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MUSKIETE JAG
A.D. Keet

Jou vabond, wag, ek sal jou kry,
Van jou sal net ‘n bloedkol bly
Hier teen my kamermure.
Deur jou vervloekte gonsery,
Deur jou gebyt en plagery,
Kon ek nie slaap vir ure.

Mag ek my voorstel, eer ons skei,
Eer jy die doodslag van my kry —
My naam is van der Merwe.
Muskiet, wees maar nie treurig nie,
Wees ook nie so kieskeurig nie.
Jy moet tog ééndag sterwe.

Verwekker van malaria,
Sing maar jou laaste aria —
Nog een minuut vir grasie.
Al soebat jy nou nog so lang,
Al sé jy ook: ek is nie bang,
Nooit sien jy weer jou nasie...

Hoe sedig sit hy, o die kreng!

Sy kinders kan maar kranse bring,
Nou gaan die vabond sterwe.....

Pardoef! Dis mis! daar gaan hy weer!

Maar dédd sal hy, sowaar ek sweer —
My naam is van der Merwe.
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General introduction

Arboviruses are a group of viruses that use arthropod vectors as their main transmission
route and are therefore defined as ARthropod-BOrne viruses. Known vectors include
mosquitoes, ticks, midges, and sandflies. They transmit viruses belonging to various families
that are taxonomically unrelated, but grouped by their shared biomechanical characteristic.
Of the over 545 suspected arbovirus species, more than 150 cause disease in humans, and
most of these are zoonotic.[1-3]

Most pathogenic human arboviruses are sustained in a transmission cycle in which the
vectors are arthropods, mainly mosquitoes, and the animal reservoirs are mainly domestic
poultry, wild birds, and rodents that serve as the amplifying hosts (figure 1). An amplifying
host develops a high level of viremia for sufficient time to infect the vectors that feed on it.
Humans are often dead-end hosts, as they seldom develop the high viremias needed to
infect arthropods. A few viruses like yellow fever virus (YFV), chikungunya virus (CHIKV), and
dengue virus (DENV) have expanded their host range to include humans as an amplifying
host, thereby losing the need for an animal reservoir to sustain virus circulation.[4-7]

Several factors determine the capacity of blood-feeding (hematophagous) arthropods to
serve as vectors in a transmission cycle. First, certain animal hosts must be available to the
type of arthropod that feeds on them.[8] Second, the arthropod must be competent to
become infected by feeding on a viremic host. Third, the virus must be able to survive
digestion by the arthropod; it must then replicate and be disseminated from the salivary
glands when the arthropod feeds on a susceptible and uninfected host.[8, 9] Of all
arthropods, mosquitoes form the largest and most important group of vectors for
arboviruses.[8]

In the sylvatic cycle arboviruses survive by transmission between specific wild animals and
specific arthropods. Humans are accidental hosts that become infected by entering the
sylvatic cycle through agriculture, urbanisation, or outdoor leisure activities.[10-12] These
human incursions change the natural environment of the virus and potentially lead to
numerous secondary vectors that can serve as bridge vectors, by feeding on infected birds
and wild mammals and in turn infecting domestic animals and humans. This process can turn
an enzootic cycle into an epizootic or epidemic cycle. Viruses that use humans as their main
reservoir, like CHIKV and DEN, are thought to have spilled over from a sylvatic cycle. They
are now sustained mainly in an urban or suburban population in which mosquitoes transmit
viruses directly from one person to the next.[10, 11, 13, 14]

The emergence of arboviruses in Europe

Recent decades have seen increasing arboviral outbreaks caused by importation of new virus
species to Europe or the spread of established species to new parts of Europe.[15-18] In
2001, Usutu virus, probably introduced by bird migration from African continent was
diagnosed as the cause of avian deaths across Austria.[20] The 2011 emergence of a new
disease in cattle named Schmallenberg virus caught the Dutch/European animal production
industry by surprise, causing major stock and monetary losses.[19] Arboviruses already
present in Europe that are expanding their territory include West Nile virus (WNV), which
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since 1996 has caused outbreaks of encephalitis in horses and humans in France, Greece,
Italy, Romania and Hungary.[21-25]

Figure 1: General cycle arboviruses
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Many factors interact to shape the likelihood of disease outbreaks. Among others, these
driving factors include vectors, human and animal population densities, climate variation,
and habitat fragmentation.[11, 26] Understandably, their disparity makes disease
surveillance and outbreak predictions challenging. The emergence of new diseases and
changes of circulation of current diseases are intertwined with these factors through
introduction of vectors, animals, or humans into new areas and through mutations that
result in adaptation to a new vector and/or increased fitness of virus or host. Additionally,
improvements in detection capability could reveal diseases that appear emergent but were
actually present without being detected.

Globalisation plays an important role in disease emergence through rapid introduction of
viruses into naive populations. In addition to the Schmallenberg and Usutu viruses, recent
examples are the introduction and continued transmission of DENV and CHIKV into Europe
and the current CHIKV and Zika virus outbreaks in the Americas.[27-32]

Over the last century, international travel and trade have expanded due to easier air traffic,
the speed and declining cost of human and/or freight transport, the concentration and
movement of cheap labour, and development of new markets and products around the
world. Billions of animals are legally transported worldwide for food, food production, as
pets, for science, and conservation.[27] The number increases dramatically when illegal
trade is included. The importation of the ‘tiger mosquito’ Aedes Albopictus through Lucky
Bamboo plants from China has substantiated the risk of introducing exotic vectors through
trade in Europe and the Netherlands.[33] This mosquito is a competent vector for the CHIKV
and DENV circulating in China, and can serve as vector for a range of arboviruses.
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Not only animals and products but also humans are increasingly travelling around the world;
for work, immigration, tourism, or visiting family and friends. In 2014, Schiphol airport in the
Netherlands served 45.2 million passengers, of whom 26.4 million had Schiphol as their final
destination or starting point. The increasing amount and speed of travel raises the risk of
travellers becoming infected with exotic diseases, and viremic passengers have increasingly
brought CHIKV into Europe. [34-37] For several years, the lack of an appropriate vector kept
the virus from gaining a foothold, but in 2007, a passenger from India brought to Italy a new
CHIKV variant that could replicate much better in Aedes albopictus than other CHIKV viruses.
This mosquito is not native to Europe but has expanded its European population, over the
past decade, since being imported in old tires containing its eggs.[38, 39] These two factor,
the importation of a new CHIKV variant and the previous importation of A. albopictus, made
the CHIKV outbreak in Italy in 2007 and France in 2010 possible.[11, 40]

In 2011-2013, 80 percent of the Dutch population booked one or more vacations annually,
spending about 50 percent abroad, or about 18 million vacations each year.[41] Although
Europe remains the main destination, more and more Dutch travellers seek alternative
destinations like the Far East, the Caribbean, Asia and Africa.[41] The expanding worldwide
outbreaks of DENV, especially after 2000, and of CHIKV in Asia after 2004, have brought
more attention to the possible presence of these infectious diseases in travellers, spurring
development of more preparedness schemes focussing on travellers.[28, 29, 34-36, 42, 43]

Recent risk-mapping models that take habitat, climate, host animals, pathogens, and socio-
economic factors into account indicate that parts of Europe, including the Netherlands, are
at potential risk for emerging infectious diseases, specifically zoonotic diseases.[1, 44] As yet,
however, only very limited surveillance is performed in the Netherlands, and no arboviruses
have been found to be circulating in local wildlife or the general human population.[3, 16,
45]

Surveillance

Multiple surveillance programs have been initiated, some of which use travellers to assess
the risk of imported pathogens to individual and public health.[46-49] The two main
programs that provide annual reports of disease in travellers are the Geosentinel and
EuroTravNet networks.[46] However, only a few clinics participate; the data must be
submitted manually, and information is not reported in real time but collected for focussed
reports spanning several years.[46, 47] Although these networks show the value of
surveillance in travellers, much diagnostic data remains unused and dependent on
retrospective reporting. Accordingly, we explored whether routine laboratory arbovirus
submission data and results could be used in additional and possibly real-time monitoring of
illness trends, with international travellers contributing to surveillance of individual health
and both national and international public health.[49]

Goal, outline of thesis, and research questions

Given the diversity and unpredictability of emerging diseases and the difficulty of identifying
which will be a future threat, innovative preparedness strategies to focus on multiple
pathogens, species, and symptoms are needed. Current arbovirus surveillance in Europe is
patchy and often focussed on a single disease. Also, it is typically separate from the general
health structures, as the information systems and data used in the medical field are not
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optimal for use in surveillance.[50] Going forward, however, the economic burden of
surveillance of so many diseases, as well as preparing for emerging diseases, requires
moving away from the paradigm of focussed single-disease surveillance based on optimal
data. For sustainable emerging disease preparedness, pre-existing information sources may
provide effective surveillance opportunities.[49]

In this thesis, we focus on integrating travel medicine with public health surveillance, using
travellers as sentinels for arbovirus activity within the global health community. We
investigate possibilities to utilise our current hospital information systems, using the
anonymised data collected for individual patient care of travellers, to conduct real-time
national and international surveillance. However, as pathogen exposure and outbreaks often
occur in animals before humans, certain animals are suitable as sentinels and can play an
essential part of arbovirus surveillance.[51-53] We therefore explored possibilities in
veterinary medicine, exploring the One Health perspective in arbovirus surveillance.

The overall goal of this thesis is to study how existing medical information and medical
health structures could be used for arbovirus surveillance in the Netherlands for the
identification and quantification of arbovirus threats to public and veterinary health.

To achieve this goal, laboratory-based tools and epidemiological models are integrated and
used for risk and exposure profiling to obtain crucial information on arboviral exposure,
circulation, and transmission. The general steps within the overall project can be divided into
three main research questions addressed in chapters two through four.

In chapter two we investigate whether information from routine diagnostic databases can
be used [as a resource] in surveillance of the arboviral disease burden in travellers.

In chapter three we quantify which arboviruses pose a travel risk and how they can be
categorised to provide systematic information for diagnostics and surveillance.

In chapter four we investigate how arbovirus diagnostics are currently performed in the
Netherlands and to what extent travellers are at risk of under-diagnosis?

In chapter five we develop an arbovirus protein micro-array for multiplex serological
diagnosis of arbovirus infections in humans (imported by travellers) and equines (local
circulation).

In chapter six we perform a retrospective study in travellers to evaluate the added value of
standardised algorithms and multiplex testing of arboviruses for public health surveillance
and patient care.
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Using routine diagnostic data as a method of
surveillance of arboviral infection in travellers:
a comparative analysis with a focus on dengue

Cleton N., Reusken C., Murk JL., De jong M., Reimerink J., Van der Eijk A. and Koopmans M.

Abstract

Background: In a large part of the developing world, limited infectious disease
surveillance is performed. In laboratory information management systems data on
diagnostic requests is available and may be amenable to trend analyses. We explored
this potential, using DENV diagnostic requests as a model.

Method: Test results and anonymised information provided by clinicians were
received for 8,942 patients from diagnostic centres in the Netherlands from January
2000 to May 2011. The data were evaluated for completeness of a predefined
minimal dataset and trends in DENV positive results by travel destination. Population
travel data were obtained from a commercial registry, and dengue case notification
data by country from WHO DengueNet.

Results: Vaccination history was rarely reported (0.4%); travel destination was
completed for 42% of requests; trends in diagnostic requests and IgM positive tests
for this subset correlated to the WHO DENV notifications for the three main travel
destinations, with some discrepancies. Additionally, this approach may provide
information on disease outbreaks with other pathogens causing diseases clinically
similar to DENV. PCR data proved to be insufficient for trend monitoring by country.

Conclusion: This approach is not
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Introduction

New diseases continue to emerge across the world, due to a complex array of factors
relating to demographics, increasing demand for animal protein, deforestation, and a steep
increase in international travel and trade [1, 2]. Vector-borne diseases, with the exception of
West Nile and Dengue virus, are considered neglected tropical diseases and no or little
surveillance is performed in a large part of the developing world.

Systematic evaluation of health complaints through travel clinics has shown a high incidence
of health complaints (8-10%) [3, 4]. As a consequence, international travellers can be seen as
sentinels and sources of introduction for infectious diseases occurring worldwide [5-8].
Developing diagnostic tools and approaches to monitor health complaints in returning
travellers could provide an interesting addition to traditional surveillance [8].

Geosentinal clinics form an international network that collects data on diseases in travellers.
However, the number of clinics participating is limited and the reporting system depends on
the extent to which clinicians actively upload information. A large amount of diagnostic data
is therefore available in diagnostic laboratories but remains unused for surveillance
purposes. This had led us to explore the use of routine laboratory submission data and
results for additional monitoring of trends of illness through international travellers. Here,
we set out to explore this potential by using dengue virus as an example.

Dengue virus (DENV) is considered one of the most important arboviruses globally, with 2.5
billion people at risk of infection according to the World Health Organization (WHO) [9]. It is
a well-recognized disease in travellers to tropical and subtropical regions and therefore
diagnostic tests are requested frequently [10-12]. Surveillance is done in many countries
that are popular travel destinations, and DENV probable and confirmed cases are notified on
voluntary basis to the WHO. This currently provides the best insight into the DENV situation
per country and therefore offers a potential comparison and addition to data provided by
diagnostic laboratories [13, 14]. Routine diagnostic information in travellers coupled to
travel history and symptoms could potentially be used as an already in-place cost-effective
additional information source for monitoring the demographics of disease and exposure
trends where no surveillance in available [15].

The goal of our study is to investigate the usability of diagnostic information of returning
travellers on travel history, symptoms and diagnostic results provided by routine diagnostic
laboratories as complementary information usable in surveillance for disease in travellers,
providing information on public health threats by possible introduction of viremic patients
and trends in local disease activity. We use DENV as an example since WHO surveillance
information is available for some countries as comparison and complementary data.

14
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Methods

Diagnostic data: During a consensus meeting between the diagnostic laboratories and
responsible researchers, a minimal dataset needed for data analysis was proposed and
discussed based on the question what minimal information was essential for use in
surveillance of disease in travellers and the countries they visit. The defined minimum
dataset was age, sex, travel date and destination, description of clinical symptoms,
vaccination history, diagnostic results and test(s) used.

Age and sex were considered to be of importance in order to identify risk groups and make
results compatible between diagnostic centres. Information of travel history and dates were
needed to correlate demographic distribution of infections in Dutch travellers to current
known and unknown outbreaks. This information was also needed for interpreting results as
new or old infections and possible cross-reactions with co-circulating cross-reactive arboviral
infections [16-19]. Records of clinical symptoms were needed to evaluate the usefulness of
the clinical data for syndromic surveillance [20]. Finally, vaccination history was considered
essential for the data analysis since a number of flavivirus vaccinations (TBEV, JEV, YFV) are
known to cross-react causing false positive IgG diagnostic results [16, 19].

Data containing the diagnostic results, interpretation, and the information provided by
clinicians with the requests for DENV diagnostics were retrospectively extracted from the
laboratory information management systems (LIMS) from the three main arboviral
diagnostic labs in the Netherlands from 2000 to 2011. This represents the vast majority of all
DENV diagnostic requests in the Netherlands.

The information was provided in excel format as raw data. As there is no standardized
testing for DENV infections, each laboratory provided the interpretations of the results.
Diagnosis was based on determination of IgM and IgG antibodies by rapid lateral flow
Immunochromatographic Test (ICT) by Panbio (Brisbane, Australia) (one laboratory),
immunofluorescence assay (IFA) by Progen (Heidelberg, Germany) and Scimedix (Denville,
New Jersey, USA) (one laboratory) and Enzyme-linked immunoassays (ELISA) from Focus
(Cypress, CA, USA) (two laboratories). Each laboratory provided a cut-off for defining if a
diagnostic result was considered positive or negative. Laboratories using IFA and ELISA tests
used a higher but comparable cut-off than recommended by the manufacturer to increase
specificity. These cut-offs were defined by validation prior to implementation of the assays
in the diagnostic routine. In compliance with the medical ethical guidelines, no personal
identifiers were included.

Data analysis: A database was created in Microsoft Excel (edition 2007). The raw data was
organized and imported into “R” (version 2.14.0) for further analysis. The data was
evaluated for completeness of the minimal defined dataset and for trends in DENV positive
results by travel destination. These trends were compared with those based on data
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collected by WHO DengueNet 2001 to 2011 that are published by the WHO regions online
(South-East Asia only published data until 2010).

Travel data: Data were obtained from a commercial research registry
“ContinuVakantieOnderzoek” (CVO) that follows travel trends by interviewing, every three
months, 10,000 out of a panel of 150,000 Dutch homes about their travel behaviour [21].
The research has been conducted since the 1980’s and is used for monitoring Dutch travel
behaviour in the tourist and travel industry. Basic information is requested on number and
length of vacations within and outside the country (if any), location and lodging, activities,
method of transport and booking. Information is analyzed in condensed form for reports and
raw data is available in an online database HolidayTracker [21].

Estimation of the proportion of DENV infections in travellers, 2010: As travellers may be seen
as a source of introduction of arboviral infections, we tried to use the available data to
provide an estimate range for the possible proportion of travellers infected with Dengue
during one year. For this, the lower limit estimate was made by

Eiow = (P*4)/N

Where Ejoy is the lower estimate of DENV infections, P is the number of DENV IgM positive
patients, 4 is the multiplication factor assuming 25% of all cases are symptomatic [22], and N
is the number of travellers to DENV endemic countries.

The higher estimate was made by:

Enigh = ((N*0.1)*(P/T))/N*4

Where 4, N and P are as indicated above, 0.1 is the estimated proportion of travellers
returning with febrile iliness [3, 4, 23, 24], and T is the number of samples tested.

Statistical analysis: Proportions were tested with Pearson's chi-squared test for equality of
proportions. Trend lines were tested with F-test and R? and correlations were calculated
using Spearman’s rank correlation coefficient for describing independence between
variables (rs).

Results

Completeness of diagnostic data

In total, data were received on 10540 diagnostic samples from 8,942 patients from the three
diagnostic centres in the Netherlands from January 2000 until May 2011. Each laboratory
provided diagnostic result and interpretation per patient.

The completeness of data ranged from 0.5% for vaccination history to 98% and 99% for sex
and birth date. Some basic clinical information was provided with 75% of requests, but only
42% of the requests mentioned information on travel history (Table 1). Only 0.2% of
diagnostic requests contained all parameters.
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Trends in diagnostic requests and results

Between 2000 and 2011 RT-PCR for detection of DENV viral RNA was performed on 275
samples (3%) of DENV diagnostic requests. More than 50% of the RT-PCR requests have
occurred in the last three years and the percentage of positive samples has dropped from
30% to 13% (data not shown). RNA was more often detected in IgM positive (23%) than in
IgM negative patients (9%).

The annual number of serological diagnostic requests for DENV has increased significantly
over time (Figure 1). In correspondence, the proportion of travellers with diagnostic
requests has also increased (Figure 1). Correlation between the number of requests, and IgG
and IgM positive samples per year was very high (rs= 0.82 to 0.99 and P <0.01). The
proportion of patient samples testing positive for DENV IgG or IgM antibodies fluctuated,
with peaks in 2005 and in 2009/2010. IgG and IgM proportions show a reasonably strong
correlation (rs=0.70 and P <0.01). When studying trends in more detail, the increase relative
to the previous year of I1gG positives compared to IgM was higher in 2005 than in 2009,
which indicates some independence between IgG and IgM proportions. A third peak was
observed in 2002 but this is less clear as the total number of diagnostic requests was too low
to draw conclusions based on this.

Trends in travel history by region

The 3,751 (42%) patients that had information on travel history provided with their
diagnostic requests were subdivided into the geographical regions Africa, Americas, Europe
and Asia-Oceania. For 263 patients, travel history was stated as ‘Tropics’ (228), ‘No’ (12) or
‘Yes’ (23) and these could not be assigned into a geographical category. Patients (n = 219)
that had travelled to more than one region were included multiple times in the subdivision.
Most patients traveling outside of Europe had travelled to Asia-Oceania followed by the
Americas and then Africa (Table 2). The prevalence of DENV IgM and IgG positive patients
differed significantly for travellers from different regions (Table 1, P<0.01). Only 29% (79) of
the samples tested with PCR were accompanied by travel information (Table 2).

Trends in travel history by country

In total 131 different countries were listed in the travel history of patients. The top five
travel destinations were Indonesia, Thailand, Surinam, India and the combination of the
former and current Dutch Caribbean Islands, i.e. Bonaire, St Eustatius and Saba (BES islands),
St Maarten, Aruba and Curacao (2000 patients, 53%). Travellers from Surinam were most
frequently DENV IgG positive (Figure 2 and 3A). The Dutch Caribbean islands were the travel
destination associated with the highest number of patients with DENV IgM positive tests
(129 patients). Results are plotted for all countries that had been listed for at least 50
persons (Supplement figure 3A) or 20 persons (Supplement figure 3B) as travel destination.
The proportion of DENV positive patients differed greatly between travel destinations. Large
differences were observed in percentage IgM positives for patients returning from different
countries. This is partly explained by the low number of diagnostic requests for travellers to
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these countries (Supplement figures 3A&B). Per top five travel destinations only one or two
patients were PCR positive, but did show a higher than average number of positive samples
compared to other destinations (20%).

Trends in DENV IgM positive results by country compared to WHO DENV notifications

Data representing the number of Dutch patients with DENV positive tests was combined
with data representing the WHO reported DENV cases per country for the pooled data from
patients returning from the top five travel destinations.

WHO notifications preceded the trends in DENV diagnoses from the pooled dataset by one
year (data not shown). When analyzing trends by country, however, clear differences were
observed. For the Dutch Caribbean islands, Suriname and Thailand, the diagnostic data and
the number of WHO reported cases show a high correlation, although the timing differed.

Figure 1: Trends in diagnostic requests for evaluation of patients with suspected dengue
virus infection from 2000 through May 2011(*) in The Netherlands in absolute counts (bars,
first Y axis] and in proportions (lines, second Y axis)
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Table 1: Information provided with diagnostic requests per patient population for 8942
patients

Parameter Percentage available
Sex 98%

Birth date 99,9%
Clinical history 75%

Travel history 42%

Sex, Age, Clinical, Travel history 38%
Vaccination history 0,5%
Clinical, Travel, Sex, Age, Vaccination 0,2%

Total patients 8942

Table 2: Reported travel destinations by region for returning travelers with suspected
DENV clinical disease, and proportion with positive IgM serology, 1gG serology, or both

Travel destination Number of patients % Requests % I1gG % IgM % IgG and IgM

Africa 643 17 11 5 3
Americas 1283 34 34 20 15
Asia-Oceania 1744 46 21 16 10
Europe 37 1 8 0 0
P-value <0,01 <0,01 <0,01

The data from Thailand corresponded almost perfectly with the WHO data. For the
Caribbean islands, the diagnostic trends preceded the increase seen in the WHO reporting
by one to two years. For the data from travellers to Surinam, the increase in the diagnostic
trend line from 2008 onwards was not seen in WHO notifications (Figure 2). For Indonesia,
the diagnostic IgM trend showed some dependency with the WHO data but seemed to lag
behind by one year in 2004-2005.

Finally, the proportion of IgM positive samples for India did not show any correlation with
the WHO reported cases or the proportion of travellers with diagnostic requests. On the
other hand the proportion of requests did show a correlation with the WHO data. All these
observed correlations (rs = 0.7 to 0.9) were significant (P<0.01).
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Estimation of the proportion of DENV cases in travellers, 2007 and 2010

As travellers may be seen as a source of introduction of arboviral infections, we tried to use
the available data to provide an estimate range for the possible number of dengue cases
during one year, as described in the methods section. By this approach, the lower estimate,
assuming that all clinical DENV imported cases would be detected, was 0.02% for 2007 and
0.06 % for 2010 of travellers to tropical or subtropical regions. The higher estimate, made
based on the assumption that the current diagnostic requests reflect a fraction of all febrile
travellers, was 3.7% for 2007 and 7.6% for 2010 of travellers to tropical or subtropical
regions. We did not perform further calculations using the number of viremic travellers
because of the low number of travellers tested by RT-PCR.

Discussion

Completeness of diagnostic data

We explored the potential use of diagnostic request data for systematic monitoring of trends
in arboviral disease in Dutch travellers around the world, using DENV diagnostic data as a
model [15]. We received information on 10,540 diagnostic samples from 8,942 patients.
Only 42% of the diagnostic requests provided information on travel history thereby limiting
the usable amount of data to a large extent. Because of such a large amount of requests this
loss of usable data seemed to be partially compensated as analysis still provided results.

The literally complete lack of vaccination background data is of concern, as this information
is essential for interpretation of serological diagnostic results of patients. The envelope
protein of flavivirus is the main target for immune response [25-27]. Many common
epitopes on the envelope protein cause cross-reactivity between flaviviruses in diagnostic
tests [18, 28, 29]. Recent vaccination could cause cross-reactive antibody titers against other
flaviviruses, mainly for IgG antibodies [16, 19, 30]. Although this factor has been taken into
account when validating the cut-offs per laboratory for travellers to countries where YFV
vaccination is compulsory (parts of South America) or highly recommended (Central Africa),
this possible confounding factor could not be excluded when evaluating the IgG test results
[16].

We tried to reduce the influence of this possible confounder by focusing further analysis on
IgM data. This lack of information should be further investigated to identify probable causes
along the diagnostic request chain, for example (1) shortage of time by physicians to
complete request forms, (2) the lack in understanding of how vital this information is for
interpretation or (3) the lack in knowledge of the usability of this data of surveillance. The
use of digital request forms with compulsory fields might prove beneficial for improving
completeness of diagnostic data.

Lack of additional information on travel times of individual patients could be compensated
by extending the national information used on travel destinations into seasons and link
these to the diagnostic trends per month. This approach can only be used when sufficient
diagnostic requests are available, reflecting travel behaviour of the patient population that is
subject to national preferences.
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Figure 2: Trends in number of patients with requests and IgM positive tests (bars, first Y
axis), WHO reported DENV cases and number of travellers (lines, second Y axis) per country
from 2001 through May 2011(*)
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Potentially combining information on an international level might provide a better spread in
data per country and strengthen the data per visited country. This data could provide
laboratory and background parameters for surveillance supplementary to what is already
done through the Geosentinel system [6, 7].

Trends in diagnostic requests and results

The low number of requests for PCR is also of concern, especially because of the high
percentage of PCR positive samples in both IgM positive and negative samples. In the
Netherlands diagnostic samples may only be tested based on what the physician specifically
requests. The lack in PCR requests is therefore probably based on the assumption that
travellers are frequently not viremic anymore on time diagnosis. The number of PCR positive
samples is therefore so low (one or two per destination] that no surveillance on travel
destination is possible, but show that potentially a large number of viremic travellers return
to the Netherlands annually.

There was a clear increase in the DENV requests and IgM positive patients over recent years
(Figure 1), similar to what was observed in other countries across the EU like Germany and
the United Kingdom [31-33]. The proportion of travellers with diagnostic requests has
increased (Figure 1). This may reflect true increase in DENV prevalence or more awareness
of DENV risk among Dutch physicians.

Trends in travel history per region

Although most diagnostic requests involved patients returning from Asia, the most positive
samples came from the Americas, possibly for the reasons given above, whereas DENV was
rarely diagnosed in travellers returning from Africa (Table 1). This is interesting as DENV is
endemic in a large part of Africa. Possibly physician awareness might play a role in
requesting dengue testing in travellers to Africa.

Trends in travel history per country

Three of the five top travel destinations for Dutch travellers have a colonial past with the
Netherlands and therefore the high number of travellers in part are explained by citizens
visiting friends and relatives. Such specific groups of travellers may bias results for two
reasons: the local population might have more up to date knowledge of currently circulating
diseases and might inform the visitors of possible DENV when they get ill.

Secondly, the higher contribution of frequent visitors may influence the proportion of IgG-
only positive patients as can be seen for Surinam where the percentage of IgG positive
patients was higher than for other travel destinations (Figure 2). However, Surinam is also a
yellow fever endemic country where vaccination is recommended. The high IgG proportion
could therefore also be due to yellow fever vaccination cross-reactivity [16, 19, 30].

From this data alone, it is difficult to distinguish between these possibilities because of a
small percentage of patients with vaccination history. The high frequency of IgG positive
samples also emphasizes the need for a convalescent sample for identification of a recent
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infection. This does support focusing trend monitoring more on IgM results and less on IgG
until information on vaccination history is provided more regularly.

Trends in DENV IgM positive results by country compared to WHO DENV notifications

WHO notification data on the Caribbean, Central America and the northern part of South
America indicate large DENV outbreaks in 2007, 2009, 2010 and high DENV activity in 2008
[34]. This corresponds to our diagnostic findings for Surinam. It seems implausible that all
Surinam surrounding countries would experience outbreaks and Surinam would remain
unaffected. Possibly, reporting of DENV cases to the WHO was affected for some reason
during this period. Monitoring based on diagnostic results with WHO notification therefore
has a clear added value.

The diagnostic results for travellers from Indonesia and India show less correlation. Both
these destinations are less popular than the previously mentioned three. Dutch travellers
focus their travels mainly on Borneo, Bali and Java islands making them less representative
for all Indonesia. Focusing outbreak information on only these three islands may prove to be
more accurate in relation to travellers.

Occasionally, a deviation from the trend indicated presence of high numbers of patients with
dengue-like symptoms, for instance in the data for India for 2005 and 2006. This may
indicate an outbreak of another disease with symptoms comparable to DENV (hence the
DENV diagnostic request) but that causes no cross-reactivity (thus probably not a flavivirus).
Outbreak reports suggest a possible increase in chikungunya infections in this area from
2005 onwards that might influence the increase in probable DENV clinical cases reported
[35, 36].

The data from the WHO is dependent on reporting of local health institutes and laboratories,
each using different diagnostic methods, and not always based on diagnostic confirmation.
For some regions the reliance on clinical case notifications might influence DENV trends of
clinical syndromes overlap, as for instance is the case for Chikungunya virus infection.

Estimation of the proportion of DENV cases in travellers, between 2007 and 2010

The estimated proportion of dengue cases in travellers was found to be between 0.02%-
3.7% and 0.06%-7.6% of all travels to DENV risk countries in 2007 and 2010. This estimation
seems to be in accordance with earlier prospective studies by Cobelens et al. in 1991-1992
who found 1.7-5.1% incidence rate of dengue for travellers to high risk countries in Asia, and
Baaten et al. in 2006-2007 who found that 1.2% of travellers to the tropics seroconverted
[33, 37]. The calculation of the number of infected travellers showed a 100-fold difference
between lower and higher estimates, but indicated that the chances of DENV importation
into the Netherlands due to viremic travellers are potentially high.

This information does provide some overview of potential risks. This may become relevant in
case of mosquito invasions, as were observed in Italy with the outbreak of chikungunya due
to introduction by a traveller and subsequent transmission through mosquitoes that were
competent for transmission of alphaviruses [38]. Tilston et al. used the estimated number of
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viremic travellers flying into Europe from known chikungyna outbreaks areas to identify high
risk regions in Europe for chikungunya outbreaks. They proposed an enhanced traveller-
based surveillance in parts of Europe supported by this estimation [39]. Our data could be a
further addition to this surveillance approach.

Our study also has weaknesses: the dataset is biased because (a) recruitment is dependent
on a patient developing symptoms severe enough to seek out medical care, (b) diagnostic
requests are based on awareness of physicians, (c) completeness of data provision by
physicians influences the usefulness for surveillance, and (d) travel behaviour is specific to
the Netherlands.

Conclusion

We showed that trends in diagnostic requests and results can be identified and correspond
partially to the WHO DENV reports on DENV outbreaks per country for the three top popular
travel destinations of Dutch travellers. Occasional discrepancies were seen that could be
explained either by underreporting of data to the WHO, or under-diagnosis of DENV as a
cause of illness in travellers. The data offers a wide range of additional parameters that can
be used as a source of information not only on current possible outbreaks, but also changes
in awareness as well as high or low risk countries or populations.

Secondly, this approach may also provide information on disease outbreaks with other
pathogens causing diseases that are similar to DENV clinically. Currently, the number of PCR
tested samples are too low and provides insufficient data for trend analysis based on travel
destination, but shows that potentially a large number of viremic travellers return to the
Netherlands annually.
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Supplement figure 3: Number of requests for DENV diagnostics in returning travellers, and
test results by country, listed for A) the most common travel destinations (50 or more
patients with diagnostic requests between 2000-2011), and B) less common travel
destinations (50 or less patients). The number of requests, number IgM and IgG positive are
indicated in bars (Y axis), the proportion IgM and 1gG positive samples are indicated by the
dark circle and grey triangle, respectively (second Y axis).

(A)
., 0,6
2 500 % P
£ 7 8
8 450 7 2
= Z A g
G é 05 =&
2 400 7 8
3 a
350 = 04 B
2 5
2 300 o
=} o
2 k=
g 250 03 =
58 A H
£ 200 3 < . ° £
w » 02 2
=] n A § =
e 150 — K A ° X g
3 , 0 Y c
2 100 |— " <
A ) 0,1 2
B 2 g Py, e A L e £
E T Z 7 87 7 g
Q % # Z Z %z Z Z Z Z <]
Nt z mm P mim mial |, ¢
g T BT E g s 0§ & = g E & © © © g
£ ¢ £ 5§ € 3 ¢ § & § 5§ § & £ £ £ 8
S € T S @ s3] & = a < g 2 N N s o ©
= 2 = ® 3 g © = £ = £ = = 8
< = (8] = = § (z_)u [ ) 8
n S5 )
T
c <
S
% Number of patients with requests Number of patients with IgG positive tests ~ mNumber of patients with IgM positive tests
® Proportion IgM positive A Proportion of patients with |gG positive tests
(B)
5 50 04
G | 2
o\ 0
% 45 ‘E
El A A f035 2
L A @
o 40 2
= F03 =
2 \
5 3 2
o
k] |
=8 30 0,25 g
gie » 5
Qs 25 / ’ 02 2
£8 % Z % £
38 A % Z % c
20 w— g
£ » NE BN BN Lots
o » 7 e
g 15 i f » S
a A /ﬁ Z 5
-
Z 01 2
5 10 A 7 éo— . 5
3 Z 7 s
£ n » ] 7 » 7 Foos &
BN ITEM LN 11N 1M 1NN
ol 70 77 T Ty TR BTR B "R WN
° g 5o 8 2 = e © © K © @ o c © s B
€ ¢ 8% 3 & & £ T T B & 3 8§ @ 8§ & 3
¢ & €3 0 - =z g § 5§ & £ £ s = § T U
© £ Ep 2 8 2> g g2 4 35
a o a z n >
7 Number of patients with requests Number of patients with IgG positive tests m Number of patients with IgM positive tests
@ Proportion IgM positive A Proportion of patients with IgG positive tests

27












Come fly with me:
review of clinically important arboviruses for global
travelers

Cleton N., Koopmans M., Reimerink J., Godeke GJ. and Reusken C.

Abstract

Western tourists are increasingly traveling to exotic locations often located in tropical
or subtropical regions of the world. The magnitude of international travel and the
constantly changing dynamics of arbovirus diseases across the globe demand up-
to-date information about arbovirus threats to travelers and the countries they
visit. In this review, the current knowledge on arbovirus threats to global travelers is
summarized and prioritized per region. Based on most common clinical syndromes,
currently known arboviruses can be grouped to develop diagnostic algorithms to
support decision-making in diagnostics. This review systematically combines and
structures the current knowledge on medically important travel-related arboviruses
and illustrates the necessity of a detailed patient history (travel history, symptoms
experienced, vaccination history, engaged activities, tick or mosquito bite and use of
repellent and onset of symptoms), to guide the diagnosis.

Journal of Clinical Virology, 2012 Nov;55):191-203
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Introduction

Globally the number of travelers has risen from 450 million in 1990 to nearly 950 million in
2010.[1] Western tourists are increasingly traveling to more exotic medically high-risk
locations in developing countries or upcoming economies, like China and India, often located
in tropical or subtropical regions of the world.[1] 5-10% of travelers report to a medical care
taker after travel.[2] Consequently, doctors are increasingly confronted with travel-related
diseases, stressing the need for awareness within the medical profession and general
population.

The differential diagnosis of fever in travelers is long, including cosmopolitan as well as more
exotic infections.[3] The most important syndrome is diarrhea, followed by undifferentiated
fever and dermatological problems depending on travel-destination.[2] Although malaria
remains the most important cause for systemic febrile disease in travelers, arbovirus
infections belong in the differential diagnosis.[3] This is emphasized by the rise in the
proportion of travelers being diagnosed with exotic arbovirus infections like chikungunya
virus and dengue virus, with dengue currently being the second most important cause for
febrile disease in travelers.[4-7]

The magnitude of international travel and the constantly changing dynamics of arbovirus
diseases across the globe demand up-to-date information about current arbovirus threats to
travelers and the countries they visit.

Establishing a differential diagnosis requires up-to-date knowledge based on evolution of the
patient’s symptoms, travel history, specific background information on possible exposures
and test results. This review focuses on all medically important arboviruses, to facilitate
clinicians and clinical laboratories in their differential diagnosis. It summarizes current
literature on risk of arbovirus infection in global travelers, and prioritizes them per region.

Background on arboviruses (Tables 1 and 2)

Arboviruses use arthropod vectors as their main transmission route and are therefore
defined as ARthropod-BOrne viruses. Mosquitoes, ticks, midges and sandflies are known
virus-transmitting arthropods. The majority of arboviruses belong to the Flaviviridae,
Bunyaviridae or Togaviridae families, but a small number are member of the Reoviridae, and
Orthomyxoviridae families (Tables 1 and 2).[8, 9, 10]

Of the over 545 suspected arbovirus species more than 150 are documented to cause
disease in humans, and the majority are zoonotic, They are sustained in a transmission cycle
between arthropods as vectors and vertebrate animal reservoirs as main amplifying hosts
(Table 1). Humans are infected in spill-over events and are often dead-end hosts, as they do
not develop the high viremias needed to infect arthropods.[8, 11]

Only a few viruses like yellow fever, chikungunya and dengue virus have expanded their host
range to include humans as an amplifying host. They can lead to mosquito-borne disease
outbreaks, often in urban settings, without the need of an animal reservoir. This urban
transmission cycle in part explains the ‘success’ of these viruses.[12]
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Based on the pattern of occurrence the individual viruses in Table 1 were labeled as endemic
(reflecting stable presence in a reservoir), sporadic (reflecting isolated infections), or
epidemic (reflecting occurrence during seasons with increased disease activity or outbreaks).
Large epidemics can occur for example because of climate variations, like extraordinary
rainfall or movement of large populations or viruses into new areas.[13]

Arboviruses may also be transmitted through blood from viremic patients, which is a
particular concern for the blood supply in endemic areas and when taking care of patients
with hemorrhagic fever.[14-17] Cases of human-to-human transmission of West Nile virus
through blood transfusions and organ transplantation have been reported,[15, 18-20] but all
arboviruses that produce viremia in humans are thought to be a potential risk (Table 2).[21,
22]

Bunyaviridae.

The genera Orthobunya , Phlebo and Nairovirus within the Bunyaviridae family, contain
human arboviruses (Tables 1 and 2).[23] Orthobunyaviruses use mosquitoes and/or midges
as their main vectors.[24] This genus is divided into 18 serogroups, based on cross titrations
in haemaglutination inhibition (HI) assays and neutralization assays (NT), and correlating to
main vector preferences. Many hold viruses that have been reported to cause disease in
humans.[25-27] However, the most clinically important travel-related viruses are found in
only two serogroups, the California encephalitis serogroup and the Simbu serogroup.
Nairoviruses use ticks as main vector and comprise 7 serogroups.[28] Only Crimean-Congo
hemorrhagic fever virus is considered to be of clinical importance to travelers.[24, 29]

The Phlebovirus genus contains the phlebotomus fever serogroup (sandfly-borne viruses).
The most clinically important are Toscana virus, which is transmitted by sandflies, and Rift
Valley fever virus, which is transmitted by mosquitoes.[23] This example also illustrates that
taxonomy based on vector preference, and vice versa, may not be consistent.

The clinically important viruses are found across serogroups and in distinct geographical
areas, reducing the problems in diagnostic test interpretation due to cross-reactivity when
the travel destination is reported (Table 3 and Maps 1-3).

Flaviviridae.

The family Flaviviridae is divided into 3 genera. Only the flavivirus genus holds arboviruses,
some of which are the most clinically important arboviruses world-wide, like dengue, yellow
fever and West Nile virus (Tables 1 and 2).[30, 31] The human flaviviruses are divided into
nine serogroups.[32, 33] Five of these contain medically important arboviruses (Tables 1 and
2). Depending on the serological assays used, cross-reactivity between serogroups may
complicate interpretation of diagnostic assays. Two main flavivirus transmission routes are
recognized: tick-borne and mosquito-borne.[33, 34] Inquiring about a history of tick or
mosquito-bite during patient evaluation can help focus the differential diagnoses.
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Reoviridae

Three genera of the Reoviridae contain arboviruses but only two are considered potentially
important travel-related viruses, i.e. Banna virus in the Seadornvirus genus and Colorado tick
fever virus in the Coltivirus genus (Tables 1 and 2).[35-38] These two viruses are found on
opposite sides of the world (resp. Old and New World), use different vectors (resp.
mosquitoes and ticks) and are not cross-reactive in serology as they differ in genus (Map 1).

Togaviridae

Arboviruses are found in the Alphavirus genus of the Togaviridae family.[39] The Alphavirus
genus is divided into seven serogroups of which six contain clinically important viruses for
travelers (Tables 1 and 2).[39, 40] Mosquitoes are their main vector.[41] About 50% of the
alphaviruses cause disease in humans.[39] Because there is a clear division in New and Old
World alphaviruses, the use of travel history of patients can aid substantially in focusing the
differential diagnosis (Table 3). Some Old and New World viruses are found in the same
cross-reacting groups, like chikungunya and mayaro virus. Travel history can facilitate
serology test interpretation by excluding cross-reactive viruses based on their geographic
distribution (Maps 1-3).

Clinical manifestations (Table 2)

Clinical symptoms of arbovirus infections in humans can be divided into four main clinical
syndromes defined as mild or severe febrile illness (FD), rash and arthralgia (AR),
neurological syndrome (NS) and hemorrhagic syndrome (HS).[8, 42] Other symptoms such as
hepatitis, bronchopneumonia and conjunctivitis are also reported.[42, 43] FD generally
presents as flu-like symptoms such as fever, headache, retro-orbital pain and myalgia. NS
can manifest as myelitis, meningitis and/or encephalitis, with behavioral changes, paralysis,
paresis, convulsions and coordination problems.[40, 44, 45] AR manifests as exanthema or
maculopapular rash, polyarthralgia and polyarthritis.[46-49] HS can clinically present as
ptechiae, spontaneous or persistent bleeding and shock combined with a severely low
platelet count, increased PT/PTT and liver enzymes.[28, 50] Syndromes largely overlap,
making a diagnosis based on clinical symptoms alone impossible (Table 2 and Map 1-3).

Bunyaviridae

The clinical infection rate for bunyaviruses is less well defined, but the majority of infections
are thought to be asymptomatic. Exceptions are Crimean-Congo hemorrhagic fever and
Oropouche virus, which cause clinical disease in respectively 25% and 30-60% of the infected
persons.[28, 51-55] Bunyavirus infections generally present as FD but some can progress to
more severe forms of HS (Crimean-Congo hemorrhagic fever and Rift Valley fever virus) and
NS (La cross virus and Toscana virus) (Table 2).[28, 55] The highest case fatality rates are
seen in cases that develop HS or NS, reaching 30% for complicated Crimean-Congo
hemorrhagic fever infections.[28, 50, 56] A number of endemic viruses found in Sub-Saharan
Africa and South America present as FD with or without AR.[57-64] This makes them
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clinically indistinguishable from other common infections like malaria, yellow fever, dengue
and chikungunya.

Flaviviridae

On average less than 10% of flavivirus infections are thought to result in clinical symptoms,
with complications in an even smaller proportion of cases. If patients develop life-
threatening syndromes like HS or NS, case fatality rates may be as high as 30%.[3, 34, 35, 37,
44, 65-70] Yellow fever virus is the exception as up to 50% of infected persons develop
clinical symptoms.[71, 72] The Japanese encephalitis group has FD and NS as its main clinical
syndromes. The dengue virus group presents as FD, AR and in severe cases shock or
hemorrhagic fever. It is important to note that the number of patients with severe forms of
dengue seems to be on the rise due to an increase in secondary infections with a
heterologous serotype.[66, 73-75] Within the tick-borne flaviviruses, the Asian-Middle East
viruses (e.g. Alkhurma virus) are known to cause HS while the European and American
viruses (e.g. tick-born encephalitis) present as NS.[36, 37, 76-78]

Reoviridae

Both Banna virus (BANV) and Colorado tick-borne encephalitis (CTFV) present with FD and
NS.[35, 36, 38, 79] CTFV has a very specific geographical distribution and the number of
confirmed cases is low.[35, 36] The geography of BANV is unclear and is thought to
correspond with Japanese encephalitis virus (JEV). BANV is clinically indistinguishable from
JEV.[38] As Reoviridae serologically do not cross-react with other families, it is important to
test for BANV too if JEV is suspected.

Togaviridae

Togaviruses reportedly have a high clinical attack rate with 50-85% of infections resulting in
clinical manifestation.[46-48, 80, 81] Sindbis virus, Western equine encephalitis virus and
Eastern equine encephalitis virus are exceptions with 0,1%-5% symptomatic infections.
Equine encephalitis virus infected patients develop FD followed by NS.[39, 45, 82] For all
other viruses FD is accompanied by AR and therefore clinically difficult to distinguish from
dengue virus infections. Typical for AR caused by alphaviruses is the prolonged symptoms of
arthritis and arthralgia that can persist from months to years after infection.[83]

Treatment and prevention (Table 2)

Depending on the etiology, different complications can occur when the disease develops
beyond the febrile stage. There are no specific effective antiviral treatments for any of the
arboviruses, and thus only supportive care like fluid and electrolyte management are
available.[34] Early recognition and confirmation of the disease makes it possible to adapt
supportive care pre-emptively to a variety of specific complications, thus increasing survival
rate substantially.
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The hallmark prevention of arbovirus infection in travelers consists of the use of repellents,
fine-mesh bed nets treated with repellent and behavioral aspects such as regular checks for
possible ticks. Vaccines are available only for a few flaviviruses (Table 2).

Currently, there are two JEV vaccines on the market based on inactivated virus; Ixiaro
(Intercell Biomedical, Livingston, UK) and JE-vaccin (GCVC, Korea). For KFDV, a formalin-
inactivated vaccine is registered only in India and is currently produced by Institute of
Animal Health and Veterinary Biological Laboratory in Bangalore. For TBEV a number of
vaccines from different producers in Europe, Russia and China are available that are based
on inactivated viruses.[84, 85] A number of yellow fever attenuated live-attenuated strain
17D vaccines are available from different producers around the world.[86] Vaccines for
other viruses like DENV, CHIKV and RVFV are at different stages of research.

Assessing risk for travelers (Table 3 and Map 1-3)

Some general factors can be used to prioritize infection risk if specific risk estimation is
lacking: a) (sub)urban circulation of the virus, b) known endemic disease, c) recorded cases
of infections in travelers.[87-90]

Obviously, this can only be done if some information is available, which may be challenging
in regions with limited surveillance. There are numerous arboviruses of which the potential
human health impact is poorly characterized. Despite these unknowns we have summarized
the available information for the most important travel associated arboviruses, grouped
them in broad probability classes (Table 3) and visually summarized their geographical
distribution in relation to symptoms and taxonomy in a number of maps (Maps 1-3).

Specific risk estimates are available for a few arboviruses. RRV infections in travelers have
been documented regularly, and large outbreaks in the South Pacific are thought to be due
to viremic travelers.[91-94] New Zealand estimated that annually 100 viremic travelers
return home from Australia.[48, 92]

DENV is by far the most diagnosed arbovirus in travelers.[69, 95-99] Of the travelers
presenting with febrile disease, 3-8% have serological evidence of current dengue fever.[3,
7, 95, 100, 101] Serological surveys suggested that the actual infection risk in travelers might
be significantly higher and that dengue is underdiagnosed.[7, 102]

In Asia, one on the most common viral causes of encephalitis is Japanese encephalitis virus
(JEV).[44] However, the risk to travelers is considered low and has been estimated at 1in 1
million for urban travelers and 1 in 20,000 per week of stay for travelers to the rural areas
for longer periods of time.[103] YFV is the most common arbovirus in Africa.[71, 72] Risk for
unvaccinated travelers is estimated at 1:280 in Africa and 1:2800 in South America in
epidemic areas.[72] In endemic areas, risk of infection is about 20-fold lower. Tick-borne
encephalitis virus (TBEV) is one of the most frequently diagnosed European arboviruses in
travelers. Risk of clinical infection in travelers to Austria, one of the main endemic countries,
is estimated at 1 in 10,000 people per month stay.[104, 105]
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Diagnosis of arbovirus infections

Laboratory diagnosis of arbovirus infections is based on the detection of the virus or viral
antigens, or the detection of antibodies. Serum taken at multiple time points is the preferred
specimen. In case of central neural system involvement, a cerebrospinal fluid (CSF) sample
should be added. The preferred diagnostic method depends on the duration of the
incubation period, and associated with that, the specific pattern of viremia and antibody
development.

Virus and viral antigen detection is the most specific method to confirm arbovirus infection.
Methods available are polymerase chain reaction (RT-PCR) and virus isolation (VI) from
serum, tissue or CSF. In addition, for flavivirus infections, kits for detection of the infection-
associated NS1 protein are available in a number of different formats.[106, 107] Sandfly
fever, West Nile and Eastern equine encephalitis virus, for example, produce very short and
low viremias and symptoms typically develop after this viremic phase, explaining the
relatively low sensitivity of PCR-based diagnosis.[108, 109] In travelers, the acute phase of
the disease is frequently missed because patients often visit a health care worker after
returning home when symptoms persist or worsen beyond the febrile stage.

Serology is therefore the most commonly used diagnostic method for arbovirus infections.
Commercially available and/or in-house IgG/IgM enzyme-linked immunosorbent assay
(ELISA) kits, haemaglutination inhibition (HI), immunofluorescence assay (IFA) and
neutralization (VNT) assays are used.[106] Typically, IgM antibodies develop within a few
days after infection and can generally be detected up to three months after infection. 1gG
antibodies develop within days after IgM and can be detected months to years after initial
infection. IgM antibodies can persist for longer periods and complicate diagnostics.[110,
111] IgM and IgG antibodies in serum can be used for the detection of past and current
infections if paired sera are collected with a 10-14 days interval. A seroconversion or a 4-fold
or greater increase in titer is required for confirmation.[106] The detection of IgM antibodies
in the CSF also implies recent infection.

Interpretation of the results requires knowledge about the specific method used, and on
patient background, for instance travel- and vaccination history. Infections or vaccinations
with flaviviruses may trigger cross-reactive antibodies, when using ELISA or IFA assays for
diagnosis.[112, 113] VNT can be used if further confirmation of a specific viral infection is
required.

Validated diagnostic tests are available for the most common viruses, but not for all. Here,
referral to a specialized arbovirus laboratory may be needed. The European network for
diagnostics of imported viral diseases (ENIVD) provides a network to identify all available
special diagnostics in specialized laboratories across Europe.[114]
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Table 1: Summary of taxonomy and essential ecology of medically important travel-related arboviruses

Family Serogroup Virus Abr.  Vector Host
Genus
Bunyaviridae
Nairovirus Crimean-Congo Crimean-Congo CCHFV Tick Domestic and wild
hemorrhagic fever Hemorrhagic fever virus animals, birds, small
mammals
Orthobunyavirus Bwamba Bwamba virus BWAV Mosquito Unknown
Bunyamwera Bunyamwera BUNV Mosquito Possibly rodents
llesha virus ILEV ~ Mosquito Unknown
Ngari virus NRIV  Mosquito Unknown
California La Cross virus LCV Mosquito Small mammals
encephalitis Guaroa virus GROV Mosquito Unknown
Tahyna virus TAHV  Mosquito Hares, rabbits, hedgehogs,
small mammals
Simbu Oropouche virus OROV Midge Humans, Sloths (maybe
primates, birds)
Ungrouped viruses Tataguine virus TATV  Mosquito Unknown
Phlebovirus Phlebovirus fever ~ Toscana virus TOSV Sandfly  Humans, bats
Sandfly fever SFV Sandfly  Human, rodents
Rift Valley fever virus RVFV  Mosquito Rodents, bats, cattle
Flaviviridea
Flavivirus Dengue virus Dengue virus DENV Mosquito Primates, humans
Japanese Japanese encephalitis viru JEV ~ Mosquito Ardeid birds, pigs
encephalitis West Nile virus WNV Mosquito Birds
St. Louis encephalitis virus SLEV Mosquito Birds
Murray Valley virus MVEV Mosquito Ardeid birds
Mammalian tick- Kyasanur Forest disease v. KFDV Tick Small mammals, humans
born virus group | - Alkhurma hemorrhagic AHFV Tick Small mammals
fever
Tick-borne encephalitis ~ TBEV Tick Small mammals, birds
Ntaya virus Ilheus virus ILHV  Mosquito Birds
Spondweni group  Zika virus ZIKV  Mosquito Primates, humans
Yellow fever Yellow fever virus YFV  Mosquito Primates, humans
Reoviridae
Coltivirus Colorado tick fever  Colorado Tick fever CTFV  Tick Small mammals
Seadornavirus  Bunna Banna virus BANV Mosquito Unknown
Togaviridae
Alphavirus  Barmah Forest Barmah Forest virus BFV  Mosquito Wild birds, marsupials

Eastern eq.
encephalitis
Semliki forest

Western eq.
encephalitis
(sindbis like)

Western eq.
encephalitis
(recombinants)

Venezuelan eq.
encephalitis

Eastern equine
encephalitis virus
Chikungunya virus
Mayaro virus
O’Nyong-nyong
Ross River virus
Sindbis virus

Western equine
encephalitis virus

Venezuelan equine
encephalitis virus

* = Occurrence: En= Endemic, Ep = Epidemic, Sp = Sporadic
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EEEV Mosquito Aquatic birds, small

CHIKV Mosquito
MAYV Mosquito
ONNV Mosquito
RRV  Mosquito
SINV  Mosquito

WEEV Mosquito

mammals, marsupials
Primates, humans
Primates birds, humans
Primates, humans
Marsupials, mammals
Birds

Birds, small mammals

VEEV Mosquito Small mammals
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Family Virus Geographical distribution Occur.* Ref.
Genus
Bunyaviridae
Nairovirus Crimean-Congo Hemorrhagic South-East and Eastern Sp 28, 56, 98,
fever virus Europe, Africa, Asia 117,118
Orthobunyavirus Bwamba virus Sub-Saharan Africa En 26,119
Bunyamwera Sub-Saharan Africa En 25,119
llesha virus Sub-Saharan Africa En 119,120
Ngari virus Sub-Saharan Africa En 121,122
La Cross virus North America En 52,123
Guaroa virus Central and South America En 57, 60
Tahyna virus Europe, Asia, Africa En 53,124,125
Oropouche virus Central and South America En 58, 60, 126
Tataguine virus Sub-Saharan Africa En 64, 127
Phlebovirus Toscana virus Southern Europe En 54, 55
Sandfly fr Southern Europe, Northern En 55
Africa, Asia
Rift Valley fever virus Africa, Western Asia Enand Ep 13,128
Flaviviridea
Flavivirus Dengue virus Asia, Africa, Americas Enand Ep 66-68
Japanese encephalitis virus  South and South-East Asia, Enand Ep 129,130
Oceania
West Nile virus North and South America, Enand Ep 131-133
South and Eastern Europe,
South-East Asia, Oceania
St. Louis encephalitis virus Americas EnandSp 134
Murray Valley virus Oceania En 77,135
Kyasanur Forest disease South-East and Western Asia Ep 136, 137
Alkhurma hemorrhagic Western Asia Ep 138
fever virus
Tick-borne encephalitis Central, Northern and En 37,65
virus Eastern Europe, and Asia
Ilheus virus Central and South America En 31
Zika virus Asia, Africa, Americas En and Ep
Yellow fever virus Sub-Saharan Africa and EnandEp 71
South America
Reoviridae
Coltivirus Colorado Tick fever virus North America Sp 36, 139
Seadornavirus Banna virus Asia En 38
Togaviridae
Alphavirus Barmah Forest virus Australia Epand Sp 113, 140
Eastern equ. encephalitis Americas EpandSp 40, 141
Chikungunya virus Africa and Asia Enand Ep 81,142
Mayaro virus South America En 80, 143
O’Nyong-nyong Sub-Saharan Africa Enand Ep 144,145
Ross River virus Oceania Ep 91, 140
Sindbis virus Northern Europe, Asia, Ep 82,127,
Africa, Oceania 146
Western eq. encephalitis Americas Sp 40, 147
Venezuelan eq .encephalitis  Americas Enand Ep 148
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Table 2: Summary of the reported information on health impact associated with arboviruses listed in Table 1

Family Virus Symptoms* Incubation Vacci Circ.** Reported in
Genus period ne travelers
Bunyaviridea
Nariovirus Crimean-Congo FD, HS, (NS) 1-3 (1-9) Yes R Yes
hemorrhagic fever
Ortho- Bwamba virus FD, AR, (NS) 1-14 No R No
bunyavirus Bunyamwera virus FD, AR, (NS) Unknown No R No
Guaroa virus FD, AR Unknown No R No
llesha virus FD, AR (NS, HS) Unknown No R (U) Yes
Ngari virus FD, AR, HS Unknown No R No
La cross virus FD, NS 5-15 No R No
Tahyna virus FD, AR, (NS) conjunct 3-7 No U No
bronchopn
Oropouche virus FD, AR, (NS) 4-8 No R, U No
Tataguine virus FD, AR Unknown No R No
Phlebovirus  Toscana virus FD, NS, (AR) 2-14 No R Yes
Sandfly fever FD 2-14 No R Yes
Rift valley fever virus FD, HS, NS, hepatitis 1-7 No R Yes
Flavivirus
Flavivirus Dengue virus FD, HS, AR, (NS) 4-7 (3-14) No R, U Yes, 3-8%
travelers with FD
Japanese encephalitis virus  FD, NS 5-14 Yes R,U Yes, 1inamillion
or 1in 20.000
West Nile virus FD, NS, AR 3-5 (2-14) No R, U Yes
St. Louis encephalitis v FD, NS 2-21 No R, U No
Murray Valley virus FD, NS 1-28 No R Yes
Kyasanur Forest disease FD, HS, conjuncti, 3-8 Yes R No
virus pneumonia
Alkhurma hemorrhagic FD, HS 3-12 No R Yes
fever
Tick-borne encephalitis FD, NS, (HS) 7-14 Yes R Yes, 1:10.000
virus man/month
Ilheus virus FD, NS Unknown No R No
Zika virus FD, AR, conjuctivitis 3-5 (2-14) No u Yes
Yellow fever virus FD, HS, hepatitis 3-6 Yes R,U Yes, 1:280 Africa
to 1:2800 SA
Reoviridea
Coltivirus Colorado tick fever FD, NS, AR, HS 3-5(0-20) No R Yes
Seadronvirus Banna virus FD, AR, NS Unknown No R No
Togaviridea
Alphaviruses  Barmah Forest FD, AR 7-9 (5-2) No R, U No
Eastern eq. encephalitis FD, NS 3-10 No R Yes
Chikungunya virus FD, AR, (HS, NS) 3-7 (1-12) No R, U Yes
conjunctivitis
Mayaro virus FD, AR, (HS) 6-12 (3-12) No R, U Yes
O’Nyong Nyong FD, AR >8 No R, U No
Ross river virus FD, AR, (HS) 7-9 (3-21) No R, U Yes, 100 per
year to New
Zealand
Sindbis virus FD, AR 1-7 No R Yes
Western eq. encephalitis FD, NS 2-10 No R No
Venezuelan eq. encephalitis FD, NS <1-5 No R No

Symptoms*: FD = Febrile disease, AR = Arthralgia and/or Rash, HS = hemorrhagic syndrome, NS = Neurological

syndrome. Circ.** = Circulation: R =Rural, U = Urban
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Virus Seroprev. info CUD H2HT Ref.
Bunyaviridea
Crimean-Congo High: 5-13% Yes Yes Yes 14,17, 29,50,
hemorrhagic fever 149
Bwamba virus High: 2,6-80% Little  Yes No 26,27,61
Bunyamwera virus High: up to 100% Little  Yes No 25,121
Guaroa virus High: 13-18% Little  Yes No 57,60
llesha virus High: 38-54% Little  Yes No 62,120
Ngari virus Unknown: in a recent RVFV outbreak 27% of Little  Yes No 121,122
infections turnout to be NRIV
La cross virus High: 2-13% Yes Yes No 52,123, 150-
152
Tahyna virus High: 60-80% Little  Yes No 53,124,125,
153
Oropouche virus High: 15-60% Yes Yes No 51,58, 60
Tataguine virus High: one of the five most isolated viruses in West Little  Yes No 64,127
Africa in humans
Toscana virus High: 5-51% Yes No No 54,154
Sandfly fever High: 3-36% Yes No No 55,155
Rift valley fever virus High :2-14% Yes No Yes 13,50,128,
156-159
Flavivirus
Dengue virus High: most diagnosed arbovirus disease world-wide  Yes  Yes Yes 5-7,69, 160-162
Japanese encephalitis virus  High: >45.000 cases annually world-wide Yes Yes No 103, 163
West Nile virus High: One of the most common arbovirus diseases Yes No Yes 19,20,131, 164
world-wide
St. Louis encephalitis virus  High: 3-13% Yes Yes No 134,152
Murray Valley virus High: up to 40% Yes No No 135, 165-167
Kyasanur Forest disease Unknown: local monkey population 18-50% Yes No No 136, 137
virus positive
Alkhurma hemorrhagic Low: 1,3% Yes No No 138,168, 169
fever
Tick-borne encephalitis High: incidence rate of 0.1 to >5: 100.000 in Yes  Yes Yes 170-173
virus endemic countries
Ilheus virus High :3,4-26% Little Yes No 174,175
Zika virus Unknown Little Yes Yes
Yellow fever virus High: 200.000 cases annually world-wide Yes No Yes 29,50,176-179
Reoviridea
Colorado tick fever virus Unknown: 200-400 reported cases annually Yes Yes Yes 36, 180, 181
Banna virus Unknown Little Yes No 38
Togaviridea
Barmah Forest virus High: incidence rate of 4 to 40:100.000 annually. Yes No No 135,140
500-800 reported cases annually
Eastern eq. encephalitis Unknown: 3-21 cases annually in the US Little No No 182
Chikungunya virus High: up to 75% Yes Yes No 4,145,183-186
Mayaro virus High: 5-60% Yes Yes No 60, 89, 187-189
O’Nyong Nyong virus High: 31-68% Little  No No 144,145
Ross river virus High: 8-65% Yes No No 91,135,140
Sindbis virus High: 5-27% Yes Yes No 53,82, 83,146
Western eq. encephalitis Unknown: <10 cases annually in US. Little  No No 40,127,147
Venezuelan eq. encephalitis High: 30-50% during an epidemic. 23% outside Little  Yes No 40, 60, 148, 190,

epidemics. Up to 10% of dengue cases are thought
to be VEEV in the Americas

191

Symptoms*: FD = Febrile disease, AR = Arthralgia and/or Rash, HS = hemorrhagic syndrome, NS = Neurological syndrome.
Circ.** = Circulation: R =Rural, U = Urban. CUD=Considered underdiagnosed. H2HT= Human-to-human transmission
reported. Seroprev.=reported seroprevalence in local population
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The problems with false positive diagnostic results, incomplete diagnostic range, availability
of tests and costs of multiple tests illustrates that use of serology for diagnostics of travel-
related viruses requires careful interpretation and the need for a detailed anamnesis to be
provided with a diagnostic request. This includes travel history, vaccination history and
contact with/ protection against specific vectors in combination with clinical symptoms and
time of onset of symptoms (Table 3 and Map 1-3).[3]

Conclusion

Febrile disease in travelers has a long and complicated differential diagnosis including more
common cosmopolitan infections as well as relatively unknown exotic diseases. Diagnostic
tools can support clinicians and diagnostician in the construction of an adequate differential
diagnosis. A few (commercially available) databases exist that can provide decision support
tools for infectious diseases in general.[115, 116]

Many arbovirus families however, show a large amount of cross-reactivity in diagnostic
tests. This, combined with a large overlap in clinical syndromes and geographical regions,
complicates making a well-defined differential diagnosis. These complexities are not
addressed in automatically generated differential diagnostic lists with a ranking based on
unknown background information and assumptions.[116]

This review does not include all potential important travel-related diseases but focused
specifically on all medically important arbovirus infections in travelers, taking the
complexities of diagnostic test interpretation into account. Detailed maps, tables and
supporting background information provided overviews on possible arbovirus infections per
region. Thus, this review combined and structured the current knowledge per region, per
clinical syndrome, per potential exposure risk, and per diagnostic family. In addition, this
review identified pathogens for which the current knowledge in certain geographic regions is
insufficient to exclude them in the differential diagnosis. With this, we hope to provide
support to diagnosticians and clinicians when an arbovirus infection is considered in a
returning traveler.
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Syndromic approach to arboviral diagnostics of global
travelers as a basis for infectious disease surveillance

Cleton N., Wagenaar J., Van der Vaart E., Van der Eijk A., Reimerink J., Reusken C. and Koopmans M.

Abstract

Background: Arboviruses have overlapping geographical distributions and can
cause symptoms that coincide with more common infections. Therefore, arbovirus
infections are often neglected by travel diagnostics. Here, we assessed the potential
of syndrome-based approaches for diagnosis and surveillance of neglected arboviral
diseases in returning travelers.

Method: To map the patients high at risk of missed clinical arboviral infections
we compared the quantity of all arboviral diagnostic requests by physicians in the
Netherlands, from 2009 through 2013, with a literature-based assessment of the
travelers’ likely exposure to an arbovirus.

Results: 2153 patients, with travel and clinical history were evaluated. The diagnostic
assay for dengue virus (DENV) was the most commonly requested (86%). Of travelers
returning from Southeast Asia with symptoms compatible with chikungunya virus
(CHIKV), only 55% were tested. For travelers in Europe, arbovirus diagnostics were
rarely requested. Over all, diagnostics for most arboviruses were requested only on
severe clinical presentation.

Conclusion: Travel destination and syndrome were used |nconS|stentIy for trlage of

diagnostics, likely resulting in vast under—dlagn
health significance. This study shows
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Introduction

Globalization has resulted in a steep increase in travel and trade.[1, 2] In recent decades it
has contributed to the spread of diseases that traditionally emerged only regionally but now
threaten populations across the globe, stressing the need for global health surveillance.[1, 2]
Among these emerging threats, arboviruses form a unique group, with a large public health
impact in endemic countries, a tendency to expand their geographical distribution through
trade and travelers, and colonize previously unaffected areas. Due to their vector-borne and
often zoonotic nature, they require targeted surveillance and control schemes.

This requirement is particularly relevant when evaluating symptoms of illness in travelers. Of
all those returning from developing, tropical, or subtropical countries, 8% require medical
care on return.[3] For those returning from Africa and Southeast Asia, fever is the most
common reason for seeking medical care; for travelers returning from the Caribbean and
South America, rash is the most common reason. Around 50% of the cases remain
undiagnosed in clinics focused on travel medicine, and this percentage is likely higher in less
specialized clinics.[3] The traveler’s personal physician is therefore an important link in
ongoing arbovirus surveillance in travelers and the gate-keepers of disease detection.

Correct diagnosis of arbovirus infections in travelers is challenging. Arboviruses have
overlapping geographical distributions and cause symptoms that coincide with more
common infections.[4] If general practitioners consider an arbovirus infection in their
differential diagnosis, they commonly test for the best known arboviral disease, Dengue
virus (DENV). Laboratory diagnostics for travelers are largely based on serologic testing,
since viremia is short-lived and has often already dropped to undetectable levels when
severe symptoms appear and diagnostics are performed.[5, 6] The use of serologic results
for arbovirus diagnosis and surveillance requires careful evaluation due to cross-reactivity of
antibodies to related viruses.[7] Also, several vaccines, notably for Yellow fever, Tick-borne
encephalitis and Japanese encephalitis, can cause false-positive serological tests.[7]

For these reasons, arbovirus illness is under-diagnosed, as evidenced by studies of
unexplained illness in returned travelers.[8-10] A potential solution would be the
development of syndromic arboviral disease detection methods that cover the most
common arboviruses and simultaneously provide surveillance information.[11] Here we
aimed to assess the potential added value of syndrome-based approaches for diagnosis and
surveillance of neglected arboviral diseases in returning Dutch travelers.

Method

To map the patients high at risk of missed clinical arboviral infections in returned Dutch
travelers, we compared the quantity and quality of all arboviral diagnostic requests by Dutch
physicians, from 2009 through 2013, with a previously extensive literature-based
assessment of travelers’ likely infection with an arbovirus.[4] The overlapping syndromes
and geography, based on and updated from that review are depicted in figure 1.

Database construction

For retrospective patient analysis, a database was created by integrating data from the two
arbovirus diagnostic reference centers in the Netherlands: Erasmus Medical Centre in
Rotterdam and The National Institute for Public Health and the Environment in Bilthoven.
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Previously, we described trends of DENV diagnostics in the Netherlands from 2000-2010.[12]
The current study included almost all arbovirus diagnostic requests from Dutch physicians
from 2009 through 2013 in the Netherlands. In the case of DENV not all data was included
because 10% of the DENV diagnostics were performed outside the arbovirus reference
centers and were not included in this dataset. For syndromic analysis, only entries were
included where travel and clinical history were provided. To define the syndromes, entries in
the database were reviewed by a consultant microbiologist, and infectious disease clinicians
assigned them to syndrome categories (Table 1).

Patient test result classification

Due to the laboratory-specific variety in diagnostic methods used, we classified each
patient’s test results according to the validated methods and cut-offs for the pertinent
laboratory. Results were classified as positive for a disease if the patient had (1) a positive
PCR result with <40 cycles, (2) an IgM above an individual laboratory-determined cut-off, or
[13] a minimum fourfold increase in IgG titers between two consecutive samples. For DENV
patients, (4) a positive non-structural protein 1(NSI) antigen-capture test was among the
criteria.[6]

Travel data

Travel data for Dutch travelers was based on the year 2011. They were extracted from a
commercial database “ContinuVakantieOnderzoek” (CVO) created for trend analysis in the
tourism industry. Its data are collected and converted into national numbers every three
months by interviewing individuals in about 15,000 Dutch households on their travel
destinations, activities, lodging, transport, and booking method.[14] Using data from 2011
provided a representative distribution of Dutch travel behavior from 2009-2011. Only slight
country specific fluctuations were reported.[14]

Analysis of the likelihood of arboviral infections in travelers

The likelihood of infections by arboviruses other than DENV was based on a previously
published article in which we developed syndromic diagnostic algorithms based on data
from an exhaustive review of the literature addressing geographic distribution and
prevalence of arboviruses by syndrome.[12] Optimal diagnostic algorithms using a
combination of clinical syndromes and geographical distribution presented were updated
and used as a basis for our current analysis (Figure 1). In short, criteria used to prioritize
arboviruses for the diagnostic algorithm were: a) circulation in urbanized areas, due to the
use of humans as reservoir hosts, or the presence of reservoir hosts colonizing urban areas,
b) known endemic disease, c) tourist activity in the area, d) high rate of exposure in resident
population, and e) recorded cases of infections in travelers[4] These diagnostic algorithms
were used in the current article to identify gaps that may occur with a physician-indexed
single-virus approach.

Statistical analysis

The analysis was performed in STATA.[15] Pearson's chi-square test was used to assess for
equality of proportions. Multivariable logistic regression models (Table 2) reporting odds
ratios were used with a 95% confidence level.[15] Heatmaps were generated using the
additional R package “stats”[16] and based on pair-wise correlation between rows and
columns.
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Ethical statement

This research was conducted in accordance with the Dutch law on medical research (WMO),
article 1. In compliance with Dutch Law and medical ethical guidelines, no personal
identifiers were included and no informed consent was required for use of data in this study.

Results

General dataset

Over the five year study period 8126 patients were tested for arboviral diseases in the
Netherlands. Of the patients, 44% presented to larger hospitals or specialized travel clinics.
All other patients were seen at smaller hospitals or local clinics. Molecular tests comprised
1.3% of diagnostic tests performed. Larger hospitals and specialized travel/tropical clinics
tested on average for 1.7 viruses per patient compared to 1.2 in smaller hospitals and local
clinics. The patient male to female ratio was 1.04. Vaccination history was recorded on the
diagnostic request for only 14 patients (<1%).

Of all patients, 2153 (26%) had information on travel history and clinical history and were
thus included for further syndrome and travel-based analysis. Of these, 23% had provided a
second serum sample needed for determination of a potential IgG titer increase. With a
median of 7 days, the average number of days elapsed between onset of symptoms and first
sampling was 17.5 (95%CI 14.0-20.3). This number is based on the 317 patients with clinical
and travel history for whom this chronological information was recorded. Elapsed time did
not differ between patients seen at specialized hospitals/clinics and those visiting smaller
hospitals/clinics.

Comparison travel destination

We analyzed the travel data of Dutch travelers in 2011 to determine the range and
importance of arbovirus tests needed to cover the differential diagnosis for travelers with
illness after return from the various destinations. In 2011, approximately 84% of Dutch
travelers traveling abroad stayed within Europe. Western Asia (predominantly Turkey) was
the most popular non-Europea destination, with nearly one million Dutch vacations booked
annually (Figure 2).[14] The most diagnostic requests (35%) by far, however, were for
travelers returning from destinations in South and Southeast Asia, while only 3% of all
travelers had this region as their destination.

Diagnostic requests and outcomes per region

The number of diagnostic requests by travel region and the proportion of positive test
results (Figure 2) show that DENV testing was by far the most commonly requested (86%),
yielding the highest absolute number of cases (Figure 2). When comparing the numbers of
requests and proportions of positives by region of travel, substantial differences were
observed: diagnostic requests for ill travelers returning from sub-Saharan Africa were
frequent but not often positive, whereas ill travelers returning from popular arbovirus-
endemic regions in Central and Western Asia were rarely tested. A low number of patients
who had traveled within Europe were tested. DENV was tested (N=41) almost as often as
tick-borne encephalitis virus (TBEV) (N=57), for which exposure is far more likely.
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Of note, two of these European travelers tested DENV-positive. One was a tourist returning
from Croatia, who tested DENV-IgM-positive and borderline NS1-positive. The other tourist
had taken a five-day trip to Southern France and was DENV IgM- and NS1-positive 10 days
after return. However, 14 days previous to onset of symptoms, this traveler had been in
Thailand before traveling on to France. Another virus considered endemic to Europe is
Sindbis virus (SINV), for which diagnostics are not readily available in the Netherlands. Nor
are they available for oropouche virus (OROV), endemic to South America.

Syndromes reported

To assess the potential use of diagnostic requests for syndrome surveillance by region, we
analyzed the symptoms recorded for each patient returning from a particular travel
destination. Nearly all patients (86%) reported fever, followed by arthralgia/arthritis (22%)
and enteric symptoms (14%). Information divided per travel region showed regional
variation in symptoms recorded (Figure 3). For all regions, fever was the most reported
symptom. Proportionally, neurological symptoms were more often reported for travelers
returning from a European destination than for travelers from other regions. Arthralgia-
arthritis was recorded more frequently for travelers returning from Oceania, with rash being
most recorded for Southern Africa compared to other regions.

Comparing diagnostic requests to diagnostic algorithms

Three heatmaps were created to visualize per continent (Africa, Asia and the Americas) the
correlation between the physicians’ diagnostic requests and the literature-based syndromic
algorithms (Figure 1). In the heatmaps, diagnostic requests are grouped based on the
clinically important arboviral diseases per region within each continent (Figure 4-6). For most
regions, Dutch physicians requested DENV diagnostics for 100% of the travelers who had
recorded symptoms corresponding to DENV infection (fever, rash and joint pain). For some
regions, a lower percentage of such patients was tested, i.e. Northern Africa (67%) (Figure
4), Western Asia (57%) (Figure 5) and Central America (38%) (Figure 6).

In all regions, CHIKV testing was less frequently requested than DENV testing, even though
the infections overlap in geographical distribution and range of symptoms to a great extent.
On average, 45% of patients with febrile symptoms, rash and/or arthralgia after travel to
CHIKV-risk areas in Asia were not tested for CHIKV. Patients with symptoms suggesting West
Nile Virus (WNV), Japanese encephalitis (JEV), Rift Valley fever virus (RVFV) and TBEV were
tested infrequently (0 to 25%) and only in association with neurological symptoms.
Diagnostics on all other viruses presented in figure 4-6 were minimally requested.

Predictive factors for positive tests

We analyzed the association between symptoms recorded and test outcomes for DENV and
CHIKV requests in Dutch travelers (Table 2). Patients with rash, hemorrhagic symptoms and
fever had an increased odds of testing positive for DENV, but respiratory symptoms
decreased the odds of being DENV-positive (OR 0-5). Positive test outcomes for CHIKV were
associated with arthralgia combined with rash. Both DENV and CHIKV were positively
associated with travel history to Southeast Asia.
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Discussion

Here we assessed the extent of missed arboviral infections in travelers by a retrospective
database analysis of all arboviral diagnostic requests in the Netherlands, from 2009-2013, in
comparison with a literature-based assessment of arbovirus exposure while traveling (Figure
1). We found clear evidence for patient groups high at risk of being under-diagnosed for
arboviral disease when evaluated by syndrome and by region.

While DENV diagnostics are routinely requested, other relevant arboviruses are neglected, in
particular CHIKV. Arthralgia, for example, is not only associated with DENV infections but
also with many arboviruses, including CHIKV, as we found when calculating odds ratios
within the current Dutch data.[4] Nevertheless, less than 55% of patients with symptoms
compatible with CHIKV infection were tested (Figure 4a-c).

Interestingly, hemorrhagic symptoms and rash have a much higher odds ratio than
arthralgia-arthritis for diagnosing DENV. Although arthralgia is an important symptom in
dengue patients, rash and fever are often more pronounced.[17] In the case CHIKV
arthralgia-arthritis is more pronounced and is known to have a higher predictive value for
distinguishing CHIKV from DENV in endemic settings.[17, 18] Additionally, CHIKV is less well
known by physicians in non-endemic countries so might be only considered if DENV
diagnostics are negative.

The analysis of diagnostic requests by region showed a bias toward the more well-known
arboviral risk areas such as Southeast Asia (Figure 2 and 3). For travelers within Europe,
arbovirus diagnostics are rarely requested, despite high incidence rates of TBEV reported
across Europe and continuing circulation of WNV in parts of Europe popular with Dutch
tourists.[8, 19] This is a general trend also seen in previous reports on travel associated
infection presenting in Europe.[20] Housing type and location during travel is an import risk
factor for exposure to specific vectors,[21, 22] and outdoor camping is popular among
travelers in Europe.[14] The number of CHIKV and DENV requests within Europe was almost
equivalent to the number of TBEV and WNV test requests, while only a small number of
CHIKV and DENV have been reported.[23-25] The low number of TBEV and WNV requests
may reflect a lack of physician awareness of European arboviruses and their risk to travelers;
it may also reflect financial restrictions or limited time.[19]

Our analysis showed that physicians were more likely to extend the diagnostic panel for
patients with more severe or very specific symptoms. For instance, diagnostics for WNV and
Western equine encephalitis virus (WEEV) were usually requested only for patients with
neurological complaints, even though fever is the most common clinical presentation in
>90% of WNV and WEEV patients.[26] Similarly, RVFV diagnostic requests were limited to
patients with hemorrhagic symptoms (HS) and neurological symptoms (NS), although these
severe symptoms occur in less than 1% of cases, and most patients present only with febrile
symptoms (Figure 4a-c).[27]
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Figure 4-6: Heatmaps showing percentage of patients with a travel history to (4) Africa, (5)
Asia or (6) Americas, divided by region (right axis) and recorded symptoms (left axis), who
were tested for each arbovirus (horizontal axes) posing a risk on that continent (see Figure 1).
The number of patients in each region-symptom combination follows each region in
parentheses, far right. Groups in which a 100% of patients with a specific region-symptom
combination were tested are depicted as black, with a sliding scale to white for groups in
which 0% of patients were tested. Region-symptom combinations that are atypical for a
certain arbovirus are depicted as diagonal lines.
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Figure 5: Asia
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Table 2: Adjusted odds ratios of statistically significant predictive syndromes for a positive
test outcome. The test is stated in column 1, with corresponding variables in column 2.
Variables were adjusted for age, sex, travel region, and diagnostic laboratory.

. . Adjusted o

Dependent variable Independent Variable Odds ratio 95% Cl P-value
Febrile symptoms 2.0 1.2-3.0 <0.01
Rash 1.9 1.3-25 <0.01

DENV-positive versus Arthralgia-arthritis 0.5 0.3-0.8 <0.01

negative test outcome

(based on 1843 patients Hemorrhagic symptoms 2.8 1.8-4.5 <0.01

with DENV-diagnostic tests .

performed Neurological symptoms 0.7 0.2-19 0.4
Respiratory symptoms 0.5 0.3-0.8 <0.01
Enteric symptoms 0.8 0.5-1.1 0.1
Febrile symptoms 1.5 0.7-3.2 0.3
Rash 4.0 22-71 <0.01

CHIKV-positive versus Arthralgia-arthritis 2.9 1.7-5.2 <0.01

negative test outcome

(based on 736 patients with Hemorrhagic symptoms 0.4 0.1-34 0.4

CHIKV-diagnostic tests

performed) Neurological symptoms 0.7 0.1-6.2 0.7
Respiratory symptoms 0.3 0.1-1.1 0.1
Enteric symptoms 0.4 0.1-1.1 0.1
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This bias toward severe symptoms was likewise reflected by the finding that patients
referred to large hospitals and travel clinics were more extensively evaluated than those
visiting small hospitals and local clinics. Reasons for this difference were not assessed in our
study but are likely related to the fact that 1) general practitioners often omit arbovirus
diagnostics, due in part to budgetary constraints; 2) they may lack knowledge on arboviral
disease, and 3) may believe that an arbovirus diagnosis is unlikely to influence their
treatment decisions, particularly if symptoms are mild.

However, even mild arbovirus infections can eventually cause severe or chronic symptoms
like arthralgia and, in any case, they pose a potential risk to health workers. Lack of proper
diagnosis may lead to unnecessary complications or extensive later testing of patients. A
possible solution to this problem is diagnostic centers providing syndromic and region based
diagnostic packages for travelers as presented by the algorithms here.[4] These can be
continuously updated in collaboration with specialized physicians and Public Health
professionals. This will relieve the general physicians from keeping up to date on such a
complex and continuously changing area. At the same time physicians are provided with a
complete diagnostic selection and data are more suitable for use in surveillance.

Our results show a large variation in the timing of first diagnostic sampling. In our study, 50%
of travelers contacted a healthcare provider during the first week of illness. This means that
50% did not, and viremic patients may introduce viruses into a region, when appropriate
vectors are available, [24, 28] or pose a risk for nosocomial infection.[29, 30]

Only 1.3% of all diagnostic tests performed were molecular, while 50% of patients fell within
the range advised for molecular testing. The timeframe for molecular and serological
diagnostics overlap to a great extent. Within the first days of illness, however, serology has a
low sensitivity.[6] A number of the DENV cases may have been secondary, tertiary or
quaternary infections. This reduces the sensitivity of serological detection by IgM in non-
primary infections significantly.[6] Many patients are therefore probably missed due to lack
of molecular testing within this timeframe.

To use diagnostic data for syndromic surveillance, a two-tiered approach could be employed.
First, samples collected after three days of illness onset would provide syndromic
information by multiplex serologic testing. Second, if testing showed increased circulation of
a target virus, confirmation and genomic surveillance would follow in patients suspected to
harbor that virus sampled within seven days of iliness.

There are a number of limitations to this study. Nearly all patients tested for arboviral
diseases in the five-year-period in the Netherlands were included. This group, however, only
consists of patients that seek medical attention after travel and that are suspected of an
arboviral infection by a clinician. Asymptomatic patients and patients where clinicians did
not consider an arboviral disease are missed.

Almost all patients lack vaccination history. Patients with recent yellow fever vaccinations
could cause positive false positive serological tests.[6] Lack in reporting vaccination history
and the resulting possible flavivirus cross-reactivity due to vaccination are known problems
when using flavivirus serological diagnostic data.[9] Both diagnostic centers had extensively
validated tests internally with yellow fever vaccines and changed diagnostic cut-offs
provided by manufacturer to compensate if possible. However, false positive tests due to
vaccination cannot be excluded.
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Infectious disease diagnostics and surveillance of travelers is primarily focused on those
cases or diagnostic outcomes selected and reported by physicians.[31-34] Although this
approach provides essential information, many patients remain undiagnosed, and re-
evaluation of the selected pathogens has been advised.[10, 32, 35]

However, much knowledge on probable arbovirus exposure of travelers is based on
information originating from the destination country, which may have limited surveillance
and diagnostic capabilities. In some of these countries, large-scale surveillance projects using
a more syndromic approach to infectious diseases have shown extensive under-diagnosis
and under-recognition of the importance of many arbovirus diseases as a cause of common
syndromes.[36, 37]

This underlines the need, in the Netherlands and other affluent countries, for more
systematic syndrome-based diagnosis and surveillance in travelers to these regions. It
demonstrates the added value of using routine travel information to support national and
international surveillance programs. For such surveillance, capturing only a fraction of all
cases may still provide reliable information on disease trends and possibly local outbreaks,
provided the selection is systematic.[9] It is also important in terms of preparedness for
emerging infectious diseases.

Conclusion

A physician’s diagnostic requests for returned travelers can play a key role in infectious
disease surveillance. However, while travel destination and syndrome could be used for
triage and diagnostics, such use is inconsistent. We found clear evidence of patient groups at
risk of under-diagnosis of arboviral disease when evaluated by syndrome and by region.
Based on a comparison between all arboviral diagnostic requests by physicians in the
Netherlands between 2009 and 2013 with a literature-based assessment of the likely
exposure of the patients to an arbovirus, we showed that while dengue virus diagnostics are
routinely requested, other relevant arboviruses such as chikungunya virus are neglected,
even if travelers present with relevant symptoms and return from countries where the
viruses are endemic. We also showed that for travelers to European destinations, arbovirus
diagnostics were rarely requested and that for almost all arboviruses and travel destinations,
diagnostics were requested only when patients presented with severe symptoms.

Whether the low number of requests and overemphasis of physicians on patients presenting
with severe symptoms reflects a lack of physician awareness of arboviruses and their risk to
travelers, financial restrictions or limited time, it points at possible gaps in preparedness.
Our paper shows that in order to limit the amount of missed clinical arboviral infections, and
to increase the level of awareness of arboviral infections of public health significance,
physicians should rely on diagnostics and surveillance with a syndromic approach and
matching laboratory methods.
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Ross River virus disease in two Dutch travellers
returning from Australia, February to April 2015

Reusken C., Cleton N., Medonca Melo M., Visser C., GeurtsvanKessel C., Bloembergen P., Koopmans
M., Schmidt-Chanasit J., and Van Genderen P.

Abstract

We report two cases of Ross River virus (RRV) infection in Dutch travellers who visited
Australia during February to April 2015. These cases coincided with the largest
recorded outbreak of RRV disease in Australia since 1996. This report serves to create
awareness among physicians to consider travel-related RRV disease in differential
diagnosis of patients with fever, arthralgia and/or rash returning from the South
Pacific area, and to promote awareness among professionals advising travellers to
this region.
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Case presentation

Case 1

A woman in her early 50s with a history of polymyalgia rheumatica visited the outpatient
department of a hospital in Rotterdam because of persistent joint pains after travel to
Australia. She had stayed in Australia from 30 January until 5 March, where she mainly
stayed in the surroundings of Perth. From 7 February, she stayed in Cairns for six days. She
recalled having had multiple mosquito bites during her stay in Cairns. Seven days after her
return to Perth (on 20 February), she developed fever, fatigue, frontal headache, muscle
aches and arthralgia of her hands, wrists, feet and ankles. In addition, she noticed an itchy
papular rash on her face, neck and trunk. She was treated with prednisone by a local general
practitioner for a presumed recurrence of her polymyalgia, pending the results of serological
investigations. Serology for RRV was IgM positive, therefore treatment with prednisone was
discontinued.

Two months after returning to the Netherlands, she still experienced debilitating arthralgia
and an unsteady gait, frequently necessitating the use of a walking aid. In addition, she
reported a subfebrile temperature and sweating. On physical examination, no abnormalities
were seen. She had a normal body temperature of 36.9 °C and her joints did not show any
sign of arthritis. Laboratory investigation revealed an elevated erythrocyte sedimentation
rate (ESR) of 32 mm/hr, a normal leukocyte count of 6.6 x 109/L, no abnormalities in the
differential morphology of the leukocytes and a C-reactive protein (CRP) level of 6 mg/L
(norm: <10 mg/L). Serological testing for RRV on convalescent serum (taken 7 April) showed
the presence of IgM and seroconversion for IgG antibodies specific for RRV (Table). RRV
aetiology was further confirmed by comparative indirect immunofluorescence assay (IIFA)
for RRV, Barmah Forest virus (BFV), chikungunya virus (CHIKV) and Sindbis virus (SINV), and
virus neutralization (Table). BFV, CHIKV and SINV are alphaviruses causing symptoms
comparable to those caused by RRV, which are endemic to the region.

Case 2

A woman in her late 60s visited her general practitioner on 11 May 2015 with complaints of
fatigue, myalgia, arthralgia and a maculopapular rash but no fever. The patient had visited
Australia from 29 March to 9 May 2015, where she stayed in New South Wales (in Sydney,
Armidale and a mangrove forest near Coff Harbour). She recalled having been bitten by
mosquitoes during a trip on 14 April. The first symptoms of wrist pains appeared around 21
April, followed by a rash a few days later. The patient visited a local physician on 27 April and
treatment with meloxicam was initiated. Laboratory investigation revealed a normal
erythrocyte sedimentation rate of 5 mm/hr. Diagnostics for RRV, BFV, Epstein—Barr virus,
B19 parvovirus and connective tissue disease were negative.

Upon the patient’s return to the Netherlands, the rash reappeared (Figure) and the joint
pains in her hands and knees increased. Treatment with naproxen was started. Serology for
Borrelia burgdorferi showed IgM but no 1gG; however, this diagnosis remained inconclusive
as it was not confirmed by analysis of a second serum sample. Serological testing for RRV
and BFV on a convalescent serum taken on 20 May showed the presence of IgM and IgG
antibodies specific for RRV (Table). A second serum sample taken on 24 June showed
decreasing IgM and increasing I1gG titres. RRV aetiology was further confirmed by
comparative IIFA for RRV, BFV, CHIKV and SINV, and by virus neutralisation (Table).

76



Ross River virus disease in two Dutch travellers | Chapter 4.2

Table: Differential diagnostics for two Dutch travellers returning from Australia with Ross
River virus disease, February to April 2015

Test results

Antibody tested

Anti-RRV-1gG* 2.23 3.64
Anti-RRV-1gMm* 4.81 6.33
Anti-RRV-1gG" 1:10,240 1:2,560
Anti-RRV-1gMPb 1:640 1:5,120
RRV NAb* 1:40 1:40
Anti-BFV-1gG/Igh*" neg neg
Anti-CHIKV-1gG® 1:160 1:1,280
Anti-CHIKV-1gM® 1:320 neg
CHIKV NAbL® neg neg
Anti-SINV-1gG/lgm® neg neg

BFV: Barmah Forest virus; CHIKV: chikungunya virus; NAb:
neutralising antibodies; neg: negative; RRV: Ross River virus;
SINV: Sindbis virus.

*Enzyme-linked immunosorbent assay (PanBio ELISA) values<1i.0
were considered negative.

“Indirect immunofluorescence assay titres<i:20 for serum were
considered negative [g].

“Virus neutralisation test titres<1:20 for serum were considered
negative [g].
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Figure: Rash in a traveller (Case 2) returning from Australia with Ross River virus disease,
19 May 2015, 29 days post symptom onset

Background

RRV, an alphavirus transmitted by mosquitoes, is endemic in Australia and Papua New
Guinea, with occasional epidemics in island countries in the Asia-Pacific region. The virus is
maintained in an enzootic cycle between mosquitoes and marsupials, such as kangaroos and
wallabies, as primary reservoirs. Rodents, rabbits, fruit bats, possums, horses, cats and dogs
have been implicated as well [1-3]. Human-to-human transmission has been described in
epidemic situations, and viraemic travellers from Australia have been linked to epidemics in
the Cook Islands, Fiji, New Caledonia and Samoa [3]. Unnoticed circulation of RRV has been
described in French Polynesia [4]. Recent evidence supports RRV transmission through blood
donation [5]. Mosquitoes belonging to the genera Aedes and Culex are considered the main
vector species and vertical transmission has been described as a way for the virus to persist
during adverse conditions in desiccation-resistant eggs [6].

RRV is endemic in tropical and subtropical Australia (Northern Territory and Queensland)
with year-round notification of human cases, while in temperate Australia (New South Wales
and Victoria) human cases occur seasonally and in epidemics [3,6]. According to the
Australian Department of Health, by 23 June 2015, a total of 7,552 RRV disease cases had
been reported this year, which is the largest number of annual reported cases since 1996
[7]. Most cases up to 23 June were reported in Queensland (n=5,075) and New-South
Wales (n = 1,292) and peak incidences were in February to April.
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The incubation period for RRV disease (also called epidemic polyarthritis) is typically 7-9
days, ranging from 3 to 21 days [1]. In 55-75% of infections, the individuals are
asymptomatic. Symptomatic disease typically includes arthralgia, myalgia and fatigue.

Low-grade fever (37.5-38.5 °C) and maculopapular rash on the torso and limbs (sometimes
palms, soles and face) occur in 50-60% of clinical cases [1]. Joint pain, stiffness and swelling
are usually symmetrical, affecting wrists, hands, fingers, ankles and knees. Additional
manifestations may include headache, diarrhoea and nausea. Symptoms most often resolve
within 3—6 months; permanent sequelae have not been described.

Treatment of symptomatic cases is supportive. Analgesics and nonsteroidal anti-
inflammatory drugs may be helpful in the treatment of arthritis and arthralgia. No vaccine is
available [1,3].

Laboratory findings are non-specific. Leukocyte counts and CRP levels are usually normal,
ESR elevated. Diagnostics are most often based on serology as the viraemic stage is very
short (typically fewer than seven days post symptom onset for alphaviruses) and molecular
diagnostics are not considered useful on samples taken more than a week after symptom
onset. Serology is complicated by putative cross-reactivity with other alphaviruses, especially
CHIKV, which belongs to the same serogroup [1,3,8].

Discussion

Diagnosis of RRV disease in travellers returning to Europe is very rare [8-11]. A history of
mosquito bites and stay in RRV-affected areas are epidemiological parameters supportive of
a confirmative diagnosis based on RRV IgM and IgG responses. Based on these criteria, only
three cases of RRV disease have been confirmed between 1 January 2009 and 30 June 2015
in the Netherlands, including the two cases in 2015 reported here, who had additional
confirmation by gold-standard serology (virus neutralisation). In this period, a total of 56
diagnostic requests for RRV were submitted to the Dutch national arbovirus reference
centre in Rotterdam. Of these, 20 requests indicated the travel destination as Australia
and/or Asia-Pacific; for 30 requests, the travel destination was unknown. Although local
circulation of RRV is unknown, travel to Indonesia, Thailand, Malaysia and the Philippines
triggered diagnostic requests as well. Febrile disease and/or arthralgia were the most
common symptoms (in 21 of 35 diagnostic requests with clinical data), leading to RRV
disease being considered.

The cases presented here highlight the importance of considering RRV in differential
diagnosis for travellers presenting with acute arthritis returning from Australia and the Asia-
Pacific region. The two cases we describe were related to travel to risk areas in Australia in
February/March and March—May 2015. Other arboviruses circulating in Australia and
causing polyarthritis that should be included in differential diagnosis are the alphaviruses
BFV and SNV, and the flaviviruses West Nile virus (Kunjin virus, KUNV) and Kokobera virus
(KOKV). Depending on other travel destinations in the Asia-Pacific region, chikungunya virus,
dengue virus and Zika virus should be considered as well [3,12]. The annual incidence of RRV
disease in Australia ranges from 2,000 to 8,000 cases; for BFV disease, from 500 to 2800.
Human cases of KUNV or KOKV disease are rare, while the occurrence of human infections
with the Oceania lineage of SINV is under debate [3,12].
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Although RRV-viraemic travellers have been linked to the spread and epidemics with RRV in
the Asia-Pacific region, it is highly unlikely that return of viraemic travellers to Europe will
result in autochthonous transmission. As the duration of viraemia is short, the likelihood
that a traveller will be viraemic on their return is small. More importantly, the three main
vectors for RRV transmission based on field isolations and competence studies are either
strictly confined to Australia (Ae. vigilax and Ae. camptorhynchus, both invasive but not
established in New Zealand) or the Asia-Pacific region (C. annulirostri) (1).

This report underlines the need for awareness of RRV-related risks among physicians,
professionals advising travellers and travellers themselves. Australia is a popular travel
destination for Europeans, especially for German, British and French tourists [13]. The
number of leisure travellers from the Netherlands to Australia and/or New Zealand has been
stable during 2002 to 2011, averaging to 52,000 travellers per year [14]. In January to March
2015, a total of 459,700 Europeans, including 12,600 from the Netherlands, had travelled to
Australia [13]. Infection is preventable using common mosquito-prevention measures such
as wearing long trousers, long sleeves, light-coloured clothes and insect repellents.
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Development of a syndrome based protein microarray
for specific serological detection of multiple flavivirus
infections in travelers.

Cleton N., Godeke GJ., Reimerink J., Beersma M., Doorn R., Franco L., Goeijenbier M., Jimeneze-Clavero
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Abstract

Background: The family Flaviviridae, genus Flavivirus, holds many of the world’s
most prevalent arboviral diseases that are also considered the most important travel
related arboviral infections. In most cases, flavivirus diagnosis in travelers is primarily
based on serology as viremia is often low and typically has already been reduced
to undetectable levels when symptoms set in and patients seek medical attention.
Serological differentiation between flaviviruses and the false-positive results caused
by vaccination and cross-reactivity among the different species, are problematic for
surveillance and diagnostics of flaviviruses. Their partially overlapping geographic
distribution and symptoms, combined with increase in travel, and preexisting
antibodies due to flavivirus vaccinations, expand the need for rapid and reliable
multiplex diagnostic tests to supplement currently used methods.

Goal: We describe the development of a multiplex serological protein microarray
using recombinant NS1 proteins for detection of medically important viruses within
the genus Flavivirus. Sera from clinical flavivirus patients were used for primary
development of the protein microarray.

Results: Results show a high Ig
NS1 antigens, and limited ci
the serology basec
vaccination
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Introduction

The family Flaviviridae, genus Flavivirus, holds many of the world’s most prevalent arboviral
diseases that are also considered the most important travel related arboviral infections.[1]
As the geographic distribution and symptoms caused by these viruses overlap, detection
requires differential diagnostic algorithms that include multiple flaviviruses.[2] Increase in
travel expands the need for rapid and reliable multiplex diagnostic tests in non-endemic
countries to supplement currently used methods.[3, 4]

Flaviviruses are single stranded enveloped viruses with an RNA genome of about 11 kb
length. The genome is composed of three structural (Envelope, Capsid and Precursor-
membrane) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and
NS5).[5] Diagnosis is primarily based on serology through detection of IgM and IgG
antibodies, as viremia typically has been reduced to undetectable levels when symptoms set
in and patients seek medical attention.[5-7]

The genus is divided into serocomplexes that are distinguished based on neutralizing
antibody reactivity (Figure 1). The amino acid homology of the envelope (E) protein (which is
the immunodominant antigen for neutralizing antibody assays) ranges from 40-50%
between serocomplexes and 70-80% for virus species within a serocomplex.[5, 8] Antibodies
to flaviviruses are known to cross-react extensively within, and to a certain extent between,
serocomplexes when using traditional antibody assays.[9-12] Cross-reactivity occurs also if
patients have been vaccinated against flaviviruses such as yellow fever virus (YFV), tick-
borne encephalitis virus (TBEV) and/or Japanese encephalitis virus (JEV) or after secondary
infection with a different flavivirus.[9, 10, 13]

To overcome flavivirus cross-reactivity in diagnostics the use of recombinant antigens in
ELISA is to be preferred over whole virus as it increases specificity.[14-16] Envelope, pre M
and NS1 recombinant proteins are the most commonly used.[14-16] Of these, the NS1 has
shown to be highly immunogenic and important in the development of non-neutralizing
protective antibodies.[17, 18] NS1 is thought to contain more species specific epitopes than
the envelope protein, although some cross-reactivity is seen between NS1 proteins.[19-21]
NS1 in its natural conformation is thought to elicit a more specific immune response.[22, 23]
The absence of NS1 proteins in inactivated JEV vaccines offers further potential for
serological diagnosis through allowing differentiation between vaccinated and infected
patients.[24] Thus, NS1 protein shows potential to use in serological differentiation between
flavivirus infections.[25, 26]

To enable fast, syndrome based laboratory testing that focuses on multiple rather than
individual viruses, we developed a protein microarray, using recombinant NS1 proteins, as a
serological test for medically important viruses within the Flavivirus genus.

Materials and Methods

Samples

Sera from anonymized patients were used for primary development of the protein
microarray. Patients were diagnosed according to international accepted criteria combining
clinical symptoms, epidemiological data, and standard serological methods (ELISA, IFA) and
laboratory confirmed by either VNT or PCR with the exception of 10 patients suspected of
JEV. Information on each patient group used is presented in Table 1.
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Protein production

Custom-made NS1 proteins produced in human embryonic kidney 293 (HEK293) cells to
ensure proper folding, glycosylation and dimerization were used (Immune Technology Inc.,
New York, NY, USA). A V5-epitope and Histag were added to the C-terminus for protein
quantification and filtration. Proteins were expressed for Dengue virus 1
(genbank:FJ687432.1), Dengue virus 2 (genbank:FJ744720.1), Dengue virus 3,
(genbank:FJ744738.1), Dengue virus 4 (genbank:EU854300.1), Japanese encephalitis virus
(genbank:NC 001437.1), St. Louis encephalitis virus (genbank:ACB58159.1), Yellow fever
virus (genbank:JN620362.1) and West Nile virus (genbank:EU081844.1)

Usutu virus NS1 (genbank:NC006551.1) was produced in-house in a HEK293 cell-line. The
NS1 gene was produced by Genscript (NJ, USA) with and additional V5-epitope and Histag on
the C-terminus and cloned into a pcDNA-DEST40 vector (Invitrogen, Thermo Fisher Scientific,
MA, USA) that contained a neomycine resistance gene. The vector which contained the NS1
gene was transfected into HEK293 cells. Neomycine resistant clones were selected and
tested for protein expression by immune fluorescent assay using anti-V5 monoclonal
antibody. Selected clones were grown in flasks and secreted NS1 protein into the medium
(Opti-MEM, Thermo Fisher Scientific, MA, USA). The secreted protein was purified from the
medium by FPLC using a Ni-NTA column (Qiagen, CA, USA) according to the manufacturer’s
instructions.

Microarray slide preparation

NS1 antigens at concentrations of around 2mg/ml were mixed with protein arraying buffer
(Maine manufacturing, GVS Group, Italy) and spotted in triplicate as a within-test control per
pad. Antigens were spotted onto a nitrocellulose pad coated glass slide (Maine
manufacturing, GVS Group, Italy) using a non-contact protein array spotter (PerkinElmer,
Waltham, MA, USA) as previously described.[27] Per spot two drops of 333 pL of diluted
protein were used. After printing, slides were placed in a drying chamber overnight and
stored at room temperature until use.

Protocol testing for IgG and IgM antibodies

Patient sera were tested on dried slides as previously described.[27] In short, slides were
incubated in Blotto blocking-buffer (Thermo Fisher Scientific, MA, USA) for one hour at 37° C
in an incubation chamber to reduce non-specific binding of serum. Serum was diluted in
eight two-fold dilution steps (1:10 to 1:2560) in blotto supplemented with 0.1% Surfact-Amp
(Thermo Fisher Scientific, MA, USA) and incubated for 1 hour at 37° C in a moist chamber.
Incubation followed with an Fc-fragment specific 1gG or Fc5u-fragment specific IgM specific
conjugate with a Cy5-fluorescent dye (Invitrogen, California, USA) for one hour at 37°C. For
IgM detection, serum was first depleted of 1gG antibodies using Gullsorb (Meridian
Bioscience, OH, USA) according to the manufacturer’s instructions. Between each incubation
step, slides were washed three times with a protein array washing buffer (Thermo Fisher
Scientifc, Rockford, MA, USA). After final wash, slides were scanned with a Tecan scanner
(Tecan Trading AG, Mannedorf, Switzerland). A median fluorescence signal (measured at
647nm) for each of the triplet spots per antigen was determined by ScanArray Express
4.0.0.0001 supporting program (PerkinElmer, MA, USA) using an adaptive circle (diameter
80-200 um). The fluorescent signal ranged from 0 to a maximum of 65,536 units. Results
were imported in R for analysis.[28]
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Figure 1: The serogroup classification of the Flavivirus genus of arboviruses used. Shaded
boxes indicate antigens and antibodies used in this validation. Viruses with an * indicate that
human vaccines are available for this virus.
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Protein concentration optimization

Virus antigens were spotted in serial two-fold dilutions ranging from 1:2 to 1:16 for initial
checkerboard titrations to determine optimum protein concentration as previously
described.[27] Antigens were tested using serially diluted anti-V5-epitope monoclonal
antibodies (Invitrogen, Thermo Fisher Scientific, Rockford, MA, USA). Optimum protein
concentrations were defined as those at which maximum fluorescent signal and overlapping
s-curves were achieved for anti-V5-epitope monoclonal antibodies and were found to be
around 0.5 mg/ml. To minimize batch-to-batch variations each batch was tested with a serial
dilution of anti-V5 monoclonal antibodies if a more than 10% variation was found in
reference to the initial test batch the slides were excluded. Day-to-day variations were
monitored by including a positive and negative WHO DENV1-4 reference serum during each
test round. If a more than one titer dilution-step difference was detected results were
excluded.[29]

Analysis

A script was written in R[28] using additional package ‘drc’ version 2.3-7[30], as previously
described.[27] The median fluorescent signals were converted into fitted dilution-s-curves
per protein for each serum sample. Additional script was written that allowed titers to be
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calculated on the estimated s-curve at a given ROC calculated cut-off. Optimal signal cut-offs
were determined by a log2 transformation of signals to further reduce variance caused by
day-to-day and slide-to-slide variations. Optimal signal cut-offs were achieved by selecting
the highest possible combination of sensitivity and specificity through ROC optimal curve
calculations performed in GraphPad Prism.[31] Titers were defined as the highest serum
dilution with a signal above the cut-off determined by ROC analysis. Heat maps were
generated using an additional R package ‘stats’[28] and based on pairwise correlation
between rows and columns. Mann-Whitney tests were employed to establish the
significance of differences between groups.

Results

Sensitivity and specificity for individual antigens

The mean antigen reactivity by NS1 proteins in 1:10 to 1:80 start dilutions was high in
homologous DENV, WNV, JEV, SLEV, YFV and Usutu virus (USUV) positive control sera and
low in negative control sera and in sera from individuals vaccinated for JEV, TBEV or YFV
(p<0.01) with the exception of YFV NS1 antigen with YFV vaccinees (Figure 2 and Table 2).
Only some NS1 reactivity was observed in samples from blood donors for other antigens
(1%).

At low serum dilutions, some patients showed antibody IgG reactivity to multiple antigens,
and therefore ROC curves were calculated in multiple dilutions and the signals for the 1:20
dilutions were used for signal cut-off calculations. The 1:10 and 1:20 serum dilutions
produced comparable results in sensitivity and specificity, but with significantly lower
background for the 1:20 dilutions. At 1:40 serum dilutions, the sensitivity started to
decrease.

Only 13 DENV positive patients (travelers) had known primary DENV infections with a PCR
confirmed serotype (DENV1-3). All other patients with PCR confirmed DENV (serotype 1-4)
were from DENV endemic countries and could not be confirmed as primary infections. As
not all DENV infections were known to be primary, the highest signal to DENV1-4 NS1 was
used for calculation of the DENV cut-offs. The optimal cut-off for all proteins was around a
fluorescent signal of 15,000 for IgG and 4,000 for IgM, producing sensitivity and specificity of
86% to 100% and 86% to 100% respectively (Table 3).

For USUV, SLEV and YFV only one or two positive patient samples were available so that
proper ROC curves could not be calculated, but background signals were in the same range
as for the other antigens (Table 2). Serum samples from YFV-vaccinees were strongly
positive for YFV. Some blood donors had YFV signals above the cut-off, probably reflecting
vaccination history (Figure 2).

Cross-reactivity

In order to study cross-reactivity within and between serocomplexes, serum samples were
serially diluted and titers were calculated in R. Typical individual patient profiles are shown
in figure 3. To quantify the degree of cross-reactivity, the ratio of the signal for each antigen
to the maximum signal measured for that serum (typically the homologous antigen) was
calculated (Figure 4a-c). With one exception for IgG (serum sample #4), all patients had the
highest IgG and IgM reactivity with the homologous NS1 antigen. High level IgG reactivity to
a second antigen was observed for two of the DENV patients (against WNV and JEV,
respectively) and for 2 JEV patients (against DENV) (Figure 4a). One serum sample from a JEV
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patient (serum sample 4) had a higher titer DENV NS1 in comparison to JEV NS1. For IgM,
only homologous reactivity was observed.

Serotype specific reactivity for DENV

IgG profiles from individual patients were combined into a heatmap (Figure 5) to confirm
grouping according to exposure history. One group of patients (indicated by a star in the
heatmap) showed high titers to multiple DENV serotypes. A larger group had highest titers
to a single DENV serotype, suggesting serotype specificity of the antibody array results. As
most patients were from different regions, the data were stratified for non-endemic
(travelers) and multiple DENV endemic countries. This showed a significant difference in
titers between groups (p<0.01) for IgG but not for IgM (p=0.25) titers.

For 13 known primary DENV cases, the serotype had been determined by RT-PCR. All but
one serum had highest IgG antibody levels to the infecting serotype, but IgM antibody
reactivity was lower and less discriminatory.

Discussion

We developed a first generation protein microarray for rapid, multiplex and virus-specific
IgM and IgG tests for diagnosis of flavivirus infections that could differentiate between virus
species, even within flavivirus serocomplexes, as well as between vaccinated and infected
individuals, with the exception of YFV vaccinated individuals. Initial validation shows that this
microarray can be used for flavivirus surveillance in travelers and potentially in regions with
co-circulation of multiple flaviviruses. To establish this we first investigated the sensitivity of
NS1 antigens to their homologous sera on a protein microarray. The results show good IgG
and IgM sensitivity for both JEV and DENV serocomplex viruses. The sensitivity is comparable
to current IFA and ELISA commercial kits. However, our sample selection was tested with a
multitude of standard serological assays. Comparing our results to commercial ELISA or IFA
kits should therefore be done with caution. Our results confirm that NS1 provides a good
sensitive and specific antigen tool for serological diagnosis.

For DENV, the sensitivity of the IgM assay was lower than for IgG. There are several possible
explanations for this finding. First, lower DENV IgM sensitivity may have resulted because
five to ten days post onset of symptoms may be too early for detecting seroconversion in
serum samples.[32] Evaluations of commercial flavivirus IgM diagnostics kits showed varying
sensitivities ranging from 58% to 98%, partially due to sample timing.[32-34] Five days post
onset of symptoms, around 50-80% of patients on average have detectable IgM antibodies.
This increases to 99% 10 days post onset of symptoms.[35]

Second, a study of antibody reactivity to individual DENV proteins has found that the
measured mean OD is lower for NS1 compared to E-protein with many samples clustering
closer to the cut-off compared to E-protein antibodies.[18] This makes NS1 antibody
detection more susceptible to timing of sample taking and detection limit of test used.

Third, patient-to-patient variation in antibody responses to individual viral antigens may
cause discrepancies of test results. NS1 based protein assays could potentially pick up
infections missed by prM-E based front-line serological tests.[20] Antibodies to envelope
protein were detected in 91% of the DENV cases while NS1 antibodies were detected in 99%,
indicating that NS1 has a higher sensitivity.[18] Two of the nine DENV IgM positive samples
from travelers that tested negative on DENV IgG ELISA, which is based on the prM-E antigen,
tested IgG positive on our microarray, further supporting this assumption.
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Figure 4: Representative examples of IgG antibody profiles of individual patients infected
with JEV (Figure 3A) and DENV (Figure 3B) serocomplex viruses.
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Figure 6: Heatmap of patient I1gG antibody profiles. To visualize the overall cross-reactivity
seen in individual serum samples the maximum calculated titer per sample was set at 100%
and all other signals were expressed as a percentage of the highest titer and placed in a
heatmap. White refers to a titer of 0% in reference to highest calculated titer per serum
sample with a sliding scale to red which indicates a titer of 100% comparable to highest titer
calculated. The numbers alongside the patient group column correspond to the serum
samples shown in figure 4A and 4C. The star indicates a group of patients with high titers to
multiple DENV NS1 antigens.
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Finally, a number of the DENV cases may have been secondary, tertiary or quaternary
infections. Several of the samples originated from DENV hyperendemic countries and
showed high titers to multiple DENV and other flaviviruses, further supporting this
assumption. Literature shows that IgM antibody titers produced during a secondary DENV
infection are absent or lower and produced during a shorter period. This reduces the
sensitivity of IgM antibodies in non-primary infections significantly.[35] Despite the above
limitations, the NS1-based protein microarray performed well. Ideally, further validation is
needed with sequentially sampled patient sera, allowing evaluation optimization of timing of
sampling during infection, in relation to cut-off chosen.

The biggest challenge of current flavivirus serodiagnostics is virus specific differentiation.[3,
4] We analyzed the signals produced towards all antigens per sample to test our protein
microarray’s capability to achieve this. With three exceptions (probable secondary
infections), clear differentiation of antibody responses to the homologous antigen (defined
as the virus the patient was confirmed infected with) was found for most patients. This can
be clearly seen in the heatmap (Figure 5). This is a big advantage over currently available
serological tests, for which particularly flavivirus vaccination causes extensive cross-
reactivity, mainly for 1gG.[9-12] Previous epitope analysis of DENV NS1 and envelope protein
of indicated that NS1 has more virus specific epitopes and thus could be used for more
specific serological tests.[16, 19-22] Our results support this showing good specificity for the
NS1-based protein microarray.

The cause of the outliers shown in figure 4 is unclear as they may be the result of cross-
reactive antibodies or previous exposure. Cross-reactive antibodies to NS1 proteins have
been detected in previous studies, but why they are seen in some patients and not others
remains unclear.[20] The reactivity to multiple antigens more likely reflects differences in
exposure history.[10, 36] This assumption is supported by the fact that most patients with
reactivity to multiple antigens originated from countries where multiple flaviviruses are
endemic (Vietnam and Venezuela). The IgG titers of these patients are log multiplications
higher than singular reactive titers and their corresponding IgM titers, which is highly
indicative for secondary and frequent flavivirus infections.[16] Distinguishing primary from
secondary or multiple flavivirus infections is serologically difficult.[16] Further investigation
into patients with known multiple flavivirus infections will be needed to further define the
uses of our multiplex array testing in such patient populations.

While we show excellent discrimination in antibody responses to viruses within the JEV
complex, this is less straightforward for DENV. The protein microarray IgG antibody reactivity
to individual DENV NS1 antigens shows capability to distinguish serotypes (as can be seen in
figure 5), but this is not seen to the same extent for IgM antibodies. This was surprising as
flavivirus 1gM envelope antibodies are thought to be more specific than IgG antibodies.[16]
However, to what extent this can also be said for NS1 is unclear. Here, future work will focus
on more extensive evaluation, for which well characterized patient cohorts are needed.

Finally, we looked at the ability to rule out false positive reactions due to vaccination. This
was not possible for YFV vaccination when testing against YFV NS1. YFV vaccine is a live
attenuated vaccine and causes mild infection resulting in NS1 antigen and antibody
production.[37] We do, however, show that when using NS1 antigens the cross-reactivity
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between the YFV serocomplex and other serocomplexes is absent.[9, 10, 13] JEV vaccine
currently on the European and American market is an inactivated whole virus vaccine based
on JEV virions.[38] This production technique makes NS1 a good target for vaccination
versus infection differentiation and is the basis for current surveillance programs in Japan
and surrounding countries.[39] However, live-attenuated (non-recombinant) JEV SA-14-14-2
vaccine is currently in use in a number of countries in Asia and has recently been WHO
prequalified. Its use nullifies the ability to differentiate vaccination from infection, reducing
Public Health surveillance options. New vaccine methods using chimeric virus vaccines are in
development and might provide new opportunities for vaccination and infection
differentiation through NS1. In veterinary vaccine development, good practice ensures the
ability for such discrimination through the development of marker vaccines according to the
DIVA (Differentiating Infected from Vaccinated Animals) principle.[40] Public health
challenges associated with inability to reliably provide patient diagnostics in some instances
due to vaccination, highlight the need for introducing this principle to the human vaccine
market.

Conclusion

Serological differentiation between flaviviruses and the false-positive results caused by
vaccination are a serious problem for surveillance and diagnostics of flaviviruses. Analysis of
our NS1-based protein microarray results showed a high IgG and IgM sensitivity and
specificity for individual antigens even within the same serocomplex, and limited cross
reactivity. In addition, the serology based on this array allowed discrimination between
infection and vaccination response for JEV vaccine, and no cross-reactivity with TBEV and
YFV vaccine induced antibodies when testing for antibodies to other flaviviruses. Based on
this data, our multiplex NS1-based protein microarray is a promising tool for surveillance and
diagnosis of flaviviruses.
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A serological protein microarray for detection of
multiple cross-reactive flavivirus infections in horses
for veterinary and public health surveillance.

Cleton N., Van Maanen C., Saskia A. Bergervoet S., Bon N., Beck C., Godeke GJ., Lecollinet S., Bowen R.,
Lelli D., Nowotny N., Koopmans M., and Reusken C.

Abstract

Background: The genus Flavivirus in the family Flaviviridae includes some of the most
important examples of emerging zoonotic arboviruses that are rapidly spreading across the
globe. Japanese encephalitis virus (JEV), West Nile virus (WNV), St. Louis encephalitis virus
(SLEV) and Usutu virus (USUV) are mosquito-borne members of the JEV serological group.
Although most infections in humans are asymptomatic or present with mild flu-like symptoms,
clinical manifestations of JEV, WNV, SLEV, USUV and Tick-borne encephalitis virus (TBEV) can
include severe neurologic disease and death. In horses, infection with WNV and JEV can lead
to severe neurological disease and death while USUV, SLEV and TBEV infections are mainly
asymptomatic, however induce antibody responses. Horses often serve as sentinels to monitor
active virus circulation in serological surveillance programs specifically for WNV, USUV and JEV.

Methods: Here we developed and validated a NS1-antigen protein microarray for the
serological differential diagnosis of flavivirus infections in horses using sera of experimentally
and naturally infected symptomatic as well as asymptomatic horses.

Results: Using samples from experimentally infected horses, an IgG and IgM specificity of
100% and a sensitivity of 95% for WNV and 100% for JEV was achieved with a cut-off titre
of 1:20 based on ROC-calculation. In field settings, the microarray identified 93-100% of 1gG
positive horses with recent WNV infections and 87% of TBEV IgG positive horses. WNV IgM
sensitivity was 80%. Differentiation between closely related flaviviruses by the NS1-antigen
protein microarray is possible, even though we identifi : ea '
among antibodies. However, the assay is n
horses and animals vaccinated wi

Conclusion: We s
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Introduction

Arboviruses (arthropod-borne viruses) are considered emerging pathogens because of their
increasing incidence and geographical expansion to previously unaffected areas.[1] The
emergence of arboviral diseases depends on many socio-economic, environmental and
ecological factors, including vector and host population dynamics, travel and trade, and
climate change.[2] Recent outbreaks have demonstrated that the emergence of arboviruses
can have severe consequences for both public and veterinary health.[3, 4]

The genus Flavivirus in the family Flaviviridae provides some of the most important
examples of emerging arboviruses that are rapidly spreading across the globe. A recent
example, the rapid spread of Zika virus within the America’s, urged the World Health
Organisation (WHO) to declare the outbreak of Zika virus associated microcephaly a Public
Health Emergency of International Concern. Japanese encephalitis virus (JEV), West Nile
virus (WNV), St. Louis encephalitis virus (SLEV) and Usutu virus (USUV) are also mosquito-
borne members of the JEV serogroup.[5]

These closely related flaviviruses are maintained in an enzootic transmission cycle involving
birds as the main reservoir hosts.[6] Tick-borne encephalitis virus (TBEV) is a member of the
tick-borne encephalitis group and is sustained in a rodent-tick transmission cycle. To a great
extent, the geographical ranges of these five viruses overlap. Humans and horses are
incidental, dead-end hosts.[7] Although most infections in humans are asymptomatic or
present with mild flu-like symptoms, clinical manifestations of JEV, WNV, SLEV, TBEV and
USUV can include severe neurologic disease and death.[8] In horses, infection with WNV and
JEV can lead to severe neurological disease and death while USUV, SLEV and TBEV infection
are mainly asymptomatic but do induce antibody responses.[9] Horses often serve as
sentinels for active virus circulation in serological surveillance programs specifically for WNV,
USUV and JEV.[10-13]

Flavivirus infections can be diagnosed by serology, virus isolation, or molecular
techniques.[14] The latter two methods are often unsuccessful because of reduced viremia
at the time of symptom presentation in dead-end hosts.[15] Diagnosis is therefore primarily
based on the detection of antibodies directed against flaviviruses in serum or, in case of
neurological manifestation, in cerebrospinal fluid (CSF) of infected individuals.[7] Frequently
used serological tests such as enzyme-linked immunosorbent assay (ELISA) and immuno-
fluorescence assay (IFA) are mainly focused on the detection of antibodies directed against
the whole virus or flavivirus envelope (E) protein, to which the majority of the antibody
response is targeted.[16] A major limitation of these serological tests is the presence of
extensive IgG, and to some extent IgM, antigenic cross-reactivity among viruses of the same
serogroup and even between serogroups.[17] Immunity due to previous flavivirus infection
or vaccination can complicate the diagnosis of recent infections.[18] Human vaccines exist
for JEV, yellow fever virus (YFV), dengue virus (DENV, only approved for use in Mexico) and
TBEV; equine vaccines have been widely deployed for JEV and WNV.

To enable identification of potential flavivirus threats, new diagnostic procedures and
specific serological tests are required that focus on the simultaneous but specific detection
of multiple instead of individual pathogens or antibodies against these pathogens.[19]
Protein microarrays provide such an alternative high-throughput diagnostic system.[20]
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Previously, we developed a protein microarray for detection of antibodies to flaviviral non-
structural protein 1 (NS1) in returning travellers, using sera from clinical flavivirus
patients.[21] Building on that microarray, here we developed and validated a protein
microarray for the differential diagnosis of flavivirus infections in horses using sera of clinical
and non-clinical flavivirus infected horses. This allows for fast, less expensive, syndrome-
based laboratory testing for multiple viruses simultaneously for veterinary and public health
purposes.

Material and methods
Serum cohorts
Different serum cohorts were used in this study (Table 1).

A) Longitudinal serum samples from horses experimentally infected with WNV lineage 1
(cohort A1, n=23), WNV lineage 2 (A2, n=3), JEV (A3, n=5), TBEV (A4, n=1) or USUV
(A5, n=1). Infection of the horses was confirmed by virus isolation, RT-PCR and/or by
plaque reduction neutralisation test (PRNT).

B) Serum samples from horses naturally infected with WNV lineage 1 from the USA (B1,
N=27), WNV lineage 2 from Italy (B2, n=25) or TBEV from Austria (B3, n=60). Horses
naturally infected with WNV lineage 1 (B1) were selected based on neurological signs
and detection of anti-WNV IgM by capture ELISA. Serum samples from horses
naturally infected with lineage 2 WNV were collected from clinically or asymptomatic
animals during the Italian outbreaks that occurred in the period 2013-2014 and
confirmed by I1gG/IgM ELISAs and virus neutralisation test (VNT) (B2). Sera from
horses with natural TBEV infection were obtained from an Austrian flavivirus
population serosurvey (B3), confirmed by VNT.[22]

C) Serum samples from Dutch horses vaccinated for WNV (C1). WNV-vaccinated horses
received an intramuscular injection with a licensed European WNV vaccine
(inactivated whole virus; Duvaxyn WNV®, Fort Dodge) on day 0 and 21 days post
primary vaccination (dpv). Serum samples from the vaccinated horses were obtained
on different DPV.[23]

D) Serum samples from non-infected horses from the same region in Italy (D2, n= 50)
and Austria (D3, n=12) as baseline groups for cohorts B2 and B3. As baseline group
for cohort B1, pre-inoculation serum of horses in experimental WNV infections from
the USA laboratory was used, as these horses were acquired on a local market. All
sera were pre-screened by PRNT for the absence of WNV or TBEV antibodies.

E) Serum samples collected in 2005 from 138 horses (E1) across the Netherlands
(presumed non-endemic to flavivirus circulation). WNV-free status was determined
by ELISA and PRNT.[23]

We were not able to acquire sera from SLEV infected horses.

Antigen production

Due to its high immunogenic properties and virus specific epitopes [24, 25], NS1 can be used
as an alternative to protein E in serological diagnostics to enable differentiation between
serologically cross-reactive flavivirus infections.[26-28] Custom NS1 protein of JEV [genbank:
NC 001437.1], WNV lineage 1 [genbank: EU081844.1], SLEV [genbank:ACB58159.1], TBEV
[genbank:AAA86870.1] and USUV [genbank: NC 006551.1] were produced in human
embryonic kidney 293 cells (HEK293-cells) to ensure proper folding, glycosylation and
dimerization. Production and protein quality were confirmed by Western Blot (Immune
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Technology Inc., New York, NY, USA). A 6xHis-tag used for purification by HPLC and a V5-
epitope for quality control were added to the C-terminus of the NS1 proteins as previously
described.[21]

Protein microarray slide preparation

Proteins were diluted in protein array buffer (Whatman, Maidstone, Kent, UK) containing
protease inhibitor (BioVision, Mountain View, CA, USA) and spotted in triplicate for internal
control on 16-pad nitro-cellulose coated glass slides (Maine manufacturing, GVS Group, Italy)
using a non-contact protein array spotter (sciFLEXARRAYER SX spotter, Scienion, Germany).
The optimal protein concentration for each antigen was determined by checkerboard
titration as previously described.[20] After spotting, slides were dried and stored at room
temperature in a climate controlled area with 0-10% humidity.

Protein microarray antibody detection

For antibody detection in horse serum samples, dried slides were treated with blocking
buffer to reduce aspecific binding, serum was added in a 1:20 dilution and washed as
previously described.[20] After washing, an anti-equine Fc-fragment specific 1gG conjugated
with an Alexa Flour-647 fluorescent dye (Jackson Immuno Research, West Grove, PA, USA)
was added and incubated for 1 h at 37 °C. In the case of IgM detection an unlabeled
conjugate of Fc5u-fragment specific IgM (MyBioSource Inc., San Diego, CA, USA) was added
followed by a tertiary antibody with label (Jackson Immuno Research, West Grove, PA, USA)
and incubated for 1 h at 37 °C. After washing, slides were treated with sterile water for 2 min
to remove excess salt and dried and scanned using the TECAN PowerScanner version 1.2
microarray scanner. The median spot fluorescence intensity (FI) per triple protein spot for
each serum sample was determined by ScanArray Express 4.0.0.0001 supporting program
(PerkinElmer, Waltham, MA, USA). Fluorescent signals have a minimum intensity of 0
fluorescent units and can reach a fixed maximum intensity of 65,535 fluorescent units when
saturated. Data were imported and processed in the statistical software ‘R’ version 3.0.1 for
further analysis.

Protein microarray data analysis

A script was written in R using the additional package ‘drc’ version 2.3-7 to convert the
median spot fluorescent intensity (Fl) into dose-response curves per protein for each serum
sample.[20] Antibody titres were defined as the serum concentration that provokes a
response half way on the dose-response curve between the minimum and maximum signal
(EC50). Paired and unpaired Mann-Whitney tests were used to compare medians. Optimal
titre cut-offs were achieved by selecting the highest possible combination of sensitivity and
specificity through ROC optimal curve calculations performed in GraphPad Prism.[29]

Quality control slides

Anti-V5-epitope monoclonal antibodies (Invitrogen, Thermo Fisher Scientific, Rockford, MA,
USA) were used to ensure the quantity of the protein spots of each batch. Optimum protein
concentrations were defined as those at which maximum fluorescent signal and overlapping
s-curves were achieved for anti-V5-epitope monoclonal antibodies and were found to be
around 0.5 mg/ml for all proteins. To minimize batch-to-batch variations all printed batches
were normalized by testing one slide from each batch with a serial dilution of anti-V5
monoclonal antibodies and calculate the corresponding titre as described above to one
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preselected protein. The titre to this specific protein in all following batches printed was
calculated in the same manner. The difference measured between the two batches was used
as a correction factor for the whole slide. The ANSES (Laboratory for Animal Health,
Maisons-Alfort, FR) serological reference sample (serum from a horse infected 35 days prior
with WNV lineage 1) was included in each experiment to correct for day-to-day variability.

Results

Experimentally infected horses

The horses that were experimentally infected with one flavivirus showed seroconversion.
Although there was some cross-reactivity, we could clearly distinguish between the specific
flavivirus antibodies. To analyse homologous reactivity, we tested serum samples serially
collected from horses that were experimentally infected with WNV lineage 1, WNV lineage
2, JEV, USUV or TBEV for reactivity with homologous NS1 as a first step in the validation
process (Fig.1&2). In serum samples taken at 0 and 7 days post infection (dpi) the antigenic
IgG and IgM reactivity to the homologous NS1 was low and comparable to each other
(P>0.05) for WNV and JEV infected horses. In serum samples obtained at 14 and 21 dpi, the
IgG and IgM reactivity to homologous NS1 was higher compared to 0 dpi (P<0.01). Serum
samples obtained on 21 dpi for WNV and 14 dpi for JEV consistently showed a high antigenic
IgG and IgM reactivity to homologous NS1. Based on ROC-calculation an IgG and IgM
specificity of 100%, and a sensitivity of 95% for WNV and 100% for JEV was achieved with a
cut-off titre of 1:20 at day 14 (JEV) and day 21 (WNV) post infection.

One horse showed higher IgG reactivity to WNV NS1 before infection in comparison to other
horse serum samples, but showed seroconversion to IgM and a fourfold increase in 1gG to
WNV NS1 in follow-up samples (Fig.1). Sensitivity and specificity using samples of
experimental infections could not be determined for TBEV and USUV as only one positive
serum sample was available.

Flaviviruses are known to have higher cross-reactivity between IgG antibodies than between
IgM antibodies [30]. To analyse the potential cross-reactivity of the flavivirus NS1 IgG
antibodies to heterologous NS1, we calculated antibody titres for each serum sample for the
cohorts of experimentally infected horses. In serum samples obtained on 0 and 7 DPI, the
median antibody titres to all heterologous and homologous NS1 antigens were not
significantly different (P>0.05). In serum samples obtained on 21 DPI, the median antibody
titres to homologous NS1 were significantly higher compared to the non-corresponding
antigens (P<0.01). (Fig. 2) This shows that on 0 and 7 DPI, insufficient antibodies were
detectable to differentiate between infected and non-infected horses, while at 21 DPI
sufficient antibodies were detectable.

To determine the usability of the NS1 microarray for diagnosing and distinguishing flavivirus
infections in horses, and for public health purposes within a surveillance setting, we
analysed the reactivity to NS1 in a flavivirus negative population. A total of 138 sera were
collected from horses across the Netherlands in 2005 and used as a panel representing
horses from a presumed JEV, USUV, TBEV and WNV non-endemic region. As WNV and TBEV
were circulating in neighbouring countries (Germany and Belgium) during 2005 the sera
were screened for WNV and TBEV using ELISA followed by PRNT. All sera were additionally
tested by microarray for antibody titres to flavivirus NS1. Sera from nine horses had titre
results that were defined as non-specific because they did not produce s-curves in the serum
titration and showed non-logarithmic reactivity to all NS1 antigens including non-equine
flaviviruses. The frequency of false-positive titres of >20 for IgG was low, namely 6/129 (5%)

113



Chapter 5.2 | A serological flavivirus protein microarray

for WNV, 7/129 (5%) for JEV, and 0/129 (0%) for USUV. False-positive titres for TBEV were
detected in slightly more animals, namely 13/129 (10%).

WNYV vaccination in horses

An inactivated whole-virus JEV-vaccine available for use in horses, allows the capability of
differentiating between horses that were previous vaccinated and JEV-infected horses. This
principle, also called Differentiating Infection from Vaccinated Animals (DIVA), is important
for diagnostic and public health reasons. An inactivated whole-virus WNV vaccine is also
currently used in the Netherlands. To determine the possibility to differentiate between NS1
antibody titres of WNV inactivated whole virus vaccinated and WNV infected horses, we
measured multiple flavivirus (WNV, JEV, SLEV and USUV) antibody titres in serum samples
obtained from WNV-vaccinated horses (C1) and WNV infected horses (A1+A2) (Fig.3). In
serum samples obtained on 28 and 42 DPV (A1+A2), the mean antibody titre to WNV NS1
showed no statistical difference to titres of vaccinated horses (C1) (P=0.74).

The antibody titres in the serum samples of WNV-vaccinated horses (C1) only started
increasing at 20 DPV, while the antibody titres in the serum samples of WNV-infected horses
(A1+A2) started increasing at 14 DPI (Fig. 1). The antibody response of WNV-vaccinated
horses was delayed compared to WNV infected horses and also showed a larger variation in
degree of response (Fig. 3).

Natural infections of horses.

We field-tested the microarray for use in three different field settings: 1) WNV in horses with
clinical WNV symptoms (B1), 2) WNV in infected horses with neurological symptoms and
asymptomatic horses from the same area during WNV outbreaks (B2), and 3) TBEV in a
horse population screening program (B3).

Overall, the median antigenic reactivity to WNV NS1 in all three field-settings was
significantly higher in serum samples obtained from horses naturally infected with WNV
compared to their negative controls (P<0.01) (Fig.4). In the field infections the microarray
identified 93% (25/27) of the positive serum samples for WNV lineage 1 and 100% (25/25)
WNYV lineage 2. Due to limited resources, we could only able to validate IgM antibody
response for WNV lineage 1 horses. At an IgM titre of 20, 80% (24/30) of the IgM positive
WNYV lineage 1 serum samples were identified (Fig.4). The median antigenic reactivity in the
Austrian horses to TBEV NS1 (B3) was significantly higher in serum samples obtained from
horses naturally infected with TBEV compared to negative controls (P<0.01). 87% (52/60) of
the horses were diagnosed as TBEV IgG positive at a titre of 20 (Fig.4). One TBEV IgG positive
horse and three TBEV IgG negative horses showed a linear signal and reactivity to all NS1
antigens and were thus classified as non-specific.

To assess the reactivity to multiple flavivirus antigens in serum samples obtained from
horses with confirmed WNV (B1, B2) and TBEV (B3) field infections, we also measured
antibody titres to WNV, JEV, TBEV and USUV NS1 (Fig.4). The median antibody titres to all
homologous NS1 antigens were significantly higher in serum samples obtained from horses
naturally infected with WNV compared to heterologous antigens (P<0.05). The median
antibody titres to TBEV NS1 were higher than to the heterologous antigens in the respective
TBEV infected horse population with one exception: one horse naturally infected with TBEV
also had an equally high titre to WNV.
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Discussion

We describe the development and implementation of a flavivirus multiplex serological
protein microarray for the differential diagnosis of JEV, WNV, TBEV and USUV infections in
horses. The results in experimentally, naturally and non-infected horses indicate the ability
of the array to detect specific antibody responses. Stronger results could have been
achieved if a larger number of well-defined sera of the less common flavivirus infections in
horses, such as SLEV and USUV, had been available. The microarray could be a future tool for
multiplex syndromic diagnostics and used for early detection of emerging vector-borne
flaviviruses.

Sensitivity for WNV IgM and/or IgG

The array is less sensitive compared to the prM-E ELISA, possibly due to a later or lower
antibody response to NS1 antigens, as previously established on Dengue virus in
humans.[31] In a previous study, antibody titres to NS1 were lower compared to those
against the whole envelope protein. This resulted in titres closer to the test cut-off. NS1-
antibody detection methods could therefore potentially be more sensitive to variations in
time post disease onset or natural horse-to-horse variations.

The time of infection relative to blood sampling may also have played a role in the sensitivity
of the microarray in horses. In some cases, blood samples were likely taken too early post
infection to have developed detectable IgG antibodies to NS1.

Differences in the antibody responses of these horses have also been observed by IgM-
capture ELISA, and may depend on host genetic differences as well.[32] The currently
measured low IgM sensitivity means that the use of the array for diagnostics in areas with
high vaccine coverage or infection prevalence is limited as a first line test. IgM capture ELISA
in humans and horses with neurological signs is the preferred diagnostic method, because
detectable antibodies are already present at the onset of neurological signs. The lower IgM
sensitivity of the microarray compared to the IgM capture ELISA may results in more false
negative diagnoses. This reduces its usability for diagnostics and syndromic surveillance
(neurological symptoms).

Increasing the 1gM sensitivity might be achieved by combining NS1 antigens with envelope
antigens and monoclonal antibodies in the future.[33] Because the specificity of the
multiplex microarray is high and because differentiation is possible despite cross-reactivity,
the test could be useful in serial or parallel testing schemes. Since the microarray shows
good potential for IgG detection in low vaccine coverage areas, it should be particular useful
for diagnostics and epidemiological studies in such areas.

Sensitivity for TBEV IgG

A high sensitivity for WNV IgG was achieved but the sensitivity for TBEV 1gG could not be
established to a comparable degree. We calculated the sensitivity for TBEV IgG on naturally
TBEV-infected horses because only one experimentally TBEV infected horse serum was
available. The achieved sensitivity for TBEV IgG in the field samples was not as high as for
WNV and JEV and overlapped with the negative controls. This made determining a cut-off
between positive and negative titres less clear. The lower titres may be due to the difference
in population characteristics. The TBEV population used in this investigation were identified
during cross-sectional surveillance programs. These horses had an unknown infection date
and were not selected based on clinical symptoms. This may have resulted in more horses
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having lower antibody responses due to infections months or years in the past or a faster
decline of TBEV antibodies post infection compared to WNV.[22, 34]

Broad non-specific response in horses

The microarray showed the potential to achieve high sensitivity and specificity even though
in a small number of field-infected horses non-specific responses were recorded. One horse
experimentally infected with WNV showed by microarray a WNV titre (>20) before infection,
although this serum was WNV negative by PRNT. Antibodies against WNV were confirmed
after experimental infection, indicating that the previously measured titre was possibly a
non-specific response or represents a broadly cross-reactive response. Such an antigenic
response could also be seen in a small number of flavivirus antibody negative horses both
from endemic and non-endemic regions. Nine WNV antibody-negative horses from the
Netherlands showed reactivity to NS1 antigens that did not produce the expected s-curve
titre during titration, but showed a linear signal reduction. Also these horses showed
antibody reactivity to all NS1 antigens on the microarray at equal levels. Therefore it was not
possible to calculate any titre even though a measurable signal was detected.

This broad non-specific response in flavivirus antibody-negative samples was not seen in
arrays developed for other mammals.[20, 21, 35, 36] A possible explanation is that equine
blood has a higher viscosity compared to other mammals due to differences in erythrocyte
and plasma protein concentrations and composition.[37] This viscosity even increases when
horses are highly active and stressed.[38] The microarray is based on nitrocellulose fibre
membrane that catches proteins in its fiberous structure. Possibly, equine blood
characteristics combined with the nitrocellulose platform may result in broad non-specific
signals in comparison to other mammals.

Additionally, the antibody-negative group consisted of horse serum samples submitted to
the Animal Health Services, Deventer, for a diverse range of diagnostic investigations, and
the health status of these horses was not specified. Therefore, unknown factors could have
interfered with the microarray in case of these nine horses. Epitope-mapping on the
flavivirus NS1 exhibited cross-reactive epitopes with human endothelial cells.[24] In auto-
immune diseases this might result in false-positive test results due to cross-reactivity.

Cross-reactivity

Cross-reactivity was measured between heterologous NS1-antigens, but the level of cross-
reactivity was minimal and differentiation could be made. Low but detectable titres to
heterologous NS1 antigens were measured, which is most likely a result of antigenic cross-
reactivity.[39, 40] The fact that cross-reactive antibodies were measured to multiple
antigens underlines the need for multiplex testing to identify the actual infection when using
serology.

More cross-reactive antibodies were observed in naturally infected horses than in the
experimentally infected ones (Fig.4). In most serum samples, differentiation between related
flavivirus infections was possible because the titres against the corresponding NS1 antigen
were higher compared to the non-corresponding NS1 antigens. However, some serum
samples from naturally infected horses showed comparable or higher antibody titres to non-
corresponding antigens. This might be influenced by the above-mentioned viscosity of horse
sera, and flavivirus antibodies are known to be highly cross-reactive.[41, 42] These higher
heterogeneous 1gG titres may have been induced by previous exposure to a flavivirus
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infection.[41] This was only observed for I1gG, showing that IgG antibodies were more cross-
reacting than IgM.

Vaccination

Previous studies have shown the possibility to differentiate between JEV infection and
vaccination in human and horse populations.[27, 43] In contrast to the JEV vaccine, the
inactivated whole WNV vaccine induces anti-NS1 antibodies after multiple injections.[44, 45]
An NS1-based protein microarray can therefore not be used to differentiate infection from
vaccination when using inactivated whole-virus WNV vaccines as shown in this study.
Additionally interesting, is it that all five horses showed a clear IgM reactivity >20 days post
vaccination, which corresponds to the second (booster) WNV vaccination on day 21. In a
previous study, were these serum samples originated from, only limited IgM reactivity was
measured towards the PrM-E WNV antigen.[23] This limited reactivity was only seen in
about 50% of the horses within first two weeks after the first vaccination and within one
week of the second vaccination. IgM reactivity towards an inactivated vaccine is considered
to be minimal or absent, however previous studies have shown conflicting results in this
area.[23] Our results further support the claim that inactivated vaccines can induce IgM
antibody production, at least towards NS1. However, the antibody reactivity is only seen
after the second vaccination. NS1 antibodies are none-neutralizing, however, it is well
known that they are strongly immunogenic and there possible importance in development
of protective immunity has been indicated.[21] Our current results might further support the
idea of a possible role for NS1 antibodies in developing protective immunity towards WNV.
Further research into why a delayed NS1 reactivity is seen after vaccination and its possible
role in development of immunity is needed in this area as it could have implications for
future vaccine development.

A number of other vaccines are available in the European vaccine market that can support
DIVA testing, for example recombinant canarypox vaccine (Protequ WNV, Merial) and the
Yellow Fever virus chimeric vaccine Equilis West Nile (MSD Animal health).[46] The
recombinant vaccine contains canarypox virus with WNV PrM and E viral antigens, and
therefore does not induce flavivirus NS1 antibody production. Using diagnostics based on
the NS1 antibody response can thus provide a sensitive method to identify exposure to WNV
in areas where such vaccines are used. The chimeric YF-WNV vaccine may offer similar
possibilities in horses, but may also generate false positive results through cross-reactivity
with YFV NS1 antibodies. However, a study on the use of the array in humans, previously
published by our group, has shown that this cross-reactivity is very limited.[21].

Additionally, due to the adaptable and multiplex setup of the microarray, YFV NS1-antigens
can easily be added to the microarray to identify infected animals as well as vaccinated
equids. Within Europe and North America YFV is currently not circulating, consequently,
identifying antibodies to this virus in equids is very unlikely. Also, adding additional antigens
like the envelope and PrM to the microarray could further strengthen its sensitivity and its
DIVA capacitiy.

Conclusion

Multiplex serological protein microarray based on NS1 shows potential to discriminate
flavivirus-infected from non-infected horses. Although serologic cross-reactivity does occur
among antibodies to flavivirus NS1 antigens, differentiation between closely related
flaviviruses is possible. We showed that the NS1-microarray can potentially be used for
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diagnosing and distinguishing flavivirus infections in horses, and for public health purposes
within a surveillance setting. The NS1-based protein microarray cannot be used to
discriminate between flavivirus antibodies in horses in response to natural infections and
antibodies induced by inactivated whole-virus WNV vaccines. However, new recombinant
and chimeric vaccines have potential DIVA properties. Its easily adaptable multiplex setup
makes the microarray specifically ideal for large-scale studies and can therefore be of great
value as a multiplex diagnostic and surveillance tool in veterinary and public health.
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Retrospective study in travellers shows underdiagnosis
of flavivirus infections, stressing the need for
multiplexing

Cleton N., Reusken C., Bon N., Voermans J., De Vries A., Reimerink J., GeurtsvanKessel C., Van der Vaart
E., Van der Eijk A., and Koopmans M.

Abstract

Background: Routine evaluation of returning sick travellers is largely limited to the
more well-known tropical diseases like malaria, rickettsia disease and dengue. We
evaluated and quantified the additional patient and public health information that
a standardized approach provides for diagnosis of flavivirus infections in travellers.

Method: We retrospectively tested patients with suspected arbovirus infections for
dengue virus 1-4, West Nile virus, Japanese encephalitis virus, tick-borne encephalitis
virus, Zika virus and yellow fever virus, depending on travel history. Retrospective
serological diagnostics were performed using a protein microarray for multiplex
serological diagnosis of cross-reactive flaviviruses. In addition, patients were tested
by RT-PCR.

Results: Of the 436 patients previously tested through non-standardized routine
diagnostics 52 (12%) had evidence of a flavivirus infection. Standardized flavivirus
diagnostics, performed by PCR and microarray according to travel history, showed an
increase of 58% to 82 patients that had evidence of a recent flavivirus infection. The
missed diagnoses were DENV (84%), JEV (2%), WN ),
YFV (4%) infections. -

Conclusion: Curren

of flavivi
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Introduction

Within the last decades, the world tourism industry has increased to over 1.1 billion
international arrivals in 2014. Tourism to emerging economies is expected to increase from
45% in 2014 to 57% of the international arrivals in 2030.[1] The increase in international
travel and trade has played a large role in the increase in exposure and geographical
expansion of tropical diseases globally.[2, 3]

Data and information on tropical arthropod-borne (ARBO) flaviviruses is scarce. Diagnostic
evaluation of returning sick travellers mostly is limited to the more well-known tropical
diseases like malaria, rickettsiosis and dengue fever. Extending the diagnostic panel may
improve patient care when it informs treatment decisions. In addition, evaluation of
infectious disease syndromes in travellers can provide essential information on the activity
of the diseases in the countries they visit where limited or no surveillance is available.[4, 5]

Diagnosis of flavivirus disease is challenging, due to the geographical overlap in occurrence
of multiple medically important flaviviruses, the non-specific clinical presentation, and the
cross-reactivity in serological assays with vaccine-induced antibodies. [4, 6-10]. Most
importantly, however, the rapidly changing epidemiology of flaviviruses makes it difficult to
keep up to date with the potential panels of arboviruses that travellers may have been
exposed to. Extensive underdiagnosis of arboviral diseases outside the flavivirus genus that
present comparable symptoms to dengue has been shown in the past.[10]

Within the flavivirus genus the potential for underdiagnosis may be further increased when
false-positive tests stop further investigation. The recent outbreak of Zika virus in the
Americas and in 2007 in French Polynesia is an example of the fast spread of flaviviruses
with dengue-like symptoms that have previously remained obscure.[11, 12] Initially, Zika
virus cases were misdiagnosed as dengue, as cross reactive IgM antibodies have been
detected. The current outbreak suggests more severe complications than previously
recognized although retrospective studies show that these complications may have been
missed.[10, 13, 14]

As a potential solution for improving the information on vector-borne flaviviruses as well as
for improving the diagnosis of travellers’ diseases, we previously developed a syndrome-
based decision support map to guide diagnostic requests for the most common arboviruses
by presenting syndrome and by region. Here we evaluated and quantified the additional
patient- and public health information that could be obtained by an algorithm based
approach for diagnosis of flavivirus infections compared to current routine practices
(physician-guided). We used a multiplex serological assay for flavivirus with a high
differentiating capacity for expanding our diagnostic capacity.[15]

Method

Ethical Statement

This research was conducted in accordance with the Dutch law on medical research (WMO),
article 1, and the study protocol was reviewed and approved by the Erasmus MC medical
ethical committee (MEC- 2014-438). In compliance with Dutch Law and medical ethical
guidelines, no personal identifiers were included. The selected patients were checked
against an opt-out database to insure all participants consent to use of material for research.
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Study subjects

Patients

Patients presenting for diagnostic testing at a hospital or health clinic in 2011 and 2012
because of a suspected arbovirus infection were included. Patient eligibility selection criteria
were: recorded clinical symptoms corresponding to an arboviral infection (one or
combination of undifferentiated fever, rash, arthralgia, neurological symptoms and/or
haemorrhagic symptoms), travel history abroad to one of three regions (Africa, Asia or
Europe), a current Dutch resident and the availability of sufficient serum for additional
diagnostics. Serum samples were retrieved from biobanks at the Erasmus Medical Centre in
Rotterdam and The National Institute for Public Health and the Environment in Bilthoven.
Patients from a larger range in years, 2009-2013, with known onset of symptoms 0-7 days
prior to sample collection, were selected for molecular testing as 2011-2012 provided
insufficient available samples.

Patient categories

Patients were subdivided into groups based on A) travel destination (continent), B)
symptoms at presentation and C) days post onset of symptoms, if available. Patients with
samples taken 0 to 7 days post onset symptoms were tested by PCR. All other patients were
tested by IgM and IgG serology composed of standard diagnostics supplemented by
multiplex protein microarray serology. Patients were tested according to travel history to
make relationship with clinical symptoms possible for later evaluation and identification of
high-risk patients groups. (Figure 1)

Testing algorithms

Testing algorithms were based on a review of likelihood of infection for a given travel
history, based on an exhaustive review.[16] Patients with travel history to Asia were tested
for DENV1-4, WNV, JEV, ZIKV and TBEV. Patients with travel history to Africa were tested for
DENV1-4, WNV, ZIKV and YFV. Patients with travel history to Europe were tested for DENV1-
4, WNV and TBEV. (Figure 1)

Laboratory analysis

Polymerase Chain Reaction

Serum samples were screened for the presence of virus RNA by a real-time RT-PCR at the
Erasmus MC based on previously published methods for DENV1-4 [17, 18], WNV [19], JEV
[20], TBEV [21] and ZIKV [22]. RNA was extracted using MagnaPurelLC (Roche Diagnostics,
Almere, The Netherlands) and an internal positive control, Phocine Distemper Virus, was
added to check proper extraction procedure. Eight ul extracted RNA was amplified in a 20ul
final volume one-step RT-PCR using TagMan® Fast Virus 1-Step Master Mix
(Lifetechnologies, Nieuwerkerk a/d lJssel, The Netherlands). Amplification was performed in
a LC480 (Roche Applied Science, Almere, The Netherlands). Additional negative and positive
controls RNA for each virus with known concentrations were added to each 96 well-plate.
Primers and probes used are shown in Table 1.

Protein Microarray

Custom-made NS1 proteins produced in human embryonic kidney 293 (HEK293) cells to
ensure proper folding, glycosylation and dimerization were used (Immune Technology Inc.,
New York, NY, USA. Proteins expressed were DENV1 (genbank:FJ687432.1), DENV2
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(genbank:FJ744720.1), DENV3, (genbank:FJ744738.1), DENV4 (genbank:EU854300.1), JEV
(genbank:NC 001437.1), YFV (genbank:JN620362.1), ZIKV (genbank:AFD30972.1), TBEV
(genbank:AAA86870.1) and WNV (genbank:EU081844.1).

The microarray slides were prepared as previously described.[7] In short, NS1 antigens at
concentrations of around 2mg/ml were mixed with protein arraying buffer (Maine
manufacturing, GVS Group, Italy) and spotted in triplicate as a within-test control per pad.
Antigens were spotted onto a nitrocellulose pad coated glass slide (Maine manufacturing,
GVS Group, ltaly) using a non-contact protein array spotter (sciFLEXARRAYER SX spotter,
Scienion, Germany).

Patient sera were tested on dried slides as previously described.[23] In short, slides were
first incubated in Blotto blocking-buffer (Thermo Fisher Scientific, MA, USA). Serum was
diluted in four four-fold dilution steps (1:20 to 1:1280) and added to the pads for incubation.
An Fc-fragment specific IgG or Fc5u-fragment specific IgM specific conjugate with a Cy5-
fluorescent dye (Invitrogen, CA, USA) was used for antibody detection. A median
fluorescence signal (measured at 647nm) for each of the triplet spots per antigen was
determined by ScanArray Express 4.0.0.0001 supporting program (PerkinElmer, MA, USA).
Results were imported in R for titre calculation as previously described.[7]

Micro Virus Neutralisation Assay

Vero E6 cells were plated on 96 well-plates for 24 hours in DMEM with 10%FCS, 2mM HEPES
pen/strep/L-glut and 7,5% NaHCO3 until a monolayer has formed. Serum dilution were
made in two-fold steps (1:8-1:1024), using the same media, except with 3% FCS. Per well
100xTCID50% of virus was added to the serum dilution and incubated at 37°C for one hour.
After incubation the serum and virus mix were pipetted onto the Vero E6 monolayer and
incubated at 37°C for one hour before added another 100ul of media. Plates were checked
on days 3-5 under a light microscope for the presence of CPE.

Interpretation of laboratory diagnostics

Patients with PCR results of <Ct 38,5 were considered PCR positive. Patients were
considered ‘confirmed” when an acute stage serum sample was DENV NS1 antigen positive
or PCR positive.[7] Patients with IgM seroconversion or > 4-fold increase in IgG titre in paired
serum samples taken with a minimum of two weeks apart were considered probable cases.
Patients with both detectable IgM and IgG in a single serum sample were considered
probable cases.

Patients testing only IgM positive above a laboratory predefined cut-off when only one
serum sample was available were considered possible cases.[6] Patients testing positive only
for 1gG in a single sample were considered inconclusive and thus not included in the
diagnostic outcome. Patients with paired serum samples with no increase in antibody levels
were considered negative. Patients for whom no dates of onset were reported testing
negative with a single serum sample were considered inconclusive. (Figure 2)

Statistical analysis

The analysis was performed in STATA.[24] Multi-variable logistic regression, chi-test and test
of proportions was calculated with an alpha set at 0.05.
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Results

General dataset

All together, 436 patients were included in the study that met the selection criteria. The
male/female ratio was 47/53. Patients had an average age of 38.9 years (SD of 16.6) on day
of testing. Vaccination history was not provided with any of the patients. Most persons had
travelled to Asia (56%) and presented with febrile symptoms (85%). Ten patients had
travelled to more than one continent and were thus tested analysed based on multiple
travel regions, but reported separately. Overview of reported travel history and clinical
symptoms are shown in Table 2.

In total, 84 (19%) patients had a serum sample taken seven days or less post onset of
symptoms and were tested by PCR. The mean number of days post onset of symptoms for
these patients was 3.6 (SD=1.8). The remaining 357 patients were tested based on our
extended algorithm. (Figure 1) For these, 17% (60/357) had travel dates provided. Sampling
was done on a median of 21 days (ICR14-38.5) post onset of symptomes. In total, 91 patients
(21%) had convalescent serum samples available.

Of the 436 patients previously tested through non-standardized routine diagnostics 52 (12%)
had evidence of a flavivirus infection (Table 3). Applying the standardized flavivirus
diagnostic algorithm increased the number of diagnoses by 58% (82 patients with possible,
probable and confirmed (19%) of which six new patients were detected by PCR. The division
between possible, probably and confirmed cases changed due the confirmation or
identification of a different infection agent, of previous possible and probable cases through
PCR and additional testing. This was significantly more than without standardized flavivirus
diagnostics (P<0.01) (Table 3).

Travel region

The proportion of travellers testing positive differed significantly by region, but not when
comparing results for non-standardized and algorithm-based testing (Table 5). The highest
percentage of flavivirus positive patients had travelled to Asia. The results seen in Table 3
indicate a doubling of identification of the number of patients with evidence of the flavivirus
infection in travellers to Southern Asia and Africa, however, no statistical significant
differences could be measured due to the small number of patients per region. (Table 5)

Diagnostic yield

DENV infection was the most common diagnosis, and a substantial increase in diagnoses was
found by routine molecular testing, despite the routine use of NS1 ELISA for DENV antigen
detection. In the group of 84 patients tested by PCR, 32 had previously been tested for
presence of DENV NS1 antigens. The DENV NS1-antigen assay had only detected 1 out of 5
PCR positive DENV patients in this group.

For the other flaviviruses, using an algorithm to inform diagnostic testing gave a more than 4
fold increase of diagnoses (2x JEV; 2x WNV; 2x ZIKV; 3x YFV; 4x TBEV) of which seven were
classified as ‘probable’ and six as ‘possible’ infections. Two travellers returning from
Indonesia and Ghana, respectively, had serological evidence of ZIKV virus based on IgG and
IgM seroconversion. An additional patient from Thailand had a high IgG titres for ZIKV,
however IgM results were showed no evidence for a recent infection. Three travellers from
Africa (South-Africa, Uganda, Cameroon) had evidence of recent YFV infection or
vaccination. No vaccination history was provided with these patients. One patient previously
diagnosed with a WNV infection by I1gM and IgG antibody titres was additionally found to
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have a correspondingly high DENV4 IgM titre by microarray. All IgG titres were confirmed by
mic-VNT with the exception of 1x JEV IgG and 1x ZIKV IgG due to insufficient serum.

DENV in Europe

As DENV is also occasionally detected present in the Southern part of Europe[25], 42
patients returning from Southern European countries or southern France were also tested
by microarray for DENV1-4 antibodies to NS1. One patient showed evidence of a ‘possible’
DENV infection with an IgM titre after travel to Greece, but no follow-up samples. A second
patient with travel history to Thailand two weeks before onset of symptoms had a five-day
overlay in southern France before returning to the Netherlands. Nine days after return to
the Netherlands the patient became sick and was tested NS1 and IgG & IgM DENV positive.
No further evidence for missed flavivirus infections were measured in travellers returning
from European countries.

Cross-reactivity

Due to the multiplex setup of the diagnostic microarray, possible cross-reactivity that
occurred could be identified. The most commonly found cross-reactivity was seen between
DENV IgG and YFV IgG. Three patients that had been defined as ‘probable’ DENV cases were
found to have only DENV IgM titres on the microarray and accompanying high YFV IgG titres
and were thus reclassified as ‘possible’ infections.

One of the two ZIKV positive patients found by protein microarray had been tested positive
by DENV IgM assay in routine diagnostics, but could not be confirmed when the
convalescent sample was tested. In the second ZIKV case a low IgG titre for DENV had been
measured in the convalescent sample by routine diagnostics.

Table 2: Overview of travel history (UN definition) and clinical syndromes reported per
patient

Travel history Number of patients Symptoms Number of patients
Asia total 248 Febrile symptoms 369
Southeast Asia 189 Arthralgia/Arthritis 90
Southern Asia 39 Enteric symptoms 62
Eastern Asia 12 Rash 49
Western Asia 7 Respiratory symptoms 39
Africa total 119 Neurological symptoms 38
Eastern Africa 45 Haemorrhagic symptoms 16
Southern Africa 19

Northern Africa 10

Central Africa 9

Western Africa 38

Europe total 75

Southern Europe 38

Western Europe 22

Eastern Europe 13

Northern Europe 5
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Table 3: The number of possible, probable and confirmed patients before and after use of
standard diagnostic algorithm for flaviviruses.

Non-standardized diagnostics Standardized diagnostics P-value
Total 52/436 (12%) 82/436 (19%) P<0.01
Possible 21/52 17/82 P<0.01
Probable 8/52 28/82 P=0.01
Confirmed 23/52 38/82 P=0.8

Demographics and symptoms

The DENV positive patients were the most commonly diagnosed flavivirus infections.
Demographic data and symptoms at presentation were compared to those from patients
without evidence of a recent DENV infection to see if these could be used to triage patients.
Age, sex, reference laboratory, the number of samples provided or specialization of
physician showed no relationship with the odds of a patient being classified as DENV
positive. Before standardized diagnostics based on travel history was performed, only
arthralgia showed a statistical negative relationship with predicting DENV positivity (OR=0.4,
P=0.02). Travel to Asia but not to Africa had a significant positive predictive value for a
patient to be DENV positive (OR=10.2, P=0.04). After diagnostics were performed according
to travel history, haemorrhagic and febrile symptoms as well as travel to Asia or Africa had a
predictive value for a patient having evidence of a DENV infection (Table 5).

DENV positive and negative patients did not differ regarding prevalence of enteric and
neurological symptoms. Two patients with severe encephalitis and eleven patients with
enteric symptoms were positive for DENV (Table 6).

Discussion

Here we evaluate and quantify the additional patient and public health information of a
standardized approach for diagnosis of flavivirus infections compared to current routine
practices that are often non-standardized. We found a significant (58%) increase in arbovirus
infections diagnosed through the algorithm approach.

DENV infections accounted for 17% of patients with suspected arbovirus infections and 84%
of all diagnoses. The number of DENV cases in travellers has been increasing extensively
from around 6% in 1997-2006 to 12% of travellers returning with systematic diseases in
2000-2012, and is now listed as second most common cause of febrile illness in travellers,
after malaria[26, 27]. Specific high peaks are seen in travellers returning from South America
and Southeast Asia of up to 30-35% after 2010.[28, 29] Our findings are in line with
observations by Prince et al (2009), and show that the sensitivity of the NS1-antigen capture
ELISA is suboptimal. Additionally, these six patients did not have convalescent samples
provided, which could have provided serological confirmation without the need of PCR. This
need for convalescent samples is standard request for all arbovirus diagnostic tests but in
practice not uphold causing problems for all serological diagnostics.

An important goal of the study was to investigate the possibility of missed infections with
other flaviviruses, as these are often not requested in physician-guided diagnostic
evaluations, as emphasized by the recent ZIKV outbreaks in French Polynesia and South
America. Even with our small selection of travellers, 12% of flavivirus infections were
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non-DENV cases, including two probable ZIKV cases. Prospective studies on arboviral causes
for febrile disease in South American and African local populations have also indicated an
exposure to an extensive selection of arboviral diseases, although the numbers are lower
than for DENV.[30, 31]

In our patient group, a number of possible YFV infections or vaccinations were detected
without registration of vaccination history although clinical symptoms were recorded. These
patients were therefore clinically sick, however our microarray cannot distinguish between
vaccination and infection. Import of YFV infections in returning travellers is frequently
reported although vaccination is available.[32] Southern-Africa, however is not considered a
YFV active area, so YFV infection in this patient is improbable. The closely related- and
serologically cross-reactive Wesselsbron virus is known to circulate and cause clinical disease
in South-Africa.[33, 34] We cannot rule out that this was the cause of the YFV serological.
The extent to which YFV vaccinations, with live-attenuated virus, can influence flavivirus
diagnostics is not properly recognized by treating physicians, as vaccination history rarely is
provided with diagnostic requests in our setting.[6] More effort is needed in this area, as YFV
is an important and preventable international disease.

We show that the quality of data that can be provided for surveillance and patient case
definition increases after the application of systematic diagnostics. Before application of
standardized diagnostics symptoms did not show and predictive relationship due to
substantially smaller patient group compared to our previous publication.[35] Without
changing the amount of data provided by physicians for patient diagnostics the data quality
could be increased substantially just by applying structural diagnosis. The OR achieved in this
study were comparable with previous published results on a larger dataset.[35] This shows
that these predictive symptoms and travel combination, with further optimizations can
surely also be used in travellers for identifying high risk patients.

An important question is whether the costs of expanding our diagnostic algorithm can be
justified. Answering this requires an economic calculation that would have to be conducted
taking all the financial costs and all the benefits to patient and societal health into
account.[36] Only few arboviral vaccines are available and the added value of diagnosis
would probably be limited to the impact on pre-travel advice for future travellers and
prevention of complications and unneeded testing. On the other hand, improved testing
provides an opportunity to understand better the epidemiology of flavivirus infection in this
particular population of travelers. This could be used for evaluating the distribution of
resources for research into treatment, prevention, and diagnostics.

Using current cost-benefit analysis methodologies, it is difficult to calculate the financial
advantage of public health surveillance in preventing disease outbreaks. Evaluation and
calculation of the impact of available intervention schemes in past outbreaks and the cost
reduction in patient health will need further in-depth analysis for better prediction if there is
potential added value and thus should be invested in surveillance of unknown diseases.[5]
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Our study does have some limitations. The size of the study population was relatively small,
as referring physicians rarely provide complete minimal data needed for inclusion. This
reduces the power o the study for low prevalent infections. Also, there is a risk of bias, as
physicians may be more careful with providing background data for specific patient groups.
Finally, only patients seeking medical attention were included. Extrapolating exposure rates
for surveillance purposes should thus be done with caution as this is a very specific high-risk
group.

Conclusion

Nevertheless, our results show that combined serological and molecular techniques are
essential for adequate DENV diagnosis of travellers as this increases the number of possible,
probable and confirmed cases by 58%. Additionally, our study shows that travellers are
exposed to other flaviviruses beyond DENV, but numbers are limited. Current, non-
standardized diagnostics result in underdiagnosis of flavivirus infection in travellers.
Internationally standardized diagnostic algorithms and use of multiplex techniques will likely
improve both travellers’ health and the surveillance of flavivirus activity and epidemiology.

Funding: This work received funding from the European Union Seventh Framework
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Summarizing discussion and conclusion

The goal of this thesis was to study how existing medical information and health structures
can be used for arbovirus surveillance in the Netherlands. To achieve this, we combined and
analysed all routine diagnostic data for Dutch travellers for suitability in arbovirus
surveillance. We developed diagnostic algorithms to identify possible underdiagnosis of
arbovirus infections in travellers. Based on these algorithms, we developed, validated, and
applied a multiplex serological protein microarray in a retrospective study in travellers and
outbreaks in equines to evaluate its added value in public health surveillance and patient
care.

A critical look at travel medicine from the perspective of arbovirus surveillance

In chapter 2 we investigated the possibility of using diagnostic results for individual patient
care for surveillance of arboviruses, with travellers as sentinels for arbovirus activity in data-
low countries, and assessment of arbovirus import risk through travellers. We showed that
the data provided important surveillance information regarding dengue virus activity in
countries visited by travellers and the risk of travellers returning in the viremic stage,
although 95% of the data was serological and 90% missed convalescent sampling or
molecular testing. The serological data, however, were suboptimal for specific disease
surveillance due to limited confirmatory and molecular testing, and it relied on the large
number of patients for use on a national level.

Data quality and compatibility in national Health Information Systems (HIS)

During the process of data extraction and integration for chapter 2, we discovered a number
of challenges: the incompatibility of different Laboratory Information Management Systems
(LIMS), lack of complete patient data and lack of standardized input and interpretation. The
eventual amount of data that could be included based on availability of an essential minimal
dataset for surveillance (was approximately 45%. In addition, nearly all patient data (99%)
lacked information on vaccination history, impacting the specificity of the findings with a
serologic diagnostic method.[1]

Timely availability of this data is essential not only for surveillance and early response but
also for interpretation of patient laboratory results. Missing data has been detected in other
secondary and tertiary healthcare facilities besides diagnostic laboratories.[2] For example,
evaluations of request forms from haematology and radiology laboratories and hospital
patient files have shown a lack of basic data, like birth dates and clinical information.[2-4]
This lack is even more apparent in handwritten request forms or oral communication than in
a digital Health Information System (HIS).[2, 4]

Missing basic information has resulted in misinterpretation of data, lack of supportive
medical discussion by secondary and tertiary facilities that generates additional work and
costs, and delayed results and conclusions.[2, 5] When HIS are used, they are often
incompatible between different healthcare facilities, making data exchange between
facilities, and sometimes even departments, difficult or impossible.

To identify the main data loss points in our study, we visualised the data flow from patient to
arbovirus national surveillance through different information systems and categorized
several points at which data could be lost (Figure 1). In our study, most data were exchanged
via handwritten or printed forms requiring manual input into an HIS? Thus, data could have
been lost because of lack of compliance with minimal data entry at any step in the chain.
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A national compatible and linked laboratory information management system (LIMS) with
digital standardized input (dropdown boxes) and compulsory information provision areas
would resolve the issue of lack of, or limited, basic information. Current cost-benefit
analyses of comparable HIS have shown that the savings in patient care resulting from
complete documentation will equal the investment in the HIS within 3 to 13 years. However,
it remains questionable if investment in such a system will be financially viable.
Development of such a system can improve the quality and quantity of data, however,
education of medical staff on the significance of proper and complete documentation for
patient care and surveillance remains essential for compliance.[6]

Of additional concern regarding the linking of national LIMS are the ethical implications of
patient privacy. Previous attempts in the Netherlands to implement data transfer between
systems have resulted in resistance from the general population.[7] Although our
surveillance method uses anonymous data, ethical consideration about the potential of a
linked system to be easily expanded and hackable should be explored before further
implementation.

A critical look at travel medicine from the perspective of arbovirus diagnostics

A national arbovirus working group was convened to inform stakeholders such as national
health centres, clinicians, and physicians about the potential benefits of standardization of
diagnostic information. Its findings revealed an unclear overview of current arbovirus
diagnostic capacity in the Netherlands and the lack of standardized diagnostic algorithms for
travellers for all arboviruses. Therefore, in chapter 3 we developed diagnostic algorithms for
cases of travellers with particular travel histories and particular syndromes that could be
extended for surveillance.

Based on an extensive literature review of the risks of travellers contracting an arbovirus
infection, we created a method to classify arboviruses by high, middle, low-to-no or
unknown risk to travellers. Arboviruses with low-to-no risk to travellers were excluded, and
the remainder were categorized by clinical syndrome, geographical distribution and
potential serological cross-reactivity. This information was organized into charts with
algorithms based on syndrome and travel history for fast referencing by clinicians. The
charts were distributed via peer-reviewed English and Dutch medical journals and
presentations at conferences, meetings and workshops, through medical and surveillance
networks and directly to collaborating travel and tropical medicine clinics.

To establish the level to which arbovirus diagnostic requests in the Netherlands followed the
advice in the literature, in chapter 4 we retrospectively compared an optimal selection for
arbovirus diagnostics with what was actually performed in the previous 5 years. Although
many important differences between our optimal algorithm and the actual arbovirus
diagnostics in the Netherlands were identified, the most important was the identification
and classification based on the travel history and clinical symptoms of a large group (44%) of
patients at risk of CHIKV infection for which no serological or molecular tests were
performed.

Adapting public health surveillance systems to moving targets

In chapter 3 we developed algorithms and charts to support the physician decision-making
process and improve quality and quantity of data available for surveillance. The
epidemiology of arboviruses, however, is constantly changing,[8] exemplified by the
outbreak of chikungunya virus in the Indian Ocean and the Caribbean and Zika virus in
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Polynesia and Brazil.[9, 10] How, then, can public health surveillance systems, like the one
we propose, adapt quickly enough to changing public health needs?[11]

First, online (dropdown) diagnostic request forms could be easily updated by a public health
agency on the basis of the latest surveillance data. A set of compulsory fields for physicians
to complete when requesting a diagnostic test would lead to more comprehensive
information for surveillance. Also, this set would reflect the latest surveillance information
and could suggest which arboviruses (or other diseases) most likely fit the parameters in the
diagnostic request form, helping the physician to request testing for the probable
causes.[10] If the physician decides to request diagnostics for an arbovirus not suggested by
the dropdown form, the system would notify the agencies responsible for surveillance.
Despite previous implementation of compulsory fields and dropdown boxes in other
countries,[10] willingness of clinicians to accept these kinds of interventions has not been
established.

A third strategy for a system to adapt quickly to changing needs is syndromic surveillance
[12]. Reliable and timely national surveillance is the foundation for good international
surveillance. The World Health Organization (WHO) has stated the need for cross-border
surveillance systems that can promptly identify a large variation in emerging disease
outbreaks.[13] In situations where complex surveillance is difficult for logistic, technical or
financial reasons (e.g., in certain developing countries), syndromic surveillance is a potential
strategy.[14] A number of syndromic surveillance initiatives in public and animal health have
been designed and implemented within the last decade with varying success for a wide
range of gastric, respiratory and vaccine-preventable diseases.[15]

The pros and cons of syndromic surveillance

As a strategy, syndromic surveillance has a number of potential advantages and drawbacks.
One advantage is that information can be provided without laboratory confirmation.[16] By
use of pre-existing trend data, this general approach provides timely recognition of
variations in syndromes related to a disease or group of diseases before laboratory
confirmation.[17] An increase in clinically identified respiratory, neurological, and
gastrointestinal syndromes heralded an increase in laboratory-confirmed cases of known
causes of these syndromes in the Netherlands by a number of weeks.[17] Retrospective
evaluation of known disease variation in accordance with syndromic data showed that up to
85% of variation in syndromes could be explained by known epidemics, especially if specific
high-risk groups and local communities were monitored.[17] In chapter 1 we demonstrated
that this kind of syndromic surveillance can also be applied to travellers to provide
information on disease activity in countries with limited surveillance data, as well as the risk
to public health through travel. We showed evidence for disease activity via our traveller
surveillance up to a year before information reached the WHO through the local health
network. However, because this was a retrospective study, further investigation into the
feasibility of prospective real-time surveillance is needed.

Monitoring syndromes may be more valuable than monitoring confirmed diseases.
Syndromic surveillance systems are considered to be more sensitive to outbreaks of
emerging diseases, especially when applied in real time.[10, 18] Emerging diseases present
as clusters of cases that do not correlate to any known endemic or seasonal diseases.[17] In
chapter 2 we showed that monitoring of traveller-based syndromes can also be used for
syndromic surveillance. We showed that the increase in patients returning from India with
DENV-like symptoms without a laboratory diagnosis of DENV heralded the CHIKV outbreak in
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the region. In chapter 6 we found that Zika virus (ZIKV) had already become more active in
travellers than previously thought. Although, arguably, our study population was too small
to extend this claim to the traveller population at large, it provides evidence of previous ZIKV
activity in travellers. Increasing the size of our traveller population could have provided a
more substantial warning of extensive ZIKV virus activity. Given that humans form the main
reservoir for ZIKV compared with DENV, CHIKV and YFV, earlier recognition of its outbreak
potential and current increase in activity could have been achieved. Although there is no
vaccine for ZIKV, its earlier recognition as an international public health threat could have
stimulated earlier development and implementation of diagnostics and monitoring.

The potential downsides of syndromic surveillance are, first, that the increased sensitivity
can come with a decreased specificity, since syndromic surveillance has been shown to
result in more false warnings of potential outbreaks due to a lack of specificity.[14] Second,
due to low numbers of cases in small communities, its sensitivity can diminish substantially
when applied on only a local scale.[18] Therefore, a need still exists for a balance between
loss of sensitivity due to monitoring in a small population and loss of specificity due to
grouping too much data on a national level. Much effort has gone into tackling the problem
of low specificity by developing improved algorithms to identify aberrations.[4, 19]
Additionally, challenges are associated with the use of syndromic surveillance of travellers
for surveillance of the incidence of arboviruses in populations in general. First, the risks of
acquiring local infections may differ for travellers compared to locals, as travellers may
reside in luxury resorts and hotels. Second, our study focused on data retrieved from
national diagnostic centres and flawed by extensive information loss during processing, thus
reducing potential sensitivity (Figure 1). In chapter 2, we found with this data that little
attention had been placed on defining specific goals and standardising definitions of
syndromes and systems, frustrating the integration of these systems and thus decreasing the
sensitivity.[17, 20] We have provided a number of methods to reduce this data loss, but if
reduction is not achievable, real-time combining and monitoring of data from key travel
clinics and tropical medicine hospitals would provide more timely, specific and sensitive data
than are currently available.

Finally, challenges due in part to the fact that syndromic surveillance is a new field should be
addressed by further research. These include: “defining optimal data sources, standardizing
signal-detection methods, developing minimally acceptable response protocols and defining
the use of simulation data sets to test systems”.[21] Currently, none of these challanges
have definite solutions.

The unanswered question is whether syndromic surveillance in travellers is effective. If it is,
what results can it be expected to yield?[21] If not, syndromic surveillance has nevertheless
shown potential to be a flexible local, national and international surveillance method in
terms of unknown or emerging diseases.[10,16] It provides the opportunity to adhere with
limited economical resources to the WHO request for cross-border surveillance for an
expanding list of diseases.

Filling in the gaps: developing a multiplex serological protein microarray

In chapter 5.1 we focused on improving serological diagnostic methods because many
arboviruses cause a short viremia, and thus 95% of results available for surveillance is
serological (chapters 2 and 4). Therefore, the most logical step is a focus on increasing the
quality and quantity serological diagnostic tests available. We developed an innovative
multiplex protein microarray platform for serological diagnosis of flavivirus infections in
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humans, while reducing serological cross-reactivity between closely related viruses and
vaccines (chapter 5.1). Because only a small amount of viral antigen and serum was
required, an extensive representation of multiple pathogens was possible per test. We
extended the use of the microarray for serology in equines (chapter 5.2), since they are
essential within an early warning system for current circulating and emerging flavivirus in
Europe.

We showed that use of flavivirus NS1-proteins, produced in mammalian cell-lines as the
main viral antigen, provided a more specific but still sensitive diagnostic method compared
to current front-line diagnostic platforms like enzyme-linked immunosorbent assay (ELISA)
and Indirect fluorescent antibody (IFA). However, further optimization of the test protocol
for use in multiple species is still needed, as antibody reactivity, blood viscosity, interacting
proteins, and possible nonspecific reactions due to other infections might require another
species-specific approach.[22, 23]

To choose or not to choose ....... between diagnostics and surveillance

The development of new diagnostic tests, specifically for flaviviruses, is problematic.[24]
Besides the extensive cross-reactivity between flavivirus antibodies, the context in which a
diagnostic test is designed has a large role in its potential for risk of bias when used outside
that context. Unlike development and marketing of new drugs, there are no compulsory
guidelines for evaluation of diagnostic tests. In 2003, however, the Standards for Reporting
of Diagnostics Accuracy (STARD) guidelines were published to fill this gap in quality
assurance and have since been applied by many journals to all articles regarding
diagnostics.[25]

The interpretation of test results differs depending on the purpose of the test (screening,
surveillance or diagnostics), population in which it is applied (young, old, travellers, exposure
history), or the disease prevalence in the population (endemic, sporadic or absent).[26, 27]
Many diagnostic tests are developed in optimal in vitro settings where clearly positive
samples containing large amount of antibodies serve as positive controls and known
negative populations serve for determining specificity. As we showed in chapter 5.1,
application of the microarray in travellers results in less interference from exposure history
compared to application in residents of endemic countries. These results demonstrate the
need to re-evaluate arbovirus tests according to the field setting when they are used for
multiple goals.[26] If background information on usage and evaluation is not considered,
inappropriate use or changes in diagnostic test methods can follow and can strongly
influence surveillance data.[28] This variation in results can be seen in chapter 5.2, where
we applied the microarray in equine populations for a) an experimental setting, b)
diagnostics and c) surveillance in areas endemic for flavivirus, and d) surveillance in areas
non-endemic for flavivirus.

Diagnostic tests have comparable but different objectives of sensitivity and specificity from
surveillance tests, and the objectives can be inversely correlated.[26, 27] From a patient-care
perspective, a missed diagnosis due to lack in sensitivity could result in invasive, unnecessary
and expensive testing. From a surveillance perspective, specificity is essential for
identification of the ecology, risk factors and related control schemes. Shifting cut-offs to
lower specificity, however, could arguably improve identification of closely related emerging
virus species or strains of geographically, clinically and genetically constantly changing
arboviruses. Therefore, although the best solution would be to achieve both optimal
sensitivity and specificity for both diagnostics and surveillance, a possible solution would be
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to test pathogens on multiple specificity levels using less to more conserved antigens and
epitopes (Figure 2). In our current microarray we achieved better specificity for both patient
care and surveillance without substantial loss of sensitivity by multiplexing pathogens and
using a more specific antigen. A future challenge would be to multiplex the pathogens as
well as the number of targets per pathogen and to increase the sensitivity without loss of
specificity (Figure 2). The microarray platform offers this possibility because of its extensive
multiplexing capability and easy adaptability to syndromic, geographic and antigenic
questions.[29]

Putting the microarray to the test: a retrospective study of travellers

To further evaluate the potential added value of the systematic approach to travel
diagnostics, we devised a study (chapter 6) to retrospectively test groups of patients at risk
of flavivirus infections (according to the criteria in chapter 3.1) by quantitative reverse
transcription polymerase chain reaction (RT-PCR) and with the multiplex serological protein
microarray.

Through application of standardized flavivirus diagnostics by RT-PCR and microarray
according to travel history, the number of patients identified with a recent flavivirus
infection increased from 12% (52/436) to 19% (82/436). Eighty-five percent (70/82) of
flavivirus infections were indicative of a DENV infection; 16 out of 84 patients tested by RT-
PCR were found to be positive for DENV, and 13 were previously undiagnosed with DENV.
Additionally, evidence of a wider range of flavivirus infections in travellers was detected
(Japanese encephalitis virus (JEV), WNV, ZIKV, YFV). An internationally standardized
diagnostic algorithm and use of multiplex techniques have shown potential improvement in
both travellers’ health and surveillance, although further optimisation is needed for better
results.

Figure 2: Top-down principle of a multiplex pathogen and target microarray.
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But who’s paying?

This broader diagnostic perspective is proposed to add financial and personal value for the
individual patient by identifying potential complications, reducing expensive and invasive
additional testing, and potentially using experimental therapies for virus-specific relief.
However, how many negative tests must be performed, and at what cost, to diagnose one
additional case? To answer this question requires an economic calculation that takes into
account all the financial saved costs and benefits to global health.

With vaccine-preventable diseases, calculations often focus on the healthcare costs of an
outbreak rather than the costs of surveillance and vaccination. Studies into cost-
effectiveness of hepatitis B virus (HBV) and hepatitis C virus (HCV) surveillance have shown
that such calculations heavily depend on upcoming medical therapies and available pre-
travel vaccines.[30] Similarly, in the field of arboviruses, DENV vaccines are currently
becoming available or are in the registration phase.[31]

However, vaccines are unavailable for many other arboviral diseases, and for most, only
supportive therapy is possible after infection. Specific calculations regarding saved costs due
to correct diagnosis are lacking, possibly due to the assumption that no benefit can result
from diagnosis due to the absence of a cure and the self-limited nature of many infections.
Although lack of a cure is currently true, there is no evidence that diagnosis in infected
patients does not have any added patient-care or financial value. Early identification and
prevention of specific, severe complications allow for specific beneficial supportive therapy
and restrict unneeded, expensive and invasive testing to determine a diagnosis. However,
from a cost-benefit perspective, the question still remains to what extent the diagnostic
algorithm should be implemented.

With a commonly used cost-benefit analysis, however, it is difficult to calculate the financial
advantage of public health surveillance in preventing disease outbreaks as it is difficult to
calculate the actual costs of outbreaks, specifically for emerging diseases. Large disease
outbreaks can result in huge economic loss amounting to billions of dollars due to closing of
trade or transport, loss of working days and reduced income from the tourist industry, as
was seen in the severe acute respiratory syndrome (SARS) outbreak in 2003.[32] Including
these economic factors in the equation shows that enhanced surveillance systems could
easily be cost-effective, assuming such system

s could prevent these outbreaks. Careful calculation of the impact of available intervention
schemes in past outbreaks will need further in-depth analysis to accurately predict the
potential value of investing in surveillance of emerging diseases.

Currently, this role for arbovirus surveillance is limited to individual clinicians actively and
retrospectively forwarding information to health facilities. These facilities have an important
social responsibility to identify clinical abnormalities that could impact public health.
Combining LIMS data and structuring information to facilitate practical interpretation of data
for surveillance somewhat relieves doctors of paperwork, while allowing them to maintain
their responsibility. Structurally expanding the pallet of tests, on the basis of current
information, offers social value through real-time surveillance data. The questions are how
much these data are worth and how we can obtain the information practically and at
acceptable cost. From a surveillance perspective, the negative test results correlated with
syndromes can provide as much information on emerging disease outbreaks as positive test
results (chapter 2). The cost-benefit analysis must include these patient-care and
surveillance aspects.
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Conclusion

The goal of this thesis was to analyse the use of existing medical information and health
structures for arbovirus surveillance in the Netherlands. We demonstrated that syndromic
studies of existing information can be used to monitor the effectiveness of current arbovirus
surveillance methods. Although preliminary, our study also showed that currently available
health structures and medical information could provide essential additional information
that, if approached appropriately, could improve arbovirus surveillance. To achieve this,
serological and syndromic data should be interpreted with a multipathogen perspective.
However, our test results were limited to an increase in mainly DENV-positive patients, with
a limited increase in other flavivirus diagnoses.

Nevertheless, application of standardized flavivirus diagnostics performed with RT-PCR and
microarray according to travel history showed potential in the identification of patients with
a higher risk of a recent flavivirus infection. Although further optimization of the algorithm is
required (as can be seen by the low yield) and thorough cost-benefit analyses for syndromic
multiplex surveillance are not yet available, we showed that existing medical information
combined with standardized flavivirus diagnostics and multiplex techniques can be used for
arbovirus surveillance in the Netherlands, potentially improve both travellers’ health and
surveillance.
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Summary

Arboviruses are a group of viruses that use arthropod vectors, like mosquitoes, ticks and
midges, as their main transmission route. Most pathogenic human arboviruses are sustained
in a transmission cycle in which the vectors are mostly mosquitoes, and the animal
reservoirs are mainly domestic poultry, wild birds, and rodents that serve as the amplifying
hosts. Recent decades have seen increasing arboviral outbreaks caused by travel and trade,
animal migration and spread of exotic vectors.

Current arbovirus surveillance in Europe is patchy and often focussed on a single disease.
Also, it is typically separate from the general health structures, as the information systems
and data used in the medical field are not optimal for use in surveillance. Given the diversity
and unpredictability of emerging diseases and the difficulty of identifying which will be a
future threat, what is required are innovative preparedness strategies and instruments to
focus on multiple pathogens, species, and symptoms.

The goal of this thesis was to study how existing medical information and health structures
can be used for arbovirus surveillance in the Netherlands. In devising such a strategy and
tools needed, this thesis integrated travel medicine with public health surveillance,
encompassing a global health perspective on arbovirus surveillance. We used travellers as
sentinels for arbovirus activity and developed a microarray that allows for fast, cheap and
accurate testing of multiple arboviruses simultaneously.

The overall project consisted in five interrelated steps. First, we investigated the suitability
and usability of information from routine diagnostic databases for use as an information
resource for surveillance of arboviral disease burden in travellers. We found that compliance
to fill out minimal data between each step along the chain was the main point at which data
could be lost. We showed that nevertheless trends in arbovirus diagnostic requests and
results can be identified and correspond partially to reports of outbreaks of the disease in
question.

On the basis of an extensive review, we then quantified which arboviruses pose a travel risk
and how they can be categorized to provide systematic information for diagnostics and
surveillance. The review systematically combined and structured the current knowledge on
medically important travel-related arboviruses. It provided the basis for a standardized
diagnostic algorithm and illustrated the necessity of a detailed patient history (e.g. travel
history, symptoms experienced, vaccination history, engaged activities, onset of symptoms),
to guide the diagnosis.

Thirdly, we investigated how arbovirus diagnostics are currently performed in the
Netherlands and to what extent travellers are at risk of under-diagnosis. We showed that
the current range of viruses travellers are tested for is incomplete and likely many more
people carry these kinds of diseases than are diagnosed. As these diseases pose potential
public health threats, physicians should be more aware of the arboviruses that travellers
could be infected with, and protocols are needed regarding what infectious diseases
physicians should check for when travellers present with particular symptoms.



Summary

The fourth step consisted of developing an arbovirus protein micro-array for multiplex
serological diagnosis of arbovirus infections in humans (import via travellers) and equines
(local circulation). For this we used flavivirus, a genus that holds many of the world’s most
prevalent arboviral diseases that are also considered the most important travel related
arboviral infections. In most cases, flavivirus diagnosis in travellers is primarily based on
serology, since the amount of virus remaining in a patient’s blood is often low and typically
has already been reduced to undetectable levels when symptoms set in and patients seek
medical attention. We showed that it is possible to deal with the most prevalent problems
associated with serological diagnostics. Our multiplex protein micro-array using recombinant
NS1 proteins detected flavivirus antibodies while less affected by cross-reactivity among the
different flavivirus species.

Our last step was to evaluate the added value of multiplex testing of arboviruses for public
health surveillance and patient care on the basis of standardized algorithms, for which we
did a retrospective analysis. For this, we used our previously developed syndrome-based
diagnostic algorithm to identify which previously tested patients were likely to have had a
particular arboviral infection based on the syndromes they presented with and their travel
history. We then retrospectively tested these patients, independent of previous diagnostics
performed, using the multiplex protein micro-array that we had developed. This had a
number of results. We showed that current, non-standardized diagnostic algorithms result in
underdiagnosis of flavivirus infections in travellers. Also, our standardized diagnostics was
much more accurate in predicting which patients might be infected. Thirdly, our microarray
was successful in actually diagnosing those patients with a flavivirus infection (including
those that had been missed by the non-standardized test).

A further test involved horses, since these often serve as sentinels for active virus circulation
in serological surveillance programs. This test showed that the NS1-microarray can
potentially be used for diagnosing and distinguishing flavivirus infections in horses, and for
public health purposes within a surveillance setting. Combined with a standardized,
syndrome-based diagnostic algorithm, the microarray thus allows for fast, cheaper,
syndrome-based laboratory testing for multiple viruses simultaneously, for veterinary and
public health purposes.

The critical factors that still need to be addressed are the further optimization,
standardization and internationalization of diagnostic algorithms and further integrating
routine diagnostic results of travellers into public health surveillance programs. Although
further optimization of the algorithm and microarray is required (as can be seen by the low
yield) and thorough cost-benefit analyses for syndromic multiplex surveillance are not yet
available, we showed that existing medical information combined with standardized
flavivirus diagnostics and multiplex techniques can be used for arbovirus surveillance in the
Netherlands, potentially improving both travellers’ health and surveillance.
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Arbovirussen zijn virussen die overgedragen worden door geleedpotige vectoren. De meeste
pathogene arbovirussen voor de mens worden in stand gehouden in transmissiecycli waarin
de vectoren meestal uit muggen bestaan en waarin de dierlijke reservoirs meestal bestaan
uit pluimvee, wilde vogels en knaagdieren die dienen als versterkende gastheren. In de
afgelopen decennia is er een groei in het aantal arbovirusuitbraken veroorzaakt door
reisbewegingen, handel, diermigratie en door de verspreiding van exotische vectoren.

De huidige arbovirussurveillance in Europa is vaak fragmentarisch en richt zich vaak op één
enkele ziekte. Daarnaast gebeurt surveillance los van ziekenhuizen en diagnostische
laboratoria, omdat de informatiesystemen en gegevens die door ziekenhuizen en
diagnostische laboratoria gebruikt worden niet ontworpen zijn om data te aggregeren en
standaardiseren voor surveillance doelen. Vanwege de verscheidenheid en
onvoorspelbaarheid van opkomende ziektes en de moeilijkheid om vast te stellen welke een
toekomstige bedreiging vormen, zijn innovatieve voorbereidingsstrategieén en instrumenten
nodig die op meerdere pathogenen, soorten en symptomen tegelijk focussen.

De doelstelling van dit proefschrift was te onderzoeken hoe al aanwezige medisch
informatie binnen onze gezondheidszorg gebruikt kan worden voor arbovirussurveillance in
Nederland. Toewerkend naar een dergelijke strategie en dergelijke instrumenten werden in
dit proefschrift reizigersgeneeskunde en public health surveillance geintegreerd; een global
health benadering binnen arbovirussurveillance. We aggregeerden en analyseerden data uit
ziekenhuisinformatiesystemen en gebruikten reizigers als sentinels om arbovirusactiviteit te
monitoren. Daarna ontwikkelden we een microarray die snel, goedkoop en nauwkeurig
testen op meerdere arbovirussen tegelijk mogelijk maakt.

Het project bestond uit vijf onderling samenhangende stappen. Allereerst onderzochten we
of informatie uit bestaande diagnostische databases geschikt en bruikbaar was als
informatiebron voor surveillance van de arbovirusziektelast onder reizigers. We stelden vast
dat het nakomen, door artsen, van de verplichting om minimale data in te vullen bij de
verschillende onderdelen van verzoeken om diagnostiek het belangrijkste punt was waarop
gegevens verloren konden gaan. We lieten zien dat desondanks op basis van de
diagnostische verzoeken en resultaten trends konden worden vastgesteld die gedeeltelijk
corresponderen met gerapporteerde uitbraken van de desbetreffende ziekte.

Op basis van een uitgebreide review kwantificeerden we vervolgens welke arbovirussen een
gevaar voor reizigers vormden en op welke wijze deze gecategoriseerd konden worden tot
een systematische informatiebron voor diagnostiek en surveillance. De review combineerde
en structureerde op systematische wijze de bestaande kennis over medisch belangrijke
reisgerelateerde arbovirusen. Het bood de basis voor een gestandaardiseerd diagnostisch
algoritme en illustreerde de noodzaak van gedetailleerde anamnese van de patiént om de
diagnose te kunnen stellen, zoals reis- en vaccinatiegeschiedenis, ondernomen activiteiten,
syndromen (ziektebeelden) die zich voorgedaan hebben en op welk moment.

De derde stap bestond uit een onderzoek naar de wijze waarop arbovirusdiagnostiek
momenteel in Nederland uitgevoerd wordt en naar de mate waarin reizigers kans lopen op
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onderdiagnose. We toonden aan dat het huidige spectrum van ziektes waarop patiénten
getest worden te gelimiteerd is en dat waarschijnlijk veel meer mensen deze soort van
ziekten bij zich dragen dan er gediagnosticeerd worden. Omdat deze ziekten een potentieel
gevaar vormen voor public health, zouden artsen beter gewaar moeten zijn van de ziekten
waarmee reizigers geinfecteerd kunnen zijn, en zijn er protocollen nodig die voorschrijven
op welke ziekten artsen dienen te testen wanneer patiénten bepaalde syndromen hebben.

Ten vierde ontwikkelden we een microarray voor multiplex serologische diagnose van
arbovirusinfecties in mensen (import via reizigers) en paarden (lokale circulatie). Hiertoe
gebruikten we flavivirussen, een genus met veel van ’s werelds meest voorkomende
arbovirusziektes die tevens beschouwd worden als de belangrijkste reisgerelateerde
arbovirale infecties.

In de meeste gevallen gebeurt flavivirusdiagnostiek op basis van serologie, omdat de
hoeveelheid in het bloed van de patiént overgebleven virus doorgaans reeds te laag is om
nog gedetecteerd te kunnen worden op het moment dat symptomen zich voordoen en
patiénten zich melden bij een arts. Wij toonden aan dat het mogelijk is de meest
gebruikelijke problemen met serologische diagnostiek te vermijden. Onze multiplex
microarray, die gebruik maakt van recombinante NS1-eiwitten, detecteerde flavivirussen en
onderscheidde tussen verschillende flavivirussen en door vaccinaties veroorzaakte vals-
positieve resultaten. Bovendien was het minder gevoelig voor kruisreacties tussen de
verschillende flavivirussoorten.

De laatste stap bestond uit het beoordelen van de toegevoegde waarde van het multiplex
testen voor public health surveillance en patiéntenzorg op basis van gestandaardiseerde
algoritmes. Hiertoe deden wij een retrospectieve analyse. Voor die analyse gebruikten we
het syndroom-gebaseerde diagnostische algoritme dat wij ontwikkeld hadden om vast te
stellen welke eerder geteste patiénten een grote kans hadden op een arbovirale infectie, op
basis van de syndromen die zich bij hen voorgedaan hadden en hun reisgeschiedenis.

We testten deze patiénten vervolgens retrospectief, onafhankelijk van de eerder verrichte
diagnostiek, met gebruik van de door ons ontwikkelde multiplex eiwit-microarray. Hieruit
volgden een aantal bevindingen. We toonden aan dat de huidige, niet-gestandaardiseerde
diagnostische algoritmen leiden tot onderdiagnose van flavivirusinfecties in reizigers.
Daarnaast was onze gestandaardiseerde diagnostiek veel accurater in het voorspellen van
welke patiénten waarschijnlijk geinfecteerd waren. Ten derde was onze microarray in staat
die patiénten te diagnosticeren die een flavivirusinfectie hadden gehad (inclusief die
patiénten die gemist waren door de niet-gestandaardiseerde test).

Een vervolgtest betrof paarden, aangezien deze in serologische surveillance programma’s
vaak dienen als sentinels voor actieve viruscirculatie. Deze test toonde aan dat de NS1-
microarray mogelijk gebruikt kan worden voor de diagnose en vaststelling van
flavivirusinfecties in paarden en voor public health doeleinden in een surveillance setting.
Gecombineerd met een gestandaardiseerd, syndroom-gebaseerd diagnostisch algoritme
stelt de microarray dus in staat tot snelle, goedkopere en syndroom-gebaseerde
laboratoriumtests voor meerdere virussen tegelijk, voor veterinaire en public health
doeleinden.
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Kritische factoren die nog geadresseerd dienen te worden zijn de verdere optimalisatie,
standaardisering en internationalisering van diagnostische algoritmes en het verder
integreren van gebruikelijke diagnostische resultaten van reizigers binnen public health
surveillance programma’s. Daarnaast dienen degelijke kosten-batenanalyses beschikbaar te
komen voor syndroom-gebaseerde, multiplex surveillance. Ondanks dat verdere
optimalisatie van onze algoritme en microarray noodzakelijk is toonden we aan dat de
huidige beschikbare medische informatie gecombineerd met een standaard algoritme en
multiplex diagnostiek gebruikt kan worden voor surveillance van arbovirussen in Nederland.
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