and Ita09-infected
birds (1084 and 107° RNA copies, respectively), and 1022 for the 578/10-infected bird (105°
RNA copies).
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Figure 2. Viremia profiles for West Nile virus (WNV)-infected European jackdaws after
inoculation with 2,000 TCIDso of either WNV-NY99 (n=5), Greece-10 (n=6), FIN (n=5),
1ta09 (n=5) or 578/10 (n=5). Viral titers were determined by RNA copy numbers and are
represented as geometric means. A detection limit of 0.95 log;o RNA copies/mL of serum was
determined. Bars represent standard deviations (SD) of the mean.

Tissue Tropism

Viral loads were determined in the heart, liver, spleen, kidney, bone marrow and brain for
all birds. In order to assess the spread of virus to the different organs at the approximate
peak of viremia, two birds per group were euthanized on day 4 p.i. Virus was detected in all
organs of these birds (Figure 3) with on average the highest viral titers found in the spleen
and bone marrow (7.1 and 6.9 logio RNA copies/g of tissue, respectively), followed by the
liver, kidney and heart (5.8, 5.7 and 5.5 logio RNA copies/g of tissue, respectively). The
lowest viral titers were found in the brain (3.8 logio RNA copies/g of tissue). Between the
different virus strains, higher viral RNA titers were found in the organs infected by Greece-
10 (7.0 logio RNA copies/g of tissue), followed by 578/10 (6.4 logio RNA copies/g), NY99
and 1ta09 (5.4 logio and 5.3 logio RNA copies/g, respectively), while FIN-infected birds had
the lowest tissue viral RNA burden (4.8 logio RNA copies/g). Viral titers in the organs were
significantly different for Greece-10 compared to NY99 (P = 0.05), FIN (P = 0.004) and
1ta09 (P = 0.02), and in the organs infected by 578/10 compared to FIN (P = 0.01).
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Figure 3. Viral load, as determined by RNA copy numbers, in organs harvested from birds
experimentally infected with different West Nile virus strains and euthanized on day 4 (two per
group). Viral titers are represented as geometric means. A detection limit of 0.95 logic RNA
copies/g of tissue was determined. Bars represent standard deviations (SD) of the mean.

For birds euthanized due to morbidity, virus was also found in all the organs (Figure
4), with the tendency for the spleen, kidney and heart to contain the highest average viral
RNA load (6.7, 6.6 and 6.2 logio RNA copies/g of tissue, respectively), followed by the
liver, brain and bone marrow (5.5, 5.4 and 5.2 logio RNA copies/g of tissue, respectively).
Viral RNA titers were highest in organs of birds infected by Greece-10 (6.2 logio RNA
copies/g), followed by 578/10 and NY99 (6.1 logio RNA copies/g, for both), with the
lowest titers exhibited by Ita09-infected birds (5.4 logio RNA copies/g). However, these
titers were not found to be significantly different (P = 0.4).
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Figure 4. Viral load, as determined by RNA copy numbers, in organs harvested from birds
experimentally infected with different West Nile virus strains and euthanized due to
morbidity. NY99 (n=3): 1 bird euthanized on day 5 p.i., 2 birds on day 7; Greece-10 (n=3): 1
bird euthanized on day 6, 1 bird on day 8 and 1 bird on day 9; 1ta09 (n=3): 3 birds euthanized on
day 7; and 578/10 (n=2): 1 bird euthanized on day 6 and 1 bird on day 8. Viral titers are
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represented as geometric means. A detection limit of 0.95 logioc RNA copies/g of tissue was
determined. Bars represent standard deviations (SD) of the mean.

All birds that had survived infection by day 14 were euthanized and necropsied to
determine whether virus could still be found in any of the organs (Figure 5). Viral RNA
was detected in all organs of the three Greece-10-infected survivor birds except for in the
bone marrow of one bird, while NY99-infected birds had a minimum of three positive
organs (out of 6), with the liver being completely negative for both birds. FIN-infected
survivor birds had a minimum of two organs (out of 6) positive for viral RNA, while the
bone marrow was consistently negative for all five birds. The two birds that survived
infection with 1ta09 were both positive for viral RNA in five out of six organs, with the
liver negative in one bird and the bone marrow in the other. Viral RNA was detected in all
organs of the two 578-10-survivor birds except for in the liver of one bird. Between the
different virus strains, mean viral RNA titers in the organs were significantly higher in
Greece-10-infected birds compared to birds infected with FIN (P = 0.03).
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Figure 5. Viral load, as determined by RNA copy numbers, in organs harvested from birds
experimentally infected with different West Nile virus strains and euthanized on day 14.
NY99: 2 birds euthanized; Greece-10: 3 birds; FIN: 5 birds; 1ta09: 2 birds; and 578/10: 3 birds.
Viral titers are represented as geometric means. A detection limit of 0.95 logio RNA copies/g of
tissue was determined. Bars represent standard deviations (SD) of the mean.

Overall, average viral titers in the organs of the survivor birds were lower (2.7 logio
RNA copies/g of tissue) compared to the birds necropsied on day 4 (5.8 logio) or after
iliness/death (5.9 logio), with most virus persisting in the kidney and spleen (4.1 and 3.7
logio RNA copies/g of tissue, respectively), followed by the brain and heart (3.0 and 2.3
logio RNA copies/g of tissue, respectively), and the liver and bone marrow (1.7 and 1.6
logio RNA copies/g of tissue, respectively).
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Immunochistochemistry

Sections of organs of birds euthanized on day 4 p.i. were stained with polyclonal anti-WNV
NS3 to determine replication of the virus in these tissues and rule out any positive gRT-
PCR detection as a result of spillover from blood (Table 3). Tissues most consistently
positive for WNV antigen were the kidney (100%), followed by the heart, liver, spleen
(90%) and bone marrow (80%), with the brain only positive in 50% of the cases. Antigen
was most abundant in the spleen, followed by the kidney, bone marrow, heart and liver
(Figure S1). The abundance of viral antigen found in the positive brains was minimal.
Overall, organs of birds most often positive, as well as most abundant for viral antigen,
were those infected with Greece-10 and 578/10, followed by FIN and 1ta09, with the lowest
amount of antigen found in the organs of the two NY99-infected birds.

Viral antigen appeared to be slightly more abundant in birds euthanized due to
morbidity (Table 4) as compared to the birds euthanized on day 4, with the spleen and
kidney consistently positive for viral antigen (100%), followed by the heart and brain
(91%), while the bone marrow (64%) and liver (45%) were the least often positive. In terms
of antigen abundance, staining was most prominent in the heart, kidney and spleen, while
lower amounts of antigen were present in the brain, bone marrow and liver (Figure S1).
Between the different virus strains, the abundance of viral antigen in the organs was very
similar in Greece-10, 578/10 and Ita09-infected birds, and was also higher than the amount
of antigen found in the organs of NY99-infected birds.
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Total Average No. of

Virus strain Birdno. Heart Liver Spleen Kidney Bone Brain  score per score per positive
marrow bird virus strain organs/bird

NY99 6 +/- +/- +/- +/- + +/- 7 6.5 6/6

7 + +/- - + - +/- 6 ' 4/6
Greece-10 1 ++ - ++ + ++ +/- 12 125 5/6

4 + + ++ + ++ +/- 13 ' 6/6
FIN 6 +/- +/- + + +/- +/- 8 7 6/6

7 - +/- + + +/- - 6 4/6
[ta09 1 +/- + + + - - 7 8.5 4/6

2 + + + + + - 10 ' 5/6
578/10 6 + + ++ + + - 11 105 5/6

7 +/- + ++ + + - 10 5/6
Score per organ 15 14 21 19 16 5

No. of positive

- 9/10 9/10 9/10 10/10 8/10 5/10
birds/organ

Subjective determinations of the amount of antigen in each organ were made; negative (-), minimal (+/-), moderate (+) or abundant (++). Each determination
was given a score from 0 to 3; negative (0), minimal (1), moderate (2) and abundant (3).

Table 3. Immunohistochemical analysis of West Nile virus antigen distribution in European jackdaws euthanized on day 4 p.i.



. . Total score Average No. of positive
Virus Bird . . Bone . . .
strain o, Heart Liver Spleen Kidney Marrow Brain per bird score per organs/bird

virus strain
NY99 1 - +/- + +/- + - 6 4/6
3 + - + + - + 8 7.7 4/6
5 ++ - + + - + 9 4/6
Greece-10 5 + - +/- + - + 7 4/6
6 + ++ ++ ++ ++ +/- 15 10.7 6/6
8 ++ - + + +/- + 10 5/6
1ta09 3 + + + ++ + ++ 14 6/6
4 + +/- +/- + +/- +/- 8 10 6/6
5 + - + ++ - +/- 8 4/6
578/10 4 + +/- + + +/- ++ 11 105 6/6
5 ++ - + + +/- + 10 ' 5/6
Score per 13 45 11 135 6 10
organ
No. of
positive 10/11 5/11 11/11 11/11 7/11 10/11

birds/organ

Subjective determinations of the amount of antigen in each organ were made; negative (-), minimal (+/-), moderate (+) or abundant (++). Each determination
was given a score from 0 to 3; negative (0), minimal (1), moderate (2) and abundant (3).

Table 4. Immunohistochemical analysis of West Nile virus antigen distribution in European jackdaws euthanized due to morbidity (days 5-9 p.i.).



DISCUSSION

In this study, European jackdaws appear to be susceptible to infection with European
strains of WNV from both lineage 1 and 2, as well as the North American strain NY99.
However, the same extent of susceptibility as shown by the American crow upon infection
with NY99, with 100% mortality rates and production of high viremia titers reaching peaks
over 10 PFU/mL [22, 27-30], was not observed in this study. Herein, mortality rates
ranged between 40-60% for four out of five strains and the highest average peak viremia
was approximately 6.2 logio RNA copies/mL of serum, reached by birds inoculated with
NY99.

Viral RNA was detected in all organs on day 4 p.i. and upon the time of euthanasia
due to morbidity. Viral RNA titers were observed to be significantly higher on day 4 p.i. in
the organs of birds inoculated with Greece-10 compared to NY99, FIN and 1ta09, and in the
organs of birds inoculated with 578/10 compared to FIN. Even though at this time point
spillover of virus from blood most likely resulted in higher viral RNA titers in the organs,
immunohistochemistry confirmed that at least the relative differences were the same, as the
amount of viral antigen staining confirmed that the two Greece-10- and 578/10-inoculated
birds did indeed have the most viral antigen present in their organs as a whole, suggesting
that spillover of virus from the circulation did not generally influence these results.
Interestingly, Greece-10 and 578/10 are both lineage 2 viruses with 99% identity, possibly
indicating a strain-related tropism. Nonetheless, by the time the birds were euthanized due
to morbidity (between days 5 to 9), any virus-related significant differences were no longer
observed in terms of viral RNA titers, although IHC staining suggested a tendency for viral
antigen to be more abundant in organs of Greece-10, 578/10 and Ita09-infected birds.

In a previous study [31], mice inoculated with WNV-FIN displayed a slightly reduced
mortality in comparison to the other WNV strains (also used here). In this study, however,
the virulence phenotype of FIN has become much more pronounced, as birds inoculated
with FIN suffered no mortality and had significantly lower peak viremia titers as well as
delayed onset of viremia compared to the other groups. Even though viral virulence
generally correlates well with high and prolonged viremia [32], in this case, viremia was
not significantly shorter in FIN-infected birds compared to the other virus strains, although
onset of viremia did occur significantly later.

Interestingly, the two birds inoculated with FIN and euthanized on day 4 were both
positive for virus in the majority of their organs (QRT-PCR and IHC) despite the absence of
mortality seen in this group. This, in combination with the presence of viremia observed in
all birds of this group, suggests that even in birds that are not susceptible to lethal WNV
infection, the virus is able to elicit viremia and disseminate to the organs, including the
brain. A similar observation was demonstrated in chickens, which experienced no mortality
following infection with WNV, but exhibited titers as high as 5 logio PFU/mL and virus
could also be isolated from several organs, including the spleen and kidney [33].
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The introduction of a T249P amino acid substitution (present in North American
WNV) in the NS3 helicase of a low virulence strain of WNV has been demonstrated to
result in increased virulence in American crows [29]. The virus strains used in this study all
contain a proline at this site, with the exception of FIN, which contains a threonine at this
position [31] (Table S1). 1ta09, which is 99.7% identical to the nucleotide sequence of FIN,
did not display the same attenuation in jackdaws as FIN. It is therefore very likely that the
attenuated phenotype of FIN demonstrated in this study is likely to be the result of this
P249T substitution. Studies are ongoing to test the relevance of the T249P substitution
present in the Italian backbone of WNYV in both European and American corvids.

It has been shown that a blood titer of 10° PFU/mL is required for transmission to
feeding mosquitoes [34]. Additionally, viremic titers greater than 10° PFU/mL were
considered infectious for Culex pipiens [35] and Culex quinquefasciatus [36]. This suggests
that only the NY99-, Greece-10- and I1ta09-infected birds that reached peak viremia RNA
titers above 10”° RNA copies/mL (which resulted in 1053 TCIDso/mL upon virus isolation)
would be likely to infect feeding mosquitoes, as the lowest cut-off of 105° PFU/mL will
result in approx. 10>2 TCIDso/mL, according to a conversion factor of 1 TCIDso to 0.7 PFU
[37]. It is possible that the infectious viremia titers of the other samples were below the
detection limit of the assay. As the majority of the birds did not attain viremia titers above
1075 RNA copies/mL, it suggests that jackdaws would most likely not serve as efficient
amplifying hosts in the transmission cycle of WNV in Europe. However, it is also possible
that a higher peak of viremia was missed due to sampling on intervening days. Similar
results were observed in a study using a French strain (Fr2000) in Carrion crows [38],
where the highest viral RNA titer recorded was equivalent to only 10* TCIDso/mL, which is
also below the infectious viral titer required for transmission to feeding mosquitoes.

None of the isolates used in this study have either caused massive die-offs of birds in
the field or have spread swiftly across Europe as observed during the North American
invasion by WNV [39]. Thus far, experimental studies using European strains of WNV and
European birds have shown fairly low mortality rates [38, 40, 41], with the highest
mortality rate of 33% observed following inoculation of Carrion crows with the Fr2000
strain [38]. The study presented herein suggests that the susceptibility of European birds
could be related to the WNV strain, as much higher mortality was observed in this study
with alternative strains compared to the French strain. At the same time, host factors
present in the jackdaw or other European avian species could also play an important role in
susceptibility, as the mortality induced by the North American strain NY99, known to be
highly virulent in corvids, was similar to that exhibited by 1ta09 (60%) in jackdaws. This
mortality rate, as well as the viremia levels, were also not comparable to those usually seen
upon infection of American crows with NY99. This therefore suggests that host factors
present in European jackdaws could potentially reduce their susceptibility to WNV.

However, a substantial proportion of the jackdaws did die as a result of infection,
which therefore suggests that perhaps some birds in Europe are indeed succumbing to
WNV infection in the field, but that the mortality rates of these birds are simply too low to
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be detected by the current monitoring systems present in Europe. It is also possible that
natural infection via mosquito feeding could result in higher serum viremia titers in
jackdaws, or that other ecological factors such as infection due to carcass scavenging by
more susceptible birds could play a more important role in the transmission and
maintenance of WNV in Europe. Nevertheless, this study shows that jackdaw mortality
could potentially be useful for tracking WNV transmission in Europe.
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ABSTRACT

West Nile virus (WNV) outbreaks in North America have been characterized by substantial
die-offs of American crows (Corvus brachyrhynchos). In contrast, a low incidence of bird
deaths has been observed during WNV epidemic activity in Europe. To examine the
susceptibility of the western European counterpart of American crows, we inoculated
carrion crows (Corvus corone) with WNV strains isolated in Greece (Gr-10), Italy (FIN and
[ta09), and Hungary (578/10) and with the highly virulent North American genotype strain
(NY99). We also inoculated American crows with a selection of these strains to examine
the strains’ virulence in a highly susceptible bird species. Infection with all strains, except
WNV FIN, resulted in high rates of death and high-level viremia in both bird species and
virus dissemination to several organs. These results suggest that carrion crows are highly
susceptible to WNV and may potentially be useful as part of dead bird surveillance for
early warning of WNV activity in Europe.
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INTRODUCTION

West Nile virus (WNV), a flavivirus (family Flaviviridae) transmitted by mosquitoes, uses
birds as its primary vertebrate reservoir host. WNV has an extensive geographic range that
includes Europe, Africa, the Middle East, southern Asia, and Australia [1]. In 1999, WNV
emerged in North America, where it was first detected in New York, New York. The virus
subsequently spread rapidly across the continent, becoming the leading cause of arboviral
encephalitis in humans and horses [2], and it was associated with deaths among at least 326
bird species [3]. High death rates are most frequently observed among passeriform birds, of
which the family Corvidae comprises the most highly susceptible species to WNV [4]. In
particular, deaths among the American crow (Corvus brachyrhynchos) have been used to
track the spread of the virus across many parts of North America [5-8].

Since 2008, WNV has been responsible for outbreaks throughout central and
southeastern Europe, affecting countries such as Greece, Italy, Hungary, Romania, and
Croatia and constituting a serious veterinary and public health problem. Fatalities have been
reported among wild birds in Europe, such as eagles [9, 10], sparrow hawks, goshawks,
geese, and falcons [11-13]. However, death rates among birds in Europe have been low,
and no clustered death events have occurred, even when cases were associated with
outbreaks of severe human and equine WNYV infections [14-17]. Several theories have been
proposed to explain the low death rates among birds in Europe: limited or insufficient
monitoring of deaths among wild birds in Europe; development of immunity among birds
from infections acquired on wintering grounds [18]; and circulation of WNV strains in
Europe with reduced virulence for birds.

Experimental infection of American crows with the North American genotype of
WNV (NY99) has shown that the strain has a highly pathogenic phenotype: viremia titers
exceeded 9 logio PFU/mL, and all infected birds died [19-23]. However, the lack of WNV-
associated bird deaths in Europe suggests that European birds might not be susceptible to
WNV or that WNV strains from Europe are not virulent to birds. Thus, we evaluated the
susceptibility of the European equivalent of the American crow, carrion crows (Corvus
corone), which are ubiquitously present across Europe, by injecting them with selected
strains of WNV circulating in Europe and with the prototypic NY99 strain. In addition, we
inoculated American crows with a selection of these viruses to assess and compare the
virulence of WNV strains from Europe in a bird species known to be highly susceptible to
WNV. Susceptibility was assessed in terms of death, survival time, magnitude and duration
of viremia, and spread of virus to different organs.
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MATERIALS AND METHODS

Source of Virus and Birds

Five different WNV strains were used in this study: lineage 1a strain NY99-4132 (NY-99)
[20]; lineage 2 strain Nea Santa-Greece-2010 (Greece-10; GenBank accession no.
HQ537483.1) [24]; lineage 1a strain Italy/2009/FIN (FIN; GenBank accession no.
KF234080); lineage 1a strain 1ta09 (GenBank accession no. GU011992.2) [25]; and lineage
2 strain 578/10 (GenBank accession no. KC496015). Further details about these viruses are
provided in Table 1.

Carrion crows were captured by using walk-in traps in the municipality of Rotterdam,
the Netherlands, and then transported to indoor housing at the animal holding facilities at
the National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
After being inoculated with WNV, the crows were cared for in groups of 8 in isolators
under negative pressure. Only seronegative birds were used in this study. Seronegativity
was determined by using a neutralization assay (online Technical Appendix,
http://wwwnc.cdc.gov/ElD/article/21/8/14-0714-Techappl.pdf).

American crows were captured by using cannon net traps in Bellvue, Colorado, USA,
the National Wildlife Diseases Program, Animal and Plant Health Inspection Service,
United States Department of Agriculture, assisted with the captures. The crows were
banded and transported to Fort Collins, Colorado, where they were housed in 1-m? cages (2
birds per cage) at the Colorado State University Animal Disease Laboratory.

Passage Genetic Crow species

Strain Source . Location . .

history* lineage  inoculated

NY99-4132 American crow (brain) V2 United la Carrion,
States American

Nea Santa- Culex pipiens V1 Greece 2 Carrion

Greece-2010 mosquito

Italy/2009/FIN Human with V2, Cl Italy la Carrion,
neuroinvasive disease American

Ita09 Human with V1, Cl Italy la Carrion,
neuroinvasive disease American

578/10 Horse (brain) V2,Cl Hungary 2 Carrion

*Viruses were propagated in Vero (V) or C6/36 insect cells (C). Numbers following passage source
represent the number of virus passages.

Table 1. West Nile virus strains used for susceptibility studies in carrion and American crows.
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Experimental Infection and Sampling Protocol

Crows were subcutaneously inoculated in the thigh or breast region with 2,000 50% tissue
culture infectious doses (TCIDso) of virus per 0.1 mL of serum-free Dulbecco’s Modified
Eagle Medium (DMEM) (Lonza Benelux BV, Breda, the Netherlands). Carrion crows (8
per virus) were injected with WNV strain NY99, Greece-10, FIN, Ita09, or 578/10.
American crows were inoculated with NY99 (n = 6), FIN (n = 5), or Ita09 (n = 5).
Approximately 0.1 mL of blood was collected from carrion crows at 2-day intervals, up to 8
days postinoculation (dpi), and 0.2 mL of blood was collected from American crows at the
same time points and added to 0.9 mL of serum-free DMEM. Coagulated blood from
carrion crows was centrifuged at 1,300 x g for 5 min in MiniCollect vials (Greiner Bio-
One, Alphen aan den Rijn, the Netherlands) to separate serum, and coagulated blood from
American crows was centrifuged at 3,700 x g for 10 min to pellet clotted cells. Serum
samples were stored at —80°C until further use.

Crows were examined for clinical signs twice daily for 14 dpi and euthanized under
isoflurane anesthesia upon display of clinical signs. In addition, 2 birds per group of the
carrion crows were euthanized at 4 dpi.

Necropsies were performed on all euthanized carrion crows; heart, liver, spleen,
kidney, bone marrow, and brain samples were collected. A small section of each tissue was
collected, weighed, and homogenized by using a metal bead in 1 mL of DMEM containing
100 U penicillin and 100 pg/mL streptomycin. The remaining portion of the tissues was
collected in formalin for use in immunohistochemical staining.

Determination of Virus Loads

We used quantitative real-time reverse transcription PCR (qRT-PCR) to determine virus
titers in serum and tissue samples and TCIDsy titration to calculate infectious virus titers in
serum only. In brief, RNA was isolated from 50 uL of serum or 100 uL of homogenized
tissue by using the MagNA Pure LC Total Nucleic Acid Isolation Kit (Roche, Almere, the
Netherlands) and a MagNA Pure LC automated nucleic acid robotic workstation (Roche)
according to the manufacturer’s instructions, and subsequently stored at -80°C. RNA copy
numbers were quantified by using unmodified primers as previously described [26]. The
limit of detection of the assay was 9 (1.0 logio) RNA copies.

After logio titration of serum samples on Vero E6 cells, cytopathic effect was
determined at 5 dpi and TCIDs, infectious titers were calculated by using the Spearman-—
Karber method [27, 28]. An initial 1:10 dilution of serum resulted in a limit of detection of
1018 TCIDso/mL.
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Immunochistochemistry

Paraffin sections (4-um thick) of sagittal organ were processed for streptavidin—biotin—
peroxidase immunohistochemical detection of nonstructural protein (NS) 3 antigen.
Sections were deparaffinized in xylene, rehydrated in descending concentrations of ethanol,
and incubated for 10 min in 3% H,O, diluted in PBS to block endogenous peroxidase
activity. Antigen exposure was performed by incubation at 121°C for 15 min in citrate
buffer (10 mmol/L, pH 6.0). Sections were subsequently incubated overnight at 4°C with
polyclonal goat anti-WNV NS3 protease (1:100; R&D Systems, Abingdon, UK) or isotype
control (goat serum, 1:100; Dako, Eindhoven, the Netherlands) and then detected with
polyclonal rabbit anti-goat IgG/HRP (Dako) antibody. Sections were counterstained with
Mayer hematoxylin, mounted with Kaiser glycerin-gelatin, and analyzed by using a light
microscope.

Statistical Analyses

Survival curves were analyzed by using the log-rank (Mantel-Cox) test. Statistical analyses
between >2 groups were performed by using Kruskal-Wallis 1-way analysis of variance;
any significant differences were more closely analyzed between the groups by using the
Mann-Whitney U test. A Bonferroni correction was applied to each p value, according to
the number of comparisons (corrected p value of 0.05/10 = 0.005 for carrion crow peak
viremia and organs of carrion crows euthanized on day 4; corrected p value of
0.05/6 = 0.008 for American crow peak viremia and organs of carrion crows euthanized due
to illness). For all comparisons, each group had 6 crows, except for American crow groups
that received FIN or Ita09 (n = 5).

RESULTS

llIness and Death

Signs of illness (e.g., lethargy, unresponsiveness, anorexia, and ruffled feathers) were
observed among most crows within 9 dpi. All 6 carrion crows inoculated with Greece-10 or
[ta09 died, and 5 (83%) of the 6 inoculated with NY99 or 578/10 died. All 6 carrion crows
inoculated with strain FIN survived (Table 2). Survival curves of the infected birds showed
a significant difference in survival between carrion crows infected with Ita09, Greece-10,
NY99, or 578/10 and those infected with FIN (p = 0.005) (Figure 1). The median day of
death was 7 dpi for carrion crows that died from infection with NY99, Greece-10, or 1ta09
and 8 dpi for birds that died from infection with 578/10. All American crows inoculated
with NY99 (n = 6) or 1ta09 (n = 5) died, and all 5 crows inoculated with FIN survived
(Table 3).
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No. died/no. Day of death, Median peak viremia, Mean duration, Mean day of Median peak

Virus grou . " viral RNA/mL serum iremia iremiax viremia TCIDso/mL
o total (%) median dpi (range); no. birds gbo;fr\l/(;r?)ri??ﬂ g?;kn\g.rgw’:ja}sT (range); no. b??’dsi
NY99-4132 5/6 (83) 7 1087 (1010-10109): 6 52+1.0;5 43+07;5  1074(10%8-1088); 6
neasana 6/6 (100) 7 10103 (105101176 57+0.7;6  45+09;6  1078(1073-10°%); 6
Italy/2009/FIN 0/6 (0) NA 1027 (101°-105%); 6 2.7+0.9;3 6.7+0.9;3  108(10%8-10%%); 6
1ta09 6/6 (100) 7 1097 (108°-10109); 6 6.0+1.2;6 43+0.7;6  107°(1003-10%%); 6
578/10 5/6 (83) 8 1084 (105°-1001); 6 57+1.8;6 35+0.9;6  10°1(1028-10%5); 6

*dpi, days postinoculation; NA, not applicable; TCIDso, 50% tissue culture infectious dose.
tBased on viral RNA titers.
tViral titers are expressed as logio TCIDso/mL of serum.

Table 2. Clinical profile for carrion crows experimentally infected with various West Nile virus strains.

No. died/no. Median peak viremia, = Median peak viremia,

Virus group total (%) viral RNA/mL serum TCIDso_/mL serum
(range); no. birds (range); no. birdst

NY99-4132 6/6 (100) 10%6 (10°1-10%Y); 6 1072(10*7-1072); 6
Italy/2009/FIN 0/5 (0) 1010 (1010-1089); 5 1018 (10%8-10%7); 5
Ita09 5/5 (100) 1088 (1080-10%Y); 5 1087 (1089-107%); 5

tVirus titers are expressed as logio 50% tissue culture infectious dose (TCIDso)/mL of serum.

Table 3. Clinical profile of American crows experimentally infected with West Nile virus strains NY99-4132, Italy/2009/FIN, and Ita09.



100 A

1 “1
80 : O NY99
- £3 Greece-10
3 60+ ! -4 FIN
s i ¥ [ta09
7 40- ' =¥ 578/10
'GE
I
20- : --—-—-—Q
I
0 h
) ) ) ) L) LI H N | ) L] ) ) L] )
012345678 91011121314

Days postinoculation

Figure 1. Survival rate for West Nile virus (WNV)-infected carrion crows after inoculation with
2,000 50% tissue culture infectious doses of WNV; each group (n = 6) was inoculated with a
different strain. Crows were monitored daily for signs of disease through postinoculation day 14.

Viremia Profiles

WNV viremia profiles were determined in terms of viral RNA (Table 2; Figure 2) and
infectious virus titers in serum (Table 2; Figure 3) of infected carrion crows. In strain
NY99-infected birds, the median peak viral RNA titer was 1027 RNA copies/mL of serum
(range 10'-10°° [nontransformed values]), and the median peak infectious virus titer was
1074 TCIDso/mL of serum (range 1018-10%%); these values include 1 bird in which
detectable viremia did not develop during the entire course of infection. The median peak
viremia titer for Greece-10—infected birds was 103 RNA copies/mL of serum (range
10°8-10%7) and 1078 TCIDso/mL of serum (range 1073-10°%). FIN-infected birds had
median peak viremia titers of 1027 RNA copies/mL of serum (range 10-10%°) and 108
TCIDso/mL of serum (range 10%2-102%); however, viremia was detectable in only 3 of 6
birds, and infectious virus could be isolated from only 1 bird. The median peak viremia
titers for Ita09-infected birds were 10°7 RNA copies/mL of serum (range 108°-10%%) and
107 TCIDso/mL of serum (range 105°-1088). Birds infected with strain 578/10 had median
peak viremia titers of 1084 RNA copies/mL of serum (range 109°-10'°!) and 105!
TCIDso/mL of serum (range 10%8-10895),
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Figure 2. Viral RNA copy numbers for West Nile virus (WNV)—-infected carrion crows after
inoculation with 2,000 50% tissue culture infectious doses of WNV; each group (n = 6) was
inoculated with a different strain. RNA copy numbers are represented as log-transformed
medians. The assay had a detection limit of 9 (1.0 logio) RNA copies/mL of serum.
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Figure 3. Infectious virus titer profiles for West Nile virus (WNV)-infected carrion crows after
inoculation with 2,000 50% tissue culture infectious doses (TCIDsp) of WNV; each group (n =
6) was inoculated with a different strain. Infectious virus titers were determined by TCIDso
titration and are represented as log-transformed medians; error bars indicate range. The assay
had a detection limit of 1.8 TCIDso/mL.

163



Strain Greece-10-infected birds had median peak viral RNA titers significantly higher
than those for NY99-infected (p = 0.004), FIN-infected (p = 0.005), and 578/10-infected (p
= 0.004) birds. Greece-10-infected birds also had median infectious virus titers
significantly higher than those for FIN-infected birds (p = 0.003), but FIN-infected birds
had RNA and infectious titers lower than those for Greece-10-infected (p = 0.005 and
0.003, respectively), 1ta09-infected (p = 0.005 and 0.002, respectively), and 578/10-infected
(p = 0.005 and 0.002, respectively) crows.

Viremia profiles were also determined for American crows infected with 3 of the 5
different WNV strains (Table 3). NY99-infected birds had median peak viremia titers of
10%6 RNA copies/mL of serum (range 10%!-10%°1) and 1072 TCIDso/mL of serum (range
10%7-1072). Detectable viremia developed in only 2 of the 5 FIN-infected birds, resulting in
median peak viremia titers of 10'° RNA copies/mL of serum (range 10'-10%°) and 10'8
TCIDso/mL of serum (range 1018-10?7). Median peak viremia titers for Ita09-infected birds
were 1088 RNA copies/mL of serum (range 108°-10°%) and 10%7 TCIDso/mL of serum
(range 10%°-107%). American crows infected with strain NY99 had the highest median peak
viral RNA and infectious virus titers, and FIN-infected birds had the lowest median titers
(significant only when compared with each other: p = 0.008 and 0.006, respectively).

Tissue Tropism

Virus loads were determined in the heart, liver, spleen, kidney, bone marrow, and brain of
all birds. To assess the spread of virus to the different organs at the approximate peak of
viremia, we euthanized 2 birds per group at 4 dpi. Virus was detected in all organs from
these birds. On average, the highest viral RNA titers were detected in the liver, followed by
the bone marrow, spleen, kidney, and heart; the lowest titers were found in the brain
(Figure 4). Between the different virus strains, viral RNA titers were the highest in the
organs of birds infected with strain Greece-10 or 578/10, followed by NY99 and 1ta09;
titers were significantly higher than those for birds infected with strain FIN (p = 0.005 for
all). Virus distribution in FIN-infected birds was not consistent; viral RNA was
undetectable in the bone marrow and brain of both birds tested on 4 dpi, and for 1 of these
birds, viral RNA was also undetectable in the spleen.

Birds euthanized because of illness had virus present in all organs; in most cases, the
spleen, liver, and bone marrow contained the highest average viral RNA load, followed by
kidney and heart; the lowest average viral RNA titers were in the brain. Viral RNA titers in
organs of Greece-10—infected birds were higher than those in organs of birds infected with
the other viruses, but this observation was not statistically significant (Figure 5).

The 1 NY99-infected and 3 FIN-infected survivor birds that were free of viremia
throughout the 8 days of blood sampling underwent necropsy at 14 dpi. Of interest, virus
was present in all organs of the NY99-infected bird (median virus load of 103! RNA
copies/g of tissue) and in at least 3 of the 6 organs from FIN-infected birds (median virus
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load of 10%° RNA copies/g of tissue), showing that these birds did undergo productive
WNYV infection.
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Figure 4. Viral RNA copy numbers in organs from 10 carrion crows (2 per group)
euthanized 4 days after being experimentally infected with 1 of 5 different West Nile virus
strains (n = 6, per group). Virus titers are represented as log-transformed medians; error bars
indicate range. The assay had a detection limit of 9 (1.0 logig) RNA copies/g of tissue. H, heart;
L, liver; S, spleen; K, kidney; Bo, bone marrow; Br, brain.
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Figure 5. Viral RNA copy numbers in organs from 22 carrion crows euthanized because of
iliness after being experimentally infected with 1 of 4 different West Nile virus strains (n =
6, per group). Copy numbers are represented as log-transformed medians; error bars indicate
range. The assay had a detection limit of 9 (1.0 logig) RNA copies/g of tissue. H, heart; L, liver;
S, spleen; K, kidney; Bo, bone marrow; Br, brain.
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Immunochistochemistry

Sections of organs from 2 birds necropsied at 4 dpi were stained with polyclonal anti-WNV
NS3 to confirm replication of virus in the tissues and to exclude positive gRT-PCR
detection due to spillover from blood at the approximate peak of viremia. Tissues most
consistently positive for WNV antigen were the liver (80%), kidney (80%), bone marrow
(80%), and spleen (78%); tissues least consistently positive for WNV antigen were heart
(50%) and brain (10%) (Table 4). However, in terms of virus load, antigen was most
abundant in the liver, bone marrow, and spleen. Overall, at 4 dpi, organs of birds most
positive and most abundant for viral antigen were those infected by strains 578/10 and
Greece-10, followed by NY99 and I1ta09. The organs of FIN-infected birds were all
negative for virus antigen at this time point.
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Average No. positive

Virus strain, bird no. Heart Liver Spleen Kidney Bone Brain Total SCOTE score per  organs/total
marrow per bird - .
virus strain  no. organs

NY99-4132 9.0

1 - ++ ++ + ++ - 11.0 4/6

7 - + + +/— + - 7.0 4/6
Nea Santa-Greece-2010 125

1 +/— ++ ++ + ++ +/— 13.0 6/6

7 +/— ++ ++ + ++ — 12.0 5/6
Italy/2009/FIN 0

1 - — — - - - 0 0/6

7 - — — - - - 0 0/6
Ita09 8.0

1 +— ++ ++ +/— + - 10.0 5/6

7 - ++ ND +/— + - 6.0 3/5
578/10 12.5

1 ++ ++ ++ +/— ++ - 13.0 5/6

7 +/— ++ ++ + ++ - 12.0 5/6
Score per organ 7.0 23.0 20.0 12.0 21.0 1.0
No. positive birds/total 5/10 8/10 7/9 8/10 8/10 1/10

no. birds

*Subjective determinations of the amount of antigen in each organ were made: negative (-), minimal (+/-), moderate (+), or abundant (++).
Each determination was given a score from 0 to 3: negative (0), minimal (1), moderate (2), and abundant (3). ND = not determined. dpi, days
postinoculation; ND, not determined.

Table 4. Immunohistochemical analysis of West Nile virus antigen distribution in experimentally infected carrion crows euthanized at 4 dpi*.



DisCusSION

In this study, we assessed the susceptibility of carrion crows to different strains of WNV.
First we demonstrated that carrion crows are susceptible to WNV infection by using the
North American strain NY99, which has previously been shown to be highly virulent in
American crows [19-23]. In agreement with the findings in those studies, our results
showed that infection of carrion crows with NY99 resulted in high viremia titers and death.
In addition, virus had disseminated to the organs of infected birds by 4 dpi, further
demonstrating the susceptibility of carrion crows to WNV infection, which appears to be
very similar to that of American crows.

Next we studied the susceptibility of carrion crows to selected strains of WNV from
Europe. We found that carrion crows are highly susceptible to infection with both lineage 1
and 2 WNV strains from Europe. In addition, we showed that susceptibility is strain-
dependent. Of the 5 WNYV strains tested, 4 led to death for 83%-100% of infected birds and
to high viremia titers and abundant antigen in the organs of euthanized birds; however,
birds inoculated with FIN did not die from infection, and they had relatively low virus titers
in the blood and no viral antigen in the organs at 4 dpi. A previous study describing the
inoculation of carrion crows with WNV strains from France (Fr2000) and Israel (1s98) also
suggested that carrion crows are susceptible to infection with WNV in a strain-dependent
manner [29]. The study showed death rates of 33% (Fr2000) and 100% (1s98) from the 2
strains, and viral RNA loads in serum, oral swab samples, and feathers of 1s98-infected
birds were higher than those of Fr2000-infected birds [29]. Thus, WNV strains FIN and
Fr2000 show a similar attenuation in carrion crows.

To more accurately assess the virulence of WNV strains from Europe, we inoculated
American crows, a bird species known to be highly susceptible to WNV, with 2 of the 4
strains from Europe (Ita09 and FIN) and with strain NY99 from North America. Similar to
what was seen with carrion crows, American crows infected with 1ta09 had high peak
viremia titers, and all succumbed to the infection, whereas those infected with FIN had low
viremia titers, and all survived infection. Furthermore, it was demonstrated that the Greece-
10 strain used in this study was also 100% lethal in American crows (A.C. Brault et al.,
unpub. data). In fact, American crows infected with Greece-10 (vs. the other strains used in
this study) had the highest median peak viremia titers in terms of RNA and infectious virus
(data not shown). These results show that in American crows, WNV strains (apart from
FIN) from Europe are as virulent as the prototypic NY99 strain from North America.

The fact that susceptibility of birds to WNV can be strain-dependent was clearly
demonstrated by the attenuated virulence phenotype of WNV strain FIN in carrion and
American crows (this study) and in European jackdaws [30]; FIN-infected crows
consistently exhibited an absence of death, lower peak viremia titers, and less dissemination
of virus to the organs at the approximate peak of viremia. A previous study showed that the
introduction of a P249T amino acid substitution in the NS3 helicase of North American
strain NY99 led to a highly attenuated phenotype, whereas a T249P substitution introduced
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in a low-virulence WNV strain resulted in a phenotype highly virulent to American crows
[22]. Four virus strains used in this study contain a proline at NS3-249, whereas FIN
contains a threonine at this position [31]. It is therefore likely that the attenuated phenotype
of FIN is a result of this threonine amino acid at NS3-249, a mutation that could be relevant
for at least 3 different species of birds in the family Corvidae. Studies in North American
and European corvids are ongoing in order to test the relevance of the T249P substitution
and several other mutations when introduced into the genome of WNV-FIN.

We have shown that bird susceptibility to WNV can be strain-dependent. However,
susceptibility is also clearly related to host factors. As a whole, jackdaws were less
susceptible than the carrion crows to the same selection of otherwise highly virulent WNV
strains, and they had lower death rates and virus loads in blood and organs [30]. Species
susceptibility has been shown to differ within various avian families [7], including birds in
the family Corvidae, of which, for example, the fish crow (Corvus ossifragus) was less
susceptible to lethal WNV infection [23]. Although the reasons for this varied susceptibility
are not well understood, potential contributing factors may include host traits, such as
genetic composition, immune response, and physiologic mechanisms [23].

A measure of the potential for transmission of virus to feeding mosquitoes is the level
of infectious virus titers produced during viremia. The median peak serum titer of
infectious virus was highest in Greece-10—infected carrion crows and lowest in FIN-
infected carrion crows. Studies have shown that WNV titers of >10° PFU/mL were
considered infectious for Culex pipiens [32] and Cx. quinquefasciatus [33] mosquitoes.
Considering this cutoff of 105 PFU/mL or of 1052 TCIDso/mL, according to a conversion
factor of 1 TCIDs to 0.7 PFU [34], infectious titers obtained for carrion crows infected
with Greece-10, 1ta09, or NY99 would be sufficient for efficient transmission of virus to
feeding mosquitoes. Carrion crows infected with strain 578/10 had median peak viremia
titers slightly below this threshold (10! TCIDso/mL; Table 2), suggesting that the carrion
crow may not be an efficient amplifier for this WNV strain. However, a possible
explanation for the apparent low viremia titers in 578/10-infected birds could be that blood
sampling was conducted on alternate days, possibly missing higher peak viremia titers of
infectious virus. For the American crows, median peak viremia titers for 1ta09 (Table 3)
were slightly lower than those for carrion crows (Table 2). However, serum samples from
American crows underwent 2 repeated freeze—thaw cycles, which could have resulted in the
detection of lower infectious virus titers. Nonetheless, these results show that WNV strains
from Europe can produce viremia titers in American crows that could be sufficient for
efficient transmission to feeding mosquitoes. Nevertheless, reservoir competence studies
involving the feeding of European mosquitoes on viremic WNV-infected carrion crows are
needed to determine whether the carrion crow could indeed be a potential reservoir host and
contributor to the WNV transmission cycle.

We have shown that carrion crows, a species of bird ubiquitously found across
Europe, are highly susceptible to WNV strains currently circulating in Europe. These birds
could therefore potentially be useful as part of dead bird surveillance in the early detection
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of WNV in Europe. Future studies assessing the susceptibility of the closely related hooded
crow (Corvus cornix) to WNV may also prove to be insightful, as this is the more
predominant corvid species in eastern and southeastern Europe, where WNV is more
common. The susceptibility of European birds to WNV has been demonstrated in multiple
studies [9, 10, 12, 13, 29, 30, 35-38], however, it is peculiar that the number of WNV-
associated deaths among birds in Europe is not as extensive as that among birds in North
America. Possible explanations may be a lower reporting of bird deaths in Europe as
compared with that in the United States or that other ecologic factors, such as mosquito
competence, abundance, distribution or behavior, exert a limiting effect on the transmission
of WNV in Europe.
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TECHNICAL APPENDIX

Detection of Preexisting West Nile Virus Antibodies

To confirm that Carrion crows had not previously been exposed to WNV, the birds were
bled before experimental infection and serum was tested for neutralizing antibodies by
using tissue culture infectious dose 50 (TCIDsg) neutralization assays. Serum was heat-
inactivated at 56°C for 30 min, serially diluted 2-fold and incubated with an equal volume
of virus (strain NY99, originally isolated from a dead Chilean flamingo at the Bronx Zoo in
New York, obtained from the Health Protection Agency, Porton Down, UK; P5 on Vero E6
cells; accession AF196835.2) to a final concentration of 100 TCIDs¢/0.1 mL. Samples were
incubated at 37°C for 1 h and subsequently added to an 80% confluent monolayer of Vero
E6 cells in CELLSTAR 96-well plates (Greiner Bio-One, Alphen aan den Rijn, The
Netherlands). Plates were incubated at 37°C for 5 days. Samples were read, and a 100%
reduction in cytopathic effect, as compared with the serum-negative control, was used for
the determination of neutralization. Detection of any neutralizing activity to WNV in the
serum of any bird precluded its use for experimental inoculation.
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ABSTRACT

West Nile Virus (WNV) cycles between insects and wild birds, and is transmitted via
mosquito vectors to horses and humans, potentially causing severe neuroinvasive disease.
Modified Vaccinia virus Ankara (MVA) is an advanced viral vector for developing new
recombinant vaccines against infectious diseases and cancer. Here, we generated and
evaluated recombinant MVA candidate vaccines that deliver WNV envelope (E) antigens
and fulfil all the requirements to proceed to clinical testing in humans. Infections of human
and equine cell cultures with recombinant MVVA demonstrated efficient synthesis and
secretion of WNV envelope proteins in mammalian cells non-permissive for MVA
replication. Prime-boost immunizations in BALB/c mice readily induced circulating serum
antibodies binding to recombinant WNV E protein and neutralizing WNV in tissue culture
infections. Vaccinations in HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class I1-knockout
mice elicited WNV E-specific CD8+ T cell responses. Moreover, the MVA-WNV
candidate vaccines protected C57BL/6 mice against lineage 1 and lineage 2 WNV infection
and induced heterologous neutralizing antibodies. Thus, further studies are warranted to
evaluate these recombinant MVA-WNV vaccines in other preclinical models and use them
as candidate vaccine in humans.
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INTRODUCTION

West Nile virus (WNV) is an arbovirus that continuously circulates between different
mosquito species and wild birds, most commonly passerines (particularly crows), as the
natural virus reservoir, but it can also infect vertebrate animals, including horses and
humans through the bite of a mosquito. The virus is widely distributed in Africa, Europe,
the Middle East, Asia and America and can cause neuroinvasive disease with the potential
for severe outcomes especially in elderly and immunocompromised humans.

Although not a new disease (Alexander the Great is thought to have died from West
Nile fever 2000 years ago), the virus was first isolated in 1937 from a febrile woman in the
West Nile district in Uganda [1]. Since then, sporadic WNV outbreaks have periodically
occurred in Africa, Asia and Europe [2, 3]. In 1999, the virus suddenly emerged in the
United States in the New York City District of Queens, probably introduced by an infected
mosquito or bird [4-6]. Subsequently, WNV spread across the North American continent
leading to a total of about 41762 human infections and 1765 deaths
(http:/Awww.cdc.gov/westnile/statsmaps/). During the last 15 years the virus has increasingly
emerged in European countries, resulting in severe disease outbreaks in horses and humans
(http://ecdc.europa.eu/en/healthtopics/west_nile_fever/pages/index.aspx).

As a member of the genus Flavivirus in the family of Flaviviridae, WNV is
characterized by a single-stranded positively-sensed RNA genome of about 11 kb that is
processed as a single polyprotein. The polyprotein encodes seven non-structural proteins
essential for virus replication and three structural proteins at the amino terminus of the
precursor polypeptide, which comprise the capsid protein (C), the membrane protein (M),
which is initially expressed as the precursor to M (prM) and the envelope protein (E),
which is responsible for the formation of virus particles. The formation and maturation of
new WNV virions takes place in the endoplasmic reticulum (ER) and the trans-Golgi-
network. The virus life cycle starts in the ER with the synthesis of immature virus particles
comprising the prM and E protein. In the trans-Golgi network the prM is proteolytically
cleaved into the mature form [4, 7, 8].

Phylogenetic analyses of WNV have identified five different but antigenically related
lineages [9-11]. Strains of WNV lineage 1 are mostly associated with severe neuroinvasive
disease in humans and animals, while lineage 2 strains have often been associated with
relatively mild disease and no deaths in humans. However, very recently a new
neuroinvasive strain of lineage 2 arose in Europe [12, 13].

So far there is no effective treatment available for WNV disease, and besides the use
of insect repellents, the most effective approach to protect animals against WNV infection
is vaccination. Veterinary vaccines already exist for use in horses [14, 15]; however, no
WNV vaccine has currently been approved for human use. Preclinical and early-phase
clinical trials in humans have been performed with recombinant protein, plasmid DNA, and
live-attenuated strain vaccine candidates [16-18].
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Given the continuing outbreaks of severe WNV disease in the United States and
southeastern Europe, there is a need for a safe and effective human WNV vaccine,
especially one that protects at-risk elderly and immunocompromised populations. Another
requirement for an effective WNV vaccine includes the induction of cross-protection
against different lineages of WNV.

Modified Vaccinia virus Ankara (MVA), a safety-tested and replication-deficient
vaccinia virus, is an advanced, well-developed viral vector for constructing new vaccines
against infectious diseases and cancer. The WNV E protein has already been shown to be
the major target of neutralizing antibodies against flaviviruses due to its essential role in
attachment to cell receptors and cell entry. Analysis of the WNV E structure by
crystallography has shown three distinct subunits of the protein, ectodamain I, ectodomain
Il and ectodomain 111 [19], which are very reminiscent of the structure already identified for
dengue virus (DENV) and tick-borne encephalitis virus (TBEV). In WNV, the ectodomain
II1 has been shown to serve as the receptor-binding domain [20]. In this context,
ectodomain Il1-specific antibodies have been demonstrated to neutralize WNV in vitro and
in vivo after passive immunization [21-23].

Here, we constructed recombinant MVA viruses stably expressing the full-length
WNYV envelope (E) protein. We generated four different versions of the WNV E protein to
mimic different forms that are present during the MVA life cycle, and assessed the
expression, cellular location, immunogenicity, neutralising antibody response and
protective capacity of these MVA-WNV candidate vaccines in different mouse model
strains.

MATERIALS AND METHODS

Plasmid constructions

The cDNA sequences encoding the WNV (strain NY99, Genbank accession number
AF196835, [4]) envelope target antigens (prM/ME, Eso, Etmv, Etmc) were modified by
introducing silent codon alterations to remove G/C runs as well as three termination signals
(TTTTTNT) for vaccinia virus early transcription. The altered WNV cDNA sequences
were generated by DNA synthesis (Invitrogen Life Technology, Regensburg, Germany).
The cDNA prM/ME encodes the WNV NY99 amino acids (aa 128-589). The cDNA Esol
represents a truncated version of the WNV NY99 E protein sequence lacking the E
transmembrane domain (TM, aa 291-541). The cDNAS Etmv and Erwc contain the WNV-
Esoi gene sequence fused to the sequence encoding two heterologous transmembrane
domains targeting expression of the synthetic fusion protein to the cell surface. Ermv
encodes the transmembrane domain of the MVA A56 protein (GenBank No AY603355.1,
aa 35-103, TMV= transmembrane domain Vaccinia Virus) whereas Etmc includes the
coding sequence for the transmembrane domain of the envelope protein E2 of an
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alphavirus: the chikungunya virus (CHIKV; GenBank No AF369024, aa 686-744, TMC=
transmembrane domain chikungunya virus). The cDNAs WNV-prM/ME, WNV-Eg,
WNV-Ermyv and WNV-Ermc were cloned into the MVA vector plasmid pllIH5red [24] and
placed under the transcriptional control of the synthetic vaccinia virus early/late promoter
PmHS5 [25].

Generation of recombinant MVA viruses

MVA (clonal isolate F6; [26]) virus was propagated on chicken embryo fibroblasts (CEF)
prepared from 10-day old chicken embryos (SPF eggs, VALO, Cuxhaven) and served as a
backbone virus to construct recombinant MV A expressing the WNV target gene sequences
(MVA-WNYV) using standard methodology as described previously [24]. Briefly, MVA-
WNVs were obtained following transfection of MV A-infected CEF with pllIH5red-WNV
plasmid DNA, clonally isolated in plaque passages on CEF and monitored for the transient
co-expression of the red fluorescent marker protein mCherry. MVA-WNV primary stock
viruses were grown in CEF and stored at -80°C until further analysis. Quality control
experiments were essentially performed as described previously [24]. Genetic identity and
genetic stability of the vector viruses were assessed by PCR analysis of genomic viral
DNA. Replicative capacities of MVA-WNV were tested in one-step and multiple-step
growth experiments in CEF, human HaCat cells [27], and in cultures of equine dermal
fibroblasts (generated from primary cultures of horse skin biopsies and generously provided
by Cornelia Deeg, Institute of Animal Physiology, LMU, Munich). Viral titres were
determined by plaque assays using MV A-specific immunostaining and titrated in plaque
forming units (PFU). To generate vaccine preparations, recombinant MVA-WNVs were
amplified in CEF, purified by ultracentrifugation through sucrose cushions and
reconstituted to vaccine stocks in Tris buffered saline pH 7.4.

Immunostaining of MVA-WNYV infected cells

At 48 h, MVA-WNYV infected CEF cultures (multiplicity of infection (MOI) 0.01) were
fixed at room temperature with 4% paraformaldehyde for 30 min and washed two times
with phosphate-buffered saline (PBS). Selected cultures were permeabilized using 0.2%
Triton X-100 solution in PBS. Mouse monoclonal antibody against WNV-E (Fa.
BioReliance (Rockville, USA) and fluorescent (Alexa) polyclonal rabbit/goat anti-mouse
antibodies (Fa. Life Technologies (Darmstadt) were used to stain the cells. Nuclear DNA
was stained using 1 pg/ml DAPI (4',6-diamidino-2-phenylindole) solution (Sigma). A
Keyence BZ-X700 fluorescence microscope with a x20 objective was used for analysis of
stained culture.
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Western blot analysis of recombinant proteins

Confluent monolayers of different cell lines (CEF, equine fibroblast, HaCaT) were infected
at an MOI of 5 with the different recombinant MVA-WNVs (prM/ME, Eso, Etmv, Etmc).
Cell lysates or supernatants were prepared at different time points after infection (8, 24, 48
hours post-infection (hpi). Lysates from uninfected cells or wild-type MV A-infected cells
served as controls. Polypeptides were separated by SDS-PAGE and electroblotted onto a
PVDF membrane. After blocking, membranes were incubated with primary antibodies
(anti-WNV E protein, mouse monoclonal, BioReliance, Rockville USA) at 4 °C overnight.
After washing, the blots were incubated with secondary antibodies for one hour at room
temperature.

WNV challenge viruses

Two isolates of WNV were used for mouse infection studies: one lineage la strain, 1ta09
(kindly provided by Dr. Luisa Barzon, University of Padova, Italy; one VeroE6 passage;
GenBank accession number GU011992.2) isolated from a patient with neuroinvasive
disease, and the Hungarian lineage 2 strain, 578/10 (kindly provided by Dr. Tamés
Bakonyi, Szent Istvan University, Hungary, two passages on Vero E6 cells, GenBank
accession number KC496015), which was isolated from the brain of a horse that died from
WNV neuroinvasive disease. The virus stocks were prepared by growing 1ta09 once (P1)
and 578/10 twice (P2) on Aedes albopictus C6/36 cells (ATCC CRL1660).

Immunizations and infection experiments in mice

Female BALB/c mice (6-10 weeks old) were purchased from Charles River Laboratories
(Sulzfeld, Germany). Three-week old female C57BL/6 mice were purchased from Harlan
Laboratories B.V. (Venray, The Netherlands).

HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class I1-knockout mice (6—-8 weeks old)
[28] were obtained from Institut Pasteur /Charles River Laboratories (France) and used for
immunizations to monitor for HLA-A*0201-restricted CD8+ T cell responses. All
vaccinations were performed by intramuscular (i.m.) injection of vaccine suspensions
containing 108 plaque-forming units (PFU) of recombinant or non-recombinant (WT) MVA
vaccine or PBS (mock vaccine) into the quadriceps muscles of the left leg of each animal
(BALB/c and C57BL/6 mice). Blood was collected on day 0, 14 and 56. Coagulated blood
was centrifuged at 1300 x g for 5 min in MiniCollect vials (Greiner Bio-One, Alphen aan
den Rijn, The Netherlands) in order to separate serum, which was subsequently stored at -
20 °C until further use. Six weeks after the last immunization (day 56), all animals were
challenged by intraperitoneal inoculation (i.p.) of 10* TCIDsy of WNV-Ita09 (n=40) or
WNV-578/10 (n=40) in a total volume of 100 ul. Animals were monitored daily for signs
of disease and mice were euthanized by cervical dislocation under isoflurane anaesthesia
when humane end-points were reached (immobility and paralysis). Additionally, on day 8
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after challenge, five mice per group were sacrificed and brains were collected for further
processing. At day 14, the end-point of the experiment was reached and all remaining mice
were euthanized, and the survival rate was analyzed and compared between the groups.

All mice were maintained under specified pathogen-free conditions, had free access to
food and water, and were allowed to adjust to the facilities for one week before vaccination
experiments were performed. All animal experiments were handled in compliance with the
European and national regulations for animal experimentation (European Directive
2010/63/EU; Animal Welfare Acts in Germany and in the Netherlands).

Serology

To characterize the antibody responses induced by immunization with the different
recombinant MVA vaccines, WNV binding antibodies were analyzed by enzyme-linked-
immunosorbent assay (ELISA) using recombinant WNV E protein. WNV E protein was
expressed in Sf21 insect cells using recombinant baculovirus, as previously described [29].
The sequence encoding the ectodomain of WNV E (NY99 strain) was preceded by a signal
sequence derived from the end of WNV M, and the C-terminal transmembrane domain was
replaced by a 6xhis purification tag.

96-well ELISA plates (Nunc Maxisorp, Platten, Thermo Scientific) were coated with
0.5 pg recombinant WNV E protein per well. Wells were blocked with PBS containing 1%
BSA, 5% sucrose for 1 hour at 37°C. After blocking, 100 pl/well of diluted serum samples
were added to top wells, titrated down, and incubated for 1 hour at 37°C. After washing,
100 pl/well of goat anti- mouse linked to horseradish peroxidase (Sigma) was added and
plates were incubated for 1 hour at 37°C. Plates were washed and 100 pl/well of TMB
substrate solution (3,3,5,5 tetramethylbenzidine, Sigma) was added. The reaction was
stopped with 1.8M H>SO (Sigma) and the plates were read in an ELISA reader using an
absorbance at 450 nm. The inflection point of the titration curve was taken as titer value
(logarithmic reciprocal titer).

For detection of WNV neutralizing antibodies, virus neutralization assays were
performed by using tissue culture infectious dose 50 (TCIDsp). To this end, sera of
immunized mice was heat-inactivated at 56 °C for 30 min, serially diluted two-fold (1:10 to
1:80) and incubated with an equal volume of virus (WNV-1ta09 or WNV-578/10) to a final
concentration of 100 TCIDsy/0.1 ml, giving a serum dilution of 1:20 to 1:160. After one
hour of incubation at 37 °C, samples were added to an 80% confluent monolayer of Vero
E6 cells in CELLSTAR® 96-well plates (Greiner Bio-One) and subsequently incubated for
five days. Neutralizing titres were determined microscopically and a 100% reduction in the
cytopathic effect (CPE) as compared to the serum-negative control was used to determine
neutralization. Titres were defined as the highest serum dilution still giving 100% inhibition
of CPE.
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Analysis of T cell responses

Mice were sacrificed eight or 56 days post prime or prime-boost immunizations. A cell
suspension was prepared by homogenizing the spleens through 200 um mesh sieves and red
blood cells were removed by adding Red Cell lysis buffer (Sigma). After centrifugation the
cell pellet was resolved in RPMI medium supplemented with 10% foetal calf serum, 2 mM
L-glutamine and 100 1U/ml penicillin/streptomycin. For detection of WNV specific CD4+
T cell responsess, splenocytes were further processed by using the QuadroMACS Kit
(Milteny Biotec GmbH, Bergisch Gladbach, Germany) to deplete CD8+ cells from
splenocytes with MACS Micro Beads (Milteny Biotec GmbH, Bergisch Gladbach,
Germany). As confirmed by flow cytometry CD8+ T cell depletions resulted in splenocyte
suspensions containing CD4+ T cells at 80-95% purity with 0.5% CD8+cells present in the
isolate of total CD3+ cells (data not shown). Interferon-y secreting CD8+ T cells or CD4+
T cells were analyzed by ELISPOT assay (ELISPOTPLUS Kit for mouse IFN-y,
MABTECH, Germany) following the manufacturer’s instructions. ELISPOT plates were
pre-incubated overnight with the antibody solution and then incubated with the cell
suspension that had been stimulated with the WNV-specific peptide SVG9 (SVGGVFTSV;
[30]) for detection of WNV CD8+ T cells. Stimulation of the spleen cell suspension with 1
png/ml recombinant WNV E protein (as used in ELISA) served for analysis of WNV
specific CD4+ T cells after depletion of CD8+ T cells. The spots were counted and
analyzed by using an automated ELISPOT plate reader and software following the
manufacturer’s instructions (A.EL.VIS Eli.Scan, A.EL.VIS ELISPOT Analysis Software,
Hannover, Germany).

Analysis of WNV loads

To quantify WNV in the brains of mice euthanized on day 8, half the brain was weighed
and homogenized using a metal bead in 1 ml of DMEM containing antibiotics (100 U
penicillin, 100 pg/ml streptomycin). RNA was isolated from 100 pl of brain homogenate
using the MagNA Pure LC Total Nucleic Acid Isolation Kit (Roche, Almere, The
Netherlands) and an automatic nucleic acid robotic workstation (Roche). RNA was eluted
in 50 ul elution buffer (Roche) and RNA copy numbers were determined using a standard
curve of in vitro transcribed RNA of known quantities (as described previously, Lim et al.,
2013 (PMID: 23965252)) and qRT-PCR was performed using the Tagman® EZ RT-PCR
kit (Applied Biosystems, Bleiswijk, The Netherlands), an ABlI PRISM® 7500 detection
instrument (Applied Biosystems) and primers and probe located on the 3° UTR of WNV.

Statistical analysis

Differences in Kaplan-Meier survival curves between the different groups were assessed
using the Log-rank test. Differences in neutralizing antibody titres were assessed using the
Mann-Whitney U test and P-values equal to or less than 0.05 were considered to be
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statistically significant. All statistical analyses were performed using GraphPad Prism
version 5 software (GraphPad software, San Diego, USA).

RESULTS

Construction and isolation of recombinant MVA expressing WNV-E and M genes

To construct recombinant MVA viruses we used the MVA transfer plasmid pllIH5red,
which introduces foreign gene sequences into deletion site 11l of the MVVA genome. The
strong synthetic early/late VACV specific promoter PmH5 controls transcription of the
recombinant target genes and a marker gene transiently produces the fluorescent protein
mCherry. We inserted different versions of WNV gene sequences (WNV-prM/ME, WNV-
Etmc, WNV-Etmy, WNV-Eg,) into pllIH5red to generate the vector plasmid plll5red-
WNV derivatives (Figure 1A). Recombinant MVA-WNVs were generated in CEF infected
with MVA (clonal isolate F6) and transfected with DNA of the four different plI1H5red-
WNV vector plasmids. The four different MVA-WNVs were isolated in plaque passages by
screening for transient co-expression of the fluorescent marker gene mCherry under the
transcriptional control of the vaccinia virus late promoter P11. The repetitive sequences
(del) served to remove the mCherry marker by intragenomic homologous recombination
(marker gene deletion) (Figure 1A). To confirm the genetic integrity and proper insertion of
the different WNV genes within the MV A genome we performed PCR analysis of the viral
genomic DNA using specific oligonucleotide primers targeting sequences adjacent to the
MVA deletion site 11l. As a control for equal amounts of viral DNA, a second PCR
amplified C7L gene sequences in the MVVA genome ([31]; Figure 1B).
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Figure 1. Generation of recombinant MVA-WNYV viruses. (A) A schematic representation of
the MVA genome with the major deletions sites I-VI shown on the top. Flank-1 and flank-2
refer to MVA DNA sequences at deletion site Il in the MVA genome, which target this site for
insertion of recombinant genes. MVA vector plasmids pllIH5red contain recombinant WNV
gene sequences under transcriptional control of the vaccinia virus promoter PmH5 and a marker
gene sequence for transient expression of the fluorescent protein mCherry. prM/ME encodes the
M and E gene sequences including the transmembrane domain (TME), Es lacks the E
transmembrane domain and Ermv and Erwmc contain the WNV E gene with substituted
heterologous transmembrane domains from MVA or chikungunya virus, (see M&M). The
recombinant viruses were isolated in plaque passages screening for red fluorescent cells.
Repetitive sequences (del) were designed to remove the mCherry marker by intragenomic
homologous recombination (marker gene deletion). (B, C) PCR analyses of genomic viral DNA
to confirm (B) insertion of recombinant genes into deletion Ill, and (C) the genetic integrity of
the MVA genome for the C7L gene locus. Genomic template DNA was prepared from
recombinant MVA-WNV viruses or non-recombinant MVA (MVA). Oligonucleotides from
gene sequences adjacent to deletion 111 or within the C7L gene were used to amplify specific
DNA fragments. PCR products were separated by agarose gel electrophoresis. PCR reactions
without template DNA (Mock) served as controls.

Growth of recombinant MVA-WNV viruses in cell culture

Next, we evaluated the in vitro growth behaviour of the MVA-WNV viruses (Figure 2A,
B). Multiple-step growth analyses were performed with avian cell cultures (CEF and DF-1),
which are routinely used to propagate recombinant MVA viruses. We also analyzed the
replicative capacity of recombinant MVA-WNVs in cells of mammalian origin. Non-
recombinant MVA-WT served as a control virus. In both avian cell lines, the growth of the
recombinant WNV viruses was comparable to that of MVA-WT, since all viruses replicated
to similar titres within 72 hours, each increasing infectivity by approximately three logio
steps in CEF and DF-1 cells (Figure 2). In the cells of mammalian origin (human HaCat
cells and equine fibroblasts, EqF), we could confirm the well-established MV A replication
deficiency for the four recombinant MVA-WNVs. After 72 hours, and comparable to non-
recombinant MVA-WT virus, amounts of virus recovered remained lower than the titres
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used as the infection input. These findings corroborated the expected MV A phenotype and
confirmed that the recombinant viruses could be handled under biosafety level 1 conditions.
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Figure 2. Multiple-step growth analysis of recombinant MVA-WNV viruses. Growth of
recombinant viruses MVA-WNV-prME, -Es, -Etmc, -Etmv, Or non-recombinant MVA (MVA-
WT) was monitored upon infection (MOI of 0.01) of (A) chicken fibroblast cells CEF and
HaCat or (B) DF-1 and equine fibroblasts EqF.

Characterization of recombinant WNV-E proteins

First, immunofluorescence of MVA-WNV-infected cells was used to assess the synthesis of
the WNV proteins. Anti-WNV E antibody followed by fluorescent secondary antibody
specifically stained cells infected with recombinant MVA-WNVs (Figure 3). No
background staining was observed in control cultures infected with non-recombinant MVA.
We observed a reticular pattern upon infection with all recombinant viruses, with a
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juxtanuclear accumulation of all E proteins. As anticipated, the E-specific staining in cells
infected with MVA-Ermv and MVVA-Erwc viruses seemed to include the cell surface, while
in MVA-prM/ME or the MVA-Es, infected cells the E proteins appeared to be exclusively
located within the cell. To further investigate the distribution patterns we also performed
immunostaining of MVA-WNV infected cells without permeabilizing the cells. Here, we
specifically detected the E protein only in cells infected with MVA-Ermv and MVA-Erwc,
indicating localization of abundant E protein on the cell surface.

anti WNV E
non-permeabilized

MVA' ETMV

MVA-E e

MVA-prME/ME

MVA-E

sol

Figure 3. Immunofluorescence staining of cells infected with recombinant MVA-WNV.
Virus infected MA-104 cells were fixed with 4% paraformaldehyde and selected samples were
treated with 0.2% Triton X-100 for permeabilization. DAPI solution was used to stain nuclear
DNA.
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To further analyze the synthesis of WNV envelope proteins upon infection with the
recombinant MVA-WNV viruses, total cell lysates from infected CEF and HaCat cells were
analyzed by Western Blot using WNV-E-specific mouse monoclonal antibodies (Figure 4).
We specifically detected a protein with an estimated molecular mass of about 45 kDa in
lysates from CEF cells and HaCat cells infected with all the MVA-WNYV derivatives. Over
the time course of 48 hours, the amounts of E protein remained stable in cell lysates from
CEF and HacCat cells infected with MVA-WNV-prM/ME, MVA-Etmyv and MVA-Ermc.
However, in cell lysates from MVA-Egy-infected cells, the level of WNV E seemed to
decline by 48 hours post-infection. To monitor the release of WNV proteins from MVA-
infected cells we also analyzed the supernatants of infected CEF and HaCat cell cultures.
After MVA-prM/ME or MVA-Es, infection we clearly detected the WNV E specific
protein band, indicating the release of soluble WNV E protein or E protein-containing
particles from these infected cells. In contrast, we detected only tiny amounts of E proteins
in the supernatants from cells infected with MVA-Etrmv and MVA-Ermc suggesting that
these E proteins remained associated with the infected cells. Comparable results could be
detected in EqF (data not shown).
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Figure 4. Analysis of recombinant WNV proteins. Recombinant viruses MVA-WNV-prME, -
Esol, -Ermv and -Ermc were tested by Western blot analysis using cell lysates and supernatants
from infected (A) CEF and (B) HaCat cells. Polypeptides were separated by SDS-PAGE and
tested by immunoblotting using WNV-E specific monoclonal antibodies. Lysates from
uninfected cells (Mock) or non-recombinant MVA infected cells (MVA) and Western blot
detection of beta actin served as controls. The ~46 kDa WNV E proteins (WNV-E) and 42 kDa
polypeptide beta actin (B-Actin) are indicated on the left.

Antibody responses of MVA-WNV vaccines in BALB/c mice

To assess the immunogenicity of the recombinant MVA-WNV candidate vaccines in vivo,
we vaccinated BALB/c mice in an initial experiment with 108 PFU by an intramuscular
route at 0 and 3 weeks. Eighteen days after the first immunization (Prime) and ten days
after the second immunization (Prime-Boost), serum samples were tested for WNV-binding
antibodies by ELISA (Figure 5A). Even a single application of all MVA-WNV vaccines
induced significant levels of WNV-specific antibodies in the mice. After booster
immunization, all vaccinated animals produced even higher levels of circulating WNV-
specific antibodies, with the antibody titres increasing about ten-fold.

WNV specific CD8+ and CD4+ T cells induced by MVA-WNV vaccines

To assess whether the MVA-WNYV recombinant proteins can activate a WNV-specific T
cell response, we vaccinated HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-
knockout mice using 108 PFU of recombinant MVA-WNVs via an intramuscular route in
prime and prime-boost immunizations (Figure 5B). We tested splenocytes for WNV E-
specific (SVG9 peptide epitope) CD8+ T cells by IFN-y ELISPOT 8 days after the last
immunization. Single intramuscular immunizations induced substantial levels of SVG9-
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specific CD8+ T cells (with median absolute numbers of >2,000 IFN-y SFC/108
splenocytes) for all recombinant MVA-WNVs. Of note, the magnitude of CD8+ T cells did
not differ significantly when comparing the groups of mice immunized with all
recombinant MVVA-WNVs. Intramuscular booster immunization harmonized the responses
of individually immunized animals in all groups and increased the median levels of WNV-
specific CD8+ T cells to about 3,500 to 4,000 IFN-y secreting SVG9-specific CD8+ T
cells/108 splenocytes.

At 56 days following a primary immunization with the MVA derivatives, we still
found 400 to 800 WNV SVG9 specific IFN-y-producing T-cells/10® splenocytes,
suggesting an antigen-specific memory CD8+ T-cell response (Figure 5C). Prime-boost
applications confirmed this data demonstrating significantly increased numbers of WNV-
SVG9 specific IFN-y-producing memory T-cells in splenocytes.

In addition, we tested for the activation of WNV-specific CD4+ T cell responses in
mice that had been vaccinated twice (day 0, day 21) with the different MVA-WNV
candidate vaccines. Eight days after the last vaccination we prepared the splenocytes,
depleted CD8+ T cells using MACS Micro Beads and in vitro stimulated the remaining
spleen cells with purified recombinant E-protein for 48 hours. To measure CD4+ T cell
activation we counted IFN-y secreting cells via ELISPOT assay. Two immunizations by
intramuscular application resulted in readily detectable levels of E-specific CD4 + T cell
responses (with median absolute numbers of 182 IFN-y SFC/10°® splenocytes) for all
recombinant MVA-WNYV candidate vaccines (Figure 5D). Immunizations with MVA-Etmc
or MVA-prME elicited WNV-E-specific CD4+ T cells with means of 23 and 73 IFN-y
SFC/108 purified splenocytes. MVA- Esoi and MVA-Eqwy resulted in activation of higher
numbers of WNV E-specific IFN-y SFC/10° purified splenocytes with a mean of 503 for
MVA-Esq and 98 for MVA-Erwy.
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Figure 5. Immunogenicity of recombinant MVA-WNYV vaccines. Mice were vaccinated by
intramuscular applications of saline (Mock or PBS), non-recombinant MVA (MVA), or the
indicated recombinant viruses. Animals received one (prime immunization) or two vaccinations
(prime-boost immunization) with 108 PFU MVA vaccine. (A) WNV E-binding antibodies in
BALB/c mice (n=10 per group). Sera were analyzed by ELISA 18 days after the first and 10
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days after the second immunization. (B) WNV E-specific CD8+ T cell responses in HLA-
A*0201 transgenic mice (n=6-7 per group). Splenocytes were prepared at eight days after prime
or prime-boost vaccination. SV09 epitope specific, IFN-y spot forming CD8+ T cells (IFN-y
SFC) were quantified by ELISPOT. (C) WNV E-specific CD8+ T cell memory responses in
HLA-A*0201 transgenic mice (n=2-4 per group). Splenocytes were prepared at 56 days after
prime or prime-boost vaccination. SV09 epitope specific, IFN-y spot forming CD8+ T cells
(IFN-y SFC) were quantified by ELISPOT. *, P<0.05; ** P<0.01; ns, no statistically significant
difference. (D) WNV E-specific CD4+ T cell responses in HLA-DR1 transgenic mice.
Splenocytes were prepared at 8 days after prime-boost vaccination. After depletion of CD8+ T
cells WNV E-specific, IFN-y spot forming CD4+ T cells (IFN-y SFC) were quantified by
ELISPOT (Mock, MVA-WT, MVA-prME, n=3; MVA-Esi, MVA-Ermy, MVA-Etmc, N=4). *,
P<0.05.

Induction of WNV neutralizing antibodies

To monitor the induction of WNV neutralizing antibodies, we vaccinated groups of
C57BL/6 mice with 108 PFU of the indicated MVA-WNV recombinant viruses (omitting
MVA-WMYV Ermc because its phenotype resembled MVA-WMV Ermy) by intramuscular
inoculation. Two weeks after the initial immunization all mice mounted detectable levels of
circulating antibodies that neutralized the heterologous WNV Hungarian lineage 2 strain
578/10 (with average titres >16; Figure 6A). These titres could be further increased after
boost immunization on day 21 as measured at day 56 (average titres of 64). Furthermore,
these sera also neutralized the homologous WNV lineage 1la strain, 1ta09 (Figure 6B).
Already two weeks after the primary immunization all mice produced significant levels of
neutralizing antibodies in the serum (average titre >64). Booster immunizations given at
day 21 further consolidated the neutralizing antibody response to WNV-Ita09 (with average
titres of 128).
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Figure 6. WNV neutralizing antibody responses. C57BL/6 mice (n=8-10 per group) were
vaccinated twice (21-day interval) by intramuscular application with non-recombinant MVA
(MVA) or the indicated recombinant viruses. We analyzed the WNV neutralizing capacity of
mouse serum samples taken at days 0, 14 and 56 after the first immunization. Serum antibodies
against (A) WNV lineage 2 strain Hungary 578 (HUN578) or (B) WNV lineage 1 strain Italy
09 (Ita09) were tested by virus neutralization assays (VNT). Shown are the mean serum
antibody titres (log) of individual animals. **, P<0.01; ***, P<0.001.

Protection of mice against WNV challenge infection

To evaluate the protective capacity of these MVA-WNV vaccine candidates, C57BL/6
mice vaccinated by an intramuscular route were challenged intraperitoneally with a dose of
10* TCIDso of either WNV lineage la strain 1ta09 or WNV Hungarian lineage 2 strain
578/10 (Figure 7). The survival rates of each group were monitored after challenge. Upon
challenge with WNV-1ta09, 5/5 (100%) of animals in the mock-vaccinated (MVA-WT)
group died, while all mice in the vaccinated groups survived infection (Figure 7A,
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p<0.0007, curve; p<0.0001, trend). Upon challenge with WNV-578/10, 2/5 (40%) of the
mock-vaccinated animals died from infection, whereas no animals in the vaccinated groups
succumbed to the challenge infection (Figure 7B; p<0.1, curve; p<0.056, trend).

To determine whether vaccination prevents virus from entering the brain, five animals
per group were sacrificed on day 8 p.i., a time point at which virus has previously been
shown to have entered the brain of all susceptible animals (data not shown). All mock-
vaccinated (MVA-WT) mice challenged with WNV 1ta09 or WNV 578/10 harboured high
viral loads in the brain at day 8 p.i. (Figure 7C; mean titre: 4.9 logio RNA copies WNV
Ita09/g of brain, or 5.5 logio RNA copies WNV 578/10/g). In sharp contrast, we failed to
detect any WNV RNA in the brains of all animals euthanized on day 8 p.i. with the
recombinant MVA-WNV vaccines (Figure 7C).
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Figure 7. Protection against WNV challenge infection. C57BL/6 mice (n=10 per group) were
vaccinated twice (21-day interval) by intramuscular application with non-recombinant MVA
(MVA) or recombinant viruses MVA-WNV-Eg,, -Etmv, 0Or -prME. Six weeks after the last
immunization all animals were challenged by intraperitoneal inoculation of 10* TCIDs, of (A)
WNV-Ita09, or (B) WNV-578/10. (C) On day eight after challenge, five mice per group were
sacrificed and brains were collected for analysis of virus loads (RNA copies). At the end-point
of the experiment (day 14 post challenge) the survival rate was analyzed (A, B). **, P<0.01.
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DISCUSSION

Ongoing WNV infections in horses and humans, particularly in the United States,
demonstrate the continuing need for WNV-specific public health responses
(http://www.cdc.gov/westnile/index.html). The availability of a WNV vaccine for humans
should greatly reduce the risk of infection in people; however, the commercial development
of such a vaccine is expected to be complex [32]. Several requirements must be met for a
promising candidate WNV vaccine: (i) it should protect against different WNV strains; (ii)
it must be safe and immunogenic in the most important human target population, i.e. the
elderly and immunocompromised patients; (iii) it should be suitable for a licensing
approach using efficacy testing in animal models because of the low incidence of WNV
infections in humans; (iv) it should be suitable for storage as an emergency vaccine (shelf-
life), and (v) ideally, the same vaccine technology platform should allow for the
development of a vaccine for veterinary use. All these points supported our strategy to
evaluate MV A as vector vaccine for delivery of WNV antigens.

Moreover, our motivation to construct a WNV candidate vaccine based on MVA was
due to encouraging results with another recombinant MVA vaccine in preclinical and
clinical evaluation [33-37]. In these studies, a recombinant MVA expressing the HA of
influenza A/Vietnam/1194/04 (H5N1) virus efficiently induced H5 cross-reactive
antibodies and prevented virus replication in the upper and lower respiratory tract, as well
as the development of severe necrotizing bronchointerstitial pneumonia following challenge
infections with homologous and heterologous influenza A/H5N1 viruses. Moreover, the
first clinical evaluation in humans demonstrated the safety and immunogenicity of this
MVA-H5 influenza candidate vaccine [34, 38].

Here, we focused on the WNV E protein as the immunogen to efficiently activate
WNV-specific immune responses. Previous studies on the flavivirus life cycle identified the
E protein as an important activator of WNV-specific antibodies [7, 39]. Moreover in a
recent study, a Matrix-MTM adjuvanted WNV E protein vaccine successfully protected
mice against lethal WNV challenge infection by activating WNV-specific humoral and
cellular immune responses. The E protein is a structural protein mainly involved in the
attachment of WNV to the receptor of target cells to mediate the cell entry process.
Therefore, most of the neutralizing antibodies against flaviviruses recognize the structural E
protein, although another population of antibodies exits that also binds to the prM/M
protein [40-42].

Efficient vaccine-mediated activation of immune responses can also be optimized by
expressing antigens that closely resemble those of the target pathogen during its actual life
cycle. Previous studies have identified different modalities of antigen presentation that
efficiently activate flavivirus-specific immune responses. For example, secreted E proteins
alone in a soluble truncated form lacking the membrane anchor region have been shown to
be highly immunogenic when expressed by vaccinia virus vectors or recombinant
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baculoviruses [43-45]. Another study demonstrated the immunogenicity and protective
capacity of a membrane anchored WNV E protein in BALB/c mice [46].

Another promising approach for vaccine development is the induction of so-called “virus
like particles” (VLPs), which are non-infectious virus particles found to be highly
immunogenic [47]. For WNV, co-expression of the E and M protein resulted in the
production of VLPs that were able to protect mice and horses against neuroinvasive disease
upon WNYV challenge [18, 48].

In this study, we successfully constructed four recombinant MVA-WNVs delivering the
WNV E protein in different forms for antigen presentation to mimic the vaccine
optimization strategies described above, i.e. E protein lacking the membrane anchor region,
containing heterologous transmembrane domains, or including the M protein encoding
sequences. We succeeded in producing all WNV E antigens as stable proteins, alone or in
combination with M, and achieved high levels of expression using the strong synthetic
early/late vaccinia virus PmH5 [25].

In the case of MVA-Es, removal of the authentic E membrane anchor sequence
resulted in secretion of E antigen from MV A-infected cells and predominant accumulation
of E protein in culture supernatants as shown by Western blot analysis. A similar, efficient
release of soluble WNV E protein from infected cells has been seen upon expression from
recombinant measles virus [49]. In contrast, replacement of the E membrane anchor
sequence by the transmembrane domains of the VACV protein A56 (WNV Erwmy) or the
chikungunya virus E2 protein (WNV Erwc) resulted in stable presentation of WNV E
protein antigens on the cell surface. The immunostaining and Western blot analysis data
support the idea that these chimeric E antigens undergo cell membrane-associated
expression without release from the MV A vector infected cells.

For MVA-prM/ME, the M protein-encoding sequences are maintained in addition to
the E gene sequences in order to trigger the synthesis of VLPs [50-52]. Upon cell culture
infections, we could detect increasing amounts of WNV E protein in cell lysates as well as
in the supernatants, suggesting the assembly of VLPs in the ER, transport via the trans-
Golgi, and release of the particles from the MVA infected cells [53, 54].

An important requirement for recombinant MVVA candidate vaccines is that the vector
viruses can be stably grown and produced in CEF cells at an industrial scale [24]. Our
experiments demonstrated the genetic stability of all the vector viruses and comparative
growth analyses confirmed that recombinant MVA-WNV replicated in CEF cells as
efficiently as the non-recombinant wild-type MVVA. Moreover, in vivo experiments in mice
demonstrated the immunogenicity of all the recombinant MVA-WNYV vaccines, including
the production of WNV-specific antibodies and CD8+ T cell responses.

The use of HLA*A0201 transgenic mice allowed us to monitor activation of SVG9
epitope-specific IFN-y secreting CD8+ T cells that mimic an immunodominant T cell
specificity also found in humans [55]. In addition, we showed the induction of WNV E-
specific CD4+ T cells upon prime-boost immunization in the HLA-DR1 transgenic mice
with the MVA-WNV vaccines and using recombinant purified E protein for in vitro
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stimulation. This data goes well along with WNV E-specific CD4+ T cell responses
reported in a recent study by De Filette and coworkers [56]. Further experiments will be
needed to characterize the WNV E-specific CD4+ T cell immunity in more detail by
monitoring for HLA-DR1 restricted peptide epitopes. Of note, WNV-specific CD4+ T cells
are considered essential for the regulation of antibody and CD8+ T cell responses and for
protection against lethal WNYV infection [57, 58].

In addition, we also demonstrated the maintenance of WNV-specific CD8+ memory T
cell responses until 56 days after the last vaccination. These data are of relevance since
previous studies have demonstrated that WNV-specific CD8+ T cell responses are critical
for protection against neuroinvasive disease [59, 60]. Of note, Brien and coworkers
demonstrated that a deficiency in CD8+ T cell immunity may result in severe neurological
WNV disease [61].

Furthermore, the different MVA-WNV vaccines also elicited serum antibodies that
led to comparable neutralization of the homologous lineage 1 WNV 1ta09 and the
heterologous Hungarian lineage 2 WNV strain 578/10. Activation of virus neutralizing
antibodies is considered to be the most important correlate for protection against
flaviviruses [7]. Corroborating the immunogenicity testing, the MVA-Etmy, MVA-Esq and
MVA-prM/ME candidate vaccines fully protected mice against lethal challenge infections
with homologous and heterologous WNV.

In summary, the immunogenicity and efficacy of the MVA-WNYV vaccines appeared
at least similar to that described for other WNV candidate vaccines in preclinical testing
with regard to the induction of WNV-specific immune responses and the protective
capacity against lethal WNV challenge infection [18, 55, 56]. The recombinant MVA-
WNV vector viruses we have developed here merit further development as candidate
vaccines for potential use in humans and our data strongly support their evaluation in other
preclinical models.
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Chapter 8

Summarizing Discussion






The re-emergence of WNV in Europe in 1990 with continuing introductions into new areas
and the genetic and phenotypic diversity of the virus, have led to the intensification of
integrated and multidisciplinary research efforts. Where in Europe WNV may emerge and
whether it will pose a major threat to Europe is hard to predict. The complexities of its
enzootic transmission cycle, which involves mosquitoes and birds as well as related
ecological factors, render the geographical spread of WNV unpredictable. More
information about the pathogenicity of circulating WNV strains for different reservoir
hosts, their potential vector range and ecological factors may at least in part fill these
knowledge gaps. This may also shed light on the question why WNV infections in Europe
have a much more limited or focal distribution than in the United States.

This thesis therefore aims to address three questions related to the current distribution of
WNV in Europe:

1. Are European WNYV strains less virulent than their American counterparts?
2. Are European birds less susceptible to WNV than their American counterparts?

3. Does a WNV vaccine protect against both lineage 1 and 2 viruses circulating in Europe?

Part 1: Virulence

Although WNV harbors a single serotype, it exhibits considerable genetic variation within
the African continent, which is the source of all the strains found around the globe [1, 2].
While single introduction events in India, Australia, and the Americas respectively,
established WNV endemicities, which were followed by spatial categorization of WNV
strains (clades 1b and lineage 5 in particular) [1], the genetic diversity of WNV in Europe
and the Middle East is most likely the result of independent introductions by migratory
birds [1, 3-6].

WNV can be subdivided into at least eight separate lineages, of which lineage 1 and 2
have been responsible for disease outbreaks in humans and equines. Lineage 1 mostly
encompasses outbreaks in Africa, Europe, the Middle East, Asia, Oceania (Kunjin strain)
and North America, while lineage 2 primarily consists of strains identified in Africa.
Lineage 2 strains have historically been considered less pathogenic in humans compared to
lineage 1. However, since the bird of prey mortality in 2004 (mostly goshawks, Accipiter
gentilis) caused by a lineage 2 strain found in central Europe (Hungary), this lineage has
caused several epidemics in humans that subsequently occurred in Greece (2010), Romania
(2010), Russia (2011), Italy (2011-2013) and Serbia (2012). It therefore appears that the
plasticity and adaptive capacity of WNV poses a continuous risk of generating genotypes
virulent in vertebrates that may spread outside of Africa [7].

The European strains investigated in this thesis comprise two Italian isolates, FIN and
Ita09, and one Hungarian isolate, 578/10. Interestingly, of these strains, only Ita09 has
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caused a substantial outbreak in humans, particularly in 2009. The closely related FIN, on
the other hand, was obtained from a single case of human neuroinvasive disease, and
578/10 was isolated from a horse presenting with neuroinvasive disease. Although these
two strains have displayed their neuroinvasive potential in a single human and a single
horse, respectively, the actual virulence of FIN and 578/10 still remains to be determined.
As a result, in Chapter 2 we sought to characterize the neuroinvasive, and indirectly
neurovirulent potential, of these European strains of WNV after intraperitoneal (i.p.)
injections of C57BL/6 mice, using 1ta09 as the more prototypic virulent European strain.
We decided to construct a hypothetical virulence profile for these strains based on in vitro
replication kinetics and fitness, in vivo survival (LDso), brain and spinal cord viral load, and
response to infection in the brain using markers that play a role in neurodegeneration.

In our study, we found that in vitro 1ta09 replicated faster than FIN and 578/10, and to
higher titers (LTso, burst size). However, the latent period was the same for the three virus
strains tested. As a stand-alone in vitro experiment, this data suggests that 1ta09 would be
the more virulent virus. We found that all three virus strains tested were neuroinvasive, as
virus was found in the brain of a large proportion of the moribund and surviving mice, and
neurovirulent as infection led to neurological disease and in many cases to death.
Nonetheless, differences in virulence were observed between the virus strains as 578/10
clearly showed the lowest LDso. Interestingly, in vivo 1ta09 was found to have a 2.5 day
earlier median mortality compared to the other two viruses (day 8.5 compared to day 11).
This makes it tempting to speculate that the higher in vitro observed replication kinetics of
Ita09 is associated with a more rapid onset of disease and mortality. It may be speculated
that higher viral titers established more rapidly in the periphery, lead to earlier
neuroinvasion and neuronal cell death. However, the one-step growth curve was carried out
in neuroblastoma cells only, which makes it difficult to extrapolate the data to events
occurring in the periphery before neuroinvasion takes place.

Our in vitro and in vivo experiments yielded information on neuroinvasive and
neurovirulent capacities of the WNV strains tested. Nonetheless, several questions
remained. Firstly, we do not specifically know whether the more rapid death of Ita09-
infected mice reflected the ability of the virus to enter the brain more quickly, for example,
due to higher virus titers that are reached more rapidly in the periphery, or whether it is
dependent on the ability of the virus to spread more rapidly in the brain and cause more
rapid neuronal cell death (neurovirulence). A large proportion of mice that survived
infection with FIN (67%) had viral RNA in the brain, which rather indicates successful
neuroinvasion, suggesting that this virus is less neurovirulent than the other two strains. In
order to properly assess and compare the neuroinvasive capacity of our virus strains, it
would be more instructive to conduct a kinetic experiment in i.p. inoculated mice that are
examined and sampled daily comparing virus titers in peripheral organs and brain sections.
As we have now confirmed that our viruses are neuroinvasive, it would be interesting to
directly compare their neuroinvasive capacities by determining the time required for each
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virus strain to gain access to the brain (using qRT-PCR), as well as the initial amount that
enters the brain and in which particular areas (using gRT-PCR and immunohistochemistry).

An effective method to investigate neurovirulence is to conduct intracranial (i.c.)
inoculations with several doses of virus, followed by observation of the survival as well as
a straight kinetic analysis of viral spread by daily sampling of the brain and analyzing the
separate sections for virus replication. This method determines neurovirulence, as the more
neurovirulent the virus is, the more rapidly it will Kill its host.

Initially, alongside FIN, 1ta09 and 578/10 we had also included NY99 as a virulent
non-European control that has been extensively characterized in different mouse models.
We conducted similar experiments for this strain as for the other three strains. We found
that in vitro infectious NY99 was produced two hours earlier (at 12 hours p.i.) compared to
the European strains (Figure 1). In addition, the replication rate of NY99 was found to be
1.97, which is even higher than for 1ta09 (1.75). Interestingly, in vivo, the cumulative
mortality of NY99 (76%) was close to the one of FIN (78%) and Ita09 (74%), while its
LDso was found to be the highest out of the four virus strains at 1043, This data gives the
indication that in vitro NY99 is potentially the more virulent virus; however, in vivo the
European strains appear to be more virulent. Nonetheless, as the NY99 strain was of a
higher passage (P5) than the European strains (P2/3), the comparison with NY99 was
eventually not published.
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Figure 1. Fitted one-step growth curves of infectious virus titers recovered from the supernatant

of N2a cells infected with several WNV strains at a high MOI.
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Host tropism determines which cells can be infected by a given pathogen and is a
combination of susceptibility, (the cell possesses the surface receptors for binding and
entering the cell), and permissiveness (viral replication occurs). Even though it is possible
to deduce cell permissiveness by following viral replication and witnessing a substantial
increase in RNA or infectious virus titers over time, a more direct approach would be to
directly measure negative-stranded RNA. Therefore, in an effort to obtain an additional tool
that can aid in the determination and comparison of virulence, in Chapter 3 we developed
a qRT-PCR that specifically measures and quantifies the amount of positive- and negative-
stranded RNA of WNV. This is useful for measuring the replication rate more specifically
as well as determining the tropism of a virus for particular host cells.

In order to test the sensitivity and applicability of the gRT-PCR, we chose to measure
tropism both in vitro and in vivo. As the tropism of WNV for microglial cells (both in vitro
and in vivo) is still elusive, we decided to investigate its ability to infect a mouse microglial
(BV-2) cell line. We found that these cells are susceptible and permissive as we were able
to measure an increase in both negative-stranded as well as positive-stranded RNA over 48
hours. To study the in vivo relevance of this data, we chose for a set-up in which bulk
brains were collected daily from 9-day-old C57BL/6 mice starting at an early time point of
infection but during which virus was already detectable in the brain (day 3) up to day 6,
which was close to the humane endpoint and could therefore be considered a late stage of
disease. We saw that the amount of negative-stranded RNA increased most significantly
from day 3 to day 4 (4 logio RNA copies), which could be an indication of active virus
replication in the brain between these two days and suggests that the positive-stranded virus
that we found in the brain on day 4 is most likely not derived from the periphery. It is
interesting, however, that the increase in negative-strand at this point is much larger than
the increase in positive-stranded RNA at the same time point, especially since the ratio of
positive- to negative-strand genomic RNA production is 10:1 for flaviviruses [8]. As a
result, an increase by 4 logio RNA copies of negative-stranded RNA between day 3 and 4
should make the amount of positive-stranded RNA detected around this time point about
10-fold as well; instead the difference is only about 1 logio RNA copies. Nonetheless, the
gRT-PCR that we developed proved to be a useful tool for following viral infection over
time, and should be useful for future virulence studies.

The non-structural proteins of WNV have been thoroughly studied as possible
virulence markers. The conventional way of identifying virulence markers is by comparing
a highly virulent strain with an attenuated strain. Many of the studies attempting to identify
virulence markers for lineage 1 compared the virulent NY99 strain with the attenuated
Kunjin strain. Another method of finding virulence markers has been obtained via cell lines
that contain persistently replicating flaviviral replicon, which have been established by
selection of cells transfected with replicon RNA expressing an antibiotic resistance gene
[9]. These cell lines are stable and useful for complementation analysis of replicase [10],
virion assembly [11, 12] and antiviral drug screening [13, 14]. One notable feature of the
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flavivirus replicon-containing cells is that the persistent replication of viral RNA does not
cause CPE, which may be explained by the lack of viral structural protein expression.
Using this system, particular epidemic strains of WNV eventually acquire an accumulation
of adaptations in the replicons that favor persistent viral replication [15]. The key, however,
is to deduce which adaptive mutations are responsible for the non-cytopathic replication,
and especially, how these adaptive substitutions affect WNV replication and virulence. In
Chapter 4, we investigated whether particular markers of attenuation found in lineage 1
WNV were also attenuating a lineage 2 strain, using a molecular cloning strategy via which
we constructed a lineage 2 molecular clone of the Hungarian strain 578/10 harboring
lineage 1 attenuating mutations.

In this study we investigated a number of non-structural proteins at which particular
mutations proved to be attenuating in lineage 1 NY99, namely NS1-P250L, NS2a-A30P,
NS3-H249P, NS4B-P38G, NS4B-C102S, NS4B-E249G, and NS5-A804V. We first
examined the neuroinvasive capacity of molecular clones harboring these particular
mutations in C57BL/6 mice via i.p. inoculations. Here we found that only the NS1-P250L
mutant was significantly attenuated as it resulted in the complete abolishment of
neurovirulence. There is a high probability that this mutant was also no longer
neuroinvasive, although with the current data we cannot confirm this. To be specific, even
though the original mutant could not be retrieved from the brains of all mice 14 days p.i.,
which therefore suggests that this mutant was not neuroinvasive, we cannot establish with
certainty that the virus had never entered the brain, but had simply been cleared by day 14.
In light of the data generated in Chapter 2, follow-up experiments in which we inject mice
i.c. with this particular mutant and assess its neurovirulence, as well as collecting daily
brain samples after i.p. inoculation, could be particularly instructive to establish its
neuroinvasive capacity.

Even though the other mutations were not significantly attenuating in mice, a slight
reduction in mortality (at a high dose that we have previously seen to induce 100%
mortality in mice for the original 578/10 isolate [16]) was observed after infection with the
NS3 (6/8), NS4B249 (5/8) and NS2a (7/8) mutants. The same attenuating effect for the
latter two mutations as was observed in the lineage 1 studies [9, 17] might not have been
achieved in our study due to the absence of particular co-mutations that are possibly not
present on the lineage 2 backbone and are in fact required to increase the attenuating effect
of these mutations in mice. In terms of the NS3 mutation, even though a proline at the NS3-
249 locus has been proven to be an important virulence marker in birds, with in particular
corvids [18], as we have also highlighted in Chapter 5 and Chapter 6, a proline to
histidine mutation has actually been found more recently to not be attenuating in American
crows nor in mice, as viremia and mortality for the birds and LDso for the mice were highly
similar upon infection with the NS3-249H mutant compared to the parental NS3-249P [19].
Even though the NS3-249H has never been associated with virulence in mice, it is known
that the goshawk-Hungary-2004 strain harbors a histidine at the NS3-249 locus and that a
large outbreak of human encephalitis in Greece in 2010 with the closely related Greek
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strain was in fact associated with a His to Pro substitution at this position [20]. As a result,
it is possible that a proline at this position could still be a virulence marker of severe disease
for a lineage 2 strain upon infection of humans, and it was therefore still necessary to
explore this mutation in a mouse model.

In our study, we measured viral attenuation in terms of replication in cell culture at
37°C and reduction of mortality in mice. However, a few studies investigating virulence
markers have also examined plaque size and temperature sensitivity of mutant viruses by
conducting multiplication kinetics experiments at 39.5°C or 41°C in comparison to 37°C.
Some of these mutants appeared to be temperature-sensitive [21-23], while some were not
[24]. As the outcome of these temperature-sensitivity experiments did not directly relate to
the presence of an attenuating mutation, in combination with the fact that we have only
tested our molecular clones in a mouse model and not in birds for which higher
temperatures might be more relevant, we decided not to include temperature-sensitivity
experiments in our study.

Nonetheless, our multiplication kinetics studies at 37°C showed that several of the
mutants, namely NS1, NS2a and NS3, yielded significantly lower infectious virus titers as
compared to the wild-type. However, over the 96 hours, these titers were only consistently
significantly lower for the NS1 mutant. This in combination with the fact that we did not
see significantly attenuating results in vivo for any of the mutants except NS1-P250L, we
decided to only further characterize this mutant in vitro. In an attempt to elucidate the
mechanisms behind the observed attenuating effect of the NS1-P250L mutant, we found the
strand-specific gRT-PCR employing tagged primers (Figure 2) developed in Chapter 4 to
be particularly useful for measuring viral genome replication and assessing whether
attenuation is caused by an effect exerted during this step of the replication cycle.

Quantifying the amount of positive and negative stranded RNA using the assay
described in Chapter 4, we found that significantly less positive and negative stranded
RNA of the NS1-P250L mutant were synthesized over time. This implied that the given
mutation had an effect on the efficiency of replication. Under normal circumstances NS1
exists as a heat labile homodimer that associates with cellular organelle membranes and is
transported to the cell surface [25, 26]. Cell surface associated NS1 appears to have an
immunomodulatory function via the decrease of the complement activation by different
routes [27, 28], but NS1 is also secreted by mammalian cells as a soluble hexamer [29, 30].

Interestingly, NS1 has been shown to be involved in the replication process which was
demonstrated in a study examining the ultrastructure of Kunjin virus-infected cells where
NS1 was shown to be required for formation of the replication complex and recruitment of
other non-structural proteins, such as NS3, to the vesicle packets [31] associated with ER
membranes. NS1 also appears to be required in the replication process of other flaviviruses
[32], such as dengue virus [33] and yellow fever virus [34], although the precise
mechanisms are not completely known.
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Figure 2. Strand-specific amplification of the negative strand of WNV using tagged primers in
gRT-PCR.

Nonetheless, a study by Youn et al. further elucidated the role of NS1 as they
demonstrated in viral lifecycle experiments that WNV NS1 was not required for virus
attachment or input strand translation of infectious viral RNA, but instead was required for
replication as WNV RNA lacking intact NS1 genes did not form canonical replication
complexes early after infection, resulting in a failure to replicate viral RNA and
consequently significantly lower amounts of positive and negative stranded RNA in the
cells [35]. We had similar results; however, the reduction in the amount of positive- and
negative-stranded RNA was less pronounced as compared to the observations by Youn et
al. [35] but could be related to the fact that in their study the entire NS1 gene was deleted,
whereas in our study we simply had a proline to leucine mutation.

The Pro to Leu substitution in the NS1 protein has been shown to ablate dimer
formation in WNV-KUN [36]. This mutation was specifically discovered by identification
of a cDNA clone of KUN virus (FLSD) that replicated efficiently in cell culture but
produced and secreted NS1 in monomeric form, after which sequence analysis of the NS1
gene in this FLSD revealed a single amino acid substitution (P250L). Proline is quite a
unique amino acid as the last carbon atom of the side chain is bonded to the main nitrogen
atom forming a ring structure [36]. As a result, Pro is often found in flexible regions of a
polypeptide or gives a bend in the peptide chain [37]. For this reason a Pro to Leu
substitution is likely to significantly affect the structure of the surrounding peptide
sequence and is therefore consistent with the major structural change indicated by the lack
of dimerization of the mutated NS1 [36]. This in turn leads to intracellular trafficking and
secretion of monomeric NS1. However, given that the lack of dimerization did not hamper

213



the distribution of the protein in cells infected with the mutant and that secretion remained
relatively efficient, it appears that dimerization may not be an absolute requirement for NS1
function. Nonetheless, the Pro at position 250 in NS1 and a second Pro, six residues
upstream, have been found to be strictly conserved in all members of the flavivirus genus
(sequenced up to 1999) and lie in a relatively conserved region of the protein as well [36].
As a result, despite the monomeric form of NS1 appearing to be distributed and secreted
properly, it is possible that this form of the protein still impacts the stability of the
replication complex, consequently affecting the efficiency of the replication process. It
remains to be determined whether this mutation also influences the immunomodulatory
function of this protein.

Despite our study confirming an already earlier described attenuating effect of the
NS1-P250L mutation [36], this mutation proved to be significantly more attenuating in our
study: in the study by Hall et al. [36], the impact on replication was not as large (100-fold
lower between 12-24 h p.i. compared to the WT) nor was the virus as attenuated in vivo
(only 10-fold more virus of the WNV-KUN P250L mutant was required to produce disease
in mice) as compared to our study. The difference in the mouse model used or the age of
the mice (18- to 20-day-old weanling BALB/c mice vs C57BL/6) may explain the
discrepancy between these results. However, it is also possible that the presence of certain
loci in the genome of lineage 2 viruses augmented the attenuating effect of the P250L
mutation previously demonstrated in WNV-KUN. Studies involving the introduction of this
mutation into other virulent lineage 1 and 2 WNV strains may provide insight into the
importance of this mutation in other lineage 2 viruses, and, if the mutation proves to be
only slightly attenuating in lineage 1 viruses, may also confirm that the augmented
attenuation seen in our study is related to a co-mutation in the lineage 2 backbone. In fact, it
may even be a co-mutation in the NS1, potentially located in the stretch of amino acids
comprising the relatively conserved region of the NS1, as described earlier [36].

Even though it appears that we have found a virulence marker in lineage 2 WNVSs,
with the chosen approach, it is more correct to state that we have identified a marker of
attenuation. Virulence markers are most accurately found by comparing emerging virulent
isolates with circulating more attenuated strains. In our situation, however, we investigated
a mutation that was found in a variant of the attenuated Kunjin virus in cell culture.
Whether this variant is also circulating in nature still needs to be determined. It is likely,
however, that the majority of emerging virulent strains of WNV have the Pro at the 250
position on the NS1, and this locus has probably not been under such strong selective
pressure as the NS3-T249P, which appears to be an evolutionary adaptation driven by avian
hosts. In fact, a threonine to proline substitution at this locus has occurred on at least three
independent occasions between lineage 1a WNVs, which preceded human WNV outbreaks
in Egypt (1950), Romania and Russia (1996) and lIsrael (1997-98) [19]. To determine
whether a leucine to proline mutation has occurred at the NS1-250 position in association
with the emergence of more virulent strains of WNV, some in-depth phylogenetic studies
of sequenced isolates are required. Only after the identification of strains that harbour the
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leucine at this position that are only associated with cases of mild or absent disease, in
combination with mouse experiments proving that mutating the leucine to a proline leads to
a neuroinvasive phenotype, is it possible to say with more certainty that the NS1-250 is
indeed a virulence marker. Therefore, to date it may be more accurate to conclude that we
have found a marker of attenuation and that we have confirmed the association between
NS1 protein and replication.

To conclude the section on virulence, we have demonstrated that the selected
European strains of WNV investigated for this thesis are all neuroinvasive and
neurovirulent. In addition, we have found that markers of attenuation in lineage 1 do not
consistently produce the same effect in a lineage 2 virus, which confirms the observed
difference in virulence of lineage 2 viruses and suggests that different markers of virulence
may have resulted in the emergence of more pathogenic lineage 2 viruses, which may not
necessarily mimic the emergence of virulent lineage 1 strains. Furthermore, our study has
also confirmed the highly virulent phenotype of 1ta09 and it is therefore not surprising that
this virus strain has caused outbreaks of neurological disease in humans. The virulent
phenotype displayed in mice infected with FIN explains why the virus was isolated from a
human case of neuroinvasive disease; however, it does not explain the lack of subsequent
cases of neuroinvasive disease. This can also be said for 578/10, as this strain was shown to
be highly virulent in mice, yet has only caused one isolated case of neuroinvasive disease in
a horse in Hungary. These results demonstrate the complexity of the enzootic transmission
cycle of WNV and therefore also the importance of a One Health approach. Potentially the
answers to the lack of spread of the FIN and 578/10 isolates can be found by studying the
reservoir hosts that may be involved in the WNV transmission cycle, as is discussed below.

Part 2: Reservoir Hosts and Vectors

WNV is maintained in an enzootic transmission cycle between birds and mosquitoes.
Mosquitoes act as vectors while birds are the amplification hosts. When WNV spreads into
new territory, it is often first detected in mosquito pools, subsequently in birds (often
marked by bird mortality), which is quickly followed by the first human cases. In fact, in
North America, bird mortality, with in particular deaths amongst American crows, were
often found to precede cases of WNV in humans, and as a result, bird mortality was used to
track the spread of the virus across many parts of the continent [38-41].

In Chapter 5 and Chapter 6 we investigated the susceptibility of two bird species
ubiquitously found across Europe. We sought to answer the question whether the lack of
bird mortality and also the limited distribution of WNV in Europe are related to a lower
susceptibility of European versus American bird species to WNV infection. For the
experiments we chose the Carrion crow (Corvus corone), which is the European
counterpart of the American crow, a bird species highly susceptible to WNV in the United
States, and we also chose the closely related Western jackdaw (Corvus monedula).
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Importantly, both bird species are found ubiquitously across northwestern Europe.
Although the Hooded crow (Corvus cornix) is found in north- and southeastern Europe and
may therefore be considered more representative for WNV endemic areas, we had to
choose for the Carrion crow for practical reasons. Furthermore, the Hooded crow is
genetically so closely related to the Carrion crow (0.28% at the genome level, difference in
40 genes involved in factors such as pigmentation, vision and social dominance behavior
[42], which are probably not directly relevant from a virological point of view), that the
data generated in experimental infections with Carrion crows are likely to mimic those that
would be found in Hooded crows. As a result, we believe that experimental infections of
Carrion crows will provide us with more insight on the current distribution of WNV in both
northwestern (no WNV activity) and north- and southeastern Europe (focal distribution).

Carrion crow (Corvus corone) Western jackdaw (Corvus monedula)

Hooded crow (Corvus cornix)

The first study to use a European strain of WNV and the Carrion crow indicated that
European strains of WNV have a relatively low virulence to crows, as a strain from France
(Fr2000) resulted in only 33% mortality compared to 100% mortality by 1598, a strain
closely related to the highly virulent NY99 [43]. This study therefore seemed to suggest
that the relatively low virulence of European strains of WNV could be the reason for the
observed low bird mortality in Europe. In order to further investigate this hypothesis, it
became essential to conduct more experimental bird studies using other strains of WNV
circulating in Europe. Importantly, these studies would also include strains that have caused
outbreaks amongst humans (Greece-10, 1ta09), as well as those that have shown a very
limited spread, for example, only isolated from a single human (FIN) or equine (578/10)

216



case, which would be similar to the French strain (Fr2000) that has only been associated
with sporadic equine cases in Camargue, France. Besides it being important to investigate
whether other European strains of WNV could be virulent to crows, it was also interesting
to examine whether strains that caused large outbreaks in humans also tend to display a
higher virulence in crows, which may potentially explain the spread of these viruses
throughout a larger area that eventually led to spill over into humans. In fact, the results of
Chapters 5 and 6 strongly indicate that the Western jackdaw and Carrion crow are
susceptible to WNV, as mortality (60% in jackdaws, 83% in Carrion crows) was observed
after inoculation with NY99, a strain of WNV known to be highly virulent to American
crows. We also found that the majority of European strains of WNV are virulent to corvids
as three out of four strains induced viremia and mortality in both bird species. In fact,
European strains of WNV displayed a similar, if not higher, virulence in the birds than the
North American strain. Furthermore, in order to measure the ‘absolute’ virulence of these
European strains of WNV, we conducted parallel studies in the highly susceptible
American crow. We found that the European strains were at least as virulent in these birds
as the virulent prototype NY99.

Interestingly, mortality and viremia after WNV infection were found to be generally
higher in the Carrion crow compared to the Western jackdaw. Despite the close genetic
relationship, this suggests that Carrion crows are more susceptible to WNV than Western
jackdaws, which could be related to differences in host innate immunity. Nonetheless,
similar results were induced after inoculation with the FIN strain, as both Western jackdaws
and Carrion crows did not experience mortality nor sustained viremia titers. Here it is
tempting to speculate that a possible reason for the lack of more cases of WNV-FIN in
either birds, horses or humans, is because the virus was not able to spread beyond infected
mosquitoes due to the inability of the virus to be sufficiently amplified in corvid birds.
However, more susceptibility studies with WNV-FIN in other bird species, possibly under
more nature-mimicking conditions (e.g. infection by mosquitoes), could verify this
hypothesis.

Through bird susceptibility studies information can be obtained that may be useful for
risk-based approaches and WNV surveillance (Table 1). A risk-based assessment tool such
as the Hazard Analysis Critical Control Points (HACCP) analysis [44] has proven to be
particularly useful for infectious diseases such as food-borne illnesses as well as the highly
pathogenic avian influenza virus (HPAI) strain H5N1. The latter helped to identify the key
stages within the poultry trade chain that pose risks for the transmission of HPAI viruses
among human and poultry populations [45]. For WNV it was also possible to identify the
key stages at which transmission of the virus can take place; however, proposing critical
limits and adopting mitigation strategies to limit virus transmission risks proved to be
challenging. The WNV transmission cycle is highly complex and also dependent on many
extraneous factors pertaining to the environment. For example, it has been hypothesized
that WNV can be introduced via mosquitoes by airplane, wind, and boat; and via infected
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humans, human-transported birds or other vertebrates, and migratory birds. The most likely
and more easily controlled pathway of these can be considered introduction by airplane, as
it is theoretically possible to fumigate airplanes. In fact, a study conducted at Amsterdam
Schiphol Airport demonstrated that mosquitoes were occasionally found in aircraft cabins,
including Culex quinquefasciatus [46], which is a competent vector for WNV in North
America [47]. However, other introductory pathways, such as infected mosquitoes imported
by wind, or infected migratory birds are considerably more difficult to influence. As a
result, a passive but probably more realistic approach would be to conduct surveillance, and
upon confirmation of WNV circulation, to control human and domestic animal behavior
that leads to infection by mosquitoes. Therefore, apart from fumigating airplanes and
controlling mosquito populations, it currently seems more realistic to focus the majority of
the efforts on WNV surveillance and awareness campaigns.

The information obtained from our bird experiments may help to direct the nature of
the surveillance practiced (Table 1). Monitoring susceptible bird species, by e.g. dead bird
pathology and virological screening, in combination with measuring viremia and antibody
seroprevalence can provide indications about the role of different bird species in the
transmission of virus to mosquitoes (amplifier hosts). In addition, viral persistence studies
may provide additional information about bird species that can participate in oral
transmission (carcass scavenging). ldentifying susceptible birds and virulent strains can
also help to pinpoint potential risk areas (seroprevalence, amplifier hosts, virulence
markers), while duration of viremia can give an indication about duration of infectiousness,
and as a result the potential risk posed by a particular migrating viremic bird species.

Our data identified the Carrion crow as an important target for WNV live and dead
bird surveillance. In addition, this bird species may transmit WNV as an amplifier host to
mosquitoes -although this requires confirmation by reservoir host-mosquito experiments-
and may also transmit the virus as a subject of carcass scavenging. In contrast, the lower
susceptibility of the Western jackdaw makes the contribution of this bird to maintenance of
WNV in the transmission cycle more doubtful, and as a result it is probably more suitable
as a sentinel for WNV serosurveillance. On the other hand, the relatively high mortality
observed in experimentally infected Carrion crows may render them less appropriate for
serosurveillance. Obviously the use of other highly susceptible sentinel birds like domestic
chickens may be practiced under circumstances of imminent threat. Nonetheless, to
determine the real use of particular bird species as sentinels, proper antibody longevity
studies will need to be conducted.
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Application to WNV surveillance or

Parameter ioai
transmission

Mortality Dead bird surveillance

Live bird surveillance and potential transmission
to mosquitoes

Estimation of duration of infectiousness
(potential for virus introduction)

Peak viremia titers
Duration of viremia
Organ viral titers Oral transmission risk via carcass scavenging
Virus strain-specific virulence  Virulence marker surveillance

Antibody titers Serosurveillance

Persistence in organs Oral transmission risk via carcass scavenging

Table 1. The potential application for the data obtained in the bird susceptibility experiments

For virulence marker surveillance, our Western jackdaw and Carrion crow studies
have found that a previously described virulence marker identified in the North American
strain N'Y99 [18] is also relevant for Europe. To be more specific, the two closely related
Italian strains, FIN and 1ta09 (99.7% nucleotide identity) exhibited a contrasting virulence
phenotype in both Western jackdaws and Carrion crows. The viral genome revealed the
presence of a proline for 1ta09 at the NS3-249 locus and for FIN a threonine at this position.
In the study by Brault et al., introduction of a T249P in an attenuated Kenyan strain was
found to be sufficient to generate a phenotype highly virulent to American crows, while a
P249T introduction in the virulent NY99 strain resulted in an attenuated phenotype [18].
This suggests that the different virulence profile exhibited by FIN and 1ta09 is related to the
presence of the T249P substitution. Interestingly, it has been found that a series of
hydrophobic residues (NS3-243-254) within the NS3 helicase are highly conserved among
WNVs, with variation observed only at the NS3-249 residue. This residue is positioned at
the terminus of the hydrophobic loop and would therefore be in a strategic orientation for
direct interaction with alternative viral or host proteins, which may explain the influence of
this locus on viral virulence. Furthermore, the positioning of this residue allows for any
number of amino acids at this locus, which explains the potential for the variety of lineage-
specific amino acid identities observed at this site [19].

In contrast to the importance of this determinant in avian virulence, the NS3-249
substitutions produced no different effect on LDso or neurovirulence in a murine model
[19]. The reason why this particular mutation has a dramatically attenuating effect in
corvids but not in mice is not very clear. Interestingly, the NS3-249T even appears to have
a variable effect in different bird species. To illustrate, this particular locus did not appear
to be attenuating in house sparrows (Passer domesticus) as inoculation with NY99 (which
possesses the proline) and KEN-3829 (known to possess a threonine at NS3-249) resulted
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in similar mortality rates (38% vs 50%) [48]. In addition, the Morocco/2003 strain
(possesses a threonine at the locus) was more virulent in red-legged partridges (Alectoris
rufa) compared to the Spain/2007 isolate (possesses a proline) (70% vs 30%) [49].

However, it may be possible to explain this (bird) species-dependent effect in terms of
temperature sensitivity. In fact, a study by Kinney et al. found that WNV-KEN-3829 was
less efficient than NY99 at replicating at high temperatures (>43°C), such as those
measured in viremic American crows [50]. A follow-up study inoculating American crows
and house sparrows with NS3-249 variants found that the NS3-249T mutant was highly
attenuating for American crows, as has been demonstrated before, but not for house
sparrows, as these birds developed mean peak viremia titers only approx. 10-fold lower
than the NS3-249P variant on day 3 p.i. Replication of the different mutants in duck
embryo fibroblast (DEF) cells at 44°C demonstrated a consistently temperature-sensitive
phenotype for the Thr mutant in comparison to the Pro mutant [19]. These results might be
translated into the ability of the aforementioned animal species to develop fever. To be
specific, febrile corvids have been shown to develop fever of up to 45°C upon WNV
infection [50], while house sparrows have been found to rather develop hypothermia
following WNV infection (unpublished data, mentioned in [19]). As a result, this bird
species-specific variation in pyrexia could explain the varying results observed with the
NS3-249T variant. The fact that mice do not develop fever and can even become
hypothermic during infection [51-54] also supports this theory. It would be interesting to
see if this theory also holds true for house finches (Haemorhous mexicanus), as their body
temperature during infection with WNV has been found to average 41.3°C, implying that
these birds did not exhibit fever during peak viremia. In fact, several birds were even found
to be hypothermic at this point [55]. In addition, monitoring the temperature of red-legged
partridges during WNV infection and linking these to the results from the study by Sotelo et
al. [49] may provide clues as well.

Many vector competence studies have been conducted using North American (NA)
mosquitoes, in which mosquitoes such as Culex pipiens, Cx. restuans and Cx. salinarius
were found to be efficient laboratory vectors [47, 56]. In contrast, European mosquito
competence studies have only recently been conducted by Fros et al., which have shown
that north-west European (NWE) Culex pipiens mosquitoes are competent vectors for
WNYV, as both a lineage 1 (NY99) and a lineage 2 (Greece-10) strain of WNV were able to
effectively infect, replicate and disseminate in NWE mosquitoes from The Netherlands, as
indicated by infection rate (percentage of infected mosquitoes after feeding on a blood meal
containing virus from either WNV-lin2 or WNV-linl) and transmission rate (indicated by
percentage of mosquitoes in which virus was detected in the saliva) [57]. Using mosquitoes
from North America (NA) as a control, it was also found that North American mosquitoes
were a competent vector for the lineage 1 and 2 isolates; however, significant lower
transmission rates were observed for lineage 2 in these mosquitoes compared to NWE
mosquitoes. This difference was only apparent after oral injections rather than intrathoracic,
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which suggests that WNV-1in2 escapes more effectively from the midgut epithelial cells in
mosquitoes from NWE compared to those from NA. The observation that two
geographically separated Culex pipiens populations have a notably different vector
competence for WNV-lin2 suggests that a high degree of genotype-genotype specificity
exists in the interaction between virus and vector. This was also noted for isolates collected
from different regions in Florida (FL) in the United States that were assessed for vector
competence in Culex pipiens quinquefasciatus, where transmission rates, body and leg titers
appeared to vary between isolates and sometimes even between colonies [58]. This
highlights that genetic differences may affect replication rates in mosquitoes and that it is
therefore technically important to evaluate vector competence for each different WNV
isolate, which in turn may help us understand vector-virus interactions and their role in
complex transmission cycles in nature.

The study of Fros et al. [57] demonstrating that mosquitoes in an area of Europe
where WNV has not yet been detected are competent to replicate the virus, in combination
with our data showing that European birds from the same area (Chapters 5 and 6) are
susceptible to WNV, indicate that intrinsic factors are not likely to be the limiting factor for
the absence of WNV in the northern areas of Europe. Instead, extrinsic environmental
factors such as temperature could be more likely players in the current distribution of WNV
in Europe. Fros et al. [57] hypothesized that temperature is limiting the vector competence
of European mosquitoes for WNV transmission, and tested this by incubating Lin2-infected
NWE and NA mosquitoes at three different temperatures, 18, 23 and 28°C. The first
temperature matches the average temperature of the Netherlands, the latter the average
temperature during the warmest period in Greece (July and August), which also
corresponds to the peak in WNV amplification and transmission [59], and the middle
temperature is the intermediate temperature of the two. Higher temperatures significantly
increased the percentage of WNV-infected mosquito vectors, for both the NWE and NA
mosquitoes. Furthermore, comparison of the spatial arrangement of recent WNV outbreaks
in Europe per annum and the corresponding mean temperature during peak transmission
season concurs with the hypothesis, as a strong correlation was found between WNV
outbreaks and the mean diurnal summer temperature throughout Europe. To be specific,
WNV outbreaks have occurred at mean temperatures of 24.6°C, 25.3°C and 23.5°C. Taking
the temperatures of locations where individual outbreaks have occurred gives an indication
of the average summer temperatures at which there is an elevated risk for WNV activity.
Nonetheless, this information does not tell us why the spread and circulation of WNV have
still been relatively limited in the south of Europe. Importantly, the mild winters in southern
Europe should potentially allow WNV persistence via mosquito overwintering.

Furthermore, we have also not established that viremic European birds, such as the
Carrion crow, can transmit the virus to NWE mosquitoes, and that in turn NWE mosquitoes
can infect susceptible birds. As a result, reservoir competence studies still need to be
conducted using Carrion crows and potentially common blackbirds (Turdus merula), if they
may be considered the most likely counterpart of the American robin (Turdus migratorius;
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see below) and susceptibility experiments prove to be successful, in combination with
NWE as well as Mediterranean Culex pipiens. Even though we have focused the majority
of our experiments on northwestern Europe due to the lack of WNV activity in this region,
we also do not understand the current distribution of WNV in southern Europe. Several
species of wild birds found in Europe, such as eagles [60], sparrow hawks, goshawks,
geese, and falcons [61-63] have been shown to be susceptible by analyzing carcasses, while
experimental infections of red-legged partridges (Alectoris rufa) [49] and house sparrows
(Passer domesticus) [64, 65] have demonstrated varying (virus strain-dependent)
susceptibility. Infection of the red-legged partridge with Morocco/2003 showed the highest
mortality (70%) [49]; however, in general no species of bird from southern Europe have
shown a similar susceptibility as the Carrion crow, and susceptibility studies in other bird
species may be warranted. Even though the Carrion crow is not found in southeastern
Europe, the closely-relatedness of the Hooded crow, a bird that is found in southeastern
Europe in regions where WNV is often endemic, suggests that our studies may be highly
applicable to this area as well. Nonetheless, reservoir competence studies with other
susceptible birds indigenous to Europe are warranted.

Despite the relevance of bird susceptibility studies, other factors such as mosquito
behavior and density may also be important in explaining the current limited distribution of
WNV in Europe. Even though we have shown that Carrion crows are highly susceptible to
WNYV, an important question that remains is whether they are also the preferred host for a
blood meal for competent mosquitoes in Europe. Analyses of data from the mid-Atlantic to
Colorado that combined host abundance and mosquito feeding data with host infectiousness
indicated that even though introduced house sparrows (Passer domesticus) and crows are
the more abundant and/or highly infectious species, they actually play a minor role in WNV
transmission [66-68]. This is mainly because 30-80% of mosquito feedings by the dominant
WNV vectors (C. pipiens, C. restuans, and C. tarsalis) in the US are on American robins
(Turdus migratorius), despite these birds comprising only 1-20% of the avian communities
studied. In contrast, the abundant crows only make up a small fraction of all mosquito
blood meals and house sparrows are rarely fed on by mosquitoes relative to their
abundance, which results in few bites per individual and inefficient transmission [69].

Furthermore, a European study conducted by Rizzoli et al. specifically looked at the
host feeding preference of wild Cx. pipiens in a hotspot of virus emergence, namely
northern Italy, and found that this mosquito had a clear feeding preference for the common
blackbird, both collected from the wild and in the lab [70], suggesting a potential important
role for this species in the WNV epidemiology in Europe, and warranting future
susceptibility studies and increased monitoring of these birds. Therefore, as mentioned
earlier, even though we have demonstrated that Carrion crows are highly susceptible and
could therefore function as a sentinel and potentially also as an amplification host, if the
majority of the mosquitoes in Europe preferentially feed on other birds, we may be missing
important birds that should be incorporated into a surveillance plan. As a result, it may be
more strategic to now first determine the geographical abundance of the respective bird and
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mosquito species as well as the feeding preferences of NWE and Mediterranean mosquitoes
found in areas of WNV activity, for particular bird species. This could be performed with
field collections of mosquitoes and subsequent determination of their blood meals, followed
by experimental infections (via needle or mosquito bite) of the preferred bird species
determined in these studies, in order to determine their susceptibility and potential role as
an amplification host.

Moreover, the role of mosquitoes such as Culex pipiens and Culex molestus hybrids as
potential bridge vectors should not be neglected. In fact, a study by Vogels et al. has so far
shown that Culex molestus, a mosquito with a strong preference for mammalian blood,
including that of humans, is more abundant during winter than previously thought, and also
displays feeding behavior towards humans. In addition, a large percentage of molestus
hybridization is occurring in The Netherlands (6-15%), meaning that the potential bridge
vector for WNV is present here [71]. More studies on Dutch mosquito populations are
required, which should include more extensive mapping of the different mosquito species,
as well as examining their blood meal preference, including specific bird species. Studying
the feeding behavior of a potentially high-risk mosquito species, such as the bridge vectors,
could direct proper surveillance methods and strategies for Europe.

To conclude this section, results obtained from our bird studies combined with
published mosquito data tells us that northwestern Europe is an area that could be at risk for
the introduction of WNV. In the Netherlands, only reactive surveillance exists due to the
associated high costs, and proactive surveillance will probably only be initiated after
identification of an animal or human case. It is currently therefore unclear whether WNV is
already circulating in the Netherlands. A study conducted by Reusken et al. in which seven
potential WNV vector species were collected at a potential high-risk area
(Oostvaardersplassen) found no evidence for WNV circulation in mosquitoes [72].
However, more mosquito surveillance studies would be needed to give a better indication
of the presence of WNV in the Netherlands. We first propose to conduct serological studies
for WNV on wild and migratory birds that are already sampled as part of the avian
influenza A surveillance network established by the Erasmus Medical Centre (EMC) in
Rotterdam. If serologically positive birds are found we next propose to collect mosquitoes
in the areas from which those seropositive birds were collected. In addition, WNV RNA
surveillance among mosquitoes should be considered, along with identification of the
origins of mosquito blood meals, and this also in combination with future bird susceptibility
studies. Even though our bird studies may prove to be useful in reactive or proactive WNV
surveillance development for mosquitoes and birds, they have elucidated several remaining
research gaps in the complex enzootic transmission cycle of WNV.
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Part 3: Vaccine

The neutralizing antibody response against the WNV E protein is most frequently used as
the correlate of protection. The E protein is a structural protein involved in the attachment
of WNV to the receptor of target cells as well as membrane fusion for mediation of cell
entry [73]. Most of the neutralizing antibodies against flaviviruses recognize the E protein,
and studies using mouse monoclonal antibodies suggest that those against DIl have a
higher neutralizing potency than those against other sites of the molecule [74, 75].
However, another population of antibodies exists that also bind to the prM/M protein [75-
77]. Different modalities of antigen presentation have been identified, such as the E protein
in a soluble truncated form lacking the membrane anchor region, which was found to be
highly immunogenic when expressed by vaccinia virus vectors or recombinant
baculoviruses [78-80]. On the other hand, another study demonstrated the immunogenicity
and protective capacity of a membrane-anchored WNV protein in BALB/c mice [81].
Lastly, coexpression of the E and M protein has been found to result in the production of
virus-like particles (VLPs), which are highly immunogenic non-infectious virus particles
[82], that were able to protect mice and horses from neuroinvasive disease after WNV
challenge [83, 84].

Although currently different effective WNV vaccines for horses have been developed
(for review see [85]), to date, no vaccine for use in humans has been approved after
rigorous testing in clinical trials. However, recently the NIH has announced that an
experimental vaccine that should protect against West Nile virus will enter human clinical
trials. This vaccine is a hydrogen peroxide-inactivated virus that has been shown to protect
both young and aged C57BL/6 as well as aged BALB/c mice after intracranial challenge
with a heterologous virulent North American WNV strain. In addition, using both wild-type
and human HLA-A2 transgenic C57BL/6 and BALB/c adult mice, it was shown that the
H202-WNV-KUNV vaccine also generates a polyfunctional antigen-specific CD8* T cell
response [86].

Nonetheless, one vaccine platform that is being increasingly tested in animal and
human clinical trials is based on the orthopox virus vector Modified Vaccinia virus Ankara
(MVA), which is a highly attenuated strain of vaccinia virus (VACV), originating from the
chorioallantois membrane vaccinia virus Ankara (CVA) via an extensive series of
infections in primary chicken embyrofibroblasts (CEF). Propagating this virus through
more than 570 CEF passages resulted in a massive loss of genetic information that affected
many of the VACV virulence and immune evasion genes [87, 88] and resulted in MVA
becoming highly restricted to cells of avian origin and unable to productively replicate in
most mammalian cell cultures [88-90]. This growth deficiency is due to a late block in
virion assembly, resulting in the production of immature virus particles. As viral early,
intermediate, and late gene products are readily synthesized in non-permissive mammalian
cells, recombinant MVVA has been proposed as an antigen-expressing vector with an
excellent safety profile [90] that currently is being tested for many applications, having
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shown promising preclinical and clinical results for candidate vaccines against viruses,
cancers and even allergies [91-102].

For the production of stable heterologous antigens using MVA as a vector virus, genes
are placed under transcriptional control of poxvirus-specific promoters. The subsequent
presentation of antigenic peptides by professional antigen presenting cells via the MHC
class | pathway leads to the activation of CD8+ T cells [103]. The synthesis of long-lived
antigens is an advantageous feature since stable proteins as immunogens are superior at
efficiently activating immune responses in vivo. This in fact appears to be the case in the
induction of antibody responses to typical pathogen surface proteins, such as influenza
virus hemagglutinin, as well as for eliciting MHC class | restricted antigen-specific T cells
to internal antigens [104-106]. Another feature of MVA that is highly advantageous for
future vaccine applications is the notable immunogenicity when compared directly to
replication-competent VACV [107, 108]. This observation is most likely related to the
particular ability of MVA to induce or upregulate important host responses that activate the
immune system early on [109-112].

In Chapter 7, we assessed the efficacy of an MVA based candidate vaccine in
protecting against WNV infection. We used the WNV E protein as immunogen for
activation of the immune response. Therefore we generated four recombinant MVA-WNVs
(prM/ME, Esol, Etmv, Etmc) delivering the WNV E protein in different forms in order to
mimic previously described vaccine optimization strategies [78-81]. In our study, we found
that all wild-type C57BL/6 mice vaccinated with each of the recombinant MVVA’s exhibited
homologous and heterologous neutralizing antibody titers on day 56 post-vaccination and
survived subsequent lethal challenge with both lineage 1 and 2 WNVs. In addition, no virus
was detected in the brain of mice euthanized on day 8 p.i. Furthermore, vaccinations of
HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class Il mice elicited SV9 epitope-specific
IFN-y-secreting CD8+ T cell responses. This immunodominant HLA-A2-restricted epitope
that falls within the E protein SVG9 [SVGGVFTSV]) has also been found during WNV
infections in humans [113-115] and is conserved between members of the Flaviviridae
family, including WNV-NY99 and WNV-KUNV. The use of these transgenic mice can
give a good indication of whether humans are also likely to elicit protective CD8+ T cell
responses upon WNV infection.

It is important to consider that the specificity of an antibody response for a single
epitope may not be sufficient to neutralize all epitope (antigenic) variations of a challenge
virus strain and sometimes even a number of quasispecies within a single virus stock [116].
This also appeared to be the case for our study, as despite the presence of high homologous
neutralizing antibody titers against WNV-1ta09, the heterologous neutralizing antibody
titers elicited against WNV-578/10 were approx. 2-fold lower. This is something that we
also observed previously using sera from mice that survived infection (collected on day 14
p.i.) with WNV-NY99, FIN and Ita09 versus WNV-578 (data not shown). Such a
phenomenon is not unusual, however, as, for example, a rabies vaccination study in which
serum titers of human subjects measured in vitro against rabies challenge virus strains
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found that in the majority of subjects, higher titers were detected against the homologous
strain [117]. Several studies have explored the cross-protective efficacy of several WNV
vaccine candidates; however, some of these, such as the study by Magnusson et al. did not
specifically investigate the cross-protective capacity of their vaccine against their two
lineage 1 and 2 viruses via in vitro cross-neutralization assays [118]. Nonetheless, lower
heterologous neutralizing antibody titers have been described between WNV lineage 1
(Eg101) and several proposed lineage 5 isolates from India due to substantial genetic
variation [119]. In addition, it is an even more common phenomenon across flaviviruses,
where for example, Martina et al. witnessed lower heterologous neutralizing antibody titers
against JEV upon vaccination with WNV-DIII [120]. It therefore appears that genetic
variation between lineage 1 1ta09 and lineage 2 578/10 renders these viruses substantially
different to the extent that it leads to lower heterologous neutralizing antibody titers.

The peak of vaccine induced IgG antibodies is often reached within 4-6 weeks after
primary immunization and is controlled by the intensity of B cell differentiation into plasma
cells, and therefore also by the magnitude of germinal center responses, i.e., the quantity
and quality of the complex interactions between DC, B cell, follicular helper T cells (Tfh)
and follicular dendritic cells (FDCs) interactions. The short life span of these plasma cells
results in a rapid decline of antibody titers, but booster exposure to antigen will reactivate
the immune memory and result in a rapid (<7 days) increase of 1gG antibodies. Short-lived
plasma cells will reach and maintain peak antibody levels until approx. 4 weeks later, after
which serum antibody titers decline as rapidly as following primary immunization.
However, long-lived plasma cells that have reached survival niches in the bone marrow will
continue to produce antigen-specific antibodies, which decline with slower kinetics. Given
the kinetics of antibody responses, we chose to measure neutralizing antibody titers on day
56, as well as challenging the mice on this day. This allowed us to measure antibody titers
after they have reached their postulated peak values, representing a realistic indication of
the elicited immune response.

MVA have induced unprecedented frequencies of vaccine-induced antigen-specific T
cells during recent human clinical trials. These were observed after priming with Bacille
Calmette-Guérian (BCG) and boosting with MVA-85A [101, 121], after priming with
natural A virus infection and boosting with MVA-NP+M1 [122]; and priming with a
recombinant non-replicating chimpanzee adenovirus vector [123] and boosting with rMVA.
These heterologous prime-boost regimens are the only vaccines that induced mean IFN-y
ELIspot responses above 1000 spot-forming cells per million peripheral blood mononuclear
cells (sfc/million PBMC) in humans, which include some of the highest responses ever
measured in humans and well above what has been achieved using individual vectors, such
as recombinant adenovirus alone [124, 125] or recombinant canarypox virus (ALVAC)
with protein-in-adjuvant [126, 127]. Moreover, our study indicated a specific CD8+ T cell
response as prime-boost applications were found to greatly increase the magnitude of
WNV-SV9 specific IFN-y-producing memory T-cells in splenocytes.
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Nonetheless, many studies have been published testing the efficacy of various types of
vaccines in animal models for the prevention of WNV infection. After the first cases of
WNV were detected in New York more than 15 years ago, a large amount of money was
invested into understanding and potentially controlling this virus. A lot of progress has been
made since then, but interestingly, measures to prevent or treat WNV infection have stalled.
In fact, a chimeric vaccine based on the backbone of Yellow-Fever 17D human vaccine
expressing the prM and E genes of the NY99 strain (ChimeriVax-WNO01) made it through a
phase Il trial [128] but was suspended when Sanofi Pasteur bought Acambis in 2008.
During this year, West Nile cases had dropped from 2006 to 2008, and the company had
decided to focus on other priorities, including a dengue vaccine. Clinical trials on treatment,
including a monoclonal antibody, interferon, and immunoglobulin, have also been delayed
for similar reasons; researchers were not able to enroll enough trial volunteers [129].

As a result, one important question related to vaccine development for WNV is
whether there is actually a market. Clinical trials are very costly and the sporadic nature of
WNV outbreaks makes it very difficult to get enough volunteers for trials. In addition, the
virus usually causes flu-like symptoms and less than 1% of those infected actually develop
serious neuroinvasive disease. Due to this, it might only be useful to vaccinate the elderly
and perhaps highly exposed groups such as outdoor workers. However, even in this case it
is still difficult to do any kind of patient studies when outbreak sites are uncertain [129].

Nonetheless, recent evidence suggests that WNV can cause kidney disease in younger
people. A study by Nolan et al. found that in a cohort of 139 people with a mean age of 57
who had tested positive for WNV, 40% had evidence of kidney disease years after infection
[130]. If this is indeed the case, then developing an effective vaccine for WNV could
become more of a priority, and might also involve vaccinations of younger populations.
Whether this will improve the market certainty for a WNV vaccine remains to be
determined. As a result, the most cost-effective remedy against WNV infection may
continue to be mosquito repellent and screen doors.

This thesis provides invaluable information on the virulence of European WNV
strains in corvids as well as in a mammalian model, and demonstrates the efficacy of a
vaccine that would be applicable to Europe where both lineage 1 and 2 WNV strains are
circulating. In the end, through either surveillance, risk-based approaches or immunization,
Europe is now slightly more prepared for WNV outbreaks that may arise in the future.

227



REFERENCES

[

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

228

May, F.J., et al., Phylogeography of West Nile virus: from the cradle of evolution in Africa to
Eurasia, Australia, and the Americas. J Virol, 2011. 85(6): p. 2964-74.

Ciccozzi, M., et al., Epidemiological history and phylogeography of West Nile virus lineage 2.
Infect Genet Evol, 2013. 17: p. 46-50.

Monini, M., et al., West nile virus: characteristics of an african virus adapting to the third
millennium world. Open Virol J, 2010. 4: p. 42-51.

Rappole, J.H., et al., Modeling movement of West Nile virus in the Western hemisphere. Vector
Borne Zoonotic Dis, 2006. 6(2): p. 128-39.

Rappole, J.H., S.R. Derrickson, and Z. Hubalek, Migratory birds and spread of West Nile virus
in the Western Hemisphere. Emerg Infect Dis, 2000. 6(4): p. 319-28.

Zehender, G., et al., Phylogeography and epidemiological history of West Nile virus genotype
lain Europe and the Mediterranean basin. Infect Genet Evol, 2011. 11(3): p. 646-53.
Donadieu, E., et al., Differential virulence and pathogenesis of West Nile viruses. Viruses, 2013.
5(11): p. 2856-80.

Mandahar, C., Multiplication of RNA Plant Viruses. 2006, Springer: Netherlands.
Puig-Basagoiti, F., et al., A mouse cell-adapted NS4B mutation attenuates West Nile virus RNA
synthesis. Virology, 2007. 361(1): p. 229-41.

Khromykh, A.A., P.L. Sedlak, and E.G. Westaway, trans-Complementation analysis of the
flavivirus Kunjin ns5 gene reveals an essential role for translation of its N-terminal half in RNA
replication. J Virol, 1999. 73(11): p. 9247-55.

Khromykh, A.A., AN. Varnavski, and E.G. Westaway, Encapsidation of the flavivirus kunjin
replicon RNA by using a complementation system providing Kunjin virus structural proteins in
trans. J Virol, 1998. 72(7): p. 5967-77.

Puig-Basagoiti, F., et al., High-throughput assays using a luciferase-expressing replicon, virus-
like particles, and full-length virus for West Nile virus drug discovery. Antimicrob Agents
Chemother, 2005. 49(12): p. 4980-8.

Lo, M.K., M. Tilgner, and P.Y. Shi, Potential high-throughput assay for screening inhibitors of
West Nile virus replication. J Virol, 2003. 77(23): p. 12901-6.

Puig-Basagoiti, F., et al., Triaryl pyrazoline compound inhibits flavivirus RNA replication.
Antimicrob Agents Chemother, 2006. 50(4): p. 1320-9.

Rossi, S.L., et al., Adaptation of West Nile virus replicons to cells in culture and use of
replicon-bearing cells to probe antiviral action. Virology, 2005. 331(2): p. 457-70.

Lim, S.M,, et al., Characterization of the mouse neuroinvasiveness of selected European strains
of West Nile virus. PLoS One, 2013. 8(9): p. e74575.

Audsley, M., et al., Virulence determinants between New York 99 and Kunjin strains of West
Nile virus. Virology, 2011. 414(1): p. 63-73.

Brault, A.C., et al., A single positively selected West Nile viral mutation confers increased
virogenesis in American crows. Nat Genet, 2007. 39(9): p. 1162-6.

Langevin, S.A., et al., Host competence and helicase activity differences exhibited by West Nile
viral variants expressing NS3-249 amino acid polymorphisms. PLoS One, 2014. 9(6): p.
€100802.

Papa, A., et al., Genetic characterization of West Nile virus lineage 2, Greece, 2010. Emerg
Infect Dis, 2011. 17(5): p. 920-2.

Davis, C.T., et al., A combination of naturally occurring mutations in North American West
Nile virus nonstructural protein genes and in the 3' untranslated region alters virus phenotype.
J Virol, 2007. 81(11): p. 6111-6.

Wicker, J.A., et al., A single amino acid substitution in the central portion of the West Nile virus
NS4B protein confers a highly attenuated phenotype in mice. Virology, 2006. 349(2): p. 245-53.
Wicker, J.A., et al., Mutational analysis of the West Nile virus NS4B protein. Virology, 2012.
426(1): p. 22-33.



24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

Whiteman, M.C., et al., Multiple amino acid changes at the first glycosylation motif in NS1
protein of West Nile virus are necessary for complete attenuation for mouse neuroinvasiveness.
Vaccine, 2011. 29(52): p. 9702-10.

Winkler, G., et al., Evidence that the mature form of the flavivirus nonstructural protein NS1 is
a dimer. Virology, 1988. 162(1): p. 187-96.

Winkler, G., et al., Newly synthesized dengue-2 virus nonstructural protein NS1 is a soluble
protein but becomes partially hydrophobic and membrane-associated after dimerization.
Virology, 1989. 171(1): p. 302-5.

Chung, K.M.,, et al., West Nile virus nonstructural protein NS1 inhibits complement activation
by binding the regulatory protein factor H. Proc Natl Acad Sci U S A, 2006. 103(50): p. 19111-
6.

Schlesinger, J.J., Flavivirus nonstructural protein NS1: complementary surprises. Proc Natl
Acad Sci U S A, 2006. 103(50): p. 18879-80.

Crooks, AJ., et al., The NS1 protein of tick-borne encephalitis virus forms multimeric species
upon secretion from the host cell. J Gen Virol, 1994. 75 ( Pt 12): p. 3453-60.

Flamand, M., et al., Dengue virus type 1 nonstructural glycoprotein NS1 is secreted from
mammalian cells as a soluble hexamer in a glycosylation-dependent fashion. J Virol, 1999.
73(7): p. 6104-10.

Westaway, E.G., et al., Ultrastructure of Kunjin virus-infected cells: colocalization of NS1 and
NS3 with double-stranded RNA, and of NS2B with NS3, in virus-induced membrane structures.
J Virol, 1997. 71(9): p. 6650-61.

Lindenbach, B.D. and C.M. Rice, trans-Complementation of yellow fever virus NS1 reveals a
role in early RNA replication. J Virol, 1997. 71(12): p. 9608-17.

Mackenzie, J.M., M.K. Jones, and P.R. Young, Immunolocalization of the dengue virus
nonstructural glycoprotein NS1 suggests a role in viral RNA replication. Virology, 1996.
220(1): p. 232-40.

Muylaert, I.R., R. Galler, and C.M. Rice, Genetic analysis of the yellow fever virus NS1 protein:
identification of a temperature-sensitive mutation which blocks RNA accumulation. J Virol,
1997. 71(1): p. 291-8.

Youn, S., et al., Non-structural protein-1 is required for West Nile virus replication complex
formation and viral RNA synthesis. Virol J, 2013. 10: p. 339.

Hall, R.A., et al., Loss of dimerisation of the nonstructural protein NS1 of Kunjin virus delays
viral replication and reduces virulence in mice, but still allows secretion of NS1. Virology,
1999. 264(1): p. 66-75.

Brandén, C.-l. and J. Tooze, Introduction to protein structure. 1991, New York: Garland Pub.
xv, 302 p.

Eidson, M., et al., Dead crow density and West Nile virus monitoring, New York. Emerg Infect
Dis, 2005. 11(9): p. 1370-5.

Julian, K.G., et al., Early season crow mortality as a sentinel for West Nile virus disease in
humans, northeastern United States. Vector Borne Zoonotic Dis, 2002. 2(3): p. 145-55.
McLean, R.G., West Nile virus in North American Birds. USDA National Wildlife Research
Center - Staff Publications, 2006.

Reisen, W.K., et al., Role of corvids in epidemiology of west Nile virus in southern California. J
Med Entomol, 2006. 43(2): p. 356-67.

Poelstra, J.W., et al., The genomic landscape underlying phenotypic integrity in the face of gene
flow in crows. Science, 2014. 344(6190): p. 1410-4.

Dridi, M., et al., Experimental infection of Carrion crows (Corvus corone) with two European
West Nile virus (WNV) strains. Vet Microbiol, 2013. 165(1-2): p. 160-6.

MacLehose, L., Hazard-Analysis-Critical-Control-Point-Methodologie, in
Infektionsepidemiologie, A. Kramer and R. Reintjes, Editors. 2003, Springer: Berlin Heidelberg.
p. 119-123.

Edmunds, K.L., et al., Hazard analysis of critical control points assessment as a tool to respond
to emerging infectious disease outbreaks. PL0oS One, 2013. 8(8): p. €72279.

229



46.

47.

48.

49.

50.

51.

52.

53.

54,

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

230

Scholte, E.J., et al., Mosquito collections on incoming international flights at Schiphol
International airport, the Netherlands, 2010-2011. J Eu Mosq Control Assoc, 2014. 32: p. 17-
21

Sardelis, M.R., et al., Vector competence of selected North American Culex and Coquillettidia
mosquitoes for West Nile virus. Emerg Infect Dis, 2001. 7(6): p. 1018-22.

Langevin, S.A,, et al., Variation in virulence of West Nile virus strains for house sparrows
(Passer domesticus). Am J Trop Med Hyg, 2005. 72(1): p. 99-102.

Sotelo, E., et al., Pathogenicity of two recent Western Mediterranean West Nile virus isolates in
a wild bird species indigenous to Southern Europe: the red-legged partridge. Vet Res, 2011.
42:p. 11.

Kinney, R.M., et al., Avian virulence and thermostable replication of the North American strain
of West Nile virus. J Gen Virol, 2006. 87(Pt 12): p. 3611-22.

Lagerspetz, K.Y. and T. Vaatainen, Bacterial endotoxin and infection cause behavioural
hypothermia in infant mice. Comp Biochem Physiol A Comp Physiol, 1987. 83(3): p. 519-21.
Nishina, M. and M. Suzuki, Biphasic hypothermia in mice infected with a parasitic nematode,
Trichinella spiralis. Exp Anim, 2002. 51(2): p. 207-11.

Wong, J.P., et al., Development of a murine hypothermia model for study of respiratory tract
influenza virus infection. Lab Anim Sci, 1997. 47(2): p. 143-7.

Yang, Y.T. and C.A. Evans, Hypothermia in mice due to influenza virus infection. Proc Soc Exp
Biol Med, 1961. 108: p. 776-80.

Worwa, G., et al., Comparing competitive fitness of West Nile virus strains in avian and
mosquito hosts. PL0oS One, 2015. 10(5): p. e0125668.

Turell, M.J., M. O'Guinn, and J. Oliver, Potential for New York mosquitoes to transmit West
Nile virus. Am J Trop Med Hyg, 2000. 62(3): p. 413-4.

Fros, J.J., et al., West Nile Virus: High Transmission Rate in North-Western European
Mosquitoes Indicates Its Epidemic Potential and Warrants Increased Surveillance. PLoS Negl
Trop Dis, 2015. 9(7): p. e0003956.

Richards, S.L., S.L. Anderson, and C.C. Lord, Vector competence of Culex pipiens
quinquefasciatus (Diptera: Culicidae) for West Nile virus isolates from Florida. Trop Med Int
Health, 2014. 19(5): p. 610-7.

Prevention, C.f.D.C.a., West Nile virus disease cases and deaths reported to CDC by year and
clinical presentation, 1999-2013. 2014: Atlanta.

Hofle, U., et al., West Nile virus in the endangered Spanish imperial eagle. Vet Microbiol,
2008. 129(1-2): p. 171-8.

Bakonyi, T., et al., Explosive spread of a neuroinvasive lineage 2 West Nile virus in Central
Europe, 2008/2009. Vet Microbiol, 2013. 165(1-2): p. 61-70.

Bakonyi, T., et al., Lineage 1 and 2 strains of encephalitic West Nile virus, central Europe.
Emerg Infect Dis, 2006. 12(4): p. 618-23.

Wodak, E., et al., Detection and molecular analysis of West Nile virus infections in birds of prey
in the eastern part of Austria in 2008 and 2009. Vet Microbiol, 2011. 149(3-4): p. 358-66.

Del Amo, J., et al., Experimental infection of house sparrows (Passer domesticus) with West
Nile virus isolates of Euro-Mediterranean and North American origins. Vet Res, 2014. 45: p.
33.

Del Amo, J., et al., Experimental infection of house sparrows (Passer domesticus) with West
Nile virus strains of lineages 1 and 2. Vet Microbiol, 2014. 172(3-4): p. 542-7.

Hamer, G.L., et al., Host selection by Culex pipiens mosquitoes and West Nile virus
amplification. Am J Trop Med Hyg, 2009. 80(2): p. 268-78.

Kilpatrick, A.M., et al., Host heterogeneity dominates West Nile virus transmission. Proc Biol
Sci, 2006. 273(1599): p. 2327-33.

Kent, R., et al., Seasonal blood-feeding behavior of Culex tarsalis (Diptera: Culicidae) in Weld
County, Colorado, 2007. J Med Entomol, 2009. 46(2): p. 380-90.

Kilpatrick, A.M., Globalization, land use, and the invasion of West Nile virus. Science, 2011.
334(6054): p. 323-7.



70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

Rizzoli, A., et al., Understanding West Nile virus ecology in Europe: Culex pipiens host feeding
preference in a hotspot of virus emergence. Parasit Vectors, 2015. 8: p. 213.

Vogels, C.B., et al., Winter Activity and Aboveground Hybridization Between the Two Biotypes
of the West Nile Virus Vector Culex pipiens. Vector Borne Zoonotic Dis, 2015. 15(10): p. 619-
26.

Reusken, C., et al., A study of the circulation of West Nile virus in mosquitoes in a potential
high-risk area for arbovirus circulation in the Netherlands, “De Oostvaardersplassen”. J Eu
Mosqg Control Assoc, 2010. 28: p. 69-83.

Heinz, F.X. and K. Stiasny, Flaviviruses and flavivirus vaccines. Vaccine, 2012. 30(29): p.
4301-6.

Pierson, T.C., et al., Structural insights into the mechanisms of antibody-mediated
neutralization of flavivirus infection: implications for vaccine development. Cell Host Microbe,
2008. 4(3): p. 229-38.

Diamond, M.S., T.C. Pierson, and D.H. Fremont, The structural immunology of antibody
protection against West Nile virus. Immunol Rev, 2008. 225: p. 212-25.

Falconar, A.K., Identification of an epitope on the dengue virus membrane (M) protein defined
by cross-protective monoclonal antibodies: design of an improved epitope sequence based on
common determinants present in both envelope (E and M) proteins. Arch Virol, 1999. 144(12):
p. 2313-30.

Pupo-Antunez, M., et al., Monoclonal antibody against Saint Louis encephalitis prM viral
protein. J Virol Methods, 2015. 218: p. 14-8.

Allison, S.L., et al., Synthesis and secretion of recombinant tick-borne encephalitis virus
protein E in soluble and particulate form. J Virol, 1995. 69(9): p. 5816-20.

Delenda, C., M.P. Frenkiel, and V. Deubel, Protective efficacy in mice of a secreted form of
recombinant dengue-2 virus envelope protein produced in baculovirus infected insect cells.
Arch Virol, 1994. 139(1-2): p. 197-207.

Venugopal, K., S.Y. Shiu, and E.A. Gould, Recombinant vaccinia virus expressing PrM and E
glycoproteins of louping ill virus: induction of partial homologous and heterologous protection
in mice. Res Vet Sci, 1994. 57(2): p. 188-93.

Nzonza, A., et al., A recombinant novirhabdovirus presenting at the surface the E Glycoprotein
from West Nile Virus (WNV) is immunogenic and provides partial protection against lethal
WNV challenge in BALB/c mice. PLoS One, 2014. 9(3): p. €91766.

Roldao, A., et al., Virus-like particles in vaccine development. Expert Rev Vaccines, 2010.
9(10): p. 1149-76.

Monath, T.P., et al., A live, attenuated recombinant West Nile virus vaccine. Proc Natl Acad Sci
U S A, 2006. 103(17): p. 6694-9.

Davis, B.S., et al., West Nile virus recombinant DNA vaccine protects mouse and horse from
virus challenge and expresses in vitro a noninfectious recombinant antigen that can be used in
enzyme-linked immunosorbent assays. J Virol, 2001. 75(9): p. 4040-7.

Brandler, S. and F. Tangy, Vaccines in development against West Nile virus. Viruses, 2013.
5(10): p. 2384-4009.

Pinto, A.K., et al., A hydrogen peroxide-inactivated virus vaccine elicits humoral and cellular
immunity and protects against lethal West Nile virus infection in aged mice. J Virol, 2013.
87(4): p. 1926-36.

Antoine, G., et al., The complete genomic sequence of the modified vaccinia Ankara strain:
comparison with other orthopoxviruses. Virology, 1998. 244(2): p. 365-96.

Meyer, H., G. Sutter, and A. Mayr, Mapping of deletions in the genome of the highly attenuated
vaccinia virus MVA and their influence on virulence. J Gen Virol, 1991. 72 ( Pt 5): p. 1031-8.
Ramirez, J.C., M.M. Gherardi, and M. Esteban, Biology of attenuated modified vaccinia virus
Ankara recombinant vector in mice: virus fate and activation of B- and T-cell immune
responses in comparison with the Western Reserve strain and advantages as a vaccine. J Virol,
2000. 74(2): p. 923-33.

Sutter, G. and B. Moss, Nonreplicating vaccinia vector efficiently expresses recombinant genes.
Proc Natl Acad Sci U S A, 1992. 89(22): p. 10847-51.

231



91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

232

Volz, A. and G. Sutter, Protective efficacy of Modified Vaccinia virus Ankara in preclinical
studies. Vaccine, 2013. 31(39): p. 4235-40.

Amato, R.J., 5T4-modified vaccinia Ankara: progress in tumor-associated antigen-based
immunotherapy. Expert Opin Biol Ther, 2010. 10(2): p. 281-7.

Tykodi, S.S. and J.A. Thompson, Development of modified vaccinia Ankara-5T4 as specific
immunotherapy for advanced human cancer. Expert Opin Biol Ther, 2008. 8(12): p. 1947-53.
Kaufman, H.L., et al., Phase Il trial of Modified Vaccinia Ankara (MVA) virus expressing 5T4
and high dose Interleukin-2 (IL-2) in patients with metastatic renal cell carcinoma. J Transl
Med, 2009. 7: p. 2.

Brandler, S., et al., Preclinical studies of a modified vaccinia virus Ankara-based HIV
candidate vaccine: antigen presentation and antiviral effect. J Virol, 2010. 84(10): p. 5314-28.
Overton, E.T,, et al., Safety and Immunogenicity of Modified Vaccinia Ankara-Bavarian Nordic
Smallpox Vaccine in Vaccinia-Naive and Experienced Human Immunodeficiency Virus-Infected
Individuals: An Open-Label, Controlled Clinical Phase Il Trial. Open Forum Infect Dis, 2015.
2(2): p. ofv040.

Jones, T., IMVAMUNE, an attenuated modified vaccinia Ankara virus vaccine for smallpox
infection. Curr Opin Mol Ther, 2008. 10(4): p. 407-17.

Kreijtz, J.H., et al., Safety and immunogenicity of a modified-vaccinia-virus-Ankara-based
influenza A H5N1 vaccine: a randomised, double-blind phase 1/2a clinical trial. Lancet Infect
Dis, 2014. 14(12): p. 1196-207.

Ogwang, C., et al., Prime-boost vaccination with chimpanzee adenovirus and modified vaccinia
Ankara encoding TRAP provides partial protection against Plasmodium falciparum infection in
Kenyan adults. Sci Transl Med, 2015. 7(286): p. 286re5.

Milligan, 1.D., et al., Safety and Immunogenicity of Novel Adenovirus Type 26- and Modified
Vaccinia Ankara-Vectored Ebola Vaccines: A Randomized Clinical Trial. JAMA, 2016.
315(15): p. 1610-23.

Scriba, T.J., et al., Modified vaccinia Ankara-expressing Ag85A, a novel tuberculosis vaccine, is
safe in adolescents and children, and induces polyfunctional CD4+ T cells. Eur J Immunol,
2010. 40(1): p. 279-90.

Bohnen, C., et al., Vaccination with recombinant modified vaccinia virus Ankara prevents the
onset of intestinal allergy in mice. Allergy, 2013. 68(8): p. 1021-8.

O'Rourke, A.M. and M.F. Mescher, Cytotoxic T-lymphocyte activation involves a cascade of
signalling and adhesion events. Nature, 1992. 358(6383): p. 253-5.

Gasteiger, G., et al., Cross-priming of cytotoxic T cells dictates antigen requisites for modified
vaccinia virus Ankara vector vaccines. J Virol, 2007. 81(21): p. 11925-36.

Gorse, G.J., et al., DNA and modified vaccinia virus Ankara vaccines encoding multiple
cytotoxic and helper T-lymphocyte epitopes of human immunodeficiency virus type 1 (HIV-1)
are safe but weakly immunogenic in HIV-1-uninfected, vaccinia virus-naive adults. Clin
Vaccine Immunol, 2012. 19(5): p. 649-58.

Schliehe, C., et al., Stable antigen is most effective for eliciting CD8+ T-cell responses after
DNA vaccination and infection with recombinant vaccinia virus in vivo. J Virol, 2012. 86(18):
p. 9782-93.

Hirsch, V.M., et al., Patterns of viral replication correlate with outcome in simian
immunodeficiency virus (SIV)-infected macaques: effect of prior immunization with a trivalent
SIV vaccine in modified vaccinia virus Ankara. J Virol, 1996. 70(6): p. 3741-52.

Sutter, G., et al., A recombinant vector derived from the host range-restricted and highly
attenuated MVA strain of vaccinia virus stimulates protective immunity in mice to influenza
virus. Vaccine, 1994. 12(11): p. 1032-40.

Delaloye, J., et al., Innate immune sensing of modified vaccinia virus Ankara (MVA) is mediated
by TLR2-TLR6, MDA-5 and the NALP3 inflammasome. PLoS Pathog, 2009. 5(6): p. €1000480.
Halle, S., et al., Induced bronchus-associated lymphoid tissue serves as a general priming site
for T cells and is maintained by dendritic cells. J Exp Med, 2009. 206(12): p. 2593-601.



111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

Lehmann, M.H., et al., Modified vaccinia virus ankara triggers chemotaxis of monocytes and
early respiratory immigration of leukocytes by induction of CCL2 expression. J Virol, 2009.
83(6): p. 2540-52.

Waibler, Z., et al., Modified vaccinia virus Ankara induces Toll-like receptor-independent type |
interferon responses. J Virol, 2007. 81(22): p. 12102-10.

McMurtrey, C.P., et al., Epitope discovery in West Nile virus infection: ldentification and
immune recognition of viral epitopes. Proc Natl Acad Sci U S A, 2008. 105(8): p. 2981-6.

Kim, S., et al., Single-chain HLA-A2 MHC trimers that incorporate an immundominant peptide
elicit protective T cell immunity against lethal West Nile virus infection. J Immunol, 2010.
184(8): p. 4423-30.

Larsen, M.V., et al., Identification of CD8+ T cell epitopes in the West Nile virus polyprotein by
reverse-immunology using NetCTL. PLoS One, 2010. 5(9): p. €12697.

Moore, S.M. and C.A. Hanlon, Rabies-specific antibodies: measuring surrogates of protection
against a fatal disease. PLoS Negl Trop Dis, 2010. 4(3): p. €595.

Moore, S.M.,, et al., The influence of homologous vs. heterologous challenge virus strains on the
serological test results of rabies virus neutralizing assays. Biologicals, 2005. 33(4): p. 269-76.
Magnusson, S.E., et al., Matrix-M adjuvanted envelope protein vaccine protects against lethal
lineage 1 and 2 West Nile virus infection in mice. Vaccine, 2014. 32(7): p. 800-8.

Bondre, V.P., et al., West Nile virus isolates from India: evidence for a distinct genetic lineage.
J Gen Virol, 2007. 88(Pt 3): p. 875-84.

Martina, B.E., et al., Immunization with West Nile virus envelope domain Il protects mice
against lethal infection with homologous and heterologous virus. Vaccine, 2008. 26(2): p. 153-
7.

Whelan, K.T., et al., Safety and immunogenicity of boosting BCG vaccinated subjects with
BCG: comparison with boosting with a new TB vaccine, MVA85A. PLoS One, 2009. 4(6): p.
e5934.

Berthoud, T.K., et al., Potent CD8+ T-cell immunogenicity in humans of a novel heterosubtypic
influenza A vaccine, MVA-NP+ML1. Clin Infect Dis, 2011. 52(1): p. 1-7.

Colloca, S., et al., Vaccine vectors derived from a large collection of simian adenoviruses
induce potent cellular immunity across multiple species. Sci Transl Med, 2012. 4(115): p.
115ra2.

McElrath, M.J., et al., HIV-1 vaccine-induced immunity in the test-of-concept Step Study: a
case-cohort analysis. Lancet, 2008. 372(9653): p. 1894-905.

Buchbinder, S.P., et al., Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the
Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet,
2008. 372(9653): p. 1881-93.

Vaccari, M., P. Poonam, and G. Franchini, Phase Il HIV vaccine trial in Thailand: a step
toward a protective vaccine for HIV. Expert Rev Vaccines, 2010. 9(9): p. 997-1005.

de Souza, M.S., et al., The Thai phase Il trial (RV144) vaccine regimen induces T cell
responses that preferentially target epitopes within the V2 region of HIV-1 envelope. J
Immunol, 2012. 188(10): p. 5166-76.

Arroyo, J., et al., ChimeriVax-West Nile virus live-attenuated vaccine: preclinical evaluation of
safety, immunogenicity, and efficacy. J Virol, 2004. 78(22): p. 12497-507.

Kaiser, J., Public health. Outbreak pattern stymies vaccine work. Science, 2012. 337(6098): p.
1030.

Nolan, M.S., et al., Prevalence of chronic kidney disease and progression of disease over time
among patients enrolled in the Houston West Nile virus cohort. PLoS One, 2012. 7(7): p.
e40374.

233






Chapter 9

Nederlandse Samenvatting






Het West Nile virus (WNV) is een flavivirus dat de West-Nijl ziekte veroorzaakt.
Zoogdieren zoals mensen en paarden kunnen ziek worden van dit virus, en bij een klein
percentage van de gevallen kan dit tot dodelijke encefalitis of meningitis leiden. Dit virus
wordt door muggen verspreid die geinfecteerd worden met het virus voornamelijk door zich
te voeden op geinfecteerde vogels, die het virus amplificeren. Vogels zijn daarbij ook vaak
het slachtoffer van dit virus. WNV was voor het eerst geisoleerd in 1937 uit een zieke
vrouw die woonachtig was in de West Nile provincie van Uganda. Het virus werd echter als
apathogeen beschouwd omdat het in de meeste gevallen niet leidde tot klinische
symptomen. In 1999 werd het virus voor het eerst gedetecteerd in de Verenigde Staten en
dit leidde uiteindelijk tot een uitbraak waarbij veel menselijke slachtoffers vielen. Deze
uitbraak ging gepaard met hoge mortaliteit onder vogels, met name de kraaiachtigen.
Doordat kraaien in de VS erg gevoelig zijn voor WNV, wordt mortaliteit onder deze vogels
vaak gebruikt om WNV activiteit vroegtijdig op te sporen.

Het virus heeft zich uiteindelijk razendsnel weten te verspreiden over de gehele
Verenigde Staten binnen een periode van 5 jaar. In Europa is het WNV tot voor kort nooit
de oorzaak van uitbraken geweest en waren de meeste ziektegevallen mild. Sinds 1996
heeft het virus echter verscheidene uitbraken veroorzaakt in Europa, in landen zoals
Roemenié, Tsjechié, Hongarije, Italié en Griekenland, die gepaard gingen met gevallen van
neuroinvasieve ziekte in mensen of paarden. Deze uitbraken hebben echter nooit geleid tot
een uitgebreide verspreiding van het virus over Europa en de distributie van het virus is
eerder focaal. Omdat de transmissie cyclus van het WNV opgemaakt is uit zowel een vector
(de mug) en een gewervelde gastheer (de vogel) is deze uitermate complex, en is het
bestuderen van de verspreiding van het virus een uitdaging. Het doel van dit
promotieonderzoek was om te onderzoeken waarom de verspreiding van WNV binnen
Europa gering is en of dit virus een mogelijk risico vormt voor verdere verspreiding binnen
Europa. De volgende vragen kwamen hierbij aan de orde:

1) Zijn de Europese stammen van WNV minder virulent dan de Amerikaanse
variant?

2) Zijn vogels in Europa minder gevoelig voor infectie met WNV?

3) Zou een vaccin bescherming kunnen bieden tegen infectie met beiden lineage 1 en
lineage 2 virus stammen?

Hoofdstuk 2, 3 en 4 vallen onder het gedeelte “pathogenese” van dit proefschrift.
Hoofdstuk 2 beschrijft de virulentie en het neuroinvasieve vermogen van een selectie
Europese stammen van het WNV (twee uit Italié, een uit Hongarije) die gemeten werden
aan de hand van een aantal parameters, namelijk in vitro replicatie en fitness in
neuroblastoma cellen, gevolgd door intraperitoneale infectie in C57BL/6 muizen en meting
van in vivo mortaliteit (LDso), hoeveelheid virus in de hersenen en ruggenmerg, en respons
op infectie in de hersenen met betrekking tot markers die een rol spelen in
neurodegeneratie. Alle stammen bleken neuroinvasief en neurovirulent te zijn in deze
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muizen. De stam uit Italié die verantwoordelijk is geweest voor een grote uitbraak in 2009,
Ita09, vertoonde de hoogste fitness in vitro. De stam uit Hongarije, 578/10, was het meest
virulent in muizen, met de laagste LDsy waarde en grootste hoeveelheid RNA in de
hersenen. De stam FIN uit Italié vertoonde de minste lethaliteit in muizen vergeleken met
de andere twee stammen. Sequentie-analyse toonde aan dat op nucleotide niveau 1ta09 en
FIN slechts 99.7% verschillen; echter is 1ta09 iets virulenter gebleken dan FIN in onze
studie.

Om virulentie beter te kunnen meten, werd in Hoofdstuk 3 een qRT-PCR opgezet die
nauwkeuriger dan bestaande tests het negatief- en positief-strengs RNA van het WNV kan
quantificeren. Hiermee zouden we de replicatie snelheid van verschillende virusstammen
beter kunnen meten en ook het cel tropisme kunnen bepalen. Om de bruikbaarheid en
specificiteit van deze qRT-PCR vast te leggen is deze gebruikt om de toename van het
WNV in de microglia cellijn BV-2 te meten over een periode van 48 uur, omdat het
tropisme van het WNV voor microglia nog onduidelijk is. Er was een duidelijke toename
van negatief- en positief-strengs RNA te zien, wat aangaf dat deze cellijn permissief is voor
het WNV. De gRT-PCR is ook toegepast op een muisexperiment waarin 9-dagen oude
muizen zijn geinfecteerd met WNV-NY99 en op dag 3, 4, 5 en 6 zijn hiervan de hersenen
verwijderd voor RNA-isolatie. Ook hier was een toename van negatief- en positief-strengs
RNA te zien in de tijd. Een mogelijk nadeel van deze gRT-PCR zou de gevoeligheid voor
het negatief-strengs RNA kunnen zijn, omdat deze varieerde van 10? tot 103. Deze gRT-
PCR zou hierdoor mogelijk niet geschikt kunnen zijn voor het meten van negatief-strengs
RNA in de vroege stadia van infectie.

Het doel van Hoofdstuk 4 was om virulentie markers voor een lineage 2 WNV te
identificeren. Deze zijn geselecteerd uit de literatuur aan de hand van in vitro en/of in vivo
attenuatiemarkers die eerder gevonden zijn voor lineage 1. Vijf verschillende moleculaire
clones waren ontworpen op basis van de Hongaarse virusstam 578/10, met elk een mutatie
in een nonstructureel eiwit (NS1-P250L, NS2A-A30P, NS3-P249H, NS4B-P38G, en
NS4B-E249G). Na intraperitoneale infectie van deze mutanten in C57BL/6 muizen bleek
de NS1-P250L mutatie hevig attenuerend te zijn (0% mortaliteit). Ook in vitro infectie van
een Vero EG6 cellijn met deze mutant leidde tot significant lagere infectieuse virus titers dan
met het wilde-type. Om deze attenuatie beter in kaart te brengen is hier de qRT-PCR die
ontwikkeld is in Hoofdstuk 3 op toegepast. De NS1 mutant bleek significant minder
negatief-strengs RNA te produceren waardoor ook de hoeveelheid positief-strengs RNA
minder was. Dit zou kunnen bijdragen aan de attenuatie van deze mutant in vivo.

Hoofdstuk 5 en 6 vallen onder het gedeelte “gastheer” van dit proefschrift en
onderzoeken de vatbaarheid van kraaiachtigen in Nederland voor WNV-infectie. Kauwen
(Hoofdstuk 5) en zwarte kraaien (Hoofdstuk 6) werden geinfecteerd met vijf verschillende
stammen, WNV-NY99, Greece-10, FIN, 1ta09 en 578/10. Zwarte kraaien bleken gevoeliger
te zijn voor het WNV dan de kauwen omdat deze een hogere mortaliteit vertoonden (tussen
de 83-100% voor kraaien vergeleken met 30-60% voor kauwen), hogere virustiters in het
bloed (ong. 10° RNA kopieén/mL) en meer verspreiding van het virus naar de organen (102
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RNA kopieén/g). Een van de virusstammen, WNV-FIN, veroorzaakte geen mortaliteit in
beiden de kauw en de kraai en ook significant lagere virus titers in het bloed. Een alignment
van de nauw verwante FIN en Ita09 gaf een marker voor virulentie weer die mogelijk een
rol heeft gespeeld in dit experiment; NS3-249. Deze virulentie marker was al eerder
geidentificeerd omdat een mutatie in deze locus de virulentie van een geattenueerde stam
verhoogde in de Amerikaanse kraai. Deze marker zou mogelijk ook een rol kunnen spelen
in de verspreiding van bepaalde stammen van het WNV binnen Europa. De experimenten
in Hoofdstuk 5 en 6 geven de indicatie dat de zwarte kraai gebruikt zou kunnen worden
voor WNV surveillance binnen Europa aan de hand van vogelsterfte, terwijl de kauw
gebruikt zou kunnen worden als ‘signaalvogel’. De daadwerkelijke rol van deze vogels in
amplificatie van het WNV is nog niet duidelijk, maar deze studies suggereren dat de zwarte
kraai een goede amplificatie gastheer zou kunnen zijn, terwijl de titers die het WNV
teweegbrengt in kauwen waarschijnlijk niet hoog genoeg zullen zijn hiervoor.

Het een na laatste hoofdstuk, Hoofdstuk 7, valt onder “interventie strategieén”. Hierin
is de effectiviteit van een MV A-gebaseerd vaccin getest voor bescherming tegen infectie
met lineage 1 en 2 WNVs in C57BL/6 muizen. Het WNV envelop eiwit werd gebruikt als
basis voor de ontwikkeling van vier recombinante MVAs; een die het membraan en
envelop eiwit afschrijft (orM/ME), twee die de envelop met een transmembraan gedeelte
afschrijven (van het Vaccinia Ankara virus (Ermv) of het Chikungunya virus (Etwmc)) en een
die een oplosbare versie van het E eiwit afschrijft (Eso). Alle muizen gevaccineerd met een
van de vier constructen waren beschermd tegen mortaliteit na infectie met een lethale dosis
van beiden WNV-Ita09 en 578/10. Bovendien was virus ook afwezig in de hersenen op dag
8 na infectie van alle gevaccineerde muizen. Op dag 56 na vaccinatie hadden alle
gevaccineerde muizen neutralizerende antilichamen in het bloed tegen 1ta09, maar ook
tegen 578/10, wat heterologe bescherming aangeeft en de bescherming van de muizen tegen
infectie met WNV-578/10 verklaart. Echter waren de neutralizerende (heterologe)
antilichaam titers wel lager. Verder induceerde vaccinatie van HLA-A2.1-/HLA-DR1-
transgene H-2 class I-/class Il muizen een SV9 epitoop-specifieke IFN-y secreterende
CD8+ T cel respons. Dit is een immunodominante epitoop dat is gevonden na WNV
infectie in mensen en deze muizen geven hierdoor een goede indicatie dat de WNV-MVAs
ook een beschermende CD8+ T cel respons in mensen zou kunnen induceren.

Samenvattend heeft het onderzoek in dit proefschrift geleid tot een aantal nieuwe
inzichten betreft de aanwezigheid van en de risico’s geassocieerd met WNV in Europa. De
drie bestudeerde Europese stammen van WNV zijn allen neuroinfasief en neurovirulent in
muizen en zouden hierdoor waarschijnlijk een even grote bedreiging kunnen vormen voor
de mens als de NY99 stam in Amerika. Dit geldt ook voor het lineage 2 virus uit Hongarije
dat bestudeerd is en geeft weer dat lineage 2 stammen van het WNV die mogelijk in de
toekomst opkomen ook virulent kunnen zijn. Dit proefschrift heeft ook aangetoond dat twee
van de kraaiachtigen die in Nederland voorkomen vatbaar zijn voor infectie met het WNV
en dat de zwarte kraai een mogelijke rol zou kunnen spelen in de verspreiding van het virus.
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Het WNV zou dus een bedreiging kunnen blijven vormen voor Europa en de resultaten
zouden onder andere gebruikt kunnen worden voor het sturen van WNV surveillance
methodes binnen Europa. Mocht het WNV een nog groter probleem worden voor Europa in
de toekomst, dan zou het kandidaat MVVA-vaccin dat bestudeerd is in deze thesis mogelijk
verder ontwikkeld kunnen worden aangezien het bescherming heeft geboden tegen infectie
van zowel een lineage 1 als 2 virusstam.
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Chapter 10

English Summary






West Nile virus (WNV) is a flavivirus that causes West Nile disease and affects mammals
such as humans and horses, of which a small percentage develops WN neuroinvasive
disease that may lead to fatal encephalitis or meningitis. The virus is transmitted by
mosquitoes that obtain the virus from infected birds, which are the amplification hosts.
WNV was first isolated in 1937 from a febrile woman in the West Nile province of Uganda.
Despite a small number of cases in Africa, the virus was generally considered non-
pathogenic as it led to asymptomatic infection in most cases. However, in 1999, the virus
was detected for the first time in the United States in New York where it caused a large
outbreak of neuroinvasive disease and several deaths. Within 5 years’ time, the virus spread
across the entire United States. Several outbreaks of WNV in the US were also
characterized by a high mortality among birds, in particular corvids. As crows were found
to be very susceptible to WNV and bird mortality often preceded human outbreaks,
mortality among these birds is often still used to detect and predict WNV activity in the US.

In Europe, WNV has never been the cause of large outbreaks and most clinical cases
were of mild disease. However, since the first outbreak in Romania in 1996, WNV has
spread and been responsible for cases or outbreaks in countries such as Czech Republic,
Hungary, Italy and Greece, which also included cases of neuroinvasive disease in humans
or horses. Nonetheless, these outbreaks have never led to an extensive spread of the virus
across Europe and its distribution is more focal and contained to the south and eastern parts
of the continent. As the enzootic transmission cycle of WNV is comprised of both a vector
(mosquito) and a vertebrate amplification host (birds) it is rather complex, and also a
challenge to completely understand.

The aim of this thesis was to investigate the limited spread of WNV within Europe and to
assess whether this virus could actually present a greater risk to Europe in the future. As a
result, the following questions were addressed:

1) Are European strains of WNV less virulent than the American strains?

2) Are birds in Europe less susceptible to infection with WNV?

3) Would a vaccine be able to protect against infection with both lineage 1 and 2
WNVs?

The section “pathogenesis” of this thesis comprises Chapters 2, 3 and 4. Chapter 2
characterizes the virulence and neuroinvasive potential of a selection of European strains of
WNV (two from Italy, one from Hungary) using parameters such as in vitro replication and
fitness on neuroblastoma cells, followed by intraperitoneal infection of C57BL/6 mice and
measuring the mortality (LDso), viral burden in the brain and spinal cord, as well as
response to infection in the brain using genetic markers that are known to play a role in
neurodegenerative disease. The results indicated that all the WNV strains were
neuroinvasive and neurovirulent in the mice. The 1ta09 strain, which was responsible for a
large outbreak in Italy in 2009, demonstrated the highest fitness in vitro. The strain from
Hungary, 578/10 was the most virulent in mice as it had the lowest LDsy value as well as
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the highest viral RNA burden in the brain. The other Italian strain, FIN, showed the lowest
mortality in mice compared to the other two strains. Despite a 99.7% similarity at the
nucleotide level between these two strains, 1ta09 appeared to be slightly more virulent
compared to FIN in this study.

In order to improve the ability to measure virulence, a qRT-PCR assay was set-up in
Chapter 3 that more accurately quantifies the negative and positive RNA strands of WNV.
By this means, this assay is able to measure the replication rate of WNV as well as
determining its cellular tropism. To assess the in vitro applicability and utility of this gRT-
PCR, it was used to measure the increase in WNV-specific RNA strands over the course of
48 hours in the microglial cell line BV-2, as infection of microglial cells by WNV is
elusive. A clear increase in both positive- and negative-stranded RNA was seen over time,
which indicated that this cell line is permissive to WNV. The qRT-PCR was also used in a
mouse experiment in which 9-day-old mice were infected with NY99, and mouse brains
were sampled on days 3, 4, 5, and 6 for RNA isolation. In this experiment an increase in
both negative- and positive-stranded RNA was also seen over time, suggesting that this tool
might also be appropriate for studying in vivo replication. A potential drawback of this
assay, however, might be its sensitivity, as in this study the detection limit was found to
vary between 102-10° RNA copies. As a result, this assay might not be useful for measuring
negative-stranded RNA in the early stages of infection.

The aim of Chapter 4 was to identify virulence markers of a lineage 2 strain of WNV.
Markers were selected from the literature which have already been shown to attenuate
lineage 1 WNV strains, either in vitro or in vivo. Five different molecular clones were
designed based on the Hungarian lineage 2 strain 578/10, each harboring a mutation in a
nonstructural protein (NS1-P250L, NS2A-A30P, NS3-P249H, NS4B-P38G, and NS4B-
E249G). After intraperitoneal infection of these mutants in C57BL/6 mice, the NS1-P250L
mutant appeared to be the most attenuated giving 0% mortality of these mice at both the
low and high dose. In vitro infection of a Vero E6 cell line with this mutant also showed
significantly lower infectious virus titers compared to the wildtype. This directed the focus
to studying the replication competence of the NS1 mutant by measuring the amount of
positive- and negative-stranded RNA produced in Vero E6 cells in 48 hours using the qRT-
PCR developed in Chapter 3. It was found that the NS1 mutant produced significantly less
positive and negative strands of RNA as compared to the wildtype, which might explain
why this mutant was attenuated in vivo as well.

Chapters 5 and 6 are part of the section “host” of this thesis, which investigates the
susceptibility of corvids to WNV in the Netherlands. Jackdaws (Chapter 5) and carrion
crows (Chapter 6) were experimentally infected with five different strains of WNV,
namely NY99, Greece-10, FIN, Ita09 and 578-10, of which Greece-10 is the strain that was
responsible for the large outbreak in humans with many cases of neuroinvasive disease in
Greece in 2010. Carrion crows appeared to be more susceptible to WNV than the jackdaws
as they demonstrated higher mortality (83-100% for crows compared to 30-60% for
jackdaws), higher peak viremia titers in the blood (approx. 10° RNA copies/mL) and more
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dissemination of virus to the organs (10> RNA copies/g). However, FIN did not induce any
mortality in both the jackdaws and crows, and birds infected with this strain had
significantly lower viremia titers as well. An amino acid alignment of FIN and Ita09
identified a differential marker between the two strains, NS3-T249P, which has already
been linked to augmented virulence in the American crow. This virulence marker may
therefore play a role in the spread of particular strains of WNV within Europe as well. The
experiments in Chapters 5 and 6 indicate that the carrion crow could potentially be used
for WNV surveillance within Europe as part of ‘dead bird surveillance’, while the jackdaw
could be used as a sentinel in serosurveillance. Even though the role of these birds in
amplification of the virus still needs to be experimentally confirmed, our studies suggest
that the carrion crow could be an efficient amplification host while jackdaws might not
sustain viremia titers above the threshold required for efficient infection of mosquitoes
(1052 TCIDso).

The last chapter, Chapter 7, is part of the thesis section “intervention strategies”.
Herein, the effectiveness of an MVVA-based vaccine for the protection against infection with
both lineage 1 and 2 WNVs is evaluated in C57BL/6 mice. The envelope protein of WNV
was used as a basis for the development of four recombinant MV As; one that transcribes
the (pre)-membrane and envelope proteins, two that code for the envelope harboring the
transmembrane part of either the wildtype Vaccinia Ankara virus (Etmv) or Chikungunya
virus and one that transcribes the soluble part of the E protein (Esa). All constructs
protected mice from infection with a lethal dose of either 1ta09 (lineage 1) or 578/10
(lineage 2) 56 days after vaccination. In addition, no virus was detected in the brains of
vaccinated mice as compared to the control group on day 8 post-infection. Furthermore,
neutralizing antibodies against 1ta09, but also against 578/10 were found in the blood on
day 56 post-vaccination, which may explain the heterologous cross-protection witnessed in
vivo. However, heterologous neutralizing antibodies titers were found to be lower compared
to the homologous titers. Lastly, vaccination of HLA-A2.1-/HLA-DR1-transgenic H-2 class
I-/class Il mice induced an SV9 epitope-specific IFN-y-secreting CD8+ T cell response, an
immunodominant epitope found after WNV infection in humans, which indicates that the
vaccines could also induce a CD8+ T cell-specific response in humans that may be
protective against WNV.

In summary, this thesis has led to several insights regarding the presence of WNV in
Europe. The WNYV strains utilized in our studies were all three found to be neuroinvasive
and neurovirulent in mice and European strains may therefore present an equal threat to
Europe as the NY99 strain did to the inhabitants of the US. Our studies have also
demonstrated the virulence of a lineage 2 strain of WNV, despite the limited amount of
cases that have been associated with this strain. This suggests that lineage 2 strains of WNV
that may arise in the future in Europe could also be virulent. Furthermore, this thesis has
shown that infection of the carrion crow with WNV may play a role in the (future) spread
of this virus within Europe and could serve as an indicator of WNV activity. As a result,
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WNV could remain a threat for Europe and the results may prove to be useful for directing
WNV surveillance methods. Lastly, if WNV becomes a future epidemic burden to Europe,
the MVA-based vaccine that we have investigated may be useful in protecting against
infection with both lineage 1 and 2 WNVs.
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course not forget your concern regarding my wellbeing or physical appearance, which often
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included helpful suggestions, such as “You look tired today Steffie, you should go home
and take some rest”, or “You look better with your hair down.” :p.

Marco, jij bent zeker een van de mensen die mijn PhD ervaring onvergetelijk heeft
gemaakt. Je hebt zeker een groot onderdeel uitgemaakt van het fun aspect maar ook bv
jouw scherpe opmerkingen tijdens de pizzameetings of discussies waren onmisbaar!
Zomaar uit jouw mouw schudde je een heuze ‘speurtocht’ in Antwerpen, dus voor jouw
creativiteit heb ik ook altijd bewondering gehad. Dit is inclusief uitdrukkingen die ik nooit
meer zal vergeten, zoals ‘Corona boys’, ‘afberen’, ‘paardelam’ en ‘bangboat’!

Lennert — Als geadopteerd lid in de exotic groep, ook jij hebt veel bijgedragen aan de
gezelligheid, zoals bij de pizza meetings, Antwerpen, borrels, Sinterkerst en natuurlijk
Lyon!

Oanh: Vanaf mijn tweede jaar hebben we elkaar beter leren kennen via de lunches (vooral
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superleuk om onderdeel te mogen zijn van je bachelorette en bruiloft, en hopelijk blijven
we elkaar zien en mag ik ook veel meemaken van Kaj©
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time. Your laugh is infectious and your intelligence undeniable! Whenever | had remaining
thoughts after a presentation or meeting you were one of the people | enjoyed discussing
these with the most. | also remember the chat we once had where you were able to make me
see the bright sides of my thesis©

Bri, thanks for the fun, friendship and positive vibes!

Fleur, op het laatst nog proefschrift leed gedeeld! Maar we hebben gelukkig ook veel lol
gehad op Sinterkerst en borrels (met name de voetbal borrel).

Jurre — Eerst kwam je nog verlegen (dat was hoogstwaarschijnlijk mijn verbeelding!) naar
boven om te vragen waar Erik was maar al gauw was je student op de 17e. Met Sinterkerst
en andere borrels ontdekte ik al snel jouw feestbeestaard en hebben we veel lol gehad! 1k
vond het jammer toen je een half jaar weg was omdat je ook veel leven op de afdeling
bracht!

Chantal, jij was voor een tijdje mijn buurvrouw op Eel714. Ik heb geleerd hoe ontzettend
druk jij het hebt maar dus ook hoe goed je kunt multitasken. Door jou was ik ook extra op
de hoogte op het gebied van MERS en arbovirussen. Natuurlijk hebben we ook veel
gezellige kletspraatjes gehad ;) en vond ik het jammer toen je naar een andere kamer moest
verhuizen. Natalie, ik vond het leuk de paar keer dat je bij ons op de kamer hebt gezeten en
de gesprekken die we hebben gehad over arbovirussen, PhD en katten.

Georgina, bedankt voor de leuke gesprekken tijdens etentjes.

Tijdens mijn 4 jaar op de afdeling zijn er toch een aantal mensen gekomen en gegaan en wil
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Marine, Freek, Bahar, Monique, Joyce, Pascal, Christel, Stijn, Wessel, en Liz. En
Varsha wil ik niet alleen bedanken omdat je een leuke groepsgenoot was maar ook omdat
je heel veel werk voor de vogel IHC hebt gedaan! Imke: Door jouw spontaniteit en
behulpzaamheid voelde ik me snel thuis op Ee1714 en ik kan me nog steeds herinneren dat
je op mijn eerste werkdag mijn bureau (lees: bijzettafeltje) voor me had schoongemaakt en
dat ik je login en wachtwoord mocht gebruiken toen ik nog niet mijn eigen account had. Ik
hoop je nog vaker te zien in Utrecht voor een kletspraatje!

De volgende andere mede-collega’s wil ik graag bedanken voor hun gezelligheid, zoals bij
borrels, etentjes, op het lab of in de trein: Stefan V, Werner, Ramona, Carolien,
Mathilde, Miranda, Claudia, Stalin, Stefan N, Gijs, Stella, Sander, Rachel, Eefje,
Lidewij, Johanna, Mart, Rory, Alwin. Ook collega’s die zijn gekomen nadat ik al klaar
was, Wesley, Laura en Stephanie.

Josanne — Pas na de echte PhD periode kwamen we met elkaar in contact! Maar omdat we
ongeveer in dezelfde fase van afronding zaten wat betreft ons proefschrift hebben we veel
hierover kunnen bespreken en kon je mij vaak al vertellen over de volgende stap. 1k hoop
dat we elkaar nog vaak zullen treffen in Utrecht of Hannover en samen nog veel TBEV
besprekingen en hopelijk ook experimenten zullen hebben.

My UCU friends: Cheryl, Emily, Stijn, Wouter, Xandra, Britt, Frederieke, Niels, Phil,
Sietske, Ruben and llly (UCU-adopted;) (en bijgekomen aanhang zoals Jurriaan, Peter,
Lex, Lisa, Ingunn, Indira, David, Charlotte, loannis, Marion). | am so glad | had you
guys for fun, distractions, conversations, drinks and trips and also being able to share PhD
or research perils with some of you! We have been friends for at least 10 years (even
though we don’t feel much older) and | hope we will remain friends for many years to
come.

Britta en Nina — Tijdens onze stage bij het EWI heb ik jullie gevonden en hebben we
daarna ook nog vele leuke tijden doorgebracht in oa Utrecht, Neede (tentfeest;), Duinrell,
Haarlem, Amsterdam. Het feit dat jullie tegelijkertijd bezig waren met jullie PhD (of iig
met labwerk) heeft ons uiteraard nog meer bij elkaar gebracht. Ik zou nog steeds willen dat
jullie vaker plek hadden in jullie overvolle agenda’s;). Britta, ik vind het erg jammer dat je
naar Stockholm gaat verhuizen en ik ga je zeker missen, vooral nu we onze HSP
gelijkenissen hebben gevonden, maar Nina en ik komen jullie zeker opzoeken!

George and Alanna — Nothing, incl Leiden or my PhD period would have been the same
without you guys! | found you on a cold, winter’s night in 2011 when | was moody from
walking through the snow® We immediately became a great quartet and saw each other
almost every weekend. Great dinners, experiMentationS, bbgs, beach, the lake, chilling in
the park, Science club, movies, Paris, New York, Giethoorn....! Life truly changed when
you guys left for the USA and becoming JAGS again is probably now more a dream than
ever. Thanks for your friendship!

I would also like to thank other Leiden friends that made Leiden truly feel like home and
gave me some great company; Mira, Daniel, Mia, David, Geoffrey, Marléne, Phat,
Stefanie, Youssry, Samira, Job, Marjolein, Eva, Sebastian, Sanjay, Anna, Pim,
Miriam, Iris, Yessica, Bas.
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Some French friends such as Anastasia, Anne-Laure and Niels, and Anais and Rocco for
some wonderful dinners and fun!

Huidige (ex-)Artemis collega’s zoals Leslie, Linda, Susan, Loubiela, Mirelle, Guido,
Anne, Ruud; ook al niet direct betrokken geweest bij mijn promotietraject, wel aanwezig
tijdens mijn (lange) afrondings phase. Jullie zijn/waren hele fijne collega’s! Loubiela en
Mirelle, bedaknt voor al jullie werk op het lab, en door jullie te mogen begeleiden heb ik
veel geleerd!

Lieve Lim familieleden (alfabetisch®): Gavin, Gunilla, James, Jasper, Jon, Lance,
Tiara, Tita, Twyla en de kids. En Goedraad familieleden, Pucky, Iris, Ad, Remke,
Willem-Jan, Sanne en Thije. Ik vind het altijd zo fijn om bij jullie te zijn en we hebben
altijd zoveel lol. Hopelijk kunnen we elkaar nog vaker zien in de toekomst.©

Papa en mama: Ik ben zo blij dat jullie in 2011 naar Nederland zijn gekomen! Elkaar maar
2% per jaar zien (mama wel wat vaker natuurlijk ) voor 7 jaar lang begon steeds zwaarder te
wegen en ik ben blij dat papa het mogelijk gemaakt heeft om overgeplaatst te worden. Nu
zien we elkaar 2x per maand en hebben jullie een belangrijke periode eindelijk van
“dichtbij” mee kunnen maken (zoals papa altijd voelde dat hij veel dingen heeft gemist).
Van bijna pathologisch verlegen tweelingmeisjes hebben jullie ons toch om weten te
toveren naar iets redelijk geslaagds;) Bedankt voor alles wat jullie voor ons gedaan hebben
(“alles” in 30 jaar is echt heel veel")! Hopelijk kan ik jullie nog steeds trots maken in de
toekomst!

Zusje Jamie. Het heeft zeker geholpen dat we samen naar Nederland zijn gekomen en dat
we iig elkaar hadden. (Bijvoorbeeld, op UC kon ik altijd mijn kleren bij jou komen strijken
als ik me eenzaam voelde;)) Dat we bijna tegelijkertijd begonnen met onze PhD en beiden
iets gerelateerd aan de hersenen deden kon eigenlijk niet missen! Vier jaar lang hebben we
veel verhalen uitgewisseld en daardoor veel aan elkaar gehad. Het was voor mij altijd een
geruststelling en aanmoediging, “als jij iets kan dan kan ik het ook”, en ik denk dat dat nog
lang zal gelden. Ook al doe je nu geen research meer vind ik het leuk dat het zo goed gaat
bij je nieuwe baan en gaan we de komende tijd misschien toch echt een keer iets niet
hetzelfde doen®© Ik hoop dat we nog lang dicht bij elkaar in de buurt zullen blijven!

Chers beaux-parents Luc et Micheline, merci de m'avoir toujours accueillie a Lyon ou au
chalet et de m'avoir permis de me détendre pendant les vacances avec des randonnées
exceptionnelles, de la bonne nourriture et des conversations agréables! Tom, even though
we should have seen each other more often (for example in France or England), the two
times we saw you in London as well as the two times you came to visit us in Leiden were
great!

Julien: C'est a mon tour, a présent (en frangais et presque 6 ans aprés toi!). Tu m’as suivie
jusqu’aux Pays-Bas et ma période de thése n’aurait jamais été la méme sans toi! Tu es mon
meilleur ami et mon “roc” et tu m’as toujours soutenue pendant cette période. J’admire ton
intelligence et tes connaissances, tu m’as aussi aidée avec certains calculs et graphiques.
Ton esprit calme, appaisant, rationnel mais positif, a toujours été trés important pour moi, et
passer du temps avec toi les soirs et les weekends m’a tellement aidée a me détendre et a
oublier le mauvais temps au boulot. Tu m’as bien initiée aux sorties au grand air (les
randonnées et l'escalade) et je n’oublierai jamais nos excellentes vacances aux Etats-Unis et
en France! En ce moment nous nous trouvons dans une période trés difficile mais j’en suis
slire qu’on va se battre et s'en sortir!
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