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Chapter 1

Introduction

Forecasting is necessary to support various activities in supply chains—inventory

control, budgeting, production and distribution planning—as a result of demand un-

certainty (Danese and Kalchschmidt, 2011). Retailers use forecasts as input for sales,

inventory and order decisions, suppliers for production and procurement decisions,

and distributors for capacity allocation decisions. In practice, forecast errors are rela-

tively large (Hughes, 2001), which negatively affects operational performance (Danese

and Kalchschmidt, 2011; Enns, 2002; Ritzman and King, 1993; Zhao and Xie, 2002).

Reducing or minimizing these forecast errors, following a profound understanding of

their origins, is therefore of central importance.

Supply chain actors traditionally produce forecasts on their own, using data gen-

erated by their transactions and operational decisions and available to them through

their own databases. But research has found that substantial savings can be at-

tained, mainly in terms of reduced inventory, from sharing information and forecasts

between actors in the supply chain (Huang et al., 2003). Aviv (2001) concludes

that sharing forecasts increases, and never decreases, forecast accuracy, as errors in

forecasts propagate upstream through orders, distorting the basis on which decisions

are made. Moreover, sharing information reduces the bullwhip effect (Chen et al.,

2000), dampening the increase in demand variability observed by actors upwards in

the chain (Lee et al., 1997).

Typically, analyses depend on stylized demand processes, in which demand dt at

time period t follows an autoregressive process (AR) for various values of parameter

φ:

dt = φdt−1 + εt, εt ∼ N(0, σ2
ε) (1.1)
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The form of the underlying process is assumed to be stable and known, including the

values of the parameters, to the retailer only or all parties in the supply chain (Aviv,

2002; Chen and Lee, 2009; Gaur et al., 2005; Ha and Tong, 2008; Lee et al., 2000).

Raghunathan (2001) shows that sharing forecasts is redundant if the process is

known, because this allows the manufacturer to infer the demand pattern from the

order history alone. This insight led to research further exploring under what condi-

tions the demand process can be inferred from order patterns. The demand process

in Equation (1.1) is generalized to the following ARMA process, which consists of an

autoregressive (AR) and moving average (MA) component:

dt = c+

p∑
i=1

φidt−i +

q∑
i=0

θiεt−i εt ∼ N(0, σ2
ε) (1.2)

Zhang (2004) and Gilbert (2005) show that this type of demand process generates an

ARMA order history, when order decisions are made based on a rational order-up-to

policy. If forecasts with minimum mean squared error are used by actors at each

stage of the supply chain, and the orders are transmitted immediately, there is no

need to share the demand information between supply chain actors (Gilbert, 2005).

Demand information is always less valuable if actors in the supply chain have rational

ordering policies: for example, just when the demand information is most valuable to

the manufacturer, the retailer is likely to transmit this information by submitting an

order (Cachon and Fisher, 2000). Even when there is a small delay in ordering, the

manufacturer can, in many cases, still infer demand from orders (Gaur et al., 2005).

These results critically depend on the assumption of a rational order-up-to policy.

Also, these results critically depend on the forecasting process. Ali et al. (2012)

show that if single exponential smoothing, a popular forecasting method in practice,

is used by a supply chain actor given the demand described in Lee et al. (2000),

demand cannot be inferred by actors further up the chain. Given more realistic

assumptions concerning ordering policies and forecasting processes, Ali and Boylan

(2011) conclude that it is not possible to infer demand.

The discussion of ordering policies and forecasting processes has evolved within

stylized data-generating processes. Research widely concludes that the benefit of

information and forecast sharing is highly dependent upon and sensitive to the spec-

ification of the demand process (Ali et al., 2012; Babai et al., 2013; Bourland et al.,

1996; Gaur et al., 2005; Lee et al., 2000; Zhao et al., 2002). The formulation of the

data-generating process under study is critical for the results to hold.

However, specifying a stylized demand process for practice is questionable, as it

is doubtful whether demand processes are ever stable in practice. Promotions are an
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important case in which stylized demand processes are not adequate approximations

due to the substantial uncertainty of demand. During promotions, the larger forecast

errors and large increases in volume translate into higher inventory costs, undermin-

ing the desired profit which is targeted by the promotion. Promotions are the main

cause of out-of-stocks, excess inventory, and unplanned logistics costs (Wiehenbrauk,

2010). Iyer and Ye (2000) show that the profitability of a promotion decreases in

conjunction with the forecast accuracy of demand during promotions—even to such

an extent that it may be more beneficial to avoid promotions all together. In addi-

tion, demand is often distorted by outside influences, like activities and promotions

of competitors, which can have a severe impact (Wiehenbrauk, 2010). Volumes peak

during one’s own promotions, but drop during competitors’ promotions, and forecast

accuracy suffers drastically in both of these periods.

Not surprisingly, the stylized models for the demand process have been criticized

as ‘implausible,’ and for ‘lack[ing] any empirical foundation’ (Fildes et al., 2008,

p. 1162). In practice, companies are skeptical about how well demand can be forecast,

and question the forecasting process itself: they doubt whether a level of accuracy

can be attained to justify the effort involved (Hughes, 2001). This difference between

research and practice is not surprising, as the assumption of a stable demand process

in the models does not take the uncertainty of forecasting modeling into account

(Chatfield, 1996). Even if there is a stable demand process, companies are not

necessarily able to identify this process based on historical data.

In the case of Aviv (2001, 2007), forecast information and forecasting capability

are conflated: more information immediately translates into a higher forecast ac-

curacy. Moreover, the forecasting processes are treated as identical. However, the

forecasting horizons and units are different for the forecasting tasks of retailers and

manufacturers. Retailers often have to forecast consumer demand for short-term

stocking decisions, whereas manufacturers have to forecast the actual orders placed

by the retailer for long-term production decisions.

The distinction between information and capability is important in view of the

limitations in capability, in terms of forecast model formulation and estimation, of

retailers and manufacturers (Småros, 2007). Retailers and manufacturers are gener-

ally unable to adequately handle all the information currently at their disposal, not

able to separate demand signals from noise, and their limited forecasting capabilities

impede them from using more information to improve forecast accuracy.

Generally, companies lack the knowledge, expertise and training in the field of

forecasting to validly support decision-making (Hughes, 2001). The situation has

even become worse, as the level of knowledge and forecast accuracy have decreased

over time (McCarthy et al., 2006). Davis and Mentzer (2007) observe a gap between
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theory and practice in terms of forecasting capability, and consider this a significant

issue.

Hence, researchers call for analyses that extend beyond the technical side of fore-

cast generation and focus on how the forecasting process is managed and organized

(Armstrong, 1987; Danese and Kalchschmidt, 2011). There is a lack of performance

evaluation and management of forecasting processes at companies, and a blurred dis-

tinction between forecasts, plans, and goals (Moon et al., 2003). Moreover, forecasts

generated by forecasting methods are not directly used. The use of judgment for

generating and adjusting forecasts is often preferred and widely used (Hughes, 2001;

Lawrence et al., 2000).

1.1 Motivation

The problems associated with forecasting capability and forecasting process manage-

ment motivate the studies presented here. Instead of an analytical approach based on

stylized models, the studies in this thesis analyze and draw conclusions based on em-

pirical data collected from industry. Rather than focusing on a whole supply chain,

the scope is restricted to manufacturers, as improvements in the forecasting capabil-

ity of manufacturers not only benefit their own forecasts, but are most beneficial to

the chain as a whole (Aviv, 2001, 2007). In the order they are presented, the studies

gradually extend the use of information and move toward the actual use of forecasts,

incorporating managerial behavior. The issues encountered are generalizable to a

wider supply chain setting.

Forecasting capability here refers to the entire forecasting process at a company,

which can broadly be divided into two stages: (1) using various forecasting models

and methods to generate forecasts, and (2) using judgment to generate forecasts or

adjust previously generated forecasts by various parties in the company (Fildes et al.,

2008). Both of these stages are explored in this thesis.

The first stage, relating to models and methods, is explored in two different stud-

ies, which can be summarized as exploiting already available information, without

context-specific assumptions, to achieve substantial gains. The first study exploits the

available information about demand intermittence by generalizing existing forecast-

ing methods to better model demand. Existing methods either ignore a dependency

between the time between orders and order size, or focus on the risk of inventory obso-

lescence. This limited scope is costly in terms of inventory and financial performance.

The second study also generalizes existing forecasting methods and supersedes the

traditional discussion of top-down versus bottom-up methods, by examining how the

hierarchy of products is used in forecasting. Stock-keeping units (SKUs) naturally
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group together in a hierarchy going from the bottom, with individual sales per prod-

uct, through several intermediary levels, denoting sales for groups of related products

at increasingly general aggregation levels, such as product groups and categories, to

the top of the hierarchy, which lists total sales. Two commonly used approaches in

practice and research start from opposite ends of the hierarchy to generate forecasts

for all series: bottom-up forecasting and top-down forecasting. Research stretches

over three decades with mixed results as to preference for either bottom-up or top-

down forecasting approaches. Both of these approaches imply a loss of information

because the scope is restricted to separate and independent initial forecasts. How-

ever, by generating joint forecasts for a group of products directly, information is

better used which translates to superior performance. This approach explicitly in-

corporates product dependencies, such as complementarity of products and product

substitution, which are otherwise ignored. Whereas the first study exploits available

information for each SKU separately, the second study does so by considering SKUs

in groups and hierarchies, expanding the scope of the forecasting models.

The second stage, relating to the use of judgment, is explored in the final two stud-

ies, which focus on forecasting processes at companies, which extend beyond applying

forecasting methods and models. The studies use behavioral experiments to provide

insights into how forecaster behavior systematically differs and how this and the de-

sign of the forecasting process affect performance. Fildes et al. (2008) observe that

judgmental forecasting is central to the forecasting processes at many companies, and

directly affects supply chain performance (Syntetos et al., 2011, 2010). Judgmental

forecasting is often used to capitalize on valuable tacit or domain-specific knowledge

which is not captured by models (Fildes et al., 2008). Yet, judgmental forecasting

introduces many inherent biases of human decision-making (Lawrence et al., 2006),

which can adversely affect the forecast even more than the use of tacit information

improves it (Lawrence et al., 2006). Behavioral operations research examines how

to manage judgment, an “indispensable component” of forecasting (Lawrence et al.,

2006, p. 493). However, this is generally done at an aggregate level. We exam-

ine differences in forecasting behavior by modeling individual forecasting behavior,

instead of a demand process. We demonstrate that forecasting behavior differs sys-

tematically between individuals to the extent that we discern two markedly different

types of forecasters, chasers and smoothers. We also examine the influence of roles

and incentives, and trace the extent to which forecasters intentionally adjust their

forecasts. These insights have ramifications for hiring forecasters and orchestrating

forecasting processes.

An aspect addressed in all of the studies in this thesis is that the focus is not re-

stricted to improving forecast accuracy. There are many different ways of evaluating



6 Introduction

forecast accuracy (e.g. Hyndman and Koehler, 2006). However, higher forecast ac-

curacy does not always translate into operational gains (Fildes et al., 2008). Recent

papers have evaluated forecasting methods in terms of their resulting improvement

for inventory management (e.g. Syntetos and Boylan, 2006; Syntetos et al., 2010).

This insight has been adopted here in addition to directly evaluating forecast accu-

racy.

1.2 Contributions

In this section the content of the research described in Chapters 2 to 5 is summarized.

Exploiting Elapsed Time for Managing Intermittent Demand for Spare Parts

Chapter 2 presents an intermittent demand forecasting method that conditions on

the elapsed time since the last demand occurrence to anticipate incoming demand

and shows, using empirical data, that this can substantially reduce both stock in-

vestment and lost revenue for spare parts. We extensively benchmark our method

against existing forecasting and bootstrapping methods on forecast accuracy and in-

ventory performance and demonstrate that its performance is robust under general

conditions. Existing forecasting methods either do not change the forecast after a

period of zero demand, ignoring all forms of cross-correlations, or adjust the forecast

downwards, addressing only the specific case of inventory obsolescence and not the

general forms of cross-correlations observed in empirical data. All methods ignore

the fact that activities at the source of the demand, such as aggregation of demand,

preventive and corrective maintenance, can lead to a positive relation between de-

mand size and inter-arrival time of demand occurrences. By anticipating incoming

demand and not exclusively focusing on spare parts obsolescence, our method offers

substantial financial gains.

This chapter demonstrates that, even without context-specific knowledge and as-

sumptions, and even if there is very little information available, currently available

information can still be used to substantially improve performance. By extending

forecasting methods from literature, the forecasting capability of manufacturers is

directly increased. This chapter treats products independently, as the little available

information is not enough to estimate dependencies between products.

Integrated Hierarchical Forecasting

Chapter 3 looks into generating forecasts for product groups, and specifically exam-

ines product dependencies ignored in practice. Forecasts are often made at various

levels of aggregation of individual products, which combine into groups at higher hi-
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erarchical levels. We provide an alternative to the traditional discussion of bottom-up

versus top-down forecasting by examining how the hierarchy of products can be ex-

ploited when forecasts are generated. Instead of selecting series from parts of the

hierarchy for forecasting, we explore using all the series. Moreover, instead of us-

ing the hierarchy after initial forecasts are generated, we consider the hierarchical

series as a whole to instantaneously generate forecasts for all levels of the hierarchy.

Our integrated approach explicitly incorporates product dependencies, such as com-

plementarity of products and product substitution, which are otherwise ignored. A

simulation study, comparing and contrasting existing approaches from literature un-

der possible cross-correlations and dependencies, shows the conditions under which

an integrated approach is advantageous. An empirical study shows the substantial

gain, in terms of forecast performance as well as inventory performance, of generaliz-

ing the bottom-up and top-down forecasting approaches to an integrated approach.

Specifically, the gains for inventory performance can be as much as a 39% reduction in

stock investment. The integrated approach is applicable to hierarchical forecasting in

general, and extends beyond the current application of forecasting for manufacturers.

This chapter further extends forecasting methods from literature, by superseding

the discussion about top-down versus bottom-up forecasting approaches, by propos-

ing an integrated forecasting approach. This approach translates into a substantial

financial gain and extends the forecasting capability of manufacturers. It simplifies

and consolidates the forecasting process by generating forecasts for multiple SKUs

at once, instead of generating separate forecasts for each SKU. The chapter shows

how a forecasting method can perform better, purely based on historic information,

but does not include managerial and forecaster behavior, and does not consider how

forecasts are generated in collaboration between multiple departments.

Chasers, Smoothers and Departmental Biases: Heterogeneity in Judgmental Fore-

casting

Chapter 4 demonstrates that forecasting behavior differs systematically between in-

dividuals to the extent that we discern two markedly different types of forecasters.

One is characterized by overreaction to forecast errors and might be labeled chasers,

while the other is characterized by underreaction to forecast errors, and might be

labeled smoothers. Extending the models used in earlier behavioral experiments, our

approach relies on wavelets and state space modeling to incorporate forecasting het-

erogeneity. We demonstrate that contextual biases can only be meaningfully explored

after controlling for the forecaster’s inclination towards chasing or smoothing. We

further show that departmental biases persistently impact judgmental forecasting,

even if forecasts are constructed to be free of intentional biases. Our findings have
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important repercussions for theory building based on evidence derived from aggre-

gate results, but also have practical relevance for training and hiring of forecasters,

and orchestrating forecasting processes in companies.

By shifting the attention to modeling forecaster behavior, instead of the demand

process, this chapter gives insight into how forecasters behave, how they are influ-

enced by context, and how this impacts performance. Forecasting behavior and its

ramifications are to a large extent unintentional. In addition to these sources of un-

intentional errors, different incentives and departments in a company possibly affect

intentional errors.

Coordinating Judgmental Forecasting: Coping with Intentional Biases

Chapter 5 examines intentional biases, an overlooked research area, that arise due

to the influence of different departmental roles and incentives in the forecasting pro-

cess. Through an experiment, which simulates forecasting and production quantity

decisions in an interdepartmental decision-making context, we examine the effects of

roles, incentives, and various weighing schemes on behavior and performance. We

find that roles, even without role-specific incentives, entail intentional biases of 8%

of the forecast, and that role-specific incentives increase these biases to 14%. We test

the claim that an accuracy-weighted scheme can remove unintentional biases, and

conclude that though this halves these biases, it does not fully remove them. Finally,

we observe that a weighing scheme that explicitly corrects biased inputs shows great

promise in reducing intentional as well as unintentional biases. In our experiment,

this scheme reduces biases by 35%. This study shows the importance of disentangling

the two sources of biases for research, and our insights have substantial ramifications

for the design of the forecasting process in terms of coordination mechanisms and

incentives by quantifying the impact of roles and incentives.

This chapter shows the impact of forecasting process design on performance, and

how people intentionally adapt their behavior under commonly used schemes, which

affects performance.

The research in all of these chapters leads to an increase in forecasting capabil-

ity by extending the forecasting methods and models available to companies, and

by showing how the forecasting process, in which these methods and models are

embedded, can be improved.
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1.3 Authorship

The majority of the work in this thesis has been done independently by the author.

The author was responsible for formulating the research questions, studying rele-

vant literature, conducting the analyses, formulating and implementing the models,

analyzing the results, and writing the chapters. For each chapter, discussions with

co-authors and promoters, especially with Jan van Dalen, led to substantial improve-

ments. The data of Chapter 2 was made available by professor Aris Syntetos and

Erwin van der Laan. The methodology section in this chapter is based on prior

work by Jan van Dalen and Erwin van der Laan. The data of Chapter 3 was made

available by the company. The setup of the behavioral experiments in Chapters 4

and 5 were outlined in collaboration with Jan van Dalen, Laurens Rook and Ste-

fanie Protzner, and programmed by the author. Also, the author conducted the data

collection sessions with practitioners.

1.4 Outline

The remainder of this thesis consists of the chapters described in Section 1.2. Chap-

ters 2 and 3 present the work on improving the forecasting models and methods

by modeling the data-generating process for demand and exploiting available, but

currently ignored, information. Chapter 4 and 5 present the work on modeling indi-

vidual forecaster behavior and the effect of forecasting process design on performance.

Finally, Chapter 6 summarizes results, presents conclusions, and contains recommen-

dations for future research.





Chapter 2

Exploiting Elapsed Time for

Managing Intermittent

Demand for Spare Parts

Co-authors: J. van Dalen and E. van der Laan

Abstract

We present an intermittent demand forecasting method that conditions on the

elapsed time since the last demand occurrence to anticipate incoming demand

and show, using empirical data, that this can substantially reduce both stock

investment and lost revenue for spare parts management. We extensively bench-

mark our method against existing forecasting and bootstrapping methods on

forecast accuracy and inventory performance and demonstrate that its perfor-

mance is robust under general conditions. Our method is the first to incorporate

that activities at the demand side, such as aggregation of demand, preventive

and corrective maintenance, can lead to a positive relation between demand

size and inter-arrival time of demand occurrences. By anticipating incoming

demand, our method offers substantial financial gains.

Keywords: forecasting, spare parts, intermittent demand, Croston, bootstrap.

2.1 Introduction

Spare parts management is of great business value and is important for competitive

success (Cohen and Lee, 1990). It is often applied to large numbers of stock keeping

units (SKUs), ranging into the thousands. Service levels have to be met, while stock
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investments, which can represent a large capital, are curtailed. Forecasts drive inven-

tory decisions, directly affecting stock investments and customer satisfaction, but are

challenging to generate in the case of spare parts. Johnston et al. (2003) describe a

company with 50,000 different SKUs of which the products with intermittent demand

represent 87% of the total stock value and 60% of the value of sales. Glueck et al.

(2011) survey the service and spare parts management activities of manufacturing

companies and report that forecast accuracies are poor, and that almost “70% of

the manufacturers surveyed are unable to report on the forecast accuracy for their

service and parts activities” (p.28).

Spare parts are especially challenging to forecast because demand is typically

intermittent with substantial and variable periods of time between demand occur-

rences. As a consequence, variability can occur not only in the demand size, but

also in the inter-arrival time of demand occurrences. In spare parts management,

inter-arrival times of more than a year are no exception (e.g. see data descriptive

statistics in section 4.2). Also, when demand arrives, it can be for large quantities

of items, even ranging into the thousands. This particular setting requires special

forecasting methods, as demonstrated by Croston (1972), whose forecasting method

is still widely used today.

Croston proposed an intermittent demand forecasting method that distinguishes

between the demand size and the inter-arrival time of subsequent demand occur-

rences. The method assumes independence between the demand size and the inter-

arrival time of demand. However, empirical data can exhibit substantial cross-

correlations between these two (Willemain et al., 1994). Simulations show that ig-

noring these cross-correlations adversely affects the service level (Altay et al., 2012).

Since Boylan and Syntetos (2007)’s claim that “no methods have yet been published

to address the general case of non-independence” (p.513), newer methods have been

developed to relax the initial assumption, starting with Teunter et al. (2011). These

recent methods specifically address inventory obsolescence, which the other methods

ignore. Yet no method addresses more general forms of cross-correlations observed in

empirical data. More importantly, behavior on the demand side, which characterizes

the demand process, is ignored. Inderfurth and Kleber (2013) provide an example of

such behavior, where a final large quantity of parts is ordered at the end of the life

cycle. Wang and Syntetos (2011) are the first to characterize the maintenance driven

models, such as preventive maintenance and corrective maintenance, as a source of

generating intermittent demand. Later work, such as by Romeijnders et al. (2012),

assumes that maintenance schemes drive demand and are the source of variability

in the inter-arrival times and the demand size. If demand is indeed generated by

this behavior, the independence of the size and the inter-arrival time is clearly vi-
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olated, but not in a way captured by methods that incorporate obsolescence: any

period without a demand occurrence should then lead to a higher, rather than lower,

expectation of demand.

If available, extra information can be used to improve inventory management of

spare parts (Li and Ryan, 2011). However, when customers are external parties,

context-specific information, such as ordering policies and maintenance schemes of

buyers, is often unavailable. In most cases, the only available information is a short

history of previous demand from which little can be inferred due the intermittent

nature of the demand.

Our main contribution is that we develop a method that incorporates the over-

looked case of positive cross-correlation between inter-arrival times and demand sizes

to anticipate incoming demand. Using empirical data, we show that our method

substantially reduces both stock investment and lost revenue for spare parts man-

agement. We extensively benchmark our method against existing forecasting and

bootstrapping methods on forecast accuracy and inventory performance, and show

that its performance is robust under general conditions. Our insights contribute to

the spare parts and inventory management literature in general, and specifically to

the literature concerned with improving forecast accuracy and inventory performance

for spare parts with an intermittent demand pattern (e.g. Altay et al., 2012; Boylan

et al., 2008; Boylan and Syntetos, 2007; Croston, 1972; Snyder et al., 2012; Syntetos

and Boylan, 2001, 2005, 2006; Syntetos et al., 2012; Teunter et al., 2011; Willemain

et al., 2004).

The remainder of this chapter is organized as follows. In Section 2.2 we provide

an overview of the relevant literature about intermittent demand forecasting meth-

ods and their underlying assumptions, specifically with respect to time dependence.

In Section 2.3, we propose a general model and formulate a specific application to

address the time dependence. In Section 2.4 we describe our empirical data and

the basis on which we compare the various methods in terms of forecast accuracy

and inventory performance. Section 2.5 lists the results and their implications, while

Section 2.6 concludes and gives suggestions for future research.

2.2 Theoretical background

This section reviews the available methods for forecasting the intermittent demand of

spare parts. Methods are often classified as either parametric or non-parametric. The

group of parametric approaches mostly consists of adjustments to Croston’s method.

In the non-parametric group, various forms of the bootstrap are most prominent.
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Emphasis is given to the time dependence in the forecasting methods and the current

state of research.

2.2.1 Forecasting methods

The demand for most spare parts exhibits large variation in the inter-arrival times

between the demand occurrences. Also, demand volumes are often seen to vary

considerably. The popular forecasting method single exponential smoothing (SES)

only captures the variation in the demand size as:

d̂t+1|t = d̂t|t−1 + α(dt − d̂t|t−1)

where d̂t+1|t denotes the forecast of demand for period t + 1 made at time t, dt

denotes the observed demand at time t, and α is a smoothing parameter constrained

as 0 ≤ α ≤ 1. Croston (1972) shows that if SES is used to forecast intermittent

demand, the forecast is lowest just before a demand occurrence, and highest just

after it. As an alternative approach, Croston proposes to smooth the demand size

st and the inter-arrival time it separately, where it denotes the number of periods

since the last demand occurrence. This method is widely used today and is becoming

more popular (Boylan and Syntetos, 2007). At the end of time period t, if no demand

has occurred (st = 0) the forecast made at the end of time t− 1 remains unchanged

(d̂t+1|t = d̂t|t−1), but if demand does occur (st > 0) then the forecasts for t + 1 are

updated:

ŝt+1|t =

⎧⎨
⎩ŝt|t−1 if st = 0

ŝt|t−1 + α0(st − ŝt|t−1) if st > 0

ît+1|t =

⎧⎨
⎩ît|t−1 if st = 0

ît|t−1 + α1(it − ît|t−1) if st > 0

for given smoothing parameters α0 and α1. The use of separate smoothing param-

eters is a later suggestion by Schultz (1987). The demand forecast results from the

combination of the two separate forecasts:

d̂t+1|t =
ŝt+1|t
ît+1|t

As the demand size is assumed to be independent of the elapsed time, the demand

forecast remains the same in periods between demand occurrences.
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Croston’s method is biased, as E(dt) = E(st/it) �= E(st)/E(it) (Syntetos and

Boylan, 2001). Several modifications of Croston’s method have been proposed to

address this (Levn and Segerstedt, 2004; Shale et al., 2006; Snyder, 2002; Syntetos

and Boylan, 2001, 2005, 2006). Though some of the variants perform better than

the original (Syntetos and Boylan, 2006), others overcompensate and have an even

stronger bias by forecasting too low (Teunter and Sani, 2009). The adjustment

proposed by Syntetos and Boylan (2005), hereafter referred to as SBA, has the most

empirical support and incorporates a correction factor to reduce the forecast:

d̂t+1|t =
(
1− α1

2

) ŝt+1|t
ît+1|t

An extension to Croston’s method has been proposed based on the risk of inven-

tory obsolescence, as the forecast of Croston’s method does not change if there are

no more demand occurrences. Teunter et al. (2011) (TSB) propose to update the

probability that demand occurs p̂ instead of the inter-arrival time in every period:

ŝt+1|t =

⎧⎨
⎩ŝt|t−1 if st = 0

ŝt|t−1 + α0(st − ŝt|t−1) if st > 0

p̂t+1|t =

⎧⎨
⎩(1− α1)p̂t|t−1 if st = 0

(1− α1)p̂t|t−1 + α1 if st > 0

d̂t+1|t = p̂t+1|tŝt+1|t

Smoothing constant α1 reduces the demand probability, and so also the demand

forecast, in every period in which there is no demand, unless it is strictly equal to

0. The demand forecast d̂t+1|t is then dependent on the elapsed time since the last

demand occurrence at every period t. The smoothing using constant α1 makes the

method more similar to SES, because the forecast is again lowest just before and

highest just after a demand occurrence.

Snyder et al. (2012) use a selection of count distributions (Poisson, negative bi-

nomial, and a hurdle shifted Poisson) to forecast intermittent demand, and add two

dynamic specifications so that the mean of the demand distribution can change over

time. The first corresponds to a stationary autoregressive model:

d̂t+1|t = (1− φ− α)μ+ φd̂t|t−1 + αdt

μ > 0, φ > 0, α > 0, φ+ α < 1
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where μ is the stationary mean, and α and φ are parameters. The constraints α > 0

and φ + α < 1 imply that the updated forecast is a convex combination of the

stationary mean, the previous forecast and the observed demand in each period. The

second corresponds to an integrated moving average, or local level model:

d̂t+1|t = δd̂t|t−1 + αdt

δ > 0, α > 0, δ + α = 1

where the constraints α > 0 and δ+α = 1 imply that the updated forecast is a convex

combination of the previous forecast and the observed demand. In these dynamic

models, there is a dependence between the elapsed time and the demand size in the

model formulation. They mention that “demand for spare parts may increase over

time as the machines age and then decline as they fail completely or are withdrawn

from service” (Snyder et al., 2012, p.486). An increase or decrease in the demand

level is similarly captured in Croston’s method, which also smoothes the demand size.

However, similar to the approach of Teunter et al. (2011), the dynamic specification

is able to incorporate inventory obsolescence when demand does not occur, which

Croston’s method is unable to do. For both the stationary autoregressive model and

the local level model, the updated forecast becomes lower when no demand occurs.

The approach of Snyder et al. (2012) is conceptually similar to SES for intermittent

demand: its demand forecast is also lowest just before and highest just after demand

occurs.

Prominent alternatives to the parametric methods are the methods based on boot-

strapping, in which the empirical distribution of demand for SKUs is used directly to

approximate the demand distribution. Willemain et al. (2004) use a two state, first-

order Markov process to incorporate autocorrelation. The first step in this approach

is to estimate the state transition probabilities from the historical demand series.

Forecasts of demand occurrences during the lead time are conditional on whether

demand just occurred (st > 0) or not (st = 0) at the moment of forecasting (d̂t+1|t).
If demand no longer occurs, as in the case of obsolescence, the transition probability

of going from the state with zero demand to a state of positive demand becomes ever

smaller, so the demand forecast decreases. The Willemain et al. (2004) bootstrap,

though nonparametric, is similar to the discussed alternatives to Croston’s method

in its application, because the demand forecast decreases in periods when no demand

occurs.

Many authors conclude that more empirical studies are needed to evaluate the

performance of the bootstrap and the various parametric methods, as few stud-
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ies compare all of these based on measuring inventory performance (Gardner and

Koehler, 2005; Syntetos et al., 2012; Teunter et al., 2011).

2.2.2 Elapsed time dependence

In Croston’s method, the inter-arrival time and the demand size are independent

by assumption. However, empirical data can exhibit substantial cross-correlations

between these two (Willemain et al., 1994). This is a concern, because simulations

show that the service level is affected when these cross-correlations are not taken

into account, although this has not yet been tested on empirical data (Altay et al.,

2012). Boylan and Syntetos (2007) state that “no methods have yet been published

to address the general case of non-independence” (p.513). Since their statement,

many methods have been developed in which a possible dependence is taken into

account in the formulation of the expected demand for the specific case of inventory

obsolescence. A longer inter-arrival time leads to a smaller expected demand in

these methods. The general case of cross-correlation between the demand size and

the inter-arrival time has, however, not been addressed.

Porras and Dekker (2008) note that their bootstrap method, which constructs a

histogram of demands over the lead time without sampling, can capture the fixed

demand intervals arising from preventive maintenance, which is important because

the source of intermittent demand for spare parts is rarely explored. Wang and

Syntetos (2011) were the first to characterize the maintenance driven models, such as

preventive maintenance and corrective maintenance, as the source of the intermittent

demand generation process in simulations. Romeijnders et al. (2012) consider the

maintenance scheme as the source of variability in the inter-arrival time and the

demand size and propose a method that takes the type of component for which a spare

part is needed into account. In the setting of maintenance schemes, independence of

demand size and inter-arrival time is clearly violated. The methods discussed so far

cannot capture the relation exhibited in a maintenance setting—we have seen that

there is no conceptual difference in the methods of Snyder et al. (2012) and Teunter

et al. (2011).

A classification of SKUs, based on particular demand patterns, is available to

select the best applicable forecasting method (e.g. Boylan et al., 2008). According

to Syntetos and Boylan (2005, p.12), “the two key characteristics that have been

shown to be collectively sufficient for defining intermittent demands are the inter-

demand interval and the squared coefficient of variation of the demand sizes”; see

also Syntetos et al. (2005). However, they also note that “key issues remaining in

this area relate to [...] the further development of robust operational definitions of
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intermittent demand for forecasting and stock-control purposes” (Syntetos et al.,

2012, p.3). Based on the discussion so far, cross-correlation seems a likely candidate

to further capture essential aspects of the variation in demand between parts.

2.3 Proposed model

This section formalizes the intermittent demand process, and provides a general

formulation of the intermittent demand model. This general model is then applied

to the specific case in which the expected demand is proportional to a geometrically-

distributed inter-arrival time.

2.3.1 General formulation

The objective is to estimate the expected total demand DL,t at time period t for some

product or part during the next L time periods. The (expected) demand during the

forecast period is by definition equal to the average of the expected demand for a

given number of demand occurrences m, DL,t|M=m, weighted with the probability

of m demand occurrences P (M = m), and aggregated over the possible demand

occurrences (m = 0, 1, . . . , L):

DL,t =

L∑
m=1

DL,t|M=mP (M = m) (2.1)

As DL,t|M=0 = 0, the case of m = 0 is not included in the summation. Expression

(2.1) can be conveniently reformulated in terms of inter-arrival times, τ . Given that

the forecast is made at time period t, which may or may not coincide with a demand

occurrence, we define τ0 as the time elapsed since the last demand occurrence, and

τ1 as the time until the first upcoming demand occurrence. Successive inter-arrival

times are denoted by τ2, τ3, . . .. Further, given that m > 0 demand instances occur

during the forecast period, the sum of the corresponding inter-arrival times, Am,

(discarding the elapsed time τ0) is defined as:

Am =

m∑
k=1

τk, m = 1, . . . , L (2.2)
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Using these inter-arrival times, the probability of having exactly m demand occur-

rences during the forecast period is obtained as:

P (M = m) =

⎧⎨
⎩P (A1 > 0) if m = 0

P (Am ≤ L,Am+1 > L) if m > 0
(2.3)

This implies that if demand occurs, the total time of the m inter-arrival times is at

least equal to m and at most equal to the length of the forecast period, L. Also, the

(m+ 1)st inter-arrival time extends beyond the forecast period.

We assume that expected demand is strictly additive in the sense that the demand

associated with an inter-arrival time is equal to the sum of the expected demand of

the spanned time units:

Dτi,t =

τi∑
s=1

E(ds,t) (2.4)

As a result, the expected demand during the forecast period given m > 0 occurrences

and the elapsed time before the forecast period, τ0, can be written as:

DAm,t|M=m = Dτ0 +

m∑
k=1

Dτk,t = Dτ0 +DAm,t (2.5)

The expected total demand during the forecast period (2.1) can be reformulated

using (2.3) and (2.5) as a weighted sum of expected demand over the number of

demand occurrences m and the sum of intermittent inter-arrival times a, where m ≤
a ≤ L:

DL,t =

L∑
m=1

L∑
a=m

Da,t|M=mP (Am = a,Am+1 > L)

=

L∑
a=1

a∑
m=1

Da,t|M=mP (Am = a,Am+1 > L)

=

L∑
a=1

a∑
m=1

Da,t|M=mP (τm+1 > L−Am | Am = a)P (Am = a)

(2.6)

where P (Am = a,Am+1 > L) is the probability that the sum of m intermittent

inter-arrival times is within the forecast period, while the sum including the (m +

1)st demand occurrence is outside this period. The first step in (2.6) changes the

summation order between number of occurrences m and total elapsed time a, while

the second step redefines the probability of elapsed time a. The final expression
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conveniently supports the derivation of a closed form expression for the total expected

demand in the special case presented next.

2.3.2 Specific application

The properties of the intermittent demand model are illustrated for the case in which

the expected demand is proportional to the inter-arrival times: Dτ,t = μτ . The inter-

arrival time τ follows a geometric distribution, f(τ) = p(1−p)τ−1, where τ = 1, 2, . . .

and p is the periodic probability that demand occurs. Note that the definition of inter-

arrival times in combination with the assumption of discrete time periods require τ

to be at least equal to 1. This distribution is commonly used. It is supported by

theory and empirical data, and it conveniently leads to a closed-form solution for the

expected total demand during the forecast period (e.g. Eaves and Kingsman, 2004;

Syntetos et al., 2012; Willemain et al., 1994). For this special case, equation (2.5)

simplifies to:

Da,t|M=m = Dτ0 +Da,t = τ0μ+ aμ (2.7)

Given these assumptions, we can simplify the expected demand expression (2.6)

as:

DL,t =

L∑
a=1

a∑
m=1

Da,t|M=mP (τm+1 > L−Am | Am = a)P (Am = a)

=

L∑
a=1

(τ0μ+ aμ)

a∑
m=1

P (τm+1 > L−Am | Am = a)P (Am = a)

(2.8)

Furthermore, P (τm+1 > L−Am | Am = a) refers to the probability that the (m+1)st

demand occurrence is outside of the forecast period. It is independent of the number

of demand occurrences m and equal to (1− p)(L−a), yielding:

DL,t =

L∑
a=1

(τ0μ+ aμ)(1− p)L−a
a∑

m=1

P (Am = a) (2.9)

Moreover, the sum of the probabilities that the aggregate inter-arrival times, Am,

is equal to a, 1 ≤ a ≤ m is:

a∑
m=1

P (Am = a) =

a∑
m=1

(
a− 1

m− 1

)
(1 − p)a−mpm = p,

the probability of a demand occurrence in any particular period. As a result, the
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expected demand expression (2.9) can be further simplified to:

DL,t =

L∑
a=1

(τ0μ+ aμ)(1− p)L−ap

=

L∑
a=1

τ0μ(1− p)L−ap+

L∑
a=1

aμ(1− p)L−ap

= τ0μ
[
1− (1− p)L

]
+ μ

[
L−

(
1− p

p

)
(1− (1− p)L)

]

= μ

[
L+

(
τ0 − 1− p

p

)
(1− (1− p)L)

]
(2.10)

Expression (2.10) is used to infer the expected demand in following sections.

2.4 Methodology

This section presents the selected forecasting methods, explains the estimation pro-

cedures used, and outlines the measures for forecast accuracy and inventory perfor-

mance to evaluate the methods for multiple data sets.

2.4.1 Data

Five data sets, described in Table 2.1, are used to compare the performance of various

methods. For each data set, we include the SKUs that have at least one demand

occurrence in the training set. The first data set, hereafter called Electro, is our

own and has not been used before. It originates from a global supplier of spare

parts for production lines of lamps located at customers’ sites. The supplier receives

no information about orders, such as whether orders are placed for corrective or

preventive maintenance. The data set consists of 1439 SKUs and spans 26 months;

see Table 2.1 for the data descriptives. Some of the demand sizes are very large. The

other data sets have been used in earlier analyses of the electronics industry, hereafter

referenced as ElecInd (Syntetos et al., 2012); Royal Air Force, hereafter referenced

as Raf (Syntetos et al., 2009a; Teunter and Duncan, 2009); the automotive industry,

hereafter referenced as Auto (Syntetos et al., 2005; Syntetos and Boylan, 2005, 2006);

and the US Defense Logistics Agency, hereafter referenced as Navy (Syntetos et al.,

2012). See especially Syntetos et al. (2012, Tables 1-4, pp.5-6) and Teunter et al.

(2010, Table 1, p.622) for descriptives of these data sets. The ElecInd data set most

resembles our own data in terms of the descriptives, also containing various large
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demand sizes. The Raf data set covers “consumable parts” with no “associated

repair activity” (Teunter and Duncan, 2009, p.323).

2.4.2 Selected forecasting methods

The methods discussed in the literature review that are taken into consideration

are: single exponential smoothing (SES), Croston’s method, SBA, TSB, and the

bootstrap from Willemain et al. (2004). The undamped negative binomial model and

hurdle shifted Poisson from Snyder et al. (2012) are excluded, because the numerical

optimization is unstable for many of the SKUs in our data sets, which leads to poor

results. Two reasons can explain why these methods did not perform well on our

data sets: (1) Snyder et al. (2012) use a much stricter selection of SKUs, and (2) their

data sets exhibit much lower means and much less variation. They select 1046 out

of 2509 SKUs for which the demand data includes at least 10 demand occurrences

with at least one in the first 15 and the last 15 months. Our only restriction for

the selection of SKUs is that there should be at least one positive demand in the

training set (see section 2.4.1). The average demand size for their SKUs is 2.1, which

is much lower than the mean demand size for the five data sets we examined: 80.1,

24.1, 14.6, 5.4, and 14.6 (see Table 2.1). The average variance to mean ratio of the

demand sizes of their data is 2.3, which is also much lower than most of the average

variance to mean ratios of our data sets: 71.0, 31.5, 11.5, 2.4, and 16.0.

The selected methods are compared to our own method, hereafter referred to

as DLP, which is derived from (2.10) by smoothing estimates of μ and p as more

data becomes available. As our own method is a parametric method, comparing

its performance to that of the bootstrap does not directly provide insights into the

underlying relation between the elapsed time and the demand size. For this reason,

we introduce a variant of the Willemain et al. (2004) bootstrap, hereafter referred to

as BootstrapDLP. It is similar to the bootstrap used by Porras and Dekker (2008),

but different in that it approximates the probability of a demand occurrence using an

empirical distribution of demand occurrences over the lead time that is conditional

on the elapsed time. Hence, we can directly compare our DLP method to the other

parametric methods, and our BootstrapDLP to the non-parametric methods for fair

comparisons, as both are based on the assumption of a positive relation between

elapsed time and demand size.

Two-thirds of the available data is used as the training set, and one-third as

the holdout sample to compare performance. The parametric methods require initial

forecasts and smoothing parameters to generate the forecasts, and these are optimized

to minimize the mean square error for the training set (Teunter and Duncan, 2009).
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Table 2.1: Descriptives of the empirical datasets used

Data set 1: Electro (26 observations for 1,439 SKUs)

Demand per period Demand sizes Demand intervals

Mean SD CV 2 Mean SD CV 2 Mean SD CV 2

Min. 0.154 0.368 0.207 1.000 0.000 0.000 1.000 0.000 0.000
1st Qu. 2.135 2.916 0.541 4.148 2.970 0.369 1.412 0.784 0.500
Median 6.038 9.100 0.672 11.200 9.533 0.638 1.786 1.193 0.630
Mean 50.170 66.190 0.715 80.100 71.590 0.886 1.942 1.374 0.670
3rd Qu. 25.020 37.030 0.851 42.960 40.370 1.099 2.364 1.806 0.830
Max. 2689.000 4206.000 1.813 7462.000 4372.000 8.883 6.250 5.908 1.601

Data set 2: ElecInd (48 observations for 2,677 SKUs)

Demand per period Demand sizes Demand intervals

Mean SD CV 2 Mean SD CV 2 Mean SD CV 2

Min. 0.104 0.371 0.150 1.091 0.000 0.000 1.000 0.000 0.000
1st Qu. 1.104 2.509 0.362 3.591 3.254 0.593 1.412 0.857 0.548
Median 2.500 5.005 0.534 6.043 6.535 0.894 2.190 1.940 0.781
Mean 18.740 20.400 0.607 24.050 23.260 1.310 2.937 2.663 0.792
3rd Qu. 7.188 11.280 0.767 12.560 14.190 1.437 3.833 3.627 1.010
Max. 5366.000 3858.000 2.252 5366.000 3858.000 15.740 12.000 19.670 2.650

Data set 3: Raf (84 observations for 1,131 SKUs)

Demand per period Demand sizes Demand intervals

Mean SD CV 2 Mean SD CV 2 Mean SD CV 2

Min. 0.060 0.238 0.116 1.000 0.000 0.000 4.150 1.822 0.359
1st Qu. 0.214 0.673 0.252 1.732 1.014 0.235 6.481 5.146 0.690
Median 0.512 1.951 0.289 4.571 3.761 0.508 8.000 6.423 0.801
Mean 1.893 6.923 0.294 14.560 13.680 0.788 8.357 6.694 0.809
3rd Qu. 1.494 5.658 0.336 12.000 11.040 1.000 9.875 8.119 0.925
Max. 51.290 160.400 0.488 307.700 340.300 11.880 16.800 14.440 1.355

Data set 4: Auto (28 observations for 3,000 SKUs)

Demand per period Demand sizes Demand intervals

Mean SD CV 2 Mean SD CV 2 Mean SD CV 2

Min. 0.542 0.504 0.243 1.000 0.000 0.000 1.043 0.208 0.200
1st Qu. 1.458 1.319 0.956 2.050 1.137 0.262 1.095 0.301 0.275
Median 2.333 1.922 1.128 2.886 1.761 0.350 1.263 0.523 0.424
Mean 4.450 3.947 1.173 5.423 3.755 0.436 1.292 0.554 0.410
3rd Qu. 4.167 3.502 1.365 5.000 3.357 0.491 1.412 0.734 0.514
Max. 129.200 122.700 2.558 193.800 101.400 14.070 2.000 1.595 0.997

Data set 5: Navy (60 observations for 3,870 SKUs)

Demand per period Demand sizes Demand intervals

Mean SD CV 2 Mean SD CV 2 Mean SD CV 2

Min. 0.083 0.279 0.130 1.000 0.000 0.000 1.000 0.000 0.000
1st Qu. 0.800 1.882 0.343 3.061 2.498 0.510 1.844 1.462 0.709
Median 2.083 4.148 0.464 5.682 5.423 0.791 2.810 2.746 0.900
Mean 6.696 12.440 0.510 14.590 16.060 1.097 3.646 3.823 0.961
3rd Qu. 5.167 9.988 0.626 12.310 12.840 1.302 4.615 5.203 1.153
Max. 783.900 1219.000 1.703 1327.000 1473.000 12.240 12.000 22.370 2.819
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2.4.3 Evaluation

Recent research into intermittent demand examines both forecast accuracy and the

impact on actual inventory performance, such as cost, stock volume, and service

level to evaluate performance (Eaves and Kingsman, 2004; Snyder et al., 2012; Syn-

tetos and Boylan, 2006; Syntetos et al., 2009a,b; Teunter and Duncan, 2009; Teunter

et al., 2010). We also examine both forecast accuracy and inventory performance.

Inventory performance is most important as an improvement in forecast accuracy

does not necessarily translate into cost savings or a higher service level for inventory

management (Syntetos and Boylan, 2006). A simple example is to always forecast

zero demand: if the demand is sufficiently intermittent, this is the best performing

method in terms of forecast accuracy, but it cannot be used to set inventory levels

or for determining order quantities.

Classification by cross-correlation

The inter-arrival time and the squared coefficient of variation of the demand sizes are

commonly used to differentiate between particular SKUs (Syntetos and Boylan, 2005,

p.12). However, these two quantities do not capture the presence and influence of

cross-correlation, so that we require additional dimensions. We propose to determine

these cross-correlations using a dynamic structural system where the demand size

and the inter-arrival time depend on their lags and on each other, as there is con-

temporaneous interdependence. The sample of observations {dt}nt=1 of the demand

for a certain part during the n time periods in the training set can be interpreted

as a bivariate sample for the z demand occurrences in the training set {sj , ij}j∈Z ,

where set Z = {1, 2, . . . , z}. This sample contains the observations with positive

demand together with the time since the previous demand occurrence. Here, we use

the notation of Croston’s method, so sj denotes demand size and ij inter-arrival time

for demand occurrence j. The interpretation as a dynamic structural system allows

us to estimate the correlations by means of a structural VAR(1) model:

[
1 −ψ1,2

−ψ2,1 1

][
sj

ij

]
=

[
c1

c2

]
+

[
φ1,1 φ1,2

φ2,1 φ2,2

][
sj−1

ij−1

]
+

[
e1,j

e2,j

]

For identification of the parameters, the errors in this formulation are assumed to

be white noise: that is, normally and independently distributed with covariance

matrix I and expectation 0. We can then formulate the reduced-form VAR, impose
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restrictions, and estimate ψ1,2 and ψ1,2 using maximum likelihood.

Ψ =

[
1 −ψ1,2

−ψ2,1 1

]

[
sj

ij

]
= Ψ−1

[
c1

c2

]
+Ψ−1

[
φ1,1 φ1,2

φ2,1 φ2,2

][
sj−1

ij−1

]
+Ψ−1

[
e1,j

e2,j

]

The covariance matrix of the reduced form residuals is: Ψ−1Ψ−1ᵀ , for which we

have an estimate based on the residuals of the reduced-form VAR. The Ψ coefficients

provide insight into the cross-correlation between the demand size and the inter-

arrival time and can be used to classify SKUs.

SKUs exhibiting strong positive cross-correlation are identified based on the es-

timated cross-correlation coefficient ψ1,2, which after standardizing becomes ρ. We

then identify two subsets of SKUs for which there is either a strongly positive cross-

correlation, ρ > 0.5, or a strongly negative cross-correlation, ρ < −0.5, in the training

set.

Forecast accuracy

As many observations of intermittent demand are zero, the use of regular forecast

accuracy metrics is problematic. Applying conventional forecast accuracy metrics

leads to the wrong conclusions for intermittent demand (Teunter and Duncan, 2009).

Two metrics have recently been proposed which are now widely adopted to compare

accuracy. Hyndman and Koehler (2006) propose to scale the forecast errors based on

the in-sample mean average error from the naive forecast, which they call the mean

absolute scaled error (MASE):

MASE = mean({ |dt − d̂t|t−1|
1

n−1

∑n
t=2 |dt − dt−1|

}Nn+1)

in which n denotes the last time period included in the training set, and N the last

time period of available data. If a scaled error is less than one, a method outperforms

the naive forecast, and if it is greater than one the method performs worse.

Syntetos and Boylan (2005) advance a different accuracy metric that does not

scale the errors, which is the same as the geometric mean absolute error (GMAE):

GMAE = gmean({|dt − d̂t|t−1|}Nn+1)
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Inventory performance

Inventory performance is examined under often used conditions (Syntetos and Boy-

lan, 2001, 2006; Syntetos et al., 2009a,b, 2012; Teunter et al., 2010). We assume an

order-up-to (T, S) policy, where T is a constant review time, assumed to be given, and

S is the order-up-to level. The service level is measured as the order fill rate, which

is the proportion of demand that can be fulfilled immediately from stock, where the

stock position at time t is given by It:

Service level =

∑N
t=n+1 Ot∑N
t=n+1 dt

Ot = min{dt, It}
Two of the data sets, Electro and Raf, include lead times for each SKU. For

the remaining SKUs, we assume a two period lead time. The forecasts from SES,

Croston’s method, SBA, and TSB are multiplied by the lead time length to give the

mean forecast over the lead time. DLP, Bootstrap, and BootstrapDLP directly give

forecasts over the lead time. To calculate the order-up-to-level S for a particular

target service level, we need more characteristics of the demand distribution over

the lead time than just the mean forecast. Although this can be done by simulation

(Snyder, 2002), the common approach is to specify a probability distribution and use

the demand forecast as the estimated mean, and the smoothed mean square error

(MSE) as an estimate for the variance of the distribution of choice. We adopt this

approach and use the negative binomial with a smoothing parameter of α3 = 0.25,

allowing for non-stationarity of the variance as well as of the mean (Syntetos and

Boylan, 2006; Syntetos et al., 2009a,b, 2012; Teunter et al., 2010):

MSEt+1|t = (1− α3)MSEt|t−1 + α3(dt − d̂t|t−1)
2

Once we can determine the order-up-to-level S based on the forecast distribution,

we can simulate the inventory performance over the holdout sample. This gives us the

actual service level attained and the required stock investment necessary according

to the forecast distribution. A method that scores higher on service level is not nec-

essarily better than a method which scores lower. We can conclude that one method

outperforms another only if both the service level is higher and the necessary stock

investment is lower. These results can be easily interpreted with the use of trade-off

curves between service level and inventory investment for the various methods (Gard-

ner, 1990), as is also commonly done. In our case the average inventory will be used

as a measure for the required stock investment, and the fill rate as a measure of the
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service level. The results are compared for the various methods over four different

service level targets: 85%, 90%, 95%, and 99%. This is very similar to the approach

taken by Babai et al. (2014).

Inventory performance is examined here specifically to assess how well the fore-

casting method can be applied, that is, how well it serves as a basis on which inventory

decisions can be made. For this reason, fixed ordering or manufacturing costs are

not taken into account.

Financial performance

For the Electro data set, we have price information that can be used to compare the

cost benefits of implementing DLP in comparison to the other methods, assuming

the same service level target of 95%, for stock investment and lost revenue due to

lost sales. As this is sensitive company data, performance is relative to Croston’s

method, which is chosen because of its popularity. Stock investment is summed over

all SKUs as the number of units ordered multiplied by the unit cost. Lost revenue

is summed over all SKUs as the number of units that could not be directly fulfilled

from stock multiplied by the sales price.

2.5 Results

This section presents the results of the performance of the various examined fore-

casting methods. Methods are compared based on forecast accuracy, inventory per-

formance, and financial performance for all SKUs or for a subset of SKUs exhibiting

strong positive cross-correlation. The five different data sets are discussed in turn.

The parametric methods and the bootstrap methods are compared separately, as

there often appears to exist a large difference in performance between these two

groups.

2.5.1 Forecast accuracy

The forecast accuracy of the forecasting methods is presented in Table 2.2. For both

MASE and GMAE, the parametric methods perform much better than the bootstrap

methods. SBA is most often the best performing method for both measures, but the

difference with some of the other parametric methods, such as TSB, is small. The

performance of the DLP method depends on which data set and measure is examined.

For the Navy data set, DLP performs worst in terms of MASE, but performs best

when GMAE is examined. DLP is actually the best performing method for three out

of the five data sets, but only when considering GMAE. For MASE, DLP consistently
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performs worst of all the parametric methods. A closer examination of the data shows

that DLP has a much larger variation in terms of its performance: for some SKUs it

performs much better, but for other SKUs much worse. The different scaling of these

errors in the accuracy measures leads to different results. Using the cross-correlation

to classify the SKUs gives similar results in forecast accuracy performance and offers

the same conclusions; these results have therefore not been included here. The overall

best performer is SBA, but it remains to be seen whether this advantage translates

into actual inventory performance.

Table 2.2: Mean forecast accuracy for the data sets, best cases in bold.

Electro ElecInd Raf Auto Navy

MASE GMAE MASE GMAE MASE GMAE MASE GMAE MASE GMAE

SES 0.775 33.430 0.834 7.812 1.865 2.507 0.893 2.337 1.796 5.809
Croston 0.835 39.217 0.850 7.950 1.690 2.562 0.897 2.356 1.703 5.787
SBA 0.806 37.341 0.824 7.281 1.659 2.402 0.880 2.278 1.678 5.506
SY 0.824 38.714 0.837 7.875 1.663 2.426 0.895 2.346 1.688 5.632
TSB 0.744 32.911 0.831 7.873 1.718 2.325 0.891 2.328 1.700 5.576
DLP 0.950 20.431 1.558 9.926 3.990 2.115 0.986 2.316 3.417 4.470
Bootstrap 0.985 40.968 1.122 11.712 2.195 2.999 1.105 2.779 1.981 6.392
BootstrapDLP 1.133 47.832 1.382 12.288 3.199 4.407 1.103 2.743 2.577 8.027

2.5.2 Inventory performance

Table 2.3 gives an overview per data set of the mean inventory performance for the

various methods. For a particular target service level, the inventory policy based

on each forecasting method leads to an actual service level attained and a stock

investment that was necessary to realize this service level. Table 2.3 lists these

results as an average over all SKUs per data set, and for the two subgroups of SKUs

which exhibit strongly positive or strongly negative cross-correlation. The differences

between target and actually realized service level can be large.

Alternatively, the relative performance of the methods is determined by examining

the trade-off curves, which result from combining the data from the different target

service levels into one graph per data set. As the graphs become difficult to read

with so many methods, and as the performance of many forecasting methods is very

similar, we supplement our discussion with specific examples.

For the parametric methods, the inventory performance of SES is worst, and the

performance of SBA and TSB is very similar. If we look at the trade-off curves

of inventory performance of just DLP and TSB for the Auto data set, we see in

Figure 2.1 that DLP outperforms TSB, both for all SKUs and for the group of SKUs

that exhibit a strongly positive cross-correlation. TSB outperforms DLP for the
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SKUs with a strongly negative cross-correlation, which adheres to our expectation

concerning the effect of cross-correlation. The Navy and Raf data sets show similar

patterns, but in the ElecInd and Electro data sets, DLP more strongly outperforms

TSB, as exemplified in Figure 2.2. The performance difference is largest for the SKUs

which exhibit a strongly positive cross-correlation. These results hold if we replace

TSB for any of the other parametric methods other than DLP. The performance

difference between DLP and TSB is much larger than the difference between TSB

and, for example, SBA. We can conclude from these graphs that DLP outperforms

the other methods: both over all SKUs and for the SKUs that exhibit strongly

positive cross-correlation. Our method not only works well for its intended purposes,

but also appears to be quite robust for other cases. The difference in performance

between the groups of SKUs demonstrates that our application of the structural

VAR, estimated based on the training set, allows us to classify the performance on

the holdout sample, so that we are able to determine up front to which SKUs our

method should be applied.

Figure 2.1: Inventory performance of DLP and TSB for the Auto data set
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Table 2.3: Mean inventory performance for the data sets for target service level of
95%

Data set 1: Electro (26 observations for 1,439 SKUs)

All SKUs Only positive cross-correlation Only negative cross-correlation

Service level Stock investment Service level Stock investment Service level Stock investment

SES 0.916 191.800 0.900 117.300 0.836 121.700
Croston 0.923 199.100 0.896 119.800 0.846 114.100
SBA 0.918 192.200 0.894 116.300 0.838 112.100
SY 0.921 197.800 0.895 118.400 0.843 113.200
TSB 0.911 187.500 0.891 112.100 0.825 113.600
DLP 0.927 185.200 0.940 168.800 0.865 111.000
Bootstrap 0.957 246.400 0.969 166.300 0.915 155.800
BootstrapDLP 0.968 250.300 0.964 166.000 0.930 155.500

Data set 2: ElecInd (48 observations for 2,677 SKUs)

All SKUs Only positive cross-correlation Only negative cross-correlation

Service level Stock investment Service level Stock investment Service level Stock investment

SES 0.951 61.860 0.911 18.310 0.961 29.170
Croston 0.956 61.750 0.917 19.560 0.964 27.670
SBA 0.953 59.800 0.916 19.190 0.964 27.230
SY 0.954 61.570 0.916 19.460 0.964 27.460
TSB 0.949 61.190 0.902 17.830 0.957 27.560
DLP 0.971 66.530 0.983 42.900 0.990 31.960
Bootstrap 0.982 79.740 0.970 31.110 0.992 49.440
BootstrapDLP 0.980 83.550 0.953 32.000 0.983 52.020

Data set 3: Raf (84 observations for 1,131 SKUs)

All SKUs Only positive cross-correlation Only negative cross-correlation

Service level Stock investment Service level Stock investment Service level Stock investment

SES 0.688 17.070 0.646 9.610 0.708 13.880
Croston 0.725 15.600 0.695 9.034 0.747 12.550
SBA 0.718 15.430 0.690 8.898 0.742 12.430
SY 0.719 15.450 0.692 8.937 0.742 12.440
TSB 0.688 16.200 0.650 9.119 0.707 13.080
DLP 0.889 22.030 0.911 20.240 0.914 18.250
Bootstrap 0.917 34.070 0.910 22.620 0.921 33.870
BootstrapDLP 0.938 41.080 0.939 28.600 0.923 38.540

Data set 4: Auto (28 observations for 3,000 SKUs)

All SKUs Only positive cross-correlation Only negative cross-correlation

Service level Stock investment Service level Stock investment Service level Stock investment

SES 0.956 12.490 0.971 5.319 0.956 6.226
Croston 0.955 12.440 0.968 5.278 0.956 6.098
SBA 0.951 12.040 0.965 5.116 0.952 5.873
SY 0.955 12.400 0.968 5.243 0.955 6.076
TSB 0.955 12.390 0.970 5.272 0.955 6.136
DLP 0.952 11.650 0.971 5.380 0.965 6.348
Bootstrap 0.984 15.910 0.995 7.901 0.986 9.074
BootstrapDLP 0.985 15.860 0.997 7.845 0.988 8.978

Data set 5: Navy (60 observations for 3,870 SKUs)

All SKUs Only positive cross-correlation Only negative cross-correlation

Service level Stock investment Service level Stock investment Service level Stock investment

SES 0.829 32.170 0.775 34.950 0.778 24.250
Croston 0.843 30.960 0.778 30.930 0.778 22.510
SBA 0.838 30.370 0.775 30.760 0.774 22.070
SY 0.840 30.730 0.775 30.820 0.775 22.290
TSB 0.826 31.210 0.767 33.080 0.769 22.950
DLP 0.913 34.990 0.924 47.740 0.913 31.640
Bootstrap 0.935 47.450 0.902 48.880 0.891 45.220
BootstrapDLP 0.947 52.040 0.909 55.990 0.918 49.870
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Figure 2.2: Inventory performance of DLP and TSB for the Electro data set
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Figure 2.3: Inventory performance of the bootstrap methods for the Auto data set
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If we compare the two bootstrap methods, we see two different patterns. For

the data sets Auto and Electro in Figure 2.3, BootstrapDLP outperforms Bootstrap,

which is especially strong for the SKUs with a strongly positive cross-correlation.

For the ElecInd, Navy, and Raf data sets, BootstrapDLP performs better for the

lower service level targets, but performs worse than Bootstrap for higher service

level targets, see Figure 2.4. In these cases, Bootstrap rapidly improves the service

level for a higher stock investment, whereas the gain for a higher investment with

BootstrapDLP improves much more slowly. At the lower investment levels, however,

BootstrapDLP consistently outperforms Bootstrap.

Disregarding DLP for a moment, Bootstrap consistently outperforms the para-

metric methods. Though the performance of Bootstrap is better than DLP for the

Auto data set, the performance of both is similar for the Electro data set. For the

ElecInd, Raf, and Navy data sets, DLP even outperforms Bootstrap as can be seen

in Figure 2.5, where the difference is again largest for the SKUs exhibiting cross-

correlation.

DLP’s superior performance is due to the effect that stock investment is slowly

ramped up, instead of consisting of one initial large investment. Figure 2.6 shows how

DLP leads to an increase in inventory after there have been no demand occurrences

for several periods. This contrasts with methods that assume SKUs can go obsolete

at any moment. DLP and TSB both fail to satisfy all demand in Figure 2.6, but

DLP is much closer. The demand occurrence at time period 20 leads to an increase

in investment for TSB, as the demand occurrence is a clear signal that the SKU is

not obsolete. DLP, however, induces the opposite decision of slowly ramping up the

inventory again after the demand occurrence, which leads to a much better use of

stock investments.



2.5 Results 33

Figure 2.4: Inventory performance of the bootstraps methods for the ElecInd data
set
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Figure 2.5: Inventory performance of DLP and the bootstrap for the Navy data set
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Figure 2.6: This figure shows the inventory, as determined by DLP and TSB, for one
SKU over time. The points denote demand; there is one demand occurrence at time
20. DLP and TSB both fail to satisfy all demand, but DLP is much closer. The
demand occurrence immediately leads to an increase in investment for TSB, as the
demand occurrence is a clear signal that the SKU is not obsolete. DLP, however,
slowly ramps up the inventory again, which leads to a much better use of stock
investments.
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2.5.3 Financial performance

For the Electro data set, the financial performance of the methods can be compared.

Table 2.4 lists the quantities of the amount of stock investment necessary and the

lost revenue because of stock outs, relative to Croston’s method. As Croston is the

norm, it scores 1 for each. The lower the investment and lost revenue are, the higher

the savings. Table 2.4 gives the results both for all SKUs and for the group with

strongly positive cross-correlation. The performance gain is expected in the latter

category. However, the performance for all SKUs is quite good. A 4% increase in

investment relative to Croston translates into the lowest revenue lost for all methods,

with a reduction of 3%. As there is a trade-off between investment and revenue lost

there is no method which clearly outperforms the other.
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Table 2.4: Financial performance of methods for service level target of 95%: the re-
quired stock investment is relative to the investment required for the Croston method,
and the lost revenue is relative to the lost revenue of the Croston method. For both
quantities the lower number is better. We list the results for all SKUs and for a
subset of the data for which the SKUs exhibit positive cross-correlation. Best cases
in bold.

All SKUs Only positive cross-correlation

Investment Lost Investment Lost

SES 0.810 1.000 1.088 0.993
Croston 1.000 1.000 1.000 1.000
SBA 0.950 0.990 0.978 0.990
SY 0.990 1.000 0.991 0.997
TSB 0.800 0.990 1.025 0.976
DLP 1.040 0.970 0.863 0.963
Bootstrap 1.010 1.030 1.219 1.069
BootstrapDLP 1.010 1.040 1.234 1.123

For the SKUs that exhibit positive cross-correlation, the superior performance

of DLP is substantial. Revenue lost is reduced by 4% which is achieved by invest-

ing dramatically less, as investments are reduced by 14%. The better allocation of

orders to SKUs translates into a huge gain. There is no trade-off here, but a clear

improvement on both counts.

2.6 Discussion and conclusion

We have presented an intermittent demand forecasting method that conditions on

elapsed time to anticipate incoming demand and have extensively shown, using five

different empirical data sets, that this can substantially reduce both stock investment

and lost revenue for spare parts management. We have extensively benchmarked our

method against existing forecasting and bootstrapping methods on forecast accuracy

and inventory performance, and have shown that its performance is robust under

general conditions. Our method is the first to incorporate that activities at the

demand side, such as aggregation of demand, preventive and corrective maintenance,

can lead to a positive relation between demand size and inter-arrival time of demand

occurrences. Our approach has extended the literature by specifically examining the

overlooked case of positive cross-correlation between the demand size and the elapsed

time, and has shown that substantial financial gains can be realized.
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Our method works well for the specific case for which it was designed, that of

positive cross-correlation, but, as performance is robust, it can generally be applied to

SKUs. Use of our method leads to an increase in inventory performance and financial

performance. The classification of SKUs based on a structural VAR analysis shows

that not all SKUs should be treated equally, as it successfully led to differentiating

between SKUs. The structural VAR can determine for which SKUs our method is

most suited, so that the method can be applied to the SKUs for which it will deliver

the largest gain in performance.

A general managerial implication of this chapter is that the nature of the demand

process is important and has to be considered for forecasting and inventory decisions.

Though the risk of obsolescence is important, focusing on this to the exclusion of

others can lead to much higher costs, as possible decisions are only taken over a

restricted domain. A specific managerial implication of this chapter is that we derive

an easy to implement and novel method which can immediately be used for inventory

decisions for SKUs, even if context-specific knowledge is unavailable. We also provide

the means to assess to which SKUs this method should be applied for the largest gain,

so that our method can be used to complement existing the use of existing methods.

This also allows managers to apply this method on a smaller scale and facilitates

implementation.

The analysis of financial performance shows the importance of applying our

method. Our method gave the largest reduction in inventory investment of 14%

and even reduced lost revenue by 4%, thus clearly outperforming all other methods.

It is easy to estimate and proves to be robust in a range of applications, and is thus

generally, and immediately, applicable in practice.

Our specific case was only one implementation of the general method we described.

More research is needed to explore the dependency between demand size and elapsed

time on empirical data sets, but also to apply more general models, which more

broadly incorporate the dynamics between demand size and elapsed time. These

dynamics especially come into play due to the product life cycle, so that it can become

important to not only classify SKUs once but look and foresee how the characteristics

evolve over time, so that they can be incorporated in the method. Our method could

also be suited for applications outside of spare parts management.
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Integrated Hierarchical

Forecasting

Co-author: J. van Dalen

Abstract

Forecasts are often made at various levels of aggregation of individual products,

which combine into groups at higher hierarchical levels. We provide an alterna-

tive to the traditional discussion of bottom-up versus top-down forecasting by

examining how the hierarchy of products can be exploited when forecasts are

generated. Instead of selecting series from parts of the hierarchy for forecasting,

we explore using all the series. Moreover, instead of using the hierarchy after

the initial forecasts are generated, we consider the hierarchical structure as a

defining feature of the data-generating process and use it to instantaneously

generate forecasts for all levels of the hierarchy. This integrated approach uses

a state space model and the Kalman filter to explicitly incorporate product

dependencies, such as complementarity of products and product substitution,

which are otherwise ignored. A simulation study, comparing and contrasting

existing approaches under varying scenarios of cross-correlations and temporal

dependencies, shows the conditions under which an integrated approach is ad-

vantageous. An empirical study shows the substantial gain, in terms of forecast-

ing performance as well as inventory performance, of generalizing the bottom-up

and top-down forecast approaches to an integrated approach. Specifically, the

gains for inventory performance can be as much as a 39% reduction in stock

investment. The integrated approach is applicable to hierarchical forecasting

in general, and extends beyond the current application of demand forecasting

for manufacturers.

Keywords: forecasting, hierarchical, top-down, bottom-up, decision-making.
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3.1 Introduction

For organizations, demand forecasting is essential as it drives production, inventory

and planning decisions. Demand has to match supply as well as possible to avoid

excess inventory and stockouts. Large manufacturers often have SKUs ranging in

the thousands, spanning several product categories, each of which requires forecasts.

Several decision makers are involved from operations, marketing, sales and finance,

who require forecasts at various levels of aggregation. Forecasts are more easily

discussed at an aggregated product level, but for production these forecasts have to

be available at the SKU level.

SKUs naturally group together in a hierarchy going from the bottom, with in-

dividual sales per product, through several intermediary levels, denoting sales for

groups of related products at increasingly general aggregation levels, such as prod-

uct groups and categories, to the top of the hierarchy, which lists total sales. Two

commonly used approaches in practice and research start from opposite ends of the

hierarchy to generate forecasts for all series: bottom-up forecasting and top-down

forecasting (Widiarta et al., 2009). In bottom-up forecasting, base forecasts are

generated for product demand at the lowest level in the hierarchy (Gordon et al.,

1997). Subsequently, these are aggregated to determine forecasts at higher hierarchi-

cal levels. Bottom-up forecasting is commonly contrasted with top-down forecasting,

in which forecasts are generated for aggregated demand and disaggregated down-

wards to determine forecasts at lower levels in the hierarchy (Kahn, 1998). Research

stretches over three decades with mixed results as to preference for either bottom-up

or top-down forecast approaches.

Both bottom-up and top-down approaches generate forecasts for a selected part

of the hierarchy, aggregated upwards or allocated downwards to obtain forecasts for

the remaining series. This implies a potential loss of information, as the ignored

series can only be recovered under stringent conditions. The loss of information is

exacerbated as the selected series are forecasted separately: only after forecasts are

generated are they added together, or allocated over items, to generate forecasts for

all the series. Thus, product dependencies, such as complementarity of products

and product substitution, are explicitly ignored. Yet product dependencies motivate

combining similar products in groups and the existence of hierarchies.

Hyndman et al. (2011) introduce a combination approach that uses forecasts of

all series in the hierarchy. By taking a linear combination of the bottom-up and top-

down forecasts at various hierarchical levels, their approach offers an ensemble of the

bottom-up and top-down approaches. The combination entails a post-hoc revision

of forecasts to ensure that forecasts add up consistently throughout the hierarchy.
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More forecasts are involved than in either the bottom-up and top-down approaches

alone, but the initial forecasts are still generated independently.

The bottom-up, top-down and combination approaches use the hierarchy of prod-

ucts only after initial forecasts are generated. By incorporating the hierarchical

structure at an earlier stage, i.e. during the generation of forecasts, we introduce an

integrated approach. This supersedes the traditional discussion of bottom-up versus

top-down forecasting by examining how the hierarchy of products is used in fore-

casting. This has at least two advantages. First, instead of selecting isolated series

for forecasting, all the available data in the hierarchy can be used. Second, product

dependencies can be explicitly incorporated, such as complementarity of products

and product substitution, while they are otherwise ignored.

A simulation study, comparing and contrasting the approaches from literature un-

der possible cross-correlations and dependencies, shows when an integrated approach

is advantageous. An empirical application evaluates the forecasting approaches for

one of the largest manufacturers of consumer products, which has hundreds of brands

spanning fourteen categories of food products, home and personal care. The empirical

study shows a substantial gain, in terms of forecasting performance as well as inven-

tory performance, of generalizing the bottom-up and top-down forecast approaches

to an integrated approach.

The remainder of this chapter is organized as follows. In Section 3.2 we present an

overview of the relevant literature on hierarchical forecasting and the bottom-up, top-

down, and combination approaches for forecasting. We especially focus on the use of

the hierarchical structure, product dependencies and demand heteroscedasticity, and

we critically evaluate several approaches. In Section 3.3, we outline our simulation

and empirical study and introduce an integrated approach for hierarchical forecasting.

For the simulation study, we use an optimal forecast as a benchmark to assess forecast

performance. For the empirical study, we compare approaches in terms of forecast

performance as well as inventory performance and use the company’s own forecast

as a benchmark. Section 3.4 lists the results and their implications, while Section 3.5

concludes and gives suggestions for future research.

3.2 Theoretical background

Hierarchical forecasting has different forms pertaining to temporal and contempora-

neous aspects. Here, we exclusively focus on contemporaneous hierarchies, specif-

ically on products aggregated in groups and categories. This section summarizes

the relevant theoretical background on hierarchical forecasting and the approaches

of bottom-up, top-down, and the combination approach of Hyndman et al. (2011)



40 Integrated Hierarchical Forecasting

for forecasting. We especially focus on the use of the hierarchical structure, prod-

uct dependencies and heteroscedasticity in product demand, and critically evaluate

approaches.

Over three decades of forecasting literature show mixed results as to a prefer-

ence for either top-down or bottom-up forecasting. This is not surprising as the

performance of the approaches depends on the underlying demand process of prod-

ucts (Lütkepohl, 1984). Due to the additive nature of the hierarchy, with sums of

product sales determining group sales, which, in turn, add up to determine category

sales, the underlying demand process is transformed at various levels of the hierar-

chy. Aggregation can lead to substantial information loss, which makes bottom-up

forecasting seem favorable (e.g. Edwards and Orcutt, 1969; Orcutt et al., 1968; Zell-

ner, 1969). However, if no important information is lost, benefits can be gained if

random noise cancels out (Fliedner, 1999), which makes top-down forecasting seem

more favorable. A wide variety of performances is seen, and the nature and extent

of differences between top-down and bottom-up are highly dependent upon context

(Wei and Abraham, 1981).

Examples of the influence of the demand process are presented by Widiarta et al.

(2007), who show that the differences in accuracy of the top-down and bottom-

up approaches are only 1% for AR(1) demand processes when the autoregressive

coefficient is small. However, for an AR coefficient larger than 1/3, the bottom-

up approach is consistently more accurate (Widiarta et al., 2007). Yet, for MA(1)

demand processes, performance differences between bottom-up and top-down are

negligible (Widiarta et al., 2009).

Dependencies between the demands of different products are a key characteristic

of the demand process, and hence a main driver of differences in performance between

top-down and bottom-up approaches (Kohn, 1982; Schwarzkopf et al., 1988; Tiao and

Guttman, 1980). A particular type of demand dependencies does not unequivocally

make either bottom-up or top-down more favorable (Fliedner and Mabert, 1992;

Fliedner, 2001; Sohn and Lim, 2007). Stronger negative cross-correlations between

individual demand series lead to less variation at an aggregate level, but imply dif-

ferences between individual product sales. In contrast, stronger positive correlations

between individual demand series lead to more variable aggregate sales, but imply

that differences at the individual product level are smaller.

This explains why empirical studies are unable to consistently show one approach

outperforming the other. Dangerfield and Morris (1992) compare bottom-up and

top-down approaches on empirical data and conclude that bottom-up forecasting is

more accurate, especially when products are highly correlated. By contrast, Fliedner
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(1999) concludes that stronger positive and negative correlations improve the forecast

at the aggregate level to such an extent that the top-down approach is more accurate.

An important difference between the bottom-up and top-down approaches is that

the latter requires additional measures to allocate an aggregate forecast downwards

to lower levels in the hierarchy. Gross and Sohl (1990) compare various ways of

determining allocation proportions. A common allocation is based on averaging

historical sales proportions, where the unweighted proportion pj for each product j

is determined as its sales yj relative to the total sales in the product category y over

time period T .

pj =
1

T

T∑
t=1

yj,t
yt

(3.1)

A common alternative is based on a single, total proportion observed over all time

periods, leading to a weighted allocation:

pj =

T∑
t=1

yj,t/

T∑
t=1

yt (3.2)

These two allocations perform well in practice (Gross and Sohl, 1990).

The two approaches of top-down and bottom-up can also be combined at inter-

mediary levels in the hierarchy, known as the middle-out approach. Forecasts are

generated at a particular level and then aggregated upwards using the bottom-up

approach, and allocated downwards using a top-down approach.

Recently, Athanasopoulos et al. (2009) and Hyndman et al. (2011) introduced

a different approach, labeled the combination approach, which uses the hierarchical

structure to create revised forecasts. This forecasting approach follows two steps:

(1) generate independent forecasts for each series in the hierarchy, (2) weight these

forecasts according to the hierarchical structure to determine the final forecasts.

These final forecasts adhere to the hierarchical structure in the sense that aggregates

of the forecasts at the bottom level exactly match forecasts at higher levels in the

hierarchy.

The combination approach proposed by Hyndman et al. (2011) is a continuation

of earlier work on revising measurements of macro-economic indicators (e.g. Byron,

1978; Solomou and Weale, 1991, 1993, 1996; Stone et al., 1942; Weale, 1985, 1988).

A salient difference is that Hyndman et al. (2011) have underlying time series of sales

available for each forecast. We introduce notation for hierarchical series to discuss

the combination approach, focusing on sales without loss of generality. We have a

large vector yt which contains the n sales series at all levels of the hierarchy. Sales

at higher levels are determined by aggregating sales of products at the lowest level
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bt. yt is an n × 1 matrix determined by linear combinations of the m × 1 vector bt

containing sales at the base product level, using an n × m design matrix S to link

sales at each level of the hierarchy with the base level sales:

yt = Sbt (3.3)

For forecasting, we are interested in the expected yt and bt. Hyndman et al.

(2011) determine the unknown forecasts of product sales, b̂t, as a function of initial

forecasts ŷt generated for each series in the hierarchy by regression, supposing:

ŷt = Sb̂t + εt, εt ∼ N(0,Σ) (3.4)

They assume, as a simplifying approximation, that the n× 1 vector ε is equal to S

times a smaller m×1 vector ε and use a generalized inverse of the variance-covariance

matrix Σ to estimate b̂t, which can then be obtained using simple ordinary least

squares only involving S and ŷ (for details see Hyndman et al., 2011, p.2583). Note

that ŷt contains forecasts for all series, including the product demand forecasts at

the lowest level. The revised forecasts are then generated as:

ỹt = S(S′S)−1S′ŷt (3.5)

They conclude that their method is “optimal” because it has “minimum vari-

ance amongst all combination forecasts under some simple assumptions” (Hyndman

et al., 2011, p.2579). For the multivariate analogue of the Gauss-Markov theorem

to apply we require homoscedasticity and absence of cross-correlation in the error

terms, requiring the variance-covariance matrix Σ to be σ2I. For a manufacturer

with multiple products, many dependencies may exist among products sales due to

complementarity of products and product substitution. Moreover, instead of equal

variance of sales over products, it is likely that some series have lower variation and

are, as a result, easier to forecast than other series. Series with lower variation give

more insight into the demand and so we should weigh the observations of these series

higher for forecasting. The restrictions on the variance-covariance matrix Σ are eas-

ily violated in practice due to possible heteroscedasticity and product dependencies,

which can make its proposed estimator highly inefficient, resulting in large mean

square forecast errors.

The bottom-up and top-down approaches are based on subsets of all demand

series. The bottom-up approach only uses the series at the bottom of the hierarchy

as input, while the top-down approach takes the series at the top of the hierarchy

as input. These approaches exclusively focus on different parts of the hierarchy,
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in effect ignoring information. A bottom-up approach cannot benefit from possible

noise canceling out at higher hierarchical levels, while the top-down approach suffers

from information loss due the use of aggregated series (Fliedner, 1999; Gordon et al.,

1997; Kahn, 1998). Both approaches create initial forecasts for the series in the

selected parts of the hierarchy only. In the bottom-up approach, forecasts for series

at higher hierarchical levels are derived by aggregating the forecasts. In the top-

down approach, forecasts for lower hierarchical levels are determined by allocating

forecasts downwards in the hierarchy. Moreover, forecasts are generated for each

series independently. In contrast, the combination approach can use information

from different series more flexibly, as it can use a selection of forecasts generated by

both of the other approaches. For example, it can use forecasts at higher levels from a

top-down approach, and forecasts at lower levels derived from a bottom-up approach.

However, it only uses the hierarchy after forecasts are generated to reconcile forecasts.

As the forecasts are generated separately, the hierarchy is not applied to consider the

underlying time series of sales for initial forecast generation.

All three approaches ignore the hierarchy when generating the forecasts, and,

as a consequence, ignore product dependencies and possible heteroscedasticity in

the demand. Exploiting the hierarchy that characterizes the original sales series

circumvents the discussion between bottom-up and top-down approaches by directly

tackling the underlying demand process.

3.3 Methodology

We employ both a simulation study and an empirical study. The simulation study

allows us to compare the forecast performance of the combination approach under dif-

ferent scenarios of product dependencies and heteroscedasticity, in which an optimal

integrated approach serves as a benchmark. In the empirical study, we demonstrate

the impact, in terms of forecast accuracy as well as inventory performance, of ap-

plying the integrated approach to real world sales data from a global supplier in

fast-moving consumer goods.

3.3.1 Study 1: Simulation

We assume that the series under observation follow an autoregressive process, subject

to hierarchical conditions summarized in S, which can be modeled in a multivariate
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state space form as:

yt = Sβt

βt = αt + εt, εt ∼ N(0, σ2
εI)

αt = Γαt−1 + ηt, ηt ∼ N(0,Ση)

(3.6)

The vector yt consists of sales of products at all levels of the hierarchy. It is derived

by adding base sales of products βt, as defined by the design matrix S. Product sales,

βt, consist of an underlying state αt plus measurement noise εt. Product state αt

follows an autoregressive process with coefficient matrix Γ and disturbances ηt. The

measurement noise of the products at the lowest level in the hierarchy, εt, is assumed

to be independent, so its variance-covariance matrix is diagonal. The state equation

for product sales αt allows for cross-correlation between the errors, ηt, represented

by the variance-covariance matrix Ση.

The design matrix S defines the linear relations between the sales of individual

products and their various aggregates. Our simulation considers nine products in

three product groups. S is then 13 × 9, with an identity matrix I9×9 for the lower

nine rows, corresponding with the individual products:

S13×9 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

I9×9

⎤
⎥⎥⎥⎥⎥⎥⎦

The product sales state αt has an autoregressive structure with coefficient matrix

Γ, following Widiarta et al. (2007) who show that autoregressive coefficients affect

forecast performance. As dependencies among products are included through the

covariance of errors, Ση, Γ is a diagonal matrix for all product series. We further

restrict Γ to a single autoregressive coefficient to limit the number of possibilities and

interactions analyzed: Γ9×9 = γI9×9, where the autoregressive coefficient γ is either a

unit root (1), large (5/6), or small (1/6). In the first case, the model is a multivariate

local level model, also known as a random walk with noise. The other two cases allow

us to examine high and low autoregressive AR(1) processes, respectively; see Table

3.1 for a summary.

We define the variance-covariance matrix Ση, representing cross-correlations be-

tween and heteroscedasticity of product sales, as block diagonal for the simulation.

An unrestricted variance-covariance matrix is impractical for simulating comparable
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Table 3.1: Models employed for simulation
Overview of three different models used for simulation.

Autoregressive parameter Univariate analogue

Model 1 Unit root γ = 1 ARIMA(0, 1, 1), local level model
Model 2 Large γ = 5/6 AR(1)
Model 3 Small γ = 1/6 AR(1)

conditions. Hence, products within the same product group can be correlated, but

products that do not belong to the same group have zero cross-correlation. The

variance-covariance matrix C, a 3 × 3 matrix reflecting the dependencies among

product sales in the same product group, is replicated on the diagonal to have more

control over the impact of particular correlation settings:

Ση 9×9 =

⎡
⎢⎣ C3×3 0 0

0 C3×3 0

0 0 C3×3

⎤
⎥⎦ (3.7)

C3×3 =

⎡
⎢⎣ 200 x y

x 400 z

y z 600

⎤
⎥⎦

We set the measurement noise σ2
ε at 200, ensuring that the signal-to-noise ratio is

at least one and differs for the three products. Covariances x, y, and z are defined

by correlation coefficients, which can have one of the following seven values: −0.75,

−0.5, −0.25, 0, 0.25, 0.5, and 0.75. These possibilities lead to 73 possible variance-

covariance matrices in total, resulting in 73 conditions.

The various conditions have to be ranked in order to examine the impact of in-

creasing the magnitude of cross-correlations. This is not straightforward, because

of the presence of heteroscedasticity and the simultaneous occurrence of both pos-

itive and negative cross-correlation. We take the determinant, |C|, also known as

the generalized variance, to characterize the magnitude of cross-correlation. More

specifically, we use the inverse of the generalized variance, |C|−1, so that a larger

value signifies higher cross-correlation.

Furthermore, we want to differentiate between an overall positive and negative

contribution of cross-correlations, even though both can occur simultaneously. When

we aggregate product sales at the product group level, the variance of the aggregate

consists of the sum of individual variances and pairwise covariances between products.

Positive correlation, or covariance, increases the variance of the sum. Conversely,
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negative correlation, or covariance, decreases the variance of the sum. We therefore

use the sign of the sum of pairwise covariances to differentiate between positive and

negative correlation. If x+y+z > 0, the variance of the sum increases, characterizing

the situation as positive correlation; if x + y + z < 0, dependence amongst items

decreases the variance of the sum, characterizing the situation as negative correlation.

For each of the three models defined by γ, we have 73 conditions defined by C,

and for each pair of model and condition we perform a hundred iterations of our

simulation. Each iteration consists of generating sales for each level in the hierar-

chy, estimating the forecast approaches on a training set, and calculating forecast

performance over a holdout set. Each of these steps will be explained in this order.

For each sales series, we simulate sales data for 1,000 time periods. First, we

generate 9 × 1000 measurement errors ε, which are independently and identically

distributed as N(0, σ2
ε), giving 1,000 errors for each of the nine products. Next, we

use the variance-covariance matrix associated with the currently considered condi-

tion to simulate 1,000 disturbance vectors from the multivariate normal distribution

N(0,Ση). The autoregressive coefficient is given by the model, so that if we have an

initial state, α0, we can recursively compute all time series by first determining αt,

then βt and finally yt for each of the 1000 periods. We initialize each product series

using α0,i ∼ N(10000, 600). For each iteration the 1,000 time periods are separated

into a training sample, consisting of the first 650 observations, and a holdout sample,

consisting of the remaining 350 periods.

The training sample generated in each iteration is used to apply the bottom-up

approach, the top-down approach, the combination approach, and, for benchmarking

purposes, the optimal forecast, all of which will be described next. The training

sample of 650 is split into a sample of 450 periods, used to estimate the parameters,

and a sample of the remaining 200 periods, which is used to select the forecast

methods for evaluation during the holdout sample.

The bottom-up approach generates forecasts at the product level by consider-

ing each product series in isolation. No knowledge of the data-generating process

is presupposed, and product series are treated as independent. Simple exponential

smoothing, Holt’s, Holt-Winters, and various ARIMA formulations have been ap-

plied to each product series. Parameters are optimized to minimize mean square

forecast error over the first 450 periods. The optimal forecast for the product level

is included in the methods considered, which is either ARIMA(0, 1, 1), identical to

single exponential smoothing, or AR(1). These give the optimal forecasts at the

product level for the local level model and autoregressive processes used to simulate

the data.
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Algorithm 1: Simulation design consisting of models, conditions and iterations
to calculate forecast performance

Data: Simulation design
foreach three models in γ do

foreach 73 conditions in C do
foreach 100 iterations do

Simulate data for 1000 time periods;
foreach forecasting approach do

Estimate parameters based on first 450 observations;
For combination approach, select methods based on
performance in next 200 periods;

For top-down, select allocation rule based on performance in
next 200 periods;

Calculate forecast accuracy using RMSE for each series using
holdout set, consisting of final 350 observations;

end

end
Calculate average RMSE per approach and per hierarchical level over
all iterations;

end

end

The top-down approach generates forecasts at the top level of the hierarchy, and

allocates these downwards using (3.1) and (3.2) to create forecasts for the base prod-

ucts. Simple exponential smoothing, Holt’s, Holt-Winters, and various ARIMA for-

mulations are applied to the top series, and parameters are optimized to minimize

mean square forecast error over the first 450 periods. The optimal method for the

top level is included in the methods considered. When we have a unit root in the

model, the product sales follow a normal distribution, whose sums are still normally

distributed, so that the best forecast at higher levels is, theoretically, provided by

single exponential smoothing. When we have autoregressive coefficients other than

the unit root, the series at higher levels are still ARMA processes, which are part

of the ARIMA formulations (Lütkepohl, 1984). In addition to generating forecasts,

the forecasts have to be allocated downwards to the lower levels in the hierarchy, for

which we use the two most common ways specified in (3.1) and (3.2), determined

using the first 450 periods (Gross and Sohl, 1990).

The third forecasting approach considered is the combination approach of Hyn-

dman et al. (2011). It requires forecasts for each series at each level, which can

subsequently be revised into final forecasts using (3.5). The required forecasts in ŷ

are the best performing forecasts from the bottom-up and top-down approaches. The
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best performing forecasts are selected by reserving the last 200 periods of the training

set as a holdout set, using only the first 450 periods for estimating the methods. For

each series, a method is selected which minimizes mean square forecast error for this

holdout set. These are then revised to obtain the final forecasts of the combination

approach, which is then applied to the actual hold out set.

The last forecast method considered is the optimal forecast, which is an inte-

grated approach and serves as a benchmark. The optimal forecast, as in minimizing

mean square error, for our data-generating process is given by jointly forecasting the

items at the lowest level, and then aggregating these upwards using S to give fore-

casts for each series at every level (Engel, 1984; Lütkepohl, 1984). In our case, the

optimal forecasts are found by applying the Kalman filter to the state space model

as specified by the data-generating process, where parameters are estimated over

the training period using maximum likelihood (Durbin and Koopman, 2012; Harvey,

1989). Forecasts for aggregate levels are not generated independently, as in the com-

bination approach, but rather as the sums of product sales forecasts. The Kalman

filter traces the forecast errors for each series at each level back to the underlying

states, so that the optimal forecasts use information from all series.

After applying these forecast approaches to the generated data within an iteration,

we measure forecast accuracy over the holdout sample by calculating the root mean

square error (RMSE) of forecast method j for each series i for time periods 651 to

1,000:

RMSEj
i =

√√√√ 1

350

1000∑
t=651

(ŷji,t − yi,t)2 (3.8)

where yi,t denotes actual observations and ŷji,t the forecast obtained from method j.

We take averages of RMSEs for each level in the hierarchy.

In addition to RMSE, we trace the relative performance of the combination ap-

proach. Both top-down and bottom-up approaches generate univariate forecasts

for parts of the hierarchy. As the combination approach takes a linear combina-

tion of forecasts from the top-down and bottom-up approaches it is an ensemble of

these approaches. Hence, we expect it to outperform the bottom-up and top-down

approaches. Because all of these approaches ignore heteroscedasticity and cross-

correlation, and do not use the hierarchy for generating forecasts, they are unable

to outperform the optimal forecast. The optimal forecast and the best performing

method of the bottom-up and top-down approaches allow us to scale the performance

of the combination approach to determine how much it outperforms the bottom-

up and top-down approaches and how close it comes to the optimal performance.

We scale the performance of the combination approach, ŷca, using the best forecast
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method of the top-down and bottom-up approaches, ŷtb, and the optimal forecast,

ŷopt, for each series i:

sRMSEca
i = (RMSEca

i − RMSEopt
i )

1

RMSEtb
i − RMSEopt

i

(3.9)

One simulated iteration results in an RMSE and a scaled performance sRMSE

for each series in the hierarchy. We average these values over the hundred iterations

performed. Each of these hundred iterations is performed for each combination of

one of the three models and one of the 73 conditions of possible variance-covariance

matrices (see equation (3.7)), resulting in a total of 102,900 simulation runs.

3.3.2 Study 2: Empirical data

As the state space model merely functions as a benchmark for the simulation study,

a practical case is used to explore its performance on empirical data. We will demon-

strate the impact, in terms of forecast accuracy as well as inventory performance, of

applying an integrated approach to real world sales data from a global supplier in

fast-moving consumer goods, by comparing its performance to the bottom-up and

top-down approaches and the combination approach.

Most of the conventions of the simulation study can be reused. We incorporate

all previously used methods and include methods which allow for seasonality, such

as seasonal ARIMA and Holt-Winters. For the empirical data, we can no longer

assume a data-generating process to define an optimal model, instead we formulate

a simple but flexible state space model which incorporates seasonality, allows for

market changes, and takes cross-correlation and heteroscedasticity into account.

The data have been made available by one of the world’s largest manufacturers

of consumer products, which has hundreds of brands spanning fourteen categories

of food products, home and personal care. For forecasting, several decision makers

are involved from operations, marketing, sales and finance, who require forecasts at

various aggregation levels. Forecasts are often discussed at an aggregated product

level, but for production these forecasts are transformed to the SKU level.

The forecasting methods offered by the company’s IT systems are univariate.

As a consequence, the company’s forecasting matches the top-down and bottom-

up approaches described previously. Forecasts are generated for products at a level

called ‘forecast unit,’ which represents an SKU. A forecast unit can consist of several

‘distribution units’ to account for small changes in products, such as in artwork or

in ingredients. Distribution units are ignored in the forecasting process, as well as in

this present study. Similar forecast units group together in so called ‘forecast groups.’
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Data pertaining to the regular sales of SKUs and product groups, excluding pro-

motions, was obtained from the company. The data includes the statistical forecast

generated by the company and the final forecast after judgmental adjustment. This

data was collected for the years 2010, 2011 and 2012, yielding 156 weekly time se-

ries, which allows us to examine trends and seasonality. The first two years of data

constitute the training sample, and the final year serves as the holdout sample. Be-

cause of changes to product lines and promotions, historical data of three years is

not consistently available for all products. For these reasons, two particular product

categories have been selected: foods and personal care.

For foods, we examine two product groups of mayonnaise and ice cream. For

personal care, we consider one product group of hair products. These product groups

consist of several forecast groups and forecast units. Mayonnaise sauce include three

different forecast groups: mayonnaise pots, mayonnaise bottles and mayonnaise with

a screw cap. Mayonnaise pots consists of twelve forecast units. Mayonnaise bottles

consists of thirteen forecast units. Mayonnaise with a screw cap is excluded, because

historical data is incomplete. Ice cream has two forecast groups, labeled jars and

cones. Jars consists of 37 forecast units. Cones consists of seventeen forecast units.

The hair products products consists of sixteen forecast groups of which one forecast

group is analyzed: shampoo, which consists of 27 forecast units. See Table 3.2 for

an overview.

Table 3.2: Product groups at the company
Overview of forecast groups and forecast units. Total number of forecast units ana-
lyzed is 106.

Product category Product groups Forecast groups Forecast units

Foods Mayonnaise Mayonnaise pots 12
Mayonnaise bottles 13

Ice cream Jars 37
Cones 17

Personal care Hair products Shampoo 27

By extending the extend model specification (3.6) to more flexibly capture the

market for consumer goods, we can apply an integrated approach to this case. Most

importantly, we have to include possible trends, because of market changes, and

weekly seasonality in the model. At the highest level, product sales βt determine

sales at all levels of the hierarchy yt using the design matrix S, which is observed
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with measurement noise.

yt = Sβt + εt, εt ∼ N(0, σ2
εI) (3.10)

The formulation of βt depends upon underlying state variables αt, but is extended

to include seasonality δt. Though we expect that we can discern one overall seasonal

pattern within a product group, the impact of this pattern can be different per

product. The seasonal effect can be scaled differently for each product, using a

diagonal loading matrix A (Durbin and Koopman, 2012):

βt = αt +Aδt

A = diag(ψ1, . . . , ψn)
(3.11)

We include weekly seasonality in trigonometric form to limit the number of pa-

rameters in δt to estimate (Durbin and Koopman, 2012). Moreover, rather than

having seasonality constant throughout the three year period, we allow seasonality

to change over time to allow for market changes. Thus, seasonality is stochastic and

its influence can change over the 52 weeks per year. The formulation allows for sea-

sonal effects that are smoothed over time and ensures that the contributions of the

seasonal errors ωjt and ω∗
jt are not amplified by the trigonometric functions (Proietti,

2000):

δt =

26∑
j=1

δjt, s = 52, λj =
2πj

s

δj,t = δj,t−1 cosλj + δ∗j,t−1 sinλj + ωjt, ωjt ∼ N(0, σ2
ω)

δ∗j,t = −δj,t−1 sinλj + δ∗j,t−1 cosλj + ω∗
jt, ω∗

jt ∼ N(0, σ2
ω)

(3.12)

The product sales yt have independent measurement noise εt, as the dependencies

between products in a product group is contained in the underlying states αt. The

sales per product αt follow an autoregressive process with diagonal coefficient ma-

trix Γ and disturbances ηt. Possible cross-correlations are in the variance-covariance

matrix Ση. Sales for products are likely to change over time due to market develop-

ments, so that sales can have short-term positive or negative trends. We extend the

model to allow for an additive dampened trend θt to be able to incorporate these

possible market developments (Durbin and Koopman, 2012):

αt = θt + Γαt−1 + ηt, ηt ∼ N(0,Ση)

Γ = diag(γ1, . . . , γn)

θt = θt−1 + ζt, ζt ∼ N(0, σ2
ζI)

(3.13)
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This model outperformed alternative formulations when applied to the training

sample. We apply the model to each forecast group. We use the Kalman filter for

forecast error decomposition to efficiently apply maximum likelihood to determine all

unknown quantities, including the initial states using the BFGS algorithm, a quasi-

Newton method of numerical optimization, with 500 random starts. For n items,

we have to estimate n2

2 + 13n
2 + 6 parameters. See Table 3.3 for an overview of the

number of estimates needed per forecast group.

Table 3.3: Parameters and observations per forecast group
Overview per forecast group of the number of forecast units in the group, the number
of parameters that have to be estimated, and the number of observations available
in the training period.

Forecast group Units Parameters Observations (training)

Mayonnaise pots 12 156 1,248
Mayonnaise bottles 13 175 1,352
Ice cream jars 37 931 3,848
Ice cream cones 17 261 1,768
Hair shampoo 27 546 2,808

To measure forecast accuracy, we use the mean average percentage error (MAPE),

instead of the root mean square error, to obscure the scale of the original series,

required in view of the confidentiality of the data:

MAPEj
i =

1

T

T∑
t=1

∣∣∣∣∣ ŷ
j
i,t − yi,t

yi,t

∣∣∣∣∣ (3.14)

where yi,t denotes actual observations and ŷji,t the forecast obtained from method j.

We take averages of MAPE for each level in the hierarchy.

In addition to evaluating forecast accuracy, we assess the impact of various meth-

ods on inventory performance in terms of stock investment and service levels using an

order-up-to (T, S) policy, where T is a constant review time, and S is the order-up-to

level. The service level is measured as the sales fill rate, defined as the proportion of

demand, dt, that can be fulfilled immediately from stock, where at time t the stock

position is given by It, and sales by Ot:

Service level =

∑T
t=1 Ot∑T
t=1 dt

(3.15)

Ot = min{dt, It}
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The service level target is 95%, so that the order-up-to-level S is calculated by

obtaining the 95th percentile of the forecast distribution. The state space model

gives a forecast distribution, but all other methods only provide point forecasts. By

splitting the holdout sample in two, the forecast errors over the first half can be used

to approximate the forecast distribution. The mean square error during this period

can be used as a measure of variance, which characterizes a fitted distribution, such

as the normal distribution. However, this can be restrictive in a practical setting,

such as assuming symmetry of forecast errors. An alternative, more flexible forecast

distribution is given by bootstrapping the forecast errors, using a hundred draws

with replacement, to derive an empirical forecast distribution from which the 95th

percentile can be obtained. We will use the bootstrap for all methods, including

the state space model, to derive the 95th percentile to ensure that methods are

comparable. We then simulate inventory levels over time, and determine inventory

performance over the remaining holdout sample by calculating the actual service level

attained.

Average inventory is used as a proxy for the required stock investment. We include

the company’s own forecast in this evaluation, and scale the average inventory for

each method using the average inventory needed when we use the company’s own

forecast.

3.4 Results

We evaluate the performance of the forecasting approaches in a simulation study,

and assess the potential of our integrated approach in an empirical application. The

simulation study allows us to determine the impact of heteroscedasticity and depen-

dencies on forecast performance for the combination approach, which will appear to

be extensive, and shows when an integrated approach is advantageous. The empirical

application demonstrates that forecast accuracy and inventory performance can be

substantially improved with an integrated approach to forecasting hierarchical series,

which balances possible information loss and gain at the hierarchical levels.
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3.4.1 Study 1: Simulation

The simulation study evaluates forecast accuracy, measured as RMSE (see equation

(3.8)), of the bottom-up, top-down, combination, and optimal approach for each of

the 73 different conditions of each of the three models: the local level model and the

strongly and weakly autoregressive processes. The 73 conditions capture different

types of product dependencies, through the variance-covariance matrix of errors in

product sales (see equation (3.7)). The conditions are grouped based on the sign of

the sum of pairwise covariances to determine whether correlations are overall positive

or negative amongst products, labeled positive and negative correlation respectively.

The remaining condition, in which the variance-covariance matrix is diagonal, is

labeled independent. For the groups of positive and negative correlation, conditions

are ranked based on the inverse of the generalized variance to differentiate between

the extent of dependencies.

Due to the large number of conditions, we restrict our attention to only one

condition for each of the three groups. By selecting the independent condition and

the conditions with the largest inverse generalized variance for the groups of positive

and negative correlation, we derive three boundary conditions, ranging from the

condition most strongly characterized by negative correlation to the condition most

strongly characterized by positive correlation. Table 3.4 summarizes the forecast

accuracy, averaged over a hundred iterations, for the boundary conditions for each of

the three models and the three hierarchical levels. The table combines the bottom-

up and top-down approach and lists the best performance of the two. Comparing

the forecast accuracy of each forecasting approach for a particular condition over

the three models reveals that performance differences between models are small,

implying that results are robust to the model specification chosen here. For the

optimal forecast, the largest difference in accuracy is 3.17 between the RMSE for

the local level model and the autoregressive process at the middle level, which is

a difference of 5%. For the combination approach, the largest difference of 4.71 is

between the RMSE for the two autoregressive processes at the middle level, which

is also 5%. For the best performing bottom-up and top-down approach, the largest

difference is 15.66, which is 11%. Overall, for around 80% of the comparisons, the

approaches differ only slightly in terms of performance, between 0 and 1%, over the

three models.

These differences are small compared to the substantial differences, ranging from

50% to 80% for the top and middle level, between conditions for a particular model

and forecasting approach. For instance, note the dramatic increase of the RMSE for

the optimal (from 21.90 to 104.02), combination (from 31.01 to 147.83) and the best
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performing bottom-up and top-down approach (from 33.31 to 154.41) for the top level

of the local level model, moving from the boundary condition of negative correlation

to the boundary condition of positive correlation. These huge performance differences

demonstrate the impact of positive and negative cross-correlation.

The combination approach is consistently more accurate than the best perform-

ing bottom-up and top-down approach. For the negative and positive boundary

conditions, the increase in forecast accuracy ranges from 3%, a difference of 1.06 for

the negative boundary condition for the autoregressive process with large coefficient,

to 13%, a difference of 21.76 for the positive boundary condition. Improvements

are largest for the independent condition, ranging from 24%, for the autoregressive

processes, to 32% for the local level model.

Yet, the combination approach is consistently less accurate than the optimal

forecast. In the negative and positive boundary conditions, the difference between the

combination approach and the best performing bottom-up and top-down is always

substantially less than the difference between the combination approach and the

optimal forecast. For instance, in the case of the local level model and negative

boundary condition, the RMSE of the combination approach for the top series is

31.01, which is an improvement over the RMSE of the bottom-up and top-down

approach of 33.31, but is far removed from the RMSE of 21.90 of the optimal forecast.

For the independent condition, the difference between the combination approach and

the optimal forecast is much less.

The forecast accuracy of the combination approach is consistently between that

of the optimal forecast and the bottom-up and top-down approach. This allows one

to scale the RMSE of the combination approach using Equation (3.9) to trace the

relative performance of the combination approach in terms of the optimal forecast and

the best performing bottom-up and top-down approach. By simplifying the forecast

performance of the approaches to a single scaled number in each condition, we trace

the forecast performance in more detail over all conditions, and extend the discussion

beyond the boundary conditions. Figures 3.2a, 3.2b, and 3.2c depict the average

scaled forecast performance for the local level model, the autoregressive process with

a large coefficient, and the autoregressive process with a small coefficient, respectively.

On the y-axis, the figures show the performance of the combination approach, scaled

between the forecast performance of the bottom-up and top-down approaches and the

optimal forecast. The 73 conditions are ordered on the x-axis, with the independent

condition in the middle at zero, conditions from the negative group placed to the left

of the middle, and conditions from the positive group positioned to the right of the

middle. Moving further away from the middle corresponds with conditions having an

increasingly higher inverse generalized variance. The boundary conditions, previously
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discussed, are placed at the lowest, highest and zero value on the x-axis. Performance

is similar for the three models, although variability in performance decreases as the

autoregressive coefficient becomes smaller.

Figure 3.1: Scaled forecast accuracy
This graph shows the relative forecast performance of the combination approach.
The conditions are ordered on the x-axis with the negative boundary condition at
the left, the independent condition in the middle, and the positive condition at the
right. Conditions are ordered in between these conditions based on group and inverse
generalized variance. The gap in the middle between the combination approach and
the optimal approach shows the impact of heteroscedasticity, and the widening gap
to the sides shows how correlations impair the forecast accuracy of the combination
approach.
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(a) Local level model (γ = 1)
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(b) AR(1), large (γ = 5/6)
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In the middle of the graphs, and slightly to their right, the performance of the

combination approach is closest to the performance of the optimal forecast with

a difference of around 10% to 20%, and the bottom-up and top-down approaches

are most strongly outperformed. For the independent condition, the observed gap

between the performance of the combination approach and the optimal forecast is

ascribed to heteroscedasticity. The combination approach suffers from inefficiency,

due to ignoring differences in the signal-to-noise ratios of series. It weighs all forecasts

for series equally, whereas some forecasts are better, because they are forecasts for

series with smaller variation. As correlations increase between products, the forecast

accuracy of the combination approach degrades, and moves further away from the

optimal forecast.

3.4.2 Study 2: Empirical data

By comparing and contrasting the various approaches under possible forms of cross-

correlations and dependencies, the simulation study shows that an integrated ap-

proach can outperform the other approaches. The gain does not necessarily translate

to practice, as in practice the data-generating process is not defined and presupposed.

We therefore present an empirical application of real world sales data from a global

supplier in fast-moving consumer goods to further demonstrate the performance of an

integrated approach. The performance gain appears substantial in terms of forecast

accuracy as well as inventory performance.

Table 3.5 shows the forecast accuracy of the integrated approach, the combination

approach, and the best performing bottom-up and top-down approaches for the five

forecasting groups. The results show that the forecast performance of the integrated

approach is substantially and consistently higher than that of the other approaches.

The integrated approach dominates the other approaches in terms of forecast ac-

curacy over all forecast groups. Compared to the best performing bottom-up and

top-down approaches, the integrated approach leads to an improvement in forecast

accuracy of between 26%, for ice cream jars, and 51%, for ice cream cones. Though

the integrated approach has its worst performance for ice cream cones, its MAPE is

less than half the MAPE of the bottom-up and top-down approaches.

The performance of the combination approach appears to be unstable, as it does

not persistently outperform the best performing bottom-up and top-down approach

in all forecast groups. In the case of ice cream cones, its MAPE is worse than the

MAPE of the bottom-up/top-down approach. In all other cases, its improvement

in forecast accuracy over the bottom-up and top-down approaches ranges between

4%, for mayonnaise bottles, to 22% for hair shampoo. Overall, the combination
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Table 3.5: Forecast accuracy (MAPE) for empirical data
This table shows the forecast accuracy, in terms of MAPE, of the integrated ap-
proach, the combination approach, and the best performing bottom-up and top-down
approach for each of the five forecast groups.

Foods Personal care
Mayonnaise Ice cream Hair
Pots Bottles Jars Cones Shampoo

Integrated approach 39.54% 38.20% 34.93% 41.20% 29.11%
Combination approach 48.08% 61.79% 41.95% 91.10% 38.57%
Bottom-up/top-down 61.04% 64.66% 46.92% 83.37% 49.63%

approach constitutes an improvement over the best performing bottom-up and top-

down approach, but is in turn outperformed by the integrated approach.

The superior forecast performance of the integrated approach translates into sub-

stantial financial savings for inventory management. Table 3.6 summarizes inventory

performance, as measured by achieved service level (see equation (3.15)) and required

stock investment relative to the company, of the three approaches and the company’s

own forecast. For all approaches, the realized service levels are lower than the target

of 95%, which means that all approaches underestimate the variation in sales. In

the cases of ice cream jars and shampoo, not a single approach is able to achieve a

service level higher than 89%. The actual service level achieved using the integrated

approach is much closer to the target of 95% than all other methods. For ice cream

cones the integrated approach achieves a service level of 92.34%, after which the best

performing approach achieves a service level of only 78.29%. Hair shampoo is similar,

though the difference is somewhat smaller, with the integrated approach achieving

a service level of 88.72%, after which the best performing approach only achieves

a service level of 79.75%. Mayonnaise pots is an exception, where achieved service

levels of all approaches are high and above 90%. The more accurate point forecasts

of the integrated approach allow a better approximation of the 95th percentile of the

forecast distribution, resulting in higher service levels for all other forecast groups.

Stock investment for each approach is relative to the stock investment required

by the company. The company is consistently outperformed in all product groups.

All approaches are almost consistently achieving higher service levels with much

lower stock investments. Switching to the best performing bottom-up and top-down

approach entails better performance in all product groups, with the exception of

mayonnaise bottles. The outcome for bottles cannot be directly compared, because

though the bottom-up and top-down approach means a 5% decrease in stock invest-
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ments, the service level also drops by 3 percentage points. For all other groups, the

bottom-up and top-down approach substantially improves performance, especially

for ice cream jars, where stock investment is lowered by almost 8%, and service level

is even increased by almost 15 percentage points. Mayonnaise pots is another exam-

ple, where the bottom-up and top-down approaches constitute a similar reduction in

stock investment of almost 8%, and service level is increased by 10 percentage points.

The inventory performance of the combination and the bottom-up and top-down

approaches cannot be directly compared in the cases of ice cream jars and cones.

In these cases, the bottom-up and top-down approaches achieve a higher service

level, but does so at the expense of a higher stock investment. The combination and

bottom-up and top-down approaches have similar performance overall. In the case of

mayonnaise pots, the bottom-up and top-down approach performs better, but in the

cases of mayonnaise bottles and hair shampoo the combination approach performs

marginally better.

The integrated approach results in a dramatic drop in the required stock invest-

ment, reducing the stock investment needed, based on the company’s current forecast,

by one-third in all product groups. The biggest reduction is in ice cream jars, where

the integrated approach reduces the required stock investment by 39%. The largest

reduction offered by another approach is given by the combination approach, also

for ice cream cones, which only entails a reduction of 11%. The integrated approach

gives its smallest stock investment reduction for hair shampoo, which is still equal to

27%. Compared to the other approaches, the integrated approach offers substantial

gains.
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3.5 Discussion and conclusion

We introduced an integrated hierarchical forecasting approach to forecast the de-

mand of products at different, but hierarchically-related aggregation levels. The ap-

proach supersedes the traditional comparison of bottom-up and top-down approaches

(Fliedner, 1999; Kahn, 1998), by generating forecasts at all hierarchical levels and

incorporating all available information, rather than only using selected parts of avail-

able data. The integrated approach avoids ex-post revising of forecasts, as is done in

the combination approach (Hyndman et al., 2011), as generated forecasts are already

reconciled and respect the additive restrictions placed on the series by the hierarchy.

Our simulation study, which compares and contrasts existing approaches under

possible cross-correlations and dependencies, demonstrates under which conditions

our integrated approach is advantageous. Furthermore, our empirical study shows

the substantial gain, in terms of forecasting performance as well as inventory per-

formance, of generalizing the bottom-up and top-down forecast approaches to an

integrated approach. All available information is used, product dependencies are

taken into account, such as the complementarity of products and product substitu-

tion, and other features of the series are incorporated as well, such as seasonality,

which are otherwise ignored.

The integrated approach is applicable to hierarchical forecasting in general, and

extends beyond the current application of forecasting for manufacturers. Even over-

lapping groups of products can be easily accommodated. The large reductions in

stock investments, up to as much as a 39%, show that the forecast performance

directly translates to large financial gains, and is highly relevant for forecasting pro-

cesses at companies. The advantages of formulating the integrated approach as a

state space model are that outliers, missing values, and extra information, such as

pertaining to promotions, can be easily, and flexibly, included (Durbin and Koopman,

2012; Harvey, 1989). The results of the simulation study and empirical study show

that future research has to broaden its scope beyond the bottom-up and top-down

approaches, as these approaches are too restrictive, by ignoring dependencies and

only using parts of the available data, which comes at serious financial costs.



Chapter 4

Chasers, Smoothers and

Departmental Biases:

Heterogeneity in Judgmental

Forecasting

Co-authors: J. van Dalen and L. Rook

Abstract

Judgmental forecasting has gained considerable research attention, leading to

detailed knowledge on how biases and heuristics hamper corporate forecasting.

Research so far has primarily studied judgmental forecasting using aggregate

measures over large groups of individuals, overlooking the likely differences

between groups or between individuals. This is unfortunate, because forecast-

ing heterogeneity - i.e., individual differences in forecasting behavior - exists,

and complicates drawing conclusions based on aggregate results. In the present

study, we find confirmation of this claim, and specifically for the existence of two

distinct forecaster types: one characterized by overreaction to forecast errors

(labeled chasers); the other characterized by underreaction to forecast errors

(labeled smoothers). Extending the models used in earlier behavioral experi-

ments, our approach relies on wavelets and state space modeling to incorporate

forecasting heterogeneity. We demonstrate that contextual biases can only be

meaningfully explored after controlling for the forecaster’s inclination towards

chasing or smoothing. We further show that departmental biases persistently

impact judgmental forecasting, even if forecasts are constructed to be free of
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intentional biases. Our findings have important repercussions for theory build-

ing based on evidence derived from aggregate results, but also have practical

relevance for training and hiring of forecasters, and orchestrating forecasting

processes in companies.

Keywords: forecasting, heterogeneity, biases, decision-making, incentives.

4.1 Introduction

This chapter studies the phenomenon of judgmental forecasting, a vital component

of the corporate forecasting process, which greatly affects corporate supply chain

performance (Fildes et al., 2008; Syntetos et al., 2011, 2010). Judgment has been

labeled an “indispensable component” of forecasting, because judgmental forecast-

ing is an important and widely conducted activity in organizational practice. It is

often used to capitalize on valuable tacit or domain-specific knowledge that is not

captured by models (Fildes et al., 2008). However, it introduces various biases in-

herent to human decision-making, leading to suboptimal decision-making (Lawrence

et al., 2006). To compensate for these suboptimal consequences, researchers have

in recent years begun to study decision-making from a behavioral perspective (Gino

and Pisano, 2008).

The upcoming field of behavioral operations management has, among others, doc-

umented how well-known general biases such as the confirmation bias (the tendency

of people to only find and use information that is consistent with their own ideas),

conservatism (the tendency of people not to adjust their beliefs when they receive

new information), overconfidence (the tendency of people to put too much weight

on their own judgment), and illusion of control (the tendency of people to believe

they control or influence an outcome that they demonstrably have no influence over)

may lead to suboptimal decisions (Gino and Pisano, 2008). The seminal study of

Schweitzer and Cachon (2000) into decision-making in a newsvendor experiment em-

phasizes how two specific heuristics – demand chasing, and anchoring and adjustment

– influence decision making in sequential judgmental decision-making. The first, de-

mand chasing, refers to the widely observed phenomenon that decision makers in a

newsvendor experiment are strongly affected by the last observed demand (Bolton

and Katok, 2008; Bostian et al., 2008; Schweitzer and Cachon, 2000). The second,

anchoring and adjustment, occurs when forecasters partly adjust, or smooth, their

forecasts in reaction to forecast errors (Goodwin and Wright, 1993; Hogarth and

Makridakis, 1981).

A major problem of the current knowledge on judgmental biases and the perfor-

mance of judgmental forecasting is that most of the evidence on is at an aggregate
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level, encompassing large groups of individuals (in the case of experiments based on

the newsvendor model see e.g. Bolton and Katok, 2008; Bostian et al., 2008; Kremer

et al., 2011; Schweitzer and Cachon, 2000). This is problematic, because it overlooks

the existence and impact of forecasting heterogeneity, which refers to the possibil-

ity that forecasting behavior differs systematically between individuals. It may well

be the case that two types of forecasters differ in the extent to which they overre-

act or underreact to forecasting errors, and display chasing or smoothing behavior.

Such heterogeneity of individual biases possibly leads to inaccurate aggregate results,

which do not reflect individual behavior (Lau et al., 2014).

Moreover, judgmental forecasting in corporations is often a group activity rather

than an individual activity. The generation of demand forecasts in large organi-

zations typically requires coordination among different departments, such as sales,

operations, and finance, often embedded in a Sales and Operations Planning (S&OP)

process. Case study evidence in that respect seems to suggest that group forecasts

in corporate setting often are undermined by opposing interests that are played out

in S&OP negotiations via the exchange of intentionally inflated or deflated forecasts

Nauta and Sanders (2001); Oliva and Watson (2009, 2011). This interplay of un-

intentional, introduced by biases and heuristics in decision-making, and intentional,

influenced by the setting, biases has been largely ignored so far in the experimental

studies on judgmental forecasting.

The contribution of this chapter, therefore, lies in the assessment of the con-

sequences of heterogeneity for judgmental forecasting. We demonstrate, using an

approach relying on wavelets and state space modeling, that forecasting behavior

indeed differs systematically between individuals. That is, forecasters can be divided

into people who overreact to forecast errors and display chasing behavior, and peo-

ple who underreact to forecast errors, and thus display smoothing behavior. This

observation has important repercussions for the assessment of departmental roles

and incentives of the forecaster in a group setting, and especially for orchestrating

forecasting processes in companies.

The remainder of this chapter is organized as follows. In Section 4.2 we give

an overview of the relevant literature about judgmental forecasting. In Section 4.3,

we outline the proposed method to extend the earlier analyses. In Section 4.4, we

describe the set-up of our behavioral experiment and how the data was collected.

Section 4.5 lists the results and their implications, while Section 4.6 concludes and

gives suggestions for future research.
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4.2 Theoretical background

This section gives an overview of the literature on judgmental forecasting and exam-

ines various approaches used to analyze forecasting behavior observed during exper-

iments. Our own approach builds on the models from earlier work by Kremer et al.

(2011) and Bostian et al. (2008).

4.2.1 Judgmental forecasting

Performance of judgmental forecasting depends on the characteristics of the series,

the source and nature of information, and the presentation of the task (Gönül et al.,

2009; Lawrence et al., 2006; Moritz et al., 2014). Performance also relies on the

behavior of forecasters (Fildes et al., 2009; Syntetos et al., 2009b), and their training

(McCarthy Byrne et al., 2011). Much research has focused on eliciting forecast biases

(Goodwin and Fildes, 1999; O’Connor et al., 2000; Massey and Wu, 2005). Bias and

inefficiency in judgmental forecasts can be so strong as to “mask any contribution of

contextual information to accuracy” (Lawrence et al., 2000, p. 161), possibly due to

information overload and anchoring. Moreover, these biases and limitations seem to

be persistent, as learning effects of forecasters appear to be limited, and forecasters

are unwilling to admit to mistakes and revise their forecasts (Kirchgässner and Müller,

2006; Syntetos et al., 2009b).

4.2.2 Individual biases: forecasting heterogeneity

The call that “research should be conducted which [...] fully recognises the impor-

tance of the individual” (Goodwin et al., 2007, p. 392) has inspired a vast research

on the issue if, and to what extent, individual forecasters are affected by behavioral

predispositions and/or biases of various nature, and how these affect behavior and

performance. De Véricourt et al. (2013), for instance, examine how differences in

gender and attitudes towards risk can explain variations in forecast performance.

Moritz et al. (2013, 2014) and Cantor and Macdonald (2009) demonstrate how psy-

chological differences determine the way people perform in judgmental forecasting.

Typically, these studies aim to explain variations in forecast performance in terms of

particular a priori traits rather than differences in forecasting behavior per se.

This is unfortunate, because it is possible to trace forecast behavior itself. Single

exponential smoothing, a popular forecast method, can be viewed as a reflection

of human behavior in the form of an anchor and adjustment model (Lawrence and

O’Connor, 1992). The method generates forecasts by anchoring on the last forecast
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and adding an adjustment based on the last forecast error:

d̂t+1|t = d̂t|t−1 + α(dt − d̂t|t−1) (4.1)

where d̂t+1|t denotes the demand forecast for period t + 1 made at time t, and

dt denotes the observed demand at time t. The smoothing parameter α can be

viewed as a behavioral component in the anchor and adjustment model to capture the

individual’s reaction to forecast errors. Moreover, in this approach, single exponential

smoothing is a proxy for an individual’s trial-and-error learning. Sterman (1989)

shows that this anchor and adjustment model explains subjects’ behavior well, while

Schweitzer and Cachon (2000) in their seminal paper report evidence for such an

anchor and adjustment model in the context of a newsvendor problem.

Kremer et al. (2011) examine forecasting behavior using this anchor and adjust-

ment model in an experiment in which participants have to forecast a demand series

dt generated by a local level model, also known as a random walk with noise:

dt = lt + εt, εt ∼ N(0, σ2
ε)

lt = lt−1 + νt, νt ∼ N(0, σ2
ν)

(4.2)

where σ2
ε and σ2

ν change between various conditions in their experiment. Single ex-

ponential smoothing is optimal for a local level model (Durbin and Koopman, 2012),

so that the intuitive anchor and adjustment method is optimal if participants weigh

forecast errors correctly. The signal-to-noise ratio q = σ2
ν/σ

2
ε determines the smooth-

ing parameter α∗ that minimizes the mean squared forecast error. This parameter

can be thought of as the steady state of the Kalman gain, the optimal weighing fac-

tor for new information, when the Kalman filter is applied (Durbin and Koopman,

2012):

α∗ =

√
q(q + 4)− q

2
(4.3)

where 0 ≤ α∗ ≤ 1, because variances σ2
ν and σ2

ε are non-negative.

In this setup, Kremer et al. (2011) are able to compare participants’ forecast

adjustments to the optimal smoothing value. In addition, they generalize the ex-

ponential smoothing model (4.1)to capture participants’ forecasting behavior as a

random walk with noise:

d̂t+1|t = l̂t+1|t + r̂t+1|t + ηt, ηt ∼ N(0, σ2
η)

l̂t+1|t = θd̂t|t−1 + α(dt − d̂t|t−1) + (1− θ)A

r̂t+1|t = r̂t|t−1 + β(l̂t+1|t − l̂t|t−1 − r̂t|t−1)

(4.4)
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The model corresponds to double exponential smoothing in l̂t+1|t and r̂t+1|t, as a

random walk with noise can give the impression of short-term trends. To further

generalize the anchor and adjustment model, θ allows for anchoring on either the

previous forecast or a fixed long-term value A.

Motivated by the unobservable r̂t+1|t, Kremer et al. (2011) estimate the parame-

ters of model (4.4) through the following specification:

d̂t+1|t = a0 + a1(dt − d̂t|t−1) + a2d̂t|t−1 + a3(dt − dt−1)

+ a4(dt−1 − dt−2) + a5(d̂t−1|t−2 − d̂t−2|t−3) + ηt
(4.5)

A drawback of this approach, however, is that it introduces identification problems.

Model (4.5) is not a special case of model (4.4), but is a distinct model. The pa-

rameters of model (4.4) are not uniquely identified in terms of those of model (4.5).

Kremer et al. (2011) refrain from parameter restrictions, and instead choose a trans-

formation for each variable of interest, which contradicts the generalized model (4.4).

Based on their estimated parameter α, they conclude that forecasters overreact to

forecast errors in relatively stable environments, but underreact to errors in relatively

unstable environments. This is a conclusion of no minor importance, but in two

conditions of relatively unstable environments, however, their results are not quite

straightforward. Specifically, Kremer et al. (2011) report an α of 0.68 (s.e. 0.04) and

0.56 (s.e. 0.04) in two conditions which do not significantly differ from the optimal α

of 0.61. Moreover, the average α’s from their descriptive measures exceed 0.7 in these

cases, which is much higher than the optimal α. These findings do not support their

overall conclusion that in a relatively unstable environment forecasters underreact

(Kremer et al., 2011), and invite further research into characterizing the effect of a

relatively unstable environment.

The anchor and adjustment heuristic has been observed in experiments with de-

cision makers facing independent and identical draws from a stationary distribution,

even when explicitly told and instructed that the draws are independent. This be-

havioral tendency has become well-known as the demand-chasing heuristic (Bolton

and Katok, 2008; Schweitzer and Cachon, 2000). Bostian et al. (2008) examine this

heuristic with participants facing independently and uniformly distributed demand,

and include autoregressive dynamics to examine learning effects:

d̂t+1|t = d̂t|t−1 + αt(dt − d̂t|t−1)

αt = (1−Δα)αt−1

(4.6)
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Because demand is serially independent in their experiment, the optimal α is zero.

The constant Δα can be interpreted as a stepwise proportional decrease of the bias.

The model implies that the existing bias decreases linearly over time. From the

estimates, Bostian et al. (2008) conclude that experience improves performance, and

that the bias linearly decreases over time. However, estimating learning as a linear

effect imposes serious restrictions on participants’ behavior, because the behavior of

forecasters can be nonlinear and complex (Trapero et al., 2011).

Moreover, inferences based on sample averages and standard deviations can be

misleading when applied to behavioral heterogeneity, especially when heterogeneity is

used to imply multi-modality in behavioral patterns (Juran and Schruben, 2004). The

question therefore arises how individual heterogeneity influences aggregate results

(Su, 2008, p.586). As aggregate data does not adequately describe the population of

individual decision makers when their behavior is highly heterogeneous (Lau et al.,

2014), it may well be the case that some of the conclusions drawn by previous studies

may be misleading.

4.2.3 Departmental biases

It is common practice in corporate forecasting processes that demand forecasting is

a result of interdepartmental decision-making. Unfortunately, however, the various

departments within the company – such as operations, sales, finance and marketing

– may also, at least partially, have opposing interests (Nauta et al., 2001, 2002).

Forecasts can be influenced by managerial deliberations other than achieving forecast

accuracy (Syntetos et al., 2009b). For instance, the forecast may be colored by

organizational goals causing the forecast to be intentionally biased (Lawrence et al.,

2000) – i.e., the “result of deliberate and rational decision making behavior on the

part of the forecasters” (Lawrence and O’Connor, 2005, p.3). The bias can arise and

be consistent with rationality because of asymmetric loss functions across forecasters

(Aretz et al., 2011; Ashiya, 2009), or because forecasters can intentionally inflate the

forecast to ensure that suppliers give them priority (Syntetos et al., 2009b; Terwiesch

et al., 2005).

Evidence exists that interdepartmental forecasts are influenced by the various,

sometimes conflicting, incentive schemes and agendas between departments (Oliva

and Watson, 2009, 2011; Yaniv, 2011). Kuo and Liang (2004) show that forecasters

may also be affected by their departmental roles even when there are no incentives

in place. This implies that the departmental role itself suffices to trigger different

behavior. This observation is supported by Önkal et al. (2012), who show that as-

signing varying roles to members of a group, even without incentives, has a significant
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effect on the forecasts made by the group. When members are given the role of fore-

casting executive, marketing director or production director, they are less satisfied

with consensus forecasts and display a strong commitment to their own roles when

compared to members without a particular role (Önkal et al., 2012). It is, therefore,

important – also for corporate, interdepartmental, forecasting processes that: “[w]e

must always remember that forecasts are rarely, in themselves, disinterested and in-

nocent products of the group process in which they are produced and this reality

should cause us to reconsider the way in which we evaluate forecasts.”Wright and

Rowe (2011, p. 12).

4.3 Proposed method

In studying forecasting heterogeneity, we follow suggestions previously made by Lau

et al. (2014) and Su (2008) to explicitly elicit individual behaviors, away from ap-

proaches that focus on aggregate results. Starting from Kremer et al. (2011) and

Bostian et al. (2008), we propose a method to examine forecasting behavior as well

as individual and departmental biases that allow for behavioral heterogeneity in the

forecasting process.

Similar to Kremer et al. (2011), we employ the local level model (4.2) to simu-

late demand for a judgmental forecasting experiment. We extend models (4.5) and

(4.6) of Kremer et al. (2011) and Bostian et al. (2008) with an alternative based on

wavelets and state space modeling to overcome previous limitations and analyze both

individual and departmental biases while accounting for heterogeneity.

4.3.1 Heterogeneity in judgmental forecasting

A formal characteristic of forecasts based on subsequent demand is that they form

time series. Performance analyses of such forecasts commonly use aggregate mea-

sures, such as forecast accuracy or coefficients of estimated regression models, to

assess, for instance, the bias. When these forecasts are produced by judgmental fore-

casters working with the same demand series, the resulting individual differences are

typically taken into account by modeling the multivariate series as panel data with

random effects, in which the estimated effects are interpreted based on means and

standard deviations; see especially Bostian et al. (2008) and Kremer et al. (2011).

This approach is implicitly driven by the assumption that a single true value exists

for each model parameter, around which participants are randomly located, and that

that these aggregate estimates represent actual individual behavior.
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There is, however, no a priori reason to assume that behavioral patterns are at

all times symmetrically distributed around a common value. Heterogeneity could

well implicate the existence of distinct types of forecasting behavior that are associ-

ated with different parameter values. Lau et al. (2014) demonstrate that relying on

means leads to estimated behavior that does not reflect the behavior of any of the

participants. For instance, model (4.4) allows a weighting θ between the previous

demand forecast and a fixed long-term value as an anchor, but aggregate results will

be misleading if θ has distinct values representing different types of behavior.

In our approach, instead of lumping together forecast series of all participants

in an experiment, we first determine if groups of participants can be identified with

similar forecasting behavior. In order to identify such groups, we cannot rely on

straightforward clustering of forecast series given that this ignores the time structure

of forecasts: forecasts are dependent on past values, and the time structure cannot

simply be ignored (Chaovalit et al., 2011). For clustering, we need a limited number of

independent dimensions, which can be achieved by transforming the forecasts before

clustering (Gavrilov et al., 2000; Lin et al., 2004).

Even though the Fourier transform is a common method of transforming time

series, it is not suitable for our analysis. The Fourier transform projects the orig-

inal time series onto several sinusoidal functions, each corresponding to a particu-

lar frequency component (Hamilton, 1994). Unfortunately, this projection captures

information in the frequency domain, but not in the time domain, because the si-

nusoidal functions are not localized in time and continue indefinitely. Information

from the time domain can only be recovered under certain conditions (Hamilton,

1994). A sufficient condition for preventing loss of information is that the examined

series is stationary. But in many cases, the series to forecast is non-stationary, as

the mean and other moments of the underlying process can depend upon time. As

people exhibit nonlinear and complex behavior (Trapero et al., 2011), judgmentally

forecasting non-stationary series is unlikely to result in series of forecasts that meet

the strict condition of stationarity. Even the windowed Fourier transform, which

puts the sinusoidal functions in a window localized in time (Hamilton, 1994), still

loses most information from the time domain, as the condition of stationarity is still

imposed within each window.

Wavelets offer an alternative transformation preserving information from both the

time and frequency domain (Gençay et al., 2001). Wavelets can flexibly represent

a wide array of time series and do not require the time series to be stationary; see

the introductions by Percival and Walden (2006) and Struzik (2001). Essentially, a

wavelet is a zero-mean function with finite oscillations that fade out. The wavelet

transformation decomposes a function into a set of wavelets.
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A set of infinite wavelets is equal to L2(R), the space of measurable functions that

are square integrable (Struzik, 2001). Hence, we can decompose any function x(t)

in L2(R), for which
∫ |x(t)|2 dt < ∞, into wavelets. This ensures that x(t) has finite

oscillations and is localized in time (Percival and Walden, 2006). We represent the

function x(t) as a series of successive approximations, based on linear combinations

of wavelet basis functions, ψm,n:

x(t) =
∑
m,n

cm,nψm,n(t)

cm,n = 〈x, ψm,n〉
(4.7)

The wavelet ψ is parametrized in terms of time (or location) by n and in terms of

dilation (or scale) by m. Unlike the Fourier transformation, the wavelet basis thus

captures both location and scale (Abramovich et al., 2000).

We are interested in transforming a discrete time series x. Daubechies wavelets,

a family of wavelets defining a discrete wavelet transform, are commonly used for

discrete series (Crowley, 2007). Daubechies wavelets have no closed-form expression

and are specified by a single parameter p as D(p) (Gençay et al., 2001), which deter-

mines the number of vanishing moments of the approximation (Ogden, 1997). Large

values of p allow for representations of higher degree polynomials. A D(6) can have

constant, linear and quadratic signal components, while a D(8) can include cubic

signal components in addition to the components of polynomials of lower degree. A

D(8) with eight coefficients is a common choice in financial and economic applications

and is therefore adopted here (Struzik, 2001). A small p does not seem applicable

in the present context due to possibly nonlinear and complex behavior of forecast-

ers (Trapero et al., 2011). For each individual time series, the eight orthonormal

coefficients for the wavelet transformation are found using numerical integration to

evaluate the inner product in (4.7); see Percival and Walden (2006).

Transforming the time series of forecasts using the D(8) discrete wavelet trans-

formation captures the time series in a small number of independent dimensions

(Chaovalit et al., 2011). These eight wavelet coefficients not only incorporate how

strongly forecasters react to forecast errors, but also capture the value of their last

forecast, thus incorporating both the behavioral component α and the anchor from

the anchor and adjustment model (4.1).

If forecasts of all n participants are transformed, we have eight coefficients per

participant in an n×8 matrix. This matrix is used to determine if groups of forecast-

ers with distinct types of forecasting behavior exist. By means of k-means++, an

adjustment to k-means (Arthur and Vassilvitskii, 2007), clustering involves choosing
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k centers minimizing the within-cluster sum of squares, the Euclidean distance, of

datapoints y using 500 random starts:

argmin
C

∑
y

min
c∈C

‖y − c‖2

Various values of k will be examined and a value will be chosen based on the ratio

of the between-cluster variance to the total variance.

4.3.2 Generalized forecasting model

The generalized forecasting model (4.4) proposed by Kremer et al. (2011) allows for

both the perception of short-term trends and the anchoring on either the last forecast

or on a fixed long-term value. Instead of estimating this model in reduced form, which

introduces problems of identification, we estimate model (4.4) by treating the unob-

served quantities as latent variables in a state space model. We employ maximum

likelihood, derived using the Kalman filter to decompose the prediction error (Durbin

and Koopman, 2012), to calculate the unknown quantities, such as the distributions

of the errors, the initial states, and the parameters of interest (α, β, θ, A), using the

BFGS algorithm, which is a quasi-Newton method of numerical optimization, with

500 random starts.

We modify the formulation of generalized model (4.4) to reflect the use of panel

data, where the index i differentiates between participants. Moreover, we have ran-

dom effects over time in ξt, and remaining individual disturbances in ηit:

d̂i,t+1|t = l̂i,t+1|t + r̂i,t+1|t + ξt + ηit, ξt ∼ N(0, σ2
ξ ), ηit ∼ N(0, σ2

η)

l̂i,t+1|t = θd̂i,t|t−1 + α(dt − d̂i,t|t−1) + (1− θ)A

r̂i,t+1|t = r̂i,t|t−1 + β(l̂i,t+1|t − l̂i,t|t−1 − r̂i,t|t−1)

(4.8)

Indicator variables can be included in the equation for d̂i,t+1|t to estimate the effects

of various experimental conditions on the one-period ahead forecast.

We further extend this state space model to accommodate learning effects. Bos-

tian et al. (2008) explore a linearly decreasing bias in model (4.6). More flexibility

can be attained by making the parameter of interest time-varying. Specifically, we

formulate the adjustment αt+1 as a random walk, to determine if there is learning

towards the optimal behavior and explore how this learning changes over time:

αt+1 = αt + εt, εt ∼ N(0, σε) (4.9)
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The parameter values can be derived at each time period by using the Kalman

smoother to determine the mean of the parameter conditional on all demand forecasts

in the sample (Durbin and Koopman, 2012).

Summarizing, consistent with Kremer et al. (2011), we employ the local level

model (4.2) to simulate demand for our judgmental forecasting experiment. We

extend models (4.5) and (4.6) of Kremer et al. (2011) and Bostian et al. (2008) with

an alternative based on wavelets and state space modeling to overcome previous

limitations and analyze both individual and departmental biases, while accounting for

heterogeneity. If different types of forecasting behavior using wavelets and clustering

are observed, we can estimate our model on subsets of forecaster data to explore the

consequences of heterogeneity.

4.4 Experimental design and data

In our experiment, participants are invited to take on the role of a company forecaster.

After studying a time series of 18 periods of historic demand, participants provide

a forecast for the next period. They then see the actual outcome and their forecast

accuracy. Participants iterate through these steps 18 times, making forecasts on a

one-period ahead rolling window. The forecast of the expected demand is neutral

in the sense that participants privately forecast the demand for the next period

and separately propose a desired production quantity. This proposed production

quantity is then shared with another manager, and forms the basis for determining

the production quantity, explained below. The setup is such that the forecast should

be free from intentional biases.

We employ a two-by-two-by-two experimental design, varying with respect to

departmental role, incentive scheme, and the behavior of the other manager. That is,

participants are randomly assigned the role of either an operations manager or a sales

manager. The operations department is focused on production and inventory levels,

which may lead forecasters to deflate their proposed production quantities. The sales

department is concerned with sufficient product availability so that there are no lost

sales, which may lead forecasters to intentionally inflate their proposed production

quantities. In terms of incentives, participants are either penalized for outcomes

straying from their department’s objective, which is either minimizing obsolescence

or lost sales, depending on the role, or for outcomes straying from the company’s

objective, which is maximizing profit by minimizing ex post inventory error.

The production quantity in each time period is determined as the average of two

separate inputs, one offered by the participant, the other obtained from a computer

agent which represents the other manager. The computer agent can have a neutral,
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sales or operations role—that is, if the agent is not neutral, its role is complementary

to the participant’s role, meaning that the computer agent takes on the role of an

operations manager when the participant is a sales manager, and vice versa. The

computer agent uses single exponential smoothing and the Kalman filter to forecast

the demand distribution of the next period, and proposes as production quantity

either the 50th, 33th or 66th percentile of the estimated forecast distribution, de-

pending on whether it has a neutral, operations, or sales role, respectively.

Table 4.1: Experimental data over the four conditions
The four experimental conditions are based on the two roles of operations and sales,
and the incentives of either department or company.

Department incentive Company incentive

Operations Sales Operations Sales

Total: 357 85 89 92 91
(24%) (25%) (26%) (25%)

Analyses are based on 357 participants (240 men and 117 women with an average

age of 21) who are randomly allocated over the different conditions. The number of

participants for each role and incentive is listed in Table 4.1. Students of a Business

Administration program participated as part of their coursework. They were familiar

with the topic. Control questions were used to check whether the participant remem-

bered their role and incentive scheme at the end of the experiment, and whether they

understood the forecasting task in the experiment. Respondents who did not answer

the control questions correctly were removed from the analyses. Respondents who

made typographical errors during the experiment were also left out. As forecasting

rounds are dependent, a simple input error influences subsequent rounds and we can-

not simply correct obvious errors, interpolate or treat particular inputs as missing

values. Out of the initial 467 participants (321 men and 146 women with an average

age of 21), 110 participants (24%) are dropped due to typographical errors, which

corresponds to an input accuracy of over 99%. No other selection criteria were used.

Behavioral experiments are commonly conducted with students to ensure that

analyses are based on a large number of participants (e.g. Bolton and Katok, 2008;

Bostian et al., 2008; Kremer et al., 2011; Schweitzer and Cachon, 2000), which is

not problematic given that experienced managers and students usually exhibit the

same behavior (Bolton et al., 2012). Nevertheless, we have replicated the experiment

with 72 professional forecasting and/or demand planners from various manufacturing

companies. Even though the analysis cannot be as extensive as with the student

sample, the obtained data is used to replicate our previously introduced wavelets
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and state space modeling approach with a group of practitioners as a robustness

check.

Similar to Kremer et al. (2011), we use local level model (4.2) to simulate the

demand. We simulate the necessary initial condition using l0 ∼ N(500, σ2
ν). The

variances σ2
ε and σ2

ν are set to 100, so that our simulated demand closely resembles

conditions three and six of the experiments of Kremer et al. (2011). A single de-

mand series is generated and used for each participant. The optimal alpha can be

determined using (4.3) and is approximately 0.618.

For forecast accuracy, we calculate the root mean square error (RMSE) per par-

ticipant i for the forecasting part, which starts at t = h and ends at t = n, as

follows:

RMSEi =

√√√√ 1

n− h+ 1

n∑
t=h

(d̂i,t|t−1 − dt)2 (4.10)

As described above, in our experiment, we have 18 time periods of historic demand,

and participants must provide forecasts for 18 periods, so that h = 19 and n = 36.

We calculate the overall forecast bias per participant as:

Biasi =

n∑
t=h

(d̂i,t|t−1 − dt) (4.11)

RelativeBiasi = Biasi

/ ∑n
t=h dt

n− h+ 1
(4.12)

To analyze the evaluation of biases over time, an additional measure is needed

throughout the rounds of the experiment. Examining differences between forecasts

and demand in each round means that differences are dependent on the specific de-

mand outcome, due to the variability of disturbances. As these differences depend

on the original demand series, we also include a performance measure that removes

the influence of the original series as much as possible. By subtracting the optimal

forecast in each time period, d̂t|t−1, rather than the actual demand, we can derive

the bias relative to the optimal forecast within the sample for each time period t,

allowing us to trace the forecast bias over time:

BiasBenchi,t = d̂i,t|t−1 − d̂t|t−1 (4.13)
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4.5 Results

In the following section, we first examine if and to what extent wavelets capture

the original forecast series, and whether we can distinguish between distinct types of

behavior using k-means++ clustering. As anticipated, differentiating between behav-

iors leads to a partitioning of the participants from the experiment. We estimate the

generalized forecasting models for different groups of participants and show the in-

fluence of individual behavior and departmental biases by considering heterogeneity,

roles, incentives and learning.

4.5.1 Forecasting heterogeneity

We transform each series of forecasts using the discrete wavelet transform D(8),

giving a matrix containing the eight coefficients for each of the 357 participants.

The transformations capture the original series well. That is, applying the inverse

wavelet transform on the coefficients and comparing these to the original series yields

an average RMSE of 11.21.

The participants are clustered using k-means++ with the coefficients of the D(8)

transformation. To determine the number of centers k, we successively apply k-

means++ with k ranging from 2 to 8. A k of 2 has a high ratio of between-cluster

variance to total variance of 78%. Increasing k marginally affects the ratio in small

steps. A k of eight gives a ratio of 91%. Additional centers affect the larger of the two

centers when k is two, but do not substantially improve the variance explained. We,

therefore, examine the case of two forecast groups in the remainder of this section.

Table 4.2 summarizes the allocation of roles and incentives within the observed

two groups of forecasters. Group 1 consists of 271 participants, representing 76%

of all respondents, and Group 2 consists of 86 participants, corresponding to 24%

of all respondents. The respondents in the two groups are approximately uniformly

distributed over the various roles and incentives. Of particular relevance to the

present discussion, the two centers appear independent of conditions in the experi-

ment (χ2
3,0.05 = 0.6994, p = 0.8734), and thus seem to capture individual forecasting

behavior instead.

Figure 4.1 depicts the eighteen subsequent forecasts for each group in addition

to the time series of demand. Compared to Group 2, Group 1 produces a more

volatile forecast series, implying that forecasters in Group 1 more strongly adjust

their forecast as a reaction to forecast errors than Group 2. Group 1 tends to display

demand chasing behavior—these ‘chasers‘ undervalue their own forecast, and even

overreact to forecast errors. Admittedly, in time periods 26 and 27 of Figure 4.1,

chasers stay close to the just observed demand, but in the preceding time period 24,
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Table 4.2: Distribution of respondents in each group over the various con-
ditions of roles and incentives
The two groups found with clustering are approximately uniformly distributed over
the various roles and incentives.

Department incentive Company incentive

Operations Sales Operations Sales Total

Group 1 63 69 68 71 271 (76%)
Group 2 22 20 24 20 86 (24%)

Total 85 89 92 91 357 (100%)

their forecast is inflated to the extent that it surpasses the just observed demand in

time period 23. The same effect is observed in time periods 31, 34, and 36, albeit

in opposite direction: the forecast is deflated to the extent that it is lower than

the just observed demand. This shows that chasers are prone to seeing short-term

trends. By contrast, Group 2 produces a substantially less volatile forecast series

with gradual changes to the forecast, which are often of the same sign. Group 2 is

only weakly influenced by forecast errors—these ‘smoothers‘ overvalue their forecast,

and strongly underreact to forecast errors. This behavior of smoothers is clearly

distinct from the chasers’ tendency to undervalue their forecast, overreact to forecast

errors and heightened sensitivity towards short-term trends.

Figure 4.2 depicts the forecast series of chasers and smoothers after subtracting

the optimal forecast in each time period d̂t|t−1, using (4.13), to derive the bias relative

to the optimal forecast within the sample for each time period. It shows that for

smoothers the first half of their consecutive forecasts has a positive bias, whereas

the second half of their consecutive forecasts is characterized by a negative bias. In

other words, by overvaluing their own forecasts and underreacting to forecast errors,

smoothers thus generate forecasts that suffer from a consistent bias.

The different forecasting behavior of chasers and smoothers has substantial ram-

ifications for forecast performance. Table 4.3 summarizes the performance measures

for chasers, smoothers, and all participants combined. The RMSE for chasers, 170, is

considerably and significantly smaller than that of smoothers, 216 (p < 0.01). More-

over, the relative bias of chasers and of all participants combined is close to zero,

while smoothers have a substantial bias of 61% over average demand.
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Figure 4.1: Heterogeneity in judgmental forecasting
This figure shows the average time series of forecasts of the two groups and the
time series of the demand. Two different types of forecasting behavior can be seen:
forecasters in Group 1 strongly adjust their forecasts, whereas forecasters in Group
2 weakly adjust their forecasts.
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4.5.2 Generalized forecasting model

We estimate the generalized forecasting model with and without time-varying pa-

rameters for chasers and smoothers separately, and for all participants together to

demonstrate the importance of heterogeneity for analyzing forecast behavior.

Table 4.4 gives the estimated results for the generalized forecasting model without

time-varying parameters (4.8). The estimated smoothing parameter α of 0.70 for

all participants is substantially and significantly higher than the optimal α of 0.61

(p < 0.01). The value is similar to the α of the descriptive measures mentioned by

Kremer et al. (2011), and shows that forecasters overreact in a relatively unstable

environment, thus seemingly contrasting the conclusion of Kremer et al. (2011) that

forecasters underreact in relatively unstable environments.

Forecasting heterogeneity can explain the differences between these two conclu-

sions. Observed forecasting heterogeneity plays a critical part in estimating the gen-

eralized forecasting model. The estimates of α in Table 4.4 for chasers and smoothers

are substantially and significantly different, showing that the two groups respond dif-
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Figure 4.2: Different forecast bias for chasers and smoothers
This figure shows the forecast series after subtracting the optimal forecast in each
time series using (4.13) to derive the bias relative to the optimal forecast within the
sample for each time period. Smoothers consistently forecast too high until period
29, after which they consistently forecast too low.
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ferently to forecast errors. That is, chasers overreact to forecast errors as indicated

by an estimated α of 0.78, whereas smoothers substantially underreact to forecast

errors as expressed by an estimated α of 0.36. In other words, whereas most partici-

pants strongly overreact to forecast errors in this relatively unstable environment in

a manner consistent with Kremer et al. (2011), our findings offer a further refinement

of this established notion in the sense that a substantial portion of participants, the

smoothers, intriguingly, underreacts.

Further evidence for distinct anchoring and adjustment behavior is contained

in the estimated θ’s, which generalize the anchor and adjustment model (4.4), by

giving more flexibility to the form of the anchor. A θ equal to one means that the

last forecast is used as anchor, whereas a value of zero means that a fixed long-

term constant A is used as an anchor. The results in Table 4.4 again reveal distinct

forecasting behavior for chasers and smoothers. The estimated θ of 0.93 (which

is close to 1) indicates that chasers tend to anchor on the last forecast, whereas

smoothers, with an estimated θ of 0.59, rather anchor on a mix of the last forecast

and a fixed long-term constant. In effect, they smooth the anchor as well.
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Table 4.3: Forecast performance
Forecast performance of participants with RMSE (4.10), Bias (4.11), and Relative
Bias (4.12).

RMSE Bias Relative bias

Chasers 169.794 -57.829 -0.100
Smoothers 216.071 354.986 0.616
All 179.808 23.115 0.040

Table 4.4: Estimates of the generalized forecasting model
Estimates are given for different subsets of the data, either based on all participants
combined, or on chasers and smoothers separately. Standard errors are in parenthe-
ses. The last column gives the differences between the estimates of the two groups
(Δ(chasers, smoothers)), which are all significantly different from zero (∗∗, p < 0.01).

All Chasers Smoothers Δ(chasers, smoothers)
(n = 357) (n = 271) (n = 86)

α 0.698 (0.005) 0.780 (0.006) 0.365 (0.021) 0.416∗∗
β 0.102 (0.009) 0.130 (0.010) 0.035 (0.039) 0.095∗∗
θ 0.909 (0.002) 0.927 (0.001) 0.594 (0.128) 0.332∗∗
A 577.792 (0.150) 573.161 (0.149) 596.869 (1.187) -23.708∗∗

The final parameter of interest of the generalized forecasting model is β, the

influence of short-term trends in forecasts. For smoothers, the estimate is 0.03,

which is not significantly different from 0, meaning that smoothers are generally not

sensitive to seeing short-term forecast trends. For chasers, in contrast, the estimate

of β is 0.13, which indicates that they are prone to seeing short-term trends in the

data. As a result, chasers not only strongly overreact to forecast errors, but they

even go as far as to overextend by acting on imagined trends where there is only

noise.

A similar impact of heterogeneity is observed for learning effects of forecasting.

Bostian et al. (2008) found that parameter values can change over time, thus sig-

nifying learning effects. Using their approach of linear change (4.6), we also find

a small learning effect where participants slowly move towards the optimal with a

2% change in their α. By extending the model to include time-varying parameters

(4.8) we can more flexibly trace how forecast behavior changes over time. In the

extended model, parameters increasing or decreasing towards optimal values imply

learning effects. Figure 4.3 shows how the conditional mean of smoothing parameter

α changes over time for chasers and smoothers, respectively. The behavior of both
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groups is nonlinear, but the conduct of chasers changes much more dramatically over

time than that of smoothers. Nonetheless, in contrast to the conclusions of Bostian

et al. (2008), we find no evidence of learning effects for either of the two groups.

Figure 4.3: Learning effects
This figure shows the conditional means of α’s for chasers and smoothers over time.

0.4

0.6

0.8

20 25 30 35
Time

Al
ph

a

Group Optimal Alpha Chasers Smoothers

By way of a robustness check, we applied our approach to the experimental data

consisting of 72 practitioners. Even though the analysis cannot be as extensive,

because the number of participants is much lower, and, consequently, the standard

error of results much higher, the results are, nonetheless, not materially different than

the ones presented previously. Table 4.5 shows that the distinction between chasers

and smoothers is equally apparent in the data set based on practitioners, although

the smoothers represent 18% instead of 24% of the participants.

The evidence reported above bolsters our confidence in our estimated generalized

forecasting model, which shows the existence of two distinct types of forecasters,

based on groups of participants found using clustering. These two groups of chasers

and smoothers, respectively, are substantially and significantly different in terms of

behavior as captured by the generalized forecasting model. Not only do they differ

in the extent to which they adjust their forecasts, but also in what they use as an

anchor. Chasers strongly overreact to forecast errors, and tend to perceive short-term

trends in the demand series. Smoothers strongly underreact to forecast errors, and
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Table 4.5: Estimates of the generalized forecasting model for 72 practition-
ers
Estimates are given for different subsets of the data, either based on all participants,
only on chasers, or only on smoothers. Standard errors are in parentheses.

All Chasers Smoothers
(n = 72) (n = 59) (n = 13)

α 0.644 (0.215) 0.776 (0.244) 0.244 (0.420)
β 0.088 (0.538) 0.146 (0.290) 0.154 (0.890)
θ 0.951 (0.091) 0.950 (0.052) 0.682 (0.562)
A 571.951 (5.169) 572.753 (4.927) 568.312 (18.486)

even smooth their anchor as a combination between their last forecast and a fixed

long-term constant. We find no evidence for learning effects.

4.5.3 Departmental biases: roles and incentives

So far we have explored the existence and nature of distinct types of forecasting

behavior. We noted that the observed behavioral differences are independent of de-

partmental roles and incentives (see Table 4.2) and that smoothers generate forecasts

that suffer from a consistent bias (see Figure 4.2), independent of their role and in-

centive. This led us to conclude that we should analyze the forecast behaviors for

chasers and smoothers separately. Here, we turn to the consequences of departmental

roles and incentives for forecast performance.

Table 4.6 summarizes the effects of departmental roles (operations vs. sales),

incentives (department vs. company), and of the type of computer agent (neutral vs.

other department) on participants’ forecast behavior over each condition, by giving

the estimated bias of the forecast. We examine chasers and smoothers separately,

and for each group list the bias per role, incentive, and type of agent the participant

is paired with. When paired with a neutral agent, chasers with department incentives

display a negative bias of −63.1 if they are operations managers, or a positive bias

of 27.5, if they are sales managers. Smoothers in the same conditions also display a

negative bias of −69.7, if they are operations managers, or a positive bias of 88.3,

if they are sales managers. Table 4.6 shows that these differences remain if we

ignore the role specific incentive. The estimated biases substantially and significantly

differ between the two roles, so that assigning roles has a strong impact. That is,

participants with an operations role have a negative bias in their forecasts, while

those in a sales role have a positive bias, even if their incentive is to minimize the

forecast error.
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Table 4.6 further shows an interesting change of signs when participants are paired

with an agent from the other department. The biased computer agent in that case

does not share a mean forecast, but rather provides an adjusted forecast based on its

own role, which may cause participants to display a stronger bias. More specifically,

chasers with an operations role have a bias equal to either −63.1 or 57.0 depending

on whether they are paired with a neutral agent or a computer agent from the other

department. A similar effect is observed over all conditions. The bias of the computer

agent thus has the effect of increasing or decreasing forecasts to the extent that it

switches the sign of the bias.

4.6 Discussion and conclusion

Our study has demonstrated that forecasting heterogeneity matters. Forecasting be-

havior differs systematically between individuals to the extent that two markedly

different types of forecasters can be distinguished. One is characterized by overreac-

tion to forecast errors and has been labeled chasers, while the other is characterized

by underreaction to forecast errors, and has been labeled smoothers. The existence of

two distinct groups is highly relevant for the analysis. Results obtained from earlier

research on individual biases is possibly misleading as they are based on aggregate

results and ignore systematic behavioral differences. This explains why our find-

ing that forecasters overreact in a relatively unstable environment conflicts with the

conclusion of Kremer et al. (2011). The difference between chasers and smoothers,

and nonlinear behavior, also explains why we find no evidence for learning effects in

contrast to Bostian et al. (2008).

Extending the models used in earlier behavioral experiments, we propose an ap-

proach relying on wavelets and state space modeling to capture individual forecasting

behavior. Our empirical estimations of the state space model of the two groups found

using wavelets and clustering, show that the two types of chasers and smoothers

exhibit substantially and significantly different behavior. Chasers not only strongly

overreact to forecast errors, but are also prone to seeing short-term trends. Smoothers

not only underreact, but are fundamentally different under the anchor and adjust-

ment model, as they use a smoothed value as anchor instead of the last forecast.

Furthermore, we demonstrate the existence of persistent departmental biases of

roles and incentives. In line with conclusions of Kuo and Liang (2004) and Önkal

et al. (2012), we find that forecasting behavior is influenced by roles. In contrast

to the conclusion of Yaniv (2011), the effect of roles is not negated using incentives.

We are unable to differentiate between intentional and unintentional biases, as roles
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have a strong effect, even without incentives, which has ramifications as we can no

longer assume that we can disentangle the two (e.g. Oliva and Watson, 2009, 2011).

Our findings are also important for practice, as forecast behavior directly af-

fects forecast performance, which can have large financial ramifications. Chasers

and smoothers have substantially different forecast performance, so that recogniz-

ing the difference between these two types of forecasting can lead to better hiring

and training practices for forecasters. The impact of departmental biases also has

ramifications for how the forecasting process is orchestrated within companies when

multiple departments participate, as roles and the behavior of other participants

affect behavior.

Different types of forecasting behavior will remain an important topic for future

study, as they impact both research done so far and practice. The novel methodology

we outlined here, relying on wavelets and state space modeling, should prove to be

flexible in similar types of research.
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Abstract

Biases in judgmental forecasting have often been studied, but unintentional and

intentional biases have never been disentangled. We isolate intentional biases

in the context of departmental roles and incentives in corporate forecasting

processes. Through an experiment, which simulates forecasting and production

quantity decisions in an interdepartmental decision-making context, we exam-

ine the effects of roles, incentives, and various weighing schemes on behavior and

performance. We find that roles, even without role-specific incentives, entail

intentional biases of 8% of the forecast, and that role-specific incentives increase

these biases to 14%. We test the claim that an accuracy-weighted scheme can

remove unintentional biases, and conclude that though this halves these biases,

it does not fully remove them. Finally, we observe that a weighing scheme that

explicitly corrects biased inputs shows great promise in reducing intentional as

well as unintentional biases. In our experiment, this scheme reduces biases by

35%. Our work shows the importance of disentangling intentional and unin-

tentional biases for research, and our insights have substantial ramifications for

the design of the forecasting process in terms of coordination mechanisms and

incentives by quantifying the impact of roles and incentives.

Keywords: judgmental, biases, decision-making, incentives, negotiation.
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5.1 Introduction

Judgmental forecasting is commonly used in practice and affects company perfor-

mance (Fildes et al., 2008; Syntetos et al., 2011, 2010). Inaccurate demand fore-

casts can have substantial financial ramifications. Involving multiple organizational

departments, such as sales, operations, and finance, in generating forecasts, often

embedded in sales and operations planning (S&OP) (Singhal and Singhal, 2007), has

been reported to reduce inaccuracies (Oliva and Watson, 2009, 2011). However, when

departments have different financial risks, they do not necessarily share the same goal

of minimizing forecast errors, resulting in suboptimal financial performance for the

company (Nauta and Sanders, 2001).

Involving multiple departments affects forecasting mainly through roles and in-

centives (Oliva and Watson, 2009, 2011). Roles contextualize tasks and may lead

to biases: inflated or deflated forecasts (Kuo and Liang, 2004; Önkal et al., 2012).

Nauta and Sanders (2001) and Nauta et al. (2002) mention operations and sales as

an example, arguing that organizational departments commonly have opposing in-

terests: while the operations department focuses on efficiency and costs, the sales

department prioritizes customer service and sales development. Incentives steer fore-

casting behavior to the extent that managers deliberately increase forecast biases by

adjusting forecasts (Oliva and Watson, 2009, 2011). Because roles and incentives

provide context, people are both unknowingly influenced by them and act deliber-

ately upon them. Inflated and deflated forecasts arise because of both unintentional

as well as intentional forecasting behavior.

The interplay of unintentional and intentional forecasting behavior has been

largely ignored in the literature (Oliva and Watson, 2009, 2011), which is not sur-

prising, considering its complexity. Judgment is rife with inherent biases of human

decision-making, leading to unintentional forecast biases (Lawrence et al., 2006).

Groups, such as organizational departments, are exposed to the same routines and

systematic decision-making errors as individuals (Kerr and Tindale, 2011). In addi-

tion to unintentional biases, intentional adjustments affect forecasts, leading to inten-

tional forecast biases. Because in practice intentional adjustments are not observed

in isolation from unintentional adjustments, we are unable to disentangle intentional

biases from unintentional biases. Consequently, we do not fully understand the effects

of roles and incentives on behavior and performance.

Oliva and Watson (2009, 2011) illustrate the importance of roles and incentives for

the forecasting process by describing the overhaul of the forecast process at Leitax,

a manufacturer of consumer electronics. Prior to the change, the forecasting process

was fragmented over departments. Sales shared their generated forecasts informally
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with operations and finance. Operations required forecasts for purchasing and pro-

duction decisions; finance required them for financial planning and management. Not

convinced of the adequacy of each other’s forecasts, they generated their own demand

forecasts, resulting in large financial losses. Centralizing and redesigning the process

was successful and had a major impact on the operations of Leitax. The forecast

accuracy increased dramatically by 30 percentage points from 58% to 88%, which

entailed millions of savings in inventory.

Though the Leitax case demonstrates the importance of design choices for the

forecasting process, it offers no insight into how the design affects intentional and

unintentional behavior. In the redesigned forecast process, the separate forecasts of

sales, product planning and strategy, and demand management together determine

the final consensus forecast based on their past performance (Oliva and Watson, 2009,

2011). Other organizations also rely on this weighing scheme, such as Norges Bank

and manufacturers of fast-moving consumer goods (Bjørnland et al., 2012; Protzner,

2015). Supposedly, this scheme removes the influence of roles and incentives, im-

proving the forecast by negating intentional biases (Oliva and Watson, 2009, 2011).

However, the effects of roles, incentives, and weighing schemes, on the actual behavior

of managers in the forecasting process have not been examined.

In this chapter, we study intentional biases in the context of different departmen-

tal roles and incentives in corporate forecasting processes. Through an experiment,

which simulates forecasting and production quantity decisions in an interdepartmen-

tal decision-making context, we disentangle intentional from unintentional biases and

examine the effects of roles, incentives, and various weighing schemes on behavior

and performance. We find that roles, even without role-specific incentives, entail in-

tentional biases of 8% of the forecast, and that role-specific incentives increase these

biases to 14%. We test the claim that an accuracy-weighted scheme can remove unin-

tentional biases, and conclude that though this halves these biases, it does not fully

remove them. Finally, we observe that a weighing scheme that explicitly corrects

biased inputs shows great promise in reducing intentional as well as unintentional

biases. In our experiment, this scheme reduces biases by 35%. Our work shows the

importance of disentangling the two sources of biases for research, and our insights

have substantial ramifications for the design of the forecasting process in terms of

coordination mechanisms and incentives.

The remainder of this chapter is organized as follows. Section 5.2 outlines the

relevant literature on intentional biases in judgmental forecasting and on weighing

schemes for formulating consensus forecasts, and states our hypotheses. Section 5.3

specifies our experiment and our methods to examine participants’ behavior. Section
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5.4 lists the results and their implications, while Section 5.5 concludes and gives

suggestions for future research.

5.2 Theoretical background

Intentional forecast biases are often overlooked in the literature, and never isolated

from unintentional biases for study. Weighing schemes to combine forecasts are

widely studied as mechanisms to improve forecast accuracy. Though their use sup-

posedly removes intentional biases, their influence on forecasting behavior remains

ignored. In this section, we formulate hypotheses and determine the objectives of our

experiments to examine how the design of the forecasting process affects behavior

and performance.

5.2.1 Intentional forecast biases

Forecasts can be subject to managerial pressure (Syntetos et al., 2009b), and are

not necessarily supposed to minimize forecast biases. Organizations can maintain

objectives other than forecast accuracy: forecast biases can be intentional (Lawrence

et al., 2000) and a “result of deliberate and rational decision making behavior on the

part of the forecasters” (Lawrence and O’Connor, 2005, p.3). Documented examples

of intentional biases include forecasters who inflate forecasts to ensure that suppliers

give them priority (Syntetos et al., 2009b) or to increase the publicity of the forecast

(Ashiya, 2009). Wright and Rowe (2011, p. 12) conclude that “[w]e must always

remember that forecasts are rarely, in themselves, disinterested and innocent products

of the group process in which they are produced and this reality should cause us to

reconsider the way in which we evaluate forecasts.”

Departmental roles and incentives are sources of unintentional and intentional

forecast biases. Yaniv (2011) fully ascribes biases to incentives, ignoring roles, and

concludes that forecasting behavior differs substantially between departments only

when financial incentives differ. By contrast, Kuo and Liang (2004) highlight the im-

portance of roles. They conclude that departmental roles affect forecasting behavior,

even when forecasters receive exactly the same information and have no role-specific

incentives or interests, illustrating the unintentional bias provided by roles. Like-

wise, Önkal et al. (2012) find significant effects on the forecast of varying roles, even

without incentives. Participants with the role of forecasting executive, marketing di-

rector, or production director display a strong commitment to their own roles (Önkal

et al., 2012). Yaniv (2011), Kuo and Liang (2004), and Önkal et al. (2012) do not

differentiate between intentional and unintentional biases. However, our previous
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study (see Chapter 4) exploring the interaction of roles and incentives, demonstrates

that both roles and incentives have a substantial influence on behavior and cause

unintentional biases.

Forecast processes at organizations involve multiple stakeholders, which does not

necessarily contribute to the quality of the forecasts, and possibly impairs forecasts

due to the negative effects of how the group is organized (Brockhoff, 1983). Forecast

accuracy depends on the group size, the way members interact, the performance of

individual members, and shared representations of the forecasting task (Graefe and

Armstrong, 2011; Kerr and Tindale, 2011). Alternatively, instead of groups that

generate a single forecast, the separate individual forecasts of group members can be

combined into a final forecast by using a weighing scheme.

5.2.2 Weighing schemes for combining forecasts

Weighing schemes for combining forecasts from forecasting methods, rather than in-

dividual people, have been extensively studied. A combination of forecasts obtained

from various forecasting methods can reduce the forecast error, by being more robust

to particular assumptions and wrong inferences (Bates and Granger, 1969; Diebold

and Pauly, 1987). Indeed, empirical results show that a combination of separate fore-

casts often substantially improves forecast accuracy (Chan et al., 1999; Clemen, 1989;

Diebold and Pauly, 1987). A simple average of forecasts can outperform separate

forecasts (Fang, 2003), and is generally more robust than a weighted average (Palm

and Zellner, 1992). Adding additional forecasts as inputs further improves accuracy

(Makridakis and Winkler, 1983). Recent research continues to show the benefits

of combining forecasts (Costantini and Kunst, 2011; Kurz-Kim, 2008; Rapach and

Strauss, 2008; Swanson and Zeng, 2001; Wichard, 2011).

These results appear to hold when inputs are provided by judgmental forecasters

instead of forecasting methods, in a context without roles and incentives (Ashton

and Ashton, 1985; Clemen and Winkler, 1999; Lipscomb et al., 1998; Morris, 1977;

Önkal et al., 2011). Whether the results change when forecasters do have varying

roles and incentives is unknown. Though the claim that weighing schemes can negate

the intentional biases of roles and incentives is appealing (Oliva and Watson, 2009,

2011), there is no evidence to support this.

Various weighing schemes to combine separate forecasts, in addition to the simple

average, have been proposed. The accuracy-weighted scheme, a popular method, de-

rives from the variance-covariance method. This method incorporates the accuracy

of the individual forecasts, reflected by the variance of individual forecast errors,

as well as the dependence between forecasts, reflected by the covariance between
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individual forecast errors (Winkler and Makridakis, 1983). Weights are calculated

by means of linear regression (Granger and Ramanathan, 1984), principal compo-

nent regression (Chan et al., 1999), or Bayesian shrinkage (Anandalingam and Chen,

1989; Diebold and Pauly, 1990; Min and Zellner, 1993; Walz and Walz, 1989). The

accuracy-weighted scheme, seen at Leitax (Oliva and Watson, 2009, 2011), Norges

Bank (Bjørnland et al., 2012), and manufacturers (Protzner, 2015) ignores the covari-

ance between forecast errors to increase forecast accuracy, because of the sensitivity

of the covariance to the sample cross-correlations, which results in highly unstable

estimates of the weights (Clemen and Winkler, 1986; Makridakis and Winkler, 1983;

Newbold and Granger, 1974; Winkler and Clemen, 1992).

5.2.3 Hypotheses

Roles and incentives affect behavior, and engender both unintentional and intentional

forecast biases. We posit that these biases can be separated by distinguishing be-

tween a private forecast and a shared production quantity, determined sequentially

by forecasters. The private forecast contains unintentional biases. The intentional

bias is measured as the difference between proposed production quantities and private

forecasts, disentangled from unintentional forecasting biases.

Previous research ascribes intentional biases solely to financial incentives (Oliva

and Watson, 2009, 2011). But roles, even when unconnected to rewards or penalties,

can affect intentional biases, by implying goals. Because prior research shows that

roles and incentives both cause unintentional biases (see Chapter 4), we hypothesize

that both also cause intentional biases and substantially impact performance.

Hypothesis 1. Organizational roles, even without role-specific financial incentives,

entail intentional biases.

Hypothesis 2. Financial role-specific incentives result enlarge intentional biases

induced by organizational roles.

To analyze forecasting behavior under varying conditions, we allow for hetero-

geneity among forecasters, as previous work shows that distinct types of forecasting

behavior exist, labelled chasers and smoothers (see Chapter 4). Nevertheless, as the

unintentional biases caused by roles and incentives are independent of the type of

behavior (see Chapter 4), we hypothesize that intentional biases are similarly inde-

pendent of the type of forecasting behavior.

Hypothesis 3. Intentional biases are not related to the distinct types of forecasting

behavior labelled chasers and smoothers.
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Weighing schemes supposedly negate the effects of roles and incentives, improving

forecasts by removing intentional biases (Oliva and Watson, 2009, 2011). However,

no studies examine the forecasting behavior under particular weighing schemes. Here,

we test whether the accuracy-weighted scheme reduces intentional biases relative to

using the simple average.

Hypothesis 4. The accuracy-weighted scheme to combine separate forecasts results

in lower intentional biases than the simple average.

The different combination schemes discussed do not incorporate interaction be-

tween forecasters for a single decision. Yet, forecast performance hinges on how

members interact (Graefe and Armstrong, 2011; Kerr and Tindale, 2011). Nauta

and Sanders (2001) and Nauta et al. (2002) mention operations and sales as an ex-

ample of organizational departments that commonly have opposing interests. By

allowing revisions in response to other inputs and by having roles with opposing in-

terests, a weighing scheme resembles a negotiation, which is likely to emphasize the

competitive nature of the process and increase intentional biases.

Hypothesis 5. Incorporating interactions between members in the forecast meeting

increases intentional biases.

If unintentional biases are reduced, but not removed, by the accuracy-weighted

scheme, the extended weighing scheme of Palm and Zellner (1992), which explicitly

models and corrects biases of inputs, potentially increases performance, especially

because unintentional biases due to roles and incentives are present (see Chapter

4). Performance can also deteriorate because of misspecification of the scheme and

estimation errors. Because the scheme is not as simple to interpret, its effect on

behavior is not examined. However, combining inputs post-hoc using the scheme

may demonstrate its potential value.

Hypothesis 6. A weighing scheme that corrects inputs for biases outperforms weigh-

ing schemes without such a correction.

5.3 Experimental design and data

We conducted an experiment to examine our hypotheses about forecaster behavior

under various roles, incentives, and weighing schemes. After studying a time series

of 18 periods of historic demand, participants separately provide a forecast and pro-

duction quantity for the next period. They subsequently see the actual outcome and

updates of the available information—profit, lost sales, obsolescence, and forecast

accuracy. They repeat these tasks and see the outcome successively for 18 periods.
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The forecasts are neutral, representing the participants’ expected demand, and

are separate from the desired production quantities. The task is sequential: partici-

pants privately forecast the demand for the next period, after which they propose a

production quantity. Another manager, represented by a computer agent, simulta-

neously proposes a production quantity. Both of these quantities are used in various

weighing schemes to determine the production decision. The agent allows us to sim-

ulate interdepartmental decision-making in a fully controlled environment. In this

setup, the intentional bias is isolated for analysis by defining it as the difference

between the demand forecast and the proposed production quantity.

The experiment has a two-by-two-by-two-by-two mixed factorial design, varying

with respect to the departmental role (sales or operations), incentive scheme (absence

or presence of a role-specific financial incentive), type of computer agent (absence or

presence of a role-specific financial incentive), and weighing scheme used (accuracy-

weighted or interaction). The weighing scheme that defines the final production

quantity varies between distinct phases of the experiment. Apart from the initial

training phase, the experiment consist of two phases. The first phase uses a sim-

ple average of inputs, whereas the second phase uses either the accuracy-weighted

scheme or allows for interaction between participant and agent to determine the final

production quantity.

Below, we specify the experiment by detailing the forecast decision, the produc-

tion quantity decision, the roles and incentives of participants and agents, and the

weighing schemes, after which we introduce our sample and measures of analysis.

The decision-making context follows from previous behavioral experiments: the fore-

casting decision is derived from the study of Kremer et al. (2011) and the production

quantity decision from Schweitzer and Cachon (2000).

5.3.1 The forecast decision

Similar to Kremer et al. (2011), we use a local level model, also known as a random

walk with noise, to simulate the demand:

dt = lt + εt, εt ∼ N(0, σ2
ε)

lt = lt−1 + νt, νt ∼ N(0, σ2
ν)

(5.1)

In our case, σ2
ν and σ2

ε are set equal to 100, thus implying equal parts of signal and

noise.
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The optimal forecast

In the study of Kremer et al. (2011), the optimal forecast is used to compare per-

formance between participants. However, we only use it to specify agent behavior.

For a local level model, single exponential smoothing, which updates the forecast

based on the observed forecast error, is the optimal forecast method (Lawrence and

O’Connor, 1992):

d̂t+1|t = d̂t|t−1 + α(dt − d̂t|t−1) (5.2)

where d̂t+1|t denotes the forecast of demand for period t+1 at time t, and dt denotes

the observed demand at time t; α is a smoothing parameter.

The smoothing parameter α∗ that minimizes the mean squared forecast error

depends on the signal-to-noise ratio q = σ2
ν/σ

2
ε . Applying the Kalman filter to

the local level model (5.1) leads to equation (5.2) and gives the optimal smoothing

parameter from the steady state of the Kalman gain, the optimal weighing factor for

new information (Durbin and Koopman, 2012), as:

α∗ =

√
q(q + 4)− q

2
(5.3)

Agents use single exponential smoothing with (5.3) to forecast demand for the next

period.

5.3.2 The production quantity decision

The production quantity decision is based on the newsvendor model, following the

behavioral experiment of Schweitzer and Cachon (2000), in which a production quan-

tity qt+1|t needs to be decided at time t for sale during the next period t + 1. The

produced quantity is only available during time period t + 1. After observing the

outcome in period t+ 1, in which lost sales are directly observed, a new production

quantity has to be set for period t+ 2.

Profit is determined by the revenue p for each unit sold minus the cost c for each

unit produced. The number of units sold is equal to the minimum of the produced

quantity and demand. Given production quantity q and demand d, profit π(q, d) is:

π(q, d) = pmin(q, d)− c · q (5.4)
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Expected profit for the demand distribution F , with density f , is:

E[π(q, d)] = [1− F (q)]π(q, q) +

∫ q

0

f(x)π(q, x)dx (5.5)

The optimal production quantity

In the study of Schweitzer and Cachon (2000), the optimal production quantity is

used to normatively assess the performance of participants. However, similar to the

optimal forecast, we only use it to specify agent behavior. The optimal production

quantity, q∗, maximizes expected profit (5.5) by balancing the costs of lost sales

(p− c) and the total cost (p) of being either overstocked (c) or understocked (p− c),

and follows from:

F (q∗) =
p− c

c+ (p− c)
=

p− c

p
(5.6)

which is referred to as the critical fractile (Schweitzer and Cachon, 2000).

The optimal order quantity is based on this critical fractile rather than on the

expected demand. Applying the Kalman filter to the local level model (5.1) gives

an expression for the variance of the demand. Since the forecast distribution is

normal (Durbin and Koopman, 2012), the mean and the variance characterize the

entire distribution. The expression for the prediction error variance derived from the

Kalman filter consists of the variance of the next state plus the variance of the noise:

Var(d̂t+1|t) = Var(l̂t+1|t) + σ2
ε (5.7)

Similar to calculating the optimal smoothing value, the variance of the state, Var(l̂),

has a steady state, satisfying the following equation, derived from applying the re-

cursive Kalman filter:

Var(l̂) = Var(l̂)

(
1− Var(l̂)

Var(l̂) + σ2
ε

)
+ σ2

ν

= σ2
ε(q +

√
q2 + 4q)/2

(5.8)

So, the prediction error variance is:

Var(d̂t+1|t) = σ2
ε(q +

√
q2 + 4q)/2 + σ2

ε (5.9)

The expressions for the mean forecast (5.2) and the variance (5.9) together char-

acterize the normal demand distribution F in (5.5) and (5.6):

dt+1|t ∼ N(d̂t+1|t,Var(d̂t+1|t)) (5.10)
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We can now solve for q∗ using the inverse distribution function and the critical fractile:

q∗ = F−1

(
p− c

p

)
= d̂t+1|t +

√
Var(d̂t+1|t) · Φ−1

(
p− c

p

)
(5.11)

which gives the optimal order quantity, based on the optimal forecast and the trade-

off of being either over- or understocked. Agents derive the optimal order quantity

(5.11) using the optimal forecast and the steady state values of (5.9).

5.3.3 Roles and incentives

To examine behavior under different roles and incentives, participants have the role

of either operations or sales managers. The operations department focuses on pro-

duction and inventory levels; the sales department focuses on product availability.

Incentives penalize participants for outcomes straying from their department’s ob-

jective, minimizing either obsolescence or lost sales, or from the company’s objective,

maximizing profit and minimizing ex-post inventory error.

Under incentives for the company’s objective, which are not role-specific, the sales

price p is 2 Euro and the cost of production c is 1 Euro. The optimal order quantity

q∗t+1|t at time t, following (5.11), is equal to the expected demand d̂t+1|t, regardless
of the departmental role, because of a symmetrical cost structure of lost sales and

obsolescence. In this case, there is no incentive for an intentional bias.

However, under incentives for the department’s objective, the cost structure is

asymmetrical. The sales price p remains 2 Euro. Operations managers are penalized

for obsolescence, doubling the associated cost; sales managers are similarly penalized

for lost sales. This shifts the trade-off of the costs of lost sales and the total cost

of being either overstocked or understocked, changing the critical fractile (5.6) for

operations managers and sales managers respectively to:

F (q∗operations) =
p− c

2c+ (p− c)

F (q∗sales) =
2(p− c)

c+ 2(p− c)

(5.12)

As a result, for p = 2 and c = 1 the optimal order quantities q∗ (5.11) for operations

managers and sales managers respectively become:

q∗operations = d̂t+1|t +
√
Var(d̂t+1|t)Φ−1

(
1

3

)

q∗sales = d̂t+1|t +
√
Var(d̂t+1|t)Φ−1

(
2

3

) (5.13)
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The incentives of these two roles are symmetrical around the expected demand. If a

simple average is taken of the two optimal order quantities and if behavior is rational

and based on unbiased forecasts, the effects of the incentives cancel out.

The change in the optimal order quantity illustrates the effect of the role-specific

department incentive. In addition, (5.11) and (5.13) specify the desired production

quantity of agents with a company objective (not role-specific) or departmental ob-

jective (role-specific), respectively.

To simulate interdepartmental decision-making between sales and operations, the

production decision in each time period is based on the shared quantity inputs of the

participant and the computer agent. The role of the agent is complementary to the

participant’s role, i.e. the computer agent takes on the role of an operations manager

when a participant has the role of a sales manager. The agent provides its desired

production quantity as input.

5.3.4 Weighing schemes

Three different weighing schemes are used in different phases of the experiment to

combine inputs from the participant and the agent into a final production quantity.

The weighing scheme used in the first phase of the experiment is a simple average of

inputs, calculating the production decision qo, based on the proposed quantities of

participant r and agent a, in each time period t, as:

qo,t = (qr,t + qa,t)/2 (5.14)

The second combination scheme is the accuracy-weighted scheme. It is defined as

a weighted average based on the past performance of the participant and agent, in

which the covariance is ignored, as is commonly done in practice (Bjørnland et al.,

2012; Clemen and Winkler, 1986; Winkler and Clemen, 1992):

qo,t = wr,tqr,t + wa,tqa,t

wr,t =
ea,t

er,t + ea,t
wa,t =

er,t
er,t + ea,t

er,t =
1

t− 1

t−1∑
i=1

(qr,i − di)
2 ea,t =

1

t− 1

t−1∑
i=1

(qa,i − di)
2

(5.15)

Note that qo,t is a convex combination of the inputs based on the observed forecast

accuracy up to time period t.

The third combination scheme has interaction in each time period by allowing

the participant and the agent to revise their inputs after seeing the other’s input.
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By having roles with opposing interests, the weighing scheme resembles a negotia-

tion. Interaction is limited to four rounds. This should be sufficient to determine

whether the scheme affects participant behavior. In each of these rounds, the agent

and the participant simultaneously propose production quantities. After seeing each

other’s proposals, they can update their quantity for the next round. There are no

restrictions for the participants: they can increase, decrease, or leave the proposed

quantity unchanged. The agent’s behavior is outlined below. After the last round

of interaction, the average of the last two inputs of the agent and the participant

determines the production outcome.

The agent follows a simple algorithm during interactions, which includes random

variation to avoid deterministic behavior. The agent neither behaves competitively

nor punishes the participant: it can either adjust its input towards the participant’s

or leave it unchanged. The agent’s desired production quantity is its input for the

first round of the negotiation. Also, the agent never moves outside of the range set

by the 5th and 95th percentiles of the forecast distribution, to limit its reaction to

possibly extreme inputs by participants.

In the second round of the interaction, the agent adjusts its quantity, reducing

the gap between its own and the participant’s quantity. Its behavior in the third and

fourth round depends on the preceding actions of participants. If the participant’s

quantity is not closer towards the agent’s proposal, the agent does not adjust its

proposal in return. However, if the participant decreases the gap, the agent further

adjusts its proposal towards the participant’s.

If the agent adjusts its quantity, it adjusts it by one third of the distance between

its own most recent proposal qa and the latest proposal of the participant qr, rep-

resenting a substantial step towards the participant’s quantity. It then increases or

decreases, depending on the participant’s role, its proposal by this quantity times a

random factor, to include variation in its new proposal qa and avoid deterministic

behavior, which can be quickly learned by participants:

x ∼ Beta(2, 2)

qa := qa +
qr − qa

3
(0.5 + x)

(5.16)

This proposed beta distribution is attractive, because it restricts x to 0 ≤ x ≤ 1, the

expected mean and mode is 0.5, and the probability mass is highest at the mean after

which it tapers off for higher or lower values. As skewness is zero, the distribution is

symmetrical around the mean.
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5.3.5 Samples

We generated two time series of demand, one for each phase, using (5.1) for 36 time

periods. The first half of each time series serves as the historic data for participants;

the second half is used for the decision-making.

For the condition of the accuracy-weighted weighing scheme, analyses are based

on 357 participants (240 men and 117 women with an average age of 21) who are

randomly allocated over the four different conditions of role (sales or operations) and

incentive (not role-specific company incentive or role-specific department incentive).

The number of participants for each role and incentive is listed in Table 5.1. Students

of a Business Administration program participated in 2013 as part of their course.

They were familiar with the topic. Behavioral experiments are commonly conducted

with students to ensure that analyses are based on a large number of participants

(e.g. Bolton and Katok, 2008; Bostian et al., 2008; Kremer et al., 2011; Schweitzer

and Cachon, 2000). Typically, experienced managers and students exhibit the same

behavior (Bolton et al., 2012).

Table 5.1: Experimental data over the four conditions for the two conditions
of the weighing scheme
The four experimental conditions are based on the two roles of operations and sales,
and the incentives of either department or company.

Company incentive Department incentive
(Not role-specific) (Role-specific)

Operations Sales Operations Sales

Accuracy-weighted
Total: 357 92 91 85 89

(26%) (25%) (24%) (25%)

Interaction
Total: 72 16 19 19 18

(22.22%) (26.39%) (26.39%) (25.00%)

For the condition using interaction as a weighing scheme, the analysis is based

on practitioners instead of students. The 72 practitioners, of which 51 men and 21

women, with an average age of 34, from various manufacturing companies, are all

involved in forecasting or demand planning. Table 5.1 lists the number of participants

for each role and incentive.

We exclude respondents who do not correctly answer the control questions, which

check whether participants remember their role and incentive scheme at the end of

the experiment, and understand the forecasting task of the experiment. We also
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leave out respondents who make typographical errors during the experiment. This is

necessary because a simple input error influences subsequent rounds as the decisions

are dependent on each other through time. Hence, we cannot simply correct obvious

errors, interpolate, or treat particular inputs as missing values. No other selection

criteria are applied.

5.3.6 Analyses

The main measure of interest is the intentional bias, defined as the difference between

participants’ forecast di,t and their production quantity qi,t:

δi,t =

⎧⎨
⎩di,t − qi,t if i has an operations role

qi,t − di,t if i has a sales role
(5.17)

We define the intentional bias separately for operations and sales roles to ensure that

the intentional bias follows from the context: a positive bias for operations means

that the forecast is deflated, whereas a positive bias for sales means that the forecast

is inflated. For interactions, the final proposed quantity is used.

Preliminary insight into the effect of different incentives and roles is given by

graphing the average of δt per incentive type over time. In addition, the intentional

bias δi,t is modeled as an AR(1) process with random slopes αi and coefficients

φi to incorporate heterogeneity using maximum likelihood. A dummy variable v

indicates the absence (0) or presence (1) of the role-specific department incentive for

participants.

δi,t = αi + φiδi,t−1 + βvi + ηit

ηit ∼ N(0, σ2
η)

αi ∼ N(μα, σ
2
α)

φi ∼ N(μφ, σ
2
φ)

(5.18)

If |φi| < 1, the autoregressive process is stationary, and the mean of δi is:

E[δi] =
αi + βvi
1− φi

(5.19)

A positive mean for participants with the company incentive (vi = 0) gives evidence

for hypothesis (1) that roles, even without role-specific financial incentives, entail

intentional biases. A β that is substantially and significantly higher than 0 gives
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evidence for hypothesis (2) that role-specific incentives result in larger intentional

biases.

Model (5.18) is estimated separately for the two distinct types of forecasting

behavior, chasers and smoothers. Estimates that do not differ significantly support

hypothesis (3), which posits that intentional biases are not related to the distinct

types of forecasting behavior labelled chasers and smoothers.

Behavior under the different weighing schemes is compared using the mean av-

erage intentional bias. In the first phase, the simple average is used. In the second

phase, either the accuracy-weighted scheme or interactions between the participant

and agent, allowing them to revise their inputs, is used. The change in the intentional

bias in the second phase is tested using a Wilcoxon signed-rank test, to determine

whether intentional biases are lower under the accuracy-weighted scheme, as posited

by hypothesis (4), and whether intentional biases are higher when there is interaction

between participant and agent, as posited by hypothesis (5).

If the intentional biases are not fully removed by the accuracy-weighted scheme, a

possible alternative is offered by a scheme which de-biases the inputs. If the biases are

constant and do not cancel out, the inputs can be explicitly de-biased by estimating

constant biases θ for each input. Given θr and θa, the weights can be calculated as

(Palm and Zellner, 1992):

wr,t =
ea,t + θa,t(θa,t − θr,t)

er,t + ea,t + (θr,t − θa,t)2

wa,t = 1− wr,t

(5.20)

During the first time period, the simple average is used. In subsequent time periods,

the biases θ, which is the sum of intentional and unintentional biases, up to time

period t is calculated as:

θi,t =
1

t− 1− 18

t−1∑
n=19

(qi,n − dn) (5.21)

Performance under this de-biasing scheme is compared to the performance under

the other weighing schemes, using RMSE. A Wilcoxon signed-rank test is used for

hypothesis (6) to determine whether this scheme outperforms weighing schemes with-

out such a correction. The simple average is excluded from the comparison, because

it is used in the first phase of the experiment, which has a different time series of

simulated demand.
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5.4 Results

We first examine the average intentional bias of participants of the experiment for the

two types of incentives. We then proceed by examining the results of our estimated

statistical model (5.18) and statistical tests, and discuss the implications of these

results for our hypotheses in turn.

Figure 5.1 shows the mean intentional bias δi,t aggregated per time period over

participants, for the department and company incentive separately, and with the

simple average as the weighing scheme. The biases are positive under both incentives,

and the intentional bias for the role-specific department incentive is consistently and

substantially higher than the bias for the company incentive. Roles, even without

role-specific incentives, seem to entail intentional biases, amounting to an average

adjustment of 41.032. In addition, role-specific department incentives almost double

the intentional biases, from 41.032 to 78.336.

Figure 5.1: Mean intentional biases
This figure shows the mean intentional bias δt aggregated over participants (stu-
dents and practitioners combined) per time period, for the department and company
incentive with the simple average as the weighing scheme.
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To examine the intentional biases δ in more detail, Table 5.2 presents the estimates

of the AR(1) model (5.18). The estimated effect of the role-specific department

incentive β is substantially and significantly different from zero for both students (β =
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Table 5.2: Estimates of the AR(1) model for intentional adjustments
Estimates of model (5.18) for the groups of students and practitioners separately. The
effect of the department incentive β is significant. Standard errors are in parentheses.

Students Practitioners
(n = 357) (n = 72)

μα 32.972 (0.122) 33.824 (0.756)
μφ 0.298 (0.079) 0.249 (0.655)
β 24.826 (0.003) 25.370 (0.721)
σ2
α 8.661 (0.978) 12.685 (0.431)

σ2
φ 0.091 (0.266) 0.143 (0.734)

24.826, s. e. = 0.003) and practitioners (β = 25.370, s. e. = 0.721), which indicates

that role-specific department incentives increase intentional biases, consistent with

hypothesis 2. The mean (5.19) of the AR(1) process is equal to 46.968 for intentional

biases under company incentives and 82.333 for intentional biases under role-specific

department incentives. As the average forecast is equal to 572.856, these biases

correspond to a 8% and 14% adjustment. The intentional bias under the company

incentive shows that roles, even without role-specific incentives, entail intentional

biases, which supports hypothesis 1.

Table 5.3: Estimates of the AR(1) model for different types of forecasting
behavior
Estimates for different subsets of the data, either based on all participants combined,
or separately for chasers and smoothers. Standard errors are in parentheses. The
estimates for chasers and smoothers are not significantly different.

All Chasers Smoothers
(n = 357) (n = 271) (n = 86)

μα 32.972 (0.122) 34.344 (0.099) 33.620 (0.541)
μφ 0.298 (0.079) 0.387 (0.081) 0.351 (0.575)
β 24.826 (0.003) 28.258 (0.025) 29.857 (0.763)
σ2
α 8.661 (0.978) 6.996 (0.623) 5.027 (12.264)

σ2
φ 0.091 (0.266) 0.084 (0.454) 0.124 (0.864)

Estimating the model separately for the two types of forecasting behavior intro-

duced in Chapter 4 gives the results in Table 5.3. The differences are not statistically

significant, implying that intentional biases, like unintentional biases, are unrelated

to the two types, chasers and smoothers, of forecasting behavior, which supports

hypothesis 3.
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To explore how intentional biases change under the various weighing schemes, Ta-

ble 5.4 lists the average descriptive intentional biases per role and incentive for each

of the weighing schemes. Figure 5.2 illustrates these outcomes. Under the simple av-

erage scheme, the biases for the company incentive are substantial, 39.886(s. e. 5.731)

for operations and 42.921 (s. e. 3.192) for sales. This shows that roles, even without

role-specific financial incentives, entail intentional biases, supporting hypothesis 1.

The bias under the department incentive is significantly larger, 79.998(s. e. 3.654) for

operations and 77.229 (s. e. 3.685) for sales. This shows that financial role-specific

incentives result in larger intentional biases, supporting hypothesis 2. The accuracy-

weighted scheme approximately halves the intentional biases found under the simple

average: the smallest drop is 38% for operations under a company incentive from

39.886 to 24.751, and the largest drop is 55% for sales under a department incentive

from 77.229 to 34.507. The accuracy-weighted scheme reduces, but does not re-

move, the intentional bias, as the lowest bias, 24.751 for operations under a company

incentive, is still substantial. Thus, it removes neither the intentional bias due to role-

specific incentives nor the bias due to roles themselves, which supports hypothesis

4. Including interaction between the participant and agent, allowing them to revise

their inputs, lowers the intentional biases to a similar extent as the accuracy-weighted

scheme does, though with more variation: the smallest drop is 31% for operations

under a company incentive from 39.886 to 27.442, and the largest drop is 78% for

operations under a department incentive from 79.998 to 17.942. This contrasts with

hypothesis 5, which posits that interactions emphasize the competitive nature of

the task. Rather, agents’ revision of forecasts towards the quantities provided by

participants appear to stimulate cooperation, reducing participants’ intentional bias.

Table 5.4: Mean intentional biases under the various weighing schemes
The columns first differentiate between department and company incentive, fol-
lowed by the role of the participant. The rows differentiate between the weigh-
ing schemes. Standard errors in parentheses. Differences between incentives within
weighing schemes and between the simple average and alternative weighing schemes
are significant at p < 0.05.

Company incentive Department incentive
(Not role-specific) (Role-specific)

Operations Sales Operations Sales

Simple average 39.89 (5.73) 42.92 (3.19) 79.99 (3.65) 77.23 (3.69)
Accuracy-weighted 24.75 (4.52) 25.69 (2.56) 42.00 (3.45) 34.51 (3.10)
Interaction 27.44 (9.95) 28.39 (5.69) 17.94 (7.52) 29.28 (7.14)
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Figure 5.2: Average intentional bias for roles, incentives and weighing
Schemes
This figure shows the descriptive intentional biases from Table 5.4.
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The weighing schemes—the simple average (5.14), the accuracy-weighted (5.15),

and interaction between participant and agent—influence forecasting behavior and

directly affect the size of the intentional biases. However, none of the schemes fully

removes the intentional biases. Moreover, unintentional biases are also present in

the forecast. Table 5.5 lists the accuracy under the accuracy-weighted scheme, the

interaction scheme, and the de-biasing scheme (5.20). The de-biasing scheme greatly

reduces inaccuracy by 35% compared to the accuracy-weighted scheme, supporting

hypothesis 6. Compared to the interaction scheme it reduces inaccuracy by 37%.

Even such a basic adjustment, which estimates and removes a constant bias from the

inputs of the participant, gives considerable gains.

Table 5.5: Accuracy
Accuracy under the various weighing schemes. Standard errors in parentheses.

RMSE

Accuracy-weighted 197.163 (1.821)
Interaction 203.934 (3.547)
De-biasing scheme 128.097 (1.593)
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5.5 Discussion and conclusion

By conducting an elaborate experiment, which simulates forecasting and production

quantity decisions in an interdepartmental decision-making context, with a large

group of students and practitioners, this study has examined intentional biases in the

context of different departmental roles and incentives in the organizational forecasting

process. We evaluated the effects of roles, incentives, and various weighing schemes on

behavior and performance and find that roles, even without role-specific incentives,

entail intentional biases of 8% of the forecast, and that role-specific incentives increase

these biases to 14%. We test the claim that an accuracy-weighted scheme can remove

unintentional biases, and conclude that though it can half these biases, it cannot fully

negate them. Finally, we observe that a simple de-biasing scheme shows great promise

in reducing intentional as well as unintentional biases by 35%.

These contributions are important for research into forecast biases by isolating

intentional biases for study. The study extends work by Kuo and Liang (2004),

Önkal et al. (2012), and Yaniv (2011), which does not distinguish between intentional

and unintentional biases. Moreover, by differentiating between unintentional and

intentional biases, and by studying behavior under a weighing scheme, our experiment

mimics the case study of Oliva and Watson (2009) and Oliva and Watson (2011). Not

only do we provide empirical support for the impact of weighing schemes, but we also

show that these schemes do not entirely remove intentional biases. More importantly,

we determine the limits of the accuracy-weighted scheme, and show that alternatives,

such as a simple de-biasing scheme, have a potential for a much larger gain.

Our behavioral experiment is the first to isolate intentional biases and to assess

how they are affected by weighing schemes. Future work can build on this by ex-

ploring additional decision-making contexts. Other weighing schemes can be used,

and the interaction between participants and agents can be extended. In addition,

more roles, such as marketing and finance, can be included in the experiment, which

removes the simple dichotomy of sales and operations used in our experiment, and

allows for more diverse roles. Similarly, other and more elaborate incentive schemes

can be introduced.

Our current insights already have important consequences for the design of the

forecasting process in terms of coordination mechanisms and incentives (Singhal and

Singhal, 2007). This is important for practice, because forecasters’ behavior directly

affects forecast performance, which can have large financial ramifications (Fildes

et al., 2008; Syntetos et al., 2011, 2010). Our work on disentangling specific design

choices and examining these in isolation paves the way for future work on forecast

process design, and specifically the potential performance gain of weighing schemes.
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More immediately, however, it presses for a careful review of current policies, be-

cause choices in terms of roles, incentives, and weighing schemes meant to increase

performance can have a detrimental effect.



Chapter 6

Summary and Conclusion

The demand that drives various activities in the supply chain is inherently uncertain,

necessitating the need for forecasting. Retailers require forecasts for sales, inventory

and order decisions, suppliers for production and procurement decisions, and distrib-

utors for capacity allocation decisions. In practice, forecast errors are substantial,

which negatively affects operational performance (Danese and Kalchschmidt, 2011;

Enns, 2002; Hughes, 2001; Ritzman and King, 1993; Zhao and Xie, 2002). Reducing

or minimizing these forecast errors is central to this thesis and is achieved by im-

proving the forecasting capabilities of companies, which encompasses both extending

the available forecasting methods and models as well as analyzing how the forecast-

ing process, the context in which these methods and models are embedded, can be

improved.

Extending the available forecasting methods and models is done in two different

studies, which can be summarized as exploiting already available information, with-

out context-specific assumptions, to achieve substantial gains. The first study ex-

ploits the available information by generalizing existing forecasting methods to better

model intermittent demand. Existing methods either ignore a dependency between

the time between orders and order size, or focus on the risk of inventory obsoles-

cence. This limited scope is costly in terms of inventory and financial performance.

The second study also generalizes existing forecasting methods and supersedes the

traditional discussion of top-down versus bottom-up methods, by examining how the

hierarchy of products is used in forecasting. Stock-keeping units (SKUs) naturally

group together in a hierarchy going from the bottom, with individual sales per prod-

uct, through several intermediary levels, denoting sales for groups of related products

at increasingly general aggregation levels, such as product groups and categories, to

the top of the hierarchy, which lists total sales. Two commonly used approaches
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in practice and research start from opposite ends of the hierarchy to generate fore-

casts for all series: bottom-up forecasting and top-down forecasting. Both of these

approaches imply a loss of information because the scope is restricted to separate

and independent initial forecasts. However, by generating joint forecasts for a group

of products directly, information is better used which translates to superior per-

formance. This approach explicitly incorporates product dependencies, such as the

complementarity of products and product substitution, which are otherwise ignored.

Whereas the first study exploits available information for each SKU separately, the

second study does so by considering SKUs in groups and hierarchies, expanding the

scope of the forecasting models.

To complement the application of forecasting methods and models in the first

two studies, the third and fourth studies analyze the forecasting process at com-

panies, and specifically the use of judgment. Judgmental forecasting is central to

the forecasting processes at many companies, and directly affects supply chain per-

formance (Fildes et al., 2008; Syntetos et al., 2011, 2010). These studies provide

insights into how forecaster behavior systematically differs and how this and the de-

sign of the forecasting process affect performance. We demonstrate that forecasting

behavior differs systematically between individuals to the extent that we discern two

markedly different types of forecasters, labeled chasers and smoothers. We also ex-

amine the influence of roles and incentives, and trace the extent to which forecasters

intentionally adjust their forecasts, and how this is affected by design choices.

The following sections summarize the main findings of the four specific studies,

discuss scientific contributions and managerial implications, and provide suggestions

for future research.

6.1 Main findings

Chapter 2 presents an intermittent demand forecasting method that conditions on

the elapsed time since the last demand occurrence to anticipate incoming demand

and shows, using empirical data, that this can substantially reduce both stock in-

vestment and lost revenue for spare parts. We extensively benchmark our method

against existing forecasting and bootstrapping methods on forecast accuracy and in-

ventory performance and demonstrate that its performance is robust under general

conditions. Existing forecasting methods either do not change the forecast after a

period of zero demand, ignoring all forms of cross-correlations, or adjust the forecast

downwards, addressing only the specific case of inventory obsolescence and not the

general forms of cross-correlations observed in empirical data. All methods ignore

the fact that activities at the source of the demand, such as aggregation of demand,
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preventive and corrective maintenance, can lead to a positive relation between de-

mand size and inter-arrival time of demand occurrences. By anticipating incoming

demand, our method offers substantial financial gains.

Chapter 3 looks into generating forecasts for product groups, and specifically

examines product dependencies ignored in practice. Forecasts are often made at

various levels of aggregation of individual products, which combine into groups at

higher hierarchical levels. We provide an alternative to the traditional discussion of

bottom-up versus top-down forecasting by examining how the hierarchy of products

can be exploited when forecasts are generated. Instead of selecting series from parts

of the hierarchy for forecasting, we explore using all the series. Moreover, instead of

using the hierarchy after initial forecasts are generated, we consider the hierarchical

series as a whole to instantaneously generate forecasts for all levels of the hierarchy.

Our integrated approach explicitly incorporates product dependencies, such as com-

plementarity of products and product substitution, which are otherwise ignored. A

simulation study, comparing and contrasting existing approaches from literature un-

der possible cross-correlations and dependencies, shows the conditions under which an

integrated approach is advantageous. An empirical study shows the substantial gain,

in terms of forecast performance as well as inventory performance, of generalizing

the bottom-up and top-down forecasting approaches to an integrated approach. The

integrated approach is applicable to hierarchical forecasting in general, and extends

beyond the current application of forecasting for manufacturers.

Chapter 4 demonstrates that forecasting behavior differs systematically between

individuals to the extent that we discern two markedly different types of forecasters.

One is characterized by overreaction to forecast errors and might be labeled chasers,

while the other is characterized by underreaction to forecast errors, and might be

labeled smoothers. Extending the models used in earlier behavioral experiments, our

approach relies on wavelets and state space modeling to incorporate forecasting het-

erogeneity. We demonstrate that contextual biases can only be meaningfully explored

after controlling for the forecaster’s inclination towards chasing or smoothing. We

further show that departmental biases persistently impact judgmental forecasting,

even if forecasts are constructed to be free of intentional biases.

Chapter 5 examines intentional biases, an overlooked research area, that arise due

to the influence of different departmental roles and incentives in the forecasting pro-

cess. Through an experiment, which simulates forecasting and production quantity

decisions in an interdepartmental decision-making context, we examine the effects of

roles, incentives, and various weighing schemes on behavior and performance. We

find that roles, even without role-specific incentives, entail intentional biases of 8%

of the forecast, and that role-specific incentives increase these biases to 14%. We test
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the claim that an accuracy-weighted scheme can remove unintentional biases, and

conclude that though this halves these biases, it does not fully remove them. Finally,

we observe that a weighing scheme that explicitly corrects biased inputs shows great

promise in reducing intentional as well as unintentional biases. In our experiment,

this scheme reduces biases by 35%.

6.2 Scientific contributions

The four studies generally show that the conflation of forecast information and fore-

casting capability, used in the stylized models of Aviv (2001) and Aviv (2007), is

an unwarranted simplification. Limitations in the capability of retailers and man-

ufacturers, in terms of forecast model formulation and estimation (Småros, 2007),

but also in terms of the design of the forecasting process, are a concern. Hence, the

studies in this thesis analyze and draw conclusions based on empirical data collected

from industry.

Because of limitations in forecasting capability, not all of the already available

information is used by companies, which suggests that simply expanding the forecast

information available is futile. Chapter 2 demonstrates that, even without context-

specific knowledge and assumptions, and even if there is very little information avail-

able, currently available information can still be used to substantially improve perfor-

mance. By extending forecasting methods from literature, both parametric (Croston,

1972; Snyder et al., 2012; Syntetos and Boylan, 2001, 2005, 2006; Syntetos et al.,

2012; Teunter et al., 2011), and nonparametric (Willemain et al., 2004), the fore-

casting capability of manufacturers is directly increased. This chapter is the first

to propose a forecasting method that can accommodate a positive relation between

demand size and inter-arrival time of demand occurrences, which possibly arises due

to activities at the source of the demand, such as aggregation of demand, preventive

and corrective maintenance (Altay et al., 2012; Boylan and Syntetos, 2007; Wang

and Syntetos, 2011; Willemain et al., 1994). The approach extends the literature

by specifically examining the overlooked case of positive cross-correlation between

the demand size and the elapsed time, and has shown its importance: only focusing

on obsolescence comes at a cost. All previously existing forecasting methods either

ignore all forms of cross-correlations or address only the specific case of inventory ob-

solescence. Moreover, this chapter extensively benchmarks these methods on several

data sets on forecast accuracy and inventory performance.

While Chapter 2 treats products independently, as the little available information

is not enough to estimate dependencies between products, Chapter 3 looks into gen-

erating forecasts for product groups, and specifically examines product dependencies
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ignored in practice. Two commonly used approaches in practice and research start

from opposite ends of the hierarchy to generate forecasts for all series: bottom-up

forecasting and top-down forecasting (Widiarta et al., 2009). In bottom-up fore-

casting, base forecasts are generated for product demand at the lowest level in the

hierarchy (Gordon et al., 1997). Subsequently, these are aggregated to determine

forecasts at higher hierarchical levels. Bottom-up forecasting is commonly contrasted

with top-down forecasting, in which forecasts are generated for aggregated demand

and disaggregated downwards to determine forecasts at lower levels in the hierar-

chy (Kahn, 1998). Research stretches over three decades with mixed results as to

preference for either bottom-up or top-down forecast approaches. The integrated ap-

proach supersedes the traditional comparison of bottom-up and top-down approaches

(Fliedner, 1999; Kahn, 1998), by generating forecasts at all hierarchical levels and

incorporating all available information, rather than only using selected parts of avail-

able data. The integrated approach avoids ex-post revising of forecasts, as is done in

the combination approach (Hyndman et al., 2011), as generated forecasts are already

reconciled and respect the additive restrictions placed on the series by the hierarchy.

Chapters 4 and 5 heed the call that research has to extend beyond the technical

side of forecast generation and consider how the forecasting process is managed and

organized (Armstrong, 1987; Danese and Kalchschmidt, 2011). There is a lack of

performance evaluation and management of forecasting processes at companies, and a

blurred distinction between forecasts, plans, and goals (Moon et al., 2003). Moreover,

forecasts generated by forecasting methods are not directly used. The use of judgment

for generating and adjusting forecasts is often preferred and widely used (Hughes,

2001; Lawrence et al., 2000).

The contribution of Chapter 4 lies in the assessment of the consequences of hetero-

geneity for judgmental forecasting, and our findings have important repercussions for

theory building based on evidence derived from aggregate results. A major problem

of the current knowledge on judgmental biases and the performance of judgmental

forecasting is that most of the evidence on is at an aggregate level, encompassing large

groups of individuals (in the case of experiments based on the newsvendor model see

e.g. Bolton and Katok, 2008; Bostian et al., 2008; Kremer et al., 2011; Schweitzer and

Cachon, 2000). This is problematic, because it overlooks the existence and impact

of forecasting heterogeneity, which refers to the possibility that forecasting behavior

differs systematically between individuals. It may well be the case that two types of

forecasters differ in the extent to which they overreact or underreact to forecasting

errors, and display chasing or smoothing behavior. Such heterogeneity of individual

biases possibly leads to inaccurate aggregate results, which do not reflect individ-

ual behavior (Lau et al., 2014). Chapter 4 extends earlier behavioral experiments



114 Summary and Conclusion

of Bostian et al. (2008), Kremer et al. (2011), and Schweitzer and Cachon (2000)

to demonstrate, using an approach relying on wavelets and state space modeling,

that forecasting behavior indeed differs systematically between individuals. That is,

forecasters can be divided into people who overreact to forecast errors and display

chasing behavior, and people who underreact to forecast errors, and thus display

smoothing behavior.

The existence of different types of forecasting behavior leads to the conclusion that

forecasters overreact in a relatively unstable environment, which conflicts with the

conclusion of Kremer et al. (2011). The difference between chasers and smoothers and

their behavior also explains why we find no evidence for learning effects in contrast

to Bostian et al. (2008). Furthermore, Chapter 4 demonstrates the existence of

persistent departmental biases of roles and incentives. In line with conclusions of

Kuo and Liang (2004) and Önkal et al. (2012), we find that forecasting behavior is

influenced by roles. In contrast to the conclusion of Yaniv (2011), the effect of roles

is not negated using incentives. We are unable to differentiate between intentional

and unintentional biases, as roles have a strong effect, even without incentives, which

has ramifications as we can no longer assume that we can disentangle the two biases

(e.g. Oliva and Watson, 2009, 2011).

Chapter 5 focuses on intentional biases, an overlooked research area. Biases in

judgmental forecasting have often been studied, but unintentional and intentional

biases have never been disentangled. By isolating intentional biases for study, this

chapter extends the work by Kuo and Liang (2004), Önkal et al. (2012), and Yaniv

(2011), which do not distinguish between intentional and unintentional biases. Our

work shows the importance of disentangling the two sources of biases for research, as

intentional biases are substantial and present even without financial incentives.

Moreover, by differentiating between unintentional and intentional biases, and by

studying behavior under a weighing scheme, our experiment in Chapter 5 mimics the

case study of Oliva and Watson (2009) and Oliva and Watson (2011). Not only do

we provide empirical support for the impact of weighing schemes, but we also show

that these schemes do not entirely remove intentional biases. More importantly, we

determine the limits of the accuracy-weighted scheme, and show that alternatives,

such as a simple-debiasing scheme, have a potential for a much larger gain.

6.3 Managerial implications

Generally, companies lack the knowledge, expertise and training in the field of fore-

casting to validly support decision-making (Hughes, 2001). The situation has even

become worse, as the level of knowledge and forecast accuracy have decreased over
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time (McCarthy et al., 2006). Davis and Mentzer (2007) observe a gap between

theory and practice in terms of forecasting capability, and consider this a significant

issue. Our studies introduce models and methods that directly extend forecasting

capability, and provide insights into how design choices of the forecasting process

affect behavior and performance.

A managerial implication of Chapter 2 is that the nature of the demand process

is important and has to be considered for forecasting and inventory decisions. Ex-

clusively focusing on the risk of obsolescence leads to much higher costs, as possible

decisions are only taken over a restricted domain. A specific managerial implica-

tion of this chapter is that we derive an easy to implement and novel method that

can immediately be used for inventory decisions for SKUs, even if context-specific

knowledge is unavailable. We also provide the means to assess to which SKUs this

method should be applied for the largest gain. This also allows managers to ap-

ply this method on a smaller scale and facilitates implementation. The analysis of

financial performance shows the importance of applying our method. Our method

gave the largest reduction in inventory investment of 14% and even reduced lost rev-

enue by 4%, thus clearly outperforming all other methods. It is easy to estimate and

proves to be robust in a range of applications, and is thus generally, and immediately,

applicable in practice.

The integrated approach of Chapter 3 is applicable to hierarchical forecasting in

general, and extends beyond the current application of forecasting for manufactur-

ers. Even overlapping groups of products can be easily accommodated. The large

reductions in stock investments, up to as much as a 39%, show that the forecast per-

formance directly translates to large financial gains, and is highly relevant for fore-

casting processes at companies. The simulation study, which compares and contrasts

existing approaches under possible cross-correlations and dependencies, demonstrates

under which conditions our integrated approach is advantageous. Furthermore, our

empirical study shows the substantial gain, in terms of forecasting performance as

well as inventory performance, of generalizing the bottom-up and top-down forecast

approaches to an integrated approach. All available information is used, product

dependencies are taken into account, such as the complementarity of products and

product substitution, and other features of the series are incorporated as well, such

as seasonality, which are otherwise ignored. Additional advantages of formulating

the integrated approach as a state space model are that outliers, missing values,

and extra information, such as pertaining to promotions, can be easily, and flexibly,

included (Durbin and Koopman, 2012; Harvey, 1989).

The findings of Chapter 4 are important for practice because forecast behavior

directly affects forecast performance, which can have large financial ramifications.
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Chasers and smoothers have substantially different forecast performance, so that

recognizing the difference between these two types of forecasting can lead to better

hiring and training practices for forecasters. The impact of departmental biases also

has ramifications for how the forecasting process is orchestrated within companies

when multiple departments participate, as roles and the behavior of other participants

affect behavior.

The insights of Chapter 5 have important ramifications for the design of the fore-

casting process in terms of coordination mechanisms and incentives by quantifying

the impact of roles and incentives (Singhal and Singhal, 2007). This is important for

practice, because forecasters’ behavior directly affects forecast performance, which

can have large financial ramifications (Fildes et al., 2008; Syntetos et al., 2011, 2010).

This chapter presses for a careful review of current policies and practices for the fore-

casting processes at companies.

6.4 Future research

The specific case examined in Chapter 2 is only one implementation of the general

method described. More research is needed to explore the dependency between de-

mand size and elapsed time on empirical data sets, but also to apply more general

models, which more broadly incorporate the dynamics between demand size and

elapsed time. These dynamics especially come into play due to the product life cycle,

so that it can become important to not only classify SKUs once but foresee how the

characteristics evolve over time, so that they can be incorporated in the method. Our

method could also be suited for applications outside of spare parts management.

For Chapter 3, future work can extend the estimation part of elaborate state

space models. A drawback of the integrated approach is that it is computationally

more demanding than the other approaches, but not to such an extent that it bars

use in conventional software used by manufacturers. For large numbers of products,

principal component analysis can be used, but much work remains to be done for the

efficient estimation of large state space models.

Chapters 4 and 5 show the need for future work on behavioral experiments. Dif-

ferent types of forecasting behavior will remain an important topic for future study,

as they impact both research done so far and practice. The novel methodology we

outlined in Chapter 4, relying on wavelets and state space modeling, should prove to

be flexible in similar types of research. The behavioral experiment in Chapter 5 is

the first to isolate intentional biases and to assess how they are affected by weighing

schemes. Future work can build on this by exploring additional decision-making con-

texts. Other weighing schemes can be used, and the interaction between participants
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and agents can be extended. In addition, more roles, such as marketing and finance,

can be included in the experiment, replacing the simple dyad of sales and operations

used in our experiment, and allowing for more diverse roles. Similarly, other and

more elaborate incentive schemes can be introduced. Our work on disentangling spe-

cific design choices and examining these in isolation paves the way for future work on

forecast process design, and specifically the potential performance gain of weighing

schemes.

In general, future work can extend analyses of all four studies to accommodate

information and managers from other parties in the supply chain, such as retailers

and suppliers, to further improve the forecasting capabilities of companies.
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Kirchgässner, G., U. K. Müller. 2006. Are forecasters reluctant to revise their pre-

dictions? Some German evidence. Journal of Forecasting, 25 (6), 401–413.

Kohn, R. 1982. When is an aggregate of a time series efficiently forecast by its past?

Journal of Econometrics, 18 (3), 337–349.

Kremer, M., B. Moritz, E. Siemsen. 2011. Demand forecasting behavior: system

neglect and change detection. Management Science, 57 (10), 1827–1843.

Kuo, Y., K. Liang. 2004. Human judgments in New York state sales and use tax

forecasting. Journal of Forecasting, 23 (4), 297–314.

Kurz-Kim, J. 2008. Combining forecasts using optimal combination weight and gen-

eralized autoregression. Journal of Forecasting, 27 (5), 419–432.

Lau, N., S. Hasija, J. N. Bearden. 2014. Newsvendor pull-to-center reconsidered.

Decision Support Systems, (58), 68–73.

Lawrence, M., P. Goodwin, M. O’Connor, D. Önkal. 2006. Judgmental forecasting:

a review of progress over the last 25 years. International Journal of Forecasting,

22 (3), 493–518.

Lawrence, M., M. O’Connor. 1992. Exploring judgemental forecasting. International

Journal of Forecasting, 8 (1), 15–26.

Lawrence, M., M. O’Connor. 2005. Judgmental forecasting in the presence of loss

functions. International Journal of Forecasting, 21 (1), 3–14.

Lawrence, M., M. O’Connor, B. Edmundson. 2000. A field study of sales forecasting

accuracy and processes. European Journal of Operational Research, 122 (1), 151–

160.

Lee, H. L., V. Padmanabhan, S. Whang. 1997. The bullwhip effect in supply chains.

Sloan Management Review, 38 (3), 93–102.

Lee, H. L., K. C. So, C. S. Tang. 2000. The value of information sharing in a two-level

supply chain. Management Science, 46 (5), 626–643.

Levn, E., A. Segerstedt. 2004. Inventory control with a modified Croston procedure

and Erlang distribution. International Journal of Production Economics, 90 (3),

361–367.

Li, R., J. K. Ryan. 2011. A Bayesian inventory model using real-time condition

monitoring information: a Bayesian inventory model. Production and Operations

Management, 20 (5), 754–771.



References 127

Lin, J., M. Vlachos, E. Keogh, D. Gunopulos. 2004. Iterative incremental clustering

of time series. Advances in Database Technology-EDBT 2004. Springer, 106–122.

Lipscomb, J., G. Parmigiani, V. Hasselblad. 1998. Combining expert judgment by

hierarchical modeling: an application to physician staffing. Management Science,

44 (2), 149–161.

Lütkepohl, H. 1984. Linear transformations of vector ARMA processes. Journal of

Econometrics, 26 (3), 283–293.

Makridakis, S., R. L. Winkler. 1983. Averages of forecasts: some empirical results.

Management Science, 29 (9), 987–996.

Massey, C., G. Wu. 2005. Detecting regime shifts: the causes of under-and overreac-

tion. Management Science, 51 (6), 932–947.

McCarthy, T. M., D. F. Davis, S. L. Golicic, J. T. Mentzer. 2006. The evolution of

sales forecasting management: a 20-year longitudinal study of forecasting practices.

Journal of Forecasting, 25 (5), 303–324.

McCarthy Byrne, T. M., M. A. Moon, J. T. Mentzer. 2011. Motivating the industrial

sales force in the sales forecasting process. Industrial Marketing Management, 40

(1), 128–138.

Min, C., A. Zellner. 1993. Bayesian and non-Bayesian methods for combining models

and forecasts with applications to forecasting international growth rates. Journal

of Econometrics, 56 (1), 89–118.

Moon, M. A., J. T. Mentzer, C. D. Smith. 2003. Conducting a sales forecasting audit.

International Journal of Forecasting, 19 (1), 5–25.

Moritz, B., E. Siemsen, M. Kremer. 2014. Judgmental forecasting: cognitive reflection

and decision speed. Production and Operations Management, 23 (7), 1146–1160.

Moritz, B. B., A. V. Hill, K. L. Donohue. 2013. Individual differences in the newsven-

dor problem: behavior and cognitive reflection. Journal of Operations Manage-

ment, 31 (1), 72–85.

Morris, P. A. 1977. Combining expert judgments: a Bayesian approach. Management

Science, 23 (7), 679–693.

Nauta, A., C. K. W. De Dreu, T. van der Vaart. 2002. Social value orientation, orga-

nizational goal concerns and interdepartmental problem-solving behavior. Journal

of Organizational Behavior, 23 (2), 199–213.



128 References

Nauta, A., J. de Vries, J. Wijngaard. 2001. Power and biased perceptions of interde-

partmental negotiation behavior. Group Processes & Intergroup Relations, 4 (3),

263–270.

Nauta, A., K. Sanders. 2001. Causes and consequences of perceived goal differences

between departments within manufacturing organizations. Journal of Occupational

and Organizational Psychology, 74 (3), 321–342.

Newbold, P., C. W. J. Granger. 1974. Experience with forecasting univariate time

series and the combination of forecasts. Journal of the Royal Statistical Society.

Series A (General), 137 (2), 131–165.

O’Connor, M., W. Remus, K. Griggs. 2000. Does updating judgmental forecasts

improve forecast accuracy? International Journal of Forecasting, 16 (1), 101–109.

Ogden, T. 1997. Essential wavelets for statistical applications and data analysis.

Springer Science & Business Media.

Oliva, R., N. Watson. 2009. Managing functional biases in organizational forecasts:

a case study of consensus forecasting in supply chain planning. Production and

Operations Management, 18 (2), 138–151.

Oliva, R., N. Watson. 2011. Cross-functional alignment in supply chain planning: a

case study of sales and operations planning. Journal of Operations Management,

29 (5), 434–448.
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Nederlandse Samenvatting

Voorspellingen zijn essentieel als gevolg van een inherent onzekere consumentenvraag.

Retailers gebruiken voorspellingen voor verkoop-, voorraad- en inkoopbeslissingen;

leveranciers voor productie- en aankoopbeslissingen; en distributeurs voor toewij-

zing van capaciteit. Voorspellingsfouten zijn aanzienlijk in de praktijk en hebben

een negatieve impact op de operationele prestaties. Bedrijven missen de kennis, ex-

pertise en training op het gebied van voorspellen om hun besluitvorming goed te

ondersteunen. Het verminderen of minimaliseren van voorspellingsfouten staat in dit

proefschrift dan ook centraal. Dit wordt bereikt door het verbeteren van de voor-

spellingsmogelijkheden van bedrijven via zowel een uitbreiding van de beschikbare

voorspellingsmethoden en modellen als een analyse van op welke manier het voor-

spellingsproces, de context waarin deze methoden en modellen worden ingezet, kan

worden verbeterd.

Uitbreiding van de beschikbare voorspellingsmethoden en modellen wordt gedaan

in twee verschillende studies, waarin reeds beschikbare informatie, zonder context-

specifieke veronderstellingen, wordt benut om aanzienlijke winst te behalen. De

eerste studie vult bestaande voorspellingsmethoden aan voor het type vraag waarin

aanzienlijke tussenpozen voorkomen tussen vraagmomenten. Bestaande methoden

negeren een mogelijke relatie tussen de verstreken tijd en de hoogte van toekomstige

orders of richten zich op de risico’s van incourante voorraden. Deze beperking heeft

gevolgen voor de prestaties van het voorraadbeheer en het financiële resultaat. Dit

proefschrift presenteert een nieuwe voorspellingsmethode die op basis van de ver-

streken tijd de toekomstige vraag kan anticiperen. Toepassingen op data over vijf

verschillende probleemgebieden tonen aan dat dit aanzienlijke financiële voordelen

biedt. De tweede studie generaliseert bestaande voorspellingsmethoden en vervangt

de traditionele tegenstelling van top-down en bottom-up methoden door te onder-

zoeken hoe de hiërarchie van producten en categorieën kan worden gebruikt bij het

voorspellen. Producten vormen van nature groepen in een hiërarchie met verko-

pen van individuele producten, productgroepen en categorieën, en de totale verkoop.
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Twee veelgebruikte benaderingen beginnen vanaf tegenoverliggende einden van de

hiërarchie, onder- en bovenaf, om voorspellingen te genereren voor al deze niveaus.

Beide benaderingen impliceren verlies van informatie door het maken van afzon-

derlijke voorspellingen, die worden beschouwd als onafhankelijk. Door rechtstreeks

gezamenlijke voorspellingen te genereren voor een groep producten wordt informatie

beter benut. Dit vertaalt zich in superieure logistieke en financiële prestaties. Dit

proefschrift presenteert een dergelijke aanpak die nadrukkelijk de mogelijkheid van

productafhankelijkheden, zoals complementariteit van producten en productsubsti-

tutie, behelst die anders worden genegeerd. Een simulatiestudie en een empirische

studie tonen de aanzienlijke winst die hiermee behaald kan worden. Deze aanpak kan

toegepast worden voor hiërarchische voorspellingen in het algemeen, en reikt verder

dan de huidige toepassing. Waar de eerste studie beschikbare informatie benut voor

afzonderlijke producten, doet de tweede studie dit door expliciet mee te nemen dat

producten in groepen en hierarchieën vallen.

De praktische toepassing van voorspellingsmethoden vormt het onderwerp van

de laatste twee studies, die het voorspellingsproces bij bedrijven analyseren en met

name de rol van intüıtie. Beslissingen op basis van intüıtie vormen de kern van het

voorspellingsproces bij veel bedrijven, en dit heeft een directe invloed op de prestaties.

Deze studies geven inzicht in hoe het gedrag van voorspellers verschilt en hoe dit

wordt bëınvloed. Dit proefschrift laat zien dat het gedrag systematisch verschilt

in zoverre dat voorspellers in twee duidelijk verschillende soorten groepen kunnen

worden ingedeeld, waarbij een groep te drastisch reageert op voorspellingsfouten en

een andere te zwak reageert. De studies modelleren de voorspellingsbeslissingen

die participanten tijdens uitgebreide experimenten maken op een manier die brede

heterogeneiteit van participanten toestaat. Dit proefschrift onderzoekt ook de invloed

van functies en financiële prikkels, en concludeert dat deze invloed aanzienlijk is, en

ook onbewust het voorspellingsgedrag bëınvloedt. Ook test dit proefschrift het effect

van een populair wegingsmechanisme om de voorspellingen van meerdere voorspellers

te gebruiken en concludeert dat deze niet genoeg is om het effect van het ongewenste

gedrag weg te halen. Een wegingsmechanisme dat rekening houdt met bewuste en

onbewuste fouten lijkt betere prestaties te realiseren.

Het onderzoek in dit proefschrift verhoogt de voorspellingscapaciteiten van be-

drijven door de beschikbare voorspellingsmethoden en modellen uit te breiden en

door te laten zien hoe het voorspellingsproces, waarin deze methoden en modellen

zijn verankerd, kan worden verbeterd. Doordat voorspellingen alle beslissingen on-

dersteunen zijn de financiële gevolgen groot.
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