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Abstract

Transport companies often have a published timetable. To maintain timetable re-

liability despite delays, companies include bu�er times during timetable development,

and adjust the traveling speed during timetable execution. We develop an approach

that can integrate decisions at di�erent time scales (tactical and operational). We

model execution of the timetable as a stochastic dynamic program (SDP). An SDP is

a natural framework to model random events causing (additional) delay, propagation

of delays, and real-time speed adjustments. However, SDPs alone cannot incorporate

the bu�er allocation, as bu�er allocation requires to choose the same action in di�er-

ent states of the SDP. Our objective is �nding the bu�er allocation that yields the

SDP which has minimal long run average costs. We derive several analytical insights

into the model. We prove that costs are joint convex in the bu�er times, and develop

theory in order to compute subgradients. Our optimal algorithm for bu�er time al-

location is based on these results. Our case study considers container vessels sailing

a round tour consisting of 14 ports based on Maersk data. Our algorithm �nds the

optimal timetable in less than 80 seconds. The optimal timetable yields cost reduc-

tions of about six to ten million USD per route per year in comparison to the current

timetable.
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1 Introduction

Timetables are used in container shipping, airlines and public transport to communicate

planned arrival and departure times in advance to customers. However, delays are in-

evitable while executing the timetable, making the arrival times uncertain. Maintaining

timetable reliability despite these delays is crucial: The timetable is relied upon by pas-

sengers and freight forwarders.

Transport companies combine two main methods to ensure a reliable schedule. Firstly,

during timetable development, a more delay-resistant planning may be obtained by includ-

ing bu�er or slack time. In liner shipping, for example, the planned arrival at the port

of Jeddah could be 9 days after the planned departure from Rotterdam, while the trip

takes only 8 days on average when sailing at design speed. The 24 hours bu�er time can

capture (part of) a delay. But bu�ers increase the nominal travel time and therefore costs.

So limited bu�er time is available, and strategic allocation along a route is key. Secondly,

during execution of the timetable, a ship may sail faster to recover from a delay with re-

spect to the timetable. But increasing speed is very costly: Figure 1 shows that sailing at

28 knots instead of 14 knots increases fuel consumption per nautical mile by about 350%

for a 8,000 TEU ship. For a trip from Rotterdam to Jeddah, this corresponds to over 1

million USD at a bunker price of 600 USD/ton, or over 6, 000 tons of CO2 (Cariou 2011).

Speed adjustments also have signi�cant impact for other transport modes: For example

doubling the average speed of a metro on a track roughly quadruples energy consumption

(Binder and Albrecht 2012).

16.1 million TEU, respectively, by January 2011. This equals a
massive increase of nearly 70% in just 4 years time, or 13.7%
per year. To put this in perspective, the capacity increase of
6.56 million TEU during 2007–2010 means that a stunning
136,000 TEU-slots will be added to the worldwide cellular fleet
every month.

Given the relentless search for cost savings at sea (cf. economies
of scale), it is hardly surprising to see that many shipping lines’
expansion plans are heavily focused towards large post-panamax
containerships. Whereas at the beginning of 2007 the worldwide

fleet consisted of 147 vessels of 7500+ TEU (for a total slot capacity
of 1.25 million TEU), these figures are expected to increase to 399
ships and 3.74 million TEU by the beginning of 2011. In other
words, the capacity provided by 7500+ TEU ships will triple in 4
years time. As Table 4 indicates, the development of the 10,000+
TEU segment is even more stunning. Whereas just two such ships
were in service at the beginning of 2007 (with a combined capacity
of some 30,000 TEU), their number will have increased to 91 units
by the beginning of 2011, providing more than 1 million TEU-slot
capacity.

The scale increases in vessel size have resulted in lower bunker
costs per slot (commercial speed given). At a commercial speed of
22 knots, the bunker cost per day on a 5000 TEU vessel typically
amounts to USD 8.7 per TEU-slot, while the bunker costs for a
12.000 TEU vessel reach only USD 5.4 per TEU-slot or a cost saving
of 39% (based on data Table 3). The higher the commercial speed,
the greater the cost difference. At a speed of 24 knots, the cost dif-
ference rises to 41%, while at 18 knots the cost savings are 34%.
Deploying larger vessels thus pays off in bunker costs per slot com-
pared to smaller units, even at high commercial speeds. However,
the bunker cost issue becomes more complicated when consider-
ing liner services instead of individual vessels, as demonstrated
in the next sections.
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Fig. 1. Daily fuel consumption for four types of container ships at different service speeds.

Table 3
Fuel costs at sea for three types of container vessels and different service speeds (USD
per day) at end-July 2006 bunker prices

Speed (kt) 5000 TEU 8000 TEU 12,000 TEU

14 12,200 16,000 20,700
16 16,800 21,600 27,500
18 23,100 29,000 36,500
20 31,800 39,400 48,700
22 43,700 52,200 64,400
24 59,300 69,400 83,600
26 82,800 96,100 114,700

Source: Germanischer Lloyd.

Table 4
Breakdown of the cellular containership fleet for selected dates

Size range 01/01/2007 01/01/2011a CAGR (TEU capacity) (%)

No. TEU No. TEU

>10,000 TEU 2 29,800 91 1094,797 146.2
7500/9999 TEU 145 1223,453 308 2650,218 21.3
5000/7499 TEU 354 2056,329 571 3397,016 13.4
4000/4999 TEU 349 1544,424 605 2668,011 14.6
3000/3999 TEU 282 956,165 391 1333,843 8.7
2000/2999 TEU 650 1635,165 835 2118,080 6.7
1500/1999 TEU 465 784,622 642 1.091,852 8.6
1000/1499 TEU 595 704,570 819 973,327 8.4
500/999 TEU 725 527,983 938 700,120 7.3
100/499 TEU 379 121,243 370 118,516 �0.6

Total 3946 9,583,754 5570 16,145,780 13.9

Average vessel size 2429 TEU 2899 TEU

Source: AXS-Alphaliner.
a Based on orderbook as at 1st December 2007.

4 T.E. Notteboom, B. Vernimmen / Journal of Transport Geography xxx (2008) xxx–xxx

ARTICLE IN PRESS

Please cite this article in press as: Notteboom, T.E., Vernimmen, B., The effect of high fuel costs on liner service configuration in container
shipping, J. Transp. Geogr. (2008), doi:10.1016/j.jtrangeo.2008.05.003

Figure 1: Fuel (bunker) consumption of several container ships at di�erent travel speeds
(from Notteboom and Vernimmen 2009).

We will focus on the liner shipping application throughout the paper. However, the
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methodology that we develop also applies to timetabling for metro's, and further research

building onto this work could lead to useful applications in train and aircraft operations

planning as well.

Our model consists of two levels. On the tactical level, construction of the timetable

involves the allocation of bu�ers. We consider the situation in which routes have already

been decided upon, so the available amount of total bu�er time is known and given. On

the operational level, the timetable is executed: random events cause (additional) delay,

travel speed is optimized, and late arrivals and departures are penalized. We model the

operational planning level as a Stochastic Dynamic Program (SDP). This SDP accurately

models real-time recovery actions such as speed optimization, as well as propagation of

delays from port call to port call. However, the bu�er times are exogenous to this SDP:

Di�erent bu�er time allocations yield SDPs that are structurally di�erent. The optimal

bu�er allocation yields the SDP which has minimal long run average costs.

We contribute a theoretical analysis of the problem. E.g., we show that speed should

increase as the delay with respect to the schedule increases, and provide a bound on the

maximum speed increase that should result from additional delay. We then focus on

optimizing the bu�er time allocation. We develop theoretical results in order to optimally

combine the bu�er allocation decision on the tactical level, and speed optimization (as part

of the SDP) on the operational level. We prove, under mild assumptions, that the minimum

costs of operating the timetable are convex in the bu�er time allocation. Additional theory

is developed, leading to a simple and e�cient approach for computing subgradients. Our

algorithm for optimal bu�er time allocation is based on these results. This algorithm �nds

the optimal solution in less than 80 seconds. Hence, our algorithm is not only exact, but

also fast. We note that our algorithm is the �rst exact algorithm for this problem. We

then report on a case study based on Maersk data for a round tour consisting of 14 ports.

The remainder of this paper is organized as follows. Section 2 reviews the existing

literature. Section 3 provides a detailed description of the model. The theoretical analysis

of the model is presented in Section 4. In Section 5 we develop the algorithm, and provide

further theoretical results underlying the algorithm. Section 6 describes computational

experiments. We conclude in Section 7.
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2 Literature review

Timetables are often used in air, railway and maritime transport. Multiple studies have

already been performed on managing, recovering and preventing delays in these transport

modes. Wu and Caves (2003) and Wu (2005) show the importance of bu�er time allocation

on punctuality in air transport using a simulation approach. Clausen et al. (2010) give

an overview on disruption management studies in the airline industry. They distinguish

the reviewed studies in two di�erent groups: delay recovery and robust planning. This

distinction also mainly holds for railway and maritime transport.

Delay recovery aims to �nd a recovery policy such that delays in the existing timetables

as a result of small disruptions are recovered from in order to minimize a certain objective

(e.g. Wang and Meng (2012a), Brouer et al. (2013), Li et al. (2015a), Li et al. (2015b) in

liner shipping, Corman et al. (2010), Binder and Albrecht (2012) in public transport and

Rosenberger et al. (2003), Petersen et al. (2012), Arikan et al. (2016), Aktürk et al. (2014),

Maher (2015) in air transport). In all these studies, the goal is to optimize recovery

strategies after the occurrence of disruptions, but note that these studies encompass a

wide range of modeling and solution approaches. Recovery strategies include travel time

(or speed) adjustments and rerouting decisions. However, the in�uence of the available

bu�er time in the existing timetables is not considered in these studies. Visentini et al.

(2014) review recovery actions in general transportation, while Psaraftis and Kontovas

(2013) overview speed models for energy e�cient maritime transportation.

Li et al. (2015a,b) propose a dynamic programming approach to determine the optimal

recovery policy after a major disruption and under regular uncertainties and a major dis-

ruption respectively. Li et al. (2015a) consider problems with di�erent recovery actions:

with only speeding decisions, with speeding and port skipping decisions and with speed-

ing, port skipping and port swapping decisions. They prove some structural results for the

problem with only speeding decisions under one major disruption and no further uncer-

tainty. Li et al. (2015b) extend the formulation to also include regular uncertainties, but

they limit the recovery actions to only include speeding decisions. They prove some struc-

tural results for problems with only regular uncertainties and for problems with regular

uncertainties and one major disruption and consider both problems with and without an
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earliest handling time constraint on the terminal operations.

Robust planning constructs timetables which perform well under uncertainty. Two dif-

ferent approaches are used to construct robust timetables. First, the total available bu�er

time in an existing schedule can be rearranged in order to obtain more robust networks

(e.g. Kroon et al. (2007), Kroon et al. (2008), Fischetti et al. (2009), Hassannayebi et al.

(2014), Wu et al. (2015) in public transport, Lan et al. (2006), AhmadBeygi et al. (2010),

Chiraphadhanakul and Barnhart (2013) in air transport). All these studies only consider

the allocation of bu�er times (also framed as time supplements or slack time) in the sched-

ule, but do not consider recovery strategies when disruptions occur. Second, schedules

satisfying certain robustness concepts can be constructed. Du et al. (2015) and Norlund

et al. (2015) describe methods to design robust schedules that minimize the fuel consump-

tion in shipping taking into account uncertain weather conditions. However, only the fuel

consumption of the planned schedule without recovery strategies is taken into account.

Cucala et al. (2012) and Duran et al. (2015) consider similar problems for respectively

public and air transport. These papers also determine an optimal speed policy together

with the constructed timetable, but the speed is independent of incurred delays.

Delay-resistant timetables and real-time recovery actions are interrelated, and in recent

years there has been increasing interest in approaches that incorporate both. Various ap-

proaches to incorporate wait-depart decisions in timetabling exist: A genetic algorithm

(Engelhardt-Funke and Kolonko 2004), a light robustness concept for timetabling com-

bined with scenario-based wait-depart decisions (Liebchen et al. 2010), and a recoverable

robustness concept that aims to �nd timetables that are recoverable when disruptions oc-

cur (Cicerone et al. 2009, 2012). Furthermore, Gong et al. (2014) develop a two-stage

approach based on a genetic algorithm to solve the integrated problem. The �rst stage

considers the timetable optimization and the second stage the speed optimization. Two-

stage stochastic programming (SP) with sample average approximation applies naturally

to robust timetabling under stochastic delays (Kroon et al. 2007, 2008, Fischetti et al.

2009), and Qi and Song (2012) and Wang and Meng (2012b) have extended this approach

to take into account speed adjustments in liner shipping.
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2.1 Contribution

We consider timetabling and speed optimization under stochastic delays. We use a dynamic

program to select the optimal speed dynamically, taking into account present fuel costs

and future fuel and delay costs. Two papers have recently pioneered this approach for

optimization of speed and other recovery actions in liner shipping. Li et al. (2015a) use a

deterministic dynamic program to recover from a single larger disruption. Li et al. (2015b)

present work that is more closely related to our operational problem because the ship

in their model faces many small and large disruptions over time. In fact, the operational

problem that we consider in this paper is the same as the problem with regular uncertainties

under terminal operations with the earliest handling time constraints considered in Li et al.

(2015b).

Our main contribution is simultaneously considering optimal dynamic speed adjustments

and timetable optimization (in the form of the tactical bu�er allocation). Optimization of

the timetable is not considered in Li et al. (2015a,b). Because it is impossible to integrate

the one-time bu�er allocation decisions into the SDP framework, considerable new theory is

developed in our paper to arrive at a tractable algorithm. E.g. we prove several additional

properties for the operational problem (e.g. Conjecture 1 in Li et al. 2015b). Moreover, we

derive many new insights with respect to tactical bu�er allocations. These latter insights

lead to the �rst exact solution approach for simultaneous optimization of bu�er allocation

and optimal dynamic speed selection.

3 The model

Consider a round tour with a �xed sequence of port calls and a total planned duration of T

time units. A ship sails a route consisting of R round tours for a planned duration of RT .

Eventually, we let R→∞ and focus on the long run average costs, which can be obtained

by averaging the total route costs over time. Route costs consist in the costs of delayed

port arrivals and departures and the costs of (optimally) performing recovery actions such

as speed adjustments. The goal is to construct an optimal schedule by dividing the T time

units over the round tour in such a way that the long run average costs are minimized.

The model combines a problem on the tactical planning level with a problem on the
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operational planning level. We will illustrate these two problems and their dependence with

a small example of a ship sailing round tours. Suppose we have twenty hours available

to complete each tour and it takes at least �ve hours to sail from port 1 to port 2, at

least eight hours to sail from port 2 to port 3 and at least three hours to sail from port

3 back to port 1. In this case, the available bu�er time is 20 − 5 − 8 − 3 = 4 hours.

In the tactical planning level, we need to decide to which sea legs these hours should be

allocated. However, we do not know yet which delays the ship will incur while operating the

route, since this information only becomes available at the operational level. The allocated

bu�er times hedge against this uncertainty. Furthermore, at the operational planning level,

ships can adjust their sailing speed to recover from the incurred delays. Obviously, the

amount of bu�er allocated to each leg in the tactical planning level will in�uence the speed

adjustments at the operational level; if we decide to allocate all four hours of bu�er to the

�rst sea leg, the ship will need less speeding up on this leg compared to the situation in

which we only allocate one hour of bu�er to this leg. In the remainder of this section, we

formally model the tactical and operational level problems.

The tactical planning level

Denote the ports visited in the round tour by P = {1, . . . , |P |}. Rounds start in port 1,

visit ports 2, 3, . . . , |P | − 1, |P | and then return to port 1, after which a new round starts.

The route consists of R round tours and N = R|P |+ 1 port calls (including the �nal port

call in port 1). Let n ∈ {1, . . . , N} index the port calls. The nth port call is made at port

p[n]. Thus, p[n] := p for n = p, |P |+ p, 2|P |+ p, . . ., with p ∈ P .

Let tarrn and tdepn respectively denote the planned arrival and departure time of port call

n. The planned arrival time of port call n+1 equals the planned departure time of port call

n plus the planned sailing time. This planned sailing time consists of the �xed minimum

sailing time needed between ports p[n] and p[n+ 1] (denoted by tsp[n]) and the bu�er time

included in the sea leg, which is a decision variable that will be denoted by ~Bp[n]. Thus

tarrn+1 = tdepn + tsp[n] + ~Bp[n]. The requirement of a cyclic schedule means that bu�er time

and minimum sailing time for a speci�c sea leg must be the same for each round. (The

notation tsp[n] and
~Bp[n] e�ectively enforces this requirement, see the de�nition of p[n].) The

planned departure time of the ship for port call n is simply the planned arrival time plus
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the �xed port time, which will be denoted by tpp[n]. Thus t
dep
n = tarrn + tpp[n]. The results in

this paper can be extended to optimize bu�ers for the ports as well, but we do not include

such variables because bu�er times in ports are expensive and therefore uncommon.

We can set tdep1 := 0 without loss of generality. Then, all planned arrival and departure

times for the remaining R|P | port calls follow from the above recursive relations once we

�x ~B := ( ~B1, . . . , ~B|P |) ∈ Z|P |≥0 . So �nding a schedule consists in �xing ~B. Bu�er times need

to be integer valued, because the timetable is always communicated in integer time units

to customers. The requirement that the total planned duration equals T implies that ~B

should satisfy
∑
p∈P

~Bp = B, where B := T −
∑
p∈P

tpp−
∑
p∈P

tsp. (We assume T ≥
∑
p∈P

tpp+
∑
p∈P

tsp,

such that B ≥ 0.) Since liner ships operate on weekly schedules, the total planned duration

T will be an integer multiple of the amount of time units in one week.

The operational planning level

While the ship sails the route, unforeseen events cause the ship to be delayed with respect

to the planned timetable, i.e. the planned arrival and departure times tarrn and tdepn . Dis-

cussions at a large liner carrier have revealed that both delays in the port and delays during

the sea leg are important (cf. Wang and Meng 2012a, p. 616). Therefore, let Xp
n ≥ 0 and

Xs
n ≥ 0 denote the random delay incurred during port call n, and in the sea leg after port

call n, respectively. The random variables Xp
n and Xs

n are assumed to be independent of

each other, and of all other random variables, in particular of Xp
n′ and Xs

n′ for n 6= n′.

Distributions are arbitrary, but the random delay in a port in a speci�c position in the

round trip is identically distributed in each round trip. Thus Xp
n and Xp

n′ are identically

distributed if p[n] = p[n′]. Similarly, Xs
n and Xs

n′ are identically distributed if p[n] = p[n′].

To reduce the delay with respect to the schedule, the liner company can perform two

types of recovery actions. Speed adjustments during the sea leg are the preferred approach

to deal with delays. But in case of excessive delays, extreme (recovery) actions in the port

are sometimes taken in practice, such as cut-and-go. In cut-and-go, the vessel will stop

(un)loading and will immediately leave the port. Let τn be the di�erence in the time used

to sail from port p[n] to port p[n+ 1] (excluding unforeseen delays) and the minimum

sailing time needed. We will refer to τn as the additional sailing time or the sailing time

action. Let γn denote the time recovered by the extreme recovery action in the nth port,

8



which is taken after the port delay is revealed. Note that τn and γn are online decision

variables, these decisions are taken dynamically in each port and before each sea leg. In

contrast, all bu�er times ~B are decided upon before the ship starts sailing the route.

The following recursive relations for 1 ≤ n < N govern the propagation of the delay

during the trip:

darrn+1 = (ddepn + τn − ~Bp[n] +Xs
n)+, (1)

ddepn = (darrn +Xp
n − γn)+. (2)

where x+ = max{x, 0}. Since ships have to adhere to the berthing plans made by terminal

operators, we assume that ships cannot arrive early in a port. And a ship is not allowed

to depart earlier than the schedule, because export containers may arrive just in time to

be loaded according to the schedule.

Costs

For p ∈ P , let Darrp (d) and Ddepp (d) be respectively the cost of arriving in and departing

from port p of the round tour with a delay of d time units with respect to the schedule.

We assume that both Darrp (d) and Ddepp (d) are convex and increasing in d. Penalizing the

average delay satis�es this assumption and is arguably the most intuitive approach for

measuring delays. This latter approach is common (e.g. Kroon et al. 2008, Fischetti et al.

2009), but more general delay cost models have also been proposed (Wang and Meng

2012b).

Let Fp(τ) denote the fuel cost incurred between port p and the next port when using a

sailing time of tsp+τ time units. Fp(τ) is decreasing and convex in τ . Indeed, for economic

sailing speeds the bunker consumption rate can be accurately approximated by a constant

times the third power of sailing speed (Notteboom and Vernimmen 2009, Brouer et al.

2014), which implies that Fp(τ) is proportional to 1
(tsp+τ)

2 , which is decreasing and convex

in τ . (For details see Section 6.1.) Furthermore, let τup ≥ 0 be the upper bound on the

sailing time action obtained from the minimum sailing speed. Then, Fp(τ) is well-de�ned

for all 0 ≤ τ ≤ τup . Denote the costs of using the extreme recovery action to reduce the

delay by one unit of time by ce > 0.
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We next give a stochastic dynamic programming (SDP) formulation of the operational

planning level. Remember that the sailed route consists of N = R|P | + 1 port calls. Let

Carrn,N (d; ~B) denote the total expected cost of completing the route when arriving for port

call n with a delay of d time units. Let Cdepn,N (d; ~B) denote these costs at the departure

of port call n. The parameter ~B is added to emphasize that these costs depend on the

timetable ~B that is used. The following SDP relation holds for 1 ≤ n < N :

Cdepn,N (ddepn ; ~B) = Ddepp[n](d
dep
n ) + min

0≤τ≤τu
p[n]

{
Fp[n](τ) +Kn(ddepn + τ ; ~B)

}
, (3)

where Kn(ddepn + τ ; ~B) := EXs
n

[
Carrn+1,N

(
(ddepn + τ − ~Bp[n] +Xs

n)+; ~B
)]
. (4)

And the following SDP relation holds for 1 < n < N :

Carrn,N (darrn ; ~B) = Darrp[n](d
arr
n ) + EXp

n

[
min
γ≥0

{
ceγ + Cdepn,N

(
(darrn +Xp

n − γ)+; ~B
)}]

. (5)

Note that delay propagates according to (1) and (2). Also, note that the extreme recovery

action is taken after the port delay is incurred. For the �nal arrival in port 1, we have the

following:

CarrN,N (darrN ; ~B) = Darrp[N ](d
arr
N ).

We introduce notation regarding the optimal sailing times and extreme recovery actions.

Let Tn(d; ~B) denote the optimal sailing time after port call n (on the sea leg towards port

call n+ 1) when the departure delay equals d:

Tn(d; ~B) := min

{
τ ′ | τ ′ ∈ arg min

0≤τ≤τu
p[n]

{
Fp[n](τ) +Kn(d+ τ ; ~B)

}}
. (6)

Let Yn(d + Xp
n; ~B) denote the optimal extreme recovery action in port call n when the

delay (including port delay) equals d+Xp
n:

Yn(d+Xp
n; ~B) := max

{
γ′ | γ′ ∈ arg min

γ≥0

{
ceγ + Cdepn,N

(
(d+Xp

n − γ)+; ~B
)}}

. (7)

So as a tie-breaking rule, we use minimization of the delay in the next port.
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The long run average costs

Because the bu�ers are transformed into a timetable, which is operated for many rounds,

we adopt the long run average costs as performance criterion, which will be denoted by

C∗( ~B) and is de�ned as follows:

C∗( ~B) := lim
R→∞

Cdep1,R|P |+1(d
dep
1 ; ~B)

R
, ∀ ~B ∈ B̄, (8)

where B̄ =

{
~B ∈ R|P |≥0

∣∣∣ ∑
p∈P

~Bp = B

}
. For now, we assume that the limit on the RHS

of (8) exists, and that it is independent of ddep1 . Later, in Theorem 2, we will formally

prove the existence of the limit, and that it is independent of ddep1 , under mild conditions.

As detailed in Section 3.1, we will require that ~Bp ∈ Z, so we also introduce the set of

feasible bu�ers B =

{
~B ∈ Z|P |≥0

∣∣∣ ∑
p∈P

~Bp = B

}
, where B ⊆ B̄. Then, in this paper, we will

consider the following optimization problem:

C∗ = min
~B∈B
C∗( ~B). (9)

This problem is non-standard. Each bu�er allocation ~B ∈ B yields a SDP whose optimal

long term average costs equals C∗( ~B). But the bu�er time variables themselves cannot

be accommodated for in the SDP because they are one-time decisions that a�ect multiple

states: after each departure from port j, the arrival delay in port j + 1 is a�ected by ~Bj .

Note that the sailing speed decisions are part of the SDP, so the problem jointly optimizes

the bu�er allocation and the sailing speed decisions.

3.1 Assumptions for computational purposes

In general, solving for the optimal costs C∗( ~B) of the SDP that arises for �xed bu�ers ~B is

already computationally intractable. This is because the SDP has a continuous state space

because delay is continuous. (Apart from the current delay, the state consists of the current

port p[n] and whether we are arriving or departing.) To deal with this computational issue,

we will assume discrete delays and piecewise linear fuel costs (see also Wang and Meng

2012a, who use a similar approach in their model). Speci�cally, after an appropriate basic
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time unit is chosen (for example the time unit in which timetables are communicated), we

assume the following.

Assumption 1 (Discrete model primitives). The delays Xs and Xp take on values in Z≥0.

The total bu�er B and the maximum additional sailing time τup are in Z≥0. The functions

Darrp (·), Ddepp (·) and Fp(·) are piecewise linear functions, with breakpoints on Z≥0. The

initial delay is in Z≥0. Each allocated bu�er ~Bp should be in Z≥0.

We now discuss another computational issue. If we encounter large sea and port delays

repeatedly, the delay with respect to the schedule may grow arbitrarily large. In practice,

it seems reasonable to assume that when delay exceeds some (possibly large) threshold, it

will be optimal to perform the extreme recovery action. We therefore make this assumption

to simply and straightforwardly bound the maximum delay. For ease of exposition, we will

also assume that the random sea and port delays are bounded by some arbitrary number.

These assumptions will simplify the computation of the optimal costs associated with a

bu�er ~B ∈ B̄.

Assumption 2 (Bounded delays). For each p ∈ P , there exists a delay dmaxp <∞ such that

Ddepp (d) − ced is monotonically increasing ∀d > dmaxp . There exist Xs,max

p[n] , Xp,max

p[n] ∈ Z≥0

such that ∀n : P
(
Xs
n > Xs,max

p[n]

)
= 0, P

(
Xp
n > Xp,max

p[n]

)
= 0.

These assumptions are not restrictive in practice as dmaxp , Xs,max
p and Xp,max

p can be

taken to be large (e.g. one or more weeks when operating a weekly schedule).

4 Theoretical insights

In this section we will derive various theoretical insights into the problem. All proofs can

be found in the appendix. Results in this section hold for the general model presented in

Section 3. Assumptions 1 and 2, which are made for computational purposes only, are not

needed to obtain the results in this section. The main result in this section is the joint

convexity of C∗( ~B) in the decision variables ~B. This result will provide the basis for our

solution algorithm, because it implies the existence of subgradients. The last results in

this section provide more insight in the optimal SDP solutions and can be used to bound

the optimal recovery actions, which might be useful for an e�cient implementation.
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Our �rst result veri�es that more delay is worse than less delay.

Lemma 1. The functions Cdepn,N (d; ~B) and Carrn+1,N (d; ~B) are nondecreasing in the amount

of delay d for 1 ≤ n < N and ~B ∈ B̄.

The following result is more surprising, since the costs are not separable because delays

may propagate from port call to port call.

Lemma 2. The functions Cdepn,N (d; ~B) and Carrn+1,N (d; ~B) are joint convex in d and ~B ∈ B̄

for 1 ≤ n < N.

A direct result of Lemma 2 is that the average cost per period C∗( ~B) is also joint convex

in ~B.

Theorem 1. The optimal long term average cost C∗( ~B) is joint convex in ~B ∈ B̄, provided

that C∗( ~B) exists for ~B ∈ B̄.

This result will be used later to �nd the optimal bu�er ~B, and thus the optimal schedule.

(As for the condition: Theorem 2 proves the existence of the optimal long term average

costs C∗( ~B) under su�cient conditions, namely Assumptions 1 and 2.)

The following results give some more insight into how the sailing times and extreme

actions should depend on the current delay. The following lemma shows that the larger

the delay, the more action should be taken. Hence, with this lemma we prove Conjecture 1

in Li et al. (2015b).

Lemma 3.

(a) The optimal sailing time action Tn(ddepn ; ~B) between two ports is nonincreasing in the

departure delay ddepn for 1 ≤ n < N and ~B ∈ B̄;

(b) the optimal extreme recovery action Yn(darrn +Xp
n; ~B) in a port is nondecreasing in the

amount of delay darrn +Xp
n before that action for 1 < n < N and ~B ∈ B̄.

Thus, a ship with larger departure delay should sail faster than a ship with smaller delay.

We wonder whether it could even be optimal for the �rst ship to plan to �overtake� the

latter ship. The following lemma answers this question, by proving that this can never be

optimal.
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Lemma 4.

(a) The optimal arrival delay darrn+1 = (ddepn + Tn(ddepn ; ~B) − ~Bp[n] + Xs
n)+ is stochastically

nondecreasing in the departure delay ddepn , for 1 ≤ n < N and ~B ∈ B̄;

(b) the optimal departure delay ddepn = (darrn +Xp
n − Yn(darrn +Xp

n; ~B))+ is nondecreasing

in the delay darrn +Xp
n after incurring port delay, for 1 < n < N and ~B ∈ B̄.

This lemma thus e�ectively bounds the maximal decrease in sailing time (and thus the

increase in speed) that should result from being more delayed.

5 Solution Approach

Our objective is �nding a ~B ∈ B that minimizes C∗( ~B). Since C∗( ~B) is convex by Theo-

rem 1, a range of optimal subgradient-based algorithms is at our disposal for this problem,

provided we can compute subgradients of C∗( ~B) at arbitrary ~B. We discuss this in-depth

in Section 5.1, and provide a simple algorithm that works well computationally for our

problem. The novelty of our algorithm lies in developing an approach for computing sub-

gradients of C∗( ~B), which is discussed in Section 5.2.

5.1 Subgradient-based algorithms

Theorem 1 implies that C∗( ~B) is convex. Thus for each ~B ∈ B̄, there exists a subgradient,

i.e. a vector g = (g1, . . . , g|P |), that satis�es the subgradient inequality:

∀ ~B′ ∈ B̄ : C∗( ~B′) ≥ C∗( ~B) +
∑
p∈P

gp( ~B
′
p − ~Bp). (10)

We now �rst show how subgradients can be used in an e�cient optimization algorithm.

Our algorithm iteratively generates subgradients using the method described in Sec-

tion 5.2.2. In the ith iteration, the subgradient at ~Bi is computed. Denote it by gi =

(gi1, . . . , g
i
|P |), and denote gi0 = C∗( ~Bi)−

∑
p∈P

gip
~Bi
p. After iteration I, we have the following
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problem:

min z (11)

s.t. z ≥
∑
p∈P

gip
~Bp + gi0 i ∈ {1, . . . , I} (12)∑

p∈P

~Bp = B (13)

~Bp ≥ 0 p ∈ P. (14)

Here, (12) ensure that z satis�es the inequalities imposed by the subgradients, see (10).

(13) and (14) ensure that ~B ∈ B̄, i.e. integrality constraints are relxed. We will prove in the

next section that our solution algorithm will in fact always return an integer solution, i.e.

~B ∈ B, justifying this relaxation. For any subgradients g1, . . . , gI , the optimal z∗ of (11-14)

satis�es z∗ ≤ C∗ = C∗( ~B∗). Indeed, ∀ ~B, z∗ must become max
i∈{1,...,I}

{∑
p∈P

gip
~Bp + gi0

}
, which

cannot exceed C∗( ~B∗) by (10).

Algorithm 1: Solution algorithm

1. Initialize i = 1, ~B1 = ( ~B1
1 , . . . ,

~B1
|P |) with

~B1
p = B

|P | , UB =∞ and LB = −∞.

2. Compute C∗( ~Bi) and the gradient gi at ~Bi (see Section 5.2.2).

3. If C∗( ~Bi) < UB, set UB = C∗( ~Bi) and ~BUB = ~Bi.

4. Let (z∗, ~B′) denote the optimal solution of (11-14) for I = i. Set LB = z∗,
~Bi+1 = ~B′.

5. If UB − LB ≤ ε, designate ~BUB as ε-optimal and terminate. Otherwise, set
i← i+ 1 and go to Step 2.

Algorithm 1 explains how we use this formulation in our optimization approach. In initial

steps, the ~Bi+1 from Step 4 may lie far away from the last search point ~Bi, adversely

impacting performance. Therefore, we limit the distance between ~Bi and ~Bi+1 = ~B.

Consider the constraints,

∑
p∈P
| ~Bp − ~Bi

p| ≤ wmax, ∀p ∈ P : | ~Bp − ~Bi
p| ≤ wmaxp (15)

where wmax and ∀p ∈ P : wmaxp are parameters. Then Step 4 is replaced by the following
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in the �rst 25 iterations of the algorithm:

4' Let (z∗, ~B′) denote the optimal solution of (11-14)+(15) for I = i. Set ~Bi+1 = ~B′.

Let z̃∗ be the optimal solution value of (11-14). Set LB = z̃∗.

5.2 Subgradients

In general, computing subgradients involves analyzing the change of the objective function

when the input changes. For our problem, changing ~B a�ects the structure of the SDP

underlying C∗( ~B), which complicates the computation of the subgradient. In Section 5.2.1,

we analyze this structure. This analysis involves a number of complex ideas and quite some

additional notation, but it yields a relatively simple algorithm for computing subgradients

that we present in Section 5.2.2.

5.2.1 Analysis of SDP structure

Throughout this section, we work with the specialized model that is obtained by imposing

discrete model primitives (Assumption 1) and bounded delays (Assumption 2). In this

section, we analyze the structure of SDP's for di�erent underlying bu�er allocations in

order to develop a method to compute subgradients. As Algorithm 1 requires subgradients

for general ~B, we must also consider cases where ~B ∈ B̄ \ B.

We �rst propose a transformation of the bu�er allocation into the cumulative bu�er

allocation. Next, we will show that both the state and action space of the SDP are �nite

and can directly be obtained from the cumulative bu�er allocation. As a result, a stationary

deterministic policy exists that is average cost optimal.

Then, we propose an ordering of the ports based on the fractional values of the cumu-

lative bu�er allocation and de�ne a set consisting of all bu�er allocations with the same

ordering. We show that the costs of each bu�er allocation in this set can be expressed as

a linear combination of the costs of the extreme points of this set. Hence, we can �nd a

subgradient at each bu�er allocation in this set by solving a system of |P | linearly indepen-

dent equations. In order to construct this system, we need to determine the costs of the

extreme points of the set. We will show that the extreme points satisfy ~B ∈ Z|P |. Hence,

we can �nd a subgradient for arbitrary ~B by evaluating the costs of several integer bu�er
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allocations. Moreover, this result indicates that the optimal bu�er allocation will always

be integer valued.

Bu�er transformation

For notational convenience, we transform the bu�ers. Each ~B ∈ B corresponds to a

cumulative bu�er allocation B̃, by setting B̃p :=
∑p−1

p′=1
~Bp′ and B̃ = (B̃1, . . . , B̃|P |). (Thus

B̃1 := 0.) Let B̃ contain every B̃ that can be obtained in this fashion from a ~B ∈ B̄.

Thus ∀B̃ ∈ B̃ : B̃|P | ≤ B, B̃1 = 0 and ∀B̃ ∈ B̃, ∀p ∈ P : B̃p+1 ≥ B̃p. For B̃ ∈ B̃, de�ne

C∗(B̃) := C∗( ~B), with ~B obtained by setting ~Bp = B̃p+1− B̃p for p ∈ {1, . . . , |P | − 1}, and

~B|P | = B − B̃|P |.

Existence of stationary deterministic optimal policies

It will be important in the analysis to know which delay values for port call n will result in

a discrete delay in port p when only discrete actions are taken. Therefore, we introduce the

set Qn(p; B̃) that contains precisely the delays for port call n that result in a discrete delay

in port calls to port p in the absence of fractional actions and/or waiting for departure or

arrival. Then, Qn(p; B̃) is de�ned as:

Qn(p; B̃) := Qp[n](p; B̃) :=
{
z + B̃p − B̃p[n]|z ∈ Z

}
, ∀n ∈ {1, . . . , N}. (16)

Furthermore, we let Qn(B̃) :=
⋃
p∈P Qn(p; B̃). Hence, Qn(B̃) contains delays that result

in a discrete delay in some future port call. Recall that the initial delay is discrete by

Assumption 1. Then, the following lemma shows, using the recursive relations (3) and (5),

that Qn(B̃) contains all delays that may occur for port call n.

Lemma 5. Fix B̃ ∈ B̃, and choose τn and γn optimally using the rules implied by (6)

and (7) to break ties. Then for each port call n: ddepn ∈ Qn(B̃), ddepn + τn ∈ Qn(B̃),

darrn +Xp
n ∈ Qn(B̃), darrn +Xp

n − γn ∈ Qn(B̃).

Lemma 5 implies that only the values in Qn(B̃) are relevant to consider in the SDP. We

will denote a generic state of the SDP by s. Let sp,dep[z, p′; B̃] correspond to departing

from port p with delay ddep = z+ B̃p′− B̃p. Let sp,port[z, p′; B̃] correspond to being in port
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p with a delay of darr +Xp = z + B̃p′ − B̃p, after incurring port delay. Let

SB̃ :=
{
sp,u[z, p′; B̃]|z ∈ Z, p ∈ P, p′ ∈ P, u ∈ {dep, port}

}
.

By Lemma 5, all combinations of states and delays that can occur for B̃ ∈ B̃ are in

SB̃, though SB̃ also contains states that cannot occur because their associated delay is

negative. It is immediate from Lemma 5 that the optimal actions τ and −γ in any state

sp,u[z, p′; B̃] must take their values in Qp′(p
′′; B̃) for some p′′. We will denote a generic

action by a. In a state with u = dep, the action ap′ [z, p
′′; B̃] will denote τ = z+ B̃p′′ − B̃p′ ,

and in a state with u = port, action ap′ [z, p
′′; B̃] will denote −γ = z + B̃p′′ − B̃p′ . Let

AB̃ =
{
ap′ [z, p

′′; B̃]|z ∈ Z, p′ ∈ P, p′′ ∈ P
}
.

Since delay is non-negative, and bounded above by Assumption 2, for each B̃ a �nite

subset of SB̃ and AB̃ su�ces for a complete description of the model. As a consequence,

we have the following result.

Theorem 2. For all ~B ∈ B̄, the limit lim
R→∞

Cdep1,R|P |+1(d
dep
1 ; ~B)/R exists and is independent

of ddep1 . There exists a stationary deterministic policy that is average cost optimal.

A stationary deterministic policy for B̃ ∈ B̃ will be represented by a function ΠB̃ : SB̃ →

AB̃ and we denote the optimal stationary deterministic policy for B̃ by Π∗
B̃
.

Subgradients

We will now investigate the change of C∗(B̃) when B̃ changes. First some preliminaries.

A cumulative bu�er B̃ ∈ B̃ is completely fractional if for every p, p′ ∈ P with p 6= p′, the

number B̃p′ − B̃p /∈ Z. Note that every Qn(B̃) contains at most |P | di�erent delay values

in the interval [0, 1). Completely fractional cumulative bu�er allocations can be recognized

by the fact that Qn(B̃) contains exactly |P | di�erent delay values in this interval. Each

of those |P | values is by de�nition obtained from one of the sets Qn(p; B̃) and hence

associated to a port p. We can order the ports based on the value in the interval [0, 1) in

the set Qn(B̃). For any B̃ ∈ B̃, it holds that 0 ≤ B̃p ≤ B. Thus, we can always write

B̃p = zp+xp, with zp ∈ {0, 1, . . . , B−1} and 0 ≤ xp ≤ 1 by Assumption 1. For completely

fractional B̃ ∈ B̃, this decomposition into zp and xp is unique. Let f : P → P be the

unique permutation of P such that p > p′ → xf(p) > xf(p′). Uniqueness follows because
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∀p, p′ ∈ P with p 6= p′ it holds that xp 6= xp′, since xp = xp′ would contradict that B̃ is

completely fractional. Note that the unique permutation f provides a formal de�nition of

the above discussed ordering. Then, we can de�ne for every completely fractional B̃ ∈ B̃

a new set ∆(B̃) containing all cumulative bu�er allocations B̃′ for which the ordering of

B̃ is also a feasible ordering for B̃′.

∆(B̃) :=
{
B̃′ ∈ B̃ | ∀p ∈ P, B̃′p = bB̃pc+ x′p, x

′
p ∈ [0, 1]; (17)

0 = x′f(1) ≤ x
′
f(2) ≤ . . . ≤ x

′
f(|P |) ≤ 1

}
. (18)

Note that B̃′1 = 0 by de�nition, such that x′1 = 0 for any B̃′ and B̃ ∈ ∆(B̃). We are now

ready to formulate the main result of this section.

Theorem 3. Take any completely fractional B̃ ∈ B̃ and let Π∗
B̃

denote its average cost

optimal policy. For all B̃′ ∈ ∆(B̃), de�ne the policy Π̂B̃′ as follows:

Π̂B̃′(sp,u[z, p′; B̃′]) = ap′ [z
′, p′′; B̃′] i� Π∗

B̃
(sp,u[z, p′; B̃]) = ap′ [z

′, p′′; B̃].

Let Ĉ(B̃′) denote the long run average costs for B̃′ under Π̂B̃′. Then

∀B̃′ ∈ ∆(B̃) : Ĉ(B̃′) = C∗(B̃′) = C∗(B̃) +
∑
p∈P

gp(B̃
′
p − B̃p),

where g = (g1, . . . , g|P |) is a subgradient at B̃.

Theorem 3 indicates that there exists a special policy Π̂B̃′ for cumulative bu�er alloca-

tions B̃′ ∈ ∆(B̃) such that the cost of B̃′ under Π̂B̃′ changes linearly in B̃. Furthermore,

the coe�cient vector of this change provides a subgradient, which directly implies that

Π̂B̃′ is optimal for all allocations B̃′ in ∆(B̃). It is surprising that Π̂B̃′ is optimal for B̃′,

because Π̂B̃′ is rather di�erent from Π∗
B̃
: sp,u[z, p′; B̃] and sp,u[z, p′; B̃′] represent di�erent

delays, and ap[z, p
′; B̃] and ap[z, p

′; B̃′] represent di�erent actions. The proof of Theorem 3

shows that, when states are expressed as sp,u[z, p′; B̃′], the transitions are independent of

B̃′, and the theorem follows from that result and convexity.

Theorem 3 implies the following.

Corollary 1. The subgradient g at B̃ from Theorem 3 is a subgradient for any B̃′ ∈ ∆(B̃).
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Integer optimal solution

To arrive at a simple algorithm to compute subgradients, we investigate ∆(B̃). Note

that ∆(B̃) contains exactly |P | integer bu�er allocations, say B̃1, . . . , B̃|P |. Then, B̃j :=

(B̃j
1, . . . , B̃

j
|P |) ∈ B̃ is given by

B̃j
p =


zp if f−1(p) ≤ j

zp + 1 if f−1(p) > j.

(19)

for p ∈ P. In other words,
{
B̃j |j ∈ {1, . . . , |P |}

}
is the set of integer cumulative bu�er

allocations with the same ordering as B̃.We can show that ∆(B̃) is the convex hull of this

set.

Theorem 4. Let B̃j , j ∈ {1, . . . , |P |} be as de�ned in (19). Then, for any completely

fractional B̃, ∆(B̃) is the convex hull of
{
B̃j |j ∈ {1, . . . , |P |}

}
.

A direct result of Theorems 3 and 4 is that C∗(B̃) is a linear combination of C∗(B̃j)

for j ∈ {1, . . . , |P |} for all fractional B̃, implying that fractional B̃ can never be optimal.

Hence, the optimal bu�er allocation will always be integer valued.

5.2.2 Computing subgradients

The above analysis yields Algorithm 2 to compute a subgradient for any ~B ∈ B̄. The idea of

the algorithm is to �rst �nd an ordering of the ports corresponding to their fractional delay

value. Next, we can construct all |P | integer cumulative bu�er allocations with the same

ordering and use them to �nd the costs of B̃ and the subgradient at B̃. We now explain

some details. For Step 2, note that B̃1 := 0 such that x1 = 0, implying that f(1) = 1 never

contradicts the other requirements on f . The B̃′ in Step 3 can be any completely fractional

B̃′ with B̃′p = z′p + x′p, such that ∀p ∈ P : z′p = zp and ∀p, p′ ∈ P : p > p′ → x′f(p) > x′f(p′).

(If B̃ is completely fractional, it su�ces to set B̃′ = B̃.) Note that for our algorithm it

is only important that a completely fractional B̃′ with those properties exists, we do not

need to �nd one. It can then be veri�ed that B̃ ∈ ∆(B̃′), and Theorem 4 shows that

∀j ∈ {1, . . . , |P |} : B̃j ∈ ∆(B̃′). Note that Step 3 of Algorithm 1 can be improved by

returning the best integer bu�er allocation B̃j together with its cost in Algorithm 2.
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Algorithm 2: Computing subgradients

1. Let B̃ ∈ B̃ be the cumulative bu�er corresponding to ~B ∈ B̄.

2. For all p ∈ P , write B̃p = zp + xp, with zp ∈ {0, 1, . . . , B − 1} and 0 ≤ xp ≤ 1.
Let f : P → P be any permutation of P such that f(1) = 1 and
∀p, p′ ∈ P : p > p′ → xf(p) ≥ xf(p′).

3. For each j ∈ {1, . . . , |P |} de�ne B̃j = (B̃j
1, . . . , B̃

j
|P |) ∈ B̃,

B̃j
p =

{
zp if f−1(p) ≤ j
zp + 1 if f−1(p) > j.

for p ∈ {1, . . . , |P |}. Then ∃B̃′ ∈ B̃ such that B̃ ∈ ∆(B̃′), and B̃j ∈ ∆(B̃′) for each
j ∈ {1, . . . , |P |}.

4. Compute C∗(B̃j) for each j ∈ {1, . . . , |P |}.

5. By Theorem 3 and Corollary 1, since B̃ ∈ ∆(B̃′), and B̃j ∈ ∆(B̃′) for each
j ∈ {1, . . . , |P |}, a subgradient g at B̃ satis�es the system of equations:

C∗(B̃j) = C∗(B̃) +
∑
p∈P

gp(B̃
j
p − B̃p), j ∈ {1, . . . , |P |} (20)

Solve the system to obtain C∗(B̃) and a subgradient g = (g1, . . . , g|P |) at B̃.

6. Use this subgradient to obtain a subgradient for C∗( ~B) at ~B.

For Step 4, note that C∗(B̃j) is the long run average cost of a �nite state SDP, which

can be solved e�ciently using linear programming. The speci�c choice of B̃j reduces the

complexity of �nding C∗(B̃j), because only integer bu�ers occur in all ports, reducing the

size of the state and action space of the SDP (see Lemma 5). Equalities (20) in Step 5 are

simply obtained by applying the equation in Theorem 3 to B̃ and B̃j . Note that g1 is free

in (20), since B̃1 := 0 for all B̃ ∈ B̃. For the same reason, the value of g1 is inconsequential,

so set it to 0. Since B̃j are linearly independent by construction, (20) have |P | linearly

independent equations, leading to a unique solution for the variables g2, . . . , g|P | and C∗(B̃).

Step 6 is straightforward, since B̃ is obtained from ~B using a linear transformation.
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6 Case Study

6.1 Data

To test our method, we use the ME1 route in September 2012 of the Maersk Line network.

Time is discretized in units of four hours. Table 1 shows the order in which the ports are

visited in the route, the distances and sailing times between ports and the time needed

in the port. The second column of Table 1 denotes the total time planned in the port to

load and unload the ship. In the third column the distances between the ports in nautical

miles are presented. Distances are obtained from SeaRates (2015). The distance shown for

each port is the distance that the ship has to cover to sail from that port to the next port.

The fourth column shows the sailing time in hours according to the schedule. The planned

sailing time for Antwerp is 32 hours, which means that a ship might take 32 hours to sail

from Antwerp to Bremerhaven before it will encounter a delay during its trip. The last

column shows the bu�er time in the current schedule assuming that the route is sailed at

maximum speed. The time needed to make one full round tour is 1176 hours (7 weeks).

Port time Distance Sailing time Bu�er time
Port (hr) (nmi) (hr) (hr)

Jebel Ali 31 1329 72 12
Jawaharlal Nehru 33 443 24 4
Mundra 16 1122 56 4
Salalah 14 1553 68 0
Jeddah 11 778 36 0
Suez Canal 16 2283 100 0
Algeciras 18 1476 88 20
Felixstowe 24 156 16 8
Antwerp 16 366 32 16
Bremerhaven 24 283 24 8
Rotterdam 20 3829 192 24
Suez Canal 22 395 20 0
Aqaba 20 656 40 8
Jeddah 19 2648 124 8

Table 1: Characteristics of the route

We assume that the route is sailed using a post panamax ship with capacity 8,400 TEU,

using data from Brouer et al. (2014). The minimum and maximum speed of this ship

are 12 and 23 knots respectively. Bunker consumption per time unit can be accurately
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approximated as a constant times the third power of speed. Thus, the fuel cost function

becomes:

Fp(τ) = b̃e
(v
ṽ

)3 (tsp + τ)l

24
= b̃e

(tsp + τ)l

24

(
δp

(ts + τ)lṽ

)3

,

where v is the sailing speed in knots (nmi/hour), δp is distance in nmi from port p to the

next port and l = 4 denotes the number of hours in one time unit. The ship has a design

speed of ṽ = 16.5 knots, and bunker consumption at design speed is b̃ = 82.2 ton per day.

Bunker cost is assumed to be e = 600 USD per ton (Brouer et al. 2014).

6.2 Test instances

Given the �xed port times and the total duration of a round tour, 52 time units re-

main to allocate over the ports. By changing the additional delay distributions, di�erent

scenarios can be constructed. Since we do not know the actual delay distribution, we

will gauge the outcomes under di�erent delay distributions. We will assume that each

Xs
n ∼ U

(
0, a+

⌊
δp[n]

b

⌋)
, where a and b are instance speci�c parameters and δp[n] is the

distance between the current and the next port. For each test instance we can com-

pute the minimum average time to complete one round tour of the route. This time

is obtained by sailing at maximum speed and incurring the average delay in each port.

The minimum average additional time to complete a round tour should not exceed the

available time of 52 time units, since ships will not be able to recover from incurred de-

lays in these scenarios. We will refer to the (positive) di�erence between the available

time and the minimum average completion time as the expected net bu�er time. Ten

instances are constructed by varying the expected bu�er time between 2.5 and 25 time

units in steps of 2.5 time units. This is done using a = {3, 3, 2, 2, 2, 1, 1, 1, 0, 0} and

b = {1200, 1600, 800, 1300, 2000, 900, 1328, 2400, 1000, 1400}. The extreme expedite cost

for the cut-and-go action is given by ten million USD per time unit and Dp(d) = 10, 000d

for 0 ≤ d ≤ dmaxp = 42 time units (one week) for p ∈ P and we assume that the unit costs

are larger than ten million USD for d > dmaxp for p ∈ P, such that delays are bounded by

42 time units. Finally, we set the parameters for our algorithm as wmaxp = 0.25 for p ∈ P ,

wmax = 2, and ε = 10−8 USD.
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6.3 Results

For each test instance, we �rst calculate the cost of the schedule when we consider de-

terministic delays. That is, we assume that the delay incurred between each two ports is

�xed and equal to the expected delay between those two ports. The optimal schedule is

then found by allocating the available bu�er time in such a way that a constant speed is

used over the round tour. Furthermore, we calculate the costs of the initial schedule, the

costs of the schedule in which the bu�er time is uniformly distributed over the ports and

the costs of the optimal schedule. All linear programming models are solved using CPLEX

12.6.

Available Expected Expected
bu�er delay bu�er

(time units) (time units) (time units)

28.0 25.5 2.5
28.0 23.0 5.0
28.0 20.5 7.5
28.0 18.0 10.0
28.0 15.5 12.5
28.0 13.0 15.0
28.0 10.5 17.5
28.0 8.0 20.0
28.0 5.5 22.5
28.0 3.0 25.0

Table 2: Characteristics of the ten instances

Table 2 shows the expected delay and expected bu�er times in time units for the ten

instances. The expected bu�er times vary between 2.5 and 25 time units.

Table 3 shows the average expected round tour costs for the ten instances. Clearly,

the costs of sailing a round tour decreases when the available bu�er time increases. The

deterministic schedule provides a lower bound on the optimal cost schedule. The di�erence

between the cost of the deterministic and stochastic schedules is the e�ect of uncertainty

on the cost, which is shown in the last three columns of the table. In these columns �rst

the absolute cost of uncertainty is given and in between brackets the relative di�erence

compared to the initial schedule is given. We observe that for high expected bu�er times,

a large part of the cost is already incurred in the deterministic case. Furthermore, the

absolute di�erence in cost between the initial and the uniform schedule decreases when
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Expected Deterministic Cost of uncertainty
bu�er schedule Initial Uniform Optimal

(time units) (million USD) (million USD) (million USD) (million USD)

2.5 3.831 0.904 (100%) 0.709 (78%) 0.702 (78%)
5.0 3.735 0.537 (100%) 0.381 (71%) 0.377 (70%)
7.5 3.644 0.446 (100%) 0.315 (71%) 0.292 (66%)
10.0 3.557 0.369 (100%) 0.257 (70%) 0.234 (63%)
12.5 3.471 0.317 (100%) 0.216 (68%) 0.193 (61%)
15.0 3.387 0.312 (100%) 0.225 (72%) 0.172 (55%)
17.5 3.306 0.272 (100%) 0.190 (70%) 0.137 (50%)
20.0 3.229 0.242 (100%) 0.173 (72%) 0.099 (41%)
22.5 3.153 0.256 (100%) 0.182 (71%) 0.068 (26%)
25.0 3.080 0.222 (100%) 0.158 (71%) 0.040 (18%)

Table 3: Total average round tour costs for the ten test instances

more bu�er time is available, while the absolute di�erence in cost between the uniform

and the optimal schedule increases when more time is available. From the relative costs,

we can conclude that the uniform schedule always performs about 30% better than the

initial schedule, while the optimal schedule has costs that are 22 − 82% lower than the

initial schedule. The relative performance of the optimal schedule increases when more

bu�er time is available. When only 2.5 time units of bu�er time are available, the largest

absolute cost reduction between the initial and the optimal schedule can be obtained, while

the lowest absolute reduction is obtained for 12.5 time units of expected bu�er. The lowest

and largest reductions are respectively 123 and 202 thousand USD per round tour. Since

liner companies usually provide weekly services, this would result in cost reductions of 6-10

million USD per year.

Expected bu�er Time Number
(time units) (seconds) subgradients

2.5 21 19
5.0 65 26
7.5 77 30
10.0 56 20
12.5 63 23
15.0 64 38
17.5 62 37
20.0 57 34
22.5 64 34
25.0 65 34

Table 4: Solution times for the ten test instances
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Table 4 shows the solution times of the subgradient algorithm. Furthermore, the number

of generated subgradients are shown. All instances can be solved to optimality within 80

seconds. In total, 19-38 subgradients have to be determined in the solution algorithm.

On time prob Avg arr delay Distance Bu�er time
Port (time units) (nmi) (time units)

Jebel Ali 0.49 0.78 1329 2
Jawaharlal Nehru 0.49 0.68 443 1
Mundra 0.41 0.68 1122 1
Salalah 0.30 1.09 1553 3
Jeddah 0.43 0.80 778 1
Suez Canal 0.38 0.73 2283 3
Algeciras 0.35 1.21 1476 3
Felixstowe 0.62 0.44 156 0
Antwerp 0.31 0.94 366 1
Bremerhaven 0.39 0.74 283 1
Rotterdam 0.63 0.44 3829 6
Suez Canal 0.50 1.00 395 1
Aqaba 0.33 1.00 656 1
Jeddah 0.37 0.84 2648 4

Table 5: Optimal bu�er time on the next sea leg

Table 5 shows for each port the probability of arriving on time, the average arrival delay

in time units and the optimal bu�er allocation in time units for the instance with an

expected bu�er of 15 time units. In general, more bu�er time is added to sea legs with

larger distances, because on these legs larger additional delays are expected to be incurred.

Table 6 shows the sailing times in time units that will be used on the next sea leg given

a certain amount of delay for the instance with 15 time units of expected bu�er. The last

columns show the range of feasible speeds and the planned sailing time for the given sea leg.

The table shows that ships will not always speed up when a larger delay is incurred even

when the maximum sailing speed limit is not reached yet (see for example a departure from

Jebel Ali with 0 and 1 time units of delay). This con�rms that the optimal sailing speed

policy is not always to try to recover from all delays during the coming sea leg.Furthermore,

the table shows that Lemmas 3 and 4 are indeed satis�ed: ships will never slow down when

they incur higher delays, but will also always arrive with at least the same amount of delay

in the next port as when they would have incurred a lower delay. Moreover, ships might

already speed up even when it sails according to schedule. This happens for example when
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Delay in time units Feasible Planned
Port 0 1 2 3 4 5 ≥ 6 range sailing time

Jebel Ali 16 16 15 15 15 15 15 [15, 27] 17
Jawaharlal Nehru 6 5 5 5 5 5 5 [ 5, 9] 6
Mundra 14 13 13 13 13 13 13 [13, 23] 14
Salalah 19 19 18 17 17 17 17 [17, 32] 20
Jeddah 10 9 9 9 9 9 9 [ 9, 16] 10
Suez Canal 27 27 26 25 25 25 25 [25, 47] 28
Algeciras 19 18 17 17 17 17 17 [17, 30] 20
Felixstowe 2 2 2 2 2 2 2 [ 2, 3] 2
Antwerp 5 4 4 4 4 4 4 [ 4, 7] 5
Bremerhaven 4 4 4 4 4 4 4 [ 4, 5] 5
Rotterdam 46 45 44 44 43 42 42 [42, 79] 48
Suez Canal 6 5 5 5 5 5 5 [ 5, 8] 6
Aqaba 9 8 8 8 8 8 8 [ 8, 13] 9
Jeddah 32 31 30 30 29 29 29 [29, 55] 33

Table 6: Sailing time action in time units to be used on the next sea leg

the leaves the port of Rotterdam. The scheduled sailing time between Rotterdam and the

Suez Canal is 48 time units, while the ship will only use 46 time units when leaving the

port of Rotterdam without delay. Hence, an action of 2 time units is performed to hedge

against expected delays incurred between Rotterdam and the Suez Canal.

Finally, when we consider the amount of extreme actions in the solutions, we observe

that more extreme actions are taken when less bu�er time is available. In the instances

with 15 or more units of bu�er, no extreme actions are taken in the optimal solutions.

Furthermore, in the instance with 2.5 units of bu�er most extreme actions are taken,

namely in expectation 0.00038 time units per round tour, which corresponds to once every

353 years. This is in line with our desire to use the extreme actions as a device to limit

the maximum delay and not as an economically feasible option.

7 Conclusion and Future Research

We developed a new approach for allocating bu�ers in timetables. Our model jointly

optimizes decisions over two stages: bu�er times during timetable development and speed

optimization during timetable execution. We model the execution of the timetable as a

stochastic dynamic program (SDP), allowing for accurate modelling of real-time recovery

actions using the latest information, random events causing delays, and propagation of
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delays from port call to port call. Our theoretical analysis revealed that as the delay with

respect to the timetable increases, so should our travelling speed.

Optimizing the bu�er allocation decisions presented a challenge, because they must be

exogenous to the SDP since they a�ect transitions in multiple states. In general, only

enumeration techniques can optimize over variables exogenous to an SDP. But we were

able to show, under relatively mild assumptions, that C∗( ~B) is convex in the bu�er time

variables. A detailed investigation of the cost function C∗( ~B) yielded a simple method to

compute subgradients. We note that the form of this method may indicate a link with

submodularity. In particular, similar results may perhaps be obtained using the so-called

Lovász extension (Lovász 1983), but we believe this would mainly be of theoretical interest.

Based on these results, we proposed a relatively simple algorithm.

In our experiments, the algorithm computes the optimal bu�er time allocation in under

80 seconds. We compared the optimal schedule with the cost of the initial schedule as

executed by Maersk Line and with the cost of a schedule in which bu�er times are uniformly

distributed over the ports. We observe that the uniform schedule provides very good

solutions for schedules with low bu�ers, but that the optimal schedule generates costs that

are six to ten million USD per year lower compared to the initial schedule. For schedules

with high bu�ers, the optimal schedule also results in much lower costs than the uniform

schedule.

Our experiments thus revealed that the proposed algorithm is very e�cient. Its e�ciency

stems from the use of convexity of C∗( ~B), allowing us to take into account on-line speed

optimization without severely reducing performance. Moreover, we directly extract sub-

gradients from the SDP formulation, so we can take into account the stochasticity without

sampling. These properties make the algorithm a good candidate for further research in

timetable optimization, also in contexts other than container shipping. However, chal-

lenges need to be overcome to use the algorithm in settings where the timetable involves

multiple trains/ships/metros that interact. Further research is needed to reveal whether

the algorithm may be valuable in those settings as well.
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A Proofs of theoretical results

To simplify notation, de�ne

Ln(d; ~B) := min
0≤τ≤τu

p[n]

{
Fp[n](τ) +Kn(d+ τ ; ~B)

}
.

Then Cdepn,N (d; ~B) can be written as

Cdepn,N (d; ~B) = Ddepp[n](d) + Ln(d; ~B). (21)

Proof of Lemma 1. By backward induction in n, starting at N . Let ~B ∈ B̄ be arbitrary.

For n = N, CarrN,N (d; ~B) = Darrp[N ](d), which is a nondecreasing function in d by assumption.

Assume now that Carrn+1,N (d; ~B) is nondecreasing in d for some 1 < n < N. We will prove

that Carrn,N (d; ~B) is also nondecreasing in d. Let d, d′ ∈ R≥0 be arbitrary such that d′ ≥ d.

Then,

Kn(d; ~B) = EXs
n

[
Carrn+1,N

((
d− ~Bp[n] +Xs

n

)+
; ~B

)]
≤ EXs

n

[
Carrn+1,N

((
d′ − ~Bp[n] +Xs

n

)+
; ~B

)]
= Kn(d′; ~B),

where the inequality follows from the induction hypothesis and becauseXs
n does not depend

on the current delay, since by assumption Xs
n is independent of all other random variables.
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This proves that Kn(d; ~B) is nondecreasing in d. Then,

Ln(d; ~B) = min
0≤τ≤τu

p[n]

{
Fp[n](τ) +Kn

(
d+ τ ; ~B

)}
≤ Fp[n]

(
Tn(d′; ~B)

)
+Kn

(
d+ Tn(d′; ~B); ~B

)
≤ Fp[n]

(
Tn(d′; ~B)

)
+Kn

(
d′ + Tn(d′; ~B); ~B

)
= Ln(d′; ~B),

where the �rst inequality holds because 0 ≤ Tn(d′; ~B) ≤ τup[n] and the second because

Kn(d; ~B) is nondecreasing in d. Hence, Ln(d; ~B) is nondecreasing in d. By (21) we know

that Cdepn,N (d; ~B) is the sum of two nondecreasing functions, namely Ddepp[n](d) and Ln(d; ~B),

which proves that Cdepn,N (d; ~B) is also nondecreasing in d.

Further, Carrn,N (d; ~B) is the sum of Darrp[n](d), which is nondecreasing in d by assumption,

and EXp
n

[
min
γ≥0

{
ceγ + Cdepn,N

(
(d+Xp

n − γ)+; ~B
)}]

, for which we �nd:

EXp
n

[
min
γ≥0

{
ceγ + Cdepn,N

(
(d+Xp

n − γ)+ ; ~B
)}]

≤ EXp
n

[
ceYn(d′ +Xp

n; ~B) + Cdepn,N

((
d+Xp

n − Yn(d′ +Xp
n; ~B)

)+
; ~B

)]
≤ EXp

n

[
ceYn(d′ +Xp

n; ~B) + Cdepn,N

((
d′ +Xp

n − Yn(d′ +Xp
n; ~B)

)+
; ~B

)]
= EXp

n

[
min
γ≥0

{
ceγ + Cdepn,N

((
d′ +Xp

n − γ
)+

; ~B
)}]

where the second inequality holds because Cdepn,N (d; ~B) is nondecreasing in d. The last equal-

ity holds because the additional delay incurred is independent of the current delay, because

by assumptions it is independent of all other random variables. Hence, Carrn,N (d; ~B) is non-

decreasing in d, which completes the induction argument.

Proof of Lemma 2. By backward induction in n, starting atN . By assumption CarrN,N (d; ~B) =

Darrp[N ](d) is joint convex in d and ~B. Now suppose Carrn+1,N (d; ~B) is joint convex in d and

~B for some 1 < n < N. Let d, d′ ∈ R≥0 be arbitrary nonnegative real numbers and let
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~B, ~B′ ∈ B̄ and λ ∈ [0, 1] be arbitrary. Then,

λKn(d; ~B) + (1− λ)Kn(d′; ~B′)

= λEXs
n

[
Carrn+1,N

((
d− ~Bp[n] +Xs

n

)+
; ~B

)]
+ (1− λ)EXs

n

[
Carrn+1,N

((
d′ − ~B′p[n] +Xs

n

)+
; ~B′
)]

≥ EXs
n

[
Carrn+1,N

(
λ
(
d− ~Bp[n] +Xs

n

)+
+ (1− λ)

(
d′ − ~B′p[n] +Xs

n

)+
;λ~B + (1− λ) ~B′

)]
≥ EXs

n

[
Carrn+1,N

((
λ(d− ~Bp[n] +Xs

n) + (1− λ)(d′ − ~B′p[n] +Xs
n)
)+

;λ~B + (1− λ) ~B′
)]

= Kn(λd+ (1− λ)d′;λ~B + (1− λ) ~B′),

where the �rst inequality holds by the induction hypothesis and because Xs
n is independent

of the current delay, since by assumption it is independent of all other random variables.

The second inequality follows because Carrn+1,N (d, ~B) nondecreasing in d. It follows that

Kn(d; ~B) is also joint convex in d and ~B. Next,

λLn(d; ~B) + (1− λ)Ln(d′; ~B′)

= λ
(
Fp[n]

(
Tn(d; ~B)

)
+Kn

(
d+ Tn(d; ~B); ~B

))
+

(1− λ)
(
Fp[n]

(
Tn(d′; ~B′)

)
+Kn

(
d′ + Tn(d′; ~B′); ~B′

))
= λFp[n]

(
Tn(d; ~B)

)
+ (1− λ)Fp[n]

(
Tn(d′; ~B′)

)
+

λKn
(
d+ Tn(d; ~B); ~B

)
+ (1− λ)Kn

(
d′ + Tn(d′; ~B′); ~B′

)
≥ Fp[n]

(
λTn(d; ~B) + (1− λ)Tn(d′; ~B′)

)
+

Kn
(
λ
(
d+ Tn(d; ~B)

)
+ (1− λ)

(
d′ + Tn(d′; ~B′)

)
;λ~B + (1− λ) ~B′

)
≥ min

0≤τ≤τu
p[n]

{
Fp[n](τ) +Kn

(
τ + λd+ (1− λ)d′;λ~B + (1− λ) ~B′

)}
= Ln

(
λd+ (1− λ)d′;λ~B + (1− λ) ~B′

)

where the �rst inequality follows because Fp[n] is convex and Kn is joint convex. The second

inequality holds because 0 ≤ Tn(d; ~B), Tn(d′; ~B′) ≤ τup[n]. Hence, Ln(d; ~B) is joint convex

in d and ~B. Then, Cdepn,N (d; ~B) is the sum of two (joint) convex functions, so Cdepn,N (d; ~B) is

joint convex in d and ~B.

Further, Carrn,N (d; ~B) is the sum of Darrp[n](d), which is convex in d and hence joint convex

in (d, ~B) by assumption, and EXp
n

[
min
γ≥0

{
ceγ + Cdepn,N ((darrn +Xp

n − γ)+; ~B)
}]

, for which we
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�nd:

λEXp
n

[(
ceYn(d+Xp

n; ~B) + Cdepn,N

((
d+Xp

n − Yn(d+Xp
n; ~B)

)+
; ~B

))]
+

(1− λ)EXp
n

[(
ceYn(d′ +Xp

n; ~B′) + Cdepn,N

((
d′ +Xp

n − Yn(d′ +Xp
n; ~B′)

)+
; ~B′
))]

≥ EXp
n

[
ce
(
λYn(d+Xp

n; ~B) + (1− λ)Yn(d′ +Xp
n; ~B′)

)]
+

EXp
n

[
Cdepn,N

(
λ
(
d+Xp

n − Yn(d+Xp
n; ~B)

)+
+ (1− λ)

(
d′ +Xp

n − Yn(d′ +Xp
n; ~B′)

)+
;

λ~B + (1− λ) ~B′
)]

≥ EXp
n

[
ce
(
λYn(d+Xp

n; ~B) + (1− λ)Yn(d′ +Xp
n; ~B′)

)]
+

EXp
n

[
Cdepn,N

((
λd+ (1− λ)d′ +Xp

n −
(
λYn(d+Xp

n; ~B) + (1− λ)Yn(d′ +Xp
n; ~B′)

))+
;

λ~B + (1− λ) ~B′
)]

≥ EXp
n

[
min
γ≥0

{
ceγ + Cdepn,N

((
λd+ (1− λ)d′ +Xp

n − γ
)+

;λ~B + (1− λ) ~B′
)}]

where the �rst inequality holds by the induction hypothesis and the second inequality holds

because Cdepn,N (d; ~B) is nondecreasing in d. Hence, Carrn,N (d; ~B) is joint convex in d and ~B,

which proves the lemma.

Proof of Theorem 1. The lim
R→∞

Cdep
1,R|P |+1

(ddep1 ; ~B)

R exists by assumption, and since convex-

ity is preserved when taking limits, this limit is joint convex in ~B and ddep1 by Lemma 2.

By assumption, the limit is independent of ddep1 , which implies the desired result.

Proof of Lemma 3. Take any n ∈ [1, N − 1] and ~B ∈ B̄ and let d, d′ ∈ R≥0 such that

d′ ≥ d. We will prove that Tn(d; ~B) ≥ Tn(d′; ~B) by contradiction. Suppose Tn(d; ~B) <

Tn(d′; ~B). By (6) it follows that

Fp[n]
(
Tn(d; ~B)

)
+Kn

(
d+ Tn(d; ~B); ~B

)
≤ Fp[n]

(
Tn(d′; ~B)

)
+Kn

(
d+ Tn(d′; ~B); ~B

)
Fp[n]

(
Tn(d; ~B)

)
−Fp[n]

(
Tn(d′; ~B)

)
≤ Kn

(
d+ Tn(d′; ~B); ~B

)
−Kn

(
d+ Tn(d; ~B); ~B

)
.

Furthermore, by (6) it follows that:

Fp[n]
(
Tn(d′; ~B)

)
+Kn

(
d′ + Tn(d′; ~B); ~B

)
< Fp[n]

(
Tn(d; ~B)

)
+Kn

(
d′ + Tn(d; ~B); ~B

)
Fp[n]

(
Tn(d; ~B)

)
−Fp[n]

(
Tn(d′; ~B)

)
> Kn

(
d′ + Tn(d′; ~B); ~B

)
−Kn

(
d′ + Tn(d; ~B); ~B

)
.
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Hence,

Kn
(
d′ + Tn(d′; ~B); ~B

)
−Kn

(
d′ + Tn(d; ~B); ~B

)
< Fp[n]

(
Tn(d; ~B)

)
−Fp[n]

(
Tn(d′; ~B)

)
≤ Kn

(
d+ Tn(d′; ~B); ~B

)
−Kn

(
d+ Tn(d; ~B); ~B

)
,

thus Kn(d; ~B) has decreasing increments, which contradicts the convexity of Kn(d; ~B).

Hence, Tn(d; ~B) ≥ Tn(d′; ~B). The second part of the lemma can be proven analogously.

Proof of Lemma 4. Let n ∈ [1, N −1] be arbitrary and let d, d′ ∈ R≥0 be arbitrary such

that d′ ≥ d. We need to prove that d + Tn(d; ~B) ≤ d′ + Tn(d′; ~B), because, since ~Bp[n] is

�xed and Xs
n is independent of ddepn by assumption, this implies the desired result.

De�ne τ ′ := d+Tn(d; ~B)−d′ and τ := d′+Tn(d′; ~B)−d. Assume now (by contradiction)

that d+ Tn(d; ~B) > d′ + Tn(d′; ~B). Then τ ′ > Tn(d′; ~B) and τ < Tn(d; ~B). By (6)

Fp[n]
(
Tn(d; ~B)

)
+Kn

(
d+ Tn(d; ~B); ~B

)
< Fp[n](τ) +Kn(d+ τ ; ~B).

The inequality is strict because Tn(d; ~B) is by de�nition the smallest minimizer, see (6).

By rearranging terms, we obtain

Fp[n]
(
Tn(d; ~B)

)
−Fp[n](τ) < Kn(d+ τ ; ~B)−Kn

(
d+ Tn(d; ~B); ~B

)
= Kn

(
d′ + Tn(d′; ~B); ~B

)
−Kn

(
d+ Tn(d; ~B); ~B

)
.

where the equality is due to the de�nition of τ . For Tn(d′; ~B), the de�nition (6) implies

Fp[n]
(
Tn(d′; ~B)

)
+Kn

(
d′ + Tn(d′; ~B); ~B

)
≤ Fp[n](τ ′) +Kn(d′ + τ ′; ~B).

which implies

Fp[n](τ ′)−Fp[n]
(
Tn(d′; ~B)

)
≥ Kn

(
d′ + Tn(d′; ~B); ~B

)
−Kn(d′ + τ ′; ~B)

= Kn
(
d′ + Tn(d′; ~B); ~B

)
−Kn

(
d+ Tn(d; ~B); ~B

)
.
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Combining these, we obtain:

Fp[n]
(
Tn(d; ~B)

)
−Fp[n](τ) < Kn

(
d′ + Tn(d′; ~B); ~B

)
−Kn

(
d+ Tn(d; ~B); ~B

)
≤ Fp[n](τ ′)−Fp[n]

(
Tn(d′; ~B)

)
= Fp[n]

(
Tn(d; ~B)− (d′ − d)

)
−Fp[n](τ − (d′ − d)).

Thus, Fp[n](d) has decreasing increments which contradicts convexity. Thus, d+Tn(d; ~B) ≤

d′ + Tn(d′; ~B). The second part of the lemma can be proven analogously.

To prove Lemma 5, we �rst prove that the value functions are continuous and piecewise

linear with speci�c breakpoints. De�ne, for a given ~B and corresponding B̃, Ψ(Qn; B̃)

as the set of functions that are piecewise linear, with breakpoints only on Qn(B̃). (For

convenience, we will write Ψ(Qn) for Ψ(Qn; B̃).) More precisely: for any f(·) ∈ Ψ(Qn) and

any open interval (
¯
d, d̄) that does not intersect Qn(B̃) (thus (

¯
d, d̄) ⊆ R \ Qn(B̃)), there

exist a slope a ∈ R and an o�set b ∈ R such that ∀d ∈ (
¯
d, d̄) : f(d) = ad+ b.

Lemma 6 (Auxiliary towards Lemma 5). For every n with 1 ≤ n < N : Kn( · ; ~B) ∈

Ψ(Qn), Cdepn,N ( · ; ~B) ∈ Ψ(Qn), Carrn+1,N ( · ; ~B) ∈ Ψ(Qn+1). This yields additional results for

the actions (with B̃ the cumulative bu�er allocation corresponding to ~B):

1. Optimal sailing time: for every n with 1 ≤ n < N and every d ≥ 0 that Tn(d; ~B) ∈

Z≥0 and/or d+ Tn(d; ~B) ∈ Qn(B̃).

2. Extreme actions: for every n with 1 < n < N and every d ≥ 0 that Yn(d; ~B) = 0

and/or d− Yn(d; ~B) ∈ Qn(B̃).

Proof of Lemma 6. We will prove the lemma by induction. For the base case, note

that CarrN,N (darrN ; ~B) = Darrp[N ](d
arr
N ) ∈ Ψ(QN ), since Darrp[N ](d

arr
N ) is piecewise linear with

breakpoints on Z≥0 by Assumption 1, and Z≥0 ⊆ QN (B̃) because Z≥0 = QN (p[N ]; B̃).

Thus, for some n with 1 ≤ n < N , the induction hypothesis is Carrn+1,N (d; ~B) ∈ Ψ(Qn+1),

and we will show that Kn(d; ~B) ∈ Ψ(Qn), Cdepn,N (d; ~B) ∈ Ψ(Qn) and Carrn,N (d; ~B) ∈ Ψ(Qn).

We �rst show that Kn(d; ~B) = EXs
n

[
Carrn+1,N

(
(d− ~Bp[n] +Xs

n)+; ~B
)]

is in Ψ(Qn). Con-

ditioned on Xs
n, by Assumption 1 there exists zs ∈ Z≥0 such that Xs

n = zs. By de�nition

of the cumulative bu�ers B̃′ it holds that B̃′p[n+1] − ~B′p[n] = B̃′p[n] + zn, with zn = B ∈ Z
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if p[n+ 1] = 1 and zn = 0 otherwise. Fix any open interval (
¯
d, d̄) ⊆ R \ Qn(B̃). For

any d ∈ (
¯
d, d̄) suppose d − ~Bp[n] + zs ∈ Qn+1(B̃). That would imply ∃z ∈ Z, p ∈ P such

that d − ~Bp[n] + zs = z + B̃p − B̃p[n+1], and thus d = (z − zs) + B̃p − (B̃p[n+1] − ~Bp[n]) =

(z−zs−zn)+B̃p−B̃p[n] ∈ Qn(B̃), a contradiction with (
¯
d, d̄) ⊆ R\Qn(B̃). Hence, it holds

that d− ~Bp[n] + zs /∈ Qn+1(B̃). Thus (
¯
d− ~Bp[n] + zs, d̄− ~Bp[n] + zs) ⊆ R \Qn+1(B̃). Since

0 ∈ Qn+1(B̃), the following two cases are exhaustive: 1) ∀d ∈ (
¯
d, d̄) : d − ~Bp[n] + zs ≥ 0

and 2) ∀d ∈ (
¯
d, d̄) : d − ~Bp[n] + zs ≤ 0. For the �rst case, by induction hypothesis and

since (
¯
d − ~Bp[n] + zs, d̄ − ~Bp[n] + zs) ⊆ R \ Qn+1(B̃), we know that ∃a, b ∈ R such that

∀d ∈ (
¯
d, d̄) :

Carrn+1,N

(
(d− ~Bp[n] + zs)+; ~B

)
= Carrn+1,N

(
d− ~Bp[n] + zs; ~B

)
= a(d− ~Bp[n] + zs) + b.

Note that the RHS is a�ne in d. For the second case, we �nd

∀d ∈ (
¯
d, d̄) : Carrn+1,N

(
(d− ~Bp[n] + zs)+; ~B

)
= Carrn+1,N

(
0; ~B

)
= a′d+ b′,

with a′ = 0 and b′ = Carrn+1,N

(
0; ~B

)
. Now, since

Kn(d; ~B) =
∑

zs∈Z≥0

P(Xs
n = zs)Carrn+1,N

(
(d− ~Bp[n] + zs)+; ~B

)
,

and since each of the functions on the RHS is a�ne in d for all d ∈ (
¯
d, d̄), Kn(d; ~B) is a�ne

in d for d ∈ (
¯
d, d̄). This proves Kn(d; ~B) ∈ Ψ(Qn).

We next show that Cdepn,N (d; ~B) = Ddepp[n](d) + Ln(d; ~B) ∈ Ψ(Qn), where Ln(d; ~B) =

min
0≤τ≤τu

p[n]

{
Fp[n](τ) +Kn(d+ τ ; ~B)

}
. Since Ddepp[n](d) is piecewise linear with breakpoints

on Z≥0 ⊆ Qn(B̃) by Assumption 1, it remains to show that Ln(d; ~B) ∈ Ψ(Qn). Fix an

interval (
¯
d, d̄) ⊆ R\Qn(B̃), and let d ∈ (

¯
d, d̄). For brevity, let τ∗ = T (d; ~B) denote the op-

timal sailing time for d. By (6), τ∗ is the smallest minimizer of Fp[n](τ)+Kn(d+τ ; ~B), and

therefore τ∗ must be one of the breakpoints of Fp[n]( · ) (which occur at Z≥0) and/or d+τ∗

must be one of the breakpoints of Kn( · ; ~B) (which occur at Qn(B̃) by Kn( · ; ~B) ∈ Ψ(Qn)).

It thus su�ces to consider the following two cases: 1) τ∗ ∈ Z≥0 and 2) τ∗ + d ∈ Qn(B̃).

(This is additional result 1.)
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For Case 1, note that for every d′ ∈ (
¯
d, d̄) we have d′ /∈ Qn(B̃) and τ∗ ∈ Z≥0 and thus

d′ + τ∗ /∈ Qn(B̃). This implies (
¯
d+ τ∗, d̄+ τ∗) ⊆ R \Qn(B̃). Thus, by Kn(d; ~B) ∈ Ψ(Qn)

there exist a, b ∈ R such that for every d′ ∈ (
¯
d, d̄):

Ln(d′; ~B) ≤ Fp[n](τ∗) +Kn(d′ + τ∗; ~B) = Fp[n](τ∗) + a(d′ + τ∗) + b = a′d′ + b′ (22)

with a′ = a and b′ = b+aτ∗+Fp[n](τ∗). Write d′ = d+x. We now show that Ln(d+x; ~B) =

a′(d + x) + b′. This is immediate for x = 0, so suppose x 6= 0. Let ε > 0 be such

that d − εx ∈ (
¯
d, d̄). The proof of Lemma 2 shows that Ln(d; ~B) is joint convex in

(d, ~B), and therefore convex in d, which implies λLn(d + x; ~B) + (1 − λ)Ln(d − εx; ~B) ≥

Ln
(
λ(d+ x) + (1− λ)(d− εx); ~B

)
for any λ ∈ [0, 1]. Setting λ = ε/(1 + ε) and multiplying

by (1 + ε) yields:

εLn(d+ x; ~B) ≥ (1 + ε)Ln(d; ~B)− Ln(d− εx; ~B)

≥ (1 + ε)[a′d+ b′]− [a′(d− εx) + b′]

= ε[a′(d+ x) + b′]

= ε[Fp[n](τ∗) +Kn(d+ x+ τ∗; ~B)] ≥ εLn(d+ x; ~B)

where the second inequality results from (22) and optimality of τ∗ for d, the equality at

the third line rearranges terms, and the �nal (in)equalities result from (22). This shows

Ln(d′; ~B) = a′d′ + b′ (which implies that τ∗ is optimal for every d′ ∈ (
¯
d, d̄)). Thus for

Case 1 we have established that Ln(d′; ~B) is a�ne in d′ for all d′ ∈ (
¯
d, d̄).

Now Case 2: τ∗ + d ∈ Qn(B̃). For any d′ ∈ (
¯
d, d̄), we will show that the action

τ ′ = τ∗ − d′ + d is optimal. Because τ ′ + d′ = τ∗ + d ∈ Qn(B̃) and d′ /∈ Qn(B̃), we know

that τ ′ /∈ Z≥0. This implies (τ∗− d̄+d, τ∗−
¯
d+d) ⊆ R\Z≥0. Because Fp[n](τ) is piecewise

linear with breakpoints on Z≥0 by Assumption 1, we now know that there exist a, b ∈ R

such that for every τ ′ ∈ (τ∗ − d̄ + d, τ∗ −
¯
d + d) it holds that Fp[n](τ ′) = aτ ′ + b. This

yields:

Ln(d′; ~B) ≤ aτ ′ + b+Kn(d′ + τ ′; ~B) = a(τ∗ − d′ + d) + b+Kn(d+ τ∗; ~B) = a′d′ + b′ (23)
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with a′ = −a and b′ = aτ∗ + ad + b + Kn(d + τ∗; ~B). This allows us to show that

Ln(d′; ~B) = a′d′ + b′, exactly in the same fashion as for Case 1, using (23) and convexity

of Ln(d′; ~B). Thus also for Case 2, we have established that Ln(d′; ~B) is a�ne in d′ for all

d′ ∈ (
¯
d, d̄).

Since the two cases are exhaustive, we have shown that Ln(d′; ~B) is a�ne in d′ for

all d′ ∈ (
¯
d, d̄). This shows that Ln(d′; ~B) ∈ Ψ(Qn), and thus Cdepn,N (d; ~B) = Ddepp[n](d) +

Ln(d; ~B) ∈ Ψ(Qn).

Finally, we show that Carrn,N (d; ~B) = Darrp[n](d)+EXp
n

[
min
γ≥0

{
ceγ + Cdepn,N

(
(d+Xp

n − γ)+; ~B
)}]

is in Ψ(Qn). We condition on Xp
n, and write Xp

n = zp, with zp ∈ Z≥0 by Assump-

tion 1. We �rst show that min
γ≥0

{
ceγ + Cdepn,N

(
(d+ zp − γ)+; ~B

)}
∈ Ψ(Qn). Fix an interval

(
¯
d, d̄) ⊆ R \Qn(B̃), and let d ∈ (

¯
d, d̄). Denote γ∗ = Y(d+ zp, ~B) for brevity. Since ce > 0

and d+zp ≥ 0, optimality of γ∗ implies that γ∗ ≤ d+zp, and thus (d+zp−γ∗)+ = d+zp−γ∗.

Also, γ∗ is the largest minimizer of ceγ + Cdepn,N

(
(d+ zp − γ)+; ~B

)
, and the following two

cases are thus exhaustive: Case 1) γ∗ = 0 and Case 2) (d + zp − γ∗)+ = d + zp − γ∗ is a

breakpoint of Cdepn,N ( · ; ~B), and thus d+ zp − γ∗ ∈ Qn(B̃). (This is additional result 2.)

For Case 1, since ∀d′ ∈ (
¯
d, d̄) : d′ /∈ Qn(B̃), we know that d′ + zp − γ∗ /∈ Qn(B̃), and

thus (
¯
d+ zp− γ∗, d̄+ zp− γ∗) ⊆ R \Qn(B̃). Therefore, by Cdepn,N (·; ~B) ∈ Ψ(Qn), there exist

a, b ∈ R such that ∀d′ ∈ (
¯
d, d̄):

min
γ≥0

{
ceγ + Cdepn,N

(
(d′ + zp − γ)+; ~B

)}
≤ ceγ∗ + Cdepn,N (d′ + zp − γ∗; ~B) = ad′ + b (24)

Because γ∗ = 0 is optimal for d′ = d by de�nition, we can proceed in the same way as

before to show that the inequality in (24) can be strengthened to an equality. For Case

2, we note that γ′ = γ∗ + d′ − d > 0 for d′ ∈ (
¯
d, d̄), because γ′ = 0 would contradict

d′ + zp − γ′ = d+ zp − γ∗ ∈ Qn(B̃), since d′ + zp /∈ Qn(B̃) by d′ ∈ (
¯
d, d̄). We obtain:

min
γ≥0

{
ceγ + Cdepn,N

(
(d′ + zp − γ)+; ~B

)}
≤ ce(γ∗ + d′ − d) + Cdepn,N (d+ zp − γ∗; ~B) = ad′ + b,

(25)

with a = ce and b = ce(γ∗−d)+Cdepn,N (d+zp−γ∗; ~B). Since γ∗ is optimal for d by assumption,

we can proceed in the same way as before to show that the inequality in (25) can be

strengthened to equality. This yields min
γ≥0

{
ceγ + Cdepn,N

(
(d′ + zp − γ)+; ~B

)}
∈ Ψ(Qn) and

40



since Darrp[n](d) is piecewise linear with breakpoints on Z≥0, we �nd that Carrn,N (d; ~B) ∈ Ψ(Qn),

which completes the proof.

With this lemma, we are now ready to prove Lemma 5.

Proof of Lemma 5. The proof is by induction, starting at n = 1. Let ~B be the bu�er

allocation corresponding to B̃. Note that ddep1 ∈ Z≥0 ⊆ Q1(B̃) by Assumption 1 and

by de�nition of Q1(B̃). We will now assume that ddepn ∈ Qn(B̃) holds for some n with

1 ≤ n < N.

By additional result 1 of Lemma 6, we must either have Tn(ddepn ; ~B) ∈ Z≥0 or ddepn +

Tn(ddepn ; ~B) ∈ Qn(B̃). Because by assumption ddepn ∈ Qn(B̃), in both cases we obtain

ddepn + Tn(ddepn ; ~B) ∈ Qn(B̃), and thus ∃z ∈ Z, p ∈ P such that ddepn + Tn(ddepn ; ~B) =

z+B̃p−B̃p[n]. SinceXs
n takes on integer values, writeX

s
n = zs with zs ∈ Z≥0. By de�nition

of the cumulative bu�ers B̃′ it holds that B̃′p[n] + ~B′p[n] = B̃′p[n+1] + zn, with zn = B ∈ Z

if p[n+ 1] = 1 and zn = 0 otherwise. Thus darrn+1 = (ddepn + Tn(ddepn ; ~B) + Xs
n − ~Bp[n])

+ =(
(z+ zs) + B̃p− B̃p[n]− ~Bp[n]

)+
=
(
(z+ zs− zn) + B̃p− B̃p[n+1]

)+
. Now consider the cases

darrn+1 = 0 and darrn+1 > 0. In the former case, darrn+1 ∈ Qp[n+1](p[n+ 1]; B̃) ⊆ Qp[n+1](B̃), and

in the latter case we �nd darrn+1 = (z+zs−zn)+ B̃p− B̃p[n+1] ∈ Qp[n+1](p; B̃) ⊆ Qp[n+1](B̃).

Thus darrn+1 ∈ Qn+1(B̃). Since Xp
n+1 takes on values in Z≥0, darrn+1+Xp

n+1 ∈ Qn+1(B̃) follows

immediately.

Now, by additional result 2 of Lemma 6, we must either have Yn+1(d
arr
n+1 +Xp

n+1;
~B) = 0

or darrn+1+Xp
n+1−Yn+1(d

arr
n+1+Xp

n+1;
~B) ∈ Qn+1(B̃). Since darrn+1+Xp

n+1 ∈ Qn+1(B̃), in both

cases we obtain darrn+1 +Xp
n+1 − Yn+1(d

arr
n+1 +Xp

n+1;
~B) ∈ Qn+1(B̃). Thus ddepn+1 = (darrn+1 +

Xp
n+1 − Yn+1(d

arr
n+1 +Xp

n+1;
~B))+ ∈ Qn+1(B̃). This completes the proof by induction.

Proof of Theorem 2. We �rst show that the limit in the corollary corresponds to the

long-term average costs of a �nite-state, �nite-action SDP. This is straightforward, but a

but tedious. We distinguish between departure states and port states: Departure states are

identi�ed by the delay ddepn and the port p[n] and correspond to the moment of departure.

Port states are identi�ed by the delay darrn + Xp
n after incurring port delay and the port

p[n]. (States depend only on p[n], and not on n.)

Let B̃ be the cumulative bu�er allocation corresponding to ~B. For the extreme action,

we impose the additional restriction that γn ≥ darrn + Xp
n − dmaxp[n] . This does not a�ect
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Cdep1,R|P |+1(d
dep
1 ; ~B), because γn < darrn +Xp

n − dmaxp[n] cannot be optimal since Dp[n](d)− ced

is monotonically increasing for all d > dmaxp[n] by Assumption 2. We thus have 0 ≤ ddepn ≤

dmaxp[n] < ∞, since early departure is not allowed. Also, darrn + Xp
n ≥ darrn ≥ 0 since

early arrival is not allowed and darrn+1 + Xp
n+1 ≤ (ddepn + τn − ~Bp[n] + Xs

n)+ + Xp
n+1 ≤

dmaxp[n] + τup[n] + Xs,max

p[n] + Xp,max

p[n+1] < ∞. Thus, delays are bounded below and above. In

addition, only delays in Qp[n](B̃) occur by Lemma 5, and we will thus restrict the delays

to this set without a�ecting Cdep1,R|P |+1(d
dep
1 ; ~B).

For the actions, we have 0 ≤ τn ≤ τup[n] by assumption. Since ce > 0, it can never be

optimal for γn to exceed darrn + Xp
n (for which we already found an upper bound), and

γn ≥ 0 by assumption. Thus actions can be bounded above and below. As a consequence

of Lemma 5, we may impose that actions are in Qp(B̃) for some p ∈ P without a�ecting

Cdep1,R|P |+1(d
dep
1 ; ~B). This, together with boundedness of the actions, implies that only a

�nite number of actions need to be considered for each state.

Furthermore, Cdep1,R|P |+1(d
dep
1 ; ~B) corresponds to the optimal expected costs incurred over

R rounds, when starting with departure in port 1 and ending with arrival in port 1. During

these R rounds, a total of 2R|P | states are visited, and thus Cdep1,R|P |+1(d
dep
1 ; ~B)/(2R|P |)

corresponds to the optimal average costs per state over the next 2R|P | states in a Markov

Decision Problem (MDP), when starting with departure in port 1. This MDP has �nitely

many states and actions, by the above discussion. This implies that there exists a stationary

deterministic policy that is average cost optimal (Bertsekas 2007, Prop. 4.1.3, Prop 4.1.7),

proving the second claim of the corollary. Moreover, this implies that lim
R→∞

Cdep1,R|P |+1(d
dep
1 ; ~B)

/(2R|P |) exists for all ddep1 ∈ Z≥0 (Bertsekas 2007, Prop. 4.1.2, Prop. 4.1.3). Thus, the

limit lim
R→∞

Cdep1,R|P |+1(d
dep
1 ; ~B)/R also exists for all ddep1 ∈ Z≥0. (Note that ddep1 ∈ Z≥0 by

Assumption 1.)

We next prove that lim
R→∞

Cdep1,R|P |+1(d
dep
1 ; ~B)/R is independent of ddep1 ∈ Z≥0. Thereto, we

will prove that the weak accessibility condition holds, which states that the set of states

can be partitioned into two subsets S1 and S2 such that the following holds: 1) States

s ∈ S1 are transient under every stationary policy. 2) For every two states s, s′ ∈ S2, state

s′ is accessible from state s (Bertsekas 2007, p199). A state s′ is accessible from state s

if there exists a stationary policy such that the probability of entering state s′ in a �nite

number of transitions starting from state s is strictly positive (Bertsekas 2007, p199).
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Note that if s′ is accessible from s and s′′ is accessible from s′, then s′′ is accessible from

s. Indeed, there must exist a sequence of states starting at s, going to s′ and �nally to s′′,

and if we take the right actions in all these states, there is a positive probability that this

sequence occurs when we start at s. Should this sequence contain multiple visits to the

same state (with di�erent prescribed actions), then removing the loops yields a sequence

from s to s′′ that visits all states only once. For this latter sequence, a policy exists such

that the sequence happens with positive probability when starting at s, showing that s′′ is

accessible from s.

Note that the state s0 representing ddepp[n] = 0 is accessible from all states, by any policy

that sets γp[n] = darrp[n] + Xp
n for p[n] ∈ P. Hence, it remains to show that if a state s is

recurrent under some policy, then s is accessible from s0.

Recall that Xs,max

p[n] and Xp,max

p[n] are chosen such that P(Xs
n = Xs,max

p[n] ) > 0 and P(Xp
n =

Xp,max

p[n] ) > 0 by Assumption 2. Moreover, assume that B <
∑

p∈P (τup +Xp,max
p +Xs,max

p ).

(The degenerate alternative B ≥
∑

p∈P (τup +Xp,max
p +Xs,max

p ) is ignored because trivially

optimal solutions ~B with ~Bp ≥ Xp,max
p−1 + τup +Xs,max

p , for p ∈ P are feasible for this case.)

We show that there exists a port p for which the arrival delay darrp + Xp
n > dmaxp is

accessible from s0. Take a stationary policy Π which takes minimal action, i.e. it sets

∀n : τn = τun and γn = 0 if darrn + Xp
n ≤ dmaxp[n] . Because γ = 0, there is a strictly positive

probability that the additional delay incurred in a round tour equals
∑

p∈P (τup +Xp,max
p +

Xs,max
p )−B > 0 (namely, when we incur the maximum possible delay in each port and sea

leg). Thus, possibly after multiple rounds, with positive probability we reach a port call

n′ for which darrp[n′] + Xp
n′ ≥ dmaxp[n′]. From this state, any delay state for ddepp[n′] is accessible,

by choosing γn′ appropriately.

Take a state s2 ∈ S2 that is recurrent under a certain policy Π′. A state corresponding

to ddepp[n′] = d for some d is visited every round, and if s2 is not accessible from such a state,

then s2 cannot be recurrent. Thus s2 is accessible from a state ddepp[n′] = d for some d, say

state s′. But we just showed that s′ is accessible from s0, and thus s2 is also accessible

from s0. So, states that are recurrent under a policy communicate with s0. This proves

weak accessibility for our model, and thus that the long run average costs are independent

of the starting state ddep0 (Bertsekas 2007, p199, Prop 4.2.3).
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Lemma 7 (Auxiliary towards Theorem 3). The set ∆(B̃) can also be represented as:

∆(B̃) :=
{
B̃′ ∈ B̃

∣∣∣∀p, p′ ∈ P :
⌊
B̃p′ − B̃p

⌋
≤ B̃′p′ − B̃′p ≤

⌊
B̃p′ − B̃p

⌋
+ 1

}
. (26)

Proof of Lemma 7. Let B̃ = (B̃1, . . . , B̃|P |) be completely fractional, and B̃′ ∈ ∆(B̃).

Write B̃p = zp + xp, with zp ∈ {0, 1, . . . , B − 1} and 0 ≤ xp < 1. (Setting xp = 1 is never

required because 0 ≤ B̃p < B since B̃ is completely fractional.) Note that by de�nition

B̃1 = B̃′1 = 0, and that bB̃pc = zp. Hence, the constraints in (26) concerning p = 1 simplify

to: ∀p′ ∈ P : zp′ ≤ B̃′p′ ≤ zp′ + 1. In other words, these constraints require that for p ∈ P

there exists a x′p ∈ [0, 1] such that B̃′p = zp + x′p = bB̃pc + x′p, which is equivalent to the

�rst condition in (17).

Let f : P → P be the unique permutation of P such that p′ > p → xf(p′) > xf(p),

and let f−1 denote its inverse. Uniqueness follows because ∀p, p′ ∈ P with p 6= p′ it holds

that xp 6= xp′ , since xp = xp′ would contradict that B̃ is completely fractional. Thus

f−1(p′) > f−1(p) if and only if xp′ > xp. We �nd:

⌊
B̃p′ − B̃p

⌋
=
⌊
zp′ + xp′ − (zp + xp)

⌋
=
⌊
zp′ − zp + xp′ − xp

⌋
=


(zp′ − zp) if f−1(p′) > f−1(p)

(zp′ − zp)− 1 if f−1(p′) < f−1(p).

Note that B̃′p′ − B̃′p = zp′ − zp + x′p′ − x′p. Thus the condition bB̃p′ − B̃pc ≤ B̃′p′ − B̃′p ≤

bB̃p′ − B̃pc+ 1 for p, p′ ∈ P that is part of the de�nition of ∆(B̃) in (26) is equivalent to

the following condition on x′p, x
′
p′ :

0 ≤ x′p′ − x′p ≤ 1 if f−1(p′) > f−1(p)

−1 ≤ x′p′ − x′p ≤ 0 if f−1(p′) < f−1(p).
(27)

Thus, for any i, i′ ∈ {1, . . . , |P |} with i′ > i, substituting p′ = f(i′) and p = f(i) in (27)

yields x′f(i′) − x
′
f(i) ≥ 0 since f−1(f(i′)) > f−1(f(i)). Thus x′f(1) ≤ x

′
f(2) ≤ . . . ≤ x

′
f(|P |).

Conversely, assume 0 = x′f(1) ≤ x′f(2) ≤ . . . ≤ x′f(|P |) ≤ 1. Then (27) is satis�ed, since

∀p ∈ P : 0 ≤ xp ≤ 1 implies that −1 ≤ xp′ − xp ≤ 1, and the other inequalities of (27)
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follow by reversing the above argument.

Lemma 8 (Auxiliary towards Theorem 3). Take any completely fractional B̃ ∈ B̃ and let

Π∗
B̃

denote its average cost optimal policy. For all B̃′ ∈ ∆(B̃), let Π̂B̃′ be the policy as

de�ned in Theorem 3. Then, for each random sequence X = (X1, . . . , X2N−2) and for all

n ∈ {1, . . . , N}, there exist z, z′, z′′, z′′′ ∈ Z, p, p′, p′′, p′′′ ∈ P such that for all B̃′ ∈ ∆(B̃)

under policy Π̂B̃′ we have:

ddepn = z + B̃′p − B̃′p[n], τn = z′ + B̃′p′ − B̃′p

darrn+1 +Xp
n+1 = z′′ + B̃′p′′ − B̃′p[n+1], γn+1 = z′′′ + B̃′p′′′ − B̃′p′′ ,

with z, z′, z′′, z′′′, p, p′, p′′ and p′′′ all independent of B̃′, provided policy Π̂B̃′ is used.

Proof of Lemma 8. In a �nite horizon, the sequence of random variables

X = (X1, . . . , X2N−2) = (Xs
1 , X

p
2 , X

s
2 , . . . , X

p
N−1, X

s
N−1, 0)

yields a sequence of states and a sequence of actions:

(s1, . . . , s2N−2) := (ddep1 , darr2 +Xp
2 , d

dep
2 , . . . , darrN−1 +Xp

N−1, d
dep
N−1, d

arr
N ),

(a1, . . . , a2N−2) := (τ1, γ2, τ2, . . . , γN−1, τN−1, 0).

These latter sequences may depend on B̃′, the stationary deterministic policy Π̂B̃′ , and

the random sequence X.

By Lemma 5 and the notation following that lemma, ∀i ∈ {1, . . . , 2N − 2}, the state in

period i can be expressed as si = sp[i],u[i][zi, p
′[i]; B̃′]. Since the port sequence is �xed, and

arrivals and departures alternate, p[i] and u[i] are independent of B̃′ and the policy. We

will show that under Π̂B̃′ , the variables zi ∈ Z and p′[i] ∈ P are independent of B̃′, as long

as B̃′ ∈ ∆(B̃). That means that for a �xed random sequence X, the delay in state i can

be expressed as d = zi + B̃′p′[i] − B̃
′
p[i], and that zi, p

′[i] and p[i] are independent of B̃′, as

long as B̃′ ∈ ∆(B̃) and as long as we use the policy Π̂B̃′ . Note that this will imply the

claims.

The proof is by induction in i. For i = 1, ddep1 = z ∈ Z≥0 by Assumption 1. Setting
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s1 = sp[1],dep[z, p[1]; B̃′] yields this delay for all B̃′ ∈ ∆(B̃), which implies independence for

i = 1. The induction step will be proved separately for odd, and for even i.

First assume the statement holds for some odd i (which corresponds to a departure

delay for some port call n). Let si = sp[n],dep[z, p; B̃′], which corresponds to departing from

port p[n] with delay ddepn = z + B̃′p − B̃′p[n]. Assume Π∗
B̃

(sp[n],dep[z, p; B̃]) = ap[z
′, p′; B̃].

Note that an action of this form must be optimal since ddepn + Tn(ddepn ; ~B) ∈ Qn(B̃) by

Lemma 5. Thus ai = Π̂B̃′(si) = ap[z
′, p′; B̃′] is the action taken under Π̂B̃′ . Note that z

′

and p′ are independent of B̃′ by induction hypothesis, and by construction of Π̂B̃′ . Write

Xs
n = zs and Xp

n+1 = zp, where zs, zp ∈ Z≥0 by Assumption 1. Note that ai denotes

τn = z′ + B̃′p′ − B̃′p. Thus action ai in state si yields d
dep
n + τn = (z + z′) + B̃′p′ − B̃′p[n].

By de�nition of the cumulative bu�ers B̃′ it holds that B̃′p[n] + ~B′p[n] = B̃′p[n+1] + zn, with

zn := B ∈ Z if p[n+ 1] = 1 and zn = 0 otherwise. Thus, ddepn + τn − ~B′p[n] + Xs
n =

(z+ z′+ zs) + B̃′p′ − (B̃′p[n] +
~B′p[n]) = (z+ z′+ zs− zn) + B̃′p′ − B̃′p[n+1] = z̃+ B̃′p′ − B̃′p[n+1],

for some z̃ ∈ Z. Thus darrn+1 = (z̃ + B̃′p′ − B̃′p[n+1])
+.

We now distinguish two cases: 1) z̃ + B̃p′ − B̃p[n+1] ≤ 0 and 2) z̃ + B̃p′ − B̃p[n+1] > 0.

For Case 1, we have B̃p[n+1] − B̃p′ ≥ z̃, which implies that
⌊
B̃p[n+1] − B̃p′

⌋
≥ z̃, and thus,

by Lemma 7, that B̃′p[n+1] − B̃
′
p′ ≥ z̃. Hence, darrn+1 +Xp

n+1 = (z̃ + B̃′p′ − B̃′p[n+1])
+ + zp =

zp = zp + B̃′p[n+1] − B̃
′
p[n+1] which implies si+1 = sp[n+1],port[z

′′, p′′; B̃′] with z′′ = zp and

p′′ = p[n+ 1]. For Case 2, we have B̃p[n+1]− B̃p′ < z̃, and thus
⌈
B̃p[n+1] − B̃p′

⌉
≤ z̃ which

implies (Lemma 7) that B̃′p[n+1] − B̃
′
p′ ≤ z̃. Thus darrn+1 +Xp

n+1 = z̃ + B̃′p′ − B̃′p[n+1] + zp =

(z̃+zp)+B̃′p′−B̃′p[n+1], implying si+1 = sp[n+1],port[z
′′, p′′; B̃′] with z′′ = z̃+zp and p′′ = p′.

Note that z̃ = z+ z′+ zs + zn is independent of B̃′ by induction hypothesis, and thus case

checking is independent of B̃′. (It is thus essential that B̃ can be used for case checking.)

Hence, z′′ and p′′ are independent of B̃′, which proves the result for i+ 1.

Now assume the result holds for some even i′ (which corresponds to a port delay for

some port call n). Let si′ = sp[n],port[z
′′, p′′; B̃′], which corresponds to being in port p[n]

with delay darrn +Xp
n = z′′+ B̃′p′′ − B̃′p[n]. Assume Π∗

B̃
(sp[n],port[z

′′, p′′; B̃]) = ap′′ [z
′′′, p′′′; B̃].

Note that an action of this form must be optimal by Lemma 5. Let ai′ = Π̂B̃′(s
′
i) =

ap′′ [z
′′′, p′′′; B̃′], and note that z′′′ and p′′′ are independent of B̃′ by induction hypothesis.

We �nd ddepn = (darrn +Xp
n − γn)+. We have darrn +Xp

n − γn = (z′′ + B̃′p′′ − B̃′p[n]) + (z′′′ +

B̃′p′′′ − B̃′p′′) = z̃′ + B̃′p′′′ − B̃′p[n], where z̃
′ = z′′ + z′′′ ∈ Z.
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Distinguish between two cases: 1) z̃′ + B̃p′′′ − B̃p[n] ≤ 0 and 2) z̃′ + B̃p′′′ − B̃p[n] > 0.

For the �rst case, we have B̃p[n] − B̃p′′′ ≥ z̃′, which implies that
⌊
B̃p[n] − B̃p′′′

⌋
≥ z̃′, and

thus, by Lemma 7, that B̃′p[n] − B̃′p′′′ ≥ z̃′. Hence, ddepn = (darrn + Xp
n − γn)+ = 0 =

B̃′p[n] − B̃
′
p[n] which implies si′+1 = sp[n],dep[z′′′′, p′′′′; B̃′] with z′′′′ = 0 and p′′′′ = p[n]. For

Case 2, we have B̃p[n] − B̃p′′′ < z̃′, and thus
⌈
B̃p[n] − B̃p′′′

⌉
≤ z̃′ which implies (Lemma 7)

that B̃′p[n] − B̃′p′′′ ≤ z̃′. Thus ddepn = (darrn + Xp
n − γn)+ = z̃′ + B̃′p′′′ − B̃′p[n], implying

si′+1 = sp[n],dep[z′′′′, p′′′′; B̃′] with z′′′′ = z̃′ and p′′′′ = p′′′. Note that z̃′ is independent of

B̃′, thus so is the case checking. Thus p′′′′ and z′′′′ are independent of B̃′, which proves the

statement for i′ + 1. This completes the proof by induction.

Lemma 9 (Auxiliary towards Theorem 3). Take any completely fractional B̃ ∈ B̃ and let

Π∗
B̃

denote its average cost optimal policy. For all B̃′ ∈ ∆(B̃), let Π̂B̃′ be the policy as

de�ned in Theorem 3. Then, Ĉ(B̃′) is a�ne in B̃′.

Proof of Lemma 9. Let X = (X1, . . . , X2N−2) = (Xs
1 , X

p
2 , X

s
2 , . . . , X

p
N−1, X

s
N−1, 0) be a

sequence of random variables. It follows from Lemma 8 that ddepn = z + B̃′p − B̃′p[n] with

z ∈ Z and p ∈ P both independent of B̃′, provided policy Π̂B̃′ is used. Hence, D
dep
p[n](d

dep
n )

is a�ne in B̃′ for the sequence X under Π̂B̃′ . Indeed,
⌊
B̃p − B̃p[n]

⌋
≤ B̃′p − B̃′p[n] ≤⌊

B̃p − B̃p[n]
⌋

+ 1 for all B̃′ ∈ ∆(B̃) by Lemma 7. Since the delay costs Ddepp[n](d
dep
n ) are

piecewise linear with breakpoints at Z≥0 by Assumption 1, there exist constants c1 and c2

such that Ddepp[n](z+B̃′p−B̃′p[n]) = c1+c2(z+B̃′p−B̃′p[n]) for all B̃
′ ∈ ∆(B̃), which is a�ne in

B̃′. For the sailing costs Fp[n](τn), we again have
⌊
B̃p′ − B̃p

⌋
≤ B̃′p′− B̃′p ≤

⌊
B̃p′ − B̃p

⌋
+1

by Lemma 7. Thus, since τn = z′+ B̃p′ − B̃p is feasible for B̃, τ ′n = z′+ B̃′p′ − B̃′p is feasible

for B̃′. We know from Lemma 8 that z′ ∈ Z and p, p′ ∈ P are all independent of B̃′ for

all B̃′ ∈ ∆(B̃). Since Fp[n](τn) is a piecewise linear function with breakpoints at Z≥0 by

Assumption 1, Fp[n](z′ + B̃′p′ − B̃′p) is a�ne in B̃′ for all B̃′ ∈ ∆(B̃). In a very similar

fashion it can be shown that, for the sequence X under Π̂B̃′ , the arrival delay D
arr
p[n](d

arr
n ),

and the costs of the extreme action ceγn, are a�ne in B̃′. (Note that since by Lemma 8

we can write darrn+1 + Xp
n+1 = z′′ + B̃′p′′ − B̃′p[n+1], and since Xp

n+1 ∈ Z by Assumption 1,

we can also write darrn+1 = z̃ + B̃′p′′ − B̃′p[n+1].) Because this holds for all n, the total costs

incurred over the periods {1, . . . , N = R|P |+ 1} for the sequence X under Π̂B̃′ are a�ne
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in B̃′ ∈ ∆(B̃).

The total expected costs under Π̂B̃′ over the periods {1, . . . , N = R|P | + 1} are the

expectation of the costs for each sequence over all sequences, and they are a�ne in B̃′

because taking a linear combination over a�ne functions yields an a�ne function. The

average expected costs Ĉ(B̃′) under Π̂B̃′ are obtained by dividing the total costs incurred

over {1, . . . , N = R|P |+1} by R, taking the limit R→∞. This limit exists for all B̃′ since

it corresponds to the average costs of a stationary policy in a �nite-state Markov Process

(see the proof of Theorem 2). Moreover, Π̂B̃′ is a�ne in B̃′ for B̃′ ∈ B̃, since the limit of

functions that are a�ne in B̃′ is a�ne in B̃′, provided the limit exists for each B̃′.

Proof of Theorem 3. Lemma 9 establishes the existence of g0 and g = (g1, . . . , g|P |) such

that ∀B̃′ ∈ ∆(B̃) : Ĉ(B̃′) = g0 +
∑

p∈P gpB̃
′
p.

We now show that g must be a subgradient at B̃. For some arbitrary B̃′′ ∈ B̃, let

B̃(x) = B̃+x(B̃′′− B̃). We have C∗(B̃(0)) = C∗(B̃), and C∗(B̃) = Ĉ(B̃) = g0 +
∑

p∈P gpB̃p

because Π̂B̃ is optimal for B̃ by construction. Because B̃ is completely fractional, there is

some ε > 0 such that B̃(−ε) = B̃− ε(B̃′′− B̃) ∈ ∆(B̃). Thus Π̂B̃(−ε) is feasible for B̃(−ε),

and we obtain C∗(B̃(−ε)) ≤ Ĉ(B̃(−ε)) = g0 +
∑

p∈P gpB̃(−ε)p = g0 +
∑

p∈P gp[B̃p −

ε(B̃′′p − B̃p)] = C∗(B̃) − ε
∑

p∈P gp(B̃
′′
p − B̃p). Now, by Theorem 1, C∗( ~B) is convex in

~B ∈ B, and since B̃ is obtained by an a�ne transformation of ~B, C∗(B̃) is convex in

B̃ ∈ B̃. Thus C∗(B̃(x)) is convex in x, which implies that (1 + ε)C∗(B̃(0)) ≤ C∗(B̃(−ε)) +

εC∗(B̃(1)). Thus εC∗(B̃′′) = εC∗(B̃(1)) ≥ (1 + ε)C∗(B̃(0)) − C∗(B̃(−ε)) ≥ (1 + ε)C∗(B̃) −[
C∗(B̃)− ε

∑
p∈P gp(B̃

′′
p − B̃p)

]
= ε

[
C∗(B̃) +

∑
p∈P gp(B̃

′′
p − B̃p)

]
. Thus we �nd ∀B̃′′ ∈

B̃ : C∗(B̃′′) ≥ C∗(B̃) +
∑

p∈P gp(B̃
′′
p − B̃p), which is precisely the subgradient inequality.

Thus g is a subgradient at B̃.

Additionally, for any B̃′ ∈ ∆(B̃), we know that C∗(B̃′) ≤ Ĉ(B̃′) since Π̂B̃′ is a feasible

policy for B̃′. But Ĉ(B̃′) = g0 +
∑

p∈P gpB̃
′
p = C∗(B̃) +

∑
p∈P gp(B̃

′
p − B̃p) ≤ C∗(B̃′),

where the second equality follows because C∗(B̃) = g0 +
∑

p∈P gpB̃p, and the inequality is

the subgradient inequality at B̃ that we just proved. Combining these inequalities yields

∀B̃′ ∈ ∆(B̃) : C∗(B̃′) = Ĉ(B̃′), completing the proof.

Proof of Corollary 1. Let B̃ be completely fractional and let g denote the subgradient
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from Theorem 3. For arbitrary B̃′′ ∈ B̃, we obtain the subgradient inequality at B̃′ ∈ ∆(B̃):

C∗(B̃′′) ≥ C∗(B̃) +
∑
p∈P

gp(B̃
′′
p − B̃p) = C∗(B̃′) +

∑
p∈P

gp(B̃
′′
p − B̃′p)

Here, the inequality holds because g is a subgradient at B̃, and the equality because

C∗(B̃′) = Ĉ(B̃′) = C∗(B̃) +
∑

p∈P gp(B̃
′
p − B̃p) for B̃′ ∈ ∆(B̃) by Theorem 3. But the

subgradient inequality for g at B̃′ shows that g is a subgradient at B̃′.

Proof of Theorem 4. The extreme points induced by 0 ≤ xf(1) ≤ xf(2) ≤ . . . ≤ xf(|P |) ≤

1 are the extreme points of ∆(B̃). It is easy to verify that the extreme points are exactly

given by B̃j for j ∈ {1, . . . , |P |}. Namely, each extreme point will have xp = 0 or xp = 1

for 1 ≤ p ≤ |P |. Furthermore, the ordering induced by the bijection f ensures that xp = 1

can only be valid if xp′ = 1 for all p′ such that f(p′) > f(p). Since 0 ≤ xf(1) ≤ xf(2) ≤

. . . ≤ xf(|P |) ≤ 1 only contains linear inequalities, the feasible region is a polyhedron. This

polyhedron is clearly bounded. Combining this with the fact that the extreme points of

the polyhedron are B̃j , j ∈ {1, . . . , |P |}, the convex hull of {B̃j |j ∈ {1, . . . , |P |} must equal

∆(B̃).
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