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Chapter 1 

 

Introduction 

 

Part of this chapter is derived from: 

Endocrine therapy resistance in estrogen receptor (ER) positive breast cancer 

Tommaso De Marchi, John A. Foekens, Arzu Umar, John W. Martens. 

Drug Discov Today. 2016; epub ahead of print 

  



 

1.0 - Introduction 

1.1 – Breast cancer classification. 

Breast cancer is the most common malignancy among women [1]. At all tumor stages, treatment of 

breast cancer is determined based on the status of several markers, first of all the transcription 

factors estrogen receptor α (ER, ESR1 gene) and progesterone receptor (PgR, PGR gene), and the 

receptor tyrosine kinase human epidermal growth factor receptor-2 (HER2, ERBB2 gene). Still, 

many more pathological and molecular features play a role in breast cancer development, metastasis 

formation and therapy resistance. 

 

1.1.1 – Intrinsic breast cancer subtypes 

By using gene expression array analysis several major molecular subtypes of breast cancer, defined 

as intrinsic subtypes, were identified (Figure 1.1) [2]. ER positive tumors are subdivided into 

luminal A and B subtypes, which are characterized by the expression of estrogen regulated genes, 

such as GATA3, NAT1 or XBP1, and by a cell morphology similar to that of the mammary gland 

luminal epithelium (i.e. ducts and acini). In particular, luminal B tumors display higher expression 

of cell cycle genes and lower expression of luminal genes (e.g. PGR) [3]. The ER negative 

subgroup is further divided into tumors that show HER2 overexpression and those that are basal or 

normal breast-like. While the HER2 positive subgroup is associated with expression of genes such 

as GATA4 and GRB7, distinction between the basal and normal breast-like subtypes relates to the 

overexpression of genes such as CDH3 and CXCL1 (specific to the basal subtype), and PIK3R1, 

AKR1C1 and FACL2 (specific to the normal breast-like subtype) [4]. In addition, while basal 

cancer morphology resembles the basal cell layer of the mammary gland, the one of the normal 

breast-like subtype is more similar to healthy breast epithelium. 



 

 

Figure 1.1. Hierarchical clustering defining the intrinsic subtypes of breast cancer. 

Colors are indicative of breast cancer intrinsic subtypes: luminal B (dark blue), luminal A (light blue), HER2 (red), 

normal-like (green), and basal (orange). Hormonal (ER and PgR) and HER2 receptor statuses are displayed in grey. 

Modified from [5]. 

 

1.1.2 – Hormonal and HER2 status and treatment options  

Nearly three quarters of all breast cancer cases display ER positivity, and constitute a class of 

relatively less aggressive tumors which generally proliferate due to ER signaling [6,7]. In ER 

positive breast cancers, PgR is often co-expressed with ER, though some (20-25%) ER positive 

tumors do not display PgR positivity. A small percentage of tumors (i.e. 3-5%) displays ER 

negativity and PgR positivity. The HER2 gene is found amplified in nearly 20% of all breast cancer 

cases and its protein HER2 can be concomitantly expressed along with ER and PgR. For both ER 

positive and HER2 positive breast cancer patients, treatment options include targeted therapies. 

Anti-estrogens (selective estrogen receptor modulators [SERM], selective estrogen receptor 

degraders [SERD]) and aromatase inhibitors (AI), that respectively block ER signaling and reduce 

systemic estrogen levels, are used to treat ER positive malignancies, the choice of which largely 

depends on the menopausal status of the patient. On the other hand, trastuzumab (monoclonal 

antibody) and lapatinib (tyrosine kinase inhibitor) are given to ERBB2 amplified breast cancer 

patients [8–10]. Around 10-15% of breast cancers does not express ER, PgR or HER2 and are 



 

therefore being classified as triple-negative breast cancer [11]. This subgroup of patients harbors 

highly aggressive malignancies, with a higher relapse rate than non-triple-negative breast cancers 

[12]. Furthermore, in the clinic no targeted systemic treatment is currently available for these 

tumors, which are then treated with standard chemotherapy (Figure 1.2) [13]. 

 

 

Figure 1.2. Pharmacological treatment options according to breast cancer receptor status. 

 

In accordance with breast cancers having different hormonal receptor and HER2 status, tumors of 

various intrinsic subtypes differ not only in gene expression patterns but, as a consequence, also 

display significant differences in risk of developing metastases, with basal, HER2 positive and 

luminal B tumors showing a significantly shorter relapse-free-survival (RFS) when compared to 

normal-like and luminal A subtypes [14,15]. 

 

1.2 – ER positive breast cancer 

1.2.1 – Mechanism of ER-signaling 

Estrogens are a class of steroidal hormones that regulate cell growth and differentiation of tissues 

(e.g. mammary gland, ovary, bone, and uterus) and are present in the human body as estrone, estriol 

and 17β-estradiol, the latter being the most abundant. These compounds bind the ER, promoting its 

dimerization and a conformational change in the ligand binding domain (LBD) of the receptor that 

allows the recruitment of transcriptional co-activators for downstream gene expression of target 

genes containing an ER binding site (i.e. estrogen responsive element) [16]. ER can also modulate 

the expression of target genes without direct binding, but by regulating transcription factors (e.g. 



 

AP-1 [17]) through protein-protein interactions [18]. The ligand-dependent activation of ER relies 

on the activation of C terminal activation function (AF) 2, located in the LBD of the receptor. 

Conversely, ligand-independent activation relies on AF-1, and is activated through ER 

phosphorylation (described in more detail below). Subsequently to its activation (irrespective of its 

modality) ER associates to chromatin in concert with pioneer factors such as GATA3 and FOXA1 

to activate transcription [19]. Important ER-regulated genes include PGR [20,21], and TFF1 

[22,23], among others.  

 

1.2.2 – Major endocrine therapies 

The first anti-hormonal drug to be widely introduced in the clinic was tamoxifen, a SERM that acts 

as an antagonist to estrogens for binding to ER by recruiting transcriptional co-repressors (e.g. 

NCoR) instead of co-activators [6,24], leading ultimately to tumor growth inhibition. Tamoxifen 

treatment in the adjuvant setting (i.e. immediately after surgical treatment of the primary tumor and 

radiotherapy) reduces disease recurrence and breast cancer mortality by 39% and 31%, respectively 

[25–27]. Furthermore, although estrogen levels vary largely between pre- and post-menopausal 

women, early studies showed similar survival benefits in both groups [6,25]. In addition to its 

action in ER positive cases, a meta-analysis study showed that a small group (i.e. 5-10%) of ER 

negative tumors also responded to tamoxifen treatment, though long-term survival benefits were not 

observed [25]. Additional studies largely confirmed that only patients with ER positive disease 

benefitted from tamoxifen and other endocrine agents [27]. From a clinical perspective, tamoxifen 

is a well-tolerated drug because its side effects are generally mild. However, long-term use of 

tamoxifen has been associated to an increased risk of endometrial cancer [10,28,29]. 

Another competitive binder of ER is fulvestrant, a SERD and pure ER antagonist that prevents its 

dimerization and facilitates its proteasomal degradation [30]. Due to this mechanism of action, 

fulvestrant treatment efficacy is unlikely to suffer from cross-resistance with other anti-estrogenic 

treatments, nor has it been shown to increase endometrial cancer risk [31], though further clinical 

confirmation in large patient cohorts still needs to be provided. 

AIs (e.g. letrozole, anastrozole, exemestane) constitute a class of drugs that inhibit estrogen 

signaling through a different mechanism as compared to tamoxifen or fulvestrant. Inhibition of the 

CYP450 family enzyme aromatase leads to systemic downregulation of estrogen levels due to the 

blockade of testosterone conversion into estrogens. In recent years, AI-based therapy has become 

one of the mainstays of ER positive breast cancer treatment in post-menopausal women, in whom it 



 

has shown increased efficacy (30% recurrence rate reduction) when compared to tamoxifen 

[27,32,33]. Study reports have further shown that AIs are either equivalent or superior to tamoxifen 

as first-line treatment for recurrent breast cancer in post-menopausal women [34]. 

 

1.3 – General mechanisms of endocrine therapy resistance. 

Tamoxifen and AIs currently constitute the two most common endocrine treatments of ER positive 

breast cancer. However, their effectiveness is severely reduced by the tumor`s intrinsic or acquired 

resistance (Figure 1.3). Although resistance occurs during all stages of the disease, it is especially a 

clinical problem in the recurrent setting, where nearly half of the patients already manifests 

resistance upon the start of treatment while the remainder develops it during therapy [35]. Several 

mechanisms (discussed in more detail below) have been associated with endocrine therapy 

resistance, such as ER gene (ESR1) mutations, epigenetic aberrations or signaling cross-talk. 

 

1.3.1 – Estrogen receptor mutations 

Somatic mutations in the ESR1 gene such A1587G, which leads to Tyr537Ser amino acid 

modification in the LBD of the receptor, have been shown to have a direct adverse impact on 

patient survival in the recurrent setting [36–39]. These mutations generally are observed in 10-30% 

of all endocrine resistant recurrent breast cancers and have been linked to enhanced sensitivity to 

estradiol as well as to constitutive activation of transcriptional activity of ER in absence of ER 

agonists [36,37,40,41]. Strikingly, these mutations seem to present themselves only after exposure 

to one or more lines of endocrine treatment (in particular AIs) in the recurrent setting [36,42], as 

concluded from paired analyses of primary tumors and their metastatic therapy resistant 

counterparts [42,43]. Taken together, these observations support the idea that ESR1 gene mutations, 

especially the ones in the LBD, prevalently arise due to endocrine therapy selection of resistant 

clones. Functional characterization as well as therapeutic targeting of these mutants is just in its 

infancy. However, due to their predictive value, monitoring of these mutations through the course 

of endocrine therapy – namely in metastatic lesions, circulating tumor cells, or cell-free DNA 

(cfDNA) [38,42–44] - may help clinicians to identify and monitor resistant patients. 



 

1.3.2 –Dysregulation of gene expression and cross-talk mechanisms 

A plethora of mechanisms can influence ER-mediated gene expression, such as changes in 

expression or occurrence of mutations in ER transcriptional modulators. Numerous studies have 

pointed out the association of the nuclear receptor co-activator AIB1 to tamoxifen therapy outcome, 

though it remains unclear whether it promotes therapy benefit or resistance [45–48]. Other co-

activators that have been linked to tamoxifen resistance are RIP140, which regulates genes that 

have been linked to tamoxifen resistance [49], and SRC-1, which acts as a limiting co-factor for the 

transactivation of ESR1 and PGR gene expression [50]. Conversely the downregulation of ER 

transcriptional co-repressors, such as NCoR1, have also been shown to contribute to resistance to 

tamoxifen therapy [51,52]. These molecular alterations have been associated with promotion of cell 

cycle progression despite tamoxifen treatment, and as a consequence they possibly constitute 

alternative therapeutic targets [51]. In addition to this, transcription factors (e.g. GATA3) and 

transcriptional complex stabilizing factors (e.g. GREB1) have been shown to contribute to 

expression dysregulation of ER-related genes leading to endocrine resistance [19,53–56]. 

Recent studies have pointed out that epigenetic changes, in particular DNA hypo-/hyper-

methylation at CpG islands and histone modifications (e.g. methylation at lysine residues) [57–60], 

can also affect outcome to endocrine therapy. Alterations in the DNA methylation pattern has been 

previously associated to resistance to tamoxifen therapy, such as the hypomethylation at the 

promoter region of PSAT1, a gene coding for an enzyme involved in serine biosynthesis [61]. 

Furthermore, endocrine treatment resistance has been associated with epigenetic gene silencing 

such as in the case of HOXC10, a homeobox gene involved in apoptosis and cell growth inhibition 

[62], or the recruitment of histone-related proteins such as EZH2, a polycomb protein with histone 

methyltransferase properties [62,63], which has been found upregulated in many breast cancers 

[64–66]. 

Several kinases of the MAPK family, such as ERK1 and ERK3, have been shown to phosphorylate 

ER (e.g. at Ser-118), prompting ligand-independent activation of the receptor, and altering response 

to ER agonists and antagonists [67–69]. Furthermore, the expression of HER2, EGFR or IGFR can 

ultimately induce phosphorylation of ER and AIB1 through cross-talk mechanisms, which have 

been shown to empower estrogen signaling and induce resistance to tamoxifen [70–73]. 

Phosphoinositide 3 kinase (PI3K) and protein kinase B (PKB; also known as Akt) also play a role in 

activation of ER-related transcription: these kinases activate the receptor in the absence of estrogens 

through phosphorylation of the AF-1 (PI3K) and AF-2 (PI3K and PKB) domains of the receptor 



 

[74]. Furthermore, activating phosphorylations of the ER can be enacted by other kinases, such as c-

Jun terminal kinase or p38 [75–77]. 

Signaling pathway cross-talk mechanisms have also been associated to the expression of long non-

coding (lnc) RNAs, such as BCAR4 (co-expressed with ERBB2) [78–80], which have been shown 

to promote resistance to endocrine therapies. Taken together, these molecules may not only be used 

as biomarkers of outcome to endocrine therapy, but could also constitute alternative therapeutic 

targets in endocrine therapy resistant patients. 

 

Figure 1.3. Schematic representation of major endocrine resistance mechanisms. 

 

1.4 – Prediction of tamoxifen therapy resistance 

1.4.1 – Traditional clinical predictive factors 

Several clinical and molecular markers have been associated with response to tamoxifen treatment, 

both in the adjuvant and in the recurrent setting. Although such information is not always easily 



 

defined in the clinic, it has been established that post-menopausal women do benefit less from 

tamoxifen therapy in the adjuvant setting and their regimen is therefore switched to AI [81].  

Among the molecular markers, ER and PgR levels are so far the best clinical markers predictive of 

tamoxifen outcome [82,83]. In addition to this, mitotic index and Ki-67 levels are also in use and 

have been associated to poor prognosis [3,84–86].  

 

1.4.2 –Biomarkers of tamoxifen resistance 

With the introduction of gene expression analysis (e.g. hybridization chips) and new techniques to 

study gene expression in vitro (e.g. RNA silencing), new methods of biomarker discovery and 

investigation have become available. While classifiers predictive of recurrence for ER positive 

breast cancer (e.g. Mammaprint® [87]) found gradual introduction into clinical practice, tamoxifen 

resistance predictive signatures still needed development [88,89]. Subsequently, either single genes 

(e.g. BCAR4) or entire gene lists (e.g. 44- and 76-gene signatures) were used as classifiers of 

tamoxifen resistance in the adjuvant and/or recurrent settings [64,79,80,90,91]. Furthermore, with 

the advent of epigenomics and the dissection of DNA transcription mechanisms, new perspectives 

have been added to the investigation of tamoxifen resistance. Signatures developed by analysis of 

ER and histone proteins binding sites (e.g. H3K4me3) not only significantly predicted patient 

outcome in AI and tamoxifen treated patients, but outperformed previous gene expression 

classifiers [49,92]. 

 

1.5 – The proteomic approach 

1.5.1 – Mass spectrometry: a cutting-edge technique for the study of proteins 

With the improvement of chromatographic and ion separation techniques, mass spectrometry (MS) 

has become one of the most advanced techniques to address biological and clinical issues, being 

able to identify and quantify > 10,000 protein species in a single biological specimen, rendering this 

technique a robust additional tool complementary to gene expression analysis [93–95]. 

Furthermore, the elucidation of the human proteome showed the full capabilities of the proteomic 

approach in analyzing the wide dynamic range of protein expression present throughout different 

tissues [96,97]. In addition, with the possibility to detect post-translational modifications (PTMs), a 

second functional layer of information can be provided [98,99]. 



 

1.5.2 – Common quantitation methods in proteomics 

In MS data analysis, protein identification is the first step, which can be followed by quantitation. 

The latter can be achieved through a plethora of methods (Figure 1.4). Chemical labeling techniques 

(e.g. isotope tags for relative and absolute quantitation [iTRAQ], tandem mass tags [TMT]) 

constitute one of the most common approaches for proteomic analyses of large sample sets, offer 

the possibility to accurately quantify proteins in a robust and reproducible way [100,101]. However, 

these techniques require relatively high amounts of sample material, and pre-labeling protein 

enrichment is impractical when working with small amounts of sample material. Furthermore, 

peptide quantitation through these methods may suffer from interference derived from co-eluting 

peptides of a similar mass, though this can be minimized by employment of fractionation 

techniques. In this perspective, an iTRAQ or TMT experiment would rely on several sample 

preparation steps, which would be time-consuming and susceptible to variation in protein 

quantitation due to the extensive sample manipulation [102]. In this perspective, algorithms that 

enable quantification without previous labeling are becoming attractive alternatives. Label-free 

quantification (LFQ), which is provided within the MaxQuant environment for example, does not 

rely on sample pre-processing, and protein levels are computationally derived from the intensity of 

their peptide-spectrum matches (PSMs), which are compared between samples. Another approach 

consists of counting fragmentation spectra belonging to a protein-specific peptide, the so-called 

spectral count [103]. While the first approach uses peptide extracted ion chromatograms and 

integrates them through the chromatographic run (in the time scale), the second counts peptide 

fragmentation spectra, which are based on MS2 scans, and compares them for every peptide to 

achieve relative quantitation [102]. Despite the fact that label-free methods provide less accurate 

quantification compared to chemical labeling methods, the number of experiments that can be 

compared is virtually unlimited, rendering such approach well suited for the analysis of large 

sample cohorts with two or more experimental conditions. Furthermore, LFQ has proven to identify 

a relatively higher amount of proteins when compared to labeling strategies, thus potentially 

providing a higher analytical depth. Recent studies have demonstrated that combination of tissue 

enrichment strategies with sample fractionation and LFQ allows the quantification of thousands of 

proteins, especially in the low abundance range [102,104–107]. Furthermore, with the continuous 

improvements in LFQ softwares (e.g. MaxQuant), protein quantification has become progressively 

more accurate [108–111]. 

While these methods are generally used in global proteomic studies, other quantitation strategies are 

used to determine highly accurate abundances of target peptides/proteins [102,112]. These targeted 



 

approaches are generally more suited for biomarker verification and clinical assay development 

strategies, due to the fact they provide precise quantitation of (theoretically) hundreds of proteotypic 

peptides in a sensitive and reproducible way. Protein quantitation methods for these targeted assays, 

such as selected reaction monitoring (SRM), comprise label-free and chemical labeling approaches, 

as well as isotopically labeled standard spikes. Since isotopically labeled versions of target analytes 

are used as internal standards, they retain the same physical and chemical properties of their 

endogenous counterparts, minimizing interference derived from various sources (e.g. co-eluting 

species) [113]. Furthermore, when compared to immuno-assays (e.g. enzyme-linked immuno-

sorbent assay [ELISA]), SRM MS provides comparable selectivity and lower development costs 

[114,115]. 

 

Figure 1.4. Most common protein quantitation methods used in MS-based proteomics. 

Blue and yellow boxes represent different experimental conditions, while dashed lines indicate steps at which 

experimental variation can occur. Modified from [102].  



 

1.5.3 – Proteomic approaches for biomarkers 

Proteomic approaches for the development and validation of clinically useful biomarkers are 

diverse, though they can be summarized into two main categories: global (or shotgun) and targeted 

proteomic analyses. While in the former approach the whole (or a subset of the) dynamic range of 

proteins expressed in a biological sample is measured, the latter employs previous biological 

knowledge to specifically identify and accurately quantify a putative marker or a subset of proteins 

(e.g. N-glycosylated proteins). In the biomarker discovery phase, statistical methods are applied to 

define significant differences in (modified and/or unmodified) protein levels between two or more 

experimental or biological/clinical conditions (t-test, ANOVA, etc.) [116]. These differentially 

expressed proteins constitute a list of putative biomarkers from which a predictor can be developed, 

which are then verified in an independent set of samples (i.e. validation set). Both global and 

targeted approaches are used in biomarker discovery studies, though a general consensus remains: 

while global proteomic analysis is generally used to identify putative biomarkers, ELISA assays or 

targeted MS approaches are then used to provide accurate and quantitative measurements, which 

provide biological and technical validations as well as a more clinically feasible assay 

[105,111,117,118]. 

 

1.5.4 – Phosphoproteomics 

The most common post-translational modification, dysregulation of protein phosphorylation, has 

been reported as one of the critical factors associated to cancer development, metastasis formation, 

and therapy resistance (e.g. ERBB2, EGFR) [119,120]. On the technical side, the study of 

phosphorylated proteins has so extensively evolved through the development of multiplexable 

techniques (e.g. reverse-phase protein arrays, peptide arrays, MS), that assessment of thousands of 

phosphorylation events is nowadays standard practice in many laboratories [121]. On the biological 

side, not only the analysis of phosphorylated proteins enables the identification of dysregulated (e.g. 

hyper-activated, mutated) signaling pathways in diseases such as cancer (e.g. effects of BRAF 

mutations), but also provide clarifying information on drug on- and off-target effects, as well as 

new pharmacologically targetable biomarkers (e.g. kinase inhibitors) [122–125]. Measurement of 

post-translational modification, though, come at the cost of increasing quantitation variation due to 

the additional purification step required (i.e. increased sample manipulation). Furthermore, while 

modified peptides are less ionizable compared to their unmodified counterparts, modifications are 

also more labile, impacting overall sensitivity of the MS measurement [126]. Alternative ionization 



 

techniques (e.g. combined electron transfer and collision induced dissociation EThcD) have been 

developed to solve this issue in the field of phosphoproteomics [127], though the laborious sample 

preparation impacts negatively on the analysis of large cohorts of clinical specimens. 

 

1.5.5 - Glycoproteomics 

While phosphorylation changes elucidate the status of kinases in a given biological condition, 

glycosylation patterns provide additional information on cell-to-cell adhesion or protein folding 

[128,129]. Furthermore, glycosylated protein function may also change depending on the nature or 

the position of the attached group. Elucidation of the function of glycosylated proteins in complex 

diseases has pointed out that alteration of glycosylation pathways are hallmarks of cancer 

progression and metastasis [130,131]. Furthermore, glycosylated proteins are also secreted in the 

bloodstream and may constitute viable disease biomarkers for diagnostic purposes. Despite this, 

extensive glyco-proteomic analyses remain challenging due to extensive sample preparation, 

lability of modifications, and difficulties in glycosylated peptide spectra annotations [117,132]. 

 

1.5.6- Protein markers of tamoxifen resistance 

In recent years, several studies reported global MS-derived biomarkers for tamoxifen resistance in 

the adjuvant setting. Proteomic studies in both ER positive breast cancer cell lines and patient-

derived tumors showed that senescence inducing (i.e. RARA) and proliferation-related (i.e. CAPS) 

proteins were associated to short RFS and poor outcome to adjuvant tamoxifen therapy [133,134]. 

Other studies investigated changes in serum protein levels between tumors either responsive or 

resistant to tamoxifen treatment (e.g. Apo-lipoprotein E) [135]. 

Only one study investigated tamoxifen therapy resistance in the recurrent setting through MS, in 

which a panel of 100 proteins was derived from the analysis of 51 ER positive breast cancers. 

Despite these initial findings, only CD147 (or EMMPRIN; i.e. the most significant protein) was 

validated in an independent sample set through immunohistochemistry (IHC) [136]. 

Taken together these studies paved the way for clinical breast cancer proteomics. However, each of 

them suffered from either relatively small sample numbers or tumor heterogeneity unrepresentative 

(i.e. cell lines) discovery sets. Furthermore, most studies were small sized or lacked of validation 



 

cohorts, necessitating large independent verification sets prior to biomarker introduction into a 

clinical setting. 

 

1.5.7 – Tissue proteomic workflow for biomarker discovery 

In the search for prognostic and predictive cancer biomarkers, both genomic and proteomic analyses 

are hampered by the presence of multiple cell types in primary tissues, which can alter accurate 

quantitation due to signals derived from tumor-surrounding tissues (e.g. stromal cells, adipocytes, 

leucocytes) [137–139]. To overcome this issue, cell population enrichment techniques, such as 

LCM, have proven to be powerful tools in elucidating tumor biology and approaches to biomarker 

discovery [140–142]. Despite the high purity of sample material derived from cell enrichment 

procedures, only minute amounts of tissue can be derived in a time- and cost-effective manner, 

which can limit the number of protein identifications on the MS level. Improvements in liquid 

chromatography and with the next generation of high resolution MS (i.e. Orbitrap series), the 

amount of identified and quantified proteins from LCM material was highly improved [104]. 
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Chapter 2 

 

Aim and outline of this thesis 

 

Resistance to endocrine therapy is a major clinical problem. In the recurrent setting, nearly half of 

the patients with ER positive tumors that are treated with tamoxifen manifest intrinsic resistance to 

the drug, the other half develops resistance later on. Several studies have elucidated various 

mechanisms of resistance to tamoxifen therapy, though none of these observations have – so far - 

been translated into the clinic in terms of patient stratification for treatment or new treatment 

options. 

With the advancements in proteomic technologies, in particular MS, changes in protein abundance 

and post-translational modifications are now being measured with high sensitivity and accuracy. 

Furthermore, targeted MS approaches provide multiplexable and high precision platforms to 

measure analytes from different kinds of samples (e.g. blood, primary tumor tissue). In the light of 

this, proteomic technologies offer a sensitive and accurate approach that is not only suitable for 

biomarker discovery studies, but may also provide a platform for potential introduction into clinical 

diagnostics.  

In our laboratory, we developed and optimized a tissue proteomic workflow by combining laser 

capture microdissection (LCM) to high resolution MS analysis (1, 2) for the analysis of large patient 

cohorts and the discovery of prognostic and predictive biomarkers in breast cancer (e.g. (3)). 

In the light of this, the scope of this thesis is: 

- Evaluation of the advantage of cell enrichment techniques in proteomics based biomarker 

discovery. 

- Development and validation of a protein based classifier for tamoxifen resistance. 

- Design and development of a targeted MS based assay to quantify classifier proteins. 

- Analysis of pathways and potential biomarkers present in subgroups of ER positive breast 

cancers. 



 

Due to the fact that primary cancer tissues, and in particular breast cancer, are composed of various 

cell types (i.e. epithelial tumor cells, adipocytes, leukocytes, fibroblasts, etc.), we have successfully 

developed a tissue proteomic pipeline that combines LCM cell purification with high resolution MS 

(1, 2). Despite this, clear-cut differences between proteomic analysis of breast cancer LCM derived 

and whole tissue material was still unclear. In Chapter 3 we have elucidated the differences between 

proteomic analyses of whole tissue and LCM enriched material analyzed by high resolution MS in 

terms of identified MS/MS spectra, peptides and proteins. Furthermore, we evaluated the 

differences in the quantitative measurement of key breast cancer markers (e.g. ER, HER2).  

Having established the viability of LCM in elucidating proteomic changes in breast cancer tissues, 

we applied this tissue proteomics pipeline in Chapter 4 for the development and validation of a 4-

protein signature (PDCD4, OCIAD1, G3BP2 and CGN) predictive of tamoxifen resistance in 

recurrent ER positive breast cancer. In order to forward the measurement of the predictive 4-protein 

signature towards a clinical setting, a reproducible, accurate, fast, and preferably multiplexable 

assay would be advantageous over shotgun proteomics or single-plex IHC. Since the introduction of 

high resolution MS in clinical diagnostics is not easily feasible due to extensive sample 

measurement times, and due to the fact that only PDCD4 was validated at IHC level, we aimed at 

developing a multiplexable targeted MS assay. An example of such a technique is multiple reaction 

monitoring (MRM), which is capable of analyzing target proteins in a faster and more accurate way 

when compared to high resolution MS methods. In addition, we combined immunoaffinity 

enrichment through anti-peptide antibodies with MRM in order to overcome interference from 

tissue heterogeneity. This approach, defined as immuno-MRM (iMRM), is able to quantify proteins 

out of complex sample matrixes (e.g. plasma) in the sub-femtomolar range. In Chapter 5 we 

describe the development of an iMRM approach for targeted analysis of the protein signature in 

breast cancer primary tissue lysates. This workflow was then applied to measure peptide 

abundances representing the 4-protein predictor in breast cancer patient-derived material (e.g. 

whole tissue lysates). Chapter 6 describes the generation of a 4-protein classifier based on iMRM 

data in breast cancer tissues and its comparison to classifiers based on high resolution MS 

measurements of whole tissue and LCM enriched material. The 4 proteins were also measured in an 

independent cohort of breast cancer patient derived sera in order to assess whether a serum-based 

classifier could be developed. 

Having developed a tamoxifen resistance predictive signature for recurrent ER positive breast 

cancer through high resolution MS, and a targeted MS assay to measure the 4 proteins with high 

precision, we aimed to investigate molecular mechanisms of the most differentially expressed 



 

proteins in our proteomic dataset. Although the 4 signature proteins significantly predicted 

tamoxifen outcome groups, ANXA1 and CALD1 displayed the most notable changes in expression 

levels. In Chapter 7, we first assessed the clinical relevance of these proteins by IHC, and then 

performed pathway analysis on ANXA1, CALD1, and their correlated proteins, to elucidate which 

mechanisms of resistance these molecules might be involved in. 

 

A plethora of biological pathways have been associated to tamoxifen resistance in breast cancer. 

Among these, metabolic changes in tumor cells, such as the diversion of glucose into the serine 

biosynthesis pathway, have been associated with cancer cell proliferation and oncogenesis (4, 5). 

Phosphoserine aminotransferase 1 (PSAT1) is an aminotransferase that catalyzes the transformation 

of phospho-pyruvate into phospho-serine, and its mRNA expression has been associated with poor 

outcome to tamoxifen treatment in ER positive recurrent breast cancer (6). In Chapter 8 we aimed at 

assessing the association of PSAT1 protein levels with tumor progression and, based on gene 

expression data, elucidate its role in tamoxifen resistance through pathway analysis. 

 

In conclusion, this thesis demonstrates the viability of proteomic technologies in biomarker 

discovery studies, in the development of clinically feasible assays, and in the elucidation of 

proteomic changes of cancer cells in tamoxifen resistant ER positive breast cancer. Furthermore, we 

here point out that different mechanisms of resistance may arise in subsets of tumors, which are 

linked to cytokine signaling and cancer cell metabolic changes.  
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Abstract 

Laser capture microdissection (LCM) offers a reliable cell population enrichment tool and has been 

successfully coupled to MS analysis. Despite this, most proteomic studies employ whole tissue 

lysate (WTL) analysis in the discovery of disease biomarkers and in profiling analyses. 

Furthermore, the influence of tissue heterogeneity in WTL analysis, nor its impact in biomarker 

discovery studies have been completely elucidated. In order to address this, we compared 

previously obtained high resolution MS data from a cohort of 38 breast cancer tissues, of which 

both LCM enriched tumor epithelial cells and whole tissue lysate samples were analyzed. Label-

free quantification (LFQ) analysis through MaxQuant software showed a significantly higher 

number of identified and quantified proteins in LCM enriched samples (3,404) compared to whole 

tissue lysates (2,837). Furthermore, WTL samples displayed a higher amount of missing data 

compared to LCM both at peptide and protein levels (p-value < 0.001). 2D analysis on co-expressed 

proteins revealed discrepant expression of immune system and lipid metabolisms related proteins 

between LCM and WTL samples. We hereby show that LCM better dissected the biology of breast 

tumor epithelial cells, possibly due to lower interference from surrounding tissues and highly 

abundant proteins.  



 

Introduction 

Current proteomics technologies are capable of quantifying almost the entire human proteome due 

to improvements in sample preparation, liquid chromatography, and MS instruments [1–3]. 

Furthermore, MS based techniques have proven to add another layer of information - when 

compared to gene expression data -in the profiling of complex diseases, such as cancer [4]. Despite 

this, proteomic characterization of tumor tissues is often thwarted by the presence of diverse cell 

subpopulations that increase tissue morphological heterogeneity [5], such as stromal cells, 

leukocytes, endothelial cells, adipocytes and other cell types. In the analysis of breast carcinomas, 

complexity can be further enhanced by the presence of normal epithelial tissue, which, if not 

segregated prior to analysis, may influence protein quantification [6,7]. Cell enrichment techniques 

such as LCM offer a robust and reliable tool to isolate specific cell types from their harboring 

tissues, and can then be subjected to molecular analyses that allow elucidation of biological features 

with associated molecular mechanisms [8,9]. As an example, LCM based enrichment is well suited 

for both downstream genomic and proteomic analyses, allowing detection of thousands of 

transcripts and proteins out of heterogeneous biological samples [10–13]. However, due to the 

minute amounts of material yielded, quantitative proteomics through peptide labeling strategies is 

very challenging in such a workflow. In recent years, label-free quantification (LFQ) algorithms 

have been extensively improved, allowing high sensitivity and robustness in the identification of 

large numbers of proteins [14]. In particular, MaxQuant software enables protein identification and 

quantitation with high mass accuracy (i.e. p.p.b. range) and precision based on the assembly of 3D 

peaks (i.e. counts/s, m/z, and retention time) [15]. Furthermore, MaxQuant enables identification 

transfer across samples through the “match-between-runs” option, which aligns peptide retention 

times between different runs, where alignment order is determined by hierarchical clustering, and 

applies a Gaussian kernel smoothing to mass matches between different runs. This way, the amount 

of overall identifications in a dataset is generally increased more than 2-fold while missing data are 

significantly reduced [16,17]. As a consequence, an increase in number of aligned samples would 

likely maximize peptide identifications and reduce the presence of missing values. In our 

laboratory, we established a tissue proteomic pipeline that not only allows robust quantification of 

thousands of proteins from minute amounts of microdissected epithelial tumor cells using 

MaxQuant [12,13], but has also proven to be a valuable tool in the development and validation of 

predictive and prognostic biomarkers [18,19]. Due to the time-consuming sample preparation 

procedure for LCM, whole tissue analysis is often preferred over LCM enrichment in profiling and 

biomarker discovery studies. So far, no in-depth comparison between the two approaches has been 

described with regard to its performance in a biomarker discovery pipeline. 



 

We previously generated and validated a protein predictor for tamoxifen therapy resistance in a 

cohort of 112 breast cancer tissues, from which epithelial tumor cells were enriched by LCM and 

analyzed through high resolution MS [19]. For 38 of these tumors, whole tissue lysate (WTL) 

shotgun proteomic data were generated as well. We hereby compare previously generated 

proteomic profiles of matching LCM and WTL samples to evaluate their performance in total 

protein identification, and in the perspective of biomarker discovery studies. To assess the influence 

of identification transfer between samples using MaxQuant, LCM and WTL mass spectrometer 

RAW files were searched as one and as two separate data sets. Differences between the LCM and 

WTL sets were evaluated at the MS, peptide, and protein levels. 

 

Materials and methods 

Patient samples 

A total of 38 estrogen receptor (ER) positive primary breast cancer tissues constituting a subset of a 

previously described cohort (De Marchi et al, under review, and [19,20] were available for this 

study. Samples were selected out of a total of 112 ER positive fresh frozen primary breast cancer 

tissue samples derived from three academic medical centers in the Netherlands (years of collection: 

1980-1996): Erasmus MC University Medical Center (EMC), Rotterdam, the National Cancer 

Institute – Antoni van Leeuwenhoek hospital (NKI-AVL), Amsterdam, and Radboud University 

Medical Center (RadboudUMC), Nijmegen. ER positivity in tumor cytosols was assessed by 

quantitative biochemical assays (EMC), reverse-transcriptase quantitative polymerase chain 

reaction (RT-PCR; RadboudUMC), or IHC (NKI-AVL). ERBB2 status was determined by RT-PCR 

(EMC and RadboudUMC) and IHC (NKI-AVL). Tumors were selected based on a tumor area (> 

50%) after histological evaluation, resulting in a set of 38 samples (EMC: n = 15; RadboudUMC: n 

= 4; NKI-AVL: n = 19). All patients underwent surgery of their primary tumor, developed recurrent 

disease, and were treated with tamoxifen as first line therapy. Good and poor outcome groups for 

tamoxifen treatment of patients with recurrent breast cancer were defined based on whether tumor 

progression occurred before (≤; poor) or after (>; good) 6 months after start of therapy. The study 

cohort comprised a total of 25 good and 13 poor outcome patients.  



 

LCM and WTL sample preparation 

All frozen tissue samples were cut on a Microm HM 560 cryostat (Thermo Scientific), collecting 1 

(5 µm) section for downstream hematoxylin and eosin (HE) staining, 10 x 10 µm sections for WTL 

preparation, and 8 x 8 µm sections for downstream LCM. HE staining was performed as follows: 

distilled water (1 min), hematoxylin (30 sec), distilled water (1 min), eosin (30 sec), distilled water 

(1 min), 50% ethanol (1 min), 70% ethanol (1 min), 100% ethanol (1 min), 100% ethanol (1 min), 

100% ethanol (1 min), Xylene (1 min), Xylene (1 min), Xylene (1 min). Sections for WTL 

processing were collected into a LoBind™ Eppendorf tube and immediately stored at -80°C. 

Sections for downstream LCM were collected on polyethylene naphtalate (PEN) coated glass slides 

(Carl Zeiss Microsystems GmbH, Göttingen, Germany), which were previously sterilized by UV 

exposure (1 min). Collected sections were immediately dehydrated with 95% ethanol and stored at -

80°C for further processing. Prior to LCM procedure, slides were thawed (room temperature) and 

hematoxylin staining was performed, as follows: distilled water (1 min), hematoxylin (30 sec), 

distilled water (1 min), 50% ethanol (1 min), 70% ethanol (1 min), 95% ethanol (1 min), 100% 

ethanol (1 min), 100% ethanol (1 min). All ethanol solutions contained Halt Protease Inhibitor 

Cocktail (Thermo Fisher Scientific Inc, Rockford, IL, USA) at a 1:100 v/v concentration. From 

each specimen, an area of approximately 500,000 µm2 was collected from each tissue using a 

photo-activated localization microscopy Micro Beam Axio Observer A1 device and gathered in an 

adhesive cap (Carl Zeiss Microsystems GmbH, Göttingen, Germany). A volume of 20 µl of 0.1% 

w/v Rapigest surfactant (Waters Corporation, Milford, MA, USA) in 50 mM ammonium 

bicarbonate was used to transfer the collected LCM samples into LoBind™ Eppendorf tubes 

(Eppendorf AG, Hamburg, Germany).Tissue containing buffer was frozen after collection and 

stored at -80°C. 

 

Tissue disruption and protein digestion 

LCM collected material and sections for WTL were thawed at room temperature. A total of 100 µl 

of 0.1% w/v Rapigest surfactant in 50 mM ammonium bicarbonate solution was added to collected 

WTL sections. LCM and WTL material was sonicated using a horn sonifier bath (Ultrasonic 

Disruptor Sonifier II, Bransons Utrasonics, Danbury, CT, USA) at 70% amplitude. Prior protein 

digestion, LCM and WTL sonicated material was then spun down at 14,000 g. Supernatants were 

then collected and transferred into a new tube. Protein concentration of WTL material was assessed 

by bicinchoninic acid (BCA) assay (Pierce - Thermo Fisher Scientific). 



 

Proteins were denatured at 95°C (5 min), and subsequently reduced with 100 mM DTT (30 min) at 

room temperature. Alkylation was performed by adding 300 mM iodoacetamide to each sample and 

incubating them (30 min) in the dark at room temperature. Samples were then digested for 4 h 

(LCM) or overnight (WTL) at 37°C after addition of MS grade trypsin at a 1:4 enzyme-protein ratio 

(i.e. 100 ng/µl). Samples were acidified with TFA, and spun down at 14,000 g. Supernatants were 

collected and transferred to HPLC vials (Sigma-Aldrich Corporation, St. Louis, MO, USA) for 

downstream MS analysis. 

 

High resolution mass spectrometry analysis 

The LCM cohort was analyzed by high resolution MS as previously reported [19,20]. Before LC-

MS analysis of the WTL cohort, test LC-MS runs were performed by injecting different amounts of 

digested protein lysate (i.e. 1 µl, 2 µl, 3 µl, 4 µl, 5 µl). Ultra-violet traces at 214 nm of WTL sample 

test run chromatograms showing the same intensity (measured in mAU) as the matching LCM 

samples were then selected as final load volume, which roughly corresponded to ~250 ng of 

digested proteins as per previous BCA measurements. 

All MS measurements were performed using a nano liquid chromatography system (Ultimate 3000, 

Dionex, Amsterdam, The Netherlands), which was coupled online to a linear Ion Trap – Orbitrap 

XL™ mass spectrometer (Thermo Electron, Bremen, Germany). Samples were loaded on a trap 

column (PepMap C18, 300 μm ID × 5 mm length, 5 μm particle size, 100 Å pore size; Dionex), and 

subsequently washed and desalted in 0.1% TFA acidified water. Trap column and analytical column 

(PepMap C18, 75 μm ID × 50 cm, 3 μm particle size and 100 Å pore size; Dionex) were then 

coupled and peptides were eluted in a 3 h binary gradient (flow: 300 nl/min; mobile phase A: 2% 

acetonitrile and 0.1% formic acid in H2O; mobile phase B: 80% acetonitrile and 0.08% formic 

acid). Gradient was run as follows: 0% to 25% mobile phase B for 2 h, increase to 50% mobile 

phase B in 1 h. For ESI, metal-coated nano ESI emitters (New Objective, Woburn, MA) were used 

and a spray voltage of 1.6 kV was applied. High-resolution scan with a resolution of 30,000 (at 400 

m/z) was acquired from 400 to 1,800 Th and was used for MS detection. Automatic gain was set at 

106 ions and lock mass was set at 445.120025 u protonated with (Si(CH3)2O)6. Charge state 

screening was enabled and unassigned charge states and single charged precursor ions were 

rejected. The 5 most intense peaks in full scan were selected (isolation width = 2 u) and fragmented 

by collision induced dissociation (CID) applying 35% normalized collision energy and detected in 



 

the ion trap. Precursor masses within (±) 5 ppm tolerance range that were selected once for MS/MS 

were excluded for further fragmentation for 3 min (dynamic exclusion enabled). 

 

Mass spectrometry files analysis 

High resolution proteome profiles were previously generated from ~250 ng protein lysate both from 

LCM and WTL samples. Orbitrap.RAW files were previously deposited to ProteomeXchange 

(dataset identifier: PXD002381) via the PRIDE partner repository. MaxQuant (version 1.5.2.8) [15] 

with Andromeda as search engine [16] was used for protein identification/quantitation [21]. LCM 

and WTL sets were analyzed both as one set (aligned) and separately (separate; Fig.S1). Analysis of 

MS spectra was performed by selecting acetylation of the protein N-terminus and oxidation of 

methionine as variable modifications, while carbamidomethylation was kept as fixed modification. 

UniProt-SwissProt human canonical database (version 2015-02, canonical proteome; 20,198 

identifiers) was selected as FASTA file. Seven amino acids were selected as minimum peptide 

length. Match between runs option was kept as default (match time window: 0.7 minutes; alignment 

time window: 20 minutes). LFQ was enabled and LFQ minimum ratio count was set to 1. 

Remaining options were kept as default. 

 

Data analysis 

“ModificationSpecificPeptides.txt” and “ProteinGroups.txt” were imported and analyzed in 

Microsoft Excel. Peptides were filtered for Posterior Error Probability (PEP; < 0.05), and proteins 

for Q-value (< 0.05). Possible contaminants and reversed sequences were excluded. Intensities 

(peptides) and LFQ intensities (proteins) were Log10 transformed. Further peptide and protein 

filtering for missing data (defined as number of missing observation per sample) was performed in 

order to assess global identifications. “MS/MS submitted”, “MS/MS identified”, “Peaks sequenced” 

and “Peaks repeatedly sequenced” were extracted from “Summary.txt”. “Retention length” of 

shared peptides between LCM and WTL samples and “MS/MS counts” of all repeatedly sequenced 

peptides (i.e. MS/MS counts> 1) were extracted from “Evidence.txt”. Significant differences in 

retention lengths, MS/MS counts, mean abundances, and missing data were assessed by Mann-

Whitney (unpaired) and Wilcoxon ranked sum (paired) tests in GraphPad (v5.1). Pearson 

correlation was performed on abundances of shared peptides and proteins. 

 



 

Statistics and pathway analyses 

Gene Ontology (GO) [22] cellular component annotations were retrieved for all quantified proteins 

in both WTL and LCM sets from the Uniprot database [23], and protein intensities were plotted 

according to organelle distribution. Differences in protein distributions within subcellular 

compartments between the two sets were assessed by χ2 test. Hierarchical clustering analysis was 

performed using Cluster (v3.0; distance metric: correlation [uncentered], analysis: complete linkage 

on protein levels only) [24]. 

Mean abundances of all shared proteins between the two sets after aligned search were imported in 

Perseus (v 1.5.1.6). Furthermore, difference in mean abundances of shared proteins between LCM 

and WTL samples and significant proteins between good and poor outcome patients in each dataset 

were assessed by t-test (unpaired; unequal variances assumed).Concordance of expression between 

differentially expressed proteins in both LCM and WTL samples was assessed after transforming 

log ratios (i.e. poor vs good outcome) into dichotomous values, defined as Log ratio scores. Log 

ratio scores showing a negative expression direction (< 0) were given a negative value (i.e. -1) 

while a positive value (i.e. +1) was given to Log ratios displaying positive expression directions (> 

0). Concordance score was calculated according to the following formula: 

Concordance score = Log ratio score [WTL] - Log ratio score [LCM]. 

All concordant expression directions displayed a null concordance score (i.e. 0), while discordant 

ones displayed a positive or negative (i.e. ±2) score. 

All shared significant proteins between the two sets were also imported in Perseus with their Log 

ratios. Both protein lists (shared and shared differentially expressed) were annotated for GO 

biological process [22], and 2D analysis [25] was performed. Delta scores derived from 2D analysis 

were plotted in Microsoft Excel. 

 

Results 

LCM enrichment results in increased MS feature identification and less peak resampling 

In order to evaluate the effect of identification transfer by MaxQuant, LCM and WTL .RAW files 

were searched both as one as well as separate data sets. After aligned search, a total of 214,194 and 

325,230 MS/MS spectra were identified in the WTL and LCM sets, respectively (Fig. S2A). The 

WTL set showed a lower number of identified fragmentation spectra/sample (median: 5,551 



 

[24.72% of total]) when compared to the LCM set (median: 9,010 [49.2% of total]; Fig. 3.1A). 

Upon testing for differences, a median of 14,847 sequenced chromatographic peaks was observed in 

WTL samples in an aligned search, while a median of 16,234 peaks was observed in LCM samples 

(p-value = 0.165). A higher amount of repeatedly sequenced peaks was, however, observed in WTL 

samples (median aligned: 3,244 [21.8%]) respective to the LCM set (median aligned: 1,062 [6.5%]; 

Fig. 3.1B). Repeatedly sequenced peaks matched to a total of 13,760 features (6,985 peptides, 1,544 

proteins) in the WTL (Table S1), and 11,107 features (7,331 peptides, 1,855 proteins) in the LCM 

set (Table S2). Of these, median MS/MS counts per sample were 2.39 and 2.06 for the WTL and 

LCM sets (Wilcoxon rank p-value < 0.001), respectively (Fig. 3.1C). Subcellular protein 

distribution in LCM and WTL sets were significantly different (χ2 p-value < 0.001), with several 

GO-annotated plasma (e.g. APOA1) and extracellular matrix (ECM; e.g. SERPINA1) proteins 

detected in the WTL set only (Fig. S3A-B). Overall, these data suggested a higher redundancy in 

MS/MS spectra identifications in the WTL set. Furthermore, for shared sequenced peaks, WTL 

samples displayed a significantly higher retention time length compared to LCM (median WTL: 

1.00 s; median LCM: 0.91 s; p-value< 0.001; Fig. 3.1D), though such evidence may not be 

sufficient to explain peak resampling. 

Similar results were displayed after separate search: a total of 211,862 (WTL) and 327,276 (LCM) 

MS/MS were identified (Fig. S2B). Out of submitted MS/MS spectra, 24.8% and 49.0% were 

identified as peptides in the WTL and LCM sets, respectively (Fig. S4A). When assessing 

differences between number of sequenced peaks, no significant difference was found between sets 

(median WTL: 14,848; median LCM: 16,219; p-value = 0.258), though the WTL set still displayed 

a higher number of repeatedly sequenced peaks (median: 3,246 [21.9%]) when compared to LCM 

samples (median: 1,060 [6.5%]; Fig. S4B).Such analysis after separate search yielded similar results 

as the aligned search (data not shown), and for shared sequenced peaks, the WTL set displayed a 

significantly higher retention length (median: 1.29 s) when compared to LCM samples (median: 

0.85 s; p-value< 0.001; Fig.S4C).These data suggest that WTL samples suffer from higher 

redundancy in MS identifications respect to LCM specimens. 



 

 

Figure 3.1. MS/MS level analysis of LCM and WTL sets after aligned MaxQuant search. 

Comparison between submitted and identified MS/MS spectra (A; bars represent median level and interquartile range) 

and number of sequenced and repeatedly sequenced chromatographic peaks in WTL and LCM sets (B; bars represent 

median level and interquartile range). When compared to LCM, WTL displayed significantly higher median MS/MS 

counts (C) and retention time length (D). 

Acronyms: LCM: laser capture microdissection; WTL: whole tissue lysate; MS: mass spectrometry. 

 

Peptide identification is increased in LCM samples 

Based on the differences found between WTL and LCM samples at the MS level, we next 

investigated whether this translated to the peptide level. After aligned search, while a high number 

of peptides (14,960; median Pearson r between sets = 0.05) and unique peptides (13,616; median 

Pearson r = 0.06) were identified in both sets, the WTL cohort displayed a lower number of unique 



 

identifications (peptides: 2,682; unique peptides: 2,475) when compared to the LCM set (peptides: 

10,952; unique peptides: 10,368; Fig. 3.2A-B). Waterfall plots of shared total and unique peptides 

between the two sets showed only a slight offset between abundances when aligned search was 

performed (Fig. 3.2C-D). 

 

 

Figure 3.2. Peptide identifications in the LCM and WTL sets after aligned MaxQuant search. 



 

A large number of total overlapping peptides (A) and unique peptides (B) were found between the LCM and WTL sets. 

Waterfall plots for shared total peptides (C) and unique peptides (D) showed a comparable dynamic range in both sets. 

Fifty least and most abundant peptides are also shown (E-F). 

 

Among least and most abundant peptides, plasma protein-derived peptides showed higher 

abundance in the WTL (e.g. HBB) and lower intensity (e.g. C3) in LCM (Fig. 3.2E-F). 

Furthermore, the WTL set showed a significantly higher number of missing data for both total 

identified (p-value < 0.001; Fig. S5A) and unique peptides (p-value < 0.001; Fig. S5B). 

Separate search yielded similar results but less total identifications: 12,927 (unique: 11,671) and 

25,454 (unique: 23,552) peptides were identified in WTL and LCM samples, respectively (Fig. 

S6A-B). Mean Pearson correlation of shared peptides (9,414) and unique peptides (8,434) between 

sets were -0.06 and -0.05, respectively. Furthermore, offsets between protein abundances (Fig. S6C-

D) and missing data (p-value < 0.001; Fig. S5C-D) were more pronounced. These data suggest that 

alignment not only increased identification rates (aligned vs separate; peptides: +36.5%; unique 

peptides: +37.9%), but also decreased protein missing data in the WTL set. The LCM set did not 

greatly benefit from aligned search (aligned vs. separate; peptides: +1.80%; unique peptides: 

+1.83%). 

 

Proteomic analysis of LCM material yields higher amounts of identified proteins and lower missing 

observations 

Similar to our analysis at the MS/MS and peptide levels, we assessed differences at protein level. 

From aligned search a total of 2,837 and 3,404 proteins were identified in WTL and LCM sets, 

respectively (shared proteins: 2,696; median Pearson r = 0.45; Fig. 3.3A). Of these, a higher 

frequency of protein abundances along the intensity median was observed in WTL samples (Fig. 

3.3B). However, waterfall plots showed similar dynamic ranges between sets (i.e. over 6 orders of 

magnitude; Fig. 3.3C). As observed at the peptide level, plasma proteins (e.g. HBB) were observed 

at high levels in the WTL set (Fig. 3.3D). In addition, the median number of missing data points in 

the WTL set was significantly higher than in LCM samples (median WTL = 26.32%; median LCM 

= 5.26%; p-value < 0.001; Fig. S7A). 

From the separate search a total of 2,047 and 3,394 proteins were identified in the WTL and LCM 

sets, respectively, of which 1,815 were in common (median Pearson r = 0.52; Fig. S8A). 

Discrepancies in protein abundance frequency (Fig. S8B), and in mean abundance (Fig. S8C) were 



 

observed. Least and most abundant proteins in the LCM and WTL sets also differed, confirming our 

results at the peptide level (Fig. S8D). In addition, the difference in missing data between WTL and 

LCM samples was more pronounced (median LCM = 0.0%; median WTL = 60.53%; p-value < 

0.001; Fig. S7B) compared to aligned search. These data suggest that, also at the protein level, 

alignment increased identifications (+38.6%), and reduced missing values (for shared 1,815 

identified proteins: -50.0%) in the WTL set, while no major change (identified proteins: +0.3%; 

missing data: +0.0%) was observed in the LCM set. 

 

 

Figure 3.3. Protein level analysis of the LCM and WTL sets after aligned MaxQuant search. 

Proteins identified in both LCM and WTL sets (A). WTL samples displayed a higher number of protein abundances 

localized around the median (B), however dynamic ranges were comparable (C). Fifty least and most abundant proteins 

are also shown (D). 

  



 

LCM enrichment minimizes interference from the background proteome 

In order to assess whether LCM would minimize ECM and plasma protein identifications, all 

quantified proteins in both sets were annotated for GO cellular component. After aligned search, 

both sets showed a comparable number of identifications across cellular compartments (χ2 p-value = 

0.674; Fig. 3.4A-B).A relatively small percentage of proteins (< 5%) belonged to the ECM and 

plasma compartments with no difference between sets (χ2 p-value = 0.156). Proteins unique to each 

set also encompassed all subcellular compartments; however a significant difference in distribution 

was observed (χ2 p-value < 0.001), due to enrichment in plasma proteins in WTL samples (χ2 p-

value < 0.001; Fig. 3.4C-D). A significantly different distribution of proteins in cellular 

compartments was also observed after separate search (χ2 p-value < 0.001; Fig. S9A-B), due to a 

higher percentage of ECM (χ2 p-value < 0.001) and plasma (χ2 p-value < 0.001) proteins in WTL 

samples. Compartment distributions of proteins unique to each set were also significantly different 

(χ2 p-value < 0.001; Fig. S9C-D). In fact, while no endoplasmic reticulum (χ2 p-value < 0.001) or 

Golgi-related (χ2 p-value < 0.001) proteins were observed in WTL samples, the LCM set showed a 

small number of ECM (χ2 p-value < 0.001) and plasma (χ2 p-value < 0.001) proteins. These data 

suggest that LCM enrichment minimizes ECM and plasma protein interference when investigating 

the tumor cell proteome. 



 

 

Figure 3.4. Subcellular localization of all proteins identified in WLT and LCM datasets after aligned MaxQuant 

search. 

All identified proteins in LCM and WTL sets after aligned search were annotated for subcellular localization. Both the 

WTL (A) and LCM (B) datasets showed a large number of identified proteins belonging to intracellular organelles. 

Proteins identified only in the WTL (C) and LCM (D) sets both spanned across all subcellular compartments. Proteins 

identified per each subcellular compartment are reported as: number (%). 



 

To assess differences in expression levels between shared ECM and plasma proteins between the 

two sets, hierarchical clustering was performed on a total of 62 ECM and 34 plasma proteins 

(aligned search) after filtering for missing data (i.e. < 30%). Among the ECM proteins, proteins 

specific to the basal layer (e.g. PRELP) and serum transporters (e.g. ITIH1) displayed a higher 

abundance in WTL compared to LCM, while proteins co-localized at the plasma membrane (e.g. 

HSDL2) showed higher abundance in LCM compared to WTL. A small set of proteins 

characterized by multiple subcellular localizations (e.g. ISOC1) did not display enrichment in either 

set (Fig.S10A). These abundance differences were confirmed at the peptide level (Fig. S10B). A 

similar pattern was observed for plasma proteins: immunoglobulins (e.g. IGHM) and coagulation-

related proteins (e.g. FGA) showed higher abundance in WTL compared to LCM samples, while 

proteins also belonging to cell cytoplasm and plasma membrane (e.g. KRT19) displayed higher 

abundance in LCM compared to WTL samples. A subset comprising proteins localized multiple 

cellular and extracellular compartments (e.g. FN1) did not display enrichment in any sample set 

(Fig. S10C-D). These data indicate a specific enrichment in ECM and plasma protein subsets in 

each sample set, with intracellular proteins enriched in LCM. 

 

LCM allows more precise quantitation of the tumor proteome 

In order to assess whether certain protein groups were enriched in either the WTL or the LCM set, 

2D analysis was performed on the 2,696 shared proteins after aligned search (Fig. 3.5A, Table S3). 

Proteins involved in cellular metabolism, transcription and translation showed expression 

concordance in both sets, while proteins involved in immune response, and lipid and cholesterol 

metabolisms displayed anti-correlating abundances and were found highly enriched in the WTL 

samples compared to the LCM samples, confirming hierarchical clustering analysis results. Platelet 

activation-related proteins were highly expressed in both sets but with a higher expression in WTL. 

On the other hand, homophilic cell adhesion-involved proteins were found highly expressed in 

LCM and anti-correlated to WTL samples.  

In order to assess whether sample type would influence findings related to tamoxifen resistance, we 

investigated differentially expressed proteins between poor and good outcome patients in the 

aligned WTL and LCM datasets. A total of 542 and 374 proteins displayed differential expression 

between patient groups in the LCM and WTL sets, respectively, with 135 proteins found in both 

sets. Of these, 119 proteins showed identical expression direction in both sets (mean Pearson r = 

0.63), while16 showed discordant expression (mean Pearson r = -0.14; Table S4). Concordant 



 

proteins were predominantly involved in transcription, translation, and in aminoacid and ATP 

metabolism. 2D analysis showed that ion transmembrane transporters displayed discordant 

expression between WTL and LCM (Fig. 3.5B, Table S5), being enriched in the former and not in 

the latter. 

 

 



 

Figure 3.5. Analysis of differences in protein quantitation between WTL and LCM. 

Panel A displays 2D pathway analysis of shared proteins between LCM and WTL samples after aligned search: while 

proteins involved in platelet activation were enriched in WTL samples (light grey), cholesterol, lipid metabolism, 

immune response, and homophilic cell adhesion related proteins displayed opposite expression between WTL and LCM 

samples (grey). Transcription, translation and cellular metabolism involved proteins showed concordance of expression 

between LCM and WTL samples (black). Panel B shows 2D analysis for shared differentially expressed proteins: 

concordance of expression in transcription, translation and metabolism related proteins (black), while opposite 

expression was observed for ion transporters (grey). Panels C and D display the number of observations and differential 

expression between poor and good outcome patients of key breast cancer markers (ESR1, NAT1, GATA3, and 

ERBB2), respectively. 

Acronyms: GO: gene ontology 

 

We then sought to evaluate the identification rate and differences in expression levels of key breast 

cancer proteins in WTL and LCM samples. For ESR1 (Pearson r = 0.78), NAT1 (Pearson r = 0.97), 

GATA3 (Pearson r = n/a due to missing paired data points), and ERBB2 (Pearson r = 0.79) a lower 

number of observations was found in the WTL set when compared to LCM (Fig. 3.5C-D). A 

significant difference was found between the levels of ESR1 (p-value = 0.019) and ERBB2 (p-value 

= 0.022) when comparing poor and good outcome patients in the LCM set, while no significance 

was observed in the WTL group. These data suggest that proteomic analysis of LCM-derived 

material results in more accurate quantitation of tumor proteins. 

 

Discussion 

LCM based cell enrichment has been successfully coupled to high resolution MS and LFQ in the 

analysis of morphologically heterogeneous tissues such as colon and breast carcinomas, allowing 

assessment of thousands of proteins from pure cell populations [23]. Despite this, proteomic 

analysis of whole tissue lysates is often preferred to cell enrichment techniques due to the 

possibility of using chemical labeling techniques and relatively less laborious sample preparation. 

In the current study we used data of a set of 38 ER positive breast cancer tissues, from which LCM 

and WTL fractions were previously analyzed by high resolution MS, to determine the effect of 

sample preparation on data quality.  

We have here shown how proteomic analysis of LCM enriched specimens not only improved 

peptide and protein quantification when compared to WTL samples, but also more clearly defined 

tumor protein expression. On the MS level, a significantly higher amount of peaks were repeatedly 

sequenced in WTL samples, which suggested a more complex matrix and interference at the LC 



 

level. This would probably cause repeated triggering of MS/MS events, resulting in decreased 

peptide and protein identifications and increased missing data points. The lower identification rates 

in the WTL set - an aspect that has been extensively assessed in the analysis of plasma proteins 

[27,28] - could be due to interference from highly abundant proteins or blood contaminants present 

in tumor surrounding tissues that would alter the dynamic range and decrease chromatographic 

resolution in the detection of low abundance proteins. Furthermore, while alignment did not 

significantly increase identification rates in the LCM set, the “match-between-runs” feature greatly 

improved the total number of identified peptides and proteins in WTL specimens. 

ECM and plasma proteins were found enriched in WTL compared to LCM samples, as 

demonstrated by subcellular localized protein distribution analysis. Due to the fact that surrounding 

tissues are co-analyzed with tumor epithelial cells, a relatively higher abundance of stromal and 

blood-derived proteins is expected in such samples. This assumption was further confirmed by 2D 

analysis of shared proteins between the two datasets after aligned search, which resulted in anti-

correlating abundances of proteins belonging not only to the innate and adaptive immune systems 

and to lipid and cholesterol metabolism. In the light of these findings, LCM based enrichment 

provides a higher level of depth for downstream proteomic analysis due to reduced matrix 

complexity [13], resulting in higher identification rates and a lower number of missing values. We 

therefore argue that LCM enrichment of tumor cells prior to proteome analysis would improve 

success rates of identifying tumor-related biomarkers. 

When assessing key breast cancer markers, a discrepancy between LCM and WTL sets was 

revealed: not only ESR1, GATA3 and ERBB2 proteins were observed in a relatively higher 

percentage of samples in the LCM set, but a significant difference was also observed between poor 

and good outcome patients in this set for clinically relevant proteins such as ESR1 and ERBB2 [29]. 

This remarkable finding implies that key markers of tamoxifen resistance previously identified in 

LCM samples [19] would have likely been missed if WTL samples had been used for analysis. This 

phenomenon likely also holds true for many other heterogeneous tissues being investigated for 

biomarker discovery. 

 

Concluding remarks 

We have here presented a comparison between proteomic analyses of whole tissue and tumor 

enriched specimens. Tumor enrichment by LCM coupled to high resolution MS constitutes a robust 

approach capable of detecting a higher amount of proteins compared to whole tissue lysate analysis. 



 

In this perspective LCM offers a more reliable tool to delve into the tumor proteome with much 

more sensitivity when compared to WTL analysis. Furthermore, as stromal, epithelial, and 

immunologic factors possess a specific role in cancer [30], their comprehensive analysis would be 

more likely enabled by LCM based enrichment and comparative analysis of these segregated 

components rather than whole tissue analysis.  
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Abstract 

Estrogen receptor (ER) positive tumors represent the majority of breast malignancies, and are 

effectively treated with hormonal therapies, such as tamoxifen. However, in the recurrent disease 

resistance to tamoxifen therapy is common and a major cause of death. In recent years, in-depth 

proteome analyses have enabled identification of clinically useful biomarkers, particularly, when 

heterogeneity in complex tumor tissue was reduced using laser capture microdissection (LCM).  In 

the current study, we performed high resolution proteomic analysis on two cohorts of ER positive 

breast tumors derived from patients who either manifested good or poor outcome to tamoxifen 

treatment upon recurrence. A total of 112 fresh frozen tumors were collected from multiple medical 

centers and divided into two sets: an in-house training and a multi-center test set. Epithelial tumor 

cells were enriched with LCM and analyzed by nano-LC Orbitrap mass spectrometry (MS), which 

yielded > 3,000 and > 4,000 quantified proteins in the training and test sets, respectively. Raw data 

are available via ProteomeXchange with identifiers PXD000484 and PXD000485. Statistical 

analysis showed differential abundance of 99 proteins, of which a subset of 4 proteins was selected 

through a multivariate step-down to develop a predictor for tamoxifen treatment outcome. The 4-

protein signature significantly predicted poor outcome patients in the test set, independent of 

predictive histopathological characteristics (hazard ratio [HR] = 2.17; 95% confidence interval [CI] 

= 1.15 to 4.17; multivariate Cox regression p value = 0.017). Immunohistochemical (IHC) staining 

of PDCD4, one of the signature proteins, on an independent set of formalin-fixed paraffin-

embedded tumor tissues provided and independent technical validation (HR = 0.72; 95% CI = 0.57 

to 0.92; multivariate Cox regression p value = 0.009). We hereby report the first validated protein 

predictor for tamoxifen treatment outcome in recurrent ER-positive breast cancer. IHC further 

showed that PDCD4 is an independent marker.  



 

Introduction 

ER positive tumors constitute the majority of all breast malignancies. Tamoxifen therapy has been 

shown to significantly improve survival and cure of patients with primary ER positive breast 

tumors, but upon recurrence about half of the patients show intrinsic resistance, while those initially 

responding will ultimately develop acquired resistance (Cardoso et al., 2012; Milani, 2014). The 

need for biomarkers capable of determining mechanisms of resistance has led to the development of 

several predictive signatures, though none has been introduced in the clinic so far (Beelen et al., 

2012). With the recent advancements in MS techniques, in-depth quantification of the human 

proteome has become possible and the ability of measuring protein abundance over a broad 

dynamic range has established proteomics as a robust tool for biomarker discovery (Drabovich et 

al., 2014; Kim et al., 2014; Wilhelm et al., 2014). The proteomic analysis of tissue specimens is, 

however, hindered by their heterogeneity, which alters protein abundance dynamic range. 

Furthermore, the presence of stromal and infiltrating cells adds another layer of complexity by 

hampering accurate protein quantitation of target epithelial tumor cells (Kondo, 2014). To address 

this issue, LCM offers a robust cell sub-population enrichment technique, allowing accurate 

downstream analysis of morphologically heterogeneous specimens (Emmert-buck et al., 1996; 

Vogel et al., 2007). Genomic and proteomic analyses of LCM derived material showed the 

feasibility of this technique in molecular profiling studies and pointed out its efficacy in studying 

disease associated signaling pathways when compared to whole tissue analyses (Cheng and Zhang, 

2013; Sereni et al., 2015; Xu, 2010; F. Yang et al., 2006). LCM yields sub-microgram protein 

amounts due to the fact that only a limited number of cells can be dissected from each sample. In 

the light of this, coupling LCM enrichment to chemical labeling methods would require extensive 

sample preparation and workflow optimization, which would be unsuitable in the analysis of large 

sample sets. Label-fee quantification (LFQ) software algorithms have demonstrated to be accurate 

tools in the quantitation of proteins, allowing high yield identification and reliable quantitation of 

measured peptides even from minute amount of analyzed specimens (Cox and Mann, 2008; Megger 

et al., 2013). We have optimized a tissue proteomic pipeline for biomarker discovery coupling LCM 

cell enrichment to high resolution LC-MS and LFQ, capable of quantifying more than 3,000 

proteins from only 4,000 dissected epithelial cells (Braakman et al., 2012; Liu et al., 2012). Using 

this workflow, we recently developed and validated a prognostic protein signature for triple 

negative breast cancer (Liu et al., 2014). Despite our workflow has demonstrated to be a robust 

methodology for the discovery of cancer biomarkers, application of shotgun proteomics in clinical 

diagnostics remains problematic due to the extensive and time consuming sample preparation 

required. In this perspective, IHC or selected reaction monitoring/multiple reaction monitoring 



 

(SRM/MRM) MS may be more suitable biomarker verification techniques that do not require 

extensive method optimization or sample preparation (Whiteaker et al., 2011). Although antibody 

specificity and lack of accurate quantitation remain important issues, IHC still remains a major 

technique in clinical diagnostics and significantly requires less amount of optimization time in 

comparison to ELISA or even SRM/MRM MS. 

In this study we describe the development of a predictive protein signature for tamoxifen resistance 

in ER positive breast cancer by coupling LCM tumor cell enrichment and high resolution LC-MS in 

the analysis of independent training and test patient cohorts. We also provide further validation by 

IHC analysis of signature proteins on an independent panel of paraffin-embedded tissues captured 

in a tissue micro-array (TMA). 

 

Materials and Methods 

Sample sets 

From an initial selection of 200 tissues collected from patients that received tamoxifen as first line 

therapy we excluded tissues with a low percentage of tumor cells (i.e. < 40%; n = 88; Figure 4.1). A 

total of 112 ER positive fresh frozen primary breast cancer tissue samples were then included in our 

sets: 56 from Erasmus MC University Medical Center (EMC), Rotterdam (years of surgery: 1981-

1994), 41 from the National Cancer Institute – Antoni van Leeuwenhoek hospital (NKI-AVL), 

Amsterdam (1980-1996), and 15 from Radboud University Medical Center (RadboudUMC), 

Nijmegen (1991-1996; Table 4.1). EMC derived samples constituted the training set, while NKI-

AVL and RadboudUMC provided an independent external test set. ER positivity in tumor cytosols 

was assessed by quantitative biochemical assays (EMC), reverse-transcriptase quantitative 

polymerase chain reaction (RadboudUMC), or IHC (NKI-AVL). All patients underwent surgery of 

their primary tumor (conservative or non-conservative), developed recurrent disease, and were 

treated with tamoxifen as first line therapy. Due to lack of response data for a subset of specimens, 

treatment outcome was defined based on time to progression (TTP): disease progression ≤ 6 months 

and > 6 months after start of first line tamoxifen administration were defined as poor and good 

outcome, respectively. The training set comprised 24 and 32 patients who showed good and poor 

outcome upon tamoxifen treatment, respectively. The test set included tumors of 41 good and 15 

poor outcome patients. The NKI-AVL cohort did not contain stage IV tumors, while such 

specimens were found in the EMC and RadboudUMC sets. In addition, 2 tumor tissues of which 

clinical follow up information was not available were used as LCM and whole tissue lysate (WTL) 



 

controls. For biological replicates, both tumor tissues were subjected to 4 rounds of LCM. Of one of 

these, a WTL was prepared from one sample and digested in triplicate. 

 

 

Figure 4.1. Data analysis flow-chart and development of predictor for tamoxifen treatment outcome. 

Patients were divided into two independent cohorts and separately measured by LC-MS. Proteomic data from training 

and test sets were analyzed separately in MaxQuant.  Identified proteins were filtered for reversed sequences and for 

Posterior Error Probability score (PEP < 0.05), intensities of commonly expressed proteins were normalized using 

ComBat algorithm to minimize batch effects, and filtered for missing data (10 minimum observations for global 

proteomic analysis and allowing 30% and 0% missing data in training and test set respectively for predictor generation). 



 

Student t test (p value < 0.05) was then used to assess differences in protein expression levels between good and poor 

outcome patients. A multivariate regression model was used to obtain an optimal list of 4 proteins to be tested as a 

predictor of tamoxifen treatment outcome: CGN, G3BP2, PDCD4 and OCIAD1. The 4-protein signature was confirmed 

in an external test set. 

 

Table 4.1.Patient and tumor characteristics. 

 
Training* 

 
Test* 

 
EMC 

 
NKI-AVL RadboudUMC 

All patients 56 (100) 
 

41 (100) 15 (100) 

     Age     
   ≤ 55 years 15 (27)  12 (29) 1 (7) 
> 55 years 41 (73)  29 (71) 14 (93) 
     
Menopausal status     
   Premenopausal 10 (18)  11 (27) 0 (0) 
   Postmenopausal 46 (82) 

 
30 (63) 15 (100) 

     
Tumor size     
   T1 (≤ 2cm) 12 (21)  20 (49) 5 (33) 
   T2 (2-5cm) + Tx 40 (72)  19 (46) 9 (60) 
   T3 (> 5cm) + T4 4 (7) 

 
2 (5) 1 (7) 

     
Tumor differentiation**     
   Good/Moderate 13 (59)  29 (71) 8 (53) 
   Poor 33 (23)  12 (29) 4 (27) 
   Unknown 10 (18) 

 
0 (0) 3 (20) 

     
Disease free interval     
   ≤ 12 months 24 (43)  4 (10) 5 (33) 
> 12 months 32 (57)  37 (90) 10 (67) 
     
PgR†     
   Negative 9 (16)  17 (41) 11 (73) 
   Positive 44 (79)  24 (59) 4 (27) 
     
Involved lymph nodes     
   0 31 (55)  24 (58) 6 (40) 
   ≥ 1 20 (36)  16 (39) 7 (47) 
   unknown 5 (9)  1 (3) 2 (13) 
     
Dominant site of relapse     
  Loco-regional 8 (14)  4 (10) 0 (0) 
  Bone 26 (46)  12 (29) 6 (40) 
  Visceral 13 (24)  6 (15) 9 (60) 
  Bone and other 9 (16)  14 (34) 0 (0) 
  Unknown 0 (0)  5 (12) 0 (0) 
* Data are reported as number (percentage). 

** Histopathological characteristics were evaluated by local pathologists, according to standard clinical 

practice at time of sample collection.  

† Missing data not reported. 



 

In addition, a total of 447 formalin-fixed and paraffin-embedded tissues collected from EMC and 

regional hospitals were comprised in a tissue micro-array (Supplemental Material). For further 

analyses, we included only ER positive tumors and patients who did not receive hormonal adjuvant 

therapy. Patients with a revised histology that showed no tumor, or patients with a progression 

within 3 weeks were excluded as well, leading to a total of 408 ER positive tissues from patients 

treated with tamoxifen as first-line therapy for recurrent disease. Response data were collected 

according to the standard International Union Against Cancer criteria (Hayward and Carbone, 

1977). In this set, 11 (2.7%) and 51 (12.5%) patients respectively showed complete (CR) and partial 

remission (PR). Two hundred and five (50.3%) patients showed no change (NC) of disease, of 

whom 170 (41.7%) showed NC > 6 months (defined as stable disease, SD) while 35 (8.6%) showed 

NC ≤ 6 months after start of therapy. Progressive disease (PD) was observed in 141 (34.6%) 

patients. Clinical benefit was defined as CR + PR + SD patients (n = 232; 57%), while objective 

response was defined as CR + PR only (n = 62; 15%). This retrospective study used coded primary 

tumor tissues, in accordance with the Code of Conduct of the Federation of Medical Scientific 

Societies in the Netherlands (http://www.federa.org/codes-conduct). Reporting Recommendations 

for Tumor Marker Prognostic Studies were followed where possible (Altman et al., 2012). 

 

Laser capture microdissection 

All tissue samples were cut into 8 µm cryo-sections, and collected on UV-sterilized polyethylene 

naphtalate (PEN) coated glass slides (Carl Zeiss Microsystems GmbH, Göttingen, Germany) for 

downstream laser capture microdissection. In addition, 5 µm sections were collected on regular 

glass slides and stained with hematoxylin and eosin dyes for histological evaluation. Sections on 

PEN slides were dehydrated with 95% ethanol and immediately stored at -80°C, until further 

processing. Prior to LCM, PEN slides were thawed at room temperature and subsequently stained 

with hematoxylin as follows: distilled water, hematoxylin, distilled water, 50% ethanol, 70% 

ethanol, 95% ethanol, 100% ethanol, 100% ethanol. During dehydration steps Halt Protease 

Inhibitor Cocktail (Thermo Fisher Scientific Inc, Rockford, IL, USA) at a 1:100 v/v concentration 

was added in order to prevent proteolytic degradation of proteins.  An area of approximately 

500,000 µm2 (~ 4,000 tumor cells) was collected from each tissue using a photo-activated 

localization microscopy Micro Beam device and gathered in an opaque adhesive cap (Carl Zeiss 

Microsystems GmbH, Göttingen, Germany). A volume of 20 µl of 0.1% w/v Rapigest surfactant 

(Waters Corporation, Milford, MA, USA) in 50 mM ammonium bicarbonate solution was used to 



 

transfer the collected LCM samples into LoBind™ Eppendorf tubes (Eppendorf AG, Hamburg, 

Germany). Tissue containing buffer was immediately frozen after collection and stored at -80°C.  

 

Protein digestion 

LCM collected material was disrupted in a horn sonifier bath using an Ultrasonic Disruptor Sonifier 

II (Bransons Utrasonics, Danbury, CT, USA) at 70% amplitude. Proteins were denatured at 95°C, 

reduced with 100 mM DTT for 30 min at room temperature, and alkylated in the dark with 300 mM 

iodoacetamide for 30 min at room temperature. Samples were then digested for 4 h at 37°C after 

addition of MS grade trypsin at a 1:4 enzyme-protein ratio (i.e. 100 ng/µl). Samples were acidified 

with TFA, and spun down at 14,000 RPM. Supernatants were collected and transferred to HPLC 

vials (Sigma-Aldrich Corporation, St. Louis, MO, USA). 

High resolution MS 

Mass spectrometry measurements were performed with a nano liquid chromatography system 

(Ultimate 3000, Dionex, Amsterdam, The Netherlands) coupled online to a linear Ion Trap – 

Orbitrap XL™ mass spectrometer (Thermo Electron, Bremen, Germany). Samples were first loaded 

on a trap column (PepMap C18, 300 μm ID × 5 mm length, 5 μm particle size, 100 Å pore size; 

Dionex), then washed and desalted in 0.1% TFA acidified water. Trap column and analytical 

column (PepMap C18, 75 μm ID × 50 cm, 3 μm particle size and 100 Å pore size; Dionex) were 

then coupled and peptides were eluted in a 3 h binary gradient (flow: 300 nl/min; mobile phase A: 

2% acetonitrile and 0.1% formic acid in H2O; mobile phase B: 80% acetonitrile and 0.08% formic 

acid). Gradient was run as follows: 0% to 25% mobile phase B for 2 h, increase to 50% mobile 

phase B in 1 h. For ESI, metal-coated nano ESI emitters (New Objective, Woburn, MA) were used 

and a spray voltage of 1.6 kV was applied. High-resolution scan was acquired from 400 to 1,800 Th 

and was used for MS detection. Automatic gain was set at 106 ions and lock mass was set at 

445.120025 u protonated with (Si(CH3)2O)6. The 5 most intense peaks in full scan were selected 

and fragmented by collision induced dissociation (CID) applying 35% normalized collision energy 

and detected in the ion trap. Ions falling out of the ±5 ppm window or for which precursor intensity 

fell below 1.5 signal-to-noise ratio during 10 scans were excluded.  



 

Protein identification and quantification 

A total of 112 samples were analyzed by LTQ-Orbitrap XL™ MS, together with 4 biological LCM 

replicates of control samples, and of which one was measured with a triplicate of its matching 

WTL. MS spectra of the training and test cohorts were generated and analyzed separately with a 

time interval of two years. Orbitrap .RAW files derived from MS analyses were imported and 

analyzed in MaxQuant (version 1.2.2.5) (Cox and Mann, 2008), using Andromeda peptide search 

engine (Cox et al., 2011). Analysis of spectra was performed using the following options: 

acetylation of the N-terminus and oxidation of methionine were selected as variable modifications, 

multiplicity was set to 1. FASTA file used for protein search was UniProt-SwissProt human 

canonical database (version 2012-09, human canonical proteome; 20.243 identifiers). Minimal 

peptide length was set to 7 amino acids, match between runs and LFQ options were selected and 

kept as default. Other options were kept as default (e.g. fixed peptide modifications: 

carbamidomethylation; false discovery rate = 0.01). For further data analysis, “ProteinGroups.txt” 

file was imported into Microsoft Excel and protein identifiers were filtered based on posterior error 

probability score (cutoff < 0.05). Contaminants and reversed sequences were excluded. LFQ 

intensities for each sample were selected and each value was Log10 transformed. Protein intensities 

from training and test sets were then normalized using ComBat (Johnson et al., 2007) algorithm in 

R free software, allowing 10 minimum observations for whole dataset analysis. A second protein 

list was generated allowing 30% missing data points in the training set and none in the test set for 

predictor development. LCM and WTL control samples were not included in the ComBat 

normalization procedure due to the lower amount of identified and quantified proteins. Coefficients 

of variations of Log10 transformed MS data were calculated according to the following formula: 

CV=10(Standard deviation) -1 (Bland and Altman, 1996). 

Pearson correlation coefficients between measurements of LCM and WTL replicates were 

calculated in Perseus (Max Planck Institute for Biochemistry, Muenchen, Germany).  The MS 

proteomic data have been deposited to the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository (Vizcaíno et al., 

2013) with dataset identifiers PXD000484 and PXD000485.  



 

Tissue micro-array 

TMA was prepared using an ATA 27 (Beecher Instruments, Sun Prairie, WI, USA). 408 paraffin-

embedded primary, ER positive breast cancer tissues derived from patients treated with first line 

tamoxifen upon recurrence were used to prepare the TMA. Tissue cores of 0.6 mm were taken from 

each tissue paraffin block and transferred in triplicate into a TMA recipient block. For each tumor 

tissue sample, three different areas of the tumor were taken as biological replicates. TMA slides 

were digitalized and analyzed using Slidepath software (Leica Microsystems, Solms, Germany).  

 

Immunohistochemistry 

Paraffin-embedded tissues on glass slides were de-paraffinized at 60°C, and remnants of paraffin 

were removed by sequential washings in xylene (3 x 5 min). Re-hydration was performed by 

washings through decreasing concentrations of ethanol following with distilled water as follows: 

100% ethanol (1 x 5 min, 2 x 2 min), 70% ethanol (1 x 2 min), 50% ethanol (1 x 2 min), distilled 

water (1 x 2 min). Slides were then incubated at 95°C for 40 min in DAKO (Agilent Technologies 

Inc, Santa Clara, CA, USA) antigen retrieval solution (pH 6) diluted 1:10 in MilliQ water, cooled 

down to room temperature and washed with PBS buffer 3 times for 5 min. Blocking solution 

consisting of 5% BSA in PBS was added to the slides and incubated for 30 min. Primary antibodies 

were diluted in DAKO Antibody Diluent, added to each slide and incubated for 1 h at room 

temperature. Slides were then washed with PBS, and DAKO Envision® secondary antibody (Goat 

anti-Mouse-HRP and G anti-R-HRP, 100 µl per slide) solution was added to each slide and 

incubated for 45 min at room temperature. A washing cycle with PBS was performed for 5 min and 

a 1:15 solution of DAB+ chromogen in antibody diluent was added, following incubation in the 

dark for 10 min. Slides were then washed in tap water for 5 min, stained with hematoxylin/eosin for 

1 min each and dehydrated again through sequential washings in 50%-70%-100% ethanol and 

xylene of 5 min each. Cover glasses were mounted with Pertex and slides were left to dry. TMA 

slides were stained for Programmed Cell Death 4 (PDCD4) protein (1:200), OCIAD1 (1:800), 

G3BP2 (1:50), and CGN (1:25). Anti-PDCD4 mouse monoclonal (id: LS-B2949; clone K4C1) and 

anti-OCIAD1 rabbit polyclonal (id: LS-B5046) antibodies were purchased from Lifespan 

Technologies (Lifespan technologies Inc, Seattle, WA, USA), anti-G3BP2 rabbit polyclonal (id: 

NBP1-82976) antibody was purchased from Novus Biologicals (Novus Biologicals LLC, 8100 

Littleton, CO, USA), and anti-CGN rabbit polyclonal (HPA027657) antibody was purchased from 

Sigma. 



 

IHC staining analysis 

Data from scored tissues were filtered for missing data and adjuvant endocrine therapy, leading to a 

final list of 294 tissue samples. PDCD4 antibody stained tissues were separately scored for nuclear 

and cytoplasmic staining intensity (categories: negative, weak, moderate, strong) and percentage of 

stained tumor cells (categories: 0%, 1-10%, 11-20%, 21-30%, 31-40%, 41-50%, 51-60%, 71-80%, 

81-90%, 91-100%). CGN, and OCIAD1 stained tissues were scored based on intensity parameters 

only, while G3BP2 scoring included quantity levels as well. TMA was scored by two independent 

researchers, and the average, consolidated scores of triplicate cores were used for statistical 

analysis. Due to the fact that PDCD4 cytoplasmic and nuclear stainings were co-expressed in the 

evaluated TMA cores, these were merged in order to assess total protein levels. PDCD4 nuclear and 

cytoplasmic scores were numerically transformed and merged into a histo-score (Supplemental 

Material) according to formula: 

Histo-score = (nuclear quantity x nuclear intensity) + cytoplasmic intensity 

Histo-score cutoff (i.e. 30) reflective of weak vs. strong protein expression was used to stratify 

patient groups: low and high PDCD4 protein expressing tumors displayed a histo-score below (<) 

or above (≥) the cutoff (Supplemental Material). PDCD4 cytoplasmic quantity was ranging only 

from 80% to 90% so it was not included in the histo-score calculation formula.  

 

Statistical analysis 

Differences in clinical parameters between training and test sets were evaluated by Mann-Whitney 

U and Pearson χ2 tests (two sided tests). Commonly expressed proteins between the two LCM sets 

and proteins quantified in WTL sample replicates were annotated through DAVID (Huang et al., 

2009a, 2009b) for organelle distribution using Swissprot keyword database. Average abundance 

levels of these proteins in all 112 measured samples were used to generate a waterfall plot of 

protein abundance distribution. 

Protein list used for predictor development was tested for protein differential abundance between 

patient groups through Student`s t-test (two sided, unequal variances assumed). Hierarchical 

clustering was performed on all quantified and differentially expressed proteins (t test p value < 

0.05), respectively (complete linkage; distance metric: correlation-uncentered). Significant proteins 

in the training set were submitted along with their fold changes and t test p values to Ingenuity 

Pathway Analysis (IPA) network analysis with the following settings: Data sources: all; 



 

Confidence: high (predicted) and experimentally observed; species: human. Network was plotted 

using path designer (Ingenuity Systems, Redwood City, CA, USA). 

In order to rule out possible indiscriminative identifiers, the protein predictor was developed 

selecting the 38 most significant proteins (univariate p value < 0.01) in the training set and a Cox 

regression multivariate analysis was performed with a step-down procedure, which involved 

iteratively removing the least significant proteins (multivariate p value ≥ 0.01) until all remaining 

proteins in the model showed a multivariate p value < 0.01. Each protein score (t value) was then 

multiplied by its abundance, and values were then summed for all proteins to obtain a patient score, 

which was then coupled to outcome data. Each patient score was plotted in a receiver operating 

characteristic (ROC) curve. Youden index (max of J = Sensitivity + Specificity -1) was set as cutoff 

in the training set and used to categorize patients in the test set. Log-rank tests on the survival 

curves of predicted groups were performed to assess significance of prediction. Association of 

predictor proteins to TTP was assessed through Cox regression, correcting for patient and tumor 

characteristics. IHC stainings were used to test for association with TTP, clinical benefit and 

objective response in combination with clinical parameters by Cox and logistic regression analyses, 

respectively. Co-variables that were found not significant in univariate regression analyses were 

excluded from multivariate models. Cox regression and logistic regression analyses, hazard ratios, 

odds ratios and confidence intervals were calculated in Stata (version 13.1; Stata Corp, College 

Station, TX, USA). 

 

Results 

Analysis of patient cohorts 

One hundred and twelve ER positive primary breast tumor tissues, of which 56 comprised the 

training set and another 56 the test set, were processed according to our tissue proteomics workflow 

(Braakman et al., 2012; Liu et al., 2012) and analyzed through high resolution MS. 

Analysis of tumor and patient characteristics between the training and test sets showed that age and 

menopausal status at start of tamoxifen therapy, lymph node status, and tumor size were not 

significantly different. The test set contained a higher proportion of poorly differentiated tumors 

(Pearson`s χ2 = 21.19, p value < 0.001) compared to the training set. Furthermore, patients in the 

test cohort had a median disease free interval (DFI) of 51.4 months (range: 0 to 195 months), which 

was significantly longer (Mann-Whitney U = -3.814, p value < 0.001) than for patients in the 



 

training set (median: 16.4 months, range: 0 to 90.8 months). This can be attributed to the lack of 

stage IV tumors in the NKI-AVL cohort, which possibly contributed to the difference in DFI and 

grade between training and test set. 

 

MS analysis of ER positive breast cancer 

LCM discovery and test samples were analyzed along with 8 LCM replicates from 2 separate 

control tissues, and 3 technical replicates of a control WTL.  A total of 2,215 proteins were 

quantified in LCM control samples, and 1,320 proteins in the WTL sample replicates, with only 852 

proteins quantified in both LCM and WTL controls. Pearson correlation coefficients between LCM 

samples ranged from 0.92 to 0.97 while it ranged from 0.96 to 0.97 between WTL measurements 

(Supplemental Material). Hierarchical clustering of LCM and WTL controls showed grouping 

according to sample origin without miss-classifications (Supplemental Material). Median 

coefficients of variation of biological and technical replicates were 16.05% (interquartile range, 

IQR: 10.77-24.56) and 20.35% (IQR: 11.55-34.28), respectively. Reproducibility of MS 

measurements was defined as acceptable given the low number of control samples replicate 

measurements. 

A total of 3,227 proteins were identified in the training set, of which 3,109 were quantified by LFQ. 

In the test set, 4,278 proteins were identified and 4,061 proteins were quantified. LFQ intensity 

values of 2,741 proteins commonly expressed between the training and test set were normalized for 

batch differences and filtered for missing data to generate two protein lists: a 1,960 protein list (10 

minimum observations; Supplemental Material) for general proteome analysis and an 845 protein 

list for predictor development (30% missing data in training set and 0% missing data in test set; 

Supplemental Material). From the analysis of 1,960 expressed proteins, a wide distribution of 

protein abundances was observed over 3 orders of magnitude (Figure 4.2A). Interferon signaling 

related (e.g. IFI16, IFIT5) and chaperone associated proteins (e.g. DNAJC7, BAG1) displayed low 

overall abundance (Figure 4.2B), while luminal epithelial specific (e.g. KRT18), metabolism related 

(e.g. PKM, ATP5A1), and heat-shock (e.g. HSPD1, HSPB1) proteins were found to be highly 

abundant (Figure 4.2C). In the training set, CV was 14.10% (IQR: 10.22-18.78), whereas it was 

13.86% (IQR: 10.33-18.57) in the test set. 



 

 

Figure 4.2. Protein abundance levels in 112 ER positive breast cancer samples. 

The waterfall plot shows mean protein abundance distribution of 1.960 commonly expressed proteins. The mean 

abundance of each quantified protein was calculated and plotted. The 30 least (blue) and most (red) abundant proteins 

are boxed in panel (A) and enlarged in panel (B) and (C), respectively. 



 

DAVID based annotation for subcellular compartment showed that in the 112 breast cancer tissues 

the majority of expressed proteins belonged to the nuclear (25.76%) and cytoplasmic (56.38%) 

compartments while the endoplasmic reticulum (9.54%), Golgi apparatus (6.43%), mitochondria 

(12.65%), plasma membrane (7.50%), and the extracellular matrix (1.84%) comprised a lower 

amount of proteins. The smallest group consisted of plasma proteins (0.46%; Figure 4.3A). The 

distribution of intensity levels of the 1,320 proteins quantified in the WTL control sample showed a 

similar dynamic range but with increased variation, probably due to exclusion from the 

normalization procedure (Figure 4.3B). Annotation for cellular compartments showed a similar 

distribution of the 1,320 identified proteins into subcellular compartments compared to the 112 

tissue set but with a notable enrichment of extracellular matrix (e.g. COL1A1) and plasma proteins 

(e.g. APOA1), which represented 7.19% and 6.89% of all quantified proteins in this set, 

respectively. The minor contribution of extracellular matrix and plasma proteins in the LCM 

samples suggests that LCM indeed resulted in highly enriched epithelial tumor cell fractions. 

Distribution of intensities of organelle specific proteins showed comparable average levels of 

expression, therefore showing that all cell compartments were quantified. In the LCM annotated set 

several proteins showed multiple organelle localization. The nuclear and cytoplasmic compartments 

showed the highest degree of overlap with 249 (12.70%) proteins, mostly represented by 

proteasome subunits (e.g. PSME3) and proteins involved in RNA binding (e.g. RBM3, 

HNRNPA1). A small number of multi-compartmentalized proteins was constituted by vesicular 

transport components between the endoplasmic reticulum and the Golgi apparatus (n = 39; 1.99%) 

such as SEC23A. A subset of proteins was also found co-localized in both Golgi and cytoplasm 

(e.g. SEC24D). The remaining compartments showed expression of locally specific proteins 

(median overlap: 0.59% of total) such as oxidative chain proteins in the mitochondrion (e.g. 

UQCRC1) or DNA replication and repair involved proteins in the nucleus (e.g. FEN1). These data 

indicate the capability of LC-MS coupled to LCM enrichment to assess protein abundances 

throughout all cellular compartments from minute amounts of epithelial tumor tissues. 



 

 

Figure 4.3. Protein compartmentalization and abundance correlation analysis. 

Panel shows quantified protein abundance range per subcellular compartment in the LCM enriched 112 ER positive 

tumors (A) and in WTL control replicates (B). Number of proteins per compartment and percentages are displayed 

above the dot plot. 



 

Analysis of differentially expressed proteins 

Due to the fact that the 1,960 proteins did not clearly discriminate patient groups (Supplemental 

Material), a more stringent filter for missing values was therefore applied and candidate proteins 

were selected based on their differential abundance between patient groups. On the panel of filtered 

845 quantified proteins, a Student’s t test was performed to identify 99 proteins that were 

differentially abundant between good and poor outcome patients in the training set (p value < 0.05). 

Of these, 50 proteins were found upregulated in the poor outcome group and 49 displayed higher 

expression in the good outcome group (Supplemental Material). In order to define molecular 

interaction networks between significant molecules, network analysis in IPA was performed. The 

network that displayed the most hits comprised proteins involved in cell growth and proliferation 

and cell death and survival, such as CDC37 (upregulated in poor outcome) and PDCD4 

(upregulated in good outcome; Supplemental Material). Several molecules included in the network 

that were found upregulated in the poor outcome patient group were involved in integrin-linked 

kinase signaling (e.g. ITGB1, CFL1), a key pathway in cell migration and proliferation, protein 

translation (e.g. EIF4G1), and DNA mismatch repair (e.g. MSH2). The proteins found upregulated 

in the good outcome group and comprised in this network were involved in cell cycle (e.g. KRT18) 

and cell growth (e.g. NOP58). Although not present among the significant proteins, Akt and MAPK 

pathways constituted the focal point of the network, suggesting their activation based on their 

interactors expression levels. IPA analysis showed that differentially expressed proteins were 

involved in cell growth and proliferation and suggested that actors involved in such pathways may 

have a key role in tamoxifen resistance. 

 

Development of a protein signature predictive of tamoxifen therapy outcome 

Based on the 99 differentially abundant proteins, hierarchical clustering separated the two patient 

groups (Figure 4.4A): 20 out of 28 predicted good outcome patients were correctly classified as 

“Good”, while 24 out of 28 predicted poor outcome patients correctly grouped in the “Poor” cluster. 

After more stringent filtering (p value < 0.01) 38 proteins remained, which were included in a 

multivariate Cox regression model. Using a step-down approach, we identified a 4-protein signature 

that best predicted outcome to tamoxifen treatment. The signature comprised the following proteins: 

programmed cell death 4 (PDCD4; t test p value < 0.001), Cingulin (CGN; t test p value = 0.006), 

ovarian carcinoma immuno-reactive antigen domain containing protein 1 (OCIAD1; t test p value < 



 

0.001) and Ras-GTPase activating protein-binding protein 2 (G3BP2; t test p value < 0.001; Table 

4.2 and Table 4.3). 

 

Figure 4.4. Hierarchical clustering and differential protein abundance of 4-protein predictor. 

Samples in the training set (n = 56) were hierarchically clustered based on 99 differentially abundant proteins (t test p 

value < 0.05). Log10 intensities of differentially abundant proteins constituting the predictor for tamoxifen treatment 



 

outcome are shown in scatter dot plots. Eight poor and four good outcome patients were misclassified (A). Three out of 

four proteins, CGN (Uniprot accession number: Q9P2M7; p value = 0.006), OCIAD1 (Uniprot accession number: 

Q9NX40; p value < 0.001) and PDCD4 (Uniprot accession number: Q53EL6; p value < 0.001), had higher abundance 

in patients with good outcome, whereas G3BP2 (Uniprot accession number Q9UN86; p value < 0.001) was found more 

highly expressed in the poor outcome patient group (B). 

 
Table 4.2. LFQ based identification of 4 proteins in discovery and validation sets. 

Protein 
ID 

Gene 
name 

Molecular 
weight 
(kDa) 

Peptides/Unique 
peptides* 

Sequence 
coverage/Unique 

Sequence coverage 
(%/%)** 

PEP score† 

 
 

 
Training  Test Training  Test Training  Test 

Q9P2M7 CGN 136.380 22/22 40/40 22.8/22.8 39.5/39.5 3.63E-133 7.88E-268 
Q9UN86 G3BP2 54.120 5/5 8/7 16.4/16.4 22.0/19.5 1.61E-34 5.85E-84 
Q9NX40 OCIAD1 27.626 8/8 9/9 32.2/32.2 32.7/32.7 5.35E-146 2.59E-247 
Q53EL6 PDCD4 51.735 19/19 18/18 49.3/49.3 47.8/47.8 1.24E-225 3.23E-281 
*Ratio between peptides and unique peptides associated to each predictor protein 

**Peptides/ Unique peptides sequence coverage of each protein sequence 

†PEP: represents an estimation of a false identification. 

 

Table 4.3. Information on the 4 proteins constituting the predictor for tamoxifen therapy outcome. 

Gene 
name 

GO cellular 
component Protein name Student t p value 

CGN Cell junction Cingulin 3.13  0.006 
G3BP2 Cytoplasm Ras GTPase-activating protein-binding protein 2 3.50 < 0.001 

OCIAD1 Endosome, 
Mitochondrion 

Ovarian carcinoma immunogenic antigen domain-
containing protein 1 4.15 < 0.001 

PDCD4 Cytoplasm, 
Nucleus Programmed cell death protein 4 3.99 < 0.001 

 

Based on LFQ intensity levels, OCIAD1, CGN and PDCD4 showed a relatively high abundance in 

good outcome patients, while G3BP2 was more highly abundant in the poor outcome group (Figure 

4.4B). Next, patient scores of the 4-protein predictor were plotted in a ROC curve to select a cut-off 

with the highest sensitivity and specificity at predicting poor outcome (J = 0.740, area under the 

curve = 0.93, sensitivity = 90.6%, specificity = 83.3%; Figure 4.5A). The 4-protein predictor was 

then validated in the test cohort through Cox regression and Kaplan-Meier analyses. In both Cox 

univariate and multivariate regression analysis for TTP, the 4-protein signature was significantly 

correlated with outcome of tamoxifen therapy (HR = 2.44; 95% CI = 1.30 to 4.54; p value = 0.006) 

and multivariate (HR = 2.17; 95% CI = 1.15 to 4.17; p value = 0.017) regression analyses corrected 

for traditional predictive factors (Table 4.4). In Kaplan Meier analysis, patients with predicted poor 



 

outcome had significantly shorter TTP compared to those with a predicted good outcome (HR = 

2.32; 95% CI = 1.29 to 4.17; Log-rank p value = 0.004; Figure 4.5B). In the test set, sensitivity, 

specificity, positive predicted value (PPV), and negative predicted value (NPV) in predicting poor 

outcome patients were 86.7%, 41.5%, 35.1% and 89.5%, respectively. 

 

 

Figure 4.5. ROC curve of the training set and Kaplan-Meier curves for TTP as a function of predicted outcome 

in patients in the test set. 



 

Patient outcome scores from the training set were calculated based on abundance levels of the 4 predictor proteins and 

protein weights (i.e. Student t value). The ROC curve was generated and Youden maximum (J = 0.740) was chosen as 

the best discriminatory cutoff (A). Patient scores were subsequently calculated for patients in the test set, survival 

curves were generated for the predicted groups and differences were assessed with the Log-rank test (B). 

 

Table 4.4. Univariate and multivariate Cox regression analysis for time to progression. 

  Univariate    Multivariate  

Factors Hazard 
ratio 95% CI p value  Hazard 

ratio 95% CI p value 

4 protein predictor score        
   High 1.00    1.00   
   Low 2.44 1.30 to 4.54 0.006  2.17 1.15 to 4.17 0.017 
        

Age        

   ≤55 years 1.00    1.00   

>55 years 0.44 0.23 to 0.86 0.017  0.55 0.28 to 1.08 0.083 
        
Disease free interval        
   ≤12 months 1.00       
>12 months 0.63 0.30 to 1.31 0.213     

        
Dominant site of relapse   Overall p     
   Loco-regional 1.00  0.270     
   Bone 0.89 0.30 to 2.68      
   Visceral 0.68 0.22 to 2.09      

   Bone and other 0.45 0.14 to 1.40      
        

PgR        

   Negative 1.00       

   Positive 0.57 0.32 to 1.00 0.052     
Acronym: PgR: progesterone receptor. 

 

Immunohistochemical assessment of PDCD4 expression and correlation with TTP 

While our tissue proteomics pipeline proved to be successful in identifying and validating the 4-

protein predictor, this technology is not yet readily available in a clinical setting. Therefore, we 

assessed protein expression of PDCD4, G3BP2, CNG, and OCIAD1 through IHC, a technology that 

is routinely used in diagnostic laboratories, in an independent set of formalin-fixed paraffin-

embedded breast cancer tissues incorporated in a TMA. Normal breast epithelium (i.e. acini and 

ducts) and leukocytes displayed expression of all markers except for CGN, which stained the 

myoepithelial cell layer only.  Blood vessels displayed expression of all 4 proteins, while overall 

low to negative staining was displayed in the stromal compartment. Examples of comparative IHC 



 

analysis of normal breast tissue, blood vessels, leucocytes and breast carcinoma cells are displayed 

in Supplemental Materials. Strong PDCD4 staining (histo-score ≥ 30) was found to be significantly 

associated with longer TTP in univariate (HR = 0.75; 95% CI = 0.59 to 0.96; p value = 0.020) and 

multivariate Cox regression analysis (HR = 0.72; 95% CI =0.57 to 0.92; p value = 0.009) corrected 

for traditional predictive factors (Table 4.5). PDCD4 stained tissues showing both low or high 

protein expression and the Kaplan-Meier curve for TTP as a function of the PDCD4 histo-score are 

shown in Figure 4.6A and Figure 4.6B, respectively. In logistic regression analyses for clinical 

benefit or objective response, PDCD4 levels (histo-score ≥ 30 vs. < 30) were not significantly 

associated with the type of response (data not shown). OCIAD1, CGN and G3BP2 stainings 

showed strong intensities and high quantities of stained tumor cells in the vast majority of 

specimens. The limited dynamic range in staining intensities proved insufficient to find a significant 

association of CGN, OCIAD1 and G3BP2 levels with TTP, clinical benefit or objective response 

(data not shown). 

 

Table 4.5.Univariate and multivariate Cox regression analysis for time to progression. 

  Univariate    Multivariate  

Factors Hazard 
ratio 95% CI p value  Hazard 

ratio 95% CI p value 

PDCD4        
   Low 1.00    1.00   
   High 0.75 0.59 to 0.96 0.020  0.72 0.57 to 0.92 0.009 
        

Age        

   ≤ 55 1.00    1.00   

> 55 0.58 0.45 to 0.70 < 0.001  0.52 0.40 to 0.67 < 0.001 
        
Disease free interval        
   ≤ 12 months 1.00    1.00   
> 12 months 0.73 0.54 to 0.99 0.042  0.63 0.46 to 0.87 0.004 
        
Dominant site of relapse   Overall p     

   Loco-regional 1.00  0.310     

   Bone 1.39 0.91 to 2.10      

   Visceral 1.15 0.73 to 1.81      

   Bone and other 1.38 0.89 to 2.13      
        

PgR        

   Negative 1.00       

   Positive 0.77 0.59 to 1.01 0.062     
Acronym: PgR: progesterone receptor. 



 

 

Figure 4.6. PDCD4 immunohistochemical staining of tissue micro-array. 

Tissue cores showed two different staining patterns that have been evaluated by histo-score (i.e. Histo-score < 30 and 

≥30), representing low and high PDCD4 protein expression (A). Patients were categorized according to histo-score 

cutoff and TTP was plotted as a Kaplan-Meier curve. The Log-rank test was used to test for differences in TTP between 

the two survival curves (B).  



 

Discussion 

About half of the recurrent ER positive breast cancer patients treated with tamoxifen show intrinsic 

resistance to the drug. Despite many studies describing several mechanisms associated to tamoxifen 

resistance and a large amount of markers associated to patient hormonal treatment outcome, there is 

no molecular predictor available in the clinic (Chung and Baxter, 2012; Droog et al., 2013). 

Furthermore, the search for biomarkers in the analysis of clinical specimen is often hindered by 

tissue heterogeneity, which complicates accurate measurement of tumor protein abundance. In the 

light of this, tissue enrichment technologies offer an invaluable tool to quantify the proteome of 

specific cell subpopulations. Though mechanisms of resistance encompass not only a plethora of 

molecular mechanisms, but also different cell types as stromal ones (den Boon et al., 2015; Jung et 

al., 2015), analysis of whole tissue specimens would suffer from “signal dilution” derived from 

protein differential expression in heterogeneous tissues. Furthermore, analysis of microdissected 

stroma is hindered by the presence of high-abundance proteins (e.g. collagen family) and often 

needs additional protein separation methods. In this perspective, we have focused only on the 

epithelial tumor markers involved in tamoxifen resistance. Having successfully coupled LCM tissue 

enrichment with high resolution MS in a biomarker discovery pipeline (Braakman et al., 2012; Liu 

et al., 2014, 2012), we have here developed and validated a 4-protein signature predicting outcome 

to tamoxifen treatment in an independent set of ER positive recurrent breast cancer.  

Despite the low amount of material derived from tissue enrichment compared to whole tissue 

specimens, a higher number of proteins was identified and quantified in our LCM samples (training 

and test sets, and controls) compared to the WTL control, suggesting interference from highly 

abundant proteins (e.g. collagen family) in the latter. Furthermore, from our global proteomic 

analysis of our combined training and test sets we showed that plasma and stromal proteins 

contamination was minimized in the LCM derived material while proteins expressed in subcellular 

compartments were enriched. This allowed us to take a unique snapshot of protein abundance of 

breast cancer epithelial tissue and to derive markers specifically involved in tumor cell treatment 

resistance pathways. From a subset of commonly expressed proteins in our 112 ER-positive breast 

cancer tissues we developed and validated a protein signature comprising PDCD4, CGN, OCIAD1 

and G3BP2, which was capable of predicting tamoxifen treatment outcome in the test set with 

86.7% sensitivity, 41.4% specificity, 35.1% PPV and 89.5% NPV and independently from 

traditional predictive parameters. 

The selection of a large cohort of hormonal-treatment naive patients allowed us to assess tumor 

protein abundance directly related to first line tamoxifen treatment without any expression changes 



 

derived from previous therapies. Furthermore, the availability of an in-house training and a multi-

center test set enabled us to test the robustness of our predictor in a heterogeneous set of samples, 

reflective of differences in pathological evaluation and standard of care among medical centers. 

While our in-house training set showed almost equal distribution of patient groups, the multi-center 

cohort comprised a high number of good outcome patients, which could be explained by different 

grading systems used in local hospitals. To transfer our findings more easily to a clinical setting, we 

also performed IHC staining on an independent cohort of ER-positive breast cancer tissues, which 

confirmed PDCD4 to be an independent predictive marker of tamoxifen sensitivity. Nevertheless, 

the MS based 4-protein signature was a stronger predictor than the single marker PDCD4, 

emphasizing the potential of proteomic technologies in the dissection of tumor molecular pathways. 

Still, introduction of high resolution MS in routine clinical diagnostics remains problematic due to 

extensive and laborious sample preparation and relatively high costs. On the other side, targeted MS 

methods offer an accurate tool to detect and quantitate target analytes (i.e. peptides or metabolites) 

from biological specimens at a relatively lower cost, sample processing and measurement times 

(Grebe and Singh, 2011; Yassine et al., 2013), and would therefore constitute a more eligible 

technique for clinical introduction. 

Pathways analysis on differentially expressed proteins showed how cell growth and proliferation 

pathways are key components in tamoxifen therapy response and resistance. Akt and MAPK, 

although not present among differentially expressed proteins, constituted the center of the molecular 

interaction network, showing how cell cycle progression through estrogen-independent mechanisms 

can overcome tamoxifen treatment. Activation of Akt signaling has been linked to tamoxifen 

resistance in previous studies (Clark et al., 2002; Klinge, 2015; Nass and Kalinski, 2015), but other 

molecular mechanisms may be involved. In the light of this, the 4 protein signature not only is 

capable of discriminating patients that manifested good and poor outcome to tamoxifen treatment, 

but may also pinpoint other molecular mechanisms of resistance.  PDCD4 is an inhibitor of protein 

translation, which functions both in the nucleus and the cytoplasm (Lankat-Buttgereit and Göke, 

2009). This protein has already been described as a tumor suppressor capable of inhibiting protein 

synthesis and gene expression by preventing the interaction of eukaryotic initiation factor (eIF) 4A1 

and eIF4G, and by binding to target gene transcripts (e.g. MAP4K) in the nucleus, respectively 

(Biyanee et al., 2014; H. Yang et al., 2006). The nuclear localization of PDCD4 is attributed to Akt 

phosphorylation in a PI3K-dependent manner (Palamarchuk et al., 2005). PDCD4 levels have also 

been negatively correlated to increased expression of miR-21 in MCF-7 cells after tamoxifen 

treatment (Klinge et al., 2010; Manavalan et al., 2011). CGN is involved in tight junction formation 

and it has been described as a potential epithelial differentiation marker in human neoplasias (Citi et 



 

al., 1991; Paschoud et al., 2007). Together with Paracingulin, CNG controls the expression of 

GATA-4, contributing to down-regulation of RhoA in cells, a key regulator of cell cycle 

progression that displays its function through cytoskeletal re-organization (Guillemot et al., 2013). 

OCIAD1 expression has been suggested as a thyroid cancer biomarker and has been correlated to 

distant metastasis formation, since it was found overexpressed in metastatic ovarian cancer by MS 

analysis (Sengupta et al., 2008; Yang et al., 2012). Recent studies have demonstrated that OCIAD1 

directly interacts with STAT3 and aids in its activation, though whether this leads to activation of 

the tumor suppressor pathway or the oncogenic one still remains unclear (Lee et al., 2012; 

Musteanu et al., 2010; Sinha et al., 2013). G3BP2 has been shown to be involved in stress granule 

formation along with its relative G3BP1, as well as in mRNA binding and gene expression 

regulation. G3BP1 protein has been shown to have a distinct role in breast cancer cell proliferation 

by stabilizing mRNA molecules, but its homologue G3BP2 was not associated to any of these 

characteristics, keeping the function of this protein still ambiguous (Kociok et al., 1999; Matsuki et 

al., 2013; Winslow et al., 2013). With the exception of OCIAD1, no studies observed a correlation 

between levels of PDCD4, G3BP2, or CGN and patient survival or therapy response in clinical 

cancers; nonetheless these markers may play a role in the type of response to tamoxifen in breast 

cancer. The anti-proliferative effects of PDCD4 and CNG may have a synergistic role with the anti-

estrogenic action of tamoxifen, which results in the block of cell proliferation. Due to its relatively 

high expression in good outcome patients, OCIAD1 may activate the tumor suppressor role of 

STAT3 in ER positive breast cancer patients, further inhibiting proliferation. On the other hand, 

expression of G3BP2 could actually counteract tamoxifen action by stabilizing mRNAs of estrogen-

responsive elements as well as the ones of ER unrelated growth factors. 

 

Conclusions 

We hereby demonstrate that LCM coupled to high resolution LC-MS not only enables the 

proteomic analysis of pure cell subpopulations, but it also provides a powerful tool for biomarker 

discovery studies. This allowed us to delve into the breast cancer proteome and to generate and 

validate a signature predictive of tamoxifen therapy outcome in recurrent ER-positive breast cancer. 

In addition, a technical validation through IHC verified that PDCD4 is an independent marker 

associated with good outcome patients, although it is difficult to distinguish small changes in 

protein expression by IHC. Despite the fact that shotgun LC-MS coupled to LCM based cell 

enrichment has shown to be a robust tool for biomarker discovery, time-consuming sample 

preparation and relatively high costs may hinder its introduction into a clinical setting. In the light 



 

of this, targeted LC-MS methods such as multiple reaction monitoring would be suited to fill this 

gap, given the fact that accurate quantification of target analytes can be performed at lower costs 

with reasonable optimization times and in a multiplexed fashion.  
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Abstract 

Targeted quantitative mass spectrometry of immunoaffinity-enriched peptides, termed immuno-

multiple reaction monitoring (iMRM), is a powerful method for determining the relative abundance 

of proteins in complex mixtures, like plasma or whole tissue. This technique combines 1,000-fold 

enrichment potential of antibodies for target peptides with the selectivity of multiple reaction 

monitoring mass spectrometry (MRM-MS). Using heavy isotope-labeled peptide counterparts as 

internal standards ensures high levels of precision. Further, LC-MRM-MS selectivity allows for 

multiplexing; antibodies recognizing different peptides can be added directly to a single mixture 

without subjecting to interferences common to other multiple antibody protein assays. Integrated 

extracted ion chromatograms (XIC) of product ions from endogenous unlabeled “light” peptide and 

stable isotope-labeled internal standard “heavy” peptides are used to generate a light/heavy peak 

area ratio. This ratio is proportional to the amount of peptide in the digestion mixture and can be 

used to estimate the concentration of protein in the sample.  



 

Introduction 

Targeted mass spectrometry (MS) has made rapid advancements during the last decade and has 

begun to demonstrate the sensitivity and selectivity of highly developed immunoassays. These 

advancements make it possible to simultaneously measure concentration of 10’s of proteins or more 

in a single biological sample (e.g. body fluid, tissue lysate) reproducibly (1–3). Using a scan type 

called multiple reaction monitoring (MRM; also referred to as selected reaction monitoring [SRM]) 

on a triple quadrupole mass spectrometer (QqQ), mixtures of digested peptides derived from 

biological samples separated by nanoflow reversed phase liquid chromatography (nano-RPLC) are 

detected and analyzed. Eluted peptides are ionized from liquid to the gas phase by a combination of 

applied voltage (typically 2000V in nanospray) and drying gases (N2). Electrospray ionization 

generates gas phase ions that are introduced into the mass spectrometer. In the first quadrupole (Q1) 

target ions are filtered and accelerated toward quadrupole two (Q2) which is set to a higher pressure 

and acts as a collision cell. Peptides are fragmented in Q2 by collision-induced dissociation (CID) 

and accelerated toward quadrupole three (Q3) which scans for the pre-determined corresponding 

product ions. This transition ion, a Q3 detected mass of a peptide fragment that corresponds to a 

selected mass of a peptide precursor, is acquired in approximately 10 ms. Depending on the number 

of transition ions in a method and the chromatographic peak width, between six and twenty scans 

are collected for each transition. To confirm identification, typically 3-5 transition ions are 

monitored per peptide. To increase precision of quantification, stable isotope labeled peptides, 

peptides containing an amino acid or acids with 13C or 15N (2H is not preferred as 

chromatographic retention time is affected), can be synthesized and added to the mixture prior to 

nano-RPLC-MRM-MS analysis. This method, termed stable isotope dilution mass spectrometry 

(SID-MS), can account for variability in chromatographic retention time and ionization, which can 

be affected by variable amounts of background (peptidic and otherwise) in a mixture from run to 

run and sample to sample (4–8). 

 To determine the assay performance of each peptide, serial dilutions of concentration standard 

peptides are added to a background mixture of peptides prepared to mimic the expected matrix of 

the patient or study-derived sample. So called “reverse curves” are curves comprised of a variable 

concentration of stable isotope standard peptide and a fixed or singular concentration of 

corresponding unlabeled peptide are prepared to determine the lower limit of quantitation (LLOQ) 

and limit of detection (LOD) (9, 10). This configuration, while generating measurements with a 

peak area ratio inverse to that of the intended “forward” measurement, reduces the interference that 

endogenous peptide can introduce. Depending on the analytes selected for MRM, background 



 

matrix of cell lysates or plasma may contain sufficient quantity of endogenous peptide to interfere 

with the determination of lower limits for the assay.  

LC-MRM-MS based techniques have proven useful for determining the relative amounts of proteins 

in a complex sample (1), but the sensitivity for analyte peptides present in lower abundance is also 

affected by high amounts of the background proteome derived from a complex sample. Therefore 

enrichment of target analytes is necessary to determine quantities of peptides present at lower 

concentrations (e.g. < 1 µg/mL in plasma) (5, 8, 9). Immunoaffinity enrichment of proteins from 

cell lysates for example, is a well-established method for extracting the protein out of the mixture 

(11). Recently, this methodology has been applied to the peptide level enrichment using antibodies 

generated against the analyte peptides from proteins of interest directly without a pre-enrichment 

step such as fractionation or depletion (12). Anderson et al. were the first to describe the use of this 

approach coupled with SID-MRM-MS, and called it Stable Isotope Standards and Capture by Anti-

Peptide Antibodies (SISCAPA (12)). Here we refer to the method by the more generic name of 

immuno-MRM or iMRM. The antibodies used for peptide immunoaffinity enrichment are typically 

polyclonal (2, 3, 12, 13) but can also be generated as monoclonals (14). Polyclonal antibodies are 

purified by peptide affinity chromatography from anti-sera generated by immunizing rabbits with 

KLH-conjugated peptides unique for a target protein that have been selected from MRM public 

repositories (e.g. SRM atlas, GPM, etc.) (15). The most reliable method to obtain a peptide list to 

quantitate proteins in biological samples is to generate an in silico library from previous MS 

experiments using software packages such as Skyline (16). Skyline is frequently used to generate a 

peptide library which can be derived from spectra that have been searched using Mascot (17) or 

Spectrum Mill (Agilent Technologies Inc., Santa Clara CA). Peptide ion intensities can also be 

ranked in silico using the ESP algorithm (18). Further selection of peptides with fragment ions best 

suited for MRM-MS can be made by matching the in silico digest of a target protein with 

previously generated MS/MS spectra. Generating an antibody of sufficient titer and affinity is also 

dependent on amino acid sequence of the peptide. Algorithms for determining the hydrophilicity of 

a section of peptide sequence within the context of the full length protein sequence exist; however, 

specialized algorithms to rank the immunogenicity of single peptides are not currently available.  

To increase the success rate of antibody generation, rabbits are immunized in pairs with three to 

five peptides per protein (13). To evaluate antibody affinity, stable isotope labeled counterparts for 

peptides against which an antibody was generated are synthesized and purified from commercial 

sources (New England Peptide, Thermo, 21st Century Biochemicals). Antibody performance is then 

assessed by capture efficiency (percent of available peptide in a mixture) and LOD (from 

calibration curves). Immunoaffinity enrichment combined with high sensitivity MRM-MS makes 



 

iMRM particularly well suited for quantifying analyte peptides (surrogates for relative abundance of 

protein) in complex samples, such as plasma, tissues, or cell lysates. Due to the selective properties 

of MRM-MS, antibodies can be used individually or within a multiplex without diminishing their 

performance (2, 19). Linking antibodies onto Protein G magnetic beads makes the assay more 

amenable to robotic automation and the potential to increase throughput and robustness. We herein 

describe a method for relative precise quantification of analyte peptides from breast cancer whole 

tissue lysate samples through iMRM-MS (Figure 5.1). 

 

 

Figure 5.1. 

Outline of an immuno-MRM experiment. Once target peptides have been selected, they are captured along with a 

known amount of their isotope-labeled counterpart through anti-peptide antibodies. Heavy and endogenous peptides are 

eluted and analyzed on a triple quadrupole mass spectrometer in MRM mode. Capturing a fixed amount of endogenous 

peptide with decreasing concentrations of its isotope-labeled version enables determination of the limit of detection 

(LOD) and lower limit of quantitation (LLOQ) of the method. Quantification of target peptide/protein in biological 

samples is derived from Peak Area Ratio (PAR) determination between endogenous peptide level and its heavy 

counterpart.  



 

Materials 

Selection of target peptides 

From either previous tandem MS experiments or public repositories select a minimum of 2 unique 

tryptic peptides per target protein.   

 

Peptides and antibody buffers 

1. Antibody wash solution 1: 1X PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4-2H2O, 

2 mM KH2PO4) - 0.03% w/v CHAPS. Dissolve 300 mg of CHAPS in 1 L of 1X PBS. 

2. Antibody wash solution 2: 0.1 X PBS - 0.03% w/v CHAPS. Dilute 1X PBS 1:10 in HPLC-

grade water and dissolve 300 mg of CHAPS in 1 L of 0.1X PBS. 

3. Stable isotope labeled (heavy) peptide high concentration diluent: 30% v/v ACN/0.1% v/v 

FA. Dissolve 300 mL acetonitrile (ACN) and 10 mL formic acid (FA) in 1 L HPLC-grade 

water. 

4. Stable isotope labeled (heavy) peptide low concentration diluent – MS blank buffer – 

Antibody elution buffer: 3% v/v ACN/5% v/v acetic acid (AcOH). Dissolve 30 mL ACN 

and 50 mL AcOH in 1 L HPLC grade water. 

 

Heavy peptide standard stock solutions and mixtures 

1. Heavy peptide high concentration stocks: prepare serial dilutions of heavy peptide stocks to 

a final concentration of 100 pmol/ µL using 30% ACN/0.1% FA as diluent. 

2. Combine equivalent volumes of heavy peptide high concentration stocks in one tube. Do not 

dilute. Concentration depends on number of peptides in the final mixture 

3. Heavy peptide low concentration mixtures: dilute the high concentration stocks such that the 

final concentration is 100 fmol/ µL, use 3% ACN/5% AcOH as diluent. 

 

Anti-peptide antibody master-mix solutions 



 

1. Antibody high concentration mixture: combine equivalent amounts of antibody stock 

solutions to a final concentration 20 µg/mL for each antibody is. Use PBS 0.03% CHAPS as 

diluent. 

2. Antibody titration solutions: prepare a serial dilution from the high concentration antibody 

mixture into 1X PBS 0.03% CHAPS to generate a series of final concentrations for each 

antibody per capture of 4 , 2, 1, 0.5, 0.25, and 0.125 µg per 50 µL 

 

Cross-linking solutions 

1. Crosslinking solution: 200 mM triethanolamine (TEA) pH 8.5. Dissolve 10 mL of neat 

triethanolamine into 400 mL HPLC-grade water; adjust pH with 5 M HCl. 

2. Crosslinking solution: 20mM Dimethyl pimelimidate (DMP) in 200 mM TEA. Dissolve 

1.03 g of DMP in 200 mL of 200 mM TEA. 

3. Crosslinking quenching solution: 150 mM monoethanolamine (MEA) pH 9.0: dissolve 3.15 

mL of pure monoethanolamine in 400 mL HPLC-grade water; adjust pH with 5 M HCl. 

4. Crosslinking washing solution: 5% v/v AcOH/0.03% w/v CHAPS: Dissolve 50 mL acetic 

acid and 30 mg of CHAPS in 1 L HPLC-grade water. 

5. Re-suspension buffer: 1X PBS/0.03% w/v CHAPS/0.1% w/v NaN3. Dissolve 30 mg 

CHAPS and 1 g of NaN3 in 1 L PBS. 

6. Magnetic rack and Kingfisher Flex Magnetic Particle Processor (Thermo Scientific, 

Rockford, IL USA). 

7. MyOne Protein G 1µm magnetic beads (Dynal/Invitrogen/Life Technologies/Thermo) 

 

Methods 

Antibody crosslinking using KingFisher (optional) 

1. Add volumes of Protein G (ProG) magnetic beads into Antibody mixes to a final bead : 

antibody ratio of 2:1 (µL to µg). Tumble mix solutions overnight at 4°C. 

2. Add 900 µL/well of cross-linking solution onto a 1 mL Kingfisher plate. 



 

3. Set Kingfisher method as follows: 

o Plate 1: antibody-beads solutions. 

o Plate 2: cross-linking solution (900 µL/well), rinse 30’ 

o Plate 3: crosslinking quenching solution (900 µL 150 mM MEA), rinse 30’. 

o Plate 4: crosslinking washing solution (900 µL 5% AcOH/0.03% CHAPS), rinse 5’. 

o Plate 5: crosslinking washing solution (900 µL 5% AcOH/0.03% CHAPS), rinse 5’. 

o Plate 6: PBS washing solution (900 µL PBS 0.03% CHAPS), rinse 5’. 

o Plate 7: re-suspension buffer (900 µL PBS/0.03% CHAPS/0.1% NaN3), rinse 5’. 

o Plate 8: magnetic tip cover plate. 

 

Antibody capture efficiency evaluation 

1. Prepare a 1X PBS 0.03% CHAPS stock solution. Re-suspend amount of digested lyophilized 

protein to target concentration per capture well as desired (e.g. cell lysates 100-500 µg/200 

µL, plasma 10 µL equivalent = 600 µg/200 µL) in 1X PBS-0.03% CHAPS-0.5 fmol/ µL 

heavy mix. 

2. Prepare a 1X PBS 0.03% CHAPS stock solution. Re-suspend amount of digested lyophilized 

protein to target concentration per capture well as desired (e.g. cell lysates 100-500 µg/200 

µL, plasma 10 µL equivalent = 600 µg/200 µL) in 1X PBS-0.03% CHAPS-0.5 fmol/ µL 

heavy mix. 

3. Add 100 fmol heavy peptide (e.g. to final concentration of 0.5 fmol/µL for 200 µL). 

Transfer 200 µL of reconstituted background or sample in each well of a King Fisher 250 

96-wellplate. Add 50 µL of antibody mix to each well. Seal plate with aluminum adhesive 

foil and tumble mix plate overnight at 4°C. 

4. Set Kingfisher magnetic particle processor method as follows: 

a. Plate 1: antibody capture plate. 

b. Plate 2: washing (250 µL/well), 1.5’ rinse. 



 

c. Plate 3: washing (250 µL1X PBS/0.03% CHAPS), 1.5’ rinse. 

d. Plate 4 washing (250 µL 0.1X PBS/0.03% CHAPS), 1.5’ rinse. 

e. Plate 5: elution (25 µL 3% ACN/5% AcOH), 5’ rinse. 

f. Plate 6: bead collection, (200 µL 1X PBS/0.03% CHAPS/0.1%NaN3), 5’ rinse. 

g. Plate 7: magnetic tip comb. 

 

5. Once KingFisher method has completed, remove Elution Plate 5 and place on a magnetic 

plate holder on wet ice. 

6. Place a fresh 96-well PCR plate on wet ice and add 5 µL of 3% ACN/5% AcOH per well. 

7. Using a multi-channel pipet, transfer 25 µL of the supernatant from Elution Plate 5 into the 

fresh PCR plate. 

8. Using a multi-channel pipet, transfer 25 µL of the supernatant from Elution Plate 5 into the 

fresh PCR plate. 

9. Centrifuge plate briefly (30 s) to eliminate air bubbles. and place plate onto autosampler for 

analysis on TQMS. 

10. Centrifuge plate briefly (30 s) to eliminate air bubbles. and place plate onto autosampler for 

analysis on TQMS. 

11. Analyze by MRM for pre-selected optimized transitions for light and heavy peptides masses 

by nano-RPLC-MRM-MS. 

12. Export results file to Skyline to integrate data. Select optimal capture concentrations per 

each antibody (i.e. maximum heavy peptide signal, least noise). 

 

Evaluation of passenger peptide 

1. Prepare 3 replicates of antibody capture at a fixed antibody mix concentration. Add 

equivalent amounts of heavy peptide mix per each replicate capture. Depending on type of 

background matrix prepared (digested cell lysate, tissue or plasma) add 1:200 to 1:500 

diluted background per each replicate capture. 



 

2. Perform overnight capture and peptide elution as in 3.2.3. 

3. Analyze on a triple quadrupole MS instrument configured with nanoflow liquid 

chromatograph and autosampler. 

4. Export results in Skyline and evaluate presence of light peptide in captures with undiluted vs 

diluted background. 

 

Generation of reverse curve  

Prepare serial dilutions of heavy peptide mixtures for a 7 or 8 point curve with concentrations from 

0.3 to 200fmol in 200 µL volume of 1X PBS/0.03% CHAPS/100-500 µg background digested 

protein per capture. Include a comparable solution without heavy peptide. Mixtures may be made in 

bulk for total number of replicates (e.g. 600 µL for 3 replicates; Figure 5.2). 



 

 

Figure 5.2. 

Figure represents typical reverse curve experiment for determination of LOD/LLOQ of an iMRM assay. Heavy peptides 

are captured at different concentrations by antibodies in presence of digested protein background (plasma or digested 

cell line proteins). Peptides are immunoaffinity enriched by tumble mixing 96-well plates overnight at 4oC. Plates are 

transferred to the KingFisher magnetic particle handler the next day and peptides are eluted from the beads. MRM-MS 

is performed after transfer of captured peptides onto a new plate and results are imported and analyzed in Skyline. 

 

1. Transfer 200 µL into wells on a King Fisher 250 well plate. 

2. Based on capture efficiency data (see Antibody Capture Efficiency Evaluation) prepare the 

antibody mix (crosslinked or non-crosslinked as desired) and add 50 µL of antibody mix to 

each well. 

3. Cover with aluminum adhesive foil and tumble mix overnight at 4°C. 



 

4. Set Kingfisher magnetic particle processor method as follows: 

o Plate 1: antibody capture plate. 

o Plate 2: washing (250 µL/well), 1.5’ rinse. 

o Plate 3: washing (250 µL1X PBS/0.03% CHAPS), 1.5’ rinse. 

o Plate 4 washing (250 µL 0.1X PBS/0.03% CHAPS), 1.5’ rinse. 

o Plate 5: elution (25 µL 3% ACN/5% AcOH), 5’ rinse. 

o Plate 6: bead collection, (200 µL 1X PBS/0.03% CHAPS/0.1%NaN3), 5’ rinse. 

o Plate 7: magnetic tip comb. 

5. Analyze on a triple quadrupole MS instrument configured with nanoflow liquid 

chromatograph and autosampler. 

6. Import results in a Skyline version containing QuaSAR. In the Result Grid tab fill in 

“SampleGroup” and “Concentration”, which refer respectively to the sample replicate ID 

and to the concentration of the analyte. The “IS spike” file refers to the concentration of 

light peptide present in each capture. If a light version of each peptide is used then fill light 

peptide concentration in “IS spike”, while fill in “1” if light peptide is not detected or not 

being used (area only curve, not based on peak area ratio).  

(https://skyline.gs.washington.edu/labkey/announcements/home/software/Skyline/tools/threa

d.view?rowId=5436). QuaSAR analysis in point 3.4.7 refers to an experiment in which only 

heavy peptides are used. 

7. Perform a QuaSAR analysis, setting “Analyte” and “Standard” fields as heavy area and light 

area, respectively. Un-tick “Standard present” option if not using light peptides. Tick all 

options in the “Generate” sub-menu. LOD and LOQ of the method will be generated. 

8. Export linear and log plots of concentration curves, tables of LOD and LOQ, and plots of 

CVs for all peptides in the group.  



 

Notes 

1. Target peptides to be analyzed in an iMRM experiment should be derived from trypsin 

digestion without missed-cleavages, be unique to target protein and not contain cysteine or 

methionine residues. Sequences containing serial arginine (R) or lysine (K) residues (e.g. 

RR or KK) would be cleaved randomly at one of the basic residues and the whole peptide 

would change in mass, making its detection and quantification problematic. Non-unique 

peptides would make the quantitation less accurate, since their intensities would derive from 

different proteins, while sulphur-containing amino acids are targets for covalent 

modifications that could change the total molecular weight of the peptide. Therefore it is 

advised to select sequences, in which these are absent.  

2. An aqueous solution containing a low percentage of organic solvent and a small percentage 

of acid is well suited to be used as a blank in MS experiments. Running blank solutions 

before and after each sample (duplicate/triplicate) would assess the presence of carry-over 

but would not solve it. A saw tooth gradient with multiple ramps of high organic solvent 

concentration is advised to remove/minimize any carry over. Antibody affinity is optimal at 

neutral pH, based on a combination of non-covalent interactions. These interactions are 

removed or inhibited under acidic conditions (pH < 2.5) and the bound peptide is released 

from the antibody. A small amount of organic solvent (3% ACN) aids in peptide solubility 

in the absence of matrix and antibody. 

 

3. Preparation and dilution of heavy peptide mixtures reduces the need for potential additional 

freeze-thaw cycles of original stocks, thereby reducing the possibility of degradation of 

peptides. With these solutions it is possible to evaluate the capture efficiency of the anti-

peptide antibodies, comparing a captured heavy peptide with its spiked-in counterpart. 

 

4. CHAPS is a non-denaturating, non-ionic detergent which makes it more amenable to 

downstream mass spectrometry. It is added primarily to keep magnetic beads from settling 

on the KingFisher magnetic bead handler. It also helps re-solubilize protein digests prepared 

under denaturing conditions (e.g. Urea). Other detergents may be used to solubilize proteins 

prior to digestion, but additional detergent removal steps may be necessary to avoid 



 

irreversibly binding onto C18 packing material as well as contaminating the mass 

spectrometer. 

 

5. Typical concentration range for antibodies in immuno-purification experiments varies 

between 0.5 and 2.0 µg per capture for polyclonal antibodies (lower for monoclonals), but in 

order to determine the optimal concentration for each antibody, a titration curve above and 

below that range should be prepared. Seven concentration levels from to 0.125 µg to 4 µg 

were chosen, but further considerations at the extremes are advised. To maintain antibody 

concentration at the low end (0.125 µg), use immediately after preparing dilution series and 

do not store for long periods of time. At the high end, depending on the number of 

antibodies in the multiplex, significant amounts of magnetic beads may be needed which 

could be non-specifically lost during wash and elution steps on KingFisher. The target 

volume for each capture is typically 250 µL per well – which consists of 200 µL 1X PBS, 

0.03% CHAPS, 2µL 100 fmol/µL heavy mix and 50 µL of antibody mix. Try not to exceed 

300 µL per well in the Kingfisher 96-well plates.  

 

6. TEA is viscous and care should be used to accurately pipet volumes ensure mixing is 

complete once added to HPLC grade-water.  Prepare DMP fresh and use immediately. pH of 

TEA and MEA solutions is critical  (8.5 and 9.0 respectively). Use a pH meter when 

adjusting pH by addition of 5 M HCl. 

 

7. Sodium azide (NaN3) is a preservative and a bacteriostatic agent. Re-suspending cross-

linked antibody beads into a NaN3 containing solution allows storage at 4°C for several 

months or longer. 

 

8. Protein G is the recommended ligand for binding antibodies derived from rabbit. It is a 

bacterial-derived protein binds the Fc of antibodies leaving the variable regions accessible to 

bind and release peptide epitopes. It is commercially available conjugated to agarose 

(Agarose Bead; ABT Technologies,Tampa, FL USA), sepharose (Sepharose 4B®; Sigma-

Aldrich Corporation, St. Louis, MO, USA), POROS(POROS®; Life Technologies, Foster 



 

City, CA USA), and magnetic beads (Dynabeads®, Life Technologies, Foster City, CA 

USA). Each bead has a different size. Magnetic beads were chosen to make the process 

more amenable to automation. Smaller bead sizes yield more surface area per volume of 

bead. In addition to analyte peptides, intact IgG will also elute from Protein G under acidic 

conditions which can overload and foul the LC column used in nanoflow conditions (1 µg 

total capacity). Therefore, it is recommended to crosslink antibodies with DMP (in addition 

to the benefit of removing passenger peptides (see section 3.3)) to reduce non-specific 

background for reducing the overall signal in the mass spectrometer. 

 

9. Optimal ratio of antibody to magnetic-bead ranges from 1:1 to 1:10 (according to 

manufacturer specifications) depending on the antibody. Crosslinking after capture at 

different ratios to determine the optimal one is advised. 

 

10. The maximum volume per well in a deep well plate (max volume 2 mL/well) is limited on 

the KingFisher to 0.9 mL. Volumes above 0.9 mL will exceed the capacity of the well with 

the magnetic head and tip comb are inserted during mixing and transfer of magnetic beads. 

For these cases, use a magnet to readjust the final volume below 0.9 mL prior to crosslinking 

on KingFisher. 

 

11. The choice of background material depends on the nature of the samples that have to be 

analyzed, while the amount to be added to each capture has to be determined experimentally. 

The aforementioned capture was performed adding 500 µg of digested proteins from MCF7 

breast cancer cell line to each capture. Generating a reverse curve in the presence of a 

background that best simulates the biological sample matrix and complexity will help 

determine the most representative LOD and LLOQ for the samples being analyzed. Each 

capture should be performed at least in triplicate. The concentration of non-specific 

background peptides is proportional to the amount of antibodies used in each capture. These 

levels may vary intentionally (as in the titration experiment) or systematically (between a 

mock sample background and the real samples themselves). To minimize these effects on 

the analytical process, it is advised to cross-link antibodies onto magnetic beads. 

 



 

12. Elution into small volumes (less than 50 µL) into the 250 King Fisher plates is not advised, 

Therefore Elution plate 5 is a 150 µL 96-well PCR plate to increase the recovery from 

magnetic beads. 

 

13. Small amounts of magnetic beads may elute with the captured peptides. A magnetic plate 

holder would allow transferring the supernatants from the PCR elution plate onto a fresh 

plate without transferring the beads as well. Putting the plate on ice decreases evaporation of 

organic solvents and preserves captured peptides during handling. 

 

14. QuaSAR is a Skyline add-on which can be downloaded at: https://brendanx-

uw1.gs.washington.edu/labkey/announcements/home/software/Skyline/tools/thread.view?ro

wId=5436. And may not be available directly through Skyline without add-on. 
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Abstract 

We recently reported on the development of a 4-protein-based classifier (PDCD4, CGN, G3BP2 

and OCIAD1) capable of predicting outcome to tamoxifen treatment in recurrent, estrogen receptor 

positive breast cancer, based on high resolution MS data. In order to move these findings towards a 

clinical setting, a precise and high throughput assay to measure these proteins in a multiplexed, 

targeted fashion would be favorable to measure large numbers of patient samples. By coupling 

immuno-precipitation to multiple reaction monitoring (MRM) MS and stable isotope dilution, we 

developed a high precision assay to measure the 4-protein signature in 38 primary breast cancer 

whole tissue lysates (WTL). Furthermore, we evaluated the presence and patient stratification 

capabilities of our signature in an independent set of 24 matched (pre- and post-therapy) sera. We 

compared the performance of iMRM with direct MRM in the absence of fractionation and shotgun 

proteomics in combination with label-free quantification (LFQ) on both WTL and laser capture 

microdissected (LCM) tissues. Measurement of the 4-proteins by iMRM not only showed higher 

accuracy in measuring proteotypic peptides (Spearman r: 0.74 to 0.93) when compared to MRM 

(Spearman r: 0.0 to 0.76), but also significantly discriminated patient groups based on treatment 

outcome (hazard ratio [HR]: 10.96; 95% confidence interval [CI]: 4.33 to 27.76; Log-rank P < 

0.001) when compared to LCM (HR: 2.85; 95% CI: 1.24 to 6.54; Log-rank P = 0.013) and WTL 

(HR: 1.16; 95% CI: 0.57 to 2.33; Log-rank P = 0.680) LFQ-based predictors. Serum sample 

analysis by iMRM confirmed detection of the 4 proteins in these samples. We hereby report that 

iMRM outperformed regular MRM, confirmed our previous high resolution MS results in tumor 

tissues and have shown that the 4-protein signature is measureable in serum samples. 



 

Introduction 

Estrogen receptor (ER) positive breast cancer constitutes three quarters of all breast malignancies, 

resulting in more than 200.000 cases each year in the United States 1. Treatment options for these 

patients include anti-hormonal drugs such as tamoxifen, which effectively reduces yearly breast 

cancer death by 38% in a 5-year adjuvant regimen 2. In the recurrent setting, tamoxifen’s 

therapeutic efficiency is drastically reduced by either acquired or intrinsic resistance 3,4. Through 

high resolution MS analysis on LCM derived tumor material, we have recently developed a protein 

signature that is able to stratify tamoxifen treated patients according to treatment outcome 

independent of traditional predictive parameters 5. The coupling of LCM-based tumor cell 

enrichment with high resolution MS has demonstrated to be a robust and sensitive platform for 

biomarker discovery, being able to assess protein abundance in specific cell populations while 

minimizing interference from surrounding tissues 6–8. Although global proteome analysis of LCM 

derived material offers a sensitive analysis of relatively pure population of cells, extensive sample 

preparation and relative long measurement times thwart their introduction into the clinical setting. 

Traditional immuno-assays constitute a viable option for biomarker verification due to the high 

sensitivity and specificity provided by high quality antibodies, if available, either suffer from time 

consuming optimization (e.g. ELISA) or non-linear protein quantitation (e.g. 

immunohistochemistry [IHC]).  

To validate the clinical relevance of our 4-protein predictor, we used IHC as an independent 

technology. For PDCD4, we were able to show that it was an independent marker for tamoxifen 

therapy resistance, although protein quantification by IHC appeared to be difficult due to the lack of 

linearity of chromogenic signals. In addition, the single marker PDCD4 as measured by IHC had 

inferior performance (HR = 0.75; 95% CI: 0.59 to 0.96, Log-rank P = 0.020) compared to the MS-

based 4-protein predictor (HR = 2.32; 95% CI: 1.29 to 4.17; Log-rank P = 0.004). In the light of 

this a quantitative targeted biomarker verification assay is needed in order to validate the utility of 

the candidate marker panel in a large number of patient samples. MRM coupled to stable isotope 

dilution provides a precise method to quantify proteins in biological specimens, has significantly 

shorter development and optimization times, and can approach sensitivity and reproducibility of 

immune-assays 9,10. Moreover, MRM MS enables measurement of up to 100’s of candidate markers 

in a single biological sample 11–14. However, protein measurement can still be hindered by the 

extreme dynamic range of total protein content (e.g. plasma) 15,16, and ultimately requires the use of 

a protein reference standard. In order to address this issue, several studies showed that enrichment 



 

of target analytes by immuno-precipitation (or immuno-capture) allows protein detection and 

quantification with minimization of matrix effects in complex biological specimens 17,18.  

The main aim of the current study was to develop a targeted immuno-MRM (iMRM, also known as 

SISCAPA: Stable Isotope Standards Capture with Anti-Peptide Antibodies) 17 assay for our 

predictive 4-protein signature, that would be applicable for both breast cancer tissues and patient-

derived serum samples. Here we demonstrate that target protein enrichment with anti-peptide 

antibodies coupled to MRM MS is capable of measuring and quantifying the 4 signature proteins in 

a precise and reproducible way. Furthermore, both tissue and serum-derived classifiers enabled 

prediction of tamoxifen treatment outcome and showed significant correlation with time to 

progression. The iMRM assay we developed establishes a technical verification of our 4-protein 

predictor and provides a platform for its potential introduction into clinical diagnostics. 

 

Experimental section 

Extensive descriptions of serum sample collection, MRM analysis of control tissues and serum 

samples, as well as high resolution MS analysis, are provided in supporting information (available 

online). Protein identification procedures were previously described 5. iMRM assay development 

workflow, comparison between regular MRM and iMRM, and evaluation of tissue enrichment 

influence on protein predictor is displayed in Figure 6.1. 

 



 

 

Figure 6.1. Schematic representation of iMRM assay development workflow. 

This study was performed in three steps. First, transition and immunoaffinity enrichment were optimized, LOD and 

LLOQ were determined, and transition measurement was compared between iMRM and direct MRM. Second, high 

resolution MS analysis of LCM and WTL specimen was compared with iMRM analysis on a cohort of 38 matched 

breast cancer specimens through classifier generation. Third, a second independent serum cohort was analyzed to build 

a serum-based classifier. 

Acronyms: ER: estrogen receptor; LOD: limit of detection; LLOQ: lower limit of quantitation; MRM: multiple reaction 

monitoring; WTL: whole tissue lysate.  

 

Patient cohorts 

In order to derive a confirmatory cohort (i.e. confirmation dataset), we selected breast cancer 

samples from our previously described patient cohorts5. From a total of 112 tumor tissues (training 

set N = 56; test set N = 56), we selected samples of which enough material (i.e. at least 100 µg of 

protein) was available and furthermore displayed at least 50% tumor area based on hematoxylin and 

eosin stained slides derived from the same tumor specimen at the moment of LCM and WTL 

collection. Outcome to tamoxifen therapy was defined as patients manifesting disease progression 

before (≤; poor) or after (>; good) 6 months. This subset comprised 25 good and 13 poor patients, 

respectively (Table 6.1). After iMRM analysis, whole tissue lysates (WTL) of these samples were 

prepared and subjected to Orbitrap MS analysis. Extraction of high resolution proteomic data from 

matching LCM samples was performed. LCM and WTL mass spectrometry data have been 



 

deposited to the ProteomeXchange Consortium 19 via the PRIDE partner repository with the dataset 

identifier PXD002381. 

An independent set of 24 breast cancer patient-derived sera was selected to verify the detectability 

and therapy outcome prediction of the 4-protein signature in blood (collection dates: 1989-2000), 

and to assess whether the expression of the 4 protein markers would change based on tamoxifen 

therapy. Sera were collected both prior to start of first line tamoxifen therapy for recurrent disease 

(defined as “PRE”; Table S-1), and at the end of first line treatment (defined as “POST”), which 

coincided with disease progression. This set comprised 14 good and 10 poor outcome patients. Both 

cohorts were analyzed by iMRM as biological replicates. 

In order to assess the efficacy of immuno-capture coupled to MRM MS, a set of 8 ER positive 

control tumor specimens (≥ 50% tumor area) was analyzed in triplicate both by direct MRM (no 

fractionation) and by iMRM. 

This study was approved by the local institutional medical ethics committee (MEC 02.953). 



 

Table 6.1. Clinical information of breast cancer patients included in the confirmation cohort. 

 Outcome group  
  Good*  Poor*  Total* 

Patients 25 (100.0) 
13 

(100.0) 38 (100.0) 

Age 
   ≤ 55 years 3 (12.0) 4 (30.8) 7 (18.4) 
   > 55 years 22 (88.0) 9 (69.2) 31 (81.6) 

    
Menopausal status    
   Premenopausal 2 (8.0) 3 (23.1) 5 (13.2) 
   Postmenopausal 23 (92.0) 10 (76.9) 33 (86.8) 

    
Tumor size    
   T1 (≤ 2cm) 7 (28.0) 3 (23.1) 10 (26.3) 
   T2 (2-5cm) + Tx 17 (68.0) 9 (69.2) 26 (68.4) 
   T3 (> 5cm) + T4 1 (4.0) 1 (7.7) 2 (5.3) 

    
Tumor 
differentiation**    
   Good/Moderate 12 (48.0) 4 (30.8) 16 (42.1) 
   Poor 9 (36.0) 8 (61.5) 17 (44.7) 
   Unknown 4 (16.0) 1 (7.7) 5 (13.2) 

    
Disease free interval    
   ≤ 12 months 4 (16.0) 4 (30.8) 8 (21.1) 
   > 12 months 21 (84.0) 9 (69.2) 30 (78.9) 

    
PgR†    
   Negative 11 (44.0) 8 (61.5) 19 (50.0) 
   Positive 13 (52.0) 5 (38.5) 18 (47.4) 

    
Involved lymph nodes    
   0 11 (44.0) 6 (46.2) 17 (44.7) 
    ≥ 1 13 (52.0) 7 (53.8) 20 (52.7) 
   unknown 1 (4.0) 0 (0.0) 1 (2.6) 

    
Dominant site of 
relapse    
  Loco-regional 2 (8.0) 3 (23.1) 5 (13.2) 
  Bone 5 (20.0) 4 (30.8) 9 (23.7) 
  Visceral 7 (28.0) 4 (30.8) 11 (28.9) 
  Bone and other 8 (32.0) 2 (15.3) 10 (26.3) 
  Unknown 3 (12.0) 0 (0.0) 3 (7.9) 

* Data are reported as number (percentage). 



 

** Histopathological characteristics were evaluated by local pathologists, according to standard clinical 
practice at time of sample collection.  
† Missing data not reported. 
Acronym: PgR: progesterone receptor 
 

Cell culture 

MCF-7 breast cancer cell line was cultured in RPMI medium supplemented with 10% heat-

inactivated fetal bovine serum (FBS) and antibiotic agents (100 µg/mL Penicillin, 20 ng/mL 

Streptomycin and 80 µg/mL Gentamycin) in a humidified atmosphere with 95% air and 5% CO2. 

Cells were gathered from culture dishes using a scraper, suspended in PBS + 0.03% CHAPS 

(Sigma), sonicated at 70% amplitude (Bransons Ultrasonics, Danbury, CT, USA) using a horn 

sonifier, and collected supernatants were transferred into a new tube and stored at -80°C for further 

processing. 

 

Clinical samples preparation 

A total of 10 sections of 10 µm were cut from all ER+ frozen tumor specimens, and processed 

according to our tissue proteomic workflow, as previously described 7. Tissue sections were 

collected in pre-frozen protein Lo-bind (Eppendorf) tubes and stored at -80°C for further 

processing. Prior protein digestion, tissue sections were suspended in 100 µL 0.1% w/v Rapigest 

surfactant (Waters) in 50 mM ammonium bicarbonate solution and sonicated using an Ultrasonic 

Disruptor Sonifier II (Bransons Utrasonics). Amplitude was set at 70%. Sonicated tissues were then 

centrifuged for 15 min at 14,000 g and supernatants were collected and transferred to a new tube. 

 

Protein digestion 

Total protein concentration was measured by bi-cinchoninic acid assay in extracts of breast cancer 

tissues and MCF7 cells in order to determine protein concentration. A fixed volume of serum and 

plasma (i.e. 50 µL) samples was instead digested. Breast cancer sera, MCF-7 cells, and healthy 

donor plasma and serum proteins were denatured and reduced in 10 M urea and 5 mM DTT, 

respectively, and subsequently alkylated in the dark with a 15 mM of iodoacetamide solution for 30 

min at room temperature. Samples were then digested overnight at 37°C by adding trypsin in a 1:50 

enzyme-protein ratio after dilution of Urea with Trizma® (Sigma-Aldrich, Steinheim, Germany). 



 

Samples were acidified with formic acid, spun down at 14,000 RPM, de-salted through OASIS® 

(Waters Corporation, Milford, MA, USA) cartridges and vacuum-dried. 

 

Antibodies and isotope labeled peptide standards 

Anti-peptide antibodies against unique peptides of PDCD4 (SGLTVPTSPK and DLPELALDTPR), 

Cingulin (VQGIAGQPFVVLNSGEK and LGQEQQTLNR), OCIAD1 (GILSSHPK and 

LENSPLGEALR) and G3BP2 (VEAKPEVQSQPPR and LPNFGFVVFDDSEPVQR) proteins and 

isotope-labeled versions of unique peptides (labeled with 15N/13C at Arg and Lys C-terminal 

residues) were purchased from New England Peptide (Gardner, MA, USA). 

 

Selection of predictor protein specific transitions 

Based on high resolution MS data (previously deposited to the ProteomeXchange consortium with 

identifiers PXD000484 and PXD000485) and in silico digestion of PDCD4, OCIAD1, G3BP2 and 

CGN canonical isoforms through SRM Collider software in the Skyline environment 20 (version 

3.1.0; https://brendanx-uw1.gs.washington.edu/labkey/project/home/software/Skyline/begin.view), 

a peptide library for the 4 predictor proteins was generated. Peptides were selected based on the 

following features: uniqueness of their amino acid sequence in proteome (i.e., being “proteotypic”), 

full tryptic peptides (no missed cleavage), absence of methionine residues, exclusion of ragged ends 

(cleavage between R-R, R-K, K-K and K-R), and exclusion of low abundance peptides present in 

full scan of previous Orbitrap MS runs. These rules were applied except when too few eligible 

peptides per protein (e.g. 1) were derived. Verification of selected transitions was performed by 

injection of 10 µL of a 5 fmol/µL heavy peptide mix solution in triplicate. Optimization for 

collision energy was calculated in Skyline software for every filtered transition. 

 

Antibody cross-linking 

Each anti-peptide antibody was incubated overnight with Protein G Dynabeads® (Life 

Technologies, Foster City, CA, USA; Ab-bead ratio: 1:2) in a PBS/0.03% CHAPS solution at 4°C. 

After antibody capture by Protein G, antibody-beads solutions were aliquoted on a Kingfisher 

magnetic particle handler plate (Thermo-Fisher, Waltham, MA). PBS based buffer was removed 

and a cross-linking solution containing 20 mM dimethyl pimelimidate (DMP) and 200mM 



 

triethanolamine (Sigma-Aldrich) was added, and antibody-beads were incubated for 30 minutes 

under mild shaking. DMP containing solution was then removed after cross-linking reaction was 

quenched by adding a 150 mM monoethanolamine solution. Antibody-beads were then washed 

twice with a 3% Acetic Acid/0.03% CHAPS solution and once with a PBS/0.03% CHAPS solution. 

Antibodies cross-linked to beads were re-suspended in a PBS/0.03% CHAPS + 0.01% Sodium 

Azide, and stored at 4°C for further processing. 

 

Immunoaffinity enrichment of target peptides 

Immunoaffinity enrichment was performed according to our previously described protocol 21. 

Optimal antibody concentrations were determined by incubating 10 µL of digested healthy donor 

plasma and heavy peptide mix (200 fmol per peptide) with increasing concentrations of antibody-

beads solution. Concentration of each antibody per solution was: 0.125 µg, 0.25 µg, 0.5 µg, 1.0 µg, 

2.0 µg, 4.0 µg. Triplicate enrichments for each antibody concentration were performed. In order to 

determine the overall sensitivity in detection (i.e. limit of detection [LOD]) and quantitation (i.e. 

lower limit of quantitation [LLOQ]) of iMRM and direct MRM assays, heavy peptide response 

curves were prepared  in a background of 100 µg lysed digested MCF-7 breast cancer cells (for 

tissue measurements) or 50µL  healthy donor serum (for serum measurements; derived from our 

local serum bank) in triplicate, generating a 8 concentration-point reverse curve: 200.00, 66.67, 

22.22, 7.41, 2.47, 0.82, 0.27, and 0.00 fmol. The iMRM reverse curves were immunoaffinity 

enriched using the optimized antibody amount determined by the titration experiments, while no 

enrichment was performed for the direct MRM curve. When measuring breast cancer tissues, an 

amount of heavy peptide was added to keep the ratio of light endogenous signal and heavy peptide 

signal close to 1:1 as possible to reduce dynamic range effects 18 (tissue: 200 fmol; plasma: 10 

fmol). Trypsin digested breast cancer whole tissue lysates (~100µg) and sera (~50µL) were 

immunoaffinity enriched by overnight incubation with cross-linked antibody magnetic beads at 4C. 

Bound peptides were washed with PBS/0.03% CHAPS for 3 x 5 minutes, eluted in 25 µL of 3% 

acetonitrile/5% AcOH, and stored at 4°C until targeted MS analysis. In order to compare sensitivity, 

a reverse curve was also generated for direct MRM using MCF-7 lysates.  



 

iMRM MS analysis 

Healthy donor plasma, the 38 tumor tissue samples, and MCF7 cell line samples were analyzed on a 

4000 Q-Trap MS system, which was coupled online to a Tempo liquid chromatography (LC) 

system (Applied Biosystems, Foster City, CA). Peptides were eluted with a binary gradient (flow: 

300 nl/min; mobile phase A: 0.1% formic acid in H2O; mobile phase B: 90% acetonitrile and 0.1% 

formic acid). Sample injection was performed on PicoFrit columns (inner diameter: 75 µm; New 

Objective, Woburn, MA) packed in-house with ReproSil reversed phase resin (C18-AQ; diameter: 3 

µm; Dr. Maisch, GmbH) for a total column length of 10-12 cm. Gradient was run as follows: 3 to 

20% of solvent B for 3 minutes, 20 to 55% solvent B for 35 minutes, and 55 to 80% solvent B for 3 

minutes. Ion spray voltage was set at 2200 V, curtain and nebulizer gasses were set at respectively 

20 and 3 psi. Optimized declustering potential (DP) and collision energy (CE) were used for each 

light/heavy peptide pair. Of each target peptides, three transitions were monitored and analyzed by 

MRM-MS in unscheduled mode. 

 

Analysis of Multiple Reaction Monitoring data 

Analyst .wiff (tissues) and MassLynx .RAW (sera) derived MRM data files were imported and 

analyzed in Skyline free software. Transition lists of proteotypic peptides as measured in breast 

cancer primary tumor tissues and sera, along with .wiff and .RAW files have been deposited in 

PASSEL with dataset identifier: PASS00710 22. Chromatographic peak areas of extracted ion 

chromatograms (XIC) of each light and heavy peptide transition were used to assess peptide 

abundances in antibody-beads titration experiments. Peak area values for each transition were 

plotted in Microsoft Excel for each antibody-beads concentration point. Peak area ratio (PAR) 

between the area of light and heavy peptides were used for quantitation in the analysis of breast 

cancer samples. Isotope dilution measurements were analyzed in QuaSAR loaded as an external 

tool function and performed with Skyline. LOD, LLOQ and measurement precision (coefficient of 

variation; CV) were calculated for each measured transition in QuaSAR (v 1.1; 

https://skyline.gs.washington.edu/labkey/skyts/home/software/Skyline/tools/details.view?name=Qu

aSAR).  



 

Statistical analysis 

iMRM-derived PARs and high resolution MS label free quantitation (LFQ) intensities were 

imported in Microsoft Excel and Log10 transformed. Differences in peptide/protein abundance 

between good and poor outcome patients were assessed by t test (unequal variances assumed), 

while correlation between proteotypic peptide levels were assessed by Spearman correlation. Every 

peptide score (t value) was multiplied by its quantitative value (i.e. Log10 LFQ intensity or Log10 

PAR), and values were summed for all proteins to obtain a patient score. The so derived scores 

were then transformed into a Z distribution (i.e. Z-score) and plotted in a receiver operating 

characteristic (ROC) curve. Youden maximum (i.e. J = sensitivity + specificity – 1) was chosen as 

cutoff for group prediction. Survival curves were plotted for each predicted group. Time to 

progression (TTP) was taken as endpoint and differences in survival curves were assessed by Log-

rank and Gehan-Breslow-Wilcoxon tests. T test (paired and unpaired), Spearman correlation, ROC 

and survival curves were generated in GraphPad (v 5.1). 

 

Results 

The outline of this study is schematically represented in Figure 6.1 and encompassed the 

development and optimization of a targeted iMRM assay for our 4-protein signature predicting 

tamoxifen treatment outcome of breast cancer patients, both in tissue and serum. 

 

Selection of proteotypic peptides and antibody-capture optimization 

In order to maximize quantitation precision, the 3 most intense transitions for each peptide were 

monitored, which consisted of y and b ions. Next, in order to determine the best antibody 

concentration for purification of endogenous and isotope-labeled proteotypic peptides, a series of 

immunoaffinity enrichments was performed on heavy peptide mixes added to a background of 

healthy donor plasma using antibodies (scaling concentrations: 0.125 to 4 µg/capture) cross-linked 

to magnetic beads. The MS intensity maximum for every heavy peptide transition at the lowest 

antibody amount per capture was selected as optimal concentration for further immuno-captures 

(Table S-2).  

 

Determination of LOD and LLOQ 



 

We subsequently investigated the performance of our iMRM assay compared to direct MRM (no 

fractionation, no enrichment). Standard dilutions of heavy peptides were directly injected (MRM) or 

captured (iMRM) in a constant background of MCF-7 digested lysates (i.e. 1 µg [MRM]; 100 µg 

[iMRM]). From the analysis of the MCF-7-based reverse curves, XIC of LENSPLGEALR, 

SGLTVPTSPK, DLPELALDTPR, VEAKPEVQSQPPR and VQGIAGQPFVVLNSGEK peptides 

displayed high intensities. Lower intensity was displayed by LGQEQQTLNR, 

LPNFGFVVFDDSEPVQR and GILSSHPK peptides, probably due to early elution times, poor 

antibody capture, or poor ionization efficiency (data not shown). The ratio of heavy and light 

peptide peak area (i.e. MCF-7 derived) was plotted against the theoretical heavy peptide 

concentration for each of the proteotypic peptides in QuaSAR. Response curves for each peptide 

measured by iMRM in MCF-7 background are displayed in Figure S-1A-H. Median LOD and 

LLOQ for the 8 proteotypic peptides were 0.104 and 0.131 PAR, respectively (Figure 6.2A; Table 

6.2). Coefficients of variation for every peptide were calculated at each concentration point and 

peptide CVs for each concentration point were plotted (Figure 6.2B). Median CVs across the 8 

concentration points for at least 4 peptides across the reverse curve was below 20%, suggesting 

acceptable reproducibility of the assay (Table S-3). The fact that the remaining peptides showed 

higher CVs may derive from very low endogenous abundance levels, which may have hampered 

quantitation. 
 



 

 

Figure 6.2. Limit of detection and quantitation of iMRM and MRM assays. 

Reverse concentration curve out of iMRM (panel A and B) and direct MRM (panel C and D) measurements were 

analyzed in QuaSAR. LOD and LLOQ were calculated for every peptide transition, and plotted next to each other (A 

and C). Coefficients of variation were also calculated for each peptide transition and their distribution was plotted per 

each concentration point in the reverse curve (B and D). Displayed peptides: VQGIAGQPFVVLNSGEK (CGN, green), 

LGQEQQTLNR (CGN, dark green), SGLTVPTSPK (PDCD4, red), DLPELALDTPR (PDCD4, dark red), 

VEAKPEVQSQPPR (G3BP2, light blue), LPNFGFVVFDDSEPVQR (G3BP2, dark green), GILSSHPK (OCIAD1, 

grey), LENSPLGEALR (OCIAD1, dark grey).  



 

Table 6.2. Limit of detection and lower limit of quantitation for every transition in iMRM experiments in a background of MCF-7 lysate. 

Uniprot 
ID 

Protein 
Name 

Gene 
name 

Peptide 
sequence* 

AA 
Light 

precursor 
ion m/z 

Light 
product 
ion m/z 

Heavy 
precursor 

ion m/z 

Heavy 
product 
ion m/z 

Tissue Serum 
LOD 

[PAR] 

LLOQ 

[PAR] 

LOD 

[PAR] 

LLOQ 
[PAR] 

Q9P2M7 Cingulin CGN VQGIAGQPF 50-66 871.975++ 654.357+ 875.982++ 654.357+ 0.248 0.744 6.912 20.737 
      1345.711+  1353.725+ 0.127 0.381 6.990 20.971 
      1274.673+  1282.688+ 0.106 0.319 9.616 28.848 
      1089.593+  1097.608+ 0.102 0.307 2.672 8.018 
      746.404+  754.418+ 0.138 0.416 6.166 18.497 
             

Q9P2M7 Cingulin CGN LGQEQQTL 805-14 593.812++ 898.462+ 598.816++ 898.462+ n/a n/a n/a n/a 
      888.453+  898.461+ 0.319 0.957 n/a n/a 
      759.410+  769.419+ 0.464 1.393 n/a n/a 
      631.352+  641.360+ 0.556 1.670 n/a n/a 
      503.293+  513.301+ 0.592 1.778 2.083 6.249 
      508.759++  513.763+ 0.504 1.514 82.063 246.191 
             

Q53EL6 Programmed PDCD SGLTVPTSP 86-95 493.779++ 729.414+ 497.786++ 737.428+ 0.078 0.235 1.015 3.047 
      628.366+  636.380+ 0.101 0.304 1.764 5.292 
      529.298+  537.312+ 0.099 0.299 1.326 3.979 
             

Q53EL6 Programmed PDCD DLPELALDT 245-55 620.332++ 672.367+ 625.336++ 682.375+ 0.031 0.093 4.065 12.195 
      601.330+  611.338+ 0.028 0.086 6.133 18.401 
      506.277++  511.281+ 0.033 0.100 3.035 9.106 
             

Q9UN86 Ras GTPase- G3BP VEAKPEVQ 277-89 488.931+++ 753.414+ 492.267+++ 753.414+ 0.076 0.230 n/a n/a 
      584.315+  594.323+ 0.024 0.074 47.439 142.316 
      683.359++  688.363+ 0.017 0.051 n/a n/a 
      618.838++  623.842+ 0.130 0.392 n/a n/a 
             

Q9UN86 Ras GTPase- G3BP LPNFGFVVF 370-86 983.488++ 1290.632+ 988.493++ 1300.640+ 0.075 0.227 n/a n/a 
      1191.564+  1201.572+ 0.054 0.164 3.882 11.647 
      1092.495+  1102.503+ 0.057 0.171 5.389 16.168 
      499.298+  509.307+ 0.045 0.137 17.986 53.959 
             

Q9NX40 OCIA OCIA GILSSHPK 64-71 419.742++ 668.372+ 423.749++ 676.386+ 0.365 1.097 n/a n/a 
      555.288+  563.302+ 0.049 0.148 n/a n/a 
      334.689++  338.697+ 0.150 0.452 n/a n/a 



 

             
Q9NX40 OCIA OCIA LENSPLGEA 104-11 599.825++ 956.516+ 604.829++ 966.524+ 0.241 0.723 n/a n/a 

      842.473+  852.481+ 0.155 0.467 n/a n/a 
      755.441+  765.449+ 0.229 0.687 169.0123 507.037 

*Aminoacids labeled with 13C and 15N are highlighted in bold. 
Acronyms: AA: aminoacid sequence; LOD: limit of detection; LLOQ: lower limit of quantitation 



 

Using the same method, we assessed performance of direct MRM (response curves are 

displayed in Figure S-2A-H). Direct MRM median LOD and LLOQ for the 8 peptides were 

0.233 and 0.699 PAR, respectively (Figure 6.2C; Table S-4), showing a slight decrease in 

sensitivity when compared to iMRM. Upon assessing variability of direct MRM 

measurements, 5 out of 8 peptides showed a higher median CV compared to their counterparts 

analyzed by iMRM, while the 3 remaining peptides showed comparable variation (Figure 

6.2D; Table S-5). These data suggest that iMRM suffers less variability and achieves higher 

sensitivity in comparison to direct MRM. 

For serum analysis, a reverse curve in a background of healthy donor serum (i.e. 50 µL; ~3 

mg) was also generated and analyzed by iMRM. Response curves of proteotypic peptides 

measured in a background of healthy donor serum by iMRM are displayed in Figure S-3 

(panels A to H). LOD and LLOQ in serum (Median [min – max] LOD: 3.035 [0.846 – 

160.842] PAR; Median [min – max] LLOQ: 9.106 [2.539 – 482.525] PAR) were higher than 

in breast cancer tissues (Median [min – max] LOD: 0.064 [0.017 – 0.319] PAR; Median [min 

– max] LLOQ: 0.192 [0.051 – 0.957] PAR; Figure S-4A and Table 2). A higher CV was also 

observed in the serum-based reverse curve (Figure S-4B and Table S-3). Given the fact that 

we measured tissue proteins in serum, it is not surprising that LOD, LLOQ, and CV were 

higher than in cell line lysates. 

 

Comparison between MRM and iMRM 

In order to confirm whether immunoaffinity enrichment of proteotypic peptides would yield 

more reliable data we tested precision and concordance of measurement between MRM and 

iMRM approaches in a cohort of breast cancer tissues (analyzed in triplicate). Correlation 

analysis between iMRM and MRM analysis of proteotypic peptides showed that for 5 out of 8 

peptides moderate to high correlation coefficients were observed, while only 3 (i.e. both 

OCIAD1 peptides and G3BP2 VEAKPEVQSQPPR) peptides showed poor or no correlation 

(Figure S-5). Furthermore, when assessing correlation between protein-specific peptides, 

iMRM measurements (Spearman r range: 0.74 to 0.93) proved to be more precise than 

standard MRM (Spearman r range: 0.00 to 0.76; Figure S-6). These data suggest that the 

iMRM assay for our 4-protein predictor is a more robust and reliable quantitation method than 

direct MRM.  



 

iMRM analysis of breast cancer tissues 

After having optimized the iMRM assay for our 4-protein predictor and comparison with 

direct MRM, it was assessed whether proteotypic peptide levels measured by iMRM in breast 

cancer patient-derived tissues would show differential levels between patient groups in our 

confirmation dataset, and whether a classifier for patient outcome could be developed. 

Immuno-captures of the 8 proteotypic peptides were performed on a series of 38 ER positive 

breast cancer WTLs with a stable amount of isotope labeled peptides (i.e. 200 fmol). A 

significant difference in abundance was detected for CGN (VQGIAGQPFVVLNSGEK t test 

P = 0.003; LGQEQQTLNR t test P < 0.001), and PDCD4 (SGLTVPTSPK t test P = 0.023; 

DLPELALDTPR t test P = 0.045) between poor and good outcome patients (Figure 6.3). 

Furthermore, these peptides showed strong positive correlation, (Spearman r = 0.95, both 

peptides). Peptides measured for G3BP2 and OCIAD1 showed a moderate (Spearman r = 

0.50) and good (Spearman r = 0.79) positive correlation respectively, but their abundance was 

not statistically different between patient groups (Figure 6.3 and Figure S-7). These data 

suggested that the 4-protein signature measured by iMRM MS may have predictive value in 

breast cancer tissues. 



 

 

Figure 6.3. Quantification of 4 protein signature in breast cancer tissue cohort. 

iMRM MS measurements were performed on 38 ER positive breast cancer tissues and Log10 PARs were plotted 

for good and poor outcome patients. Difference in expression levels between the two patient groups was assessed 

by t test. Significant difference was found between the levels of VQGIAGQPFVVLNSGEK and 

LGQEQQTLNR CGN peptides and for the SGLTVPTSPK PDCD4 peptide between good and poor outcome 

patients. 



 

Patient stratification according to global shotgun versus targeted iMRM analysis 

In order to compare the 4-protein predictor based on targeted iMRM with that developed by 

global shotgun MS data, we measured the 38 WTL samples by Orbitrap MS, and quantified 

protein abundance through LFQ (information on protein identification in LCM and WTL sets 

are provided in Table S-6). In addition, we extracted previously generated LCM Orbitrap MS 

data 5. We evaluated the 4-protein classifier prediction capability by plotting ROC curves of 

the protein levels obtained through global shotgun (LCM and WTL samples) and targeted 

iMRM MS (WTL). The area under the curve (AUC) of the ROC curve built based on LCM 

global shotgun MS data displayed the highest value (AUC = 0.91; Figure 6.4A), 

discriminating poor outcome patients with 92.31% sensitivity and 80.00% specificity (max J 

= 0.72). Predicted treatment outcome groups also showed significant difference in TTP (HR = 

2.85; 95% CI: 1.24 to 6.54; Log-rank P = 0.013; Figure 6.4B). The ROC curve based on WTL 

global shotgun MS data displayed no discriminating power (AUC = 0.52) and low Youden 

index (max J = 0.17; Sensitivity = 76.92%; Specificity = 40.00%; Figure 6.4C), with no 

significant difference between survival curves of predicted groups (HR = 1.16; 95% CI: 0.57 

to 2.34; Log-rank P = 0.680; Figure 6.4D). Thus, when applying global shotgun proteomics, 

tumor tissue enrichment through LCM appears to be essential to obtain enough discrimination 

and reliable outcome prediction based on the 4-proteins. On the other hand, discriminating 

power was retained by iMRM MS of signature peptides derived from WTLs. In fact, the ROC 

curve-based these data displayed a comparable AUC (0.82) and group prediction (max J = 

0.57; sensitivity = 84.62%; specificity = 72.00%; Figure 6.4E) as the one derived from high 

resolution MS of LCM samples, reflective of the high sensitivity and interference reduction 

inherent to the technique. Also, a significant difference was observed between survival curves 

of the two groups (HR = 10.96; 95% CI: 4.33 to 27.76; Log-rank P < 0.001; Figure 6.4F). 

Due to the fact that OCIAD1 and G3BP2 peptides did not show a significant difference 

between patient groups, we argued whether their removal from our predictive model based on 

iMRM data would benefit overall prediction. The ROC curve based solely on PDCD4 and 

CGN peptides showed a similar AUC (i.e. 0.85) when compared to the one derived from the 4 

protein predictive model, though with notable differences in sensitivity (from 86.62% to 

56.00%) and specificity (from 72.00% to 100.00%; Figure S-8A). Although significant, a 

decrease in survival differences between patient predicted groups was also observed (HR = 

2.10; 95% CI: 1.04 to 4.23; Log-rank P = 0.037; Figure S-8B). This suggests that, although 



 

not retaining their t test significance, OCIAD1 and G3BP2 still contribute to the predictive 

model. 

 

 



 

Figure 6.4. Group prediction based on high resolution and iMRM MS data. 

Next to the iMRM analysis of 38 tumor tissues, high resolution MS data was generated for WTL and previously 

obtained for LCM samples from those same 38 tissues. ROC curves were built based on the levels of the 4 

signature proteins (A, C, E), and group prediction was compared (B, D, F) for LCM shotgun (A, B), WTL 

shotgun (C, D), and WTL iMRM (E, F) data. 

Acronyms: CI: confidence interval; HR: hazard ratio; ROC: receiver operating characteristic, PPV: percentage of 

positive predicted values; NPV: percentage of negative predicted values. 

 

Overall, these data suggest that iMRM measurement of predictor proteins on breast cancer 

WTL allows discrimination of patient groups and prediction of treatment outcome comparable 

to high resolution MS on LCM enriched specimens. 

 

iMRM analysis of breast cancer patient sera 

Although our iMRM assay for the 4-protein signature performed well in tissues, blood 

specimens are more readily available in the clinic. In this perspective, successful prediction of 

tamoxifen outcome based on the 4-protein measurement in patient sera would constitute a 

more clinically applicable assay. We therefore assessed whether peptides from the 4-signature 

proteins were also detectable in breast cancer patient-derived serum. iMRM analysis was 

performed on patient sera obtained before (PRE) and after (POST) start of tamoxifen 

treatment for recurrent disease. All 8 signature peptides were detected in the patient serum 

cohort, although the amount of each protein was significantly reduced relative to the levels 

observed in whole breast cancer tissue lysates (data not shown) and for some samples few 

observations were missing. Upon assessment of differences in expression levels between good 

and poor outcome patients in the “PRE” serum cohort, trends were observed for CGN 

VQGIAGQPFVVLNSGEK (t test P = 0.087) and LGQEQQTLNR (t test P = 0.054) peptides, 

while only G3BP2 peptide LPNFGFVVFDDSEPVQR showed high expression in good 

outcome patients (t test P < 0.001; Figure S-9), which was the opposite of what was observed 

in breast cancer tissues. Despite of this, levels of the remaining 7 peptides showed similar 

expression pattern in patient groups when compared to breast cancer tissues. Correlation 

analysis between proteotypic peptides revealed that PDCD4 peptides showed the highest 

correlation (Spearman r = 0.70), while CGN (Spearman r = 0.43) and G3BP2 (Spearman r = 

0.35) showed moderate correlation, and OCIAD1 peptides displayed a negative one 

(Spearman r = -0.38; Figure S-10). For proper prediction comparison with tissue data, we 



 

used the 8 proteotypic peptides expression levels to build a serum-classifier, which predicted 

poor outcome patients with 83.33% sensitivity and 78.57% specificity (AUC: 0.83; max J = 

0.62; Figure S-11A). Survival curves of predicted patient groups did not show any significant 

difference by Log-rank test (HR = 1.40; 95% CI: 0.58 to 3.35; Log-rank P = 0.449), however 

a significant difference in survival was observed within the first 12 months after start of 

tamoxifen therapy (Gehan-Breslow-Wilcoxon P = 0.042; Figure S-11B) 23,24. Upon 

evaluation of the survival curves within the first year after therapy start, i.e. censoring of 

progression events after [>] 12 months after start of therapy, a significant difference in time to 

progression was observed between predicted outcome groups (HR = 4.17; 95% CI: 1.42 to 

12.25; Log-rank P = 0.009; Figure S-11C). 

As the 4-protein signature significantly predicted patient groups after iMRM analysis of 

primary tumors, we expected that significant prediction would be achieved in sera after 

measurement of the PRE cohort, and not in the POST set. In the latter, no significant 

difference between patient groups was indeed observed (Figure S-12). Paired analysis for 

each peptide between PRE and POST sera revealed an increase in CGN 

VQGIAGQPFVVLNSGEK (paired t test P = 0.003) and OCIAD1 GILSSHPK (paired t test P 

= 0.023) peptides, while a decrease in expression of G3BP2 LPNFGFVVFDDSEPVQR 

(paired t test P < 0.001) was observed. All other peptides showed no significant change in 

expression levels between the two time-points (Figure S-13). Furthermore, the survival curves 

of predicted tamoxifen outcome groups confirmed that no significant prediction could be 

made on treatment outcome (Figure S-14). Thus, our data suggest that significant prediction 

can be achieved only by analysis of serum specimen collected prior to start of therapy, and 

that, as expected, analysis of serum samples collected at the end of therapy cannot be used for 

therapy monitoring purposes. 

 

Discussion 

Tamoxifen-based anti-hormonal therapy had proven successful in treating patients with 

primary ER positive breast cancer, but its efficacy is drastically reduced in the recurrent 

setting due to intrinsic and acquired resistance mechanisms 4,25. We have recently developed a 

protein-based classifier for tamoxifen resistance in metastatic breast cancer by using LCM 

cell enrichment coupled to high resolution MS and LFQ 5. The next step would be large-scale 

clinical validation in order to introduce the classifier into clinical practice. Ideally, such large 



 

scale validation would be performed using a multiplexed, targeted, more quantitative, and 

relatively quick assay. Our initial workflow based on LCM, global shotgun MS and LFQ, 

however, requires extensive and time consuming sample preparation, provides only relative 

quantitation, and suffers from long measurement times. Furthermore, IHC analysis of our 

signature proteins provided verification of only one marker (i.e. PDCD4), probably due to 

poor antibody sensitivity and/or limited dynamic range inherent to the technique. We 

therefore developed a targeted MRM assay using stable isotope standards for quantitation, 

which offers robust quantitation of target analytes, however measurement can be thwarted by 

matrix effects that reduce sensitivity and reproducibility and can lead to false positives 26,27. In 

order to address this issue, and to bypass the laborious LCM procedure of which the material 

yield is not sufficient for target analyte enrichment strategies, immuno-precipitation of target 

peptides from whole tissues with MRM MS were coupled to quantify our 4 signature proteins 

in both breast cancer tissue and serum cohorts, and iMRM-based tissue and serum classifiers 

were built. 

Upon assessing LOD and LLOQ of our iMRM assay in breast cancer tissue and serum 

samples, a notable difference was detected in these two sets. While proteotypic peptides 

measured in breast cancer tissues displayed low LODs and LLOQs, sensitivity was decreased 

in serum. A similar trend was observed upon CV measurement, which was higher for peptides 

measured in serum. As CV generally increased at lower analyte concentrations in both the 

MCF-7 and healthy donor serum reverse curves, the lower concentration of endogenous 

peptides in the latter might have contributed to this observation. The addition of unlabeled 

synthetic peptides might have yielded better results in terms of precision, but would have not 

reflected the imprecision of measuring endogenous peptides in a biological matrix. 

In order to evaluate what the added value the peptide immune-capture step has relative to 

direct MRM, we compared the results of the two methods in a set of control samples. Direct 

MRM quantification of proteotypic peptides showed to have higher detection and quantitation 

limits compared to iMRM, though variability varied from peptide to peptide. When 

comparing the two approaches in a cohort of breast cancer tissues, low correlation coefficients 

between proteotypic peptides measured by direct MRM were observed, especially between 

OCIAD1 and G3BP2 peptides. While high hydrophilicity (as observed for CGN 

LGQEQQTLNR, G3BP2 VEAKPEVQSQPPR, and OCIAD1 GILSSHPK peptides) may 

impair quantitation due to early species elution, our data suggested possible interference from 

the sample matrix, like the presence of co-eluting peptides, as the responsible cause for such 



 

discrepancy in the comparative measurement of OCIAD1 and G3BP2 by iMRM and MRM 

MS. This was further confirmed when higher concordance was found between proteotypic 

peptides measured by iMRM. In this perspective, iMRM would offer a valuable tool for 

laboratory and clinical assays due to the minimization of interfering compounds and proteins 

and the consequential precision in analyte measurement. 

Upon assessing peptide abundance differences between patient groups in the primary breast 

cancer tissue confirmatory dataset, only PDCD4 and CGN peptides were found differentially 

expressed. In fact, correlation analysis between quantitative measurements of each 

proteotypic peptide couple (i.e. specific to each of the 4 proteins) showed a high measurement 

concordance and reproducibility between CGN and PDCD4 peptides, while G3BP2 and 

OCIAD1 peptides displayed low or negative correlation. Higher variation in the quantification 

of G3BP2 and OCIAD1 peptides may be explained by the influence of the complex serum 

matrix resulting in decreased peptide ionization efficiency, poor peptide recovery by 

capturing antibody or early elution during the chromatographic gradient 28. This possibly is 

reflected by the lack of differential expression found for G3BP2 and OCIAD1 peptides in our 

breast cancer tissue cohort measured by iMRM MS. Furthermore, the low precision in 

measuring G3BP2 and OCIAD1 peptides seemingly reflects the need to develop better 

antibodies for immunoaffinity captures as well as better tools for selection of proteotypic 

peptides used to develop targeted MS assays. Yet, as on one hand the development of high 

sensitivity and specificity antibodies is restricted by the standard methods used (e.g. 

conjugation to immuno-stimulatory proteins), which only allow a posteriori assessment of 

antibody quality, on the other hand peptide predictive tools would unlikely be able to address 

the interference derived from biological samples matrix complexity. 

In order to assess whether iMRM and LFQ, high resolution MS predictions would perform 

similarly in breast cancer tissues, and to assess whether analysis of WTL would impair protein 

quantitation, Orbitrap MS measurements of the 4 proteins in WTL and LCM material with 

iMRM-derived data were compared. In a cohort of 38 matching tumor tissues, prediction 

based on LCM LFQ and WTL iMRM measurements had comparable sensitivity and 

specificity. On the other hand, high resolution MS of the 4-protein signature in WTL was 

hindered by a higher amount of missing data, which could be ascribed to ion suppression or 

matrix effects. This likely contributed to the fact that no difference in the 4-protein expression 

was found between patient groups, which resulted in an indiscriminative ROC curve. Matrix 

effects due to specimen heterogeneity have been previously reported in proteomic studies, 



 

where differences in cell population ratios, and possibly the interference from co-eluting 

species and the background proteome, hinder measurement reproducibility and quantitation 29. 

In these cases highly abundant proteins tend to suppress the signal from less abundant ones, 

also causing chromatographic peak re-sampling, impairing not only quantitation but actual 

total protein identification 30–32. Though such issue can be minimized through sample 

fractionation, this would result in a conspicuous increase of measurement time. In this 

perspective, iMRM analysis of WTLs is able to bypass sample matrix derived interference 

and enable precise quantitation, provided that target analytes are predominantly expressed in 

cell populations of interest and that high recovery purification techniques are used.  

Upon building predictive models out of our MS data, removing OCIAD1 and G3BP2 from 

the predictive model did not impair the overall AUC of the ROC curve, though notable 

differences were observed in sensitivity when compared to the 4 protein model. However, 

because a notably lower HR was observed when differences in survival times between patient 

groups were assessed, it suggests a discriminatory role of the entire protein signature 

compared to a 2-protein based model. 

Upon measuring proteotypic peptides in sera collected before start of tamoxifen therapy 

(PRE), CGN and PDCD4 peptides showed a trend in expression between good and poor 

outcome patients, while no differential expression was observed for G3BP2 and OCIAD1 

peptides, with the sole exception of G3BP2 LPNFGFVVFDDSEPVQR. This G3BP2 peptide 

not only showed a highly significant differential expression, but also enrichment in good 

outcome patients. Though G3BP2 has been reported to be expressed in almost all of the 

human normal tissues (e.g. endometrium, colon, liver, brain, etc.), protein level alteration 

derived from other organs would likely impact the other G3BP2 proteotypic peptide. Previous 

reports had already shown that different peptides derived from the same protein (i.e. serum 

albumin) might indeed present anti-correlating abundance levels due to differential 

degradation from proteases, which appears to be sequence-dependent 33. Furthermore, these 

findings may also be related to differential protease activity between good and poor outcome 

patients, which is a well-established hallmark of cancer invasion and progression, and has 

been shown to modify serum protein abundances both in vivo and ex vivo 34–37. In this 

perspective, an increased protease activity in poor outcome patients, which generally display 

faster tumor progression, may possibly alter quantitation of G3BP2 proteotypic peptides. 

Despite these seemingly contradictory results, upon evaluating the effectiveness of our 

classifier, a significant difference between predicted groups was observed. As therapy 



 

effectiveness is generally evaluated in the clinic every 6 months, a significant survival 

difference measured in the first year after start of tamoxifen treatment would likely be useful 

for clinicians in assessing which patients should receive an alternative systemic treatment. 

Upon assessing peptide levels in matched sera collected upon end of therapy (POST), no 

significant difference was detected between patient groups, nor could any significant 

difference be observed between predicted groups’ survival curves. In this perspective, our 4 

protein classifier would be better suited to predict patient outcome at primary tumor resection, 

or before start of first line tamoxifen therapy. 

 

Conclusions 

We have here shown that iMRM MS is a valid assay for our 4-protein signature in clinical 

specimens due to immunoaffinity enrichment, which reduces sample matrix-derived 

interference. Furthermore, we have confirmed that an iMRM-based classifier can be used in 

both primary tumor tissues and serum specimens to predict tamoxifen therapy outcome for 

recurrent ER positive breast cancer.  
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Abstract 

Tamoxifen therapy resistance constitutes a major cause of death in patients with recurrent 

estrogen receptor (ER) positive breast cancer. Through high resolution mass spectrometry 

(MS), we previously generated a 4-protein predictive signature for tamoxifen therapy 

outcome in recurrent breast cancer. ANXA1 and CALD1, which were not included in the 

classifier, were however the most differentially expressed proteins. We first evaluated the 

clinical relevance of these markers in our MS cohort, followed by immunohistochemical 

(IHC) staining on an independent set of tumors incorporated in a tissue microarray (TMA) 

and regression analysis in relation to time to progression (TTP), clinical benefit and objective 

response. In order to assess which mechanisms ANXA1 and CALD1 might been involved in, 

we performed Ingenuity pathway analysis (IPA) on ANXA1 and CALD1 correlated proteins 

in our MS cohort. ANXA1 (Hazard ratio [HR] = 1.83; 95% confidence interval [CI]: 1.22–

2.75; P = 0.003) and CALD1 (HR = 1.57; 95% CI: 1.04–2.36; P = 0.039) based patient 

stratification showed significant association to TTP, while IHC staining on TMA showed that 

both ANXA1 (HR = 1.82; 95% CI: 1.12–3.00; P = 0.016) and CALD1 (HR = 2.29; 95% CI: 

1.40–3.75; P = 0.001) expression was associated with shorter TTP independently of 

traditional predictive factors. Pearson correlation analysis showed that the majority of proteins 

correlated to ANXA1 also correlated with CALD1. IPA indicated that ANXA1 and CALD1 

were associated with ER-downregulation and NFκB signaling. We hereby report that ANXA1 

and CALD1 proteins are independent markers for tamoxifen therapy outcome and are 

associated to fast tumor progression.  



 

Introduction 

ER positive breast cancer constitutes three quarters of all breast malignancies. Treatment 

options of patients with such tumors include targeted anti-hormonal drugs, of which 

tamoxifen has been the first choice for decades, both in the adjuvant and in the recurrent 

setting (1). In the adjuvant setting, tamoxifen significantly increases patient survival and 

decreases the risk of metastasis occurrence (2). In recurrent ER positive breast cancer, 

approximately 50% of patients treated with tamoxifen manifests intrinsic drug resistance, 

while the other half experiences acquired resistance during therapy (3, 4). Many studies have 

described mechanisms of tamoxifen resistance in breast cancer patients, such as the 

upregulation of ER transcriptional co-activators (5) or the expression of ER isoforms (6), the 

activation of several tyrosine kinase pathways such as PI3K/MAPK (7), or the dysregulation 

of tamoxifen metabolizing enzymes (8). Acquired mutations in the ligand-binding domain of 

ESR1 protein (e.g. p.Tyr537Ser) during endocrine treatment have also been associated with 

constitutive agonistic activity of the receptor and the unresponsiveness to anti hormonal 

therapies (9–11). Furthermore, gene expression analyses have been performed to derive 

biomarkers predictive of tamoxifen therapy outcome in both the adjuvant and the recurrent 

settings (12, 13). So far, none of these markers have found clinical application due to non-

optimal study design, lack of extensive sample validation, or difficulty in developing assays 

into an accurate and standardized format (14, 15). 

Proteomics-based technologies have shown to enable expansion of the depth of biomarker 

investigation (16), adding new layers of information to the clinical and biological profiling of 

diseases (17–19). Advancements in liquid chromatography and mass spectrometry (MS) 

instruments now enable almost full coverage of the protein-coding genome, and quantitation 

of even slight changes in protein expression (20, 21). Furthermore, targeted MS techniques 

provide accurate and absolute quantitation of target analytes, making them suitable for both 

biomarker verification and clinical diagnostics(22, 23). In our laboratory, we have developed 

a tissue proteomics biomarker discovery pipeline combining laser capture microdissection 

with high resolution MS analysis and label free quantitation for the analysis of breast 

carcinomas (24, 25), allowing us to not only establish a robust platform for biomarker 

discovery but also dissect the underlying biological mechanisms in epithelial tumors. Through 

this pipeline, we previously analyzed a cohort of snap frozen ER positive primary tumors and 

developed a 4-protein signature – comprising PDCD4, CNG, OCIAD1, and G3BP2 – 

predicting poor outcome to tamoxifen treatment with 86.7% sensitivity and 41.5% specificity 



 

(26). However, the 4 proteins included in the classifier did not display extreme differential 

levels between tamoxifen outcome groups, suggesting that other factors may be involved in 

tamoxifen treatment outcome. In order to address this, we combined our initial MS cohorts 

and assessed which proteins manifested the highest change in expression between patient 

groups. The top candidates were selected based on significance after statistical evaluation of 

their abundance levels between patient groups, and their association to TTP was assessed in 

MS analyzed samples. Furthermore, IHC analysis of an independent cohort of tumors 

incorporated in a TMA provided further marker verification. In order to assess which 

pathways the top molecules were involved in, correlation and pathway analyses were 

performed. A schematic representation of the study`s workflow is reported in Figure 7.1. 

 

 

Figure7.1. Schematic representation of analysis workflow.  



 

Results 

Analysis of MS sets 

In order to assess which proteins showed the larger change in expression between good and 

poor outcome tamoxifen treatment groups, statistical analysis (i.e. t test) was performed on all 

1,960 quantified proteins (Table S1) in our 112 patient MS cohort (Clinical and histo-

pathological characteristics are reported in Table S2). Based on significance levels, ANXA1 (t 

test P < 0.001; fold change = 1.90) and CALD1 (t test P < 0.001; fold change = 2.06) proteins 

were selected as top candidates (Figure 7.2A and Figure S1). In addition to this, survival 

analysis was performed on ANXA1 and CALD1-stratified patients, with TTP as endpoint. A 

significant difference was observed between patients who displayed high levels (based on 

median expression) of ANXA1 (HR = 1.83; 95% CI: 1.22 – 2.75; P = 0.003) and CALD1 

(HR = 1.57; 95% CI: 1.04 – 2.36; P = 0.039) proteins (Figure 7.2B). These data show that 

ANXA1 and CALD1 are positively associated to faster disease progression after tamoxifen 

treatment in ER positive recurrent breast cancer. 



 

 

Figure 7.2. ANXA1 and CALD1 expression levels and survival analyses in MS cohorts. 

Measurement of ANXA1 and CALD1 protein levels based on previously derived proteomic data. Panel A 

displays Log ratio bar charts show that both ANXA1 (t test P = 0.00016; Fold ratio = 1.90; left) and CALD1 (t 

test P = 0.00019; Fold ratio = 2.06; right) were highly differentially expressed in the poor outcome group. 

Stratification of patients according to median protein level showed that a significant difference was observed 

between ANXA1 (left) and CALD1 (right) protein levels (Panel B). 

 

Validation of ANXA1 and CALD1 as independent markers using immunohistochemistry 

In order to further confirm our findings, ANXA1 and CALD1 protein levels were assessed 

through IHC staining on an independent cohort of 408 FFPE tumor tissues derived from 

patients that received tamoxifen as first line therapy for recurrent breast cancer (Table S3). 

After filtering for missing values (Figure S2), a total of 20 out of 235 tumor tissues displayed 



 

ANXA1 positivity (Figure 7.3A). ANXA1 presence was significantly associated with shorter 

TTP in both univariate (HR = 2.99; 95% CI: 2.14 - 4.16; P < 0.001) and multivariate (HR = 

1.82; 95% CI: 1.12 - 3.00; P = 0.016) Cox regression analyses (Table 7.1; Figure 7.4A). 

 

Figure 7.3. Immunohistochemical stainings of ANXA1 and CALD1 proteins. 

Breast carcinomas included in the TMA displayed either ANXA1 positivity or negativity (A). Strong ANXA1 

staining was found ubiquitously in stromal cells (black arrows) and was not taken into account in the survival 

analysis. CALD1 IHC staining was found at the membrane and cytoplasm of both carcinoma and stromal cells, 

but the latter was not taken into account for survival analyses (B).  



 

CALD1 positivity (Figure 7.3B) was observed in 21 out of 259 patients and Cox regression 

analysis showed a significant positive correlation with shorter TTP both in univariate (HR = 

2.43; 95% CI: 1.52 - 3.89; P < 0.001) and multivariate (HR = 2.29; 95% CI: 1.40 - 3.75; P = 

0.001) analyses (Table 7.2; Figure 7.4B).  

 

 

Figure 7.4. Survival analyses of ANXA1 and CALD1 association to TTP. 

ANXA1 and CALD1 levels (i.e. negative/positive) were assessed by IHC and analyzed by Cox regression 

analysis and Log-rank test. Both ANXA1 (A) and CALD1 (B) levels showed significant association with short 

TTP in ER positive breast tumors. 

 



 

In addition to this, we analyzed whether the associations of ANXA1 and CALD1 with TTP 

were independent of each other in the subset of 235 tumor tissues for which both 

measurements were available. Multivariate Cox regression analysis showed that both ANXA1 

(HR = 1.90; 95% CI: 1.16 - 3.10; P = 0.010) and CALD1 (HR = 2.29; 95% CI: 1.40 - 3.74; P 

= 0.001) were independently correlated to TTP (Table S4).  



 

Table 7.1. Univariate and multivariate Cox regression analysis for the association of ANXA1 staining with 

TTP. 

  
Univariate 

 
Multivariate 

 
n of patients HR 95% CI P 

 
HR 95% CI P 

ANXA1 
        Negative 272 1.00 

   
1.00 

  Positive 45 2.99 2.14 - 4.16 < 0.001 
 

1.82 1.12 - 3.00 0.016 

         Age 
        ≤55 years 125 1.00 

   
1.00 

  >55 years 192 0.59 0.47 - 0.75 < 0.001 
 

0.56 0.42 - 0.75 < 0.001 

         Disease-free survival 
        ≤12 months 67 1.00 

   
1.00 

  >12 months 250 0.69 0.52 - 0.91 0.008 
 

0.72 0.51 - 1.01 0.057 

         Dominant site of relapse 
        Loco-regional 43 1.00 

      Bone 113 1.20 0.83 - 1.74 0.235 
    Visceral 74 1.27 0.85 - 1.89 0.238 
    Bone and other 87 1.25 0.85 - 1.84 0.258 
    

         PgR* 
        Negative 111 1.00 

   
1.00 

  Positive 204 0.51 0.40 - 0.64 < 0.001 
 

0.71 0.52 - 0.97 0.034 

         Her2 status* 
        Negative 201 1.00 

      Positive 114 1.18 0.93 - 1.50 0.170 
    

         Tumor differentiation* 
        Good 46 1.00 

   
1.00 

  Moderate  150 1.45 1.01 - 2.06 0.042 
 

1.15 0.79 - 1.67 0.456 
Poor 118 1.95 1.35 - 2.82 < 0.001 

 
1.24 0.82 - 1.89 0.311 

*Missing data not reported. 
Tumor differentiation was assessed through Bloom-Richardson scoring system. 
Acronym: PgR: progesterone receptor.  



 

Table 7.2. Univariate and multivariate Cox regression analysis for the association of CALD1 staining with 

TTP. 

  
Univariate 

 
Multivariate 

 
n of patients HR 95% CI P 

 
HR 95% CI P 

CALD1 
        Negative 238 1.00 

   
1.00 

  Positive 21 2.43 1.52 - 3.89 < 0.001 
 

2.29 1.40 - 3.75 0.001 

         Age* 
        ≤55 years 109 1.00 

   
1.00 

  >55 years 150 0.64 0.50 - 0.83 0.001 
 

0.55 0.41 - 0.73 < 0.001 

         Disease-free survival 
        ≤12 months 45 1.00 

   
1.00 

  >12 months 214 0.72 0.52 - 1.00 0.052 
 

0.76 0.52 – 1.11 0.158 

         Dominant site of relapse 
        Loco-regional 29 1.00 

      Bone 103 1.36 0.88 - 2.12 0.166 
    Visceral 58 1.34 0.83 - 2.16 0.229 
    Bone and other 69 1.47 0.92 - 2.34 0.105 
    

         PgR 
        Negative 65 1.00 

   
1.00 

  Positive 194 0.73 0.54 - 0.97 0.031 
 

0.70 0.50 - 0.96 0.029 

         Her2 status** 
        Negative 158 1.00 

      Positive 79 1.18 0.91 - 1.54 0.221 
    

         Tumor differentiation** 
        Good 37 1.00 

      Moderate  186 1.21 0.82 - 1.77 0.333 
    Poor 35 1.5 1.00 - 2.26 0.051 
    *Age was assessed at start of tamoxifen therapy. 

**Missing data not reported. 
Tumor differentiation was assessed through Bloom-Richardson scoring system. 
Acronym: PgR: progesterone receptor 
 

Furthermore, in order to evaluate whether ANXA1 and CALD1 could be used in combination 

we merged IHC stainings into four categories: positive/positive, positive/negative, 

negative/positive, and negative/negative. ANXA1 and CALD1 staining only were observed in 

17 and 16 tumor tissues, respectively, while only 4 tumors showed co-expression of the two 

markers. For all three positive categories (i.e. ANXA1 positive/CALD1 negative; ANXA1 



 

negative/CALD1 positive; ANXA1 positive/CALD1 positive) an association with shorter 

TTP was found (Table S5, Figure S3). However, due to the low amount of tumors comprised 

in each category, further verification is needed to assess whether ANXA1 and CALD1 can be 

used in combination to effectively identify fast progressing breast carcinomas. 

Logistic regression analysis showed a significant association of ANXA1 staining to clinical 

benefit to tamoxifen therapy in univariate analysis (Odds ratio [OR] = 0.22; 95% CI: 0.11 to 

0.45; P < 0.001) and a borderline association after correction for traditional predictive factors 

(OR = 0.38; 95% CI: 0.15 to 1.01; P = 0.052; Table S6). The association of ANXA1 with 

objective response was found significant only in the univariate analysis (OR = 0.20; 95% CI: 

0.46 to 0.84; P = 0.028; Table S7). A significant association was found between CALD1 

staining and no clinical benefit both in univariate (OR = 0.21; 95% CI: 0.08 to 0.57; P = 

0.002) and multivariate (OR = 0.21; 95% CI: 0.08 to 0.56; P = 0.002) logistic regression 

analysis (Table S8). No association was found between CALD1 staining and objective 

response (Table S9). Due to the fact that only CALD1 showed significant association with the 

type of response, while ANXA1 displayed only borderline significance, combination of 

ANXA1 and CALD1 stainings was not performed using tumor response as the endpoint of 

tamoxifen therapy. Overall, these data suggest a significant relationship between ANXA1 and 

CALD1 positivity and early tumor progression after tamoxifen treatment for recurrent ER 

positive breast cancer.  

 

Pathway analysis of ANXA1 and CALD1 

As ANXA1 and CALD1 showed to be highly expressed in the poor outcome patient group, 

Pearson correlation analysis of abundance levels of all proteins in the MS dataset to ANXA1 

and CALD1 expression was performed. After selection of only highly correlated proteins, 

correlation analysis yielded a total of 115 (e.g. SERPINH1) and 110 (e.g. Vinculin) proteins 

correlated to ANXA1 and CALD1, respectively. Of these, 73 (i.e. more than 60% in both 

lists) correlated with both ANXA1 and CALD1 levels (Table S10 and Table S11 Figure 

7.5A), suggesting that these proteins presented a shared biology. In the light of this we 

merged the two correlated protein lists and performed pathway analysis of ANXA1 and 

CALD1 and their associated proteins through IPA software. Canonical pathway analysis 

showed activation of acute phase response signaling (Z-score = 3.00; Fisher P = 9.59E-10; 

Table S12), pointing out that molecules involved in inflammation might be correlated to 



 

tamoxifen poor outcome. Upstream analysis showed that ER signaling was downregulated (Z-

score = -2.111; Fisher`s P = 1.39E-07; Table S13), suggesting a link between ANXA1 and 

CALD1 related proteins in the disruption of ER signaling. Molecular interaction analysis 

indicated that both CALD1 and ANXA1 were comprised in a network along with proteins 

involved in cellular movement and immune response (Focus molecules: 28; P-score = 48; 

Figure 7.5B). 

 

 

Figure 7.5. Interaction pathways derived from proteins correlated to ANXA1 and CALD1. 

Proteins associated with both CALD1 and ANXA1 were combined into one list (A) and submitted to IPA. 

Molecular network analysis showed that both ANXA1 and CALD1 were involved in downregulation of ER and 



 

activation of the NFκB pathway (B). Expressed molecules in the pathway were: A2M (alpha-2-macroglobulin), 

ANXA1 (Annexin-A1), ANXA9 (Annexin-A9), APCS (Amyloid P component), APOA1 (apolipoprotein-A1), 

C3 (Complement C3), CALD1 (Caldesmon), CAV1 (Caveolin-1), COL3A1 (collagen type III alpha 1), 

COL4A1 (collagen type IV alpha 1), COL4A2 (collagen type IV alpha 2), COL6A2 (collagen type VI alpha 2), 

CRYAB (Crystallin alpha B), FBN1 (Fibrillin-1), HP (Haptoglobin), HPX (Hemopexin), ICAM1 (Intercellular 

adhesion molecule 1), ITGB2 (Integrin beta 2), LGALS1 (Lectin galactoside-binding soluble 1), MYL12B 

(Myosin light chain 12B), PLIN2 (Perilipin-2), PRELP (Proline/arginine-rich end Leucine-rich repeat protein), 

PTFR (Polymerase I and transcript release factor), S100A4 (Calcium binding protein S100A4), TGM2 

(Transglutaminase 2), TLN1 (Talin-1), and VCAN (Versican). 

 

This network comprised proteins belonging to the extracellular matrix (e.g. APOE; COL4A2) 

and proteins involved in cell movement (e.g. MYL12B) and cell adhesion (e.g. ICAM1). 

Molecule activity prediction based on proteins Log ratios pointed out that molecules in the 

network were not only involved in ER down-regulation, but were also associated with the 

activation of the focal adhesion kinase and NFκB pathways. Overall, these data suggest that 

ANXA1 and CALD1, along with their correlated proteins, are associated with down-

regulation of ER signaling and the activation of inflammation response mechanisms. 

However, further verification in breast cancer model systems are required to confirm these 

hypotheses. 

 

Discussion 

Resistance to tamoxifen is still a major cause of death in patients with ER positive recurrent 

breast cancer. The advanced state of current proteomic technologies allows profiling of 

biological samples for discovery of disease biomarkers (27). Indeed also in recurrent ER 

positive breast cancer, using our dedicated tissue proteomics workflow, we developed and 

validated a 4-protein signature predictive of tamoxifen treatment outcome (26). Despite the 

fact that our predictor is capable of discriminating patient groups displaying good and poor 

outcome to tamoxifen therapy, the 4 signature proteins alone are unlikely capable of 

addressing the full extent of resistance mechanisms. Out of a panel of 1,960 proteins, ANXA1 

and CALD1 constituted the top 2 significant proteins and were shown to be overexpressed in 

the poor outcome group. Furthermore ANXA and CALD1 have already been described as cell 

migration and markers of an epithelial-to-mesenchymal (EMT) –like phenotype in ER 



 

negative breast cancer cell line models (28-30), though their role in ER positive tumors still 

needs to be functionally elucidated. 

In order to confirm our MS findings, we performed IHC stainings of both ANXA1 and 

CALD1 in an independent cohort of FFPE ER positive tumor tissues captured in a TMA to 

assess the clinical relevance of these markers. Our regression analyses showed that not only 

ANXA1 (HR = 1.82) and CALD1 (HR = 2.40) stainings were significantly associated with 

shorter TTP independently of traditional predictive factors, but also contributed in stratifying 

patient groups independently of each other. Combination of IHC stainings suggested that 

ANXA1 and CALD1 could be used in concert to discriminate patients who would suffer from 

fast disease progression after first line tamoxifen, however the relatively small size of these 

groups implies that further verification in a larger patient cohort is necessary. Though 

association of CALD1 to breast cancer therapy outcome has been poorly assessed so far, 

ANXA1 expression was previously associated to BRCA1/2 mutation carriers and prediction 

of high mortality risk in Her2+ patients (29). Our data might suggest an additional role of 

ANXA1 and CALD1 in disease progression after tamoxifen therapy of ER positive recurrent 

breast cancers. 

In order to better investigate which proteins and molecular pathways were connected to 

ANXA1 and CALD1, we performed pathway analysis on a cohort of ER positive tumors 

which were previously analyzed by high resolution MS. Proteins that were found to be 

correlated to ANXA1 and CALD1 levels were associated not only with inflammatory 

response (canonical pathway analysis), but also with activation of the NFκB pathway, 

downregulation of ER signaling and focal adhesion (molecule activity prediction). Similar 

findings were reported before as ANXA1 has been shown to be associated with increased 

metastatic potential in MCF-7 breast cancer cell lines following downregulation of ER and the 

expression of basal markers (e.g. vinculin) (30). Moreover, studies on breast cancer cell line 

models have shown that constitutive activation of the NFκB pathway leads to downregulation 

of ER signaling (31), which can have a prominent role in tamoxifen resistance, if not in a 

generalized anti-hormonal therapy unresponsiveness. In another study elucidating the role of 

ANXA1 in relation to NFκB activation, it was shown that its interaction with the IKK 

complex led to the constitutive activation of this pathway, promoting metastasis and 

decreasing survival in an intracardiac metastatic model (32). The constitutive activation of 

NFκB signaling in cancer cells favors not only cell survival, but also the acquisition of a more 

malignant phenotype (33). ANXA1 was also associated with acquisition of an EMT-like 



 

phenotype in ER negative breast cancer cell line models through activation of TGFβ signaling 

(34). Although pathway analysis did not show a direct activation of the TGFβ pathway, cross-

talk between TGFβ and NFκB has already been described in various forms of cancer, in 

which one pathway modulates the other via activation of binding proteins (35) or of micro-

RNAs (36). In contrast, it has been shown that expression of ANXA1 was related to inhibition 

of NFκB in pancreatic and colon cancer cell lines (37), while in Adriamycin-resistant bladder 

cancer, ANXA1 has been reported to be downregulated (38). In the light of this, ANXA1 may 

be associated with the constitutive activation of NFκB signaling in a tissue-specific manner, 

which would on one side lead tumor cells to become estrogen-independent and on the other 

side promote a more aggressive and mesenchymal-like phenotype, though further studies need 

to be performed in order to confirm this function. Nonetheless, a possible novel treatment 

option for ANXA1 positive, tamoxifen resistant tumors would consist of blocking antibodies, 

which have already shown efficacy in inhibiting migration and invasion rates in pancreatic 

carcinoma cells (39). 

CALD1 is an actin-, calmodulin- and myosin-binding protein that has been described as a cell 

motility suppressor by stabilizing stress fibers through F-actin binding (40, 41). Despite its 

role in downregulating cell motility by cytoskeletal rearrangements, CALD1 has also been 

described as a key component in TGFβ-driven EMT via its overexpression (42). In addition to 

this, downregulation of ER in MCF7 cells has been linked to the upregulation of CALD1, 

concomitantly with the acquisition of a new phenotype that encompasses increased growth 

rates, loss of cell-to-cell adhesion and a redistribution of the cytoskeletal components, 

resulting in increased motility (30). In addition to this, CALD1 interaction with cGMP-

dependent protein kinase Iβ has been shown to regulate cell invasion and migration in breast 

cancer cell lines (28). Similar to ANXA1, also CALD1 has been shown to display opposite 

roles in cancer and invasion, since its expression has been associated to reduced cell invasion 

in colon cancer cell lines (43). In this perspective, CALD1 may be another key effector in 

cytoskeletal rearrangements and the acquisition of a rapid spreading tumor phenotype in 

breast tissue, while countering those effects in other tissue types.  

As both ANXA1 and CALD1 have been reported to be expressed in basal-type breast cancers, 

which are characterized by downregulation of ER and its responsive genes (44), and the fact 

that only a minority of the ER positive tumors that were captured in the TMA displayed 

expression of these markers, it is possible that these proteins may enable further stratification 

of ER positive breast malignancies. In the perspective of tamoxifen resistance, ANXA1 and 



 

CALD1 may be involved in the activation of the NFκB pathway, which would promote cell 

survival by blocking intrinsic (mitochondrial-mediated) and extrinsic (death receptors-

mediated) apoptotic signals and render cancer cells independent of estrogens. In addition to 

this, the acquisition of a rapidly spreading and fast growing tumor cell phenotype would result 

in a faster tumor progression, and probably an estrogen-independent phenotype. 

We have here shown that ANXA1 and CALD1 are associated with tamoxifen therapy clinical 

outcome in recurrent ER positive breast cancer. Expression of these proteins not only 

correlates with shorter TTP independently of traditional predictive factors, but these markers 

also contributed independently of one another. In other words, ANXA1 and CALD1, alone or 

in combination, are able to identify groups of patients that would less likely benefit from 

tamoxifen therapy. In addition to this, pathway analysis suggested that ANXA1 and CALD1 

are likely linked to the downregulation of ER signaling and acquisition of a more malignant 

phenotype with EMT-like features. Blocking such pathways would probably constitute an 

effective additional or substitutive therapy in patients expressing such markers, however 

further functional studies should be performed in order to determine causal effects of these 

proteins in these signaling cascades. 

 

Materials and Methods 

MS dataset 

A total of 112 ER positive tissues were analyzed by high resolution MS after LCM-based 

breast carcinoma cell enrichment, as previously described (26). MaxQuant (version 1.2.2.5; 

search engine: Andromeda) (45, 46) results of Orbitrap .RAW data deposited in 

ProteomeXchange via PRIDE repository (dataset identifiers: PXD000484 and PXD000485) 

(47) from previously described sets (26) were imported in Microsoft Excel and normalized for 

inter-batch effects using ComBat algorithm in R environment (48) allowing 10 minimum 

observations across all samples.  Outcome to tamoxifen treatment was defined based on TTP, 

with a 6 months cutoff: patient whose tumors progressed within (≤) 6 months after start of 

therapy were defined as poor outcome, while progression after (>) 6 months was defined as 

good outcome. This set comprised 67 good and 47 poor outcome patients, respectively. 

Protein differential expression between patient groups was tested by t test (two sided test, 

unequal variances assumed) in Microsoft Excel. Top candidates were selected based on t test 



 

P and their relation to TTP was confirmed by survival analysis through survival analysis of 

patients stratified according to median level of protein expression. 

 

TMA dataset 

A total of 447 FFPE tissues collected from Erasmus MC and regional hospitals were 

incorporated in a TMA. For statistical analysis only ER positive tumors from patients who did 

not receive any adjuvant hormonal therapy were included. Furthermore, patients who showed 

no tumors after histological revision or manifested disease progression before (≤) 3 weeks 

after start of therapy were excluded. In addition, tumors that were comprised in the MS sets 

were also excluded. This led to the inclusion of a total of 408 ER positive tumors, of which 

response data were collected according to the standard International Union Against Cancer 

criteria (49). Eleven (2.70%) and 51 (12.50%) patients showed complete remission (CR) and 

partial remission (PR), respectively. Two hundred and five patients showed no change (NC) 

of disease, of whom 35 (8.58%) displayed NC for less (≤) than 6 months, while 170 (41.66%) 

showed NC for longer (>) than 6 months (defined as stable disease [SD]). A total of 141 

(34.56%) patients displayed progressive disease (PD). Clinical benefit was defined as CR + 

PR + SD patients (n = 232; 57%), while objective response was defined as CR + PR only (n = 

62; 15%). This retrospective study used coded primary tumor tissues, in accordance with the 

Code of Conduct of the Federation of Medical Scientific Societies in the Netherlands 

(http://www.federa.org/codes-conduct). Reporting Recommendations for Tumor Marker 

Prognostic Studies were followed where possible (50).  

Tissue micro-array 

TMA was prepared using an ATA 27 (Beecher Instruments, Sun Prairie, WI, USA). 447 

paraffin-embedded primary, ER positive breast cancer tissues derived from patients who 

received tamoxifen as first-line therapy for recurrent disease were used to prepare the TMA. 

Tissue cores of 0.6 mm were taken from each tissue paraffin block and transferred in triplicate 

into a TMA recipient block. For each tumor tissue sample, three different areas of the tumor 

were taken as biological replicates. TMA slides were digitalized and analyzed using Slidepath 

software (Leica Microsystems, Solms, Germany). 

 



 

Immunohistochemistry 

Five µm sections of FFPE tissues captured on the TMA were incubated at 60°C and washed 

in xylene (3 x 5 min) for de-paraffination. Washings with decreasing concentrations of 

ethanol were used to re-hydrate tissues as follows: 100% ethanol (1 x 5 min, 2 x 2 min), 70% 

ethanol (1 x 2 min), 50% ethanol (1 x 2 min), distilled water (1 x 2 min). Incubation with 

DAKO (Agilent Technologies Inc, Glostrup, Denmark) antigen retrieval solution diluted 1:10 

in MilliQ water was performed at 95°C for 40 min. Slides were then cooled down to room 

temperature and washed with PBS (3 x 5 min). Slides were first incubated with 0.003% H2O2 

in PBS to block endogenous peroxidase (10 min) and subsequently with blocking solution 

consisting of 5% BSA in PBS for 30 min. Anti-ANXA1 (Clone ID: 29/Annexin I; 

Transduction Laboratories, Lexington, KY, USA) and anti-CALD1 (Clone ID: TD107; Enzo 

Life Sciences Inc., Farmingdale, NY, USA) mouse monoclonal primary antibodies were 

diluted 1:2000 (ANXA1) and 1:400 (CALD1), respectively, in DAKO Antibody Diluent, and 

slides were incubated for 1 h at room temperature. Slides were then washed with PBS, and 

DAKO Envision® secondary antibody (labeled polymer HRP -Mouse, 200 µl per slide) 

solution was added to each slide and incubated for 45 min at room temperature. A washing 

cycle with PBS was performed for 5 min and a 1:15 solution of DAB+ chromogen in DAB+ 

substrate buffer was added, following incubation in the dark for 10 min. Slides were then 

washed in tap water for 5 min, stained with hematoxylin/eosin for 1 min each and dehydrated 

again through sequential washings in 50%-70%-100% ethanol and xylene of 5 min each. 

Cover glasses were mounted with Pertex and slides were left to dry. ANXA1 and CALD1 

stained tissue sections were scored only for quantity of stained carcinoma cells due to the fact 

that all stained tumors displayed strong staining intensity. Scoring was performed by an 

experienced researcher in a blind manner, and triplicate scores were assessed and validated by 

a second experienced researcher, who was extensively trained by a specialized breast 

pathologist. Fibroblasts, endothelial cells and leukocytes displayed strong ubiquitous ANXA1 

and CALD1 stainings as well, while adipocytes only stained for ANXA1 (Figure S4A-B). 

Only staining in breast carcinoma cells were taken into account for further analyses. Slides 

were digitalized and analyzed using Slidepath software (Leica Microsystems, Solms, 

Germany).  



 

Statistical analysis of IHC staining results 

Staining scores of TMA incorporated tissues were filtered for missing data, stringently 

excluding cores for which triplicate measurement was not available (e.g. due to loss of core 

during staining procedure or not enough [< 35] carcinoma cells observed in at least one core), 

leading to a set of 317 tissue samples for ANXA1, a list of 259 tissues for CALD1, and a list 

of 235 tissues for both ANXA1 and CALD1 (Figure S2). Due to the fact that tumor tissues 

displayed high quantities of stained breast carcinoma cells, both ANXA1 and CALD1 were 

scored as either absent or present. Association of ANXA1 and CALD1 stainings with TTP or 

response data were tested by Cox and logistic regression, respectively. Patient age, disease 

free interval, dominant site of relapse, progesterone receptor (PgR) positivity, HER2 

overexpression, and degree of tumor differentiation (Bloom-Richardson) were included in all 

regression analyses. With the exception of disease-free survival (to correct for prognosis), 

variables that did not display any significant association with TTP or any response criteria 

were excluded from the multivariate regression models. Cox regression, logistic regression, 

HRs, OR, and 95% CIs were calculated in Stata (v 13.1; Stata Corp, College Station, TX, 

USA). 

 

Extraction of proteomics data and pathway analysis 

ANXA1 and CALD1 levels were correlated with the rest of the quantified dataset through 

Pearson correlation. The distribution of correlation coefficients was analyzed by Z-score; 

cutoffs were selected according to the following formula: 

Z-score cutoffs=mean±1.96*(standard deviation) 

Z-score transformed correlation coefficients that fell below (< mean – 1.96 * [standard 

deviation]) or above (> mean + 1.96 * [standard deviation]) the cutoffs were selected as 

highly correlated proteins. IPA® (IPA, Qiagen, Redwood City, www.qiagen.com/ingenuity) 

was performed selecting Uniprot identifiers and Log10 ratios as input data (no ratio cutoff 

was selected). Pathway analysis was run using Ingenuity Knowledge Base as reference 

database. Analysis was run with the following options enabled: homo sapiens was selected as 

species; human tissues and breast cancer cell lines were selected as protein expression sites; 

Mutation and Data Sources options were kept as default (i.e. All). Interaction networks were 

generated including endogenous chemicals and maintaining other options as default (i.e. 



 

number of Molecules per network: 35; number of Networks per analysis: 25). Networks that 

showed the highest P-score (i.e. P-score = -Log10 [Fisher`s P]) were subjected to Molecule 

Activity Predictor in IPA.  
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Abstract 

Purpose: Resistance to anti-hormonal therapy is a major cause of death in estrogen receptor 

(ER) positive breast cancer. In a previous study, we detected a significant association between 

phosphoserine aminotransferase 1 (PSAT1) hyper-methylation and mRNA levels to good and 

poor outcome to tamoxifen treatment in recurrent disease, respectively. Our aim was to study 

the association of PSAT1 protein (PSAT1) levels to outcome upon tamoxifen treatment and to 

obtain more insight in its role in tamoxifen resistance molecular mechanisms. 

Methods: A cohort of279 formalin-fixed and paraffin-embedded (FFPE) tissues of ER 

positive, hormonal therapy naïve primary breast carcinomas captured in a tissue microarray 

(TMA) was immunohistochemically (IHC) stained for PSAT1. Staining was analyzed for 

association with patient’s time to progression (TTP) and overall response on first-line 

tamoxifen given for recurrent disease by Cox and logistic regression analyses, respectively. 

Tumor PSAT1 mRNA levels previously assessed by reverse transcriptase quantitative 

polymerase chain reaction (RT-qPCR; n = 161) and Affymetrix GeneChip (n = 155) analyses 

were also evaluated. Association of PSAT1 and its associated genes to biological pathways on 

tamoxifen outcome in ER positive breast cancer were assessed by global test. 

Results: PSAT1 positivity was significantly associated with shorter TTP (HR = 1.63; 95% 

confidence interval [CI]: 1.02 to 2.59; P = 0.039) independently of traditional predictive 

parameters.PSAT1 protein (IHC) and mRNA levels (RT-qPCR)subdivided in high and low 

showed a significant association (Mann-Whitney P = 0.009). In the Affymetrix dataset, 

PSAT1 was associated to poor outcome on tamoxifen treatment (HR = 1.68; 95% CI: 1.20 to 

2.36; P = 0.003). In addition, global test results showed that genes associated to PSAT1 

expression in relation to tamoxifen outcome belonged to cytokine and JAK-STAT signaling 

pathways. 

Conclusions: We hereby report that PSAT1 protein and mRNA levels measured in ER 

positive primary tumors are significantly associated with poor clinical outcome in breast 

cancer patients treated with tamoxifen for recurrent disease.  



 

Introduction 

ER (ESR1 gene) positive breast cancer constitutes the majority (~70%) of all breast 

malignancies [1]. Targeted treatment for these patients comes in the form of anti-hormonal 

therapies, which are used in both the adjuvant and recurrent settings [2]. In particular, the ER 

antagonist tamoxifen decreases recurrence rates by almost a half (i.e. recurrence rate ratio = 

0.59) and breast cancer mortality by a third (death rate ratio = 0.66) when administered for 5 

years in the adjuvant setting [3]. In the recurrent setting, nearly half of the patients manifests 

intrinsic resistance to the drug, while the other half inevitably develops acquired resistance 

later on [4, 5]. Several mechanisms of tamoxifen resistance have been described, such as the 

upregulation of ER transcriptional co-activators [6] or the expression of ER isoforms [7, 8]. 

Furthermore, activation of PI3K/MAPK [9] or Her2/neu [10, 11] pathways as well as the 

dysregulation of tamoxifen metabolizing enzymes [12], on one side provide tumor cells with 

alternative growth pathways, while on the other side reduce tamoxifen active metabolite (i.e. 

endoxifen) levels. Mutations in ER(e.g. p.Tyr537Ser) have also been associated to its 

constitutive activation [7, 13, 14]. In addition to this, general cancer specific factors like DNA 

methylation of cytosine phosphoguanine dinucleotides (CpG), which has been established as 

an important mechanism that regulates gene expression in breast cancer [15, 16], have shown 

to play an important role in many cancer processes such as targeting and silencing genes 

involved in tumor suppression (e.g. BRCA1) [17], epithelial-to-mesenchymal transition 

(EMT), and invasion [18, 19] can all contribute to overcome or bypass tamoxifen treatment 

induced effects. In a previous study, we have linked hyper-methylation in the promoter region 

of the PSAT1 gene to a favorable outcome of tamoxifen treatment in ER positive breast 

cancer patients; conversely high PSAT1 mRNA levels were associated to tamoxifen 

resistance [20]. PSAT1 is a gene that encodes an amino-transferase enzyme involved in the 

conversion of phospho-pyruvate, which derives from oxidation of 3-phosphoglycerate, to 

phosphoserine. Phosphoserine is then converted into serine by the enzyme phosphoserine-

phosphatase and further converted into glycine in order to feed the nucleotide biosynthesis 

pathway. Though the serine biosynthetic pathway has been shown to be a critical factor in 

breast cancer tumorigenesis [21] and therapy resistance [20], no study has further investigated 

its association to clinical characteristics. In addition to this, neither further marker 

verification, nor an association study of PSAT1 protein levels with tamoxifen therapy 

outcome, have been performed. In the light of this, the aim of this study was to verify whether 

PSAT1 protein levels are linked to tamoxifen therapy outcome. We assessed PSAT1 protein 



 

levels by IHC in a cohort of FFPE tissues and analyzed its association with tamoxifen therapy 

outcome. Furthermore, gene expression data of a cohort of ER positive breast carcinomas was 

used to gain insight into the role of PSAT1 in tamoxifen resistance through global test 

analysis. 

 

Materials and Methods 

A schematic representation of the analysis workflow is shown in Figure 8.1A. 

 

Figure 8.1. Schematic overview of experimental workflow. 



 

Panel A: a total of 379 FFPE tissues were captured on a tissue micro-array and analyzed by IHC. After filtering 

for ER positivity and hormonal naïve tumors, a total of 279 samples remained. Further filtering for missing data 

after IHC analysis yielded a panel of 261 tumors, on which survival analysis for the association of PSAT1 

protein levels to TTP was performed. Parallel to this, PSAT1 mRNA expression was measured by RT-qPCR (n 

= 161) and Affymetrix chip (n = 155) approaches on frozen tumor specimens. These data were used for 

comparison between PSAT1 mRNA and protein levels (TMA and RT-qPCR; n= 56), correlation analysis (RT-

qPCR and Affymetrix; n = 122), and pathway analysis (Affymetrix only; n = 155).Panel B shows tumor sample 

overlap between TMA, RT-qPCR and Affymetrix sets. 

Acronyms: ER: estrogen receptor; FFPE: formalin-fixed paraffin-embedded; IHC: immunohistochemistry; 

TMA: tissue microarray TTP: time to progression; RT-qPCR: quantitative reverse transcriptase polymerase 

chain reaction. 

 

Patient cohorts 

The Medical Ethical Committee of the Erasmus Medical Center Rotterdam, the Netherlands, 

approved our study design (MEC 02.953).This study used previously described FFPE tumor 

tissues which were incorporated into a TMA [22]. A total of 379 breast cancer tissues derived 

from patients who underwent tumor resection (between 1985 and 2000), and were treated 

with first line tamoxifen for recurrent disease, were included in the study. A specialized breast 

pathologist (CHMvD) reviewed all the primary tumor tissue histologic subtypes according to 

the world health organization (WHO) and histologic grade was defined according to the 

modified Bloom-Richardson score, which takes into account tubule formation, mitotic activity 

and nuclear pleiomorphism [23]. Out of this set, only ER positive primary tumors from 

patients who did not receive any adjuvant (i.e. post-surgical resection) hormonal therapy were 

included for statistical analysis. This led to the inclusion of 279 tissues derived from patients 

with ER positive primary tumors (Table S-1), of whom response data were collected 

according to the standard International Union Against Cancer criteria [24]. A total of 10 

(3.58%) and 42 (15.05%) patients showed complete (CR) and partial remission (PR), 

respectively. One hundred and fifty seven patients showed no change (NC) of disease, of 

whom 27 (9.68%) displayed NC for less (≤) than 6 months, while 130 (46.59%) showed NC 

for longer (>) than 6 months (defined as stable disease [SD]). A total of 70 (25.09%) patients 

displayed progressive disease (PD). Clinical benefit was defined as CR + PR + SD patients (n 

= 182; 65.22%), while objective response was defined as CR + PR only (n = 52; 18.63%). 

This retrospective study used coded primary tissues, in accordance with the Code of Conduct 

of the Federation of Medical Scientific Societies in the Netherlands 



 

(http://www.federa.org/codes-conduct). Reporting Recommendations for Tumor Marker 

Prognostic Studies were followed [25]. 

For gene expression analysis, a total of 155 ER positive fresh frozen primary breast 

carcinomas were collected, which were derived from patients treated with tamoxifen therapy 

upon disease recurrence. Total RNA was analyzed by GeneChip® Human Genome U133 Plus 

2.0 and Perfect Match Arrays (Affymetrix, Santa Clara, CA, USA). Previously identified [26, 

27], tamoxifen therapy outcome groups in this set were defined based on TTP: patients 

displaying progression before (≤) 6 months after start of tamoxifen therapy were classified as 

poor outcome, while patients that showed progression of disease after (>) 6 months were 

defined as good outcome. This set comprised 102 good and 53 poor outcome patients, 

respectively (Table S-2).For a subset of these tumors (n = 122), and for 39 additional 

specimens only included in the TMA, quantitative reverse transcriptase PCR (RT-qPCR) data 

obtained from total RNA isolated from ER positive fresh frozen primary breast carcinomas 

was also available (Figure 8.1B). These RT-qPCR data were only used for correlation 

analyses. 

 

Cell culture 

Breast cancer cell lines (CAMA-1, DU-4475, MDA-MB-175, and EVSA-T) were cultured in 

RPMI medium supplemented with 10% heat-inactivated fetal bovine serum (FBS) as well as 

antibiotics (100 µg/mL Penicillin, 20 ng/mL Streptomycin and 80 µg/mL Gentamycin) in a 

humidified atmosphere with 95% air and 5% CO2. For protein isolation, cells were gathered 

from culture dishes using a scraper and suspended in a 1.5 mL tube in 1x PBS. Cell were then 

sonicated at 70% amplitude (Bransons Ultrasonics, Danbury, CT, USA) using a horn sonifier, 

and collected supernatants were transferred into a new tube and stored at -80°C for further 

processing. For RNA isolation, cells were lysed (Qiagen lysis buffer) in the flask at 70% 

confluency and stored at -80°C awaiting further processing. 

 

RNA extraction and gene expression analysis 

To measure mRNA transcript levels, total RNA from cell cultures was isolated with the 

RNeasy Mini Kit (Qiagen) and from clinical tissues using RNA-Bee (Campro Scientific, 



 

Veenendaal, The Netherlands) according to the manufacturer’s instructions, as previously 

described [29]. For RT-qPCR, complementary DNA synthesis (RT reaction) was generated 

using the RevertAid H Minus First Strand cDNA Synthesis Kit (Thermo Scientific, 

Amsterdam, The Netherlands), followed by incubation at 37°C with 0.1 U/µL ribonuclease H 

(Thermo Scientific) for 30 min. Real-time PCRs were performed on cDNA generated from 10 

ng total RNA and normalized using the dCq method on the average of 3 reference genes 

(HMBS, HPRT1 and TBP). Quantification of PSAT1 was performed using the TaqMan 

probe–based gene expression assay Hs00253548_m1 specific for splice variant beta (Applied 

Biosystems/Life Technologies, Warrington, WA, USA) as previously described [20, 29]. For 

Affymetrix gene expression profiling, total RNA samples were DNAse treated and cleaned 

with the NucleoSpin RNA II kit according the manufacturers instruction (Machery-Nagel, 

Dueren, Germany) and shipped to ServiceXS (Leiden, The Netherlands) for downstream 

processing with the 3’IVT express kit and hybridization on the Human Genome (HG) U133 

Plus 2.0 array (n = 20) and HG U133 Perfect Match. 

 

Anti-PSAT1 antibody generation 

In order to select protein surface exposed epitopes for antibody production, prediction models 

were generated in expasy (http://expasy.org/) and matched with publicly available crystal 

structures of E. coli and B. alcalophilusPSAT1 homologues. Putative epitope regions were 

selected based on absence of secondary structures (i.e. excluding regions involved in α-helix 

or β-strand structures) and being present in both PSAT1 splice variants [28]. A total of two 

peptides selected: PSAT1-A(DYKGVGISVLEMSHRSS, aa 31-47) and PSAT1-B 

(KLGSYTKIPDPSTWNLNP; aa 127-144). Both peptides were synthetized adding a Cys 

residue at the N-terminus for disulfide linkage to keyhole limpet hemocyanin (KLH). Rabbit 

pre-immunization sera were tested for absence of immune reaction by Western Blot analysis 

against full length recombinant PSAT1 (sequence including exon 8). KLH-conjugated 

peptides were injected into rabbits, which received boost immunizations at day 20, 30, 40, 61, 

75, 90, and 104. Sera were then collected at day 120. Peptide synthesis, conjugation to KLH, 

and rabbit immunization steps were performed by Pineda Antibody Service (Berlin). For 

antibody purification, immunoaffinity columns were prepared using recombinant human full 

length PSAT1 (including exon 8). Recombinant PSAT1 was expressed in E. coli as a N-

terminal histidine tagged protein and was purified via Ni2+-NTA (Qiagen) affinity 



 

chromatography under denaturing and slightly reduced conditions (purity > 95%). After 

protein refolding, PSAT1 was recovered in soluble form in a 1x PBS and 1 mM DTT 

solution. 

PSAT1-linked column was prepared by mixing ~2 mL of AffiGel-10® and AffiGel-15 

(BioRad) in a 1:1 ratio. Sorbent mixture was then pre-treated by sequential washings: 10 mL 

of isopropanol, 5 mL deionized water, and 5 mL of 50 mM HEPES buffer in deionized water 

(pH 7.4). A total of 0.5 mg of soluble recombinant PSAT1 dissolved in 5 mL of 50 mM 

HEPES was mixed with the sorbent and incubated overnight at 4°C. Sorbent was then washed 

with 1x PBS (5 x 5 mL), followed by blocking solution incubation (100 mM glycine in 1x 

PBS) for 1 h at room temperature. Further washings with 1 mL of 4 M guanidinium chloride 

in 1x PBS (1 x 5 mL) and 40 mL of 1x PBS (1 x 5 mL) were performed. Rabbit-derived blood 

was centrifuged at 1711 g for 10 min and 4 mL of rabbit serum were injected onto the sorbent 

(three sequential times), followed by a 25 mL 1x PBS wash. Antibodies were then eluted with 

4 mL of 20 mM glycine in 1x PBS (pH 2.4), and collected in tubes to which pH compensatory 

solution (200 µL of 1x PBS; pH 11.5) was added in order to achieve pH 7.5. Protein 

concentration was assessed by measuring absorbance at 260/280 nm. Eluate aliquots were 

then mixed with 100% v/v glycerol in a 1:1 ratio and stored at -20°C. Concentration of each 

antibody aliquot was 0.059 mg/mL as measured by Bradford assay. 

 

Anti-PSAT1 antibody titration 

To determine the best antibody concentration for IHC staining of breast cancer tissues, FFPE 

breast cancer cell lines (i.e. CAMA-1, EVSA-T, DU-4475 and MDA-MB-175) captured on 

TMA slides together were first stained at different anti-PSAT1 antibody dilutions (i.e. 1:10, 

1:20, 1:40, 1:80, 1:160; for methods, see below under IHC staining). For each cell line, IHC 

stainings were compared toPSAT1 mRNA levels as measured by RT-qPCR. As the 1:40 

dilution anti-PSAT1antibody stainings of breast cancer cell lines showed comparable results 

with RT-qPCR data (Figure S-1), this dilution was selected as the optimal one for further ICH 

staining of tumor tissues.  



 

Tissue micro-array 

TMA was prepared using an ATA 27 (Beecher Instruments, Sun Prairie, WI, USA). For each 

paraffin block, the tumor area was delineated by a specialized breast pathologist (CHMvD), 

after which tumor tissue cores of 0.6 mm were punched and in triplicate transferred to a 

recipient TMA block. 

 

Immunohistochemical staining and analysis 

Sections (5 µm) of FFPE cell lines and tissues captured on the same TMA were incubated at 

60°C (30 min) and washed in xylene (3 x 5 min) for de-paraffination. Decreasing 

concentrations of ethanol were used for tissue re-hydration: 100% ethanol (1 x 5 min, 2 x 2 

min), 70% ethanol (1 x 2 min), 50% ethanol (1 x 2 min), distilled water (1 x 2 min). 

Incubation with DAKO (Agilent Technologies Inc., Glostrup, Denmark) antigen retrieval (pH 

6.0) solution diluted 1:10 in MilliQ water was performed at 95°C for 40 min. After cooling 

down to room temperature, slides were subjected to sequential washes: 1x PBS (3 x 5 min), 

0.003% H2O2 in 1x PBS (i.e. blocking of endogenous peroxidase activity; 1 x 10 min), 1x 

PBS (3 x 5 min), 5% BSA in 1x PBS (i.e. blocking solution; 1 x 30 min). Anti-PSAT1 rabbit 

polyclonal primary antibody diluted 1:40 in Dako antibody diluent was added to slides and 

incubated overnight at 4°C. For the negative control, the anti-PSAT1 primary antibody was 

replaced by normal negative control rabbit immunoglobulin fraction (ID: X0903; Dako). 

Slides were then washed with 1x PBS (3 x 5min), and DAKO Envision® labeled polymer 

HRP-Rabbit was added to each slide (200 µl per slide) and incubated for 45 min at room 

temperature. A wash step with 1x PBS (3 x 5 min) was performed followed by a development 

step of the HRP with 1:15 solution of DAB+ chromogen in DAB+ substrate buffer (100 µl 

per slide; 1 x 10 min in the dark). A nuclei counterstaining with Mayer’s hematoxylin 

(Klinipath) for 30 sec was performed followed by rinsing with tap water (1 x 5 min). 

Dehydration, by 50% ethanol (2 x 2 min), 70% ethanol (2 x 2 min), 100% ethanol (2 x 2 min, 

1 x 5 min), and xylene (2 x 2 min, 1 x 5 min). Cover glasses were mounted on slides with 

Pertex and were left to dry. 

Slides were digitalized with the Hamamatsu Nanozoomer 2.0 HT and analyzed manually from 

a computer screen using Slidepath TMA database software (Leica Microsystems, Solms, 

Germany). PSAT1 stained breast carcinoma cells were scored by an experienced researcher in 



 

a blind manner for both intensity (i.e. negative; weak; weak-moderate; moderate; moderate-

strong; strong) and quantity (i.e. 0%; 1-5%; 6-10%; 11-25%; 26-50%; >50%) of stained 

carcinoma cells. Triplicate scores accompanying these images of the cores were then verified 

and consolidated by a second experienced researcher, which was extensively trained by a 

specialized breast pathologist. 

 

Statistical analysis of IHC data 

PSAT1 TMA scores were stringently filtered for missing data points (i.e. lack of triplicate 

analysis per tissues, which derived from either lack of core or lack of enough [>30] tumor 

cells in at least one core), leading to a set of 261 tissue samples. Because PSAT1 positive 

cases showed strong and ubiquitous staining, PSAT1 protein expression was scored as either 

absent (i.e. PSAT1 negative: 0% stained carcinoma cells) or present (i.e. PSAT1 positive: ≥ 

1% stained carcinoma cells). PSAT1 (negative/positive) association to clinical and histo-

pathological characteristics was assessed by Fisher`s exact test (i.e. age, menopausal status, 

number of positive lymph nodes, disease free interval (DFI), and progesterone receptor 

status), χ2 test (dominant site of relapse), and χ2 test for trend (tumor size, tumor 

differentiation). Association of PSAT1expression to TTP and response criteria was tested by 

Cox and logistic regression, respectively. Patient age (cutoff: 55 years), disease free interval 

(cutoff: 12 months), dominant site of relapse (bone, visceral, loco-regional, bone and other), 

progesterone receptor (PgR) positivity, HER2 overexpression, and degree of tumor 

differentiation (Bloom-Richardson: good, moderate, poor) were included in all regression 

analyses. Variables that did not display any significant association with TTP or any response 

criteria were excluded from the multivariate regression model (step-down analysis).Fisher 

exact test, χ2 test, χ2 test for trend, Cox regression, logistic regression, HRs, odds ratios (OR), 

and 95% CIs were calculated in Stata (v 13.1; Stata Corp, College Station, TX, USA). 



 

Gene expression analysis 

Raw CEL files for both Affymetrix platforms were processed using fRMA with ‘robust 

weighted average’ (i.e. HG U133 Plus 2.0; n = 20) and ‘random effect’ (i.e. HG U133 Perfect 

Match; n = 135) as summarization methods. fRMAvecs from the Plus 2.0 array were used for 

both batches [30]. Because the resulting final set was measured in 2 separate batches, a 

ComBat algorithm-based normalization was applied to correct for batch effects [26]. The 155 

samples gene identifiers and Affymetrix probe intensities were imported in Microsoft Excel. 

For probes annotated to the same genes, probes were selected based on highest variability and 

median level, leading to a final list of 19,042 reliable probes. 

 

Statistical and pathway analyses of gene expression data 

To assess whether PSAT1 protein and mRNA levels measurements were comparable, PSAT1 

Log2 probe intensities and RT-qPCR dCq values were classified according to the IHC score 

(categories: negative vs. positive), and tested for differences by Mann-Whitney test. To assess 

whether PSAT1 mRNA levels measured by Affymetrix and RT-qPCR were comparable, a 

Spearman correlation analyses was performed. 

To assess whether pathway analysis would achieve not only biological, but also clinical 

significance, patients were stratified according to their median PSAT1 expression (i.e. low: 

Log2 intensity < median; high: Log2 intensity ≥ median). Survival curves were plotted and 

differences in TTP were assessed by Log-rank test. Association of KEGG [31] pathways to 

PSAT1and its associated genes was performed through global test [32, 33]. Significant 

pathways out of global test were selected based on Holm-Bonferroni corrected significance 

(P< 0.05). Global test was performed in R environment (v2.11.1) 

PSAT1 mRNA expression was also associated to a 152-gene signature associated with tumor 

infiltrating lymphocytes (TIL) [34, 35]. Average expression of the TIL gene signature was 

calculated for each sample to derive a global TIL-score for every sample. PSAT1 association 

to the TIL signature was evaluated by Spearman correlation. Furthermore, difference in 

PSAT1 mRNA expression between high and low TIL-score (median cutoff) was evaluated by 

Mann-Whitney test. 



 

Log-rank, Mann-Whitney and Spearman correlation analyses were all performed in GraphPad 

(v5.0). 

 

Results 

Association of PSAT1 protein to clinical variables 

PSAT1 expression was observed in a small subset (N = 25, 9.6%) of ER positive breast 

tumors by IHC, while the majority of cores did not show any detectable, or less than 1% 

positively stained PSAT1 cells (N = 236, 90.7%). Examples of PSAT1 protein IHC stainings 

are shown in Figure 8.2A. PSAT1 was expressed both in the cytoplasms and the nucleus of 

carcinoma cells, with no difference between the two stainings in terms of intensity and 

quantity of stained cells (data not shown). Testing for association of PSAT1 protein 

expression with clinical and histo-pathological parameters showed that PSAT1 expression 

was significantly associated with poor grade tumors (χ2 test for trend P < 0.001) and local 

relapse (χ2 test P = 0.009; Table 8.1). 

 

Table 8.1. Association of PSAT1 protein expression to clinical and histo-pathological characteristics. 

 

Patients 
included in 

analysis 

PSAT1 
negative 

PSAT1 
positive P‡ 

Total 261 (100.0) 236 (100.0) 25 (100.0)  
    

Age*     
≤ 55 years 99 (37.9) 89 (37.7) 10 (40.0) 0.831 
> 55 years 162 (62.1) 147 (62.3) 15 (60.0)  
     
Menopausal status*     
Premenopausal 68 (26.1) 61 (25.8) 7 (28.0) 0.813 
Postmenopausal 193 (73.9) 175 (74.2) 18 (72.0)  
     
Tumor size     
T1 (≤2cm) 112 (42.9) 101 (42.8) 11 (44.0) 0.899 
T2 (2-5cm) + Tx 127 (48.7) 115 (48.7) 12 (48.0)  
T3 (>5cm) + T4 22 (8.4) 20 (8.5) 2 (8.0)  
     
Tumor     
Good 42 (16.1) 41 (17.4) 1 (4.0) < 0.001 
Moderate 143 (54.8) 136 (57.6) 7 (28.0)  
Poor 75 (28.7) 58 (24.6) 17 (68.0)  
     



 

Involved lymph     
0 87 (33.3) 78 (33.1) 9 (36.0) 0.822 
≥ 1 166 (63.6) 151 (64.0) 15 (60.0)  
     
Disease free interval     
≤ 12 months 45 (17.2) 40 (16.9) 5 (20.0) 0.780 
> 12 months 216 (82.8) 196 (83.1) 20 (80.0)  
     
Dominant site of     
Loco-regional 28 (10.7) 22 (9.3) 6 (24.0) 0.009 
Bone 104 (39.8) 101 (42.8) 3 (12.0)  
Visceral 56 (21.5) 50 (21.2) 6 (24.0)  
Bone and other 73 (28.0) 63 (26.7) 10 (40.0)  
     
PgR†     
Negative 69 (26.4) 63 (26.7) 6 (24.0) 1.000 
Positive 191 (73.2) 172 (72.9) 19 (76.0)  
* Age and menopausal status were assessed at start of tamoxifen therapy. 

** Tumor differentiation was evaluated through Scarff-Bloom-Richardson grading system 

†Missing data not reported 

‡ PSAT1 association to clinical parameters was assessed by Fisher`s exact test (age, menopausal status, number 

of involved lymph nodes, disease free interval and PgR), χ2 test (dominant site of relapse), and χ2 test for trend 

(tumor size, grade).  

Acronyms: PgR: progesterone receptor 

 

Next, to evaluate whether PSAT1 IHC stainings (i.e. negative vs. positive) were associated to 

patient outcome, Cox and logistic regression analyses were performed on the data derived 

from the 261 stained tissue cores. PSAT1 protein expression was significantly associated with 

shorter TTP both in univariate (HR = 1.77; 95% CI: 1.03 to 3.02; P = 0.037; Figure 8.2B) and 

multivariate analyses independent of traditional predictive factors (i.e. DFI, dominant site of 

relapse and tumor differentiation; HR = 1.63; 95% CI: 1.02 to 2.59; P = 0.039; Table 8.2). 

 



 

 

Figure 8.2. Immunohistochemical and survival analyses of PSAT1. 

Breast carcinoma IHC stained tissues either displayed high or low PSAT1 protein levels (panel A). Kaplan-

Meier analysis showed that high expression of PSAT1 protein was significantly associated to shorter TTP when 

compared to tumors with low PSAT1 levels (panel B). 

 

A trend was observed in univariate logistic regression analysis for the association of PSAT1 

protein levels with clinical benefit (i.e. CR +PR + SD; OR = 0.45; 95% CI: 0.19 to 1.02; 

univariate Logistic regression P = 0.057 Table S-3), while no association with objective 

response (i.e. CR + PR only) was observed (OR = 0.26; 95% CI 0.15 to 1.81; univariate 

Logistic regression P = 0.304; Table S-4). Overall, these data provide evidence that PSAT1 



 

protein expression is associated with short time to progression in patients treated with 

tamoxifen for recurrent disease. 

 

Table 2. Cox regression analysis for TTP of PSAT1 stained tumors. 

Univariate Multivariate 
n of 

patients 
HR 95% CI P HR 95% CI P 

PSAT1 
Negative 236 1.0

0 
1.0
0 Positive 25 1.7

7 
1.03 to 

3.02 
0.037  1.6

3 
1.02 to 

2.59 
0.039 

Age* 
≤ 55 years 99 1.0

0 
1.0
0 > 55 years 162 0.5

0 
0.38 to 

0.65 
<0.001  0.5

6 
0.42 to 

0.73 
< 

0.001  
Disease free interval  
≤ 12 months 41 1.0

0 > 12 months 220 0.6
9 

0.49 to 
0.98 

0.040 0.6
0 

0.42 to 
0.86 

0.006 
 

Dominant site of 
relapse 

 
Loco-regional 28 1.0

0 Bone 104 1.6
8 

1.05 to 
2.68 

0.030 1.9
1 

1.17 to 
3.09 

0.009 
Visceral 56 1.5

3 
0.92 to 

2.53 
0.100 1.8

7 
1.11 to 

3.13 
0.017 

Bone and other 73 1.8
0 

1.10 to 
2.93 

0.019 1.9
3 

1.17 to 
3.17 

0.009 
 

PgR**  
Negative 69 1.0

0 Positive 191 0.8
0 

0.60 to 
1.07 

0.134     
 

Her2 status**  
Negative 210 1.0

0 Positive 49 1.2
0 

0.87 to 
1.67 

0.265 
 

Tumor 
differentiation** 

 
Good 42 1.0

0 
1.0
0 Moderate  143 1.6

5 
1.13 to 

2.41 
0.010 1.5

0 
1.02 to 

2.22 
0.040 

Poor 75 2.4
2 

1.60 to 
3.67 

< 
0.001 

2.0
3 

1.30 to 
3.16 

0.002 
*Age was assessed at start of tamoxifen therapy. 

**missing data not reported.  



 

Comparison between PSAT1 mRNA and protein levels 

To assess whether PSAT1 mRNA and protein expression were associated, tumors in which 

PSAT1 mRNA was measured by RT-qPCR (n = 56) were stratified according to IHC results 

(i.e. PSAT1 positive and PSAT1 negative). A significant difference (Mann-Whitney P = 

0.009) was observed between PSAT1 mRNA levels of PSAT1 positive and negative tumors 

(Figure S-2A). Comparison between mRNA levels measured by Affymetrix platform and 

stratified according to IHC data (i.e. absent vs. present) did not show any significance (Mann-

Whitney P = 0.133), probably due to imbalances in group distributions (i.e. PSAT1 positive = 

3; PSAT1 negative = 28; Figure S-2B) and the small overlap between the Affymetrix and 

TMA sets. However, PSAT1 mRNA levels measured by RT-qPCR and Affymetrix in 122 

tumors showed a significantly positive correlation (Spearman r = 0.74; P < 0.001; Figure S-

3). These data confirm that PSAT1 levels show a similar trend when evaluated either at the 

mRNA level or at the protein level. 

 

Clinical significance of PSAT1 in the gene expression cohort and pathway analysis 

We used an Affymetrix GeneChip analyzed dataset (n = 155; 102 x good outcome; 53 x poor 

outcome) to define which genes were associated withPSAT1. First, we evaluated the 

expression of key breast cancer markers: ESR1, the gene encoding for ER, was found to be 

significantly downregulated in the poor outcome group after tamoxifen therapy (t test P = 

0.009; fold change = 0.67). Key breast cancer prognostic markers, such as PGR (t test P = 

0.168; fold change = 0.76) and ERBB2 (t test P = 0.123; fold change = 1.23), showed no 

change between the two patient categories. When assessing PSAT1 levels, a significant 

enrichment was found in the poor outcome patient group (t test P = 0.014; fold change = 1.37; 

Figure 8.3A).To confirm that PSAT1 expression was also associated with shorter TTP in this 

cohort, we conservatively stratified patients at the median in PSAT1 low and high expressing 

groups (cutoff: median Log2 level = 7.086) and performed a survival analysis. Kaplan-Meier 

curves showed that patients whose tumors expressed high levels of PSAT1 suffered from 

faster tumor progression when compared to the PSAT1 low group (HR = 1.68; 95% CI: 1.20 

to 2.36; Log-rank P = 0.003; Figure 8.3B). 



 

 

Figure 8.3. Statistical and survival analyses of PSAT1 mRNA levels by gene expression. 

PSAT1 mRNA levels were assessed by Affymetrix GeneChip. Not only PSAT1 showed significant enrichment in 

poor outcome patients (t test P = 0.014; panel A). Kaplan Meier analysis confirmed that high expression of 

PSAT1 is associated to shorter TTP (panel B). 

 

The set was stratified based on median PSAT1 levels (categories: PSAT1 low, PSAT1 high), 

and then analyzed by global test to investigate which (KEGG) pathways were associated with 



 

PSAT1 expression. A total of 8 pathways were significantly associated with PSAT1 expression 

(adjusted Holm-Bonferroni P < 0.05; Table S-5). As expected, the serine, glycine and 

threonine metabolism (P < 0.001; Table S-6) was the most significantly enriched pathway 

which, in addition to PSAT1, showed enrichment of its upstream enzyme PHGDH. In addition 

to this, two additional pathways which comprised a large number of genes associated to high 

PSAT1 expression were found significantly enriched: cytokine-cytokine receptor interaction 

(P = 0.001; Figure 8.4A; Table S-7) and JAK-STAT signaling (P = 0.004; Figure 8.4B; Table 

S-8) pathways. The cytokine-cytokine receptor interaction pathway comprised molecules 

involved in mesenchymal cell growth and immune cell signaling, such as PDGFRA and IL4R, 

respectively. On the other hand, most of the genes associated to the JAK-STAT signaling 

pathway comprised molecules involved in immune cell signaling, such as JAK3 and IL21R. 

These data suggested an involvement of immune cell signaling in conjunction with serine 

biosynthesis. 

 



 

 

Figure 8.4. PSAT1 expression associated genes in the gene expression dataset. 

The 155 tumors in the Affymetrix cohort were stratified according to PSAT1 expression. All genes were 

annotated for KEGG terms and Global test was performed to assess which terms were associated to PSAT1 

expression. Panel A and B display the top 2 pathways associated to PSAT1: caspase cascade in apoptosis (A) 

and IL7 signaling (B). Each bar represents a gene in the pathway, with horizontal bars representing one standard 



 

deviation away from the reference point. Red and green columns represent association to high and low 

expression of PSAT1, respectively 

 

To further assess the association of PSAT1 to the presence of immune cells, we derived the 

expression levels of a 152-gene signature which has been associated to tumor infiltrating 

lymphocytes (TILs) in breast cancer [34, 35]. We calculated the average TIL-score (see 

Material and Methods section) and evaluated its correlation to PSAT1 mRNA expression in 

our 155 samples gene expression dataset. A significant, albeit weak, correlation between the 

TIL signature and PSAT1 expression was found (Spearman r = 0.239; P = 0.003; Figure S-

4A). Furthermore, PSAT1 was found to be significantly enriched in the high TIL signature 

high expression group (median cutoff; Mann Whitney P = 0.009; Figure S-4B). 

 

Discussion 

Resistance to tamoxifen therapy is a major cause of death in ER positive recurrent breast 

cancer [36]. Several molecular mechanisms have been associated to tamoxifen resistance, but 

few of these have been verified on clinical specimens. In a previous study, PSAT1 inactivation 

by promoter methylation, and consequently low mRNA levels, have been associated to good 

outcome to tamoxifen treatment [20]. We have here evaluated whether PSAT1 protein levels 

were associated to tamoxifen therapy outcome. In addition to this, we used gene expression 

data from a large cohort of ER positive breast cancer patients to further confirm PSAT1 

association to short TTP at the mRNA level, compare PSAT1 protein and mRNA levels, and 

performed global test analysis to potentially elucidate molecular mechanisms related to 

PSAT1 expression and tamoxifen resistance. 

Our IHC staining of a large cohort of paraffin-embedded breast cancers showed that only a 

small group of specimens displayed detectable PSAT1 protein expression, possibly 

constituting a subgroup within ER positive tumors. Statistical analysis of IHC stainings 

showed that PSAT1 expression was associated to poor tumor differentiation and loco-regional 

metastases. Furthermore, Cox regression analyses showed that PSAT1 expression was 

significantly associated to shorter TTP independently of other predictive factors (e.g. DFI). 

On the other side, logistic regression analyses showed that PSAT1 expression showed no 

association to clinical benefit or objective response, probably due to the fact that only a small 

portion of tumors displayed detectable PSAT1 protein expression. Small subset size could 



 

have also influenced the comparison between PSAT1 protein and mRNA levels measured by 

Affymetrix GeneChip technology, leading to inconclusive results. Despite of this, comparison 

between PSAT1 IHC and RT-qPCR expression showed a significant association. This is 

probably due to the fact that, despite the small amount of samples overlapping between the 

TMA and the RT-qPCR sets, more accurate mRNA quantitation can be achieved through RT-

qPCR compared to microarray technology. 

Having established that PSAT1 protein levels are indicative of fast tumor progression tumors 

treated with first line tamoxifen, we sought to investigate which molecular pathways were 

associated to PSAT1 expression in our Affymetrix dataset. In this set, PSAT1 was found 

enriched in poor outcome patients and its expression was also significantly associated to 

shorter TTP. Global test analysis showed that, apart from the glycine, serine and threonine 

metabolism pathway, the JAK-STAT signaling and the cytokine-cytokine receptor interaction 

pathways were positively associated to PSAT1 expression. Molecules of interest in the 

cytokine pathway comprised IL4R and IL21R, which were enriched in poor outcome patients 

and positively associated to PSAT1 expression. IL4R has been associated to metabolic 

reprogramming of tumor cells in favor of an increased glucose uptake and enhancement of 

glutamine metabolism [37], while IL21R expression has been previously linked to breast 

cancer cell proliferation and migration in MM231 breast cancer cell lines [38]. Furthermore, 

IL21 binding to its receptor promotes the activation of several signaling cascades, such as the 

JAK-STAT pathway, with differential effects related to tissue of expression [39, 40]. As both 

the JAK-STAT and cytokine pathways are directly linked to inflammation and contribute to 

tumor growth and spread in several cancer types [41, 42], we aimed at investigating the 

relation between infiltrating tumor cells and PSAT1 expression. Our analyses resulted in a 

significant association of PSAT1 levels to a set of genes predictive of TIL infiltration in breast 

cancer [34, 35], indicating a possible involvement of immune cells in PSAT1 expression and 

tamoxifen therapy resistance. 

Glucose and glutamine are the main molecules that cells metabolize to generate ATP through 

glycolysis and the tricarboxylic acid cycle (TCA). During anabolic states cancer cells 

reprogram their metabolic pathways, from oxidative phosphorylation to glycolysis and serine 

production [43, 44]. Out of the latter, serine can be further converted into Glycine and 

subsequently in purines, while intermediate products such as α-ketoglutarate can be directed 

towards the TCA cycle [45]. PSAT1 has a key role in serine biosynthesis, by catalyzing the 

oxidation of 3-phosphohydroxypyruvate into phosphoserine using glutamate. Previous studies 



 

have shown that the serine pathway has a key role in cancer metabolism, using glycolysis-

derived glucose for serine production and tumor growth [44]. PSAT1 and its related 

molecules (e.g. its upstream enzyme PHGDH) have been shown to be overexpressed in ER 

negative tumors and cell lines, conferring a metabolic-related growth advantage through 

production of alpha-ketoglutarate and altering the cell redox status by redirecting 3-

phosphoglycerate [21, 46]. In the perspective of tamoxifen resistance, and following our 

global test results, the metabolic switch of tumor cells toward serine production may be an 

indication of a vaster tumor cell and tumor microenvironment reprogramming, involving 

cytokine and JAK-STAT signaling. As JAK-STAT signaling has been shown not only to 

induce metabolic switches in tumor cells, but also facilitates cell cycle progression by 

promoting the activation of cyclin dependent kinases [42, 47, 48], it is possible that PSAT1 

enrichment is indicative of such upstream signaling. Still, functional studies should be 

performed in order to establish the hierarchical link between metabolic reprogramming, JAK-

STAT signaling, and resistance to tamoxifen therapy. 

 

We here conclude that PSAT1 protein expression is associated to rapid progression of 

metastatic breast cancer treated with first line tamoxifen and that it is likely associated to 

general tumor cell metabolic reprogramming, likely through IL-JAK-STAT signaling. 
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Chapter 9 

 

Discussion  



 

9.0 - Discussion 

Three quarters of all breast cancer cases display estrogen receptor (ER) positivity. Endocrine 

therapies, such as tamoxifen, constitute primary treatment for these tumors. In the recurrent 

setting, nearly half of the patients that receive tamoxifen do not respond to the treatment, 

while the other half develops resistance over time [1,2]. Several studies elucidated many 

molecular mechanisms underlying tamoxifen therapy resistance in both the adjuvant and 

recurrent settings, such as the expression of estrogen receptor variants or mutated forms (e.g. 

Tyr537Ser) as well as the activation of estrogen-independent growth pathways (e.g. PI3K) 

[3,4]. In addition to this, several tamoxifen therapy outcome predictive gene panels have been 

derived from large cohort studies, however none of the markers has been introduced into a 

clinical diagnostic setting [5]. 

Through constant technological improvements, high resolution mass spectrometry (MS) has 

been established as a sensitive and robust platform for accurately quantifying protein 

abundances in biological samples, achieving coverage of almost the entirety of the human 

proteome [6,7]. Therefore, MS-based approaches constitute a suitable platform for biomarker 

discovery studies [8]. In addition, due to its compatibility with multiple enrichment methods 

(e.g. immunoaffinity enrichment), MS finds application in targeted quantitative analyses for 

both biomarker verification and functional studies (i.e. interaction proteomics) [9,10]. 

Still, analysis of heterogeneous biological material (e.g. breast tissue) suffers from interfering 

proteomes of cellular sub-populations, which can impair accurate quantification. Target cell 

subpopulation enrichment strategies, such as laser capture microdissection (LCM), allow 

bypassing this issue and assessment of molecular changes specific to (e.g.) epithelial tumor 

cells [11,12]. In other instances, where a previously selected analyte is measured in a complex 

biological matrix (e.g. tissue, plasma, serum), enrichment through antibodies efficiently 

minimizes interference from other compounds (e.g. co-eluting peptides) [9,13,14]. 

The aims addressed in this thesis are (Figure 9.1): 

- Evaluation of the advantage of cell enrichment techniques in proteomics based 

biomarker discovery. 

- Development and validation of a protein based signature for tamoxifen resistance. 

- Design and development of a targeted MS based assay to quantify signature proteins. 



 

- Analysis of pathways and potential biomarkers present in subgroups of ER positive 

breast cancers. 

 

9.1 - High resolution mass spectrometry in the analysis of tumors: the advantage posed by 

enrichment strategies 

High resolution MS, also termed global proteomics, constitutes a powerful approach to assess 

the levels of thousands of proteins in a single biological sample (15). For that reason, such 

approaches constitute a robust technology in biomarker discovery studies, where the more 

proteins there are identified, the more the cellular pathway dynamics in a complex disease can 

be assessed. However, when delving into the proteome of complex specimens (e.g. tissues, 

blood), signals from the cell population of interest may become diluted by the so called 

“background proteome”, which encompasses proteins and their intensities derived from other 

regions of the specimen (tissue) or from entirely different cell types (e.g. leukocytes, 

fibroblasts or even blood vessels) (16). Therefore, while on one hand identification of low 

abundance proteins may be compromised due to interference of high abundant ones (e.g. 

albumin, hemoglobin, collagens) at the chromatography and/or MS levels, on the other hand 

protein quantification in a specific cell type may be impaired due to the differential expression 

in surrounding cell subpopulations (17). To overcome this, cell separation techniques (e.g. 

fluorescence assisted cell sorting [15], LCM [8]) or high abundant protein depletion (e.g. 

depletion columns [16]) techniques have been used to enrich for cell populations of interest 

followed by downstream proteomic analysis [17–19]. 



 

 

Figure 9.1 Schematic representation of the experimental procedures used to address the aims of this 

thesis. 

Panel 1 illustrates the experimental workflow of our global proteomic comparison of microdissected tissues with 

their non-enriched counterparts. Panels 2 and 3 respectively display the workflow underlying the generation of a 

protein signature predictive of tamoxifen resistance and the development of a targeted MS method. Panel 4 

recapitulates our investigation of tamoxifen resistance alternative markers that are expressed in subgroups of 

tumors. 



 

Due to the fact that the use of cell enrichment techniques is labor intensive, many study 

designs often lack this part of the sample preparation. To date, no study examined the 

differences between proteomic analyses of LCM enriched and whole tissues. We evaluated 

whether differences exist between proteomic analyses of whole tissue lysates (WTL) 

compared with LCM-enriched breast carcinoma cells. We assessed the differences at the MS, 

peptide and protein levels between WTL and LCM material derived from 38 ER positive 

breast cancer tissues. Not only did the LCM set show a higher number of identified mass 

spectra, peptides and proteins, but also showed less redundancy at the chromatographic level. 

Furthermore, a significantly lower number of missing data points was observed both at the 

peptide and protein level. When looking at the possible contamination from proteins derived 

from non-tumor cells, the WTL set displayed higher abundance of blood-derived (e.g. 

haptoglobin) and extracellular matrix (e.g. collagen) proteins compared with LCM samples. 

Furthermore, the high number of missing values in the WTL set impaired not only the 

detection, but also the assessment of abundance differences of key breast cancer proteins, 

such as ER and HER2. 

Overall, our findings suggested that proteomic analysis of whole tissues suffers from higher 

redundancy at the chromatographic and MS levels, leading to decreased protein 

identifications and an increase in missing data points (Table 9.1). While redundancy could be 

reduced by extensive sample fractionation prior to LC-MS analysis [20,21], and blood-

derived proteins could be depleted [22], signal dilution derived from differential expression of 

proteins expressed in both the tumor and surrounding tissues cannot be avoided and, upon 

high resolution MS analysis, would ultimately affect accurate quantification. 

Furthermore, as the tumor microenvironment plays an important role in many cancer 

processes such as tumor growth, spread and therapy resistance [23], future functional and 

biomarker studies should take such element into account. Therefore, global profiling studies 

aimed at defining the molecular characteristics of solid tumors and their microenvironment, 

especially through proteomic technologies, could employ cell enrichment techniques such as 

LCM to segregate different cellular types, or fluorescence activated cell sorting (FACS) to 

assess molecular changes between (tumor) cell subpopulations. 

Taken together, the implementation of cell enrichment techniques in genomic, transcriptomic, 

and proteomic studies would constitute a significant asset to determine the molecular 

interactions between tumor cells, leukocytes and fibroblasts, define the molecular 



 

characteristic of tumor subclones, and possibly identify predictive and prognostic biomarkers 

for clinical application. 

 

Table 9.1. Technical features of laser capture microdissected and whole tissue specimens in proteomics. 

Laser capture microdissection Whole tissue specimens 

Technical 
advantages 

specific quantitation of the tumor proteome can be coupled to chemical labeling 
no or little tumor cellularity restriction high protein input  

 less time consuming sample preparation 

Technical 
disadvantages 

small amount of protein derived per sample (low 
protein input) background proteome contamination 

difficulty to use chemical labeling only high cellularity tumors 
time consuming sample preparation  

Comparative 
analysis 

high amount of identified/quantified proteins low amount of identified/quantified 
proteins 

low identification redundancy high identification redundancy 
low percentage of missing data high percentage of missing data 

minimal interference from background proteome higher interference from background 
proteome 

 

9.2 - Protein signature predictive of tamoxifen resistance 

Having established that LCM-based enrichment prior to downstream proteomic analysis 

enables better quantification of the tumor proteome over whole tissue analysis, we used our 

tissue proteomic workflow to develop and validate a predictive signature of tamoxifen 

resistance [8,24]. From global proteomic analysis of 112 (i.e. combined training and test sets) 

ER positive LCM-enriched tumors we derived a 4 protein signature capable of significantly 

predicting tamoxifen therapy outcome in the recurrent setting. 

Our predictive signature presents notable characteristics: first, we included tumors from 

different medical centers, which likely took into account differences in frozen tumor specimen 

collection and storage. Second, the inclusion of tumors derived from patients who did not 

receive any adjuvant endocrine treatment contributed to a relatively unbiased analysis of 

differences in protein abundances related to the endpoint of interest: tamoxifen outcome in the 

recurrent setting. Third, the development of a biomarker signature consisting of only 4 protein 

markers significantly reduces costs and optimization efforts in the biomarker verification 

phase. On a technical level, the use of LCM in the investigation of differential protein 

abundance enabled us to dissect the breast tumor proteome with minimal interference from 

surrounding tissues, such as fibroblast and immune cells, as also mentioned in paragraph 9.1. 



 

In addition to the predictive value of the 4-protein signature, these markers may also pinpoint 

alternative (intrinsic and de novo) mechanisms of tamoxifen resistance. The tumor suppressor 

PDCD4, a protein translation inhibitor, has been reported to be a target of the oncogenic long 

non-coding miRNA-21 [25], which regulates gene expression via 3'-UTR binding of target 

mRNAs. Furthermore, PDCD4 has been recently associated to aromatase inhibitor (AI) 

resistance in primary ER positive breast cancer [26]. In this cohort HER2 expression was 

associated to PDCD4 downregulation via activation of Akt and MAPK, which would 

phosphorylate the PDCD4 causing its inactivation and subsequent degradation. However, 

while several studies have pointed out HER2 overexpression as a major mechanism of 

endocrine therapy resistance [27], which enables tumor growth independently of anti-estrogen 

therapy through cross-talk mechanisms, none of the tumors analyzed in our study displayed 

HER2 amplification. Still, our findings pointed out that tamoxifen resistant tumors harbored 

dysregulation of cell cycle related pathways in which, on top of PDCD4, also CGN plays an 

important part. CGN has been previously reported as an epithelial differentiation marker in 

cancer, its function related to cell cycle regulation via interaction with GATA4, which leads 

to the downregulation of RhoA [28]. On the other hand, OCIAD1 and G3BP2 function in 

relation to endocrine therapy resistance remains unclear. OCIAD1 has been reported to be 

overexpressed in ovarian carcinoma and is a marker of poor prognosis [29]. OCIAD1 has also 

been reported to bind and interact with STAT3, an oncogenic molecule that is involved in 

both inflammation and promotion of pro-oncogenic signals [30], although it remains unknown 

whether OCIAD1 promotes its activation or its inhibition. G3BP2, a molecule involved in 

stress granule formation [31], has been recently reported to be involved in matrix stiffness and 

the acquisition of an EMT-like phenotype following its downregulation in breast cancer cell 

lines [32]. In the light of this, G3BP2 functional role in breast cancer and, moreover, in 

endocrine therapy resistance needs to be further investigated. 

Taken together, these finding suggest a role of the 4 proteins in cell cycle progression 

dysregulation, survival signals, and EMT-like features in tamoxifen resistant breast cancers. 

Still, the molecular hierarchy and interplay of these pathways need to be further elucidated 

through functional assays in pre-clinical models. 

 

High resolution MS approaches are capable of measuring thousands of protein abundances 

with high sensitivity and accuracy. However, the extensive sample preparation time, limited 



 

throughput and limited multiplexability hinder their introduction into clinical diagnostics. In 

this perspective, we employed IHC as an alternative technique, which confirmed the 

significant association of PDCD4 protein to tamoxifen outcome in an independent cohort of 

formalin-fixed and paraffin embedded tissues [33]. Despite of this, validation of the 3 

remaining markers (i.e. CGN, OCIAD1 and G3BP2) was unsuccessful, likely due to the 

limited dynamic range measurable by the technique as well as the intrinsic lack of linearity in 

quantifying chromophore signals. 

 

9.3 - Development of a targeted MS method for quantification of the 4-protein signature. 

Following signature development, targeted quantitative assays should be generated in order to 

verify the clinical utility of biomarkers. Therefore, as our tissue proteomics workflow requires 

too extensive sample preparation time and is not multiplexable, and due to the fact that we 

were only able to validate one marker through IHC, we chose a targeted and more quantitative 

approach. 

In the perspective of a clinically applicable assay, protein biomarkers can be readily measured 

by immuno-based assays (e.g. IHC, ELISA). Still, such techniques often do not provide 

accurate quantification (IHC) or require extensive optimization (ELISA). Targeted proteomic 

technologies, however, such as multiple reaction monitoring (MRM), have shown a high 

degree of reproducibility and measurement precision as well as require less laborious 

optimization compared with traditional immuno-assays [34,35]. Furthermore, the ability to 

quantify target proteins (also harboring post-translational modifications) out of several types 

of samples (e.g. tissue, blood, urine) broadens the applicability of targeted MS methods in the 

diagnostic field. MRM MS coupled to stable isotope dilution provides a highly accurate 

method to measure analytes in a plethora of sample types (e.g. tissue, secretions, blood) [36]. 

Yet, the presence of highly abundant proteins (e.g. serum albumin) may impair quantification 

due to interference at the chromatography level (Figure 9.2) [37,38]. In order to minimize 

such interference, we combined MRM to immunoaffinity captures by anti-peptide antibodies 

(defined as immuno-MRM [iMRM]). 

 



 

 

Figure 9.2. Features of proteomic and immuno-based approaches in our proteomic biomarker studies. 

 

Our study  showed that iMRM hardly suffered from sample matrix interference compared 

with direct (unfractionated) MRM. Still, while on the one hand immunoaffinity capture 

provides high sensitivity measurement of proteotypic peptides, on the other hand it 

necessitates relatively high amounts of input material compared to high resolution MS, 

rendering LCM unfeasible for such an approach. 

Upon measurement of the 4 proteins by iMRM in breast cancer tissues, we were able to 

establish their differential abundance and, when compared to our high resolution MS data, 

similar sensitivity and specificity in patient stratification was achieved. This is probably due 

to the fact that the 4-protein markers are mainly expressed in breast epithelial cells, as 

observed previously in our IHC data, which limited the interference from any background 

proteome. 

Despite of this, analyzing frozen breast cancer primary tumor tissues can be difficult due to 

the fact that they are not collected on a routine basis in the clinic and the possible biases 

introduced by different methods of sample storage. Therefore, analysis of blood-derived 

samples, such as plasma or serum, which can be more easily retrieved due to the non-invasive 

nature of its collection methodology, which renders large number of samples to be available 

for diagnostic purposes. Upon testing our iMRM assay on a pilot cohort of sera collected prior 

to start of first line tamoxifen treatment, not only were we able to detect the 4 signature 

proteins, but even more importantly significant patient stratification was also achieved. 



 

In conclusion, our iMRM assay constitutes a reliable alternative method for measuring the 4 

signature proteins in both patient-derived tumor tissues and sera. However, to further 

introduce such findings into the clinical setting and on top of clinical verification of our 

biomarkers in a large cohort of patients, technical issues need to be addressed, such as 

sensitivity and accuracy. First, antibody specificity and analyte recovery (linked to both 

specificity and avidity of each antibody) can be improved by selecting monoclonal antibodies 

for target immunocapture. Second, improvement in the resolution of MS instruments may 

offer a solution for the identification and quantification of low abundance species. Third, 

reference guidelines for peptide standard selection, protein digestion and MS measurement 

standardization should be followed to ensure inter-laboratory reproducibility and to ultimately 

translate MRM assays into the clinical laboratory [39]. 

 

9.4 - Several mechanisms underlie endocrine therapy resistance. 

As mentioned in the previous paragraphs, we have shown that our 4-protein signature 

significantly predicts tamoxifen therapy outcome in recurrent breast cancer patients and we 

have developed a targeted assay to measure our signature proteins in both tumor tissues and 

pre-metastatic sera. Despite of this, it is unlikely that the 4 proteins can fully explain the 

biology behind tamoxifen resistance [41,42]. In this perspective, we assessed whether 

additional markers could better define the biological pathways related to endocrine resistance 

in our tissue samples, which led to the identification of ANXA1 and CALD1 as potential 

predictive markers. Upon evaluating the clinical relevance of both proteins by IHC, we 

discovered that only a minority of tumors expressed ANXA1 and CALD1, possibly 

identifying a specific tumor subtype that relates to fast tumor progression. Furthermore, most 

of the proteins that were associated to ANXA1 expression were also associated to CALD1, 

suggesting a common role for these two proteins in tamoxifen resistance. These proteins were 

mainly associated with downregulation of ER, cell adhesion and cell movement which 

confirmed previous findings of CALD1 and ANXA1 upregulation in breast cancer cell lines 

acquiring an EMT–like phenotype [43,44], which resembled features of basal tumors. As 

ANXA1 and CALD1 have been linked to regulation of basal ER negative cancer cell invasion 

[45–47], we can speculate whether these markers may identify ER positive tumors with basal 

characteristics. As basal tumors are generally characterized by poor prognosis and 

insensitivity to endocrine therapies due to the fact that they do not need estrogen signaling in 



 

order to grow compared with their luminal counterparts, it is conceivable that features similar 

to basal tumors in ER positive cancers may render tamoxifen therapy inefficacious. 

Furthermore, as tumor heterogeneity and evolution studies have pointed out (e.g. [49–51]), 

breast tumors acquire several features (e.g. EMT characteristics, mutations) both at the 

primary and metastatic level. Such characteristics confer the tumor, or some of its sub-clones, 

the ability to escape the organ of origin and to withstand anti-cancer therapies. Therefore, it is 

also conceivable that ANXA1 and CALD1 may pinpoint not general tumor characteristics, 

but sub-clonal ones. However, in order to confirm this, studies assessing protein expression in 

different tumor clones need to be performed. 

Taken together, our findings suggest that ANXA1 and CALD1 are not only indicative of 

faster tumor progression but, given the fact that tumor heterogeneity plays an important role 

in both the biology and the clinical course of breast cancer [42], they also possibly identify 

specific tumor subgroups. However, further clinical and functional validation of these 

findings needs to be carried out in future studies. 

 

9.5 - From epigenetic screens to gene expression - metabolically dysregulated tumors. 

Differential abundance of genes and proteins is the reflection of the fine upstream regulation 

of transcription factors and histone proteins, which in turn is mediated by several types of 

modifications (e.g. methylation, acetylation) [52,53]. These mechanisms have been shown to 

modulate the expression of several genes involved in a plethora of cancer processes, such as 

tumorigenesis and invasion [54–56]. Involvement of epigenetic mechanisms in endocrine 

therapy resistance has also been shown by recent studies, such as the differential chromatin-

binding events of histone proteins and transcription factors (e.g. ER, PgR), that enhanced or 

suppressed expression of estrogen responsive genes [57–60]. Modified histone proteins and 

ER differential binding events to chromatin not only elucidated that epigenetic regulation is 

underlying endocrine therapy resistance, but also represent clinical outcome predictive 

markers [60]. A previous study from our laboratory on differential DNA methylation showed 

that phosphoserine aminotransferase 1 (PSAT1) hypo-methylation, and conversely high 

mRNA expression, was associated to poor patient outcome in recurrent breast cancer patients 

who received tamoxifen as first-line therapy [61]. We sought to investigate whether these 

findings would translate at the protein level and which genes were associated to high 

expression of PSAT1. Overall, our analysis showed that not only PSAT1 protein expression 



 

was associated with poor outcome to tamoxifen, but that it was expressed only in a small 

subset of ER positive tumors, as previously shown for ANXA1 and CALD1. Furthermore, 

high PSAT1 mRNA expressing tumors displayed upregulation of the cytokine signaling and 

Jak/STAT pathways, which suggested that serine biosynthesis activation was concomitant 

with cascade signaling dysregulation. Correlation analysis of PSAT1 mRNA levels with a 

tumor infiltrating lymphocytes (TIL) signature [62] showed that tumors expressing high levels 

of PSAT1 also showed high expression of TIL signature related genes. This observation 

pinpoints the fact that metabolic dysregulation in tumor cells may derive from extracellular 

signals (e.g. cytokines) of immune cell origin. Several studies pointed out how metabolic 

reprogramming of tumor cells promoted by microenvironmental stimuli can affect the clinical 

course as well as the biology of the disease [30,63,64], promoting therapy resistance, tumor 

growth and spread. Still, it is unknown whether these stimuli originate from cancer cell-

induced inflammation at the tumor site or are part of a wider signaling network. Therefore, 

and in order to determine the hierarchy of such signaling pathways during the clinical course 

of the disease, functional studies in preclinical models (e.g. co-culture experiments with 

activated lymphocytes) need to be performed. Such studies would not only clarify the 

dynamic signaling evolution of cancer and its interplay with its microenvironment, but may 

also define alternative therapeutic targets. 

 

9.7 - Overall conclusions 

We have here described how proteomic technologies constitute a reliable platform for both 

biomarker discovery and verification studies in endocrine therapy treated breast cancers. In 

this thesis, we have first shown how LCM-based cell enrichment constitutes a better approach 

over whole tissue specimens to investigate the tumor proteome by high resolution MS 

(Chapter 3). In fact, a higher amount of proteins were identified/quantified in LCM samples, 

with minimized interference from the background proteome and highly abundant (e.g. 

plasma) proteins not belonging to tumor carcinoma cells. In this perspective, our findings 

point out that tissue enrichment strategies should be employed to specifically analyze specific 

cell types and subpopulations in biomarker discovery studies, though such technologies could 

be used as well in functional studies. 

We next employed our tissue proteomic approach to develop and validate a 4-protein 

signature predictive of tamoxifen resistance in ER positive breast cancers (Chapter 4). This 



 

protein signature predicts patients that would not benefit from tamoxifen treatment, and an 

alternative therapy (e.g. chemotherapy) should preferably be administered (Figure 9.3). 

Although tamoxifen does not constitute standard first line treatment for ER positive recurrent 

breast cancer, since it has been gradually replaced by AIs, our protein signature may still be 

predictive of endocrine treatment resistance in general. As a matter of fact, estrogen signaling 

modulating drugs ultimately share a common denominator, as it has been shown for 

previously reported epigenetic signatures [60]. In this perspective, it would be worthwhile to 

assess also predictive value of the 4-protein signature in a cohort of patients treated with AIs. 

 

Following up our signature development, we aimed at validating our findings using a more 

clinically feasible technique. While IHC analysis verified the significant association of only 

one of our signature proteins (i.e. PDCD4), our targeted iMRM MS approach was able to 

significantly predict patient outcomes in both tissues and sera (Chapter 5 and Chapter 6) by 

measuring all of the signature markers. This establishes our 4-protein signature as a potential 

diagnostic tool that would help clinicians direct the pharmacological treatment of recurrent 

ER positive recurrent breast cancer patients (Figure 9.3). 

 

Figure 9.3. Potential impact of the 4-protein predictive signature in a clinical setting. 

 

While our signature might be useful for the general identification of tamoxifen resistant 

tumors, other markers may be indicative of particular subgroups in which specific molecular 

pathways are enriched, such as the NFκB and Jak/STAT cascades (Chapter 7 and Chapter 8, 

respectively). Furthermore, not only may these markers define subgroups within ER positive 



 

tumors, they could also be the starting point for the development of alternative therapeutic 

approaches. Therefore, blocking antibodies against ANXA1 [65] or CALD1 may constitute a 

complementary or alternative therapeutic strategy in ER positive tumors with basal 

characteristics, while molecules targeting tumor-specific metabolic pathways (e.g. serine and 

glutamine biosynthesis) or the tumor microenvironment (e.g. TILs) may constitute an 

alternative therapeutic strategy in PSAT1 enriched tumors. 

However, complete functional elucidation of these markers and their associated 

genes/proteins needs to be performed to assess the biological role of these markers in breast 

cancer therapy resistance. Targeted loss-of-function screens through siRNA transfection or 

CRISPRi [66,67] coupled to tamoxifen treatment in cell lines would be the first step to assess 

the biological effect of our biomarkers (Figure 9.4). In addition to this, gain of function assays 

through stable transfection of target genes (i.e. over-expression) would then be needed to 

confirm knock-down screen findings as a complementary experiment. Proliferation assays 

would subsequently be used to measure the effect of gene loss or gain in the presence of 

tamoxifen and to determine whether response to the drug is significantly impacted. 

 

Figure 9.4. Possible workflow for functional studies of tamoxifen resistance-associated markers. 

 

As the tumor microenvironment is known to play an important role in several cancer 

processes, such as tumorigenesis, invasion and metastasis, and drug resistance [68,69], these 

functional assays should however subsequently be translated into preclinical models in order 

to evaluate the effect of tumor surrounding tissues in tamoxifen resistance.  

In conclusion, we have here shown that proteomic technologies coupled to cell enrichment 

techniques are capable of accurately dissecting the tumor proteome, and that this workflow 

was successfully used to develop and validate a tamoxifen resistance predictive protein 

signature. Furthermore, we have here shown that a targeted MS approach coupled to 



 

immunoaffinity enrichment is able to accurately assess tumor protein concentrations to predict 

patient outcome to therapy in both primary tumor tissues and patient derived sera (at start of 

tamoxifen treatment for recurrent disease). Lastly, alternative markers have shown to identify 

tamoxifen resistant tumor subgroups, for which alternative targeted drugs could be developed. 
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Samenvatting 

Een belangrijke doodsoorzaak bij terugkerende oestrogeenreceptor-positieve (ER, ESR1) 

borstkanker is de resistentie tegen een behandeling met tamoxifen. Hoewel een aantal studies 

hebben aangetoond dat er biomarkers zijn voor het voorspellen van de resultaten van een 

behandeling met tamoxifen, zoals mutaties of isovormen van ESR1, worden deze tot dusverre 

niet in de patiëntenzorg toegepast. Dankzij nieuwe technologische innovaties in de 

massaspectrometrie (MS) is het mogelijk om bijna het gehele menselijke proteoom 

nauwkeurig te meten. Hierdoor is ze geschikt voor het ontdekken van nieuwe biomarkers. 

Recent hebben we in ons laboratorium een proteoom-pipeline voor weefsel ontwikkeld door 

laser capture microdissectie (LCM) te combineren met hoge resolutie MS. Hierdoor konden 

we van meer dan 4.000 samples van verrijkte epitheelcellen afkomstig van borstcarcinoom de 

eiwitten nauwkeurig meten. Toch is het voordeel van het analyseren van LCM materiaal 

boven lysaten van hele weefsel bij vergelijkende proteoomanalyses nooit in z’n geheel 

uitgediept. In hoofdstuk 3 bepalen we de verschillen voor MS, op peptide- en eiwitniveau, 

tussen de gecombineerde LCM en specimens van heel weefsel. Bij gewone proteoomanalyse 

is te zien dat er een grotere hoeveelheid peptide (+47%) en eiwitten (+20%) in de LCM-

specimens geïdentificeerd kon worden vergeleken met de lysaat-samples afkomstig van heel 

weefsel (WTL). De laatste hadden weer last van een hoge dichtheid van plasma afgeleide 

eiwitten en een hoger percentage ontbrekende waarden. Bovendien werden er bij het 

beoordelen van de specifieke verrijking van ER-positieve borstkankermarkers tussen de 

patiëntengroepen significante verschillen waargenomen tussen de patiënten met een slechte en 

een goede uitkomst op de behandeling bij de LSM-samples (bijv. HER2), maar niet bij de 

WTL’s. Daaruit concludeerden we dat bij de proteoomanalyse van het LCM-materiaal het 

tumorproteoom beter ontleed wordt dan de WTL’s.  

Nadat we het voordeel van de LCM-techniek hadden bepaald bij het identificeren en meten 

van tumor-specifieke eiwitten, gebruikten we deze aanpak om een eiwit-classifier te 

ontwikkelen om de resultaten met tamoxifen te voorspellen voor terugkerende borstkanker 

(hoofdstuk 4). Door onze analyse van de oefencohort (bestaande uit 56 patiënten) kwamen 

we tot 4 veronderstelde eiwitbiomarkers die bij de testgroep de patiënten met een slechte 

uitkomst significant voorspeld hadden (sensitiviteit: 86,7%; specificiteit: 41,5%; hazard ratio 

[HR] = 2,32; 95% betrouwbaarheidsinterval [BI]: 1,29 tot 4,17; Log rank P = 0,004). Onze 4-

eiwit-signatuur kan bepalen of een patiënt met uitgezaaide borstkanker niet zou profiteren van 

een behandeling met tamoxifen. Onze proteoom-pipeline voor weefsel is echter niet 

makkelijk inzetbaar bij de patiëntenzorg, vanwege de uitgebreide voorbereiding van de 



 

samples, het meten en de tijd die het analyseren vraagt. Daarom richtten we ons op het 

ontwikkelen van een test die beter toegerust is voor de klinische setting en die onze 

ontdekkingen technisch bevestigt. We gingen eerst na of immunohistochemie (ICH) een 

alternatief kon zijn, hoewel maar één van de 4 signatuureiwitten (namelijk PDCD4) met 

succes gevalideerd was. Dit kwam waarschijnlijk door de semi-kwantitatieve analyse van 

eiwitdichtheid die kenmerkend is voor IHC. Om dit probleem aan te pakken, richtten we ons 

op het ontwikkelen van een kwantitatievere test. 

Multiple reaction monitoring (MRM)-MS biedt een zeer nauwkeurige methode voor het 

meten van de eiwitdichtheid in biologische samples. Echter, zoals gezegd, kan interferentie 

van eiwitten die overvloedig aanwezig zijn (zoals albumine in plasma en serum) een 

nauwkeurige kwantificatie in de weg staan. Daarom verbonden we verrijking op basis van 

immunoaffiniteit door middel van antipeptide antilichamen met MRM-MS om zulke 

interferentie zo laag mogelijk te houden (gedefinieerd als ‘immuno-MRM’ [iMRM]; 

hoofdstuk 5). Omdat voor verrijking op basis van immunoaffiniteit een hoeveelheid eiwitten 

nodig is die hoger ligt dan met LCM verkregen wordt, gebruikten we hiervoor de WTL-

specimens. Zoals beschreven in hoofdstuk 6, blijkt uit onze analyse dat de iMRM-metingen 

van de 4-eiwit-signatuur voorspellingen doen die vergelijkbaar zijn met die van de hoge 

resolutie MS op de LCM-specimens. Daarentegen geeft de voorspelling gebaseerd op de data 

van de hoge resolutie MS op de WTL-samples aan geen onderscheidend vermogen te hebben 

voor de patiëntengroepen. Hieruit blijkt dat iMRM een voorspellend vermogen heeft dat 

vergelijkbaar is met dat van de hoge resolutie MS, maar ook dat het effectief in staat is de 

interferentie van hoge eiwitdichtheden te omzeilen. Bovendien wist de 4-eiwit-signatuur de 

resultaten van de patiënten van een klein, onafhankelijk cohort van serumsamples te 

voorspellen. Alles bij elkaar genomen is deze techniek beter toepasbaar geworden, doordat 

onze eiwit-classifier de resultaten van de patiënt kan voorspellen op basis van zowel weefsel 

als serum afkomstig van de borstkankerpatiënt en doordat de iMRM-samples op allerlei 

verschillende manieren voorbereid kunnen worden. Hierdoor is ze geschikter voor klinische 

diagnose. 

 

Hoewel het veelbelovend is dat onze 4-eiwit-classifier kan aangeven welke patiënten baat 

hebben bij een behandeling met tamoxifen, is het onwaarschijnlijk dat deze markers een 

uitgebreid overzicht geven van het mechanisme achter tamoxifenresistentie. Omdat deze 

tumoren zowel op morfologisch als op moleculair niveau zeer heterogeen zijn, is het daarbij 

goed mogelijk dat meerdere mechanismen een rol spelen bij tamoxifenresistentie. Daarom 



 

hebben we in onze gecombineerde MS-datasets gekeken welke verrijkte eiwitten aanwezig 

waren bij de patiënten met een slecht klinisch beloop. Hieruit volgden dat ANXA1 en CALD1 

onze beste 2 kandidaten waren (hoofdstuk 7). Door IHC-validatie werd bevestigd dat deze 

markers klinisch geassocieerd zijn met resistentie tegen de behandeling en dat ze alleen tot 

expressie kwamen in een kleine groep ER-positieve tumoren. Aan de andere kant wees 

analyse van de signaalroute erop dat expressie van ANXA1 en CALD1 geassocieerd werd 

met de downregulatie van ER en het krijgen van een mesenchymaal-achtig fenotype. 

Vervolgens bepaalden we in hoofdstuk 8 de klinische relevantie van een eerder 

geïdentificeerde epigenetische biomarker, PSAT1, een enzym dat essentieel is voor de 

biosynthese van serine. Net als ANXA1 en CALD1 werd PSAT1 geassocieerd met een 

slechte uitkomst bij de behandeling met tamoxifen en kwam het alleen in een minderheid van 

de weefsels tot expressie. Daarbij bleek uit de algemene testanalysis dat tumoren met PSAT1-

expressie verrijking lieten zien in de genen die niet alleen bij de biosynthese van serine 

betrokken waren maar ook bij de Jak/STAT-signaalroute. Alles bij elkaar genomen kunnen 

deze markers wijzen op subgroepen ER-positieve tumoren met verschillende 

resistentiemechanismen tegen tamoxifen. Omdat deze markers prognostische en/of 

predictieve waarde hebben, kunnen ze gebruikt worden voor het vaststellen van nieuwe 

targets voor de behandeling. 

 

Samengevat hebben we hier aangetoond dat de technologieën van de proteomica een rendabel 

technologisch platform bieden voor het ontdekken en verifiëren van biomarkers voor de 

resistentie tegen tamoxifen. Bovendien hebben we hier laten zien dat een aantal markers niet 

alleen geassocieerd zijn met subgroepen van tumoren die resistent zijn tegen tamoxifen, maar 

dat ze ook kunnen leiden tot alternatieve targets voor de behandeling.  



 

Summary 

Resistance to tamoxifen therapy is a major cause of death in recurrent estrogen receptor (ER, 

ESR1) positive breast cancer. Although several studies have reported biomarkers capable of 

predicting tamoxifen treatment outcome, such as ESR1 mutations or isoforms, none have been 

introduced in clinical diagnostics so far. Recent improvements in mass spectrometry (MS)-

related technologies have shown that proteomic approaches are nowadays capable of 

accurately quantifying almost the entirety of the human proteome, rendering them suitable for 

biomarker discovery studies. 

In our laboratory, we have recently developed a tissue proteomic pipeline by coupling laser 

capture microdissection (LCM) to high resolution MS, enabling to accurately quantify more 

than 4,000 proteins in breast carcinoma epithelial cell-enriched samples. Still, the advantage 

of LCM over whole tissues in comparative proteomic analyses has never been fully 

elucidated. In Chapter 3 we assessed differences at the MS, peptide and protein levels 

between paired LCM and whole tissue specimens. Global proteomic analysis showed that a 

higher amount of peptides (+47%) and proteins (+20%) could be identified in LCM 

specimens when compared to whole tissue lysate (WTL) samples,which in turn suffered from 

high abundance of plasma-derived proteins and a higher percentage of missing values. 

Furthermore, upon assessing specific enrichment of ER positive breast cancer markers 

between patient groups, significant differences were observed between poor and good 

outcome patients in LCM samples (e.g. HER2), but not in WTLs. Therefore, we concluded 

that proteomic analysis of LCM material better dissects the tumor proteome than WTLs. 

Having established the advantage of LCM in identifying and quantifying tumor-specific 

proteins, we used this approach to develop a protein signature to predict tamoxifen outcome in 

recurrent breast cancer (Chapter 4). From our analysis of the training cohort (comprising 56 

patients) we identified 4 putative protein biomarkers, which significantly predicted poor 

outcome patients in the test set (sensitivity:86.7%; specificity: 41.5%; hazard ratio [HR] = 

2.32; 95% confidence interval [CI]: 1.29 to 4.17; Log-rank P = 0.004).Our 4-protein signature 

could determine whether a patient with metastatic breast cancer would fail from tamoxifen 

therapy, though our tissue proteomic pipeline would find little use in clinical diagnostics due 

to the extensive sample preparation, measurement, and data analysis time required. We 

therefore aimed to develop a more clinically feasible assay that could provide technical 

verification of our findings. We first evaluated whether immunohistochemistry (IHC) could 



 

be used as an alternative approach, though only one out of the 4 signature proteins (i.e. 

PDCD4) was successfully validated. This was likely due to the semi-quantitative measure of 

protein abundance intrinsic to IHC. Therefore, to address this issue, we focused on the 

development of a more quantitative assay.  

Multiple reaction monitoring (MRM) MS offers a precise and accurate method to measure 

protein abundance in biological samples. However, as previously mentioned, interference 

from highly abundant proteins (e.g. albumin in plasma and serum) can impair accurate analyte 

quantitation. Therefore, we coupled immunoaffinity enrichment by anti-peptide antibodies to 

MRM MS in order to minimize such interference (defined as immuno-MRM [iMRM]; 

Chapter 5). Because immunoaffinity enrichment requires protein amounts beyond the yield 

of LCM, we employed WTL specimens for these experiments. As described in Chapter 6, 

our analyses showed that iMRM measurement of the 4-protein signature achieved comparable 

prediction when compared to high resolution MS of LCM specimens, while the one based on 

high resolution MS data of WTL samples showed no discriminatory power of patient groups. 

This showed that iMRM not only achieves similar prediction compared with high resolution 

MS, but that it also effectively bypasses interference from highly abundant proteins. In 

addition to this, the 4-protein signature was capable of predicting patient outcome in a small 

independent cohort of serum samples. Taken together, the ability of our protein signature to 

predict patient outcome in both breast cancer patient derived tissues and sera and the fact that 

iMRM sample preparation is highly multiplexable expand the applicability of the technique, 

rendering it more feasible for clinical diagnostics. 

 

Although our 4-protein signature shows promise by distinguishing which patients would not 

benefit from tamoxifen treatment, it is unlikely that these markers offer a comprehensive 

overview of tamoxifen resistance mechanisms. Furthermore, as tumors are characterized by a 

high degree of heterogeneity both at the morphological and molecular levels, it is possible that 

multiple mechanisms may lead to tamoxifen therapy resistance. Therefore, we assessed which 

proteins were enriched in poor outcome patients in our combined MS datasets, which led to 

the identification of ANXA1 and CALD1 as the top 2 candidates (Chapter 7). IHC validation 

confirmed the clinical association of these markers to therapy resistance and showed that they 

were expressed only in a small set of ER positive tumors. On the other hand, pathway analysis 

indicated that ANXA1 and CALD1 expression was associated with the downregulation of ER 

and the acquisition of a mesenchymal-like phenotype.  



 

Subsequently, in Chapter 8 we assessed the clinical relevance of a previously identified 

epigenetic biomarker, PSAT1, a key enzyme in serine biosynthesis. Similarly to ANXA1 and 

CALD1, PSAT1 was associated to poor outcome on tamoxifen therapy and was expressed 

only in a minority of tissues. In addition to this, global test analysis showed that PSAT1 

expressing tumors showed enrichment in genes involved not only in serine biosynthesis, but 

also in the Jak/STAT pathway. Taken together, these markers may be indicative of subgroups 

of ER positive tumors with diverse mechanisms of resistance to tamoxifen. As these markers 

offer prognostic and/or predictive value, they may be used to define new therapeutic targets. 

 

In conclusion, we have here shown that proteomic technologies offer a viable technological 

platform for discovery and verification of tamoxifen resistance biomarkers. Furthermore, we 

have here shown that several markers were not only associated to subgroups of tamoxifen 

resistant tumors, but could also lead to alternative therapeutic targets.  



 

Sommario 

La resistenza al tamoxifene costituisce una della maggiori cause di morte nei casi recidivi di 

tumore alla mammella positivi al recettore degli estrogeni (ER, ESR1). Nonostante molteplici 

studi abbiano riportato diversi biomarcatori capaci di predirre l`esito della terapia a base di 

tamoxifene, come ad esempio la presenza di mutazioni o isoforme di ESR1, nessuno di questi 

e` stato finora introdotto a livello diagnostico. I recenti miglioramenti nelle tecniche associate 

alla spettrometria di massa (MS) hanno dimostrato come gli approcci di proteomica siano 

oggi in grado di quantificare quasi completamente il proteoma umano, rendendoli adatti a 

studi atti a definire nuovi biomarcatori. 

Nel nostro laboratorio abbiamo recentemente sviluppato un protocollo di preparazione di 

tessuti umani per la proteomica, il quale combina la micro-dissezione laser (LCM) con la MS 

ad alta risoluzione, ed è capace di quantificare accuratamente piu di 4.000 proteine a partire 

dall`analisi di tessuti arricchiti di carcinoma mammario. Il vantaggio nell`analisi proteomica 

di tessuti arricchiti tramite LCM rispetto a tessuti interi intera (WTL) non e` stato tuttavia 

completamente chiarito. Nel Capitolo 3 abbiamo valutato le differenze al livello di spettri di 

massa e nel numero di peptidi e proteine identificati tra tessuti arricchiti di cellule di 

carcinoma mammario e la loro controparte intera. La nostra analisi proteomica globale ha 

indicato che si possa identificare un più alto numero di peptidi (+47%) e proteine (+20%) nei 

campioni arricchiti tramite LCM rispetto ai WTL, che a loro volta hanno mostrato 

contaminazioni da parte di proteine plasmatiche e una piu` alta percentuale di valori mancanti. 

Al momento di accertare differenze di espressione di proteine specifiche per i tumori positivi 

a ESR1, abbiamo osservato differenze statisticamente significative (esempio: HER2) tra 

gruppi di pazienti – manifestanti un buono o un cattivo esito alla terapia al tamoxifene – i cui 

tessuti erasno stati arricchiti tramite LCM. Dall`altro lato, nessuna differenza è stata osservata 

dalla misurazione delgi stessi tessuti non arricchiti. Alla luce di questo, abbiamo concluso che 

l`analisi proteomica di tessuti arricchiti tramite LCM garantisce migliore risoluzione del 

proteoma tumorale. 

Avendo stabilito il vantaggio posto dall`arracchimiento tramite LCM nella quantificazione di 

proteine tumore-specifiche, abbiamo utilizzato questo approccio al fine di sviluppare un 

classificatore di proteine capace di predirre l`esito della terapia a base di tamoxifene in cancro 

al seno recidivo (Capitolo 4). Dalla nostra analisi della coorte “training” (comprendente 56 

pazienti) abbiamo identificato 4 presunti biomarcatori proteici, i quali hanno predetto in 



 

maniera significativa un esito negativo alla terapia a base di tamoxifene (senisitività: 86.7%; 

specificità: 41.5%; rapporto di rischio [HR} = 2.32; intervallo di confidenza 95%: da 1.29 a 

4.17; P del rango logaritmico = 0.004) nella coorte “test”. Il nostro classificatore, costituito da 

4 proteine, ha potuto determinare se pazienti con cancro al seno metastatico potessero 

beneficiare di terapia al tamoxifene, tuttavia il nostro protocollo di preparazione di tessuti 

umani troverebbe uno scarso uso nella diagnostica clinica a causa delle lunghe tempistiche 

nella preparazione dei campioni, nell`analisi di MS e nel processamento dei dati. In questa 

prospettiva, ci siamo focalizzati sullo sviluppo di una metodologia diagnostica piu` idonea 

alla clinica e che possa provvedere una verifica tecnica dei nostri risultati. In un primo 

momento, abbiamo valutato se l`immunoistochimica (IHC) potesse essere usata come un 

approccio alternativo, tuttavia solo uno dei quattro biomarcatori (PDCD4) è stato confermato 

con successo. E` molto probabile che questo sia da attribuire alla misura semi-quantitativa 

intrinsica alla IHC e, per questo, abbiamo indirizzato i nostri sforzi nello sviluppo di una 

tecnica più quantitativa. 

Il “multiple reaction monitoring” (MRM) tramite MS costituisce un metodo preciso ed 

accurato nella misura quantitativa delle proteine in campioni biologici. Tuttavia, come 

menzionato in precedenza, l`interferenza generata dalla presenza di proteine ad alta 

concentrazione (per esempio: albumina in campioni di plasma e siero) puo` alterare la corretta 

quantificazione di un analita. Al fine di minimizzare questa interferenza abbiamo combinato 

l`arricchimento tramite immuno-affinità, che si avvale di anticorpi anti-peptide, con la MS 

MRM (definita come immuno-MRM [iMRM]; Capitolo 5). A causa del fatto che 

l`arricchimento tramite immuno-affinità richiede quantitativi proteici superiori alla normale 

resa della LCM, per questi esperimenti abbiamo utilizzato WTL. Come abbiamo descritto nel 

Capitolo 6, le nostre analisi hanno mostrato che la misura delle 4 proteine del classificatore 

tramite MS iMRM garantisce una predizione simile a quella ottenuta dall`analisi di MS ad 

alta risoluzione di campioni arricchiti. Dall`altro lato, la predizione basata sulle misurazioni 

ad alta risoluzione di campioni non arricchiti non è risultata statisticamente significativa. 

Questi risultati hanno dimostrato che non solo la MS iMRM è capace di predirre 

significativamente i gruppi di pazienti non-responsivi alla terapia al tamoxifene, ma è anche 

in grado di aggirare l`interferenza da proteine presenti ad alte concetrazioni. Oltre a questo, la 

nostra lista di quattro proteine ha dimostrato una significativa predizione anche in campioni di 

siero derivanti da una coorte pilota di pazienti indipendente. Alla luce di questi risultati, e a 



 

fronte del fatto che la preparazione dei campioni per la MS iMRM e` altamente 

‘multiplexable’, l`iMRM risulta essere una tecnologia piu` adatta all`uso clinico. 

Nonostante il nostro classificatore di proteine prometta una significativa discriminazione dei 

pazienti non-responsivi alla terapia a base di tamoxifene, e` improbabile che questi marcatori 

siano capaci di delineare completamente i meccanismi molecolari di resistenza alla terapia. 

Per di piu`, visto che i tumori sono caratterizzati da un elevato livello di eterogeneità sia a 

livello morfologico che molecolare, è possibile che molteplici meccanismi stiano alla base 

della resistenza al tamoxifene. Alla luce di questo, abbiamo analizzato le nostre due coorti di 

pazienti combinate l`una con l`altra, identificando ANXA1 e CALD1 come i primi due 

candidati biomarcatori (Capitolo 7). La validazione tramite IHC ha confermato l`associazione 

di queste proteine alla resistenza al tamoxifene e ha mostrato che queste fossero espresse solo 

in una minoranza dei tumori. Dall`altra parte, l`analisi dei “pathway” biologici ha indicato che 

ANXA1 e CALD1 sono associati alla bassa espressione di ER e all`acquisizione di un 

fenotipo simil-mesenchimale. 

Successivamente, nel Capitolo 8, abbiamo valutato la rilevanza clinica di un biomarcatore 

epigenetico precedentemente identificato, PSAT1, un enzima chiave nella sintesi di serina. 

Come osservato per ANXA1 e CALD1, anche PSAT1 e` stato associato a una rapida 

progressione del tumor metastatico trattato con tamoxifene e ne stata riscontrata  l`espressione 

solo in una minoranza dei tessuti. L`analisi “global test” ha rivelato che nei tumori esprimenti 

PSAT1 vi era un arricchimento nell`espressione di geni non solo coinvolti nella sintesi della 

serina, ma anche di molecole coinvolte nella cascata Jak/STAT. Nel complesso, questi 

marcatori possono essere indicativi di sottogruppi di tumori positivi a ER aventi diversi 

meccanismi di resistenza alla terapia a base di tamoxifene. Inoltre, questi marcatori non solo 

possiedono un valore prognostico e predittivo, ma possono probabilmente essere utilizzati per 

sviluppare nuove terapie mirate. 

In conclusione, abbiamo qui dimostrato che le tecniche di proteomica offrono una solida 

piattaforma per la scoperta e la validazione di biomarcatori per la resistenza al tamoxifene. 

Abbiamo qui inoltre mostrato che alcune molecole non erano solo associate a sottogruppi di 

tumori, ma protrebbero costituire obiettivi terapeutici alternativi.  
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