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1 
INTRODUCTION 
The brain is a highly interconnected organ, communicating both with itself as well as 

with other parts of the body. It is involved in many of our daily activities, from holding 

this thesis (motor function), seeing the individual words (processing sensory 

information), to understanding their meaning (cognitive function). As Michio Kaku put it: 

“Sitting on your shoulders is the most complicated object in the known universe.”1 While 

the complexity of the brain is a beautiful product of millions of years of evolution, at the 

same time it has left us with an organ that is highly vulnerable to damaging processes, 

with large clinical consequences. Among the most common and debilitating 

neurological diseases are those that are of a neurodegenerative or cerebrovascular 

nature, which are the primary focus of this thesis.  

Research into the pathophysiology of neurological diseases seeks to determine what 

goes wrong in the brains of patients. Instrumental in this have been two fields of study: 

neuroimaging and genetics. On the one hand, neuroimaging technologies such as 

magnetic resonance imaging (MRI) have allowed researchers to non-invasively examine 

the brain of living individuals and visualize various structural and functional 

abnormalities. This has led to the identification of brain structures that are important for 

diseases, which in turn helped to better understand clinical symptoms. Furthermore, 

neuroimaging sometimes even shows signs of damage before a person has noticeable 

problems. Indeed, for many neurodegenerative and cerebrovascular diseases, evidence 

of an ongoing pathophysiological process can precede the moment of clinical 

presentation by years to even decades.2-4 Even so, the exact neural substrate of these 

brain diseases remains unclear. Novel imaging markers have emerged from technical 

advances in the acquirement and processing of images and provide an opportunity to 

shed light on the pathophysiology of neurological disorders; for the majority of these 

markers, however, the clinical relevance has yet to be explored. 

On the other hand, genetics has played an essential role in research on neurological 

diseases, which have varying degrees of heritability.5-8 Early genetic discoveries in the 

field of neurodegenerative and cerebrovascular diseases stem mostly from monogenic 

forms of disease that aggregate in families. Examples of these include APP in Alzheimer’s 
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disease,9 NOTCH3 in stroke,10 SNCA in Parkinson’s disease.11 However, sporadic cases 

tend to have a more complex genetic architecture, with many genetic variants 

increasing risk only marginally. Genome-wide association studies (GWAS) in tens of 

thousands of individuals has resulted in the identification of hundreds of genetic 

variants.12-19 While these findings have provided insight into the affected biological 

pathways, they have generally explained only a small amount of the variance in disease 

susceptibility. To uncover the so-called 'missing heritability',20 studies are ongoing with 

even larger sample sizes and implementing next-generation sequencing technologies to 

capture more of the genetic variation. 

Neuroimaging and genetics have, as individual fields, undeniably increased our 

understanding of neurological diseases. Nevertheless, recent advancements within each 

of these fields pave the way for further insights into disease by studying  novel imaging 

markers and newly discovered genetic risk variants. Furthermore, the combination of 

both fields, also called 'imaging genetics', has even more potential. The effects of 

neurological disease genes are likely to be reflected in the brain and, conversely, 

observations on neuroimaging can have a substantial genetics basis. Imaging genetics 

tries to leverage these interrelations in order to gain knowledge about neurological 

diseases that would have been untapped by studying imaging or genetics separately.  

METHODOLOGY 
The innovative nature of both imaging and genetics, and more so of their combination, 

has resulted in analytical demands beyond our current capabilities. Chapter 2 of this 

thesis is dedicated to the development of methodology to enable such studies. First, I 

describe a method for assessing a novel neuroimaging marker, enlarged perivascular 

spaces on MRI – an emerging marker of cerebrovascular disease – (chapter 2.1) and the 

initiation of a global consortium to systematically investigate the clinical relevance of 

this marker (chapter 2.2).  In chapter 2.3, I present a novel meta-analytical method that 

increases power and flexibility when individual participant data cannot be shared 

between sites, which is a common issue in genetic studies that require multi-site efforts. 

Chapter 2.4 covers a method to perform genome-wide and brain-wide association 

studies, a theoretical possibility in imaging genetics that is currently not feasible due to 
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1 
computational and logistic limitations. Finally, chapter 2.5 highlights potential biases in 

a recent study on the transmissibility of amyloid-β , which can impact causal inference. 

This methodological chapter is followed by three applied chapters.   

GENETIC DISCOVERIES 
Chapter 3 describes genetic discoveries of imaging markers. Those markers previously 

linked to neurodegeneration, mostly measures of the structure of the brain, are the 

focus of chapter 3.1. I describe GWAS of intracranial volume (chapter 3.1.1) , 

hippocampal volume (chapter 3.1.2), and the volumes of other subcortical brain 

structures (chapter 3.1.3) in the largest discovery samples to date, identifying 33 novel 

genetic variants in 25,000-34,000 individuals.  Neuroimaging can also assess the burden 

of cerebrovascular disease, which is covered by chapter 3.2. Chapter 3.2.1 reviews our 

current knowledge of the genetics of cerebrovascular disease. Next, I describe the first 

heritability estimates and GWAS of intracranial carotid artery calcification in chapter 

3.2.2.  

In chapter 3.3 I study emerging imaging markers, which are not as established as those 

described earlier in this chapter. The anterior commissure is a recently proposed 

imaging marker for neurodegeneration, and I describe the first heritability and GWAS 

analyses in chapter 3.3.1. Similarly, the results in chapter 3.3.2 are the first 

comprehensive description of the genetic determinants of human gait, as imaged by an 

electronic walkway. Furthermore, emerging neuroimaging phenotypes can describe 

brain structure with great detail on a vertex- or voxel-wise level using thousands to 

millions of measures. For two of such phenotypes, we found them to be promising 

targets for genetic studies: the shape of subcortical brain structures (chapter 3.3.3) and 

the grey matter density using voxel-based morphometry (chapter 3.3.4).  

UNDERSTANDING PATHOPHYSIOLOGY 

Chapter 4 explores the effects of known disease genes on the brain. Chapter 4.1 

considers disease variants in relation to candidate imaging markers: Alzheimer’s disease 

variants and several key vascular and degenerative markers (chapter 4.1.1), intracranial 
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aneurysm variants and the presence and size of aneurysms (chapter 4.1.2), and the 

dystrophin gene and cognitive function (chapter 4.1.3). Contrary to the candidate 

markers of chapter 4.1, those in chapter 4.2 have been selected in an unbiased 

approach. This which includes brain-wide studies of genetics variants that increase the 

risk of Alzheimer’s disease  (chapter 4.2.1), frontotemporal lobar degeneration (chapter 

4.2.2 and chapter 4.2.3), and multiple sclerosis (chapter 4.2.4). 

EXPLORING CLINICAL RELEVANCE 

Chapter 5 examines the clinical relevance of neuroimaging and genetics beyond making 

genetic discoveries and understanding pathophysiology. Given that many imaging 

markers are novel, their clinical relevance is yet unclear. In chapter 5.1, I determine 

clinical correlates of a variety of enlarged perivascular spaces, a novel imaging marker: I 

study various demographic and cardiovascular determinants of these enlarged 

perivascular spaces  (chapter 5.1.1) and also their relation to the retinal microvasculature 

(chapter 5.1.2). Similarly, the clinical relevance of recently identified genetic variants that 

increase the risk for neurological diseases is largely unknown. This is explored in chapter 

5.2, with a specific focus on the ability to improve prediction of symptoms and disease at 

an individual level. This was done for genetic risk factors of four neurodegenerative 

diseases in relation to mild cognitive impairment and incident dementia (chapter 5.2.1), 

and also for genetic risk of Parkinson’s disease in relation to basic activities of daily living 

and incident Parkinson’s disease (chapter 5.1.2). 

GENERAL DISCUSSION 

Both neuroimaging and genetics have expanded our knowledge of brain diseases. While 

these advances were largely driven by discoveries in each of these fields separately, joint 

analyses of imaging and genetics can yield even more insight into the pathophysiology 

of diseases and perhaps translate into useful tools for clinicians. In chapter 6, the 

findings described in this thesis are reflected upon from the broader perspective of 

complex diseases. I conclude with a discussion of the implications for future research. 
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ABSTRACT 

Background and Purpose: Dilated Virchow-Robin spaces (dVRS) are an emerging 

neuroimaging biomarker, but their assessment on MRI needs standardization.  

Methods: We developed a rating method for dVRS in four brain regions (centrum semi-

ovale, basal ganglia, hippocampus and mesencephalon) and tested its reliability in a 

total of 125 MRI scans from two population based studies. Six investigators with varying 

levels of experience performed the ratings. Intraclass correlation coefficients (ICC) were 

calculated to determine intra- and inter-rater reliability. 

Results: Intra-rater reliability was excellent for all four regions (ICC>0.8). Inter-rater 

reliability was excellent for the centrum semi-ovale and hippocampus (ICC>0.8) and 

good for the basal ganglia and mesencephalon (0.6–0.8). This did not differ between the 

cohorts or experience levels.  

Conclusions: We describe a reliable rating method that can facilitate etiologic and 

prognostic research on dVRS using MRI. 
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INTRODUCTION 

The study of imaging biomarkers plays an essential role in understanding brain aging as 

well as pathology, such as cognitive impairment, dementia, and cerebrovascular 

disease.21 Structural imaging studies have already shown the importance of white matter 

lesions, infarcts and more recently cerebral microbleeds.21 An emerging potential marker 

are Virchow-Robin spaces (VRS), spaces filled with interstitial fluid that surround the 

blood vessels in the brain.22 VRS can increase in size and such dilated VRS (dVRS) can 

subsequently be found on brain imaging,23 particularly in the mesencephalon, 

hippocampus, basal ganglia and centrum semi-ovale.24, 25 Determinants of dVRS severity 

include age,26 blood pressure26 and inflammation.27 The associated brain pathology is 

diverse, covering small vessel disease,26 28,29 Alzheimer’s disease24,29,30 and CADASIL.31 

Despite increasing literature on dVRS, a major limitation of current research is the lack of 

a robust and generalizable rating method on MRI. Current methods are restricted to 

studies that only use a single MRI protocol and focus on one or two brain regions.23, 24, 26, 

28, 29, 31 A method that can be applied to MRI protocols from different centers and 

scanners and evaluates the whole brain would strongly facilitate etiologic and 

prognostic research on dVRS. Here we propose a novel rating method for dVRS, which 

we apply in two population-based studies, encompassing three different scanning 

protocols.  

METHODS 

We aimed to develop a rating protocol meeting three preconditions. First, the method 

should be standardized and generalizable across various MRI protocols. Second, intra- 

and inter-rater agreement should be high, irrespective of rater experience. Third, the 

method should be easily applicable for other researchers without requiring complex 

image processing. 

Setting 

We used MRI-scans from two population-based cohort studies: the Austrian Stroke 

Prevention Study (ASPS)32 and Rotterdam Scan Study (RSS).33  The ASPS is a prospective 

community-based study investigating the effects of vascular risk factors on brain 
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structure and function in residents of Graz, Austria (aged ≥45 years). Between 1999-2003, 

a diagnostic work-up including MRI was done. Scans were obtained on a 1.5T Philips 

scanner. The MRI-protocol included axial T1-, T2-, proton-density-weighted and fluid 

attenuated inversion recovery (FLAIR) sequences. The study protocol was described 

previously.32 The RSS investigates causes and determinants of chronic neurological 

diseases in the elderly (aged ≥45 years). Participants are residents of Ommoord, a suburb 

of Rotterdam, the Netherlands. Brain MRI was incorporated into the core study-protocol 

from 2005 onwards using a 1.5T GE MR unit. The protocol has been extensively 

described and includes axial T1-, T2-weighted and FLAIR sequences.33 Earlier in 1995, a 

smaller MRI study was performed using a 1.5T Siemens system with the protocol 

including T1- and T2-weighted sequences.33 

Rating Protocol 

We developed and applied our rating method on scans from the ASPS and 2005 RSS, 

since these were acquired with the most up-to-date protocols available. The primary 

rating sequence was T2-weighted (ASPS: slice thickness 4.5mm, RSS: 1.6mm), which 

shows VRS as hyperintensities (Figure S1). VRS were identified by their linear, ovoid or 

round shape depending on the slice direction and considered dilated when their 

diameter was ≥1mm.34 Also, since dVRS >3mm in shortest diameter may have a distinct 

etiology,23 these large lesions were rated separately and not evaluated in the reliability 

analyses. For differential diagnosis with lacunar infarcts, symmetry of the lesions, sharp 

demarcation, and absence of a hyperintense rim on the FLAIR sequence supported 

rating them as dVRS.34 White matter lesions (WML) are mostly confluent and were 

differentiated from dVRS by signal intensity not equivalent to cerebrospinal fluid on T2. 

dVRS were scored in four brain regions: the centrum semi-ovale (CSO), basal ganglia 

(BG), hippocampus and mesencephalon. This choice was based on the pronounced 

presence of dVRS in these regions that was reported earlier and is known from own 

experience.24, 25 Raters determined dVRS count for each region with a maximum of 

twenty per region. Because CSO and BG are visible on multiple slices, the rating was 

done on a single, predefined slice to decrease inter- and intra-rater variability. For CSO, 

this was the slice 1 cm above the lateral ventricles. For BG, this was the slice showing the 

anterior commissure or, when not visible, the first slice superior to it. In the 
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hippocampus and mesencephalon, all unique dVRS were counted (Figure 1). A blank 

rating form is provided as a supplement (File S1). 

Reliability Assessment 

To assess the intra-rater reliability, one rater (H.H.H.A.) scored 85 scans twice, blinded to 

his initial rating, separated by more than one month. Inter-rater reliability was assessed 

on 100 randomly selected scans and 5 additional scans in case of motion artifacts on the 

initial 100 (40 ASPS, 65 RSS). Every scan was rated independently by three to six 

investigators with varying degrees of experience (1-2 years: H.H.H.A., M.C., B.F.J.V., D.B., 

>10 years: C.E. and R.S.) who were blinded to all clinical data. The order of scans was 

randomized and different for each rater. Afterwards, we also assessed the reliability on 

20 scans from the 1995 RSS MRI-protocol rated by three investigators (H.H.H.A., B.F.J.V., 

D.B.).  

Intra-rater and inter-rater reliability was determined using intraclass correlation 

coefficients (ICC) for all raters combined. Secondary analyses were performed after 

stratifying by MRI-protocol (ASPS vs. RSS), experience level (1-2 years vs. 10 years) or co-

existing brain pathology (WML, atrophy, lacunar infarcts). WML and brain volume were 

measured with automated software within each cohort and dichotomized at the median 

value to provide equally-sized groups. For lacunar infarcts, we restricted to participants 

without lacunar infarcts (n=8).  
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Table 1 | Study population characteristics.

 Total RSS ASPS 

Demographics  
Number of participants, n (%) 105 (100) 65 (62) 40 (38) 
Age in years, mean (SD) 65.8 (5.8) 66.9 (5.7) 64.0 (5.6) 
Women, n (%) 54 (51) 34 (52) 20 (50) 
MRI characteristics  
dVRS, mean (SD)  
Centrum semi-ovale 9.6 (6.8) 9.8 (6.5) 9.3 (7.3) 
Basal Ganglia 5.3 (3.4) 5.7 (3.6) 4.7 (2.9) 
Hippocampus 3.4 (3.1) 4.3 (3.3) 1.8 (2.1) 
Mesencephalon 1.8 (1.7) 2.2 (1.9) 1.1 (1.2) 
Participants with lacunar infarcts, n (%) 8 (8) 5 (8) 3 (8) 
Brain volume as % of intracranial 
volume (SD) 

-* 82.3 (3.5) 79.8 (2.7) 

WML volume in mL, mean (SD) -* 8.2 (1.0) 2.9 (4.7) 
*WML and brain volume measures were not pooled because of differences in quantification 
between the two cohorts.  
 
Table 2 | Intraclass Correlation Coefficient values for inter-rater and intra-rater 
reliability. 

 CSO BG HIP MES 

Intra-rater Total 0.88 0.80 0.85 0.82 
  
Inter-rater  Total 0.80 0.62 0.82 0.75 
By protocol Rotterdam Scan Study 0.78 0.65 0.81 0.78 
 Austrian Stroke 

Prevention Study 
0.85 0.68 0.74 0.74 

By experience 1-2 years 0.76 0.64 0.79 0.82 
 >10 years 0.74 0.58 0.70 0.83 
 Between groups 0.67 0.64 0.77 0.78 
By pathology Small WML volume 0.76 0.65 0.82 0.68 
 Large WML volume 0.81 0.57 0.83 0.80 
 Small brain volume 0.82 0.67 0.86 0.75 
 Large brain volume 0.74 0.59 0.73 0.76 
 No lacunar infarct* 0.78 0.61 0.82 0.76 
Values based on 105 MRI scans for inter-rater and 85 scans for intra-rater reliability. 
*Eight persons with lacunar infarcts were excluded from this analysis. 
BG basal ganglia, CSO = centrum semi-vale, HIP = hippocampaus, MES = mesencephalon 
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Figure 1 | Examples of the four regions used for rating dilated Virchow-Robin spaces. 

A) The mesencephalon with four dVRS, B) hippocampus with two dVRS and one large lesion 

on the right side, C) basal ganglia with eleven dVRS and D) centrum semi-ovale with more 

than twenty dVRS. 
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RESULTS 
Study population characteristics are shown in Table 1 (mean age 65.8 (SD 5.8) years, 54 

(51%) women). The distribution of the average dVRS count showed most dVRS in the 

CSO (9.63 (SD 6.79), followed by the BG (5.30 (3.41)), hippocampus (3.35 (3.14)) and 

mesencephalon (1.78 (1.75)).  
Intra-rater reliability for the 85 scans showed nearly perfect agreement (ICC>0.8) for all 

regions (Table 2). The ICC values for the 105 scans indicate good agreement between 

raters (ICC between 0.6-0.8) for the BG and mesencephalon and nearly perfect 

agreement for the CSO and hippocampus (Table 2). Calculating the ICC for RSS and ASPS 

scans separately gave similar values (Table 2). Furthermore, inter-rater reliability was 

independent of rater experience, WML burden and brain volume (Table 2). Excluding 

participants with lacunar infarcts (n = 8) also did not alter the results (Table 2). In the 20 

additional scans from the 1995 RSS protocol, ICC values were >0.8 for each region (not 

shown). 

DISCUSSION 
We propose a newly developed rating method for dVRS in four brain regions, which 

shows good to nearly perfect inter-rater and intra-rater agreement, independent of rater 

experience and concomitant brain pathology. We applied this method to a total of 125 

MRI scans acquired from three different scanners and protocols across two cohorts, and 

found comparable reliabilities.  

The proposed rating has several strengths which can facilitate future dVRS research. We 

developed the protocol on a large dataset of images from different MRI scanners, with 

multiple raters of differing experience level, and performed secondary analyses for 

factors potentially affecting observer agreement. Also, we included the four brain 

regions with most prevalent dVRS, while rater instructions remained simple and time 

investment was minimal (~3min/scan). Moreover, regular transverse slices were used for 

scoring, thereby eliminating the need for complex planar reformatting of scans. 

Whereas previous studies have only used upper limits in size for defining dVRS,26, 29, 31 we 

also implemented a minimum diameter criterion to consider VRS dilated. This is because 
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the increasing resolution of new MRI scanners will enable detection of many VRS smaller 

than 1mm, which could inflate the dVRS rating and reduce comparability between 

studies if not excluded. Morphological criteria were used for differentiation between 

dVRS, lacunar infarcts and WML.34 Although reliability of our method was not affected by 

concomitant brain pathology visible on MRI, the distinction between dVRS and lacunar 

infarcts in particular remains controversial.34  

As an alternative to counting dVRS, we considered assigning a severity score to each 

region after comparison with a consensus-based template. Although preliminary 

analyses revealed good intra-rater agreement on 30 scans (average of regions: 0.70), 

inter-rater agreement was weak to moderate (0.48). We therefore did not pursue this 

approach further. Existing rating protocols were not evaluated, since there currently is 

no gold standard for quantifying dVRS burden. A future direction would be to compare 

the reliability across different rating protocols.  

In conclusion, this study presents a generalizable rating method for dVRS in the 

mesencephalon, hippocampus, BG and CSO that has been tested in a multi-center 

setting. The protocol allows for better comparability between VRS research and is easy 

to implement by investigators. 
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ABSTRACT 
Background: Virchow-Robin spaces (VRS), or perivascular spaces, are compartments of 

interstitial fluid enclosing cerebral blood vessels and are potential imaging markers of 

various underlying brain pathologies. Despite a growing interest in the study of 

enlarged VRS, the heterogeneity in rating and quantification methods combined with 

small sample sizes have so far hampered advancement in the field.  

Methods: The Uniform Neuro-Imaging of Virchow-Robin Spaces Enlargement (UNIVRSE) 

consortium was established with primary aims to harmonize rating and analysis (see 

www.uconsortium.org). The UNIVRSE consortium brings together 13 (sub)cohorts from 5 

countries, totaling 16.000 subjects and over 25.000 scans. Eight different MRI protocols 

were used in the consortium. 

Results: VRS rating was harmonized using a validated protocol that was developed by 

the two founding members, with high reliability independent of scanner type, rater 

experience, or concomitant brain pathology. Initial analyses revealed risk factors for 

enlarged VRS including increased age, sex, high blood pressure, brain infarcts, and white 

matter lesions, but this varied by brain region. 

Conclusions: Early collaborative efforts between cohort studies with respect to data 

harmonization and joint analyses can advance the field of population (neuro)imaging. 

The UNIVRSE consortium will focus efforts on other potential correlates of enlarged VRS, 

including genetics, cognition, stroke, and dementia.  
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INTRODUCTION 
Neuroimaging allows for the in vivo assessment of brain structure and function, thereby 

facilitating research on neurodegenerative, psychiatric and cerebrovascular diseases. In 

the past decades, magnetic resonance imaging (MRI) has identified both early and late 

markers of brain pathology that have greatly contributed to our understanding of the 

pathophysiology of neurological diseases. White matter lesions, for example, are now a 

well-established marker of cerebral small vessel disease, and hippocampal atrophy has 

even been translated into a diagnostic marker of Alzheimer’s disease. For several 

neuroimaging markers, standardized definitions were recently proposed, but this was 

already after decades of research using considerably heterogeneous criteria.1 Research 

on emerging neuroimaging markers would benefit from harmonization early on. This 

paper focuses on enlarged Virchow-Robin spaces (VRS), which hold great potential as an 

MRI marker for various pathologies in the brain but remain poorly studied. VRS are fluid-

filled spaces enveloping the brain vasculature only to become visible on MRI after a 

substantial increase in volume. Enlargement of these VRS was traditionally thought to be 

an inconsequential finding on MRI, but this view has repeatedly been questioned in 

recent years through established links with cerebral small vessel disease, Alzheimer’s 

disease and multiple sclerosis, among others. Several theories have been proposed for 

this enlargement, including brain atrophy, inflammation, hypertension, and 

microvascular obstruction (Figure 1).2-9 Consequently, this resulted in the study of 

enlarged VRS in relation to a diverse range of diseases. However, the number of VRS 

studies almost equals the number of methods used for their assessment on MRI.2-4, 10-13 

This has led to the current inability to compare or pool results from different studies, 

which are already limited in number and size. Now, cohorts worldwide have joined 

efforts in trying to harmonize VRS research early on, in order to overcome these 

problems; an initiative which may be exemplary for future population neuroimaging 

research. 

METHODS 
In 2010, the Rotterdam Scan Study (RSS) and Austrian Stroke Prevention Study (ASPS), 

two large population-based studies in aging populations, entered a collaboration with 
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the goal to develop a robust VRS rating method that is reliable, incorporates relevant 

brain regions and can be easily applied by other researchers.14 Briefly, enlarged VRS are 

rated primarily on an axial T2-weighted sequence, which shows VRS as hyperintensities, 

but this has now been extended to allow T1-weighted images, where VRS are 

hypointense, as the primary sequence. VRS are tubular structures that, depending on 

their orientation within the image, can be linear, ovoid, or round in shape. VRS are 

considered enlarged when their diameter is ≥1mm, to be able to distinguish ‘enlarged’ 

VRS from ‘normal’ VRS (Figure 2). The diameter is determined visually by the rater and 

not manually measured for every VRS since the latter would be too time-consuming. VRS 

are rated separately when these are larger than 3mm, since these large lesions 

potentially represent different pathology. The shape of the lesion and its intensity on the 

FLAIR sequence are additionally used to differentiate between enlarged VRS, lacunar 

infarcts, and white matter hyperintensities. 

During the development of our visual rating scale, we focused on its reliability and ease 

of use. The number of enlarged VRS is determined in four relevant brain regions: the 

centrum semi-ovale, basal ganglia, hippocampus and mesencephalon. All unique 

enlarged VRS are counted in the hippocampus and mesencephalon, whereas only a 

single, predefined slice is used for the centrum semi-ovale and basal ganglia, which are 

large brain regions for which counting on all slices would be unfeasible. However, in a 

subset of 40 scans in which all VRS in the brain were counted, there was a high 

correlation (0.79) between the number from our single slice approach and the total 

number in that region, indicating that the VRS burden for the larger regions (centrum 

semi-ovale, basal ganglia) can be captured using only a single slice. We rate the actual 

counts for each region (either the whole region or a single slice), instead of categorizing 

this into a severity score, so that this information is not lost and can be analyzed 

continuously. 

Furthermore, we are exploring the possibilities of an automated segmentation method 

for detecting enlarged VRS, similar to tools for white matter hyperintensities and 

hippocampal size. This would allow for the investigation of count and volume within the 

whole brain, as well as within regions of interest. Even though our visual rating method 
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and those of others have been shown to be reasonably reliable, we expect this objective, 

quantitative approach to greatly reduce noise and increase analytical opportunities. We 

believe automated detection will replace the visual rating as the method of choice for 

determining enlarged VRS load once this is ready to be applied within our consortium. A 

recent study showed that high-resolution images obtained from 7T scanners are better 

suited for automated segmentation,16 although other efforts suggested that this might 

be feasible with weaker field strengths15.  

Since the publication of this method, the founding members have been joined by other 

cohorts that share an interest in VRS research and acknowledge that questions 

regarding their etiology and clinical relevance are best answered through a combined 

effort. The Uniform Neuro-Imaging of Virchow-Robin Spaces Enlargement (UNIVRSE) 

consortium was formally established in 2013 and intends to study enlarged VRS using a 

harmonized approach. 

The UNIVRSE consortium currently consists of 13 (sub)cohorts from 5 countries and 

encompasses more than 16,000 persons with over 25,000 MRI scans (Table 1). It includes 

prospective, population-based cohort and family studies from various ethnicities and 

which have all previously been described in detail. A brief overview is provided below. 

Other cohorts that want to join the consortium are referred to the consortium website 

(www.uconsortium.org) for further details.  

Rotterdam Scan Study 

The Rotterdam Study is a Dutch prospective, population-based cohort study that aims to 

investigate causes and determinants of diseases in the elderly.17 A total of 14,926 

subjects aged 45 years or over at baseline were recruited in three subcohorts (1990, 

2000 and 2006) and they are still being followed up. MRI scanning is performed on all 

participants from 2005 onwards as part of the Rotterdam Scan Study, and is repeated 

every 3-4 years.18  
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Austrian Stroke Prevention Study  

The ASPS is a prospective cohort study on the effects of vascular risk factors on brain 

structure and function in cognitively normal middle-aged and elderly inhabitants of 

Graz, Austria.19  In brief, 2007 subjects aged 50 to 75 years without neuropsychiatric 

disease were randomly selected from the official community register, of which a random 

subset of 1,076 participants underwent MRI in two panels (1991-1994 and 1999-2003). 

Between 2006 and 2013, the Austrian Stroke Prevention Family (ASPS-Fam) study was 

recruited as an extension of ASPS using identical inclusion criteria and diagnostic work-

up with updated MRI protocols; ASPS-Fam included 381 members of the original ASPS 

cohort and their relatives. 

Study of Health in Pomerania  

The Study of Health in Pomerania (SHIP) is a longitudinal general population study from 

Greifswald, Germany that enrolled 4,308 middle-aged subjects in SHIP-0 (SHIP-0: 1997-

2001; SHIP-1: 2003-2006; SHIP-2: 2008-2012). In addition to SHIP, a new cohort was 

started in 2008 (SHIP-TREND) with 4,420 subjects.20 In SHIP-2 and SHIP-TREND whole 

body MRI scanning was performed in 3,317 subjects. The next follow-up starts in 

2014/2015 and includes a follow-up MRI scan. 

Framingham Heart Study  

The Framingham Heart Study (FHS) is a single-site, community-based, prospective 

cohort study initiated in 1948 to investigate risk factors for cardiovascular disease and 

comprises three generations of participants.   The original cohort of the Framingham 

Heart Study, Generation 1, consisted of 5,209 participants  from Framingham MA who 

were enrolled into the study in 1948 (mean age 44 years).  Generation 2 included 5,124 

offspring of the original cohort and their spouses who were enrolled into the study in 

1971 (mean age 36 years). Individuals from Generations 1 and 2 received an MRI of the 

brain between 1999-2004 and again between 2005-2011.21, 22 The Generation 3 cohort 

was initiated in 2000 and all subjects were scanned between 2009 and March, 2013.23  
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Epidemiology of Dementia in Singapore Study  

The Epidemiology of Dementia in Singapore (EDIS) Study draws participants from the 

Singapore Epidemiology of Eye Disease (SEED) Study, which is a population-based study 

among Chinese, Malays and Indians.24 EDIS aims to examine the prevalence of and 

investigate risk factors for cognitive impairment and dementia in these three major 

ethnicities of Singapore. A total of 865 subjects aged 60 years and over have been 

recruited between 2010-2013. Cranial MRI is performed in all the individuals.  

Erasmus Rucphen Family study  

The Erasmus Rucphen Family (ERF) study is a family-based cohort study in a genetically 

isolated population from a community in the South-West of the Netherlands (Rucphen 

municipality) including 3,000 deeply phenotyped participants. Participants with brain 

MRI scanning in ERF aged 55–75 years and had hypertension to ensure a high 

prevalence of pathology.25 Persons with a history of stroke or dementia or with MRI 

contraindications were excluded.  Details about subject selection can be found 

elsewhere.26, 27  

Epidemiological Prevention study Zoetermeer  

The Epidemiological Prevention study Zoetermeer (EPOZ) is a population-based follow-

up study that was initiated in 1975.28 It includes 10,361 subjects between 5 and 91 years 

old and originally focused on determinants of various chronic diseases. Participants 

underwent baseline MRI scanning in 1995-1996 and were rescanned in 1999-2000 and 

2008.29, 30 

Statistical analyses 

We will analyze enlarged VRS in a continuous manner when studying their potential 

determinants by employing negative binomial regression models that take into account 

the continuous nature of our visual rating scale. Depending on the specific research 

question, we will use the appropriate statistical tools to analyze the data (e.g., Cox 

regression models for time-to-event data, linear regression for continuous cognitive 

scores). 
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Figure 1 | Hypothesized etiologies for enlargement of Virchow-Robin spaces. 

 

 

Figure 2 | Virchow‐Robin spaces in the centrum semi‐ovale of various sizes. 
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RESULTS 

Study population 

Table 1 summarizes basic demographics and MRI protocols for each study in the 

UNIVRSE consortium. The consortium includes participants from a wide age range (19-

103 years), mainly sampled from a population-based setting. The RSS and ASPS have 

performed multiple rounds of MRI scanning and most of the other cohorts are still 

ongoing or reserve the possibility to perform an additional round of follow-up. 

Furthermore, participants were often part of other rounds of non-MRI data collection, 

since brain MRI was not always part of the core study protocol.  For most cohorts, a wide 

range of measurements are available, of which the most relevant are summarized in 

Table 2. 

Primary outcomes  

We previously developed a rating method that evaluates four regions in the brain where 

enlarged VRS occur frequently: the centrum semi-ovale, the basal ganglia, the 

hippocampus and the mesencephalon. The method was rigorously tested by six raters 

ranging from medical students to experienced specialists using MRI data from three 

different scanners, and showed excellent reliability.14 To promote the use of our VRS 

rating protocol, it has been made freely accessible through our website 

(www.uconsortium.org). Additionally, we have now extended the rating protocol to MRI 

data from the SHIP study: enlarged VRS were rated on the T1-weighted instead of the T2-

weighted sequence, which is the primary sequence for VRS rating but was of too low 

resolution in SHIP for identifying VRS. In order to evaluate how this affects reliability, 25 

scans from the RS with both good quality T1- and T2-weighted sequences were twice 

rated using each sequence separately, with good reliability (mean intraclass correlation 

coefficient = 0.8).  
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The UNIVRSE consortium aims to elucidate the etiology and clinical relevance of 

enlarged VRS. Therefore, it will first investigate potential determinants of enlarged VRS, 

including markers of cerebral small vessel disease, amyloid pathology, and genetic 

factors. Results of a preliminary analysis from only the founding members showed 

region-specific risk factors including sex, APOE genotype, and blood pressure, white 

matter hyperintensities, and lacunar infarcts.31  Additionally, the consortium is 

determining how presence of enlarged VRS affects cognition,3, 32, 33 and whether it is a 

useful marker for predicting diseases such as stroke2, 34, 35 and Alzheimer’s disease6. 

 

Figure 3 | Comparison of statistical power between the UNIVRSE consortium and the 
largest published study on Virchow-Robin spaces. 
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DISCUSSION 

Here we present our initial experiences with data harmonization and joint analyses in a 

large consortium of population neuroimaging studies. We used a robust visual rating 

method for measuring enlarged VRS, which was rigorously tested in three studies prior 

to implementation in the consortium, to decrease heterogeneity and promote inter-

study comparisons and collaboration. Importantly, this collaboration was initiated 

already in a relatively early phase of VRS research, with all the participating studies not 

having published separately using their own methodology, but instead first harmonizing 

ratings across sites and then jointly analyzing the data. For other imaging markers of 

cerebrovascular disease, such collaborative efforts typically follow decades of research 

using heterogeneous methods.1 Initial joint analyses prove the value of this 

collaboration compared to separate, underpowered efforts. 

 While there is an abundance of VRS rating methods, they are usually restricted to 

studies using only a single MRI protocol and only rate the VRS in a limited number of 

regions. Additionally, rating reliability is not always reported and some methods require 

complex transformations of images to perform the actual rating. A crucial step in the 

development process was defining a lower limit for the diameter of VRS to be 

considered enlarged, which has not been done by any rating method before. We 

operationalized enlargement as VRS  ≥ 1mm, while realizing this is an arbitrary 

threshold. However, counting all enlarged VRS, regardless of size, would mean that with 

increasing spatial resolution of the used MRI scanner, persons would have more 

“enlarged” VRS. Every study uses an implicit lower bound because of there is minimum 

size of enlarged VRS that can be detected, which is inherent to the field strength and 

protocol of the MRI scanner. Indeed, studies using a 3T MRI have found a 100% 

prevalence of enlarged VRS, in contrast with much lower prevalences on 1.5T images. 

Additionally, we found that using the T1-weighted images for the primary rating gave 

comparable results to T2-weighted images. This result further establishes our rating 

protocol as a method for reliably quantifying VRS burden, regardless of the sequence 

used for rating. 
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Furthermore, we focused on the ease of use and speed of the method and rated VRS 

only a single slice for the two larger regions (basal ganglia and centrum semi-ovale). 

However, we have counted all VRS in the brain for 40 scans and compared this to the 

single slice that we used in the rating. This showed a high correlation between our single 

slice approach and the total number in that region. Although counting all VRS would be 

ideal, it is extremely time-consuming and given these results also seems unnecessary to 

capture the VRS burden. Still, we could have chosen the most severe slice instead of the 

pre-defined slice that we use now. We made this decision because of two reasons: 1) 

allowing the rater to choose the ‘most severe’ slice adds an additional layer of 

subjectivity to the method, and 2) it is currently unknown whether the spatial 

distribution of VRS is differentially related to pathology. If, for example, parietal VRS are 

related to amyloid depositions, it would introduce bias when only rating certain subjects 

with respect to that part of the brain.  

Main strengths of the UNIVRSE consortium are: (i) the increased statistical power to 

detect associations, achieved by combining datasets; (ii) the harmonized approach of 

enlarged VRS rating, which facilitates the collaboration and allows for better 

comparisons; (iii) the inclusion of demographically diverse studies, with a broad range of 

phenotypic information available. 

Although our rating protocol has several advantages in comparison to other scales, all 

methods still rely on the human assessment of VRS and are therefore subjective in 

nature and labor intensive. However, we are concurrently working on the development 

of an automated segmentation method, which is particularly difficult for VRS. Also, the 

selection of the brain regions is based mostly on prevalence and current knowledge of 

VRS; therefore, new research could for example increase the interest in other regions 

and studying different pathology might also require changes in the protocol.Our future 

research will include other determinants such as markers of cerebral small vessel 

disease, amyloid pathology, and genetic factors. Also, we aim to determine how 

presence of enlarged VRS affects cognition, and whether it is a useful marker for 

predicting diseases such as Alzheimer’s disease and stroke. 
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CONCLUSIONS 
The UNIVRSE consortium is a global initiative that was established in the young field of 

enlarged VRS research. It aims to implement at an early stage the hard-learned lessons 

on the value of data harmonization and joint analyses from decades of population 

imaging. 
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ABSTRACT  

High-throughput technology can now provide rich information on a person's biological 

makeup and environmental surroundings. Important discoveries have been made by 

relating these data to various health outcomes in fields such as genomics, proteomics, 

and medical imaging. However, cross-investigations between several high-throughput 

technologies remain impractical due to demanding computational requirements 

(hundreds of years of computing resources) and unsuitability for collaborative settings 

(terabytes of data to share). Here we introduce the HASE framework that overcomes 

both of these issues. Our approach dramatically reduces computational time from years 

to only hours and also requires several gigabytes to be exchanged between 

collaborators. We implemented a novel meta-analytical method that yields identical 

power as pooled analyses without the need of sharing individual participant data. The 

efficiency of the framework is illustrated by associating 9 million genetic variants with 

1.5 million brain imaging voxels in three cohorts (total N=4,034) followed by meta-

analysis, on a standard computational infrastructure. These experiments indicate that 

HASE facilitates high-dimensional association studies enabling large multicenter 

association studies for future discoveries.  
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INTRODUCTION 

Technological innovations have enabled the large-scale acquisition of biological 

information from human subjects. The emergence of these big datasets has resulted in 

various ‘omics’ fields.  Systematic and large-scale investigations of DNA sequence 

variations (genomics)1, gene expression (transcriptomics)2, proteins (proteomics)3, small 

molecule metabolites (metabolomics)4, and medical images (radiomics)5, among other 

data, lie at the basis of many recent biological insights. These analyses are typically 

unidimensional, i.e. studying only a single disease or trait of interest.  

Although this approach has proven its scientific merit through many discoveries, jointly 

investigating multiple big datasets would allow for their full exploitation, as is 

increasingly recognized throughout the ‘omics’ world5–8. However, the high-dimensional 

nature of these analyses makes them challenging and often unfeasible in current 

research settings. Specifically, the computational requirements for analyzing high-

dimensional data are far beyond the infrastructural capabilities for single sites. 

Furthermore, it is incompatible with the typical collaborative approach of distributed 

multi-site analyses followed by meta-analysis, since the amount of generated data at 

every site is too large to transfer. 

Some studies have attempted to combine multiple big datasets5,8–10, but these methods 

generally rely on reducing the dimensionality or making assumptions to approximate 

the results, which leads to a loss of information. 

Here we present the framework for efficient high-dimensional association analyses 

(HASE), which is capable of analyzing high-dimensional data at full resolution, yielding 

exact association statistics (i.e. no approximations), and requiring only standard 

computational facilities. Additionally, the major computational burden in collaborative 

efforts is shifted from the individual sites to the meta-analytical level while at the same 

time reducing the amount of data needed to be exchanged and preserving participant 

privacy. HASE thus removes the current computational and logistic barriers for single- 

and multi-center analyses of big data. The HASE software is available at our website 

www.imagene.nl/HASE/.  
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RESULTS 

Overview of the methods 

The methods are described in detail in the Methods. Essentially, HASE implements a 

high-throughput multiple linear regression algorithm that is computationally efficient 

when analyzing high-dimensional data of any quantitative trait. Prior to analysis, data 

are converted to an optimized storage format to reduce reading and writing time. 

Redundant calculations are removed and the high-dimensional operations are simplified 

into a set of matrix operations that are computationally inexpensive, thereby reducing 

overall computational overhead. While deriving summary statistics (e.g., beta 

coefficients, p-values) for every combination in the high-dimensional analysis would be 

computationally feasible at individual sites with our fast regression implementation, it 

would be too large to share the intermediate results (>200GB per thousand phenotypes) 

in a multi-center setting. Therefore, extending from a recently proposed method, partial 

derivatives meta-analysis17, we additionally developed a method that generates two 

relatively small datasets (e.g. 5GB for genetics data of 9 million variants and 20MB of 

thousand phenotypes for 4000 individuals) that are easily transferred and can 

subsequently be combined to calculate the full set of summary statistics, without 

making any approximation. This meta-analysis method additionally reduces 

computational overhead at individual sites by shifting the most expensive calculation to 

the central site. The total computational burden thus becomes even more efficient 

relative to conventional methods with additional sites.  
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Comparison of complexity and speed 
We compared the complexity and speed of HASE with a classical workflow, based on 

linear regression analyses with PLINK (version 1.9)11 followed by meta-analysis with 

METAL12; two of the most popular software packages for these tasks.  

Table 1 shows that HASE dramatically reduces the complexity for the single site analysis 

and data transfer stages. For conventional methods, the single site analysis and data 

transfer have a multiplicative complexity (dependent on the number of phenotypes and 

determinants), whereas this is only additive for HASE.  Our approach requires 3.500-fold 

less data to transfer for a high-dimensional association study. Additionally, the time for 

single site analysis does not increase significantly from analyzing a single phenotype to a 

million phenotypes (Table 1). This is due to the fact that speed is determined by the 

highest number of either the determinants or phenotypes. Therefore, in this case with 

nine million genetic variants, the complexity of ࡻ൫࢖࢔࢏࢔൯ is the primary factor 

influencing the speed,whereas 	ࡻሺ࢚࢔࢏࢔	ሻ	plays a secondary role. 

This drastic increase in performance is made possible through the shift of the 

computationally most expensive regression operation to the meta-analytical stage. For 

the meta-analytical stage, the HASE complexity is therefore slightly higher. However, it 

outperforms the classical meta-analysis using METAL (total computation time reduced 

35 times), owing to the efficient implementation of our algorithm.  

Additionally, HASE can be used as a standard tool for high-dimensional association 

studies of a single site, i.e without subsequent meta-analysis or to prepare summary 

statistics for sharing with the central site as in a classical workflow. Although PLINK is a 

very popular tool for association analysis, it is not optimized for high-dimensional data 

sets. Therefore we compared the speed of such analyses to the recently developed tool 

RegScan13, which was developed for doing GWAS on multiple phenotypes and 

outperformed state-of-the-art methods. We conducted several experiments within the 

Rotterdam Study by varying the number of phenotypes and subjects, while keeping the 

number of variants fixed at 2.172.718 since the complexity of both programs is linear 
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with respect to number of variants. HASE outperformed RegScan and the difference 

becomes larger for increasing numbers of subjects and phenotypes (Figure 1).  

Application to real data 

We used HASE to perform a high-dimensional association study in 4,034 individuals from 

the population-based Rotterdam Study. In this proof of principle study, we relate 

8,723,231 million imputed genetic variants to 1,534,602 million brain magnetic 

resonance imaging (MRI) voxel densities (see Supplementary Note). The analysis was 

performed on a small cluster of 100 CPUs and took 17 hours to complete. 

To demonstrate the potential of such high-dimensional analyses, we screened all 

genetic association results for both hippocampi (7,030 voxels) and identified the voxel 

with the lowest p-value.  The most significant association (rs77956314; p = 3 x 10-9) 

corresponded to a locus on chromosome 12q24 (Figure 2), which was recently 

discovered in a genome-wide association study of hippocampal volume encompassing 

30,717 participants14. 

Additionally, we performed the high-dimensional association studies separately in three 

subcohorts of the Rotterdam Study (RSI = 841, RSII = 1003, RSIII = 2190, Supplementary 

Notes) and meta-analyzed the results using the HASE data sharing approach, as a 

simulation of a standard multicenter association study. This experiment required two 

steps. First, for each subcohort we generated intermediate data (matrices A, B and C 

from the Methods section). It took on average 40 minutes on a single CPU for all genetic 

variants and voxels. Second, the meta-analysis, which consist of merging intermediate 

data and running regressions, was performed on the same cluster and took 17 hours to 

complete using 100 cores. We compared the association results of the pooled analysis 

with the meta-analysis. Figure 3 shows that the results are identical as it was predicted 

by theory (see Methods). We would like to point out that for the classical approach with 

inverse-variance meta-analysis such an experiment would be not possible to conduct, as 

it would require generating and sharing hundreds of terabytes of summary statistics.    
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Figure 1 | Analysis time (HASE versus RegScan) with 2.172.718 variants.  

A – for 1 phenotype; B – for 100 phenotypes; C- for 1000 phenotypes.  
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Figure 2 | Manhattan plot of the hippocampus voxel with the most significant 
association after screening all 7030 hippocampal voxels. 
The most significant association (rs77956314; p = 3 x 10-9) corresponded to a previously 
identified locus on chromosome 12q24. Such voxel-wise hippocampus screening would take 
less than 8 hours on standard laptop. 
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DISCUSSION 

We describe a framework that allows for (i) computationally-efficient high-dimensional 

association studies within individual sites using standard computational infrastructure 

and (ii) facilitates the exchange of compact summary statistics for subsequent meta-

analysis for association studies in a collaborative setting. Using HASE, we performed a 

genome-wide and brain-wide search for genetic influences on voxel densities (more 

than 1.5 million GWAS analysis in total), and illustrate both its feasibility and potential for 

driving scientific discoveries. 

A large improvement in efficiency comes from the reduced computational complexity. 

High-dimensional analyses contain many redundant calculations, which were removed 

in the HASE. Also, we were able to further increase efficiency by simplifying the 

calculations to a set of matrix operations, which are computationally inexpensive, 

compared to conventional linear regression algorithms. Furthermore, the 

implementation of partial derivatives meta-analysis allowed us to greatly reduce the size 

of the summary statistics that need to be shared for performing a meta-analysis. Another 

advantage of this approach is that it only needs to calculate the partial derivatives for 

each site instead of the parameter estimates (i.e., beta coefficients and standard errors). 

This enabled us to develop within HASE a reduction approach that encodes data prior to 

exchange between sites, while yielding the exact same results after meta-analysis as if 

the original data were used. The encoding is performed such that tracing back to 

original data is impossible.  This guarantees protection of participant privacy and 

circumvents restrictions on data sharing that are unfortunately common in many 

research institutions.  

When using HASE, it is first necessary to convert the multi-dimensional data to «HDF518» 

format that is optimized for fast reading and writing. This particular format is not 

dependent on the architecture of the file system and can therefore be implemented on a 

wide range of hardware and software infrastructures. To facilitate this initial conversion 

step, we have built-in tools within the HASE framework for processing common file 

format of such big data. HDF5 allows direct access to the data matrix row/column from 

the disk through an index without reading the whole file(s) into memory.  Additionally, it 
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requires much less disk space to store data (Supplementary Notes).This is easily 

generalizable to other large omics datasets in general and we foresee this initial 

conversion step not to form an obstacle for researchers to implement HASE.  

Alternative methods for solving the issues with high-dimensional data take one of two 

approaches. One approach is to reduce the dimensionality of the big datasets by 

summarizing the large amount of data into fewer variables2. Although this increases the 

speed, it comes at the price of losing valuable information, which these big data were 

primarily intended to capture. The second approach is to not perform a full analysis of all 

combinations of the big datasets, but instead make certain assumptions (e.g., a certain 

underlying pattern, or a lack of dependency on potential confounders) that allow for 

using statistical models that require less computing time. Again, this is a tradeoff 

between speed and accuracy, which is not necessary in the HASE framework, where 

computational efficiency is increased without introducing any approximations. 

Unidimensional analyses of big data, such as genome-wide association studies, have 

already elucidated to some extent the genetic architecture of complex diseases and 

other traits of interest1,15–17, but much remains unknown. Cross-investigations between 

multiple big datasets potentially hold the key to fulfill the promise of big data in 

understanding of biology7. Using the HASE framework to perform high-dimensional 

association studies, this hypothesis is now testable. 

METHODS 

HASE 

In high-dimensional associations analyses we test the following simple regression 

model: 

 ܻ ൌ ߚܺ ൅  (1) ߝ

 

where Y is a ni× np matrix of phenotypes of interest, ni denotes the number of samples in 

the study, np the number of phenotypes of interest, and ε denotes the residual effect.  X 

is a three dimensional matrix ni× nc × nt of independent variables, with nc representing 



Chapter 2.4 

78  

the number of covariates, such as the intercept, age, sex and, for example genotype as 

number of alleles, and nt the number of independent determinants.  

In association analyses we are interested in estimating the p-value to test the null 

hypothesis that β=0. The p-values can be directly derived from the t-statistic of our test 

determinants. We will rewrite the classical equation for calculating t-statistics for our 

multi-dimensional matrices, which will lead to a simple matrix form solution for high-

dimensional association analysis:   

 ܴܵܵሺߚሻ ൌ ሺܻ െ ሻ்ሺܻߚܺ െ  ሻ (2)ߚܺ

 ߲ܴܵܵ
ߚ߲

ൌ െ2்ܺሺܻ െ  ሻߚܺ
(3) 

 

መߚ  ൌ ሺ்ܺܺሻିଵ்ܻܺ (4) 

 ܴܵܵሺߚሻ ൌ ்ܻܻ	 െ ்ܻܺሺ்ܺܺሻିଵ்ܻܺ (5) 

 

 
ܶ ൌ

ߚ
ܧܵ

ൌ
ߚ

ට݀݅ܽ݃ሺሺ்ܺܺሻିଵሻ ܴ݂ܵܵ݀

ൌ
ሺ்ܺܺሻିଵ்ܻܺ		

ට݀݅ܽ݃ሺሺ்ܺܺሻିଵሻ
்ܻܻ െ ்ܻܺሺ்ܺܺሻିଵ்ܻܺ

݂݀

 

(6) 

 

 

Where T is np× nc × nt matrix of t-statistics and df is degree of freedom of our regression 

model. Let’s define  A ൌ X୘X	, B ൌ X୘Y	and	C ൌ Y୘Y, so that we can write our final 

equation for t-statistics:  

 

T ൌ ଵBඨିܣ
݂݀

݀݅ܽ݃ሺିܣଵሻሺܥ െ ሻܤଵିܣ்ܤ
 

(7) 
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The result of this derivation is that, rather than computing all combinations of covariates 

and independent determinants, we only need to know three matrices: A, B and C, to 

calculate t-statistics and perform the full analysis. These results will be used in the 

section about meta-analysis.  

The most computationally expensive operations here are the two multi-dimensional 

matrix multiplications ሺି࡭૚۰ሻ	and	ሺି࡭ࢀ࡮૚࡮ሻ, where	ି࡭૚	is a three dimensional 

matrix nc× nc × nt  and ۰	is three dimensional matrix nc× np × nt . Without knowledge of 

the data structure of these matrices, the simplest way to write the results of their 

multiplication would be to use Einstein’s notation for tensor multiplication: 

 ሺିܣଵBሻ௜୨୩ ൌ ሺିܣଵሻ௜௖௞ܤ
௖
௝௞ (8) 

 

 ሺିܣ்ܤଵܤሻ௝௞ ൌ ሺ்ܤሻ௜
௝௞ሺିܣଵBሻ௜୨୩ 

݁ݎ݄݁ݓ ݅ ൌ 1, ݊௖ሬሬሬሬሬሬሬሬԦ; ݆ ൌ 1, ݊௣ሬሬሬሬሬሬሬሬሬԦ; ݇ ൌ 1, ݊௧ሬሬሬሬሬሬሬሬԦܽ݊݀ ܿ ൌ 1, ݊௖ሬሬሬሬሬሬሬሬԦ 

(9) 

 

As you can see, the result is two matrices of nc× np × nt and np × nt elements respectively. 

Despite the seemingly complex notation, the first matrix just represents the beta 

coefficients for all combinations of covariates (nc by np × nt combinations) and the 

second is fitting values of the dependent variable for every test (np × nt independent 

determinants).  

However, insight into the data structure of A and B can dramatically reduce the 

computational burden and simplify operations. First of all, matrix A depends only on the 

covariates and number of determinants, making it unnecessary to compute it for every 

phenotype of interest, so we just need to calculate it once. Additionally, only the last 

covariate (i.e., the variable of interest) is different between tests, meaning that the (np -

1)×(np -1)×nt  part of matrix A remains constant during high-dimensional analyses. 

Matrix B consists of the dot product of every combination of the covariate and 

phenotype of interest. However, as we mentioned before, there are only (nt + nc 1) 

different covariates, and thus we can split matrix B in two low dimensional matrices: the 

first includes dot products of non-tested covariates - (nc-1)× np elements; the second 
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includes the dot products only of the tested covariates -  np × nt elements. Removing all 

these redundant calculations reduces the complexity of this step from O(nc
2·ni·np·nt) to 

O(np· nt). All this allows us to achieve a large gain in computational efficiency and 

memory usage. In Figure 3 we show a 2D schematic representation of these two 

matrices for standard genome association study with the covariates being an intercept, 

age, sex, and genotype. This example could be easily extrapolated to any linear 

regression model.  

Applying the same splitting operation to ࢀ࡮ it is possible to simplify tensor 

multiplication equation (8, 9) to a low-dimensional matrix operation and rewrite the 

equation for t-statistics: 

 ሺିܣଵBሻ௜୨୩ ൌ ሺିܣଵሻ௜ఋ௞ܤ
ఋ
௝ ൅ ሺିܣଵሻ௜ఏ௞ܤ

ఏ
௝௞ (10) 

 ሺିܣ்ܤଵܤሻ௝௞ ൌ ሺ்ܤሻఋ
௝ሺିܣଵBሻఋ୨୩൅ሺܤ

்ሻఏ
௝௞ሺିܣଵBሻఏ୨୩ (11) 

 

 

T ൌ ሺሺିܣଵሻ௜ఋ௞ܤ
ఋ
௝ ൅ ሺିܣଵሻ௜ఏ௞ܤ

ఏ
௝௞	ሻඨ

݂݀
݀݅ܽ݃ሺିܣଵሻ

ൈ	

ሺܥ െ ቀሺ்ܤሻఋ
௝
൫ሺିܣଵሻ௜ఋ௞ܤ

ఋ
௝ ൅	ሺିܣଵሻ௜ఏ௞ܤ

ఏ
௝௞൯௝௞

ఋ

൅			 ሺ்ܤሻఏ
௝௞
൫ሺିܣଵሻ௜ఋ௞ܤ

ఋ
௝

൅ ሺିܣଵሻ௜ఏ௞ܤ
ఏ
௝௞൯௝௞

ఏ
ቁ ሻି

ଵ
ଶ 

(12) 

 

Then, to compute t-statistics for high-dimensional association analyses we just need to 

perform several matrix multiplications.  

Meta-analysis 
In classical meta-analysis, summary statistics such as beta coefficients and p-values are 

exchanged between sites. For 1.5 million phenotypes, this would yield around 400TB of 

data at each site, making data transfer to a centralized site impractical. 
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In the previous section we showed that, to compute all statistics for an association study, 

we just need to know the A, B and C matrices. As we demonstrated before17, by 

exchanging these matrices between sites, it is possible to gain the same statistical power 

as with a pooled analysis, without sharing individual participant data, because these 

matrices consist of aggregate data (Figure 4). However, in high-dimensional association 

analyses, matrix B grows very fast, particularly the part that depends on the number of 

determinants and phenotypes (b4 in Figure 3).   

If Y is a ni× np matrix of phenotypes of interest and G is a ni× nt matrix of determinants 

which we want to test (e.g., a genotype matrix in GWAS), then b4 = YT× G. These two 

matrices, Y and G, separately are not so large, but their product matrix has np× nt 

elements, which in a real application could be 106×107 =1013 elements and thus too large 

to share between sites. We propose to create a random ni× ni nonsingular square matrix 

F and calculate its inverse matrix F-1.  Then by definition F× F-1=I, where I is a ni× ni 

elements identity matrix with ones on main diagonal and zeros elsewhere.  Using this 

property, we can rewrite the equation for b4: 

 ܾସ ൌ ்ܻ ൈ  (13) ܩ

 ܾସ ൌ ்ܻ ൈ ሺܨ ൈ ଵሻିܨ ൈ  (14) ܩ

 

 ܾସ ൌ ሺ்ܻ ൈ ሻܨ ൈ ሺିܨଵ ൈ  ሻ (15)ܩ

 

 ܾସ ൌ ிܻ
் ൈ ிܩ  (16) 

where YF  and GF  are  matrices carrying phenotypic and determinant information in 

encoded form respectively.Therefore, instead of transferring TBs of intermediate 

statistics (b4), each side just needs to compute A, C, YF and GF.  Sharing just the encoded 

matrices does not provide information on individual participants and without knowing 

matrix F it is impossible to reconstruct the real data. However, it will be possible to 

calculate b4, perform a high-dimensional meta-analysis, and avoid problems with data 

transfer. Additionally, this method dramatically reduces computation time by shifting all 
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complex computations to central site, where the HASE regression algorithm should be 

used to handle the association analysis in a time efficient way.  
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ABSTRACT 

Jaunmuktane and colleagues reported on eight persons of short stature who had been 

treated with preparations of human-derived growth hormone and subsequently 

developed iatrogenic Creutzfeldt–Jakob disease (CJD)1. On autopsy, the authors found 

marked deposition of parenchymal and vascular amyloid-β (Aβ), which was unexpected 

given the relatively young age (36–51 years) of the patients. The selected comparator 

group included patients with sporadic CJD, who were not of short stature and did not 

receive any growth hormone treatment. These sporadic cases did not show marked Aβ 

pathology. Although the authors make an interesting case for iatrogenic transmission of 

Aβ pathology, their findings could also be explained by two notable differences 

between the eight growth-hormone-treated patients and the comparator group: the 

indication for growth hormone treatment and the treatment itself.  
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MAIN TEXT 
The eight patients at the centre of this study received growth hormone treatment for 

various reasons, including panhypopituitarism (numbers 1, 2, 7), mental retardation 

(number 2), microcephaly (number 2), craniopharyngioma (number 5), and idiopathic 

short stature (numbers 3, 4, 6, 8). The cases with marked Aβ deposition (numbers 4, 5, 6, 

8) were generally of short stature owing to unknown causes. Common to this 

heterogeneous group of patients is the lack of endogenous growth hormone, a 

hormone that plays an important role in learning and memory, synaptic plasticity, 

neurogenesis, and is considered as a treatment for patients with cognitive impairment 

resulting from its deficiency2. Insulin-like growth factor-1 (IGF-1) is one of the main 

downstream targets regulated by growth hormone and supports cell survival and 

growth at multiple levels, with IGF-1 being important in the brain. It plays a well-

documented role in many aspects of neurodegeneration, including Alzheimer’s 

disease3,4, and IGF-1 promotes Aβ production5,6. Lack of IGF-1 has been proposed to 

cause neurodegenerative disorders such as Alzheimer’s disease owing to the disturbed 

trophic support to neurons (for a review, see ref. 7). Absence or reductions in IGF-1 can 

thus promote neurodegeneration and, particularly worrying for the conclusion of 

Jaunmuktane et al. increase Aβ depositions. This mechanism is similar to the lack of 

insulin seen in type 1 diabetes. In other words, the underlying disease state, which was 

the indication to start growth hormone treatment, can act as a shared cause of Aβ 

deposition and — through treatment with human-derived growth hormone — CJD. This 

should therefore be considered a confounder of the effect under study (that is, 

confounding by the indication of growth hormone treatment). The comparator group 

presented by Jaunmuktane et al. does not allow for confounding adjustment, as all 

exposed (that is, growth-hormone-treated) individuals are growth-hormone deficient 

(and of short stature) and all unexposed individuals are not, which means any 

differences between the comparator groups could also be explained by growth 

hormone deficiency. 

Furthermore, growth hormone treatment itself should have been considered as an 

important alternative cause of the Aβ deposition. Although this might seem 
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counterintuitive, as increased IGF-1 levels should increase Aβ clearance, this alternative 

explanation is not without support. Both low and high levels of IGF-1 have been 

observed in neurodegenerative diseases, and this is also the case for Alzheimer’s 

disease8,9. It has been proposed that this is due to an abundance of IGF-1 that reduces 

the sensitivity of the cells7. Given the long-term treatment of patients with growth 

hormone, where the complex circadian and age-dependent rhythm of growth hormone 

secretion is not taken into account, it is plausible that this led to cell resistance to IGF-1. 

This mechanism is similar to the increased levels of insulin (to which patients are 

resistant) seen in type 2 diabetes. Therefore, growth hormone treatment could possibly 

lead to the development of Aβ depositions in individuals at an earlier age than if 

untreated. Similar to the previous point, this would also confound the authors’ 

interpretation, in this case confounding by growth hormone treatment. 

The authors mention prion disease as an improbable cause for their findings, for 

example, through protein cross-seeding or clearance overload, which they attempt to 

rule out by comparing the iatrogenic CJD patients to sporadic cases. On the basis of the 

lack of marked Aβ depositions in the sporadic cases, the authors concluded that prion 

disease does not predispose to Aβ depositions and thus another factor must cause these 

deposits. This conclusion does not appear fully warranted as the excess of Aβ in 

iatrogenic CJD  compared to sporadic CJD does not indicate whether prion disease 

causes Aβ depositions (independently of this other factor). In other words, by restricting 

the study to patients who all have prion disease, the effect of prion disease compared to 

no prion disease cannot be examined. A comparison of persons with CJD to those 

without CJD but who are similar with regard to important confounders (for example, 

age, sex, other medical conditions and treatments) would better inform such an effect, 

as has been done in a previous study10. Although the greater deposition of Aβ in the 

iatrogenic CJD cases compared to the sporadic CJD therefore does not prove or disprove 

prion disease as a cause for this, we agree with the authors that this points to a factor 

other than prion disease causing the additional Aβ deposits. We have already 

mentioned the indication for growth hormone treatment and the growth hormone 

treatment itself as two plausible causes for Aβ deposits; the authors focus on the 

potential human transmissibility. On the basis of the data presented by the authors 
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alone, it is not possible to determine which factor or factors are actually causal; their 

findings are consistent with multiple explanations. 

Given that the results of Jaunmuktane et al. are inconclusive in this respect, what data 

would help to disentangle the hypothesized transmissibility from these competing 

explanations? One study design option would entail comparing persons of short stature 

who received synthetic versus human-derived growth hormone, as the synthetically 

produced treatment could not transmit any infectious agent from another person. We 

understand the difficulty concerning persons treated with synthetic hormone as a 

comparator group, as they have longer expected lifespans than those with (iatrogenic) 

 
Figure 1 | Causal diagram showing the proposed causal pathway, the authors’ 
interpretation, the two confounding biases and the inappropriate conditioning on 
presence of prion disease. 
Horizontal arrows depict the known causal pathway of growth hormone deficiency being the 
indication for growth hormone treatment, which is administered using human-derived 
growth hormone injections, which in turn can cause CJD if contaminated with prions. The 
numbered arrows indicate possible effects on Aβ deposition. From their data, the authors 
conclude (see below) that CJD could not have a direct effect, that is, that the arrow IV is not 
present. The authors then conclude that the shared cause must lie in the human-derived 
growth hormone injections (arrow III), which they infer contained infectious prions as well as 
infectious amyloid. However, there are two alternative shared causes for the co-occurrence of 
prion disease and amyloid, namely the indication of growth hormone treatment (arrow I) and 
the treatment itself (arrow II). In the current study design, these alternative explanations are 
therefore confounders of the proposed arrow III if arrows I and/or II are present. The authors 
sought to rule out arrow IV by comparing iatrogenic CJD patients with sporadic CJD patients. 
However, in this comparison all included patients have prion disease, which thus entails 
conditioning on the exposure (indicated with the square box around prion disease). While this 
comparison may suggest that another factor is causing additional Aβ (e.g, arrows I–III), it does 
not inform about prion disease causing Aβ deposition; that is, arrow IV cannot be proven or 
ruled out. Finally, for simplicity, the causal diagram above does not include additional 
unmeasured shared causes; in particular, if prion disease and Aβ deposition shared other 
causes beyond those described here, then additional confounding and/or selection biases 
invalidating the authors’ interpretation may also be present.
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CJD. Although neuropathology in a comparable age group will therefore be relatively 

difficult to obtain, non-invasive methods to quantify Aβ depositions in the brain, for 

example using positron emission tomography (PET) imaging, might be useful. Four 

possible causes of the marked deposition of Aβ are summarized in Table 1 along with, 

for each of these factors, consistency with the findings of Jaunmuktane et al., and the 

emphasized conclusion of the authors. Figure 1 depicts the suspected confounding 

biases in the current study design11. 

In conclusion, the study presented by Jaunmuktane et al. is consistent with multiple 

explanations for the marked deposition of Aβ. However, the authors emphasize one 

hypothesis indirectly supported by the data over other hypotheses, although a 

considerable body of previous empirical evidence argues in favour of these alternative 

explanations. Furthermore, the improbable explanation of CJD cross-seeding was 

disregarded on the basis of experiments that provide no such evidence, and was 

subsequently discussed at length whereas the plausible alternatives have not been 

mentioned. For these reasons, and in particular given the public health implications 

incited by the publicity of the Jaunmuktane et al. study12, it is imperative to carefully 

consider confounders and study design13,14 when weighing the possibility of human 

transmissibility of Aβ. 

  

Table 1 | Four potential causes of marked Aβ deposition in persons of short stature 
treated with human growth hormone and subsequently developing iatrogenic CJD. 

Potential cause of Aβ deposition* Consistency of the 
purported causal 
effect with findings 

Stated 
conclusions from 
the authors 

Short stature (vs normal stature) Yes Not discussed 
GH treatment (vs no GH treatment) Yes Not discussed 
Human-derived GH (vs synthetic GH) Inconclusive† Causal 
Prion disease (vs no prion disease) Inconclusive‡ Not causal 
The first column shows four potential causes for the observed Aβ deposition in persons of 
short stature who were treated with human-derived growth hormone and developed CJD as a 
result of prion transmission (and their causal contrasts in parentheses). The second column 
indicates whether the causes are consistent with the findings of Jaunmuktane et al., whereas 
the third column contains the conclusions of the authors. 



Amyloid-β transmission or unexamined bias?  

 89 

2 

REFERENCES 
1. Jaunmuktane, Z. et al. Evidence 
for human transmission of amyloid-β 
pathology and cerebral amyloid 
angiopathy. Nature 525, 247–250 
(2015).  
2. Nyberg, F. & Hallberg, M. 
Growth hormone and cognitive 
function. Nat. Rev. Endocrinol. 9, 357–
365 (2013).  
3. Gasparini, L. & Xu, H. Potential 
roles of insulin and IGF-1 in Alzheimer’s 
disease. Trends Neurosci. 26, 404–406 
(2003).  
4. Westwood, A. J. et al. Insulin-
like growth factor-1 and risk of 
Alzheimer dementia and brain atrophy. 
Neurology 82, 1613 (2014).  
5. Carro, et al. Serum insulin-like 
growth factor I regulates brain amyloid-
β levels. Nat. Med. 8 (2002).  
6. Araki, et al. Biochem. Biophys. 
Res. Commun. 380, (2009).  
7. Trejo. et al. Role of insulin-like 
growth factor I signaling in 
neurodegenerative diseases. J. Mol. 
Med. (Berl.) 82 2004.  
8. Mustafa, A. et al. Decreased 
plasma insulin-like growth factor-I level 
in familial Alzheimer’s disease patients 

carrying the Swedish APP 670/671 
mutation. Dement. Geriatr. Cogn. 
Disord. 10, 446–451 (1999).  
9. Tham, A. et al. Insulin-like 
growth factors and insulin-like growth 
factor binding proteins in cerebrospinal 
fluid and serum of patients with 
dementia of the Alzheimer type. J. 
Neural Transm. Park. Dis. Dement. Sect. 
5, 165 (1993).  
10. Hainfellner, J. A. et al. 
Coexistence of Alzheimer-type 
neuropathology in Creutzfeldt–Jakob 
disease. Acta Neuropathol. 96, 116–122 
(1998).  
11. Greenland, et al. Causal 
diagrams for epidemiologic research. 
Epidemiology 10 (1999).  
12. Abbott, A. The red-hot debate 
about transmissible Alzheimer’s. Nature 
531, 294 (2016).  
13. Rothman, K. J., Greenland, S. & 
Lash, T. L. Modern epidemiology. 
(Lippincott Williams & Wilkins, 2008).  
14  Hernán, M. A. & Robins, J. M. 
Causal Inference. (Boca Raton: 
Chapman & Hall/CRC) In press. 
 

  



Chapter 2.5  

90  

 



Genetic discoveries  

 91 

Chapter 3 Genetic discoveries 
  

Chapter 3 

Genetic discoveries 



Chapter 3  

92  

 



 Neurodegenerative markers  

 93 

3.1. Neurodegenerative markers 
  

Chapter 3.1 

Neurodegenerative markers 



Chapter 3.1.1 

94  

 



Genome-wide association study of intracranial volume 

 95 

3 

3.1.1. Genome-wide 
association study of 
intracranial volume 

 

NATURE NEUROSCIENCE - ARTICLE 

TITLE 

Novel genetic loci underlying human intracranial volume identified through genome-

wide association 

SHORT TITLE 

Genetics of intracranial volume 

AUTHORS 

Hieab HH Adams*1,2, Derrek P Hibar*3, Vincent Chouraki*4,5, Jason L Stein*3,6, Paul Nyquist*7, 

Miguel E Renteria*8, Stella Trompet*9, Alejandro Arias-Vasquez*10,11,12,13, Sudha Seshadri4, 

Sylvane Desrivières14, Ashley H Beecham15,16, Neda Jahanshad3, Katharina Wittfeld17,18, 

Sven J Van der Lee1, Lucija Abramovic19, Saud Alhusaini20,21, Najaf Amin1, Micael Anders 

.  

Chapter 3.1.1 

Genome-wide association 
study of intracranial 

volume 



Chapter 3.1.1 

96  

ABSTRACT 

Intracranial volume reflects the maximally attained brain size during development, and 

remains stable with loss of tissue in late life. It is highly heritable, but the underlying 

genes remain largely undetermined. In a genome-wide association study of 32,438 

adults, we discovered five novel loci for intracranial volume and confirmed two known 

signals. Four of the loci are also associated with adult human stature, but these 

remained associated with intracranial volume after adjusting for height. We found a high 

genetic correlation with child head circumference (ρgenetic=0.748), which indicated a 

similar genetic background and allowed for the identification of four additional loci 

through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also 

related to childhood and adult cognitive function, Parkinson’s disease, and enriched 

near genes involved in growth pathways including PI3K-AKT signaling. These findings 

identify the biological underpinnings of intracranial volume and their link to 

physiological and pathological traits.  
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INTRODUCTION 
The intricate genetic control of the human brain, complemented by environmental 

factors, leads to the observed variations in brain size in human populations1. Intracranial 

volume is closely related to brain volume in early life as the brain grows.2,3 However, it 

becomes stable after the brain has fully developed and remains unaffected by later age-

related changes such as brain atrophy4,5, thus representing the maximal attained brain 

size. Discovering genetic variants that influence intracranial volume can contribute to 

our understanding of brain development and related diseases, but prior studies have 

only identified two influential genetic loci6-9.  

Here, we performed genome-wide association studies in populations from the Cohorts 

for Heart and Aging Research in Genomic Epidemiology (CHARGE)10 and Enhancing 

NeuroImaging Genetics through Meta-Analysis (ENIGMA)11 consortia on intracranial 

volume measured by magnetic resonance imaging. Genotypes were imputed to the 

1000 Genomes reference panel (phase 1, version 3). Meta-analysis revealed five novel 

loci associated with intracranial volume. We also discovered genome-wide overlap 

between intracranial volume and other key traits including height, cognitive ability, and 

Parkinson’s disease. Furthermore, we found relatively enriched patterns of association 

for certain functional categories of variants and near genes that are involved in specific 

pathways.  



Chapter 3.1.1 

98  

RESULTS 

Genome-wide association studies 

Detailed information on the population characteristics, image acquisition and 

processing, and genetic quality control can be found in the Online Methods and 

Supplementary Tables S1-3. 

The discovery meta-analysis (N = 26,577) yielded seven genome-wide significant (p < 5 x 

10-8) loci, five of them novel (Figures 1-2; Table 1). The quantile-quantile plot showed 

inflation (λ = 1.092; Figure S1), which we determined to be mainly due to polygenicity 

rather than cryptic relatedness or population stratification using LD score regression12. 

Next we analyzed European samples (N = 2,362; not included in the discovery sample) 

and generalization samples with African (N = 938), Asian (N = 955), and Hispanic (N = 

1,605) ancestries (Table 1). All variants had the same direction of effect in the additional 

European samples (sign test, P = 0.0078), and three variants replicated, at nominal 

significance. Although sample sizes were small for the non-Europeans, here too, the 

direction of effect was generally concordant (sign test, P = 0.039). Five nominally 

significant associations were detected across all three ethnicities.  

Next we were able to map the association to novel variants for two previously identified 

loci at 17q21 (rs199525; P = 3.8 x 10-21) and 6q22 (rs11759026; P = 2.2 x 10-20)6,7. The five 

novel loci were on 6q21 (rs2022464; P = 3.7 x 10-11), 10q24 (rs11191683; P = 1.1 x 10-10), 

3q28 (rs9811910; P = 2.0 x 10-9), 12q14 (rs138074335/ rs7312464; P = 6.2 x 10-9), and 

12q23 (rs2195243; P = 1.5 x 10-8). Functional annotation of the variants and those in LD 

(r2 >0.8) can be found in Table S4.  
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Figure 2 | Regional association and functional annotation of novel genome-wide 
significant loci. 
Regional association plots for the five novel genome-wide significant loci of intracranial 
volume with gene models below (GENCODE version 19). Annotation tracks below from the 
Roadmap Epigenomics Consortium57 highlight the genomic region that likely harbors the 
causal variant(s) (r2 > 0.8 from the top SNP). See Methods for detailed track information. 
Generated using LocusTrack (http://gump.qimr.edu.au/general/gabrieC/LocusTrack/). 
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Height-adjusted analyses 

Four of the seven loci for intracranial volume were previously discovered for height 

(17q21, 6q22, 6q21, and 12q14), prompting us to investigate genome-wide overlap 

between the two traits. As height and intracranial volume are correlated (weighted 

average Pearson’s r = 0.556; Supplementary Table S5) and this could drive association 

signals, we performed a GWAS of intracranial volume adjusted for height in the studies 

that had measured height (N = 21,875). Findings were compared to the corresponding 

subset of studies without adjustment (N = 22,378). Using LD score regression (Online 

Methods), we found that there is considerable genetic correlation between intracranial 

volume and height (ρgenetic = 0.241, P = 2.4 x 10-10), which disappears after adjusting for 

height (ρgenetic = 0.049, P = 0.21) (Table 2). The associations of the seven intracranial 

volume loci, however, remained significant after adjusting for height (Supplementary 

Table S6). To investigate whether more height loci were associated with intracranial 

volume independently of height, we analyzed all 697 genome-wide significant height 

variants13. An additional 73 variants (10.7%; 14 variants not available) showed nominally 

significant associations with intracranial volume but were not attenuated after 

adjustment for height, although none survived Bonferroni correction (Supplementary 

Table S7). For some variants, the direction of effect was discordant, i.e. positive for height 

and negative for intracranial volume. Furthermore, a polygenic score of the 697 variants 

predicted intracranial volume, and this was also the case after adjustment for height in a 

subset of the studies (Supplementary Table S8).  
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Genetic correlation 

In addition to height, we examined the genome-wide genetic overlap between 

intracranial volume and other anthropometric traits, cognitive function, and 

neurodegenerative diseases (Table 2). We found a strong genetic correlation with child 

head circumference (ρgenetic = 0.748), which validates intracranial volume as a measure of 

brain growth during early development. Since this high correlation indicates that the 

genetic determinants of intracranial volume and child head circumference are largely 

shared, we aimed to leverage this information by performing a meta-analysis of both 

traits. The meta-analysis (combined N = 37,345) led to the identification of four novel loci 

(Figure 3; Supplementary Table S9). 

Weaker correlations were found with birth length and weight (ρgenetic < 0.3), which 

attenuated after adjusting for height. Additionally, intracranial volume was genetically 

correlated with cognitive function in childhood (ρgenetic = 0.277, P = 2.2x10-3) as well as 

general cognitive function in middle-aged and older adults (ρgenetic = 0.202, P = 6.3x10-4). 

Furthermore, we found a positive genetic correlation with Parkinson’s disease (ρgenetic = 

0.315, P = 6.6 x 10-7), but there was no significant genetic overlap with Alzheimer’s 

disease, white matter lesions, and psychiatric traits. 

Enrichment analyses 

Next, we assessed whether particular subsets of genetic variants were enriched for 

association with intracranial volume using partitioned heritability and pathway analyses 

(Online Methods). Overall, we found that common variants genotyped from across the 

whole genome explained 25.42% (S.E. 2.73%) of the variation in intracranial volume. 

Partitioning heritability by chromosome showed that chromosome 22 contributed 

twofold more to variation in intracranial volume than would be expected by its size 

(Figure 4A), which was not seen for any of the other complex traits from the genetic 

correlation analysis (Supplementary Figure S2). Partitioning by functional elements 

showed an enrichment for introns and several histone codes that are found in actively 

transcribed promoters (Figure 4B). The enrichment for intronic variants was specific to 

intracranial volume, whereas the other functional classes were also enriched in other 
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complex traits (Supplementary Figure S3).  We also found that loci associated with 

intracranial volume cluster around genes involved in specific pathways, with 94 

pathways significantly enriched (Figure 4C; full list in Supplementary Table S10). These 

pathways included all cell cycle components – the M-, G1-, S-, and G2-phases – and 

various growth factor signaling pathways, including PI3K-AKT. 

Head growth trajectories 

Although intracranial volume reflects brain development until maturation, and we 

identified influences of many growth-related processes contributing to its variation, all 

loci were still discovered via cross-sectional associations in adults. Therefore, we tested 

whether a polygenic score of the 7 loci could predict head growth in a longitudinal 

cohort of 2,824 children of European ancestry followed prenatally until 6 years of age 

(Online Methods). We found that a higher polygenic score, representing a genetically 

larger intracranial volume in adults, was also associated with a larger child head 

circumference (β = .031 per SD, P = 0.010). Furthermore, the effect of the polygenic score 

was age-dependent and more prominent in older children (β = 0.0080 per SD polygenic 

score per year age, Pinteraction = 0.0091). When investigating the individual loci separately, 

both 17q21 and 12q14 showed significant associations with child head circumference, 

but they influenced the trajectories of head growth differently (Figure 4A-B). For 17q21, 

the negative impact of the G allele on head circumference becomes apparent 

postnatally and increases towards six years, whereas the 12q14 locus exerts an effect 

from early pregnancy to one year of age, but is less prominent later in life.
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Figure 4 | Enrichment analyses of common variants associated with intracranial volume. 
Enrichment of subsets of variants for association with intracranial volume: A) by chromosomes, B) by 
functional subtype, and C) by pathway. See Online Methods for additional information. 

 
Figure 5 | Temporal trends of intracranial volume loci during pre- and postnatal brain 
development. 
Mean predicted values of standardized head circumference using linear mixed models with age, sex, and 
the rs199525 or rs138074335 variants. The blue line represents children not carrying the risk allele, purple 
only a single risk allele, and red with two risk alleles. See Online Methods for additional information. Total 
sample size is 2,824.
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DISCUSSION 
Genes contributing to variation in the size of the human brain remain challenging to 

discover. In a worldwide project of unprecedented scale, we performed the largest-ever 

meta-analysis of genome-wide association studies of intracranial volume. We discovered 

five novel genetic loci associated with intracranial volume, and replicated two known 

signals. The discovery sample included Europeans only, but the direction of effect was 

similar in other ethnicities. The genes in these loci provide intriguing links between 

maximal brain size and various processes, including neural stem cell proliferation 

(FOXO3), neurodegeneration (MAPT), bone mineralization (CENPW), growth signaling 

(IGF1, HMGA2), DNA replication (GMNC), and rRNA maturation (PDCD). On a genome-

wide scale, we discovered evidence of genetic correlation between intracranial volume 

and other key traits such as height and cognitive function, and also with Parkinson’s 

disease, indicating that the genes underlying brain development have far-reaching 

effects well beyond the initial years of life.  

The 17q21 locus tags a 1Mb inversion that is under positive selection in Caucasians14. It 

contains multiple genes including the MAPT and KANSL1. The MAPT gene is consistently 

implicated in various neurodegenerative disorders including Parkinson’s disease, 

Alzheimer’s disease, and frontotemporal dementia15,16, and microduplications have been 

reported to cause microcephaly17. KANSL1 causes the reciprocal 17q21.31 microdeletion 

syndrome - a multisystem disorder with intellectual disability, hypotonia and distinctive 

facial features18. The signal at 6q22 is intergenic to CENPW and RSPO3, but now lies 

172kb closer to CENPW. Interestingly, multiple variants at this locus independently 

influence bone mineral density19,20, and our signal particularly overlaps with the variant 

showing high specificity for the skull20. 

The significant variants at chr 6q21 span FOXO3, a gene associated with longevity21, 

height13, and serum IGF1 levels22. FOXO3 regulates the proliferation of neural stem cells, 

and knockout mice show larger brains resulting from increased proliferation 

immediately after birth23, followed by a decrease in adult neural stem cell renewal23,24. 

The rs3800229 variant in strong LD with our top variant (r2 = 0.84) contains chromatin 

promoter marks in the fetal brain (Supplementary Table S4), and regulates serum IGF1 
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levels in infants25. This provides a link to the genome-wide significant locus on chr12q23 

near IGF1, pointing to a potential mechanism through which these loci may affect brain 

growth. Chr12q23 lies 20Mb from one of two loci previously detected for head 

circumference in children26, but that region was not associated with intracranial volume 

in our study (rs7980687; P = 0.06). The other reported child head circumference locus, 

however, corresponded to our chr12q14 signal, with the top variant lying 14kb 

downstream of HMGA2, and already showed suggestive association with intracranial 

volume in a previous report7. It has also previously been associated with height13 and is 

essential for growth27. The chr10q24 LD-block covers multiple genes, but an intronic 

variant within PDCD11 is most significant. PDCD11 encodes an NF-kappa-B-binding 

protein required for rRNA maturation and generation of 18S rRNA28. A variant in LD 

(rs7894407) has recently been identified in a GWAS of cerebral white matter 

hyperintensities29. The top chr3q28 variant is located upstream of GMNC, which codes 

for the geminin coiled-coil domain-containing protein essential for DNA replication30. 

Prior efforts to identify variants affecting intracranial volume were much smaller and 

critically did not adjust for height6-9. We found that 4 out of 7 loci were already 

discovered for height13, but also that over 10% of the known ‘height loci’ actually affect 

intracranial volume, even after regressing out height. Interestingly, some variants 

showed discordant associations for height and intracranial volume - in line with the 

recent finding that different height loci disproportionally affect either leg length or 

spine/head length31 and may be a marker for pathological development32.  Also, height 

might thus serve as a proxy phenotype for intracranial volume, with the tenfold larger 

sample of the height GWAS giving greater power to detect associations. Neural genes 

are also enriched in pathway analyses of height13. However, to fully disentangle whether 

these identified genes are ‘height genes’, ‘brain volume genes’, or ‘growth genes’ (i.e., 

pleiotropic), a large collaborative effort is needed that examines the association of these 

variants with both intracranial volume and height under various models. 

When investigating genome-wide overlap with other traits, we found a strong 

correlation with child head circumference, underlining that intracranial volume is valid 

measure for maximal attained brain size. We were able to leverage this genetic link by 
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meta-analyzing both traits, which led to the identification of four additional loci (2q32.1, 

3q23, 7p14.3, 22q13.2). The correlations with birth length and weight were weaker and 

decreased further after adjusting for height, so a similar phenotypic correlation between 

head size and body size at younger age may drive these correlations. Intracranial volume 

was also genetically associated with cognitive function in childhood as well as general 

cognitive function in middle-aged and older individuals. This indicates that variation in 

maximally attained brain size during development shares a genetic basis with cognitive 

ability later in life and supports intracranial volume as a measure of brain reserve5.  

The brain reserve hypothesis states that premorbid brain size can modify resilience to 

age-related brain pathology33, but there was no indication of a genome-wide overlap 

with Alzheimer’s disease. However, we found a positive genetic correlation with 

Parkinson’s disease that rather points to a brain “overgrowth” hypothesis. Interestingly, 

the IGF1 and the PI3K-AKT pathways, key factors in both growth signaling and our 

current study of intracranial volume, are neuroprotective in a model system of 

Parkinson’s disease34. There were no correlations with other neurological or psychiatric 

traits, indicating that this finding might be specific to Parkinson’s disease. However, it is 

important to note that there is a certain extent of variation in the sample size and power 

of these studies, and larger GWAS might reveal genetic correlation with other traits as 

well. 

It is not yet known if variance in intracranial volume, within the normal range, 

contributes to disease risk or brain reserve. There is no doubt that in the pathological 

extremes of the distribution, size can matter, as in disorders such as microcephaly or 

macrocephaly. Here we found evidence for a shared genetic background between 

intracranial volume and cognitive function, and risk of Parkinson’s disease. While not 

definitive, these are novel pieces of empirical evidence in the debate on whether or not 

whole brain size matters. 

The pathway analyses highlight cellular growth and proliferation and included all 

components of the cell cycle (M-, G1-, S-, and G2-phase) and various growth factor 

signaling pathways. PI3K-AKT signaling has a well described role in brain overgrowth 

disorders35,36, and was the only significant pathway using a different pathway analysis 
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method (Supplementary Table S11). Interestingly, AKT3 intronic variants showed 

suggestive evidence for association with intracranial volume (rs7538011; P = 9.2 x 10-7). 

Deletions of AKT3 cause microcephaly syndromes37, whereas duplications give rise to 

macrocephaly38. Similar to FOXO3, it is part of the IGF1 signaling pathway, which is 

important for human longevity39. The PI3K-AKT signaling pathway seems to have an 

important role in brain growth, not only in pathological extremes, but also for normal 

variation at a population level. Other pathways enriched for association with intracranial 

volume highlight neuronal functions such as neurotransmission and axon guidance. 

We identified novel loci all influencing intracranial volume and, at a genome-wide level, 

there seem to be common pathways, but our longitudinal study reveals that their 

developmental effects are complex. The loci influenced trajectories of head growth 

differently; it also would be interesting to investigate whether their spatial profiles of 

effects are distinct, where certain loci promote growth of particular brain regions. 

Here we identified key genetic loci implicated in intracranial volume within a global 

collaborative effort, followed by computational analyses to determine the important 

biological pathways and functional elements. While the majority of the genetic variants 

are yet to be discovered, it is clear that these will provide better insight into brain 

development, but also into related neuropsychiatric traits such as cognitive functioning 

and even for neurodegeneration late in life. Uncovering the remaining heritability will 

advance our understanding of the brain’s complex genetic architecture. 

METHODS 

Study population 

This study reports data on 32,438 subjects from 52 study sites that are part of the 

Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE)10 consortium 

and Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA)11 consortium. 

Briefly, the CHARGE consortium is a collaboration of predominantly population-based 

cohort studies that investigate the genetic and molecular underpinnings of age-related 

complex diseases, including those of the brain. The ENIGMA consortium brings together 

numerous studies, mainly with a case-control design, which performed neuroimaging in 
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a range of neuropsychiatric or neurodegenerative diseases, as well as healthy normative 

populations. Studies participated in either the discovery cohort of European ancestry, 

the replication in European ancestry, or the generalization to other ethnicities. An 

overview of the demographics and type of contribution for each cohort is provided in 

Supplementary Table S1. Written informed consent was obtained from all participants. 

Each study was approved by the respective Institutional Review Board or Local Ethics 

Committee. 

Genetics 

Genotyping was performed using a variety of commercial arrays across the contributing 

sites. Both samples as well as variants underwent similar quality control procedures 

based on genetic homogeneity, call rate (less than 95%), minor allele frequency (MAF < 

0.01), and Hardy-Weinberg Equilibrium (HWE p-value less than 1 x 10-6). Good quality 

variants were used as input for imputation to the 1000 Genomes reference panel (phase 

1, version 3) using validated software packages (MaCH/minimac, IMPUTE2, BEAGLE, 

GenABLE). Variants that were poorly imputed (R2 < 0.5) or uncommon (MAF < 0.5%) were 

removed prior to meta-analysis. Full details on the site-specific genotyping and quality 

control may be found in Supplementary Table S2.  

Imaging 

Magnetic resonance imaging (MRI) was obtained from scanners with a diversity of 

manufacturers, field strengths, and acquisition protocols. Images were used to estimate 

milliliters of intracranial volume from automated segmentations generated by freely 

available or in-house methods that have been described and validated earlier. Most sites 

measured intracranial volume for each participant by multiplying the inverse of the 

determinant of the transformation matrix required to register the subject’s MRI scan to a 

common template by the template volume (1,948,105 mm3), using the FreeSurfer 

software. Visual inspections were performed to identify and remove poorly segmented 

images. Either all scans were visually inspected, or sites generated histogram plots to 

identify any outliers, which were defined as individuals with a volume more than three 

standard deviations away from the mean. Statistical outliers were only excluded if the 
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segmentations were deemed improper. . More site-specific information related to the 

imaging is available in Supplementary Table S3.  

Genome-wide association studies 

Genome-wide association studies of intracranial volume were performed for each site 

separately, controlling for age, sex, and, when applicable, age2, population stratification 

variables (MDS / principal components), study site (for multi-site studies only), diagnosis 

(for case-control studies only). Studies of unrelated individuals performed a linear 

regression analyses whereas studies of related individuals (ASPSFam, BrainSCALE, ERF, 

GeneSTAR, GOBS, NeuroIMAGE, NTR-Adults, OATS, QTIM, SYS) used linear mixed models 

to account for familial relationships. Summary statistics, including the effect estimates of 

the genetic variant with intracranial volume under an additive model, were exchanged 

to perform a fixed-effects meta-analysis weighting for sample size in METAL40. After the 

final meta-analysis, variants were excluded if they were only available for fewer than 

5,000 individuals.  Meta-analyses were stratified by race and done separately for 

discovery, replication, and generalization samples. Beta coefficients were recalculated 

from Z-scores, allele frequencies, and the sample, as described earlier41  Site-specific 

quantile-quantile plots were generated to inspect the presence of genomic inflation. 

The variance explained by all variants in the GWAS was estimated using LD score 

regression12,42. Sensitivity analyses were performed by excluding patients. 

Functional annotation 

All tracks of the regional association plots were taken from the UCSC Genome Browser 

Human hg19 assembly. SNPs (top 5%) shows the top 5% associated variants within the 

locus and are colored by their correlation to the top variant. Genes shows the gene 

models from GENCODE version 19. The tracks give the predicted chromatin states based 

on computational integration of ChIP-seq data for 12 chromatin marks in various human 

tissues derived from the Roadmap Epigenomics Consortium43. Additionally, we used 

HaploReg version 3 for annotation of the top variants and all variants in LD (> 0.80) 

(http://www.broadinstitute.org/mammals/haploreg/haploreg_v3.php).  

Genetic correlation 
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The genetic correlation analyses were also performed using LD score regression. The 

GWAS meta-analysis of intracranial volume, as well as the height adjusted and height 

subset meta-analyses, were correlated with published GWAS  of the following traits: 

Child head circumference26, birth weight44, birth length45, adult height13, childhood 

cognitive function46, adult cognitive function47, Alzheimer’s disease48, Parkinson’s 

disease49, white matter lesions50, psychiatric disorders51,  neuroticism52, and 

extraversion53. 

Enrichment analyses 

To determine whether the intracranial volume association results were enriched for 

certain types of genetic variants, we employed two strategies: partitioned heritability 

and pathway analyses.  

Partitioned heritability was calculated using a previously described method42. This was 

done by partitioning variants by chromosome and by 28 functional classes: coding, UTR, 

promoter, intron, histone marks H3K4me1, H3K4me3, H3K9ac5 and two versions of 

H3K27ac, open chromatin DNase I hypersensitivity Site (DHS) regions, combined 

chromHMM/Segway predictions, regions that are conserved in mammals, super-

enhancers and active enhancers from the FANTOM5 panel of samples (Finucane et al. 

page 4)42. Multiple testing thresholds were calculated accordingly: Pthresh = 0.05/(22 

chromosomes) = 2.27 x 10-3  for the chromosomes and Pthresh = 0.05/(28 classes) = 1.79 x 

10-3 for the functional classes. 

Pathway analyses were performed using the KGG2.554 and MAGENTA55 software 

packages. LD was calculated based with the 1000 Genomes Project European samples as 

a reference (see URLs). Variants were considered to be within a gene if they were within 

5 kb of the 3’/5’ UTR based on chromosome positions (hg19) coordinates. Gene-based 

tests were done with the GATES test54 without weighting P-values by predicted 

functional relevance. Pathway analysis was performed using the HYST test of 

association56. A multiple testing threshold accounting for the number of pathways 

tested resulting in a significance threshold of Pthresh = 0.05/(671 pathways) = 7.45 x 10-5.   
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Head growth trajectories 

Head growth trajectory analyses were done within the Generation R study, a 

longitudinal cohort study situated in Rotterdam, the Netherlands. For this analysis we 

included 2,824 children of European ancestry followed prenatally until 6 years of age. 

Head size was measured at the following points: prenatally (using echo) during the first, 

second, and third trimester, and postnatally (measuring head circumference) at 0-2 

months, 2 months, 3 months, 4 months, 5-10 months, 10-13 months, 13-17 months, and 

5 years of age. We tested whether a polygenic score of the 7 loci, as well as the 7 loci 

themselves separately, were related to head growth  using linear mixed models and 

included an interaction term between time and the genetic score/variant (SAS software). 

Next, the predicted values were calculated for each person and plotted over time, 

stratified by genotype (0/1/2 risk alleles) using the R software package.   

URLs 

ftp://pricelab:pricelab@ftp.broadinstitute.org/LDSCORE/ 

http://enigma.ini.usc.edu/protocols/genetics-protocols/ 

http://genenetwork.nl/bloodeqtlbrowser/ 

http://gump.qimr.edu.au/general/gabrieC/LocusTrack/). 
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ABSTRACT  
The hippocampal formation is a brain structure integrally involved in episodic memory, 

spatial navigation, cognition, and stress responsiveness. Structural abnormalities in 

hippocampal volume and shape are found in several common neuropsychiatric 

disorders. To identify the genetic underpinnings of hippocampal structure here we 

perform a genome-wide association study (GWAS) of 33,536 individuals and discover six 

independent loci significantly associated with hippocampal volume, four of them novel. 

Of the novel loci, three lie within genes (ASTN2, DPP4, MAST4) and one is found 200kb 

upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 

gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1, and 

fissure. Further, we show that genetic variants associated with decreased hippocampal 

volume are also associated with increased risk for Alzheimer’s disease (rg=-0.155). Our 

findings suggest novel biological pathways through which human genetic variation 

influences hippocampal volume and risk for neuropsychiatric illness.  
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INTRODUCTION 
Brain structural abnormalities in the hippocampal formation are found in many complex 

neurological and psychiatric disorders including temporal lobe epilepsy1, vascular 

dementia2, Alzheimer’s disease3, major depression4, bipolar disorder5, schizophrenia6, 

and post-traumatic stress disorder7, among others. The diverse functions of the 

hippocampus, including episodic memory8, spatial navigation9, cognition10, and stress 

responsiveness11 are commonly impaired in a broad range of diseases and disorders of 

the brain that are associated with insults to the hippocampal structure. Further, the 

cytoarchitectural subdivisions (or ‘subfields’) of the hippocampus are associated with 

distinct functions. For example, the dentate gyrus (DG) and sectors 3 and 4 of the cornu 

ammonis (CA) are involved in declarative memory acquisition12, the subiculum and CA1 

play a role in disambiguation during working memory processes13, and the CA2 is 

implicated in animal models of episodic time encoding14 and social memory15. The 

anterior hippocampus, which includes the fimbria, CA subregions, and HATA, may be 

involved in the mediation of cognitive processes including imagination, recall, and visual 

perception16 and anxiety-related behaviors17. 

Environmental factors, such as stress, affect the hippocampus18, but genetic differences 

across individuals account for most of the population variation in its size; the heritability 

of hippocampal volume is high at around 70%19-21. High heritability and a crucial role in 

healthy and diseased brain function make the hippocampus an ideal target for genetic 

analysis. We formed a large global partnership to empower the quest for mechanistic 

insights into neuropsychiatric disorders associated with hippocampal abnormalities and 

to chart, in depth, the genetic underpinnings of the hippocampal structure. 

Here we perform a GWAS meta-analysis of mean bilateral hippocampal volume in 33,536 

individuals scanned at 65 sites around the world as a joint effort between the Enhancing 

Neuroimaging Genetics through Meta-analysis (ENIGMA) and the Cohorts for Heart and 

Aging Research in Genomic Epidemiology (CHARGE) consortia. Our primary goal is to 

find common genetic determinants of hippocampal volume with previously 

unobtainable power. We make considerable efforts to coordinate data analysis across all 

sites from both consortia in order to maximize the comparability of both genetic and 
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imaging data. Standardized protocols for image analysis and genetic imputation are 

freely available online. In the most powerful imaging study of the hippocampus to date, 

we shed light on the common genetic determinants of hippocampal structure and allow 

for a deepened understanding of the biological workings of the brain’s memory center. 

We confirm previously identified loci influencing hippocampal volume, identify four 

novel loci, and determine gross genetic overlap with Alzheimer’s disease. 
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RESULTS 

Novel genome-wide markers forippocampal volume 

Our combined meta-analysis (n = 26,814 individuals of European ancestry) revealed six 

independent, genome-wide significant loci associated with hippocampal volume (Figure 

1; Table 1). Four are novel: with index SNPs rs11979341 (7q36.3; P=1.42x10-11), rs7020341 

(9q33.1; P=3.04x10-11), rs2268894 (2q24.2; P=5.89x10-11), and rs2289881 (5q12.3; 

P=2.73x10-8). The other two loci have been previously characterized in detail: with index 

SNPs rs77956314 (12q24.22, P=2.06x10-25), in linkage disequilibrium (LD) (r2=0.901 in 

European samples from the 1000  Genomes Project, Phase 1v3) with our previously 

identified variant at this locus (rs7294919) and rs61921502 (12q14.3, P=1.94x10-19), in LD 

(r2=0.459) with previous top locus rs1717800622-24 (Figure 2a-f). In addition to these SNPs, 

we identified nine independent loci with a statistically suggestive influence on 

hippocampal volume (P < 1x10-6; Supplementary Data 4). All pathway results and gene-

based p-values are summarized in Supplementary Data 6 and 7.   

Table 1 | Genetic variants at six loci were significantly associated with hippocampal 

volume. 

RSID Chr Pos 
Nearest 
Gene 

A1 A2 Freq Z-score N P-value 

rs77956314 12 117323367 4 kb 5’ to 
HRK 

T C 0.92 -10.48 26814 2.06x10-25 

rs61921502 12 65832468 intron of 
MSRB3 

T G 0.85 9.017 26814 1.94x10-19 

rs11979341 7 155797978 200 kb 5’ 
to SHH 

C G 0.68 -6.755 24484 1.42x10-11 

rs7020341 9 119247974 intron of 
ASTN2 

C G 0.36 6.645 26700 3.04x10-11 

rs2268894 2 162856148 intron of 
DPP4 

T C 0.54 -6.546 26814 5.89x10-11 

rs2289881 5 66084260 intron of 
MAST4 

T G 0.35 -5.558 26814 2.73x10-8 

The allele frequency (Freq) and effect size (Z-score) are given with reference to Allele 1. Effect 
sizes are additive effects for each copy of Allele 1 given as a Z-score. Additional validation was 
attempted in non-European ancestry generalization samples (shown in Supplementary Data 
5). 
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Variance explained by common variants  

Common variants genotyped from across the whole genome explained as much as 

18.76% (S.E. 1.56%) of the observed variance in human hippocampal volume, based on 

LDSCORE regression25 (Supplementary Fig. 3). Common genetic variants account for 

around a quarter of the overall heritability, estimated in twin studies to be around 70%19-

21. Further partitioning the genome into functional categories using LDSCORE26 revealed 

significant over-representation of regions evolutionarily conserved in mammals 

(P=0.0026): 2.6% of the variants accounted for 43.3% of the 18.76% variance explained 

(Figure 3).  

Effects of top variants on hippocampal subfield volume 

To test for differential effects on individual subfields of the hippocampal formation, we 

examined the six significant variants influencing whole hippocampal volume in a large 

cohort (n = 5,368). We found that the top SNP from our primary analysis, rs77956314, has 

a broad, nonspecific effect on hippocampal subfield volumes with the greatest effect in 

the right hippocampal tail (P = 1.27x10-8). rs61921502 showed strong lateral effects 

across right hippocampal subfields with the largest effect in the right hippocampal 

fissure (P = 6.45x10-9). rs7020341 showed greatest effects bilaterally in the subiculum 

(left: P = 1.59x10-8; right: P = 1.42x10-8). rs2268894 show left-lateralized effects across 

hippocampal subfields with the strongest effect in the left hippocampal tail (P = 1.76x10-

5). The remaining two variants (rs11979341 and rs2289881) did not show significant 

evidence of association across any of the hippocampal subfields. See Supplementary 

Data 8 for the full results. 
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Genetic overlap with hippocampal volume 

We used LDSCORE27 regression to quantify the degree of common genetic overlap 

between variants influencing the hippocampus and those influencing Alzheimer’s 

disease. We found significant evidence of a moderate, negative relationship whereby 

variants associated with a decrease in hippocampal volume are associated with an 

increased risk for Alzheimer’s disease (rg=-0.155 (S.E. 0.0529), P=0.0034; see Methods). 

 
Figure 3 | Analysis of variance explained by functional annotations.  
LDSCORE regression analysis for different functional annotation categories. Plotted values are 
the proportion of h2g explained divided by the proportion of SNPs in a given functional 
category. Values are over- or under-represented if they differ significantly from 1. Values are 
plotted with a standard error calculated with a jackknife in LDSCORE. Evolutionarily conserved 
regions across mammals significantly contributed to the heritability of hippocampal volume 
(indicated by **).  
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DISCUSSION 
We identified six genome-wide significant, independent loci associated with 

hippocampal volume in 26,814 subjects of European ancestry. Of the six loci, four were 

novel: rs11979341 (7q36.3; P=1.42x10-11), rs7020341 (9q33.1; P=3.04x10-11), rs2268894 

(2q24.2; P=5.89x10-11), and rs2289881 (5q12.3; P=2.73x10-8). We previously discovered 

two of the novel loci, rs7020341 and rs226889424, but in this higher-powered analysis 

they now surpassed the genome-wide significance. In addition to the four novel loci, we 

replicated two loci associated with hippocampal volume: rs7492919 and rs1717800623, 24. 

Hibar et al. (2015) previously reported additional support for the rs17178006 association 

with hippocampal volume22.  

Each novel locus identified has unique functions and has previously been linked to 

diseases of the brain. Variant rs7020341 lies within an intron of the astrotactin 2 (ASTN2) 

gene (Figure 2d) which encodes for a protein involved in glial-mediated neuronal 

migration in the developing brain28. Rare deletions overlapping this locus near the 3’ end 

of ASTN2 have been observed in patients with autism spectrum disorder and attention-

deficit/hyperactivity disorder29.  Common variants near this site are associated with 

autism spectrum disorders29 and migraine30. Variant rs2268894 is located in an intron of 

DPP4 (Figure 2e) that encodes dipeptidyl peptidase IV; an enzyme regulating response 

to the ingestion of food31, and an established target of a treatment for type 2 diabetes 

mellitus (vildagliptin)32. In addition, rs2268894 is in strong LD (r2 = 0.83) with a genome-

wide significant locus associated with a decreased risk for schizophrenia (rs2909457)33; 

however, the allele that increases risk for schizophrenia also increases hippocampal 

volume even though patients with schizophrenia show decreased hippocampal volume 

relative to controls6. Variant rs11979341 lies in an intergenic region (Figure 2c) around 

200 kb upstream of the sonic hedgehog (SHH) gene, crucial for neural tube formation34. 

Adult brain expression data provide some evidence that rs11979341-C increases the 

expression of SHH in adult human hippocampus35 (P=0.0089). Finally, variant rs2289881 

lies within an intron of the microtubule-associated serine/threonine kinase family 

member 4 (MAST4) gene (Figure 2f). The protein product of MAST4 modulates the 
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microtubule scaffolding; the gene has been linked to susceptibility for atherosclerosis in 

HIV-infected men36, and atypical frontotemporal dementia37.  

Effect sizes from the full sample were almost identical to those obtained from a subset 

meta-analysis (Pearson’s r2 > 0.99; n = 22,761) that removed all patients diagnosed with a 

neuropsychiatric disorder. Observed effects are therefore not likely to be driven by 

inclusion of patients with brain disorders. All significant loci are tabulated in Table 1. We 

found little evidence that these effects could be generalized to populations of African, 

Japanese, and Mexican-American ancestry, which could be due to the limited power 

from smaller non-European sample sizes available (see Supplementary Data 5). 

We estimated that 18.76% (S.E. 1.56%) of the variance in hippocampal volume could be 

explained by genotyped common genetic variation. This effect was only tested within 

populations of European ancestry and does not necessarily reflect the level of explained 

variance in other populations worldwide. This is a substantial fraction of the overall 

genetic component of variance determined by twin heritability studies, and the 

heritability of hippocampal volume is relatively high at around 70%19-21. With the same 

LDSCORE method, we estimated the amount of variance explained by common gene 

variants belonging to known functional cell categories.26 We discovered enrichment of 

genomic regions conserved across mammals, which may have a strong evolutionary role 

in the hippocampal formation, a structure much more extensively developed in 

mammals than in other vertebrates38. Given that hippocampal atrophy is a hallmark of 

Alzheimer's disease pathology39, we were motivated to examine common genetic 

overlap between hippocampal volume and Alzheimer's disease risk. We found a 

significant negative relationship (rg=-0.155 (S.E. 0.0529), P=0.0034), through which loci 

associated with decreased hippocampal volume also increase risk for AD. This confirms a 

shared etiological component between AD and hippocampal volume whereby genetic 

variants influencing hippocampal volume also modify the risk for developing AD. 

As the hippocampal formation is a complex structure comprised of diverse functional 

units, we sought to examine the genetic variants identified in our analysis for focal 

effects on hippocampal subfield volumes. When assessing 13 subfields of the 

hippocampus (26 total, left and right) we found that two of the top variants from our 
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analysis (rs77956314 and rs7020341) had largely non-specific effects: most of the 

subfield volumes showed significant evidence of association (Supplementary Data 8). 

The variant rs61921502 showed a lateralized effect across the body of the right 

hippocampal formation, which includes the DG, subiculum, CA1, and fissure. Volume 

losses are frequently observed across the hippocampal body in AD40, major depression41, 

bipolar disorder42, and temporal lobe epilepsy43. Prior pathway analyses have implicated 

the rs61921502 with MSR3B, a gene related to oxidative stress24.  Genetic variation at 

MSR3B may influence neurogenesis specifically within the dentate regions of the 

hippocampal body, where cell proliferation is known to continue into adulthood in 

healthy humans44. However, further functional validation is required to test this 

hypothesis. Finally, the variant rs2268894 was associated with volume differences in the 

left hippocampal tail, a subfield that has previously shown shape abnormalities45 and 

volume differences46 in schizophrenia. 

Here we identified four novel loci associated with hippocampal volume and examined 

each variant for localized effects in hippocampal subfields. When partitioning the full 

genome-wide association results into functionally annotated categories, we discovered 

that SNPs in evolutionarily conserved regions were significantly over-represented in 

their contribution to hippocampal volume. Further, we found significant evidence of 

shared genetic overlap between hippocampal volume and Alzheimer’s disease. This 

large international effort shows that by mapping out the genetic influences on brain 

structure, we may begin to derive mechanistic hypotheses for brain regions causally 

implicated in the risk for neuropsychiatric disorders.
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METHODS 

Subjects and sites 

High-resolution MRI brain scans and genome-wide genotyping data were available for 

33,536 individuals from 65 sites in two large consortia: the ENIGMA Consortium and the 

CHARGE Consortium. Full details and demographics for each participating cohort are 

given in Supplementary Data 1. All participants (or their legal representatives) provided 

written informed consent. The institutional review board of the University of Southern 

California and the local ethics board of Erasmus MC University Medical Center approved 

this study.  

Imaging analysis and quality control 

Hippocampal volumes were estimated using the automated and previously 

validated segmentation algorithms, FSL FIRST47 from the FMRIB Software Library 

(FSL) and FreeSurfer48. Hippocampal segmentations were visually examined at 

each site, and poorly segmented scans were excluded. Sites also generated histogram 

plots to identify any volume outliers. Individuals with a volume more than three 

standard deviations away from the mean were visually inspected t o  v e r i f y  p r o p e r  

s e g m entation. Statistical outliers were included in analysis if they were properly 

segmented; otherwise, they were removed. Average bilateral hippocampal 

volume was highly correlated across automated procedures used to measure it 

(Pearson’s r = 0.74)22. A measure of head size - intracranial volume (ICV) - was used as 

a covariate in these analyses to adjust for volumetric differences due to differences 

in head size alone. Most sites measured ICV for each participant using the inverse of 

the determinant of the transformation matrix required to register the subject’s MRI 

scan to a common template and then multiplied by the template volume 

(1,948,105 mm3). Full details of image acquisition and processing performed at 

each site are given in Supplementary Data 2.   

Genetic imputation and quality control 

Genetic data were obtained at each site using commercially available genotyping 

platforms. Prior to imputation, genetic homogeneity was assessed in each sample using 
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multi-dimensional scaling (MDS). Ancestry outliers were excluded by visual inspection of 

the first two components. The primary analysis and all data presented in this main text 

were derived from subjects with European ancestry. Replication attempts in subjects of 

additional ancestries are presented in Supplementary Data 5. Data were further cleaned 

and filtered to remove single nucleotide polymorphisms (SNPs) with low minor allele 

frequency (MAF < 0.01), deviations from Hardy-Weinberg Equilibrium (HWE P < 1x10-6), 

and poor genotyping call rate (<95%). Cleaned and filtered datasets were imputed to 

the 1000 Genomes Project reference panel (phase 1, version 3) using freely available and 

validated imputation software (MaCH/minimac, IMPUTE2, BEAGLE, GenABLE). After 

imputation, genetic data were further quality checked to remove poorly imputed SNPs 

(estimated R2 < 0.5) or low MAF (<0.5%). Details on filtering criteria, quality control, and 

imputation at each site may be found in Supplementary Data 3.  

Genome-wide association analysis 

Genome-wide association scans (GWAS) were performed at each site, as follows. Mean 

bilateral hippocampal volume ((left + right)/2) was the trait of interest, and the additive 

dosage value of a SNP was the predictor of interest, while controlling for 4 MDS 

components, age, age2, sex, intracranial volume, and diagnosis (when applicable). For 

studies with data collected from multiple centers or scanners, additional covariates were 

also included in the model to adjust for any scanning site effects. Sites with family data 

(NTR-Adults, BrainSCALE, QTIM, SYS, GOBS, ASPSFam, ERF, GeneSTAR, NeuroIMAGE, 

OATS, RSIx) used mixed-effects models to account for familial relationships, in addition 

to covariates stated previously. The primary analyses for this paper focused on the full 

set of individuals, including datasets with patients, to maximize power. We re-analyzed 

the data excluding patients to verify that detected effects were not due to disease alone. 

The regression coefficients for SNPs with P < 1x10-5 in the model including all patients 

were almost perfectly correlated with the regression coefficients from the model 

including only healthy individuals (Pearson’s r = 0.996). Full details for the software used 

at each site are given in Supplementary Data 3. 

The GWAS of mean hippocampal volume was performed at each site, and the resulting 

summary statistics uploaded to a centralized site for meta-analysis. Prior to meta-
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analysis, GWAS results from each site were checked for genomic inflation and errors 

using Quantile-Quantile (QQ) plots (Supplementary Fig. 1-2). GWAS results from each 

site were combined using a fixed-effects sample size-weighted meta-analysis framework 

as implemented in METAL49. Data were meta-analyzed first in the ENIGMA and CHARGE 

Consortia separately and then combined into a final meta-analyzed result file. After the 

final meta-analysis, SNPs were excluded if the SNP was available for fewer than 5,000 

individuals.  

Variance explained and genetic overlap in hippocampal 

volume 

The common genetic overlap, total variance explained by the GWAS, and the partitioned 

heritability analyses were estimated using LDSCORE25, 26. Following from the polygenic 

model, an association test statistic at a given locus includes signal from all linked loci. 

Given a heritable polygenic trait, a SNP in high linkage disequilibrium (LD) with, or 

tagging, a large number of SNPs is on average likely to show stronger association than a 

SNP that is not. The magnitude of information conveyed by each variant (a function of 

the number of SNPs tagged taking into account the strength of the tagging) is 

summarized as an LD score. By regressing the LD scores on the test statistics, we 

estimated the proportion of variance in the trait explained by the variants included in 

the analysis. As an extension, two LD score models for two separate traits can be used to 

estimate the covariance (and correlation) structure to yield an estimate of the common 

genetic overlap (rg) between any two trait pairs. Here we estimated the common genetic 

overlap between hippocampal volume and Alzheimer’s disease50. Standard errors were 

estimated using a block jackknife. 

Genomic partitioning into functional categories 

As well as estimating the total variance explained, the genomic heritability (h2
g) can be 

partitioned into specific subsets of variants. The functional annotation partitioning used 

the pre-prepared LDSCORE and annotation (.annot) files available online (see URLs) 

following the method of Finucane et al.26. These analyses use the following 24 functional 

classes not specifically unique to any cell type: coding, UTR, promoter, intron, histone 
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marks H3K4me1, H3K4me3, H3K9ac5 and two versions of H3K27ac, open chromatin 

DNase I hypersensitivity Site (DHS) regions, combined chromHMM/Segway predictions, 

regions conserved in mammals, super-enhancers and active enhancers from the 

FANTOM5 panel of samples (Finucane et al., page 4)26. Annotated coordinates are 

determined by a combination of all cell types from ENCODE. As in Finucane et al26, to 

avoid bias, we included the 500bp windows surrounding the variants included in the 

functional classes. The chromosome-partitioned analyses were conducted using 

LDSCOREs calculated for each chromosome. Following the method of Bulik-Sullivan et 

al.25, these analyses focus on the variants within HapMap3 as these SNPs are typically 

well imputed across cohorts. Enrichment of a given partition is calculated as the 

proportion of h2
g explained by that partition divided by the proportion of variants in the 

GWAS that fall into that partition. All LDSCORE analyses used non-genomic controlled 

meta-analyses. 

Gene annotation and pathway analysis 

Gene annotation, gene-based test statistics, and pathway analysis were performed using 

the KGG2.5 software package51 (Supplementary Data 6 and 7). LD was calculated based 

on RSID numbers using the 1000 Genomes Project European samples as a reference (see 

URLs). For annotation, SNPs were considered “within” a gene, if they fell within 5 kb of 

the 3’/5’ UTR based on human genome (hg19) coordinates. Gene-based tests were 

performed using the GATES test51 without weighting P-values by predicted functional 

relevance. Pathway analysis was performed using the HYST test of association52. For all 

gene-based tests and pathway analyses, results were considered significant if they 

exceeded a Bonferroni correction threshold accounting for the number of pathways 

tested such that Pthresh = 0.05/(671 pathways) = 7.45 x 10-5.   

Annotation of SNPs with epigenetic factors 

In Figure 2, all tracks were taken from the UCSC Genome Browser Human hg19 

assembly. SNPs (top 5%) shows the top 5% associated SNPs within the locus and are 

colored by their correlation to the top SNP. Genes shows the gene models from 

GENCODE version 19. Hippocampus gives the predicted chromatin states based on 
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computational integration of ChIP-seq data for 18 chromatin marks in human 

hippocampal tissue derived from the Roadmap Epigenomics Consortium53. The 18 

chromatin states from the hippocampus track are as follows: TssA (Active TSS), TssFlnk 

(Flanking Active TSS), TssFlnkU (Flanking TSS Upstream), TssFlnkD (Flanking TSS 

Downstream), Tx (Strong transcription), TxWk (Weak transcription), EnhG1 (Genic 

Enhancers 1), EnhG2 (Genic Enhancers 2), EnhA1 (Active Enhancers 1), EnhA2 (Active 

Enhancers 2), EnhWk (Weak Enhancers), ZNF/Rpts (ZNF genes & repeats), Het 

(Heterochromatin), TssBiv (Bivalent/Poised TSS), EnhBiv (Bivalent Enhancer), ReprPC 

(Repressed PolyComb), ReprPCWk (Weak Repressed PolyComb), Quies (Quiescent/Low). 

Additional information about the 18 state chromatin model is detailed elsewhere53. 

Conservation is the basewise conservation score over 100 vertebrates estimated by 

PhyloP from the UCSC Genome Browser Human hg19 assembly. 

Analysis of hippocampal subfields 

We segmented the hippocampal formation into 13 subfield regions: CA1, CA3, CA4, 

fimbria, Granule Layer + Molecular Layer + Dentate Gyrus Boundary (GC_ML_DG), 

hippocampal-amygdaloid transition area (HATA), hippocampal tail, hippocampal fissure, 

molecular layer (HP), parasubiculum, presubiculum, and subiculum using a freely 

available, validated algorithm distributed with the FreeSurfer image analysis package54. 

We measured the hippocampal subfield volumes within the Rotterdam (n = 4,491) and 

HUNT (n = 877) cohorts. Volumes from the 26 subfield regions (13 in each hemisphere) 

were the phenotypes of interest and individually assessed for significance with the top 

variants from our primary analysis while correcting for the following nuisance variables: 

4 MDS components, age, age2, sex, intracranial volume. Association statistics from each 

of the tests in the Rotterdam and HUNT cohorts were meta-analyzed using a fixed-

effects inverse variance-weighted model yielding the final results. We declare an 

individual test significant if the P-value is less than a Bonferroni-corrected P-value 

threshold accounting for the total number of tests: Pthresh = 0.05/(26 subfields * 6 SNPs) = 

3.21x10-4. 
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Data availability 

The genome-wide summary statistics that support the findings of this study are 

available upon request from the corresponding authors MAI and PMT. The data are not 

publicly available due to them containing information that could compromise research 

participant privacy/consent. 
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ABSTRACT 
Background: Intracranial carotid artery calcification (ICAC) is one of the most important 

risk factors for stroke. Although several environmental risk factors for ICAC have been 

identified, its genetic background remains unclear. 

Methods: Between 2003 and 2006, 2403 participants from the prospective population-

based Rotterdam Study (mean age: 69.6 ± 6.8 years; 51.7% female) underwent 

computed tomography to quantify vascular calcification in the intracranial internal 

carotid artery. Blood samples were drawn for genotyping. Genotypes of the participants 

were imputed to the 1000-Genomes reference panel to generate genetic relationship 

matrices for the estimation of the heritability of ICAC volume. Adjustments were made 

for age and sex. Subsequently, genome-wide association analyses were performed to 

identify specific variants. 

Results: The age- and sex-adjusted heritability (h2) of ICAC was 47% (standard error (SE): 

19%, P=0.009). Genome-wide association analyses identified a variant on chromosome 

9p21.3 (rs1537372; N=2034; P=4.75x10-9) and one variant on chromosome 11p11.2 

(rs11038042, N=2034; P=3.27x10-8), that were significantly associated with ICAC volume. 

Rs1537372 replicated in an independent sample of 716 stroke patients (Pcombined 

=1.38x10-10).  

Conclusions:ICAC volume is a heritable trait which is partly explained by common 

genetic variation. We identified specific genetic variants associated with ICAC, which 

given the importance of ICAC in stroke risk, needs replication in larger-scale studies to 

further elucidate its genetic basis.  
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INTRODUCTION 
Intracranial carotid artery calcification (ICAC) is a leading risk factor for stroke.1-3 Various 

established environmental and lifestyle factors such as smoking and diabetes mellitus 

are known to contribute substantially to the formation of ICAC.1,2,4 Yet, it remains 

unknown to what extent genetics play a role in the development of ICAC. 

For the last decade, genetic research of atherosclerotic calcification has mainly focused 

on the coronary arteries given strong relations with coronary morbidity and mortality. 

Recently, this has led to the identification of three common genetic variants strongly 

related to the presence and amount of coronary artery calcification.5 Yet, preliminary 

evidence suggests that these variants are not associated with calcification in other 

vessels.6 This suggests that although arterial calcification is a systemic process, there are 

important vessel-specific differences in its etiology.7,8 Given that other risk factors such 

as diabetes and smoking are generally thought to exert a systemic effect on the 

formation of arterial calcification, genetic information may be crucial for explaining 

location-specific differences.  

Against this background, it is vital to elucidate the genetic susceptibility underlying the 

development of ICAC. This information may ultimately aid in the development of 

therapeutic or preventive interventions for stroke. 

Therefore, in the current study, we quantified ICAC,3 determined its heritable 

component, and performed a genome-wide association analysis including independent 

replication of top hits.   
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METHODS 

Discovery cohort 

This study was embedded in the Rotterdam Study,9 a prospective population-based 

study investigating the determinants and consequences of age-related diseases in older 

adults. The original cohort consisted of 7,983 participants 55 years or older and was 

extended in 2000-2001 by 3,011 persons. At study entry and every 3 to 4 years, all 

participants are re-examined in a dedicated research center. The Rotterdam Study 

represents a relatively stable, homogeneous middle-class population, largely of 

European descent. The Rotterdam Study has been approved by the medical ethics 

committee according to the Population Screening Act: Rotterdam Study, executed by 

the Ministry of Health, Welfare and Sports of the Netherlands. All participants provided 

written informed consent. 

Between September 2003 and February 2006, we invited all participant who visited the 

research center to undergo non-enhanced computed tomography (CT) scanning to 

quantify calcification in the intracranial carotid arteries (as part of a large project on 

quantification of vascular calcification in multiple vessel beds).10,11Due to errors in image 

acquisition or image artefacts, 29 CT examinations from the 2,524 were not gradable, 

leaving a total of 2,495 persons with a gradable CT examination for ICAC. Of these 2,495 

persons, 2,034 were successfully genotyped. 

Assessment of ICAC 

Non-contrast CT images were obtained using a 16-slice (n=724) or 64-slice (n=1,689) 

multidetector CT (MDCT) scanner (Somatom Sensation 16 or 64, Siemens, Forchheim, 

Germany). We performed two scans: a cardiac scan and a scan that reached from the 

aortic arch to the circle of Willis. Using these scans, we imaged the coronary arteries, the  

aortic arch, the extracranial part of the internal carotid arteries, and intracranial part of 

the internal carotid arteries. Detailed information on the imaging parameters of the 

scans is described elsewhere.8,11  

As marker of intracranial atherosclerosis, we measured ICAC in both internal carotid 

arteries from the horizontal petrous bone segment up to its top.3,4 To quantify ICAC, we 
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used a semi-automated scoring method which is described in detail elsewhere.4,12 In 

short, all calcifications in the trajectory of the intracranial internal carotid artery were 

manually delineated in consecutive MDCT-slices while making sure that bony structures 

were not included. Next, the number of pixels above 130 Hounsfield units was 

determined and the calcification volume (mm3) was calculated by multiplying the 

number of pixels, pixel-size and the increment. Calcification volumes in the coronary 

arteries, aortic arch, and extracranial carotid arteries, were quantified using dedicated 

commercially available software (Syngo CalciumScoring, Siemens, Germany).8 All 

calcification volumes are expressed in mm3. 

Genotyping 

All study participants were genotyped with the 550K, 550K duo, or 610 quad Illumina 

arrays. We removed samples with a call rate below 97.5%, gender mismatch, excess 

autosomal heterozygosity (>0.336), duplicates or family-relations and ethnic outliers. 

Moreover, we removed those variants with call rates below 98.0%, failing missingness 

tests, Hardy-Weinberg equilibrium p-values < 10-6, and minor allele frequencies (MAF) of 

less than 0.1%. Genotypes were imputed using MACH/minimac software to the 1000 

Genomes phase I version 3 reference panel (entire population). 

Heritability analysis 

We used Genome-wide Complex Trait Analysis (GCTA) to estimate heritability in our 

sample of unrelated individuals.13 This method is based on comparing the genetic 

similarity between individuals to their phenotypic similarity, and the heritability 

estimates refer to the proportion of variance explain by the variants on the genome-

wide chip. As previously described,14 the 1000 Genomes imputed genotypes were 

filtered on imputation quality (R2 < 0.5) and allele frequency (MAF < 0.01). We calculated 

pairwise genetic relatedness between all individuals and removed one person for pairs 

with more than 0.02 genotype similarity. 

We performed heritability analyses for calcification volume in the four vessel beds 

separately. Moreover, we assessed the proportion of shared heritability between 

intracranial carotid artery calcification and calcification in the other three vessel beds 
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using the bivariate REML function of GCTA. Because calcification volume had a skewed 

distribution, we used natural log-transformed values and added 1.0 mm3 to the non-

transformed values in order to deal with calcium volumes of zero [Ln(calcification 

volume + 1.0 mm3)]. We adjusted the analyses for age and sex.  

Genome-wide association analyses 

We conducted genome-wide association analyses (GWAS) on calcification in the four 

vessel beds using the R-package ProbABEL (version 0.4.4).15 Given that measures of 

subclinical atherosclerosis in the coronary arteries, aortic arch, and carotid artery 

bifurcation have already been studied in larger GWAS (in some instances also including 

this sample),5,16,17 the main focus was on ICAC.   Calcification measures were analyzed 

under an additive model with linear regression, while adjusting for age and sex. The 

results were adjusted for genomic control and meta-analyzed using the METAL 

software.18 Variants with an R2 < 0.5 and a MAF < 0.05 were removed. Genome-wide 

significance was established at p < 5x10-8. Manhattan-plots and regional association 

plots were generated in R. For the top variants (p < 10-7) and those in linkage 

disequilibrium (r2 > 0.2) we checked HaploReg (v4.1, 

www.broadinstitute.org/mammals/haploreg/) for indications of functionality (eQTLs, 

promotor and enhancer histone marks, and conservation).Next, we investigated the 

association of the top variants from the GWAS on ICAC with calcification volume in the 

other vessel beds. 
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Replication 

Replication of genome-wide significant variants was attempted in the Erasmus Stroke 

Study (ESS), a clinical TIA and stroke registry, in which stroke-patients were enrolled 

between December 2005 and September 2010, in the Erasmus MC, Rotterdam, the 

Netherlands and which is described in detail elsewhere.19 For the current study, we used 

all patients with complete information on ICAC (as assessed by contrast-enhanced 

MDCTA) and in whom blood samples were taken (n = 776). Of these 776, 716 were 

successfully genotyped for rs1537372, and 743 for rs1103842. The stroke subtypes 

according to the TOAST-criteria of these participants were as follows: 1) large vessel 

disease: 17%, 2) cardio-embolism: 12%, 3) small vessel disease: 24%, 4) other: 6%, 5) 

undetermined: 42%. Participants were genotyped using Taqman Allelic Discrimination 

(Thermo Fisher Scientific Inc.). Reactions were performed according to manufacturer’s 

protocol with minor adjustments.  

Table 1. Characteristics of the study population. 

Characteristic Value

Sample size 2034
Female sex, % 50.7
Age, mean (SD), years 69.8 (6.8) 
ICAC prevalence, % 83.0
CAC prevalence, % 81.6
AAC prevalence, % 92.3
ECAC prevalence, % 74.0
ICAC volume, median (IQR), mm3 46.0 (8.0 – 148.0) 
CAC volume, median (IQR), mm3 53.8 (2.0 – 283.6) 
AAC volume, median (IQR), mm3 267.8 (46.8 – 924.5) 
ECAC volume, median (IQR), mm3 26.2 (0.0 – 126.4) 
SD: standard deviation, ICAC: intracranial carotid artery calcification, IQR: interquartile range, 
CAC: coronary artery calcification, AAC: aortic arch calcification, ECAC: extracranial carotid 
artery calcification 
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RESULTS 

Study population 

The characteristics of the study population are shown in Table 1. The mean age of the 

study population was 69.6 ± 6.8 years, and 51.7% were females. 

Heritability of ICAC 

We found an age- and sex-adjusted heritability for ICAC volume of 47% [heritability 

estimate (h2): 0.47 (standard error (SE): 0.19, p = 0.009)]. In comparison, the age- and sex-

adjusted heritability estimates for coronary artery calcification, aortic arch calcification, 

and extracranial carotid artery calcification were 0.52 (SE: 0.20, p = 0.004), 0.36 (SE: 0.19, 

p = 0.024), and 0.17 (SE: 0.19, p = 0.186), respectively. We found a shared heritability of 

intracranial carotid artery calcification with coronary artery calcification of 77% (h2: 0.47, 

p = 0.006). For aortic arch calcification and extracranial carotid artery calcification this 

was 9% and 78% (h2: 0.09, p = 0.400, and h2: 0.78, p = 0.077), respectively. 

GWAS of ICAC 

We performed a GWAS for ICAC volume. Figure 1 plots the p-values for this trait. For 

ICAC volume, 28 variants from a single locus at 9p21.3 (top variant rs1537372; MAF = 

0.41; p = 4.75x10-9) and one variant from a locus at 11p11.2 (rs11038042; MAF = 0.78; p = 

3.27x10-8) reached genome wide significance. We also found one variant at 2q14.1 

(rs34008603; MAF = 0.97, p = 1.91x10-7) that showed a suggestive association with ICAC. 

Figure 2 shows the regional plots for 9p21.3 and 11p11.2. Table 2 shows the top genetic 

variants at three loci associated with ICAC volume of with p < 1 x 10-7. For the 9p21 locus, 

there is a considerable body of literature on potential functional mechanisms. The top 

variant of 11p11.2 shows enhancer histone marks in muscle and stomach cell lines. For 

2q14.1, several variants in LD overlap with promotor or enhancer marks, or affect gene 

expression (Supplementary Table S1). 

Given the known association of the 9p21 locus with ischemic stroke,20 we performed a 

sensitivity analysis in which we excluded participants with prevalent clinical stroke from 

the sample (n = 85). This did not attenuate the association of rs1537372 with ICAC 
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volume (beta = 0.18, p = 9.50x10-9). We also repeated the analyses after excluding 

persons without any calcifications, but this did not materially affect the results 

(Supplementary Table 2). Furthermore, we did not identify any interaction with sex. 

When investigating associations the three top variants for ICAC with calcification volume 

in three other vessel beds, namely the coronary, aortic and extracranial carotid artery. 

We found that rs1537372 and rs11038042 were related to calcification in at least two of 

the other vessel beds, whereas rs34008603 showed only a single nominally significant 

association with the extracranial carotid artery (Table 3).  

Replication of top variants for ICAC 

We were able to replicate our top variant rs1537372 from the locus at 9p21.3 (n = 716; 

beta = 0.13, p = 5.19x10-3).  Rs11038042 at 11p11.2 did not replicate in the independent 

sample (n = 731; beta =       -0.06, p = 0.304). Yet, the direction of the effect was similar to 

that in the discovery cohort. After meta-analyzing both samples we found a more 

significant p-value for rs1537372 (n = 2750; p = 1.38x10-10) and a less significant p-value 

for rs11038042 (n = 2765;  p = 2.99x10-7). 

DISCUSSION 
In this population-based study, we examined the contribution of common genetic 

variants to ICAC, for which the genetic basis is currently unknown. We found a high 

heritability of ICAC volume and identified two loci that influence ICAC, one of which 

replicated in an independent cohort of stroke-patients.  

Strengths of our study are the quantitative assessment of ICAC volume, and the fact that 

the results remained unchanged after excluding participants with a previous clinical 

stroke. There are also methodological considerations to take into account. First, it is 

important to keep in mind that calcification is thought to represent atherosclerosis, but 

represents only a part of the total atherosclerotic plaque. With non-enhanced CT, it is 

not possible to visualize the non-calcified plaque components. Yet, extensive evidence 

demonstrates that calcification volume is an adequate indicator of the total underlying 

atherosclerotic burden.21,22 Second, our analyses were performed on relatively small 
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Figure 2 | Regional plots of loci 9p21 and 11p11 associated with intracranial carotid 

artery calcification 

Upper panel: plot of the genetic variants on locus 9p21.3 which are associated with 

intracranial carotid artery calcification volume. Lower panel: plot of the genetic variants on 

locus 11p11.2 associated with intracranial carotid artery calcification volume. Figures were 

created using the Locuszoom software (http://locuszoom.sph.umich.edu/locuszoom/) 
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samples, both the discovery and replication sample. Yet, this is a direct consequence of 

the lack of other studies that have quantitatively assessed ICAC as well as performed 

genome-wide genotyping and that could have been used to increase the study 

population and hence the statistical power of the association. Nonetheless, we were 

able to obtain genome-wide significant variants and heritability estimates for 

intracranial atherosclerosis. A final consideration is that we used the GCTA to determine 

the heritability estimates, which are measures of the additive heritability, representing 

narrow-sense heritability.13 This directly means that only the additive effects of the 

genes are taken into account, leaving non-additive effects unstudied.   

We found a heritability of over 47% for ICAC, which is comparable to the heritability of 

coronary artery calcification which we found to be 52%. One previous report on the 

heritability of coronary artery calcification quantity showed a heritability of 44%.23 In 

contrast, we found that for calcification in the carotid artery bifurcation only 17% was 

attributable to genetic factors, and aortic arch calcification was heritable for 36%. These 

differences in genetic contribution to the development of calcification in different vessel 

beds provide more insight into the etiology of the previously reported considerable 

variation in atherosclerotic burden across various vessel beds.7,8,24  

In addition to its high heritability, we also identified multiple genome-wide significant 

variants for ICAC at two loci. The first locus, on which we found 28 variants that were 

associated with ICAC, was located on chromosome 9, near the CKDN2a/CKDN2b genes. 

In the METASTROKE Collaboration,20 the 9p21.3 locus has previously been implicated in 

ischemic strokes which were classified as strokes due to large-vessel disease on the basis 

of the TOAST-criteria. Although even using tens of thousands of samples, this did not 

reach genome-wide significance even. Remarkably, we robustly identify a very strong 

signal in only 2000 individuals and show that this locus likely increases risk of stroke 

through calcifications in the intracranial carotid artery. Future large-collaborative 

research is needed to clarify this further. Besides its associations with stroke, variants at 

9p21 have been related to coronary artery calcification volume and myocardial 

infarction.5  In fact, the top variant found in the GWAS on these traits, rs1333049, was in 

our study also strongly associated (p = 1.70x10-8) with ICAC volume. Earlier, we found 
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that this variant was also associated with aortic arch calcification and calcification in the 

carotid artery bifurcation.6 Also, associations with the 9p21 locus have been  found for 

vascular stiffness,25 and aneurysms of the abdominal aorta,26 suggesting a broad 

influence on arterial disease. Of particular note is a recent publication on how 9p21.3 risk 

variants disrupt specific transcription factor-dependent TGF-β regulation of p16 

expression in human aortic smooth muscle cells.27 An interesting hypothesis would be 

that this same mechanism is responsible for vascular disease in other vessel beds by 

affecting smooth muscle cells locally, such as in the carotid arteries, providing a 

potential mechanism on how the risk variants influence vascular disease. 

We identified another variant in the 11p11.2 region on chromosome 11 that associated 

with ICAC volume. Although we were unable to replicate this finding, this was an 

interesting association, especially because this 11p11.2 locus is not known for 

associations with subclinical vascular disease or cardiovascular events. However, this 

region has been linked to fasting glucose homeostasis and a higher risk of type 2 

diabetes.28 Interestingly, diabetes is one of the strongest known risk factors for ICAC.4,29   

Finally, we identified a variant on 2q14.1 which showed a suggestive association with 

ICAC. The DPP10 gene, which is closely located to the variant that we identified, is 

primarily known for its influence on asthma.30 The exact mechanisms underlying the 

associations of these loci with ICAC need further elucidation from future studies. 

In summary, ICAC volume is a heritable trait, which is explained by common genetic 

variation. Moreover, we identified and replicated one variant at locus 9p21.3 which is 

known for its contribution to ischemic stroke. Given the importance of ICAC in the 

development of stroke, larger-scale studies to further elucidate the genetic basis of 

intracranial atherosclerosis are needed. 
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3.3.1. Genome-wide 
association study of the 
anterior commissure 
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ABSTRACT 
Human gait is a complex neurological and musculoskeletal function, of which the 

genetic basis remains largely unknown. To determine the influence of common genetic 

variants on gait parameters, we studied 2946 participants of the Rotterdam Study, a 

population-based cohort of unrelated elderly individuals. We assessed 30 gait 

parameters using an electronic walkway, which yielded 7 independent gait domains 

after principal component analysis. Genotypes of participants were imputed to the 1000 

Genomes reference panel for generating genetic relationship matrices to estimate 

heritability of gait parameters, and for subsequent genome-wide association scans to 

identify specific variants. Gait domains with the highest age- and sex-adjusted 

heritability were Variability (h2 = 61%), Rhythm (37%), and Tandem (32%). For other gait 

domains, heritability estimates attenuated after adjustment for height and weight. 

Genome-wide association scans identified a variant on 1p22.3 that was significantly 

associated with single support time, a variable from the Rhythm domain (rs72953990; N 

= 2946;  β (SE) = .0069 (.0012), p = 2.30x10-8). This variant did not replicate in an 

independent sample (N = 362; p = 0.78). In conclusion, human gait has highly heritable 

components that are explained by common genetic variation, which are partly 

attributed to height and weight. Collaborative efforts are needed to identify robust 

single variant associations for the heritable parameters.  
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INTRODUCTION 

The planning and execution of gait requires a delicate integration of sensory information 

and motor commands [1]. Consequently, gait in humans is affected by a wide range of 

diseases, including disorders of the brain, muscles, and joints [1-5]. Problems in gait 

strongly increase the risk of adverse health outcomes, including morbidities (e.g. falls) 

and death [3]. Although it is known that various environmental factors contribute to 

variation in gait, it remains unclear to what extent genetics plays a role.  

Variation in gait is associated with age and sex, but also with several complex traits such 

as height, weight and cognitive function, which are all highly polygenic and heritable [6-

8]. Walking speed was found to be heritable in two twin studies, suggesting that gait 

follows a similar genetic pattern [9-11]. However, walking speed alone does not capture 

the complexity of human gait, which consist of many more measurable components 

[12]. Additionally, to our knowledge, no genome-wide association scan (GWAS) has been 

performed to identify genetic variants that are associated with gait. 

Here, we comprehensively assessed gait using an electronic walkway and determined 

the heritabilty of the various parameters comprising gait, followed by genome-wide 

association scans for the heritable parameters. 

MATERIAL AND METHODS 

Setting  

The Rotterdam Study is a prospective, population-based study that investigates 14 926 

inhabitants of Rotterdam aged 45 years or over [13]. Subjects were enrolled during three 

recruitment phases (1990, 2000, and 2006) and visit the research center every 3-4 years 

for various medical examinations. Genotyping was successfully performed on 11 496 

subjects. In March 2009, gait assessment was introduced in the study protocol. The 

Rotterdam Study has been approved by the medical ethics committee according to the 

Population Study Act Rotterdam Study, executed by the Ministry of Health, Welfare and 

Sports of the Netherlands. A written informed consent was obtained from all 

participants. 
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Gait assessment 

A 5.79-m long pressure-activated walkway (GAITRite Platinum; CIR systems, Sparta, NJ: 

4.88-m active area; 120-Hz sampling rate) was used to accurately measure gait 

parameters, as described previously [14,15]. Participants performed standardized 

walking protocols over the walkway. First, participants walked eight times across the 

walkway at their own pace (normal walk). Second, participants walked at their usual 

pace, turned halfway, and returned to the starting position (turning). Third, participants 

walked tandem (i.e., heel-to-toe) over a line on the walkway (tandem walk). The first 

normal walk was considered a practice walk and not included in the analysis. All other 

recordings were visually inspected and individual footsteps were identified and marked 

for further processing by the walkway software, from which 30 spatiotemporal (gait) 

parameters were derived. Principal component analysis identified 7 independent 

components with eigenvalues of 1 or higher, representing the following gait domains: 

Rhythm, Phases, Variability, Pace, Tandem, Turning and Base of Support [14,15]. Varimax 

rotation was used to provide domains that are uncorrelated to each other. 

Study population 

Between March 2009 and March 2012, 3651 people were invited for gait assessment. Of 

these, 129 did not complete gait assessment for the following reasons: 69 for physical 

problems, 45 for technical reasons, 13 for refusal, and 2 for other reasons. Additionally, 

we excluded 34 participants for performing less than 16 steps in normal walking, 

lowering validity of the gait parameters; 3 for using walking aids on the walkway; and 1 

for not following instructions. Of 3484 remaining participants, 2946 were genotyped. 

Since not all participants completed all walking conditions, the numbers of participants 

included vary for the individual variables (where we included the maximal sample size to 

increase power), but are identical for all the domains since these are derived from 

principal component analysis, which does not allow for any missing values in the 30 

variables. 

Genotyping 

The three subcohorts of the Rotterdam Study were genotyped with the 550K (cohort 1), 
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550K duo (cohort 2) and 610K (cohort 3) Illumina arrays. We removed samples with a call 

rate below 97.5%, gender mismatch, excess autosomal heterozygosity, duplicates or 

family relations and ethnic outliers, and variants with call rates below 95.0%, failing 

missingness tests, Hardy–Weinberg equilibrium p-values<10-6, and minor allele 

frequencies<1%. Genotypes were imputed using MACH/minimac software to the 1000 

Genomes phase I version 3 reference panel (all populations).  

Heritability analysis 

To estimate heritability in our sample of unrelated individuals, we used Genome-wide 

Complex Trait Analysis (GCTA) [16]. This method compares genotypic similarity between 

individuals to their phenotypic similarity. The 1000 Genomes imputed genotypes were 

filtered on imputation quality (R2 < 0.5) and allele frequency (MAF < 0.01). Pairwise 

genetic relatedness between all individuals was calculated, and for pairs with more than 

0.02 genotype similarity one person was removed.  

Heritability analyses were performed for the 7 gait domains and (secondarily) for all 30 

variables separately. Adjustments were made for age, sex, and the first 10 principal 

components of population stratification (model 1), and additionally for height (model 2) 

and weight (model 3). For the Tandem domain, step count and step length during the 

tandem walk were also included as covariates.   

Polygenic scores 

Polygenic scores were created from variants associated with height (N=180) and BMI 

(N=32) at genome-wide significance [6,17]. Variants were weighted by multiplying the 

beta coefficient for the corresponding trait with the number of alleles. For each 

individual, the weighted allele scores were added together to generate the polygenic 

score.  

Genome-wide association scan 

Genome-wide association analyses were conducted in the three subcohorts separately 

using the R package ProbABEL (version 0.42). Gait parameters were analyzed under an 

additive model with linear regression, covarying for age and sex, height, weight, and first 

two principal components. The results were adjusted for genomic control and meta-
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analyzed using the METAL software [18]. Variants with an R2 < 0.5 and a minor allele 

frequency (MAF) < 0.01 were removed. Subsequently, a more stringent filter for MAF < 

0.05 was added to remove remaining false-positive signals, resulting in 6.2 million 

variants included in the analyses. Genome-wide significance was established at p < 5x10-

8. Manhattan and quantile-quantile plots were generated in R (version 3.1.0). 

Functional annotation of genetic variants 

Genetic variants showing evidence of association with gait parameters were further 

examined for potential biological function using publicly available databases: 

Regulomedb, GWASdb, rSNPBase, HaploReg, and SNVrap. 

Replication 

For genome-wide significant variants replication was attempted in the Tasmanian Study 

of Cognition and Gait (TASCOG), which investigates cerebrovascular mechanisms 

underlying gait, balance and cognition. TASCOG comprises a population-based sample 

of 395 people aged 60–86 years living  in Southern Tasmania, Australia [19]. They were 

randomly selected from the electoral roll between 2006 and 2008, but excluded if they 

lived in a nursing home, had a contraindication for magnetic resonance scanning or 

were unable to walk without a gait aid.  Participants were genotyped using Illumina 

Hap370CNV chips and completed 6 walks at their preferred walking speed over a 4.6 

meter computerized GaitRite walkway.  Participants started 2 meters before and finished 

2 meters after the walkway. 

Statistical analysis 

Cohort-specific results were meta-analyzed using inverse variance meta-analysis. 

Polygenic scores were transformed into z-scores so that effects are expressed per 

standard deviation increase for each score. A Bonferroni correction for 14 tests (2 

polygenic scores and 7 gait domains) was applied, resulting in a significance threshold of 

p < 0.0036. For the candidate gene analyses, a Bonferroni correction for 1484 tests (212 

variants and 7 gait domains) was applied where p < 3.37 x 10-5 was considered 

significant. Association analyses of the polygenic scores with gait domains were 

performed in SPSS version 22, IBM. 
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RESULTS 

Study population 

Mean (SD) age in the Rotterdam Study was 68.2 (9.5) years, ranging from 50 to 97 years, 

and 1604 (54.4%) were women. Table 1 shows basic demographic and anthropometric 

characteristics of the total study population as well as the population with all gait 

measurements available, which were similar. 

Heritability of gait parameters 

The Variability, Rhythm and Tandem domains showed the highest age- and sex-adjusted 

heritability, which remained after correction for height and weight, but decreased 

slightly for Rhythm after including height. The Variability domain was more heritable 

than any of its constituting parameters. For Rhythm, most parameters had higher 

estimates than the domain score, which was most pronounced for single support time 

and swing time (ρ = .99). The other gait domains had a smaller heritable component 

(<.25) and were strongly attenuated after adjustment for height (Pace) and weight (Base 

of Support, Phases). 

To explore whether these decreases in heritability after adjustment for height and 

weight were due to specific genetic variants related to these traits, polygenic scores of 

height and body mass index (BMI) were studied in relation to gait (Table 3). Indeed, the 

polygenic height score was associated with Rhythm and Pace, but not after adjustment 

for height itself. The BMI score did not associate with any gait domain after multiple 

testing correction, but showed a nominally significant effect on Turning that became 

stronger after adjustment for weight.  

GWAS of gait traits 

GWASs were performed for the three gait domains showing moderate to high 

heritability (Variability, Rhythm, and Tandem) and their highest heritable parameter 

(stride length SD, single support time, and sum of the sidestep distance, respectively). 

Figure 1 shows the Manhattan plots for these traits, with all loci having variants with a p-

value < 1x10-6 summarized in Table 4. Eight variants from a single locus at 1p22.3 



Chapter 3.3.2 

216  

reached genome-wide significance for single support time (top variant rs72953990; 

minor allele frequency (MAF) = 0.14; p = 2.30x10-8), and were also associated with the 

Rhythm domain (p = 2.43x10-7). No variants reached genome-wide significance for the 

other gait traits. 

Intronic variants in PTPRD (rs71321217; 9p23; p = 7.65x10-7) and PRKG1 (rs10823991; 

10q21; p = 9.72x10-7) showed suggestive association with Rhythm. For Variability a 

variant in DGCR5 (rs11914070; 22q11.21; p = 1.64x10-7), and for stride length SD two 

variants at 9q22.1 and 11p14.3 were found, of which 11p14.3 showed significant 

heterogeneity across the three cohorts. The most reliable signal for Tandem and sum of 

the sidestep distance was located on 1p32.1 in KIF14, with top variant rs10800713 

showing evidence of transcription factor binding affinity. 

Replication of 1p22.3 with single support time 

For the genome-wide significant variant for single support time (rs72953990) replication 

was attempted in the TASCOG study (N = 362), where a similar Rhythm domain was 

constructed (Table 5). The variant associated with the parameters in the opposite 

direction, reaching nominal significance with the Rhythm domain (p = 0.039). 

Table 1 | Study population characteristics. 

 Characteristic 

Rotterdam Study 
– total 
population 
(N=2946) 

Rotterdam Study 
– sub-
population 
(N=2588) 

Tasmanian 
Study of 
Cognition and 
Gait (N=362) 

    

Age in years, mean (SD) 68.2 (9.5) 67.3 (9.1) 72.1 (7.1) 

Women, n (%) 1604 (54.4%) 1396 (53.9%) 148 (40.9%) 

Height in cm, mean (SD) 169.2 (9.3) 169.5 (9.2) 167.5 (9.1) 

Weight in kg, mean (SD) 78.6 (14.3) 78.8 (14.2) 78.2 (15.0) 

MMSE score, mean (SD) 28.0 (2.0) 28.1 (1.8) – 

Abbreviations: MMSE = Mini-Mental State Examination, SD = standard deviation. 
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Table 2 | Heritability estimates of gait domains and parameters, adjusted for age, sex, 

height and weight. 

Gait domain (PVE) / parameter Mean (SD) Correlation 
with factor

Heritability estimate (SE) 

 Model 1 Model 2 Model 3 

      

Variability (20%)   .61 (.23) .63 (.23) .58 (.23) 

Stride length SD (cm) 4.58 (1.67) -0.88 .42 (.21) .43 (.21) .42 (.21) 

Step length SD (cm) 2.86 (0.94) -0.86 .39 (.21) .38 (.21) .37 (.21) 

Stride velocity SD (cm/s) 5.91 (1.97) -0.87 .33 (.21) .34 (.21) .28 (.21) 

Stride time SD (s) 0.03 (0.02) -0.77 .22 (.21) .24 (.21) .26 (.21) 

Step time SD (s) 0.02 (0.01) -0.75 .24 (.21) .24 (.21) .28 (.21) 

Stance time SD (s) 0.03 (0.01) -0.76 .32 (.21) .34 (.21) .37 (.21) 

Swing time SD (s) 0.02 (0.01) -0.65 .01 (.21) .01 (.21) .01 (.21) 

Single support time SD (s) 0.02 (0.01) -0.65 .01 (.21) .01 (.21) .01 (.21) 

Double support time SD (s) 0.02 (0.01) -0.52 .35 (.22) .36 (.22) .36 (.22) 

      

Rhythm (21.5%)   .37 (.24) .28 (.24) .27 (.24) 

Single support time (s) 0.42 (0.04) -0.96 .56 (.21) .45 (.21) .44 (.22) 

Swing time (s) 0.42 (0.04) -0.96 .56 (.21) .45 (.21) .44 (.22) 

Step time (s) 0.55 (0.05) -0.94 .38 (.21) .30 (.21) .34 (.21) 

Stride time (s) 1.10 (0.10) -0.94 .41 (.21) .33 (.21) .37 (.21) 

Cadence (steps/min) 109.8 (9.5) 0.94 .42 (.21) .32 (.21) .35 (.21) 

Stance time (s) 0.67 (0.07) -0.83 .20 (.21) .15 (.21) .23 (.21) 

      

Tandem (7.2%)   .32 (.23) .32 (.23) .34 (.23) 

Sum of sidestep distance (cm) 9.56 (17.0) -0.90 .35 (.22) .35 (.22) .36 (.22) 
Sum of sidestep surface 

(fraction) 0.32 (0.64) -0.91 .28 (.22) .28 (.22) .32 (.23) 

Double step (n) 0.07 (0.28) -0.54 .07 (.23) .07 (.23) .06 (.23) 

      

Pace (9.8%)   .22 (.23) .02 (.23) .03 (.23) 

Stride length (cm) 130.9 (18.2) 0.85 .26 (.21) .15 (.21) .18 (.21) 

Step length (cm) 65.2 (9.13) 0.85 .26 (.21) .15 (.21) .18 (.21) 
Velocity (cm/s) 119.5 (20.1) 0.72 .26 (.21) .27 (.21) .31 (.21) 
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DISCUSSION 

Here we determined the contribution of common genetic variants to an extensive range 

of gait parameters, for which the genetic basis is largely unknown. Subsequently, we 

performed a genome-wide association scan to identify specific loci influencing gait. We 

found that the heritability of gait varies across domains and we identified a variant 

influencing single support time that did not replicate in a small, independent sample. 

      

Table 2 continued. 

Base of Support (3.7%)   .20 (.23) .21 (.23) .11 (.23) 

Stride width SD (cm) 2.40 (0.84) -0.73 .15 (.21) .16 (.21) .15 (.21) 

Stride width (cm) 10.3 (4.02) 0.67 .24 (.20) .23 (.20) .21 (.20) 

      

Phases (19%)   .13 (.23) .13 (.23) .01 (.23) 

Single support (%GC) 38.6 (1.87) 0.97 .18 (.21) .21 (.21) .06 (.21) 

Swing (%GC) 38.6 (1.87) 0.97 .18 (.21) .21 (.21) .07 (.21) 

Stance (%GC) 61.4 (1.87) -0.97 .18 (.21) .22 (.21) .07 (.21) 

Double support (%GC) 23.0 (3.75) -0.97 .19 (.21) .23 (.21) .07 (.21) 

Double support time (s) 0.25 (0.06) -0.85 .14 (.21) .18 (.21) .05 (.21) 

      

Turning (6.1%)   .10 (.24) .10 (.24) .07 (.24) 

Turning step count (n) 4.94 (0.91) -0.92 .03 (.23) .03 (.23) .03 (.23) 

Turning time (s) 2.83 (0.63) -0.85 .25 (.22) .27 (.23) .26 (.23) 
Adjustments were made for age, sex, and the first 10 principal components of population 

stratification (model 1), and additionally for height (model 2) and weight (model 3).  

Abbreviations: GC = gait cycle time, PVE = percentage of variance explained, SD = standard 

deviation, SE = standard error. 
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Gait is an important indicator of health [3]. Identifying factors that contribute to variation 

in gait could aid our understanding of gait dysfunction and its associated diseases. Given 

the highly complex cooperation of multiple organ systems that is required for gait, it is 

not surprising that we found a genetic architecture that is similar to other complex traits 

(i.e., height, cognition), which are partly determined by multiple common genetic 

variants, each with a small effect. Others have studied the heritability of walking speed, 

which mainly forms the Pace domain, [9-11] and found estimates between 16% and 

60%. Similar to Pajala et al., we found walking speed to be only moderately heritable 

(17%). However, the comprehensive and quantitative gait assessment in our study 

enabled us to investigate the genetic influence on the gait pattern in more detail than 

walking speed alone. Interestingly, we found the genetic influence to be much larger on 

several other gait domains, particularly Variability, Rhythm and Tandem. 

Variability in gait was found to be the most heritable (58%). It captures the irregularity in 

walking and is believed to be particularly related to cognitive functioning [15]. 

Interestingly, none of the individual parameters comprising Variability had a heritability 

>42%, suggesting that the principal component analysis extracted a true genetic (and 

Table 5 | Associations between rs72953990 and the Rhythm domain and parameters 
in the TASCOG replication sample (N=362). 

Gait domain (PVE) / parameter Mean (SD) 
Correlation 
with factor 

β (SE) P-value 

     

Rhythm (28.3%)   .107 (.052) .039 

Single support time (s) 0.42 (0.04) -0.69 -.001 (.004) .775 

Swing time (s) 0.42 (0.04) -0.69 -.001 (.004) .775 

Step time (s) 0.55 (0.06) -0.88 -.008 (.007) .213 

Stride time (s) 1.11 (0.12) -0.87 -.016 (.013) .213 

Cadence (steps/min) 109.6 (10.6) 0.91 1.37 (1.15) .235 

Stance time (s) 0.68 (0.09) -0.83 -.015 (.01) .135 

Betas are expressed per minor allele (A) increase of rs72953990 in relation to the respective 
dependent variable (i.e., gait domain or parameter). 
Abbreviations: PVE = percentage of variance explained, SD = standard deviation, SE = 
standard error. 
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biological) construct. Although Variability had the highest heritability, no genome-wide 

significant variants were identified. Importantly, we did not have enough power to 

detect small effects. However, this does not preclude the possibility of a different genetic 

architecture. For example, Variability could be influenced by numerous variants with 

only a small effect that jointly have a large influence but make identification of specific 

variants difficult. Furthermore, it is possible that the gait parameters comprising this 

domain each have distinct genetic determinants with larger effects, but that these 

signals become diluted when analyzing the domain as a whole. However, no genome-

wide significant variants were detected for the highest heritable parameter, stride 

length variability. 

We did identify a variant that reached significance in the GWAS of single support time, 

the highest heritable gait parameter of Rhythm. Replication of the variant was 

attempted in an independent sample (N = 362), but this failed to show an association 

with single support time. Whether this represents a false-positive finding or a 

combination of the winner’s curse and a small replication sample can only be clarified by 

additional studies. This underlines that, in order to detect robust genetic associations for 

gait, more researchers in the field of human gait need to obtain DNA samples and large 

genetic collaborations should introduce phenotyping of gait. 

This increase in sample size seems particularly promising for Variability, Rhythm, or 

Tandem. Other gait domains initially showed small to moderate heritability, but the 

estimates strongly attenuated after adjusting for height and weight. To investigate 

whether the reduction in heritability was due to genetic variants that primarily associate 

with these traits, but not with gait, we explored the effect of established variants for 

height and BMI in relation to gait. Indeed, the polygenic score of height was associated 

with the same gait domains that showed attenuation after adjustment for height. The 

BMI score did not show significant associations with the gait domains. Given the lower 

number of variants for BMI (32) compared to height (180), it is likely that the polygenic 

score of BMI is less powerful to detect effects. This is underlined by the fact that the BMI 

score was not convincingly associated with BMI in our sample (p = 0.056), contrary to the 

height score with height (p = 6.5 x 10-47). As a whole, our analyses thus seem to suggest 
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that Pace, Base of support, and Phases are potentially not very heritable beyond their 

correlation with height and weight, and the polygenic score of height adds an additional 

line of evidence to this finding. 

Important to note is that the heritability estimates calculated using GCTA represent 

narrow-sense heritability, and thus only take into account the additive genetic portion of 

the phenotypic variance while leaving out non-additive effects. Furthermore, GCTA only 

uses the variants provided as input for determining the genetic similarity. However, 

causal variants that are not in included (e.g., rare variants) but are in linkage 

disequilibrium with those that are in the analysis will also be indirectly used. Another 

limitation that is inherent to GCTA analyses is the dependence on unrelated individuals, 

which produces relatively large standard errors for the heritability estimates in our 

sample of less than 3000 persons. This emphasizes the main limitation of our study, 

namely its low power. Although it is well known that the largest effect sizes typically 

explain less than 1% of the phenotypic variance of similar quantitative traits [20], we 

performed this study for several reasons: First, we provide estimates of genetic influence 

on a comprehensive set of gait parameters, which could serve to direct future genetic 

studies of gait and as an incentive for larger initiatives. Second, we excluded to a 

reasonable degree the possibility of genetic variants having large effects on gait. Third, 

we are not aware of additional studies that have both quantitatively assessed gait and 

genome-wide genotyping, making this in fact the largest available sample for genetic 

studies on gait. 

In conclusion, we found that human gait is comprised of various heritable domains. A 

large number of variants remain to be identified for gait, but this will require large-scale 

collaborative efforts.  
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ABSTRACT 

The volumes of subcortical brain structures are highly heritable, but genetic 

underpinnings of their shape remain relatively obscure. Here we determine the relative 

contribution of genetic factors to individual variation in the shape of 7 bilateral 

subcortical structures: the nucleus accumbens, amygdala, caudate, hippocampus, 

pallidum, putamen and thalamus. In 3,686 unrelated individuals aged between 45 and 

98 years, brain magnetic resonance imaging and genotyping was performed. The 

maximal heritability of shape varied from 32.7% to 53.3% across the subcortical 

structures. Genetic contributions to shape extend beyond influences on intracranial 

volume and the gross volume of the respective structure. The regional variance in 

heritability was related to the reliability of the measurements, but could not be 

accounted for by technical factors only. These findings could be replicated in an 

independent sample of 1040 twins. Differences in genetic contributions within a single 

region reveal the value of refined brain maps to appreciate the genetic complexity of 

brain structures..
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INTRODUCTION  

Subcortical brain regions are important for a multitude of biological processes, including 

cognitive and motor functions.1,2 There is substantial structural variation in these 

regions, both within the normal range3 and in the context of various neuropsychiatric 

diseases.4,5 Factors driving individual variation could provide insight into brain 

development, healthy aging, and pathological states, but these remain largely unknown. 

Variation in subcortical brain structures is affected by environmental factors, such as 

education, diet and stress, but a considerable proportion of the variation is determined 

by genes.6,7 A recent twin study of gross subcortical volumes found heritability estimates 

ranging between 0.44 and 0.88,8 which were especially high for the caudate and 

thalamus. 

Even so, aggregate measures such as volume do not capture the complexity of 

subcortical structures. The hippocampus, for example, is made up of several subfields, 

each with partially independent functional roles. More recently, image processing 

methods have been developed to characterize brain structure beyond purely volumetric 

measures, and yielding a range of shape descriptors.9-13 The high-dimensionality allows 

the detection of more localized differences in brain structure, and shape can provide 

relevant biological information in addition to aggregate measures.14-17 Several genetic 

variants that influence the volume of subcortical structures have been identified,18-20 but 

their effect could be localized to certain sub-regions using shape analyses.19,20 However, 

the extent to which genes contribute to the variability in shape of subcortical structures 

has yet to be determined. 

Here, we quantify genetic influences on shape variability of 14 subcortical brain 

structures in 3,686 unrelated individuals from the population-based Rotterdam Study. 

We compare the heritability of vertex-wise shape measures to gross volumes as well as 

other aggregate measures of shape obtained through dimension-reduction techniques. 

We show that the shape of subcortical structures is under genetic control, and 

investigate the relation of the resulting profiles with the gross volume and measures of 

reproducibility. 
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METHODS  

Study population 

This work was performed in the Rotterdam Study,21 a population-based cohort study in 

the Netherlands including a total of 14,926 participants (aged 45 years or over at 

enrollment). The overall aim of the study is to investigate causes and determinants of 

chronic diseases in elderly people, the participants were not selected for the presence of 

diseases or risk factors. Since 2005, all participants underwent brain magnetic resonance 

imaging (MRI) to examine the causes and consequences of age-related brain changes.22 

Between 2005 and 2013, a total of 5,691 unique persons were scanned. The Rotterdam 

Study has been approved by the Medical Ethics Committee of the Erasmus MC and by 

the Ministry of Health, Welfare and Sport of the Netherlands, implementing the Wet 

Bevolkingsonderzoek: ERGO (Population Studies Act: Rotterdam Study). All participants 

provided written informed consent to participate in the study and to obtain information 

from their treating physicians. 

Replication was performed in 1040 healthy young adult twins from the Queensland Twin 

IMaging (QTIM) project [de Zubicaray et al. 2008]. All participants of the imaging sample 

were Caucasian and right-handed for throwing and writing (Annett's Handedness 

Questionnaire). The genetic analyses were conducted in the 350 complete twin pairs 

(n = 700): 148 monozygotic (100 male), 120 dizygotic (39 male), and 82 opposite-sex 

pairs. Self-reported data was used to screen participants for contraindications for 

imaging as well as any significant medical, psychiatric or neurological conditions, history 

of substance abuse and current use of psychoactive medication. The study was 

approved by the Human Research Ethics Committees of the Queensland Institute of 

Medical Research, the University of Queensland, and Uniting Health Care, Wesley 

Hospital. Informed consent was obtained from each participant and parent or guardian 

for participants under 18 years of age.  

Genotyping and imputation 

Genotyping in the Rotterdam Study was performed using the Illumina 550K and 550K 

duo arrays.21 Subsequently, we removed samples with call rate below 97.5%, gender 
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mismatch, excess autosomal heterozygosity, duplicates or family relations and ancestry 

outliers, and variants with call rate below 95.0%, failing missingness test, Hardy–

Weinberg equilibrium p-value < 10-6, and minor allele frequency < 1%. Genotypes were 

imputed using MACH/minimac software23 to the 1000 Genomes phase I version 3 

reference panel (all population).  

For QTIM, genotyping of nine markers was used to determine the zygosity of same-sex 

twins, which was later confirmed for >92% of the sample with the Illumina 610K SNP 

array. 

Image acquisition 

For the Rotterdam Study, MRI scanning was done on a 1.5-T MRI unit with a dedicated 

eight-channel head coil (GE Healthcare). The MRI protocol consisted of several high-

resolution axial sequences, including a T1-weighted sequence (slice thickness 0.8 mm), 

which was used for further image processing. In addition, 85 persons were rescanned 

within days to weeks after the first scan to estimate the reproducibility of imaging-

derived measures. A detailed description of the MRI protocol was presented by Ikram et 

al.22 

The twin pairs of QTIM were scanned on a 4T Bruker Medspec (Bruker, Germany) whole 

body MRI system paired with a transverse electromagnetic (TEM) head coil. Structural 

T1-weighted 3D images were acquired (TR=1500ms, TE=3.35ms, TI=700ms, 240mm FOV, 

0.9mm slice thickness, 256 or 240 slices depending on acquisition orientation (86% 

coronal (256 slices), 14% sagittal (240 slices)). 

Image processing 

The T1-weighted MRI scans were processed using FreeSurfer24 (v5.1) to obtain 

segmentations and volumetric summaries of 7 subcortical structures for each 

hemisphere: nucleus accumbens, amygdala, caudate, hippocampus, pallidum, putamen, 

and thalamus (Figure 1A). Next, segmentations were processed using a previously 

described shape analysis pipeline.9,10 Briefly, a mesh model was created for the boundary 

of each structure. Subcortical shapes were registered using the “Medial Demons” 

framework, which matches shape curvatures and medial features to a pre-computed 
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template.25,26 To do this, a medial model of each individual surface model is fit following 

Gutman et al.27, and medial as well as intrinsic features of the shape drive registration to 

a template parametrically on the sphere. To minimize metric distortion, the registration 

was performed in the fast spherical demons framework.10 The templates and mean 

medial curves were previously constructed and are distributed as part of the ENIGMA-

Shape package (http://enigma.ini.usc.edu/ongoing/enigma-shape-analysis/). 

The resulting meshes for the 14 structures consist of a total of 27,120 vertices (Figure 

1A). For these vertices, two measures were used to quantify shape: the radial distance 

and the natural logarithm of the Jacobian determinant. The radial distance represents 

the distance of the vertex from the medial curve of the structure (Figure 1B). The 

Jacobian determinant captures the deformation required to map the subject-specific 

vertex to a template and indicates surface dilation due to sub-regional volume change 

(Figure 1C). 

Finally, we performed 28 principal component analyses: for each of the 14 subcortical 

structures and for both types of shape measures (radial distance and Jacobian 

determinant), we computed the full set of components. This yielded the same number of 

principal components as the original number of vertices that were describd shape 

(Figure 1A). The components were sorted in descending order of the eigenvalues, which 

corresponds to the amount of explained variance of shape. 

Heritability estimation 

We used Massively Expedited Genome-wide Heritability Analysis (MEGHA)28 to estimate 

heritability in our sample of unrelated individuals. This method allows fast and accurate 

estimates of heritability across thousands of phenotypes based on genome-wide 

genotype data of common genetic variants from unrelated individuals. As previously 

described,28 a genetic relationship matrix was constructed using the 1000 Genomes 

imputed genotypes, filtered on imputation quality (R2 < 0.5) and allele frequency (MAF < 

0.01). We calculated pairwise genetic relatedness between all individuals. We removed 

one person for pairs with more than 0.025 genotype similarity, resulting in a final study 

population of 3,686 subjects.  
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Twin-based heritability was estimated using maximum-likelihood variance components 

methods implemented in the SOLAR software (version 6.6.2). 29 To test the hypothesis 

that no variance can be explained genetically, log likelihoods of models with no genetic 

components were compared to those with genetic and environmental components. As 

twice the log likelihood is distributed as a mixture of chi-squared distributions, the 

hypothesis test and p-value can be derived parametrically.29 

To correct for multiple comparisons across all vertices and all structures, we used the 

standard False Discovery Rate (FDR) threshold at q=0.05 to localize regions of significant 

heritability within each of the subcortical structures.30  
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Table 1 | Characteristics of the study population.
Characteristic Rotterdam Study 

(N = 3,686) 

QTIM 

(N = 1,040 ) 

Age, mean (SD), years 65.9 (10.9) 22.9 (2.8) 

Female sex, n (%) 2,029 (55.0%) 641 (61.6%) 

Intracranial volume, mean (SD), cm3 1478.6 (161.3) 1484 (157.1) 

Left hemisphere, mean (SD), cm3

Accumbens 0.56 (0.10) 0.83 (0.15) 

Amygdala 1.31 (0.21) 1.84 (0.25) 

Caudate 3.40 (0.56) 3.76 (0.50) 

Hippocampus 3.84 (0.62) 4.32 (0.46) 

Pallidum 1.47 (0.24) 1.61 (0.25) 

Putamen 4.62 (0.68) 6.60 (0.72) 

Thalamus 6.25 (0.79) 7.82 (0.89) 

Right hemisphere, mean (SD), cm3 

Accumbens 0.49 (0.09) 0.79 (0.11) 

Amygdala 1.39 (0.22) 1.88 (0.25) 

Caudate 3.51 (0.58) 3.92 (0.53) 

Hippocampus 3.85 (0.59) 4.32 (0.46) 

Pallidum 1.41 (0.25) 1.53 (0.18) 

Putamen 4.45 (0.65) 6.00 (0.65) 

Thalamus 6.25 (0.79) 7.43 (0.88) 

Abbreviation: SD = standard deviation. 
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RESULTS 

Study population 

The characteristics of the study population are shown in Table 1. The mean age of the 

Rotterdam study population was 65.9 ± 10.9 years, and 55.0% were women. For the 14 

subcortical structures, the mean volumes were between 0.49 and 6.25 mL. For the QTIM 

study, mean age was 22.9 ± 2.8 years, and 61.6% were women. Mean subcortical 

volumes were higher than in the Rotterdam study across the board, ranging from 0.79 

and 7.82 mL.  

Heritability of subcortical structures: volume and shape 

The structure of subcortical brain regions was quantified by calculating their gross 

volume as well as two measures of their shape. Age- and sex-adjusted heritability 

estimates for the gross volume of each of the subcortical structures were between 1.6% 

and 43.4% (Table 2). For the two vertex-wise shape measures, the maximal heritability 

estimates per structure ranged from 32.7% to 53.3% (Table 2). Both the radial distance 

(Figure 2A-C) and the Jacobian determinant (Figure 2D-F) showed clusters of high 

heritability under various models. Further adjustment for intracranial volume did not 

influence results (Figure 2), and estimates were highly correlated between both models 

(Supplementary Figure 1). The addition of the structure-specific gross volume to the 

model, however, did affect the heritability distribution across the structures (Figure 2), 

particularly for the shape measures that are highly correlated with the gross volume 

(Supplementary Figure 2). 
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Reproducibility of subcortical shape 

Next, we investigated the relation between our heritability estimates and the 

reproducibility of subcortical shape. In a subset of 83 persons who were scanned twice 

within 1-9 weeks, we quantified the reproducibility by calculating intraclass correlation 

coefficients for the vertex-wise shape measures (Supplementary Figure 3). There was 

considerable overlap between heritability and reproducibility (Figure 3A-B), and both 

were correlated within hemisphere (Figure 3C-D). Poorly reproducible shape measures 

were generally not heritable, whereas high reproducibility included the full range of 

heritability estimates (Figure 3C-D). 

Heritability of shape measures through data reduction  

Finally, we explored whether high-dimensional shape data could be reduced to a 

smaller set of variables with a larger genetic contribution. We performed principal 

component analyses on the two vertex-wise shape measures for each structure and 

computed the heritability of the resulting components. Except for the Jacobian 

determinant of both hippocampi, the maximal heritability was lower than for the vertex-

wise measures (Table 2). Similarly, the components were in general less heritable than 

the vertex-wise measures (Figure 4). Furthermore, the order of the components based 

on the eigenvalues did not correlate well with the order based on the heritability (ρ 

ranges from -0.038 to 0.096; Supplementary Table 1). 
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Figure 3 | Concordance between the heritability of subcortical shape and reproducibility of the 
measures. 
Figure showing the concordance between the heritability of the shape (radial distance)  ofsubcortical 
structures and the reproducibililty of these measures. Maps illustrate heritability (high is red) and 
reproducibility (high is blue) and their overlap (purple) from the anterior (Panel A) and posterior (Panel B) 
direction. Scatter plots between heritability and reprodcubility of the left (Panel C) and right (Panel D) 
hemisphere for the 7 subcortical structures. Colors indicate the different structures (see figure legends). 
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Replication of heritability in twins 

The maximum heritability estimates for the two vertex-wise shape measures per 

structure ranged from 48.9% to 78.3%. Both the radial distance (Supplementary Figure 

4A-C) and the Jacobian determinant (Supplementary Figure 4D-F) showed clusters of 

high heritability under various models. Further adjustment for intracranial volume did 

not influence the results (Supplementary Figure 4C, E). The addition of the structure-

specific gross volume to the model, however, did affect the heritability distribution 

across the structures (Supplementary Figure 4C, F). Comparing the results of the twin-

based and population study, we found a considerable overlap and significant correlation 

(p-value = 3.03x10-306) in estimated heritability (Supplementary Figure 5). 

DISCUSSION 

Here we show that, in a general population of middle-aged and elderly individuals, the 

shapes of subcortical structures are under genetic control. The vertex-wise heritability is 

higher than for aggregate measures such as volume and principal components. 

Moreover, the heritability pattern underlines the importance of reproducibility in 

deriving shape measures, but also reveals that the extent of genetic influences is not 

uniformly distributed across subcortical structures. We confirmed our findings in an 

independent cohort of twins, suggesting that the genetic architecture of subcortical 

shapes is similar across populations, despite differences in the sample, the study design, 

scanner types, and methods to compute the heritability.  
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The higher vertex-wise heritability could reflect true biological differences in the degree 

of genetic contribution to the variability in shape. For the cerebral cortex, it has already 

been shown that different genes influence distinct parts of the brain and that the 

heritability also differs between regions.31-33 Subcortical structures are also 

heterogeneous and consist of functionally diverging sub-regions, such as the nuclei of 

the pallidum or the head and tail of the caudate. Our results are in line with a recent 

study by Whelan et al. showing that hippocampal subfields differ in their heritability.34 

However, methodological reasons for this difference in heritability should also be 

considered. Particularly, a lower signal-to-noise ratio in some of the measures might 

have influenced the results, leading to low heritability estimates. Issues in the 

segmentation or registration steps will thus obscure true biological differences if these 

systematically affect certain sub-regions of a structure. We investigated whether this 

plays a role by overlapping our heritability maps with maps of the technical 

reproducibility. Indeed, shape measures that could be poorly reproduced were not 

heritable. However, while high reproducibility was required for detecting a substantial 

genetic component, it did not necessarily translate into a high heritability. For example, 

for the shape measures with a high reproducibility (intraclass correlation coefficients > 

0.75), a wide range of heritability estimates was observed (0% to 53%). Thus, even when 

the signal-to-noise ratio was comparable, we still observed regional differences in the 

degree of genetic contribution. The highly heritable measures are interesting targets for 

more in-depth genetic studies. 

Heritability estimates calculated in our analysis represent both upper and low bounds of 

narrow-sense heritability. Our results are consistent with the theory that twin-based 

heritability tends to be higher than population-based estimates. However, we did not 

find a high correlation between the results, which could be due to several factors. Our 

population study consisted of relatively older individuals, which may impact the 

heritability: the effects of non-genetic factors on subcortical structures (e.g., lifestyle 

factors) accumulate over an individual’s lifetime and the overall contribution of genes 

might be reduced compared to younger individuals. Causal variants not captured on the 

genotyping array or through subsequent imputation also could lead to a different 

distribution of the heritability. Additionally, apart from array limitations, non-additive 
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genetic factors are not taken into account when computing population based 

heritability. These factors should be taken into account when interpreting our results. 

An important question for future research on shape is which variables need to be 

controlled for in a regression analysis. Here, we aimed to provide an answer by studying 

two controversial adjustment variables: the total intracranial volume and the gross 

volume of the structure under study. For the heritability estimates of shape, adjustment 

for intracranial volume did not affect the results, suggesting that the genes regulating 

shape are not general brain growth genes, but rather more specific for a structure or its 

sub-regions. The volume adjustments did change some of the results, but more so for 

vertices whose shape measures correlate most with the gross volume of the structure. 

Likely, the genes underlying a structure’s gross volume are largely driven by these 

vertices as they typically represent the widest parts of a structure (highest mean radial 

distance), where radial measures tend to be highly correlated with its volume. Our 

results are in agreement with previous work,35 where the heritability of region-specific 

measures was reduced after adjustments for the total cortical surface area and thickness.  

The detailed information provided by shape measures being their most attractive 

feature, the increase in dimensionality is potentially counterproductive, especially in the 

case of genetic homogeneity across a structure. We therefore also performed principal 

component analyses to demonstrate that the amount of variability explained by the 

components did not seem related to the heritability: near-zero correlations were found 

between the order of the components based on the eigenvalues and the heritability 

estimates. Although the principal component analysis captures most of the variation 

using fewer variables, methods, which are based on the genetic correlation, may lead to 

biologically more meaningful results. 

While heritability provides an estimate of how much of the variance is determined by 

genetics, it does not point to specific genetic loci. The most commonly accepted 

method for gene discovery is to perform an unbiased screen of all genetic variants, i.e. 

genome-wide association study (GWAS) in order to identify specific genetic factors. 

However, such efforts require large-scale collaborations in the order of tens of thousands 

of individuals in order to identify a robust association18-20,39. Furthermore, additional 
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multiple testing correction should be considered when performing GWAS of 54,000 

shape measures. This could lead to a loss of power if the effects are homogeneous across 

a structure. However, if the effects are localized and mostly affect specific vertices, then a 

GWAS of shape measures may actually increase power since the effect sized will be 

larger compared to a GWAS of an aggregate volume. 

Data reduction methods always rely on assumptions and are often aimed at resolving 

computational issues. However, with the advent of big data collection, methods have 

been developed to analyze such large datasets efficiently. Software packages designed 

for high-dimensional data include MEGHA,36 for heritability analyses, BOLT-LMM,37 for 

genetic correlation analyses, and HASE,38 for genome-wide association studies. These 

improvements in software, and also hardware, now pave the way for full-scale analyses 

without reliance on data reduction methods. 

In conclusion, our work demonstrates that the shape of subcortical brain structures is a 

relevant phenotype for genetic studies, complementary to aggregated measures. Fine-

scale maps of genetic influences on the brain are likely to reveal a complex mosaic of 

genetic modules, with partially divergent sets of genes that drive them. 



Chapter 3.3.3 

246  

REFERENCES 

1 Bressler, S. L. & Menon, V. Trends in 
cognitive sciences 14, (2010). 

2 Doyon, J. & Benali. Current opinion in 
neurobiology 15, (2005). 

3 Andreasen. et al.. American Journal of 
Psychiatry 150, 130-130 (1993). 

4 Tekin, S. & Cummings, J. L. Journal of 
psychosomatic research (2002). 

5 Verstraete, E., Veldink, J. H., den Berg, 
L. H. & den Heuvel, M. P. Human 
brain mapping 35 (2014). 

6 Blokland, et al . Twin Research and 
Human Genetics 15, (2012). 

7 Peper, J. S. et al. Human brain 
mapping 28, 464-473 (2007). 

8 den Braber, A. et al. Neuroimage 83, 
98-102 (2013). 

9 Gutman. et al. in Info Processing in 
Medical Imaging  205-218 (2015). 

10 Gutman et al. in Multimodal Brain 
Image Analysis Vol. 8159 Ch. 24,  

11 Reuter, M., Wolter, F.-E. & Peinecke, 
N. Comput. Aided Des. 38, 342-366, 
(2006). 

12 Wang, Y. et al. Surface-based 
Neuroimage 56, 1993-2010,  

13 Yonggang, S. et al. Metric Medical 
Imaging, IEEE Transactions on 33, 
1447-1463, (2014). 

14 Cole, J. H. et al.. PloS one (2015). 
15 Wade, B. S. C. et al. in SPIE Medical 

Imaging.  94171S-94171S-94178 
16 McKeown. et al. BMC Neurol 2008. 
17 Bron, E. E. et al. Neuroimage 111, 

562-579 (2015). 
18 Bis, J. C. et al.  Nat Genet 44, 2012. 
19 Stein, J. L. et al.  Nature genetics 44, 

552-561 (2012). 

20 Hibar, D. P. et al. Nature 520, 224,  
21 Hofman, A. et al. EJE 28, 889-926,. 
22 Ikram, M. A. et al. EJE 26, 811-824,  
23 Howie, et al. Nature genetics 44, 955-

959 (2012). 
24 Fischl, B. et al. Neuroimage 23 Suppl 

1, S69-84 (2004). 
25 Gutman, B. A. et al. Neuroimage 70, 

386-401,(2013). 
26 Gutman, B. A. et al. in Biomedical 

Imaging (ISBI), 2015. 
27 Gutman, et al. in Biomedical Imaging 

(ISBI), 2012 9. 
28 Adams. et al. J Gerontol A Biol Sci 

Med Sci (2015). 
29 Almasy, L. & Blangero, J. AJHGs 62, 

1198-1211 (1998). 
30 Benjamini, Y. & Hochberg, Y. Journal 

of the Royal Statistical Society. Series 
B, 289-300 (1995). 

31 Chen, C.-H. et al. Science 335, 1634-
1636 (2012). 

32 Chen, C.-H. et al. Neuron 72, 537-544 
(2011). 

33 Chen, C.-H. et al. PNAs 110, 17089-
17094 (2013). 

34 Whelan, C. D. et al. Neuroimage 128, 
125-137 (2016). 

35 Eyler, L. T. et al. Twin Research and 
Human Genetics 15, (2012). 

36 Ge, T. et al. PNA 112, (2015). 
37 Loh, P.-R. et al.. Nature genetics 47, 

284-290 (2015). 
38 Roshchupkin, G. et al.. Scientific 

Reports (2016)  
39  Adams H.H.H. et al., Nature 

Neuroscience (2016), in press

.



Heritability of grey matter density 

 247 

3 
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4.1.1. Alzheimer disease 
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ABSTRACT 
Whether novel risk variants of Alzheimer’s disease (AD) identified through genome-

wide association studies (GWAS) also influence MRI-based intermediate 

phenotypes of AD in the general population is unclear. We studied association of 

24 AD risk loci with intra-cranial volume (ICV), total brain volume (TBV), 

hippocampal volume (HV), white matter hyperintensity (WMH) burden, and brain 

infarcts in a meta-analysis of genetic association studies from large population-

based samples (N=8,175-11,550). In single-SNP based tests, AD risk alleles of APOE 

(rs2075650) was associated with smaller HV (p=0.0054) and CD33 (rs3865444) with 

smaller ICV (p=0.0058)  In gene-based tests, there were associations of HLA-DRB1 

with TBV (p=0.0006) and BIN1 with HV (p=0.00089). A weighted AD genetic risk 

score was associated with smaller HV (beta±SE=-0.047±0.013, p=0.00041), even 

after excluding the APOE locus (p=0.029).However, only association of AD genetic 

risk score with HV, including APOE, was significant after multiple testing correction 

(including number of independent phenotypes tested). These results suggest that 

novel AD genetic risk variants may contribute to structural brain aging in non-

demented older community persons.  
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INTRODUCTION 

Alzheimer’s disease (AD) is the leading cause of dementia and represents a major 

public health burden 1. Converging evidence suggests that pathological processes 

leading to this progressive neurodegenerative disorder start many years before 

clinical diagnosis of dementia 2. MRI-markers of brain aging, including total brain 

volume (TBV) and hippocampal volume (HV), and markers of vascular brain injury, 

including white matter hyperintensities (WMH) and brain infarcts, are powerful 

predictors of dementia and may, at least in part, represent intermediate markers 

reflecting pathological processes leading to AD 2-7. Intracranial volume (ICV), an 

imaging marker reflecting brain growth during development and maturation, was 

suggested to be correlated with resilience to brain damage 8. 

Recently, large scale genome-wide association studies (GWAS) and candidate gene 

based studies have identified novel susceptibility loci for late-onset AD 9-18. These 

AD risk variants have recently been used to examine the genotypic overlap 

between AD and other types of dementia 19. Some of these variants have been 

studied with respect to various MRI measures in a mixed study sample of AD 

patients, mildly cognitive impaired and healthy controls 20, 21. They could also be 

implemented to explore the impact of genetic determinants of AD on MRI-markers 

of structural brain changes in non-demented community persons. Indeed, this 

could provide important information on the disease mechanisms through which 

these genes affect the risk of AD, and could be of interested for the design of 

preventative interventions. Whether all previously and newly discovered AD risk 

loci influence brain structure in advance of clinically detectable dementia has never 

been systematically investigated in large community samples to our knowledge. 

Our aim was to study association of known AD GWAS loci with ICV, TBV, HV, WMH 

burden and brain infarcts in non-demented participants from 10 population-based 

studies. 
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MATERIALS AND METHODS 

Population 

Analyses were performed on 8,175 to 11,550 dementia free participants of 

European ancestry with quantitative brain MRI and genome-wide genotypes 

(N=8,175 for ICV, N=8,673 for TBV, N=11,550 for HV, N=9,361 for WMH burden and 

N=9,401 for brain infarcts), from up to 10 population-based cohort studies 

participating in the Cohorts of Heart and Aging Research in Genomic Epidemiology 

(CHARGE) consortium: Aging Gene-Environment Susceptibility (AGES)–Reykjavik 

Study, Atherosclerosis Risk in Communities Study (ARIC), Austrian Stroke 

Prevention Study (ASPS), Cardiovascular Health Study (CHS), Framingham Heart 

Study (FHS), Rotterdam Study (RS), Erasmus Rucphen Family (ERF) study, Religious 

Order Study (ROS) & Rush Memory and Aging Project (MAP), Tasmanian Study of 

Cognition and Gait (TASCOG) and the 3C-Dijon study. Each study secured approval 

from institutional review boards, and all participants provided written informed 

consent for study participation, brain MRI, and use of DNA for genetic research. 

Individual studies are described in the Supplementary Appendix. 

MRI scans 

In each study, MRI scans were performed and interpreted in a standardized fashion, 

without reference to clinical or genetic information. Details on MRI parameters and 

phenotype definition are provided in the Supplementary Appendix. Briefly, automated 

or semi-quantitative post-processing software was used to measure ICV and TBV. TBV 

was expressed as percentage of ICV to correct for differences in head size 22. HV was 

evaluated using operator-defined boundaries drawn on serial coronal sections or 

automated methods 23. WMH burden was estimated on a quantitative scale using 

custom-written computer programs in AGES-Reykjavik, ASPS, FHS, and RS; in ARIC and 

CHS, WMH burden was estimated on a semi-quantitative scale 24. Brain infarcts were 

defined as areas of abnormal signal intensity in a vascular distribution that lacked mass 

effect, > 3-4 mm, distinct from dilated perivascular spaces 25. 
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AD GWAS loci 

We manually scanned the GWAS catalog (www.genome.gov/gwastudies) and Alzgene 

(www.alzgene.org/) for GWAS on AD. We only chose studies performed on European 

subjects, including a replication stage, examining single marker based associations and 

having loci reaching genome wide significance (P<5.0×10-8). This led to the identification 

of 24 independent loci. Effect estimates for SNPs with the lowest p-value in each locus 

(defined as the index SNP of the locus)  are presented in Supplementary Table 1. We 

included the CD33 locus (rs3865444) despite absence of replication in the latest AD 

GWAS meta-analysis;15 this locus was previously replicated in several AD GWAS,13, 14 and 

recent functional studies provide strong evidence for involvement of rs3865444 and 

CD33 in AD pathology 26. For the APOE-ε polymorphism we used rs2075650 as a proxy 

(r2=0.48 with rs429358, the APOE-ε SNP), because APOE-ε genotypes cannot be reliably 

imputed on commercial genome-wide chips. The AD risk variants near HLA-DRB115, 

ATP5H/KCTD2 16, in TREM2,18, and APP17 were not included for single-SNP based 

association and genetic risk score based association as no index SNP or proxy (r2>0.3) 

was available among the genome-wide genotypes for MRI-markers of brain aging. 

Power calculation 

Quanto software 27, 28  was used to compute power of of the five MRI marker studies 

assuming additive model of inheritance at α=0.0025 (Supplementary Figure 1). Power 

for the quantitative traits (ICV, TBV, HV, WMH burden) was computed for different 

percentage variance explained while for brain infarcts, a dichotomous trait, it was 

computed for different odds ratios at different allele frequencies. 

Correlation between phenotypes 

Correlation between the five MRI phenotypes in 3C-Dijon and FHS was calculated based 

on Pearson’s correlation using the “rcorr” function in R. These correlations were used to 

compute the equivalent number of independent phenotypes using the online tool 

matSpDlite (neurogenetics.qimrberghofer.edu.au/matSpDlite/). MatSpDlite which is 

based on the same principles used to identify number of independent SNPs in a locus, 

gives the equivalent number of independent variables in a correlation (r) matrix, 
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depending upon the ratio of observed eigenvalue variance (after spectral 

decomposiiton) to its theoretical maximum 29.  

Association Analyses 

Three analytical approaches were taken to examine the associations of interest. 

Single-SNP based association analysis 

We tested for association of AD GWAS loci with MRI-markers of brain aging using 

association estimates obtained from meta-analyses of GWAS for ICV22, TBV22, HV23, WMH 

burden 24 and brain infarcts 25 using genotypes imputed on the HapMap2 CEU reference 

panel. AD risk alleles, as described in the latest AD GWAS meta-analysis,15 were modeled 

as the effect alleles for associations with MRI-markers of brain aging. Logistic (brain 

infarcts) or linear (ICV, TBV, HV and WMH burden) regression was performed within each 

study, adjusting for age, gender, and principal components of population stratification, 

and for familial relationships or study center if relevant. For WMH burden, data was log 

transformed to achieve normal distribution and associations were additionally adjusted 

for ICV (except for studies measuring WMH burden on a semi-quantitative visual scale, 

visual grades being inherently normalized for brain size)24. For most phenotypes (ICV, 

TBV, HV, and brain infarcts) meta-analyses were performed using fixed effects inverse 

variance weighted meta-analysis. For WMH burden, meta-analysis was performed using 

effective sample size weighted meta-analysis, because WMH burden was measured on 

different scales across studies. If the lead SNP at a specific AD GWAS locus was not 

available, a proxy SNP (r2>0.70 in 1000G CEU) of the lead SNP was used to check single-

SNP based association results (Supplementary Table 1).After Bonferroni correction for 

testing 20 independent loci, p<0.0025 was considered significant for single-SNP based 

associations. However, application of a more stringent threshold additionally accounting 

for the number of independent phenotypes tested led to a Bonferroni correction of 

p<0.000625. 

Gene-based association analysis  

Gene-based association tests can be more powerful in comparison to single-SNP based 

association tests when there are many causal variants in a gene with small effects 30. 
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Single-SNP based association results from the respective MRI-marker GWAS meta-

analysis were used to compute gene-based association results using the Versatile Gene-

Based Association Study2 (VEGAS2) software (https://vegas2.qimrberghofer.edu.au/) 30. 

The gene annotations and LD calculation in VEGAS2 are based on 1000 genomes (phase 

1 version 3). This tool annotated all but one gene (MS4A4E) within 50KB of the index 

SNPs. The test incorporates information from all markers within a gene and accounts for 

linkage disequilibrium (LD) between markers by using simulations from the multivariate 

normal distribution. Gene-based association analyses were performed for all protein 

coding genes (N=65 genes) which lie within a 50kb distance of index SNP of the AD risk 

loci. Gene boundaries were defined as 50kb upstream and downstream of the start and 

end of gene 30. The choice of 50 KB boundary to cover a gene was chosen as a trade-off 

between a longer boundary which would have caused excess overlap between nearby 

genes and a shorter boundary which would have ignored potential regulatory regions 30. 

Maximum permutation limits were set to 1000,000.  After correcting for the number of 

genes (N=65) tested the multiple testing threshold was p<0.00077. A more stringent 

correction additionally accounting for number of independent phenotypes (N=4) tested, 

lead to a multiple testing threshold of p< 0.00019 for gene based association. 

Construction of genetic risk score 

We constructed a genetic risk score comprising all selected AD risk variants from 20 

independent AD risk loci to estimate joint effect of these SNPs on MRI-markers of brain 

aging. Methods have been recently developed to apply a genetic risk score to meta-

analysis summary estimates without requiring access to raw data from individual studies 
31. For each MRI-marker of interest, the beta-coefficient for a given SNP, as obtained from 

the GWAS meta-analysis for this MRI-marker, was weighted with the published AD beta-

coefficient for the given SNP. The weighted sum of beta-coefficients for all 20 SNPs 

(Formula-i(a)) was used as the beta-coefficient of the genetic risk score. Similarly, for 

each MRI-marker of interest, the inverse of the variance for a given SNP (from the GWAS 

meta-analysis for this MRI-marker) was weighted by the square of the published AD 

beta-coefficient for the given SNP. These weighted inverse of variances were then 

summed and the inverse of this sum was used as the variance of the genetic risk score 

(Formula-i(b)). The Wald statistic was used to test for significance of associations 
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between the genetic risk score and each MRI-marker 31. For WMH burden, betas and 

standard errors were estimated from Z-statistics provided by the effective sample size 

weighted meta-analysis using Formula-ii. AD beta-coefficients used as weights for the 

score were all drawn from the discovery stage of the recent largest AD GWAS meta-

analysis (17,008 AD cases and 37,154 controls, Supplementary Table 1) 15. Associations 

with p<0.05 were considered significant for genetic risk score based associations. 

βgrs ൌ
∑ ࢓െ૛ࡱࡿࢼ࢝
૚

∑ ࢝૛࢓
૚ െ૛ࡱࡿ

െࢇ࢒࢛࢓࢘࢕ࡲ																																																													  ሻࢇሺ࢏

૛grsࡱࡿ ൌ
૚

∑ ࢝૛࢓
૚ ૛ିࡱࡿ

ࢇ࢒࢛࢓࢘࢕ࡲ																																																								 െ  ሻ࢈ሺ࢏

βgrs=beta of genetic risk score; SEgrs=SE of genetic risk score; w=weight applied 

(=SNP-specific beta of AD GWAS); β=SNP specific beta of association with MRI-

phenotype; SE= SNP-specific SE of association with MRI-phenotype 

~ࡱࡿ ൌ ඥࡼࢂ/ሺࡿࡱ ൈ ૛ࢗ࢖ሻ																																															ࢇ࢒࢛࢓࢘࢕ࡲ െ  ሻࢇሺ࢏࢏

ࢇ࢚ࢋ࡮ ൌ ࡱࡿ ൈ ࢇ࢒࢛࢓࢘࢕ࡲ																																																																	ࢆ െ  ሻ࢈ሺ࢏࢏

VP=phenotypic variance (approximated to 1); ES=Effective sample size; p=Minor 

allele frequency; q=Major allele frequency.  

After correcting for four independent phenotypes tested, the multiple testing 

threshold for genetic risk score association was P<0.0125.  
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RESULTS 

Correlation and heritability of the five MRI traits 

Based on data from two studies which were part of the original meta-analysis the 

two MRI markers of structural brain aging, ICV and TBV showed high correlation 

with each other but were only moderately correlated with HV (Supplementary 

Table 2). The two MRI markers of vascular brain aging WMH burden and brain 

infarcts showed low correlation with each other and very little or no correlation 

with the three markers of structural brain aging. Depending upon this correlation 

the equivalent number of independent phenotypes calculated using matSpDlite 

was four for both studies. Published literature showed that the five MRI markers 

had moderate to high heritability (Supplementary Table 3). 

Single-SNP based associations 

In total 9 out of 20 AD risk variants that could be analyzed showed association with 

at least one MRI-marker at p<0.05 (Table 1). With only 2 exceptions (CD33 locus 

with brain infarcts (p=0.048) and PTK2B locus with ICV (p=0.028)), betas were in the 

expected direction i.e. the AD risk allele was associated with increased risk for brain 

infarcts and with lower ICV, TBV and HV. The most significant associations were for 

APOE-rs2075650 with HV (beta±SE=-0.042±0.015, p=0.0054) and CD33-rs3865444 

with ICV (beta±SE=-5.209±1.886, p=0.0058) (Table 1). However, none of the single-

SNP based associations were significant after correcting for multiple testing. None 

of the AD risk variants showed associations with WMH burden. 



Chapter 4.1.1 

284  
  

Ta
bl

e 
1 

| S
in

gl
e-

SN
P 

ba
se

d 
as

so
ci

at
io

n 
of

 th
e 

A
D

 lo
ci

 w
ith

 M
RI

 m
ar

ke
rs

 o
f b

ra
in

 a
gi

ng
 

In
de

x 
SN

Pa 

(P
ro

xy
) 

Cl
os

es
t 

ge
ne

 
Ch

r:p
os

iti
on

b  I
nt

ra
-C

ra
ni

al
 

Vo
lu

m
e

(in
 c

m
3 ) 

To
ta

l 
Br

ai
n 

Vo
lu

m
e

(in
 %

 IC
V)

 
H

ip
po

ca
m

pa
l 

Vo
lu

m
e 

 (i
n 

cm
3 ) 

W
M

H
 b

ur
de

nd  B
ra

in
 

In
fa

rc
ts

 
(y

es
/n

o)
 

β 
SE

 
p 

β 
SE

 
p 

β 
SE

 
p 

Z- st
at

is
tic

s p 
β 

SE
 

p 

rs
20

75
65

0 
AP

O
E 

19
:4

53
95

61
9 

4.
40

5 
2.

60
5 

0.
09

1 
-0

.1
 

0.
07

2 
0.

16
8 

-0
.0

42
 

0.
01

5 
0.

00
54

 1
.0

89
 

0.
27

6 
-0

.0
81

 0
.0

62
 

0.
19

5 
rs

93
31

89
6 

(r
s2

27
95

90
) 

CL
U

 
8:

27
46

76
86

 
-3

.1
12

 1
.7

95
 0

.0
83

 
-0

.1
04

 0
.0

51
 

0.
04

 
-0

.0
09

 
0.

01
1 

0.
41

6 
-1

.5
46

 
0.

12
2 

-0
.0

12
 0

.0
43

 
0.

77
1 

rs
10

79
28

32
 P

IC
AL

M
 1

1:
85

86
78

75
 0

.7
63

 
1.

68
1 

0.
65

 
0.

06
4 

0.
04

7 
0.

18
 

-0
.0

01
 

0.
01

 
0.

86
3 

1.
24

3 
0.

21
4 

0.
00

3 
0.

04
 

0.
93

2 
rs

66
56

40
1 

CR
1 

1:
20

76
92

04
9 

-2
.8

34
 2

.1
9 

0.
19

6 
0.

02
3 

0.
06

1 
0.

71
3 

0.
01

6 
0.

01
3 

0.
21

1 
0.

37
5 

0.
70

8 
-0

.0
69

 0
.0

54
 

0.
19

7 
rs

67
33

83
9 

(r
s7

44
37

3)
 

BI
N

1 
2:

12
78

92
81

0 
-1

.9
43

 1
.8

62
 0

.2
97

 
-0

.0
7 

0.
05

2 
0.

18
3 

-0
.0

24
 

0.
01

1 
0.

02
7 

-0
.1

68
 

0.
86

7 
0.

07
9 

0.
04

3 
0.

06
4 

rs
41

47
92

9 
(r

s3
75

22
46

) 
AB

CA
7 

19
:1

06
34

43
 

0.
10

3 
2.

34
2 

0.
96

5 
-0

.0
18

 0
.0

65
 

0.
78

6 
-0

.0
17

 
0.

01
4 

0.
22

6 
N

A
 

N
A

 
0.

01
7 

0.
05

8 
0.

77
3 

rs
98

33
92

 
(r

s1
12

30
16

1)
 M

S4
A6

A 
11

:5
99

23
50

8 
-3

.0
93

 1
.6

75
 0

.0
65

 
-0

.0
59

 0
.0

47
 

0.
21

4 
-0

.0
23

 
0.

01
 

0.
02

1 
-1

.4
2 

0.
15

6 
-0

.0
12

 0
.0

43
 

0.
78

2 

rs
10

94
83

63
 C

D
2A

P 
6:

47
48

77
62

 
1.

53
7 

1.
84

5 
0.

40
5 

-0
.0

17
 0

.0
52

 
0.

74
2 

0.
00

3 
0.

01
1 

0.
87

 
1.

08
9 

0.
27

6 
-0

.0
35

 0
.0

44
 

0.
43

3 
rs

11
77

11
45

 E
PH

A1
 

7:
14

31
10

76
2 

3.
35

3 
1.

90
1 

0.
07

8 
-0

.0
26

 0
.0

53
 

0.
62

5 
0.

00
3 

0.
01

1 
0.

91
2 

N
A

 
N

A
 

-0
.0

23
 0

.0
42

 
0.

59
2 

rs
38

65
44

4 
CD

33
 

19
:5

17
27

96
2 

-5
.2

09
 1

.8
86

 0
.0

05
8 

0.
02

5 
0.

05
3 

0.
63

8 
-0

.0
19

 
0.

01
1 

0.
08

7 
-0

.3
62

 
0.

71
7 

-0
.0

88
 0

.0
45

 
0.

04
8 

rs
92

71
19

2 
H

LA
-

D
RB

1e  
6:

32
57

85
30

 
N

A
 

N
A

 
N

A
 

N
A

 
N

A
 

N
A

 
N

A
 

N
A

 
N

A
 

N
A

 
N

A
 

N
A

 
N

A
 

N
A

 

rs
28

83
49

70
 

(r
s2

32
25

99
) 

PT
K2

B 
8:

27
19

51
21

 
3.

67
5 

1.
67

 
0.

02
8 

-0
.0

06
 0

.0
47

 
0.

89
8 

-0
.0

03
 

0.
01

 
0.

76
2 

-0
.8

24
 

0.
41

 
-0

.0
06

 0
.0

4 
0.

89
 

   



Alzheimer disease genes and markers of brain aging 

 285 

4 

  

Ta
bl

e 
1 

co
nt

in
ue

d.
 

rs
11

21
83

43
 

(r
s7

93
98

26
) 

SO
RL

1 
11

:1
21

43
55

87
 4.

52
5 

6.
23

9 
0.

46
8 

-0
.1

65
 0

.1
74

 
0.

34
1 

0.
01

1 
0.

03
7 

0.
76

8 
N

A
 

N
A

 
0.

31
6 

0.
15

5 
0.

04
1 

rs
10

49
86

33
 S

LC
24

A4
 1

4:
92

92
69

52
 -

2.
05

2 
2.

04
2 

0.
31

5 
0.

01
 

0.
05

7 
0.

85
8 

-0
.0

12
 

0.
01

2 
0.

32
9 

0.
36

3 
0.

71
7 

0.
04

9 
0.

04
8 

0.
30

4 
rs

35
34

96
69

 
(r

s7
60

77
36

) 
IN

PP
5D

 
2:

23
40

68
47

6 
-3

.6
25

 1
.7

23
 0

.0
35

 
-0

.0
63

 0
.0

48
 

0.
19

6 
-0

.0
1 

0.
01

 
0.

31
3 

0.
85

6 
0.

39
2 

-0
.0

03
 0

.0
41

 
0.

93
5 

rs
19

09
82

 
M

EF
2C

 
5:

88
22

34
20

 
-1

.6
11

 1
.9

18
 0

.4
01

 
0.

03
4 

0.
05

4 
0.

52
5 

0.
00

5 
0.

01
1 

0.
68

7 
0.

54
5 

0.
58

6 
0.

04
6 

0.
04

4 
0.

3 
rs

27
18

05
8 

(r
s1

21
55

15
9)

 N
M

E8
 

7:
37

84
15

34
 

2.
16

8 
1.

76
2 

0.
21

8 
0 

0.
05

 
0.

99
4 

0.
01

2 
0.

01
 

0.
27

1 
-0

.4
38

 
0.

66
2 

0.
02

7 
0.

04
2 

0.
52

3 

rs
14

76
67

9 
ZC

W
PW

17
:1

00
00

44
46

 -
0.

22
 

1.
8 

0.
90

3 
-0

.0
17

 0
.0

51
 

0.
73

8 
-0

.0
1 

0.
01

1 
0.

36
 

-0
.0

53
 

0.
95

8 
-0

.0
14

 0
.0

44
 

0.
75

4 
rs

10
83

87
25

 
(r

s1
08

38
72

6)
 CE

LF
1 

11
:4

75
57

87
1 

-0
.4

33
 1

.7
95

 0
.8

09
 

0.
08

5 
0.

05
 

0.
09

2 
0 

0.
01

1 
0.

99
2 

-1
.0

12
 

0.
31

2 
-0

.0
68

 0
.0

43
 

0.
11

5 

rs
17

12
59

44
 F

ER
M

T2
 1

4:
53

40
06

29
 0

.4
65

 
2.

76
7 

0.
86

7 
-0

.0
25

 0
.0

78
 

0.
74

4 
0.

01
5 

0.
01

6 
0.

34
7 

-0
.5

74
 

0.
56

6 
0.

06
9 

0.
07

1 
0.

33
2 

rs
72

74
58

1 
(r

s9
27

17
4)

 
CA

SS
4 

20
:5

50
18

26
0 

-0
.4

35
 2

.9
56

 0
.8

83
 

-0
.1

19
 0

.0
83

 
0.

15
2 

-0
.0

14
 

0.
01

7 
0.

42
1 

0.
05

5 
0.

95
6 

0.
08

4 
0.

07
 

0.
22

8 

Ke
y:

 β
, b

et
a 

(m
et

a-
an

al
ys

is 
ef

fe
ct

 e
st

im
at

e)
 p

er
 a

lle
le

 in
cr

ea
se

 o
f t

he
 ri

sk
 a

lle
le

; Z
-s

ta
tis

tic
, m

et
a-

an
al

ys
is 

of
 Z

-s
ta

tis
tic

s 
(b

et
a/

SE
) f

ro
m

 
ea

ch
 s

tu
dy

, w
ei

gh
te

d 
by

 e
ffe

ct
iv

e 
sa

m
pl

e 
siz

e 
(p

ro
du

ct
 o

f t
he

 s
am

pl
e 

siz
e 

an
d 

th
e 

ra
tio

 o
f t

he
 e

m
pi

ric
al

ly
 o

bs
er

ve
d 

do
sa

ge
 v

ar
ia

nc
e 

to
 th

e 
ex

pe
ct

ed
 b

in
om

ia
l d

os
ag

e 
va

ria
nc

e 
fo

r i
m

pu
te

d 
SN

Ps
); 

W
M

H
, w

hi
te

 m
at

te
r h

yp
er

in
te

ns
iti

es
; S

E,
 st

an
da

rd
 e

rr
or

 

a  In
de

x 
SN

P 
w

as
 d

ef
in

ed
 a

s t
he

 S
N

P 
w

ith
 th

e 
lo

w
es

t p
 a

t t
he

 lo
cu

s. 
 

b  C
hr

:p
os

iti
on

 h
as

 b
ee

n 
pr

ov
id

ed
 fo

r t
he

 in
de

x 
SN

P 
as

 p
er

 N
CB

I b
ui

ld
 3

7 
(G

RC
h3

7.
p1

0)
. 

c  D
ist

an
ce

 fr
om

 g
en

e 
st

ar
t o

r e
nd

 (w
hi

ch
ev

er
 is

 sh
or

te
st

) i
s p

ro
vi

de
d 

in
 k

ilo
 b

as
es

 (k
b)

 a
nd

 if
 w

ith
in

 g
en

e,
 w

g 
no

ta
tio

n 
us

ed
. 

d  e
xp

re
ss

ed
 in

 c
m

3  o
r o

n 
a 

se
m

i-q
ua

nt
ita

tiv
e 

10
-p

oi
nt

 sc
al

e 
in

 th
e 

or
ig

in
al

 st
ud

y.
 

e  N
ei

th
er

 th
e 

in
de

x 
SN

P 
no

r a
ny

 S
N

P 
in

 L
D

 w
ith

 in
de

x 
SN

P 
is 

av
ai

la
bl

e 
in

 th
e 

H
ap

M
ap

 b
as

ed
 im

pu
te

d 
da

ta
 m

et
a-

an
al

ys
is 

re
su

lts
 

p<
0.

00
25

 (α
=0

.0
5/

20
) w

as
 c

on
sid

er
ed

 si
gn

ifi
ca

nt
 a

fte
r c

or
re

ct
in

g 
fo

r n
um

be
r o

f i
nd

ep
en

de
nt

 lo
ci

 te
st

ed
 

  



Chapter 4.1.1 

286    

Ta
bl

e 
2 

| G
en

e-
ba

se
d 

as
so

ci
at

io
ns

 (P
<0

.0
5)

 w
ith

 M
RI

 m
ar

ke
rs

 o
f b

ra
in

 a
gi

ng
 fo

r g
en

es
 ly

in
g 

w
ith

in
 5

0k
b 

of
 A

D
 ri

sk
 lo

ci
 

In
de

x-
SN

P 
(c

lo
se

st
 g

en
e)

 
G

en
e 

Ch
r 

St
ar

t 
St

op
 

p 
(In

tr
a-

cr
an

ia
l 

vo
lu

m
e)

 
p 

(T
ot

al
 b

ra
in

 
vo

lu
m

e)
 

p 
(H

ip
po

ca
m

pa
l 

vo
lu

m
e)

 
p 

(W
M

H
 

bu
rd

en
) p 

(b
ra

in
 

in
fa

rc
ts

) 

rs
66

56
40

1 
(C

R1
) 

CR
1 

1 
20

76
19

47
2 2

07
86

51
10

 0.
27

1 
0.

00
33

 
0.

23
7 

0.
06

9 
0.

56
2 

rs
74

43
73

 (B
IN

1)
 

BI
N

1 
2 

12
77

55
59

8 1
27

91
49

03
 0.

61
2 

0.
78

2 
0.

00
08

9 
0.

70
0 

0.
07

2 
rs

19
09

82
 (M

EF
2C

) 
M

EF
2C

 
5 

87
96

40
57

 8
82

49
92

2 
0.

02
0 

0.
81

5 
0.

13
4 

0.
18

0 
0.

03
3 

rs
92

71
19

2 
(H

LA
-D

RB
1)

 
H

LA
-D

RB
1 

6 
32

49
65

46
 3

26
07

61
3 

0.
46

7 
0.

00
06

0 
0.

17
0 

0.
22

6 
0.

27
7 

rs
92

71
19

2 
(H

LA
-D

RB
1)

 
H

LA
-D

Q
A1

 6 
32

55
51

82
 3

26
61

42
9 

0.
26

3 
0.

00
14

 
0.

10
8 

0.
05

9 
0.

31
0 

rs
92

71
19

2 
(H

LA
-D

RB
1)

 
H

LA
-D

Q
B1

 6 
32

57
72

40
 3

26
84

46
6 

0.
17

9 
0.

00
57

 
0.

11
4 

0.
01

0 
0.

20
8 

rs
75

93
26

28
 (T

RE
M

2)
 

TR
EM

L1
 

6 
41

06
69

98
 4

11
72

08
7 

0.
33

7 
0.

36
7 

0.
04

8 
0.

31
5 

0.
58

2 
rs

12
15

51
59

 (N
M

E8
) 

N
M

E8
 

7 
37

83
81

98
 3

79
90

00
2 

0.
01

0 
0.

40
0 

0.
13

8 
0.

75
5 

0.
98

5 
rs

14
76

67
9 

(Z
CW

PW
1)

 
PI

LR
B 

7 
99

90
56

25
 1

00
01

54
54

 0.
00

82
 

0.
69

4 
0.

16
2 

0.
27

1 
0.

70
1 

rs
14

76
67

9 
(Z

CW
PW

1)
 

PI
LR

A 
7 

99
92

10
67

 1
00

04
77

22
 0.

00
78

 
0.

70
2 

0.
18

3 
0.

30
9 

0.
71

2 
rs

14
76

67
9 

(Z
CW

PW
1)

 
ZC

W
PW

1 
7 

99
94

84
94

 1
00

07
64

31
 0.

00
78

 
0.

67
2 

0.
19

6 
0.

36
3 

0.
75

1 
rs

14
76

67
9 

(Z
CW

PW
1)

 
M

EP
CE

 
7 

99
97

64
12

 1
00

08
17

49
 0.

00
99

 
0.

62
6 

0.
24

6 
0.

34
8 

0.
73

9 
rs

14
76

67
9 

(Z
CW

PW
1)

 
PP

P1
R3

5 
7 

99
98

29
11

 1
00

08
40

94
 0.

00
93

 
0.

63
7 

0.
29

1 
0.

34
2 

0.
76

7 
rs

14
76

67
9 

(Z
CW

PW
1)

 
C7

or
f6

1 
7 

10
00

04
23

7 1
00

11
18

94
 0.

01
1 

0.
66

8 
0.

32
0 

0.
32

1 
0.

81
1 

rs
11

77
11

45
 (E

PH
A

1)
 

TA
S2

R6
0 

7 
14

30
90

54
5 1

43
19

15
02

 0.
93

1 
0.

01
2 

0.
39

3 
0.

08
6 

0.
04

9 
rs

22
79

59
0 

(C
LU

) 
SC

AR
A3

 
8 

27
44

15
76

 2
75

84
28

6 
0.

06
0 

0.
03

1 
0.

36
7 

0.
44

0 
0.

65
1 

rs
11

23
01

61
 (M

S4
A

6A
) 

M
S4

A6
A 

11
 

59
88

90
79

 6
00

02
13

9 
0.

03
5 

0.
37

5 
0.

03
0 

0.
35

8 
0.

80
4 

rs
11

87
04

74
 (A

TP
5H

/K
CT

D
2)

 IC
T1

 
17

 
72

95
87

79
 7

30
67

35
6 

0.
13

8 
0.

04
7 

0.
43

4 
0.

69
7 

0.
19

5 
rs

37
52

24
6 

(A
BC

A
7)

 
AB

CA
7 

19
 

99
01

01
 

11
15

57
0 

0.
49

7 
0.

58
9 

0.
79

9 
0.

04
9 

0.
30

1 
rs

37
52

24
6 

(A
BC

A
7)

 
H

M
H

A1
 

19
 

10
15

92
1 

11
37

83
0 

0.
33

7 
0.

57
7 

0.
72

4 
0.

04
6 

0.
12

8 

 
 

 
 

 
 

 
 

 
 



Alzheimer disease genes and markers of brain aging 

 287 

4 

  

Ta
bl

e 
2 

co
nt

in
ue

d.
 

rs
20

75
65

0 
(A

PO
E)

 
PV

RL
2 

19
 

45
29

93
92

 4
54

42
48

5 
0.

03
3 

0.
47

0 
0.

06
9 

0.
16

3 
0.

05
6 

rs
20

75
65

0 
(A

PO
E)

 
TO

M
M

40
 1

9 
45

34
44

76
 4

54
56

94
6 

0.
02

7 
0.

37
0 

0.
08

4 
0.

20
2 

0.
15

5 
rs

20
75

65
0 

(A
PO

E)
 

AP
O

E 
19

 
45

35
90

38
 4

54
62

65
0 

0.
04

0 
0.

37
8 

0.
11

8 
0.

25
2 

0.
13

3 
rs

20
75

65
0 

(A
PO

E)
 

AP
O

C1
 

19
 

45
36

79
20

 4
54

72
60

6 
0.

03
0 

0.
48

8 
0.

10
6 

0.
27

4 
0.

16
3 

rs
38

65
44

4 
(C

D
33

) 
CD

33
 

19
 

51
67

83
34

 5
17

93
27

4 
0.

17
9 

0.
04

6 
0.

46
3 

0.
96

8 
0.

10
0 

rs
92

71
74

 (C
A

SS
4)

 
AU

RK
A 

20
 

54
89

44
44

 5
50

17
35

1 
0.

26
2 

0.
69

0 
0.

41
5 

0.
77

1 
0.

04
1 

rs
92

71
74

 (C
A

SS
4)

 
CS

TF
1 

20
 

54
91

74
26

 5
50

29
58

2 
0.

40
0 

0.
52

6 
0.

55
0 

0.
82

3 
0.

04
7 

Ke
y:

  W
M

H
, w

hi
te

 m
at

te
r h

yp
er

in
te

ns
iti

es
 

p<
0.

00
25

 (α
=0

.0
5/

20
) w

as
 c

on
si

de
re

d 
sig

ni
fic

an
t a

fte
r c

or
re

ct
in

g 
fo

r n
um

be
r o

f i
nd

ep
en

de
nt

 lo
ci

 te
st

ed
; s

ig
ni

fic
an

t p
-v

al
ue

s a
fte

r c
or

re
ct

in
g 

fo
r 

m
ul

tip
le

 te
st

in
g 

ar
e 

in
 b

ol
d;

 G
en

e-
ba

se
d 

as
so

ci
at

io
n 

an
al

ys
is 

w
as

 p
er

fo
rm

ed
 fo

r g
en

es
 w

ith
in

 5
0k

B 
of

 in
de

x 
SN

P.
 O

nl
y 

ge
ne

-b
as

ed
 a

ss
oc

ia
tio

ns
 fo

r 
th

os
e 

ge
ne

s w
ith

 p
<0

.0
5 

w
ith

 a
t l

ea
st

 o
ne

 M
RI

 m
ar

ke
r i

s p
re

se
nt

ed
. A

 c
om

pl
et

e 
lis

t i
s p

re
se

nt
ed

 in
 S

up
pl

em
en

ta
ry

 T
ab

le
 4

.  
 



Chapter 4.1.1 

288  

Gene-based associations 

Out of the 24 loci investigated, 23 had at least one protein coding gene within 50kb 

distance. Only rs3851179 (11q14) had no protein coding gene within 50kb and was 

not represented in the gene-based association analysis (nearest genes: PICALM 

87.72kb downstream and EED 86.95kb upstream). In total, 65 protein coding genes 

from 23 independent loci were assessed for gene-based association analyses 

(Supplementary Table 4). 

A total of 27 protein coding genes within 50kb of 15 index SNPs were associated 

with ICV, TBV, HV or brain infarcts at p<0.05 (Table 2). For ICV we observed 

association with 13 genes within 50kb of five index SNPs (MEF2C, NME8, PILRB, 

PILRA, ZCWPW1, MEPCE, PPP1R35, C7orf61, MS4A6A, PVRL2, TOMM40, APOE, 

APOC1; p-range: 0.04-0.0078). Eight genes within 50kB of six index SNPs were 

associated with TBV (CR1, HLA-DRB1, HLA-DQA1, HLA-DQB1, TAS2R60, SCARA3, 

ICT1, CD33; p-range: 0.047-0.0006). BIN1, TREML1 and MS4A6A were associated 

with HV (p=0.00089, 0.03 and 0.048, respectively) while MEF2C, AURKA, CSTF1 and 

TAS2R60showed association with brain infarcts (p-range: 0.049-0.033). For WMH 

burden we observed association with three genes from two loci (HLA-DQB1, 

HMHA1 and ABCA7; p=0.01, 0.046 and 0.049 respectively).   If we correct for the 

number of genes tested the association of HLA-DRB1 with TBV remains significant 

but if we additionally correct for the number of phenotypes tested this association 

is not significant. 

Genetic risk score based associations 

The AD genetic risk score was associated with smaller HV (beta±SE=-0.047±0.013, 

p=0.00041) (Table 3). This association was also observed after removing the APOE 

locus from the AD genetic score (beta±SE=-0.050±0.023, p=0.029). There was also 

nominal association of the AD genetic risk score with smaller TBV (beta±SE =-

0.127±0.064, P=0.046) but this association was not significant after excluding the 

APOE locus from the genetic risk score (P=0.13).  Only association of the AD genetic 

risk score with HV including APOE locus was significant after correcting for the 

number of independent phenotypes tested.   
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Table 3 | Genetic risk score based association of the AD loci with MRI-markers of brain 
aging 

 With APOE Without APOE
 Beta SE p Beta SE p 

Intra-cranial volume
(in cm3) 

1.179 2.174 0.59  -6.224 3.945 0.11 

Total brain volume
(in % ICV) 

-0.120 0.061 0.048  -0.166 0.111 0.13 

Hippocampal 
volume 
(in cm3) 

-0.044 0.013 0.00042  -0.050 0.023 0.029 

WMH burdena 0.013 0.020 0.52 -0.019 0.038 0.61 
Brain infarcts
(yes/no) 

-0.039 0.052 0.45  0.055 0.094 0.56 

Key:  Beta, effect estimate, per allele increase of the risk allele; SE, standard error; WMH, white 
matter hyperintensities 
a for WMH burden betas and SEs were estimated from the Z-statistics obtained in the WMH 
burden meta-analysis and do not reflect an interpretable effect size (as the WMH burden was 
estimated using different scales in participating studies) 24. 
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DISCUSSION 
We investigated associations of 24 genome-wide significant AD risk loci with five 

MRI-markers of brain structure and aging (ICV, TBV, HV, WMH burden and brain 

infarcts), in over 8,000 dementia free older community participants from the 

CHARGE consortium. Although no single SNP-based association met the 

significance threshold after correction for multiple testing, index AD risk variants 

mapping to eight of the 21 AD risk loci showed nominal association with at least 

one MRI-marker, the most interesting being association for APOE (rs2075650) with 

smaller HV and for CD33 (rs3865444) with smaller ICV. In gene-based association 

analyses HLA-DRB1 was significantly associated with TBV after correction for 

number of genes tested. A weighted AD genetic risk score was significantly 

associated with smaller HV.  

In Single-SNP based associations none of the associations were significant after 

correcting for multiple testing. Nominally significant associations of an APOE risk 

variant with HV (P=0.0054) and a CD33 variant with ICV (P=0.0058) were observed. 

Since the mid 1990’s (Supplementary Table 5) some studies have described 

significant associations between the APOE-ε4 allele and smaller HV 32-41, however 

other studies did not find such an association 42-45. Using the largest sample size to 

date (N=11,550), as previously reported by our group, our findings are supportive 

of an association of the APOE-ε4 locus with smaller HV 23. The rs3865444 (CD33) AD 

risk allele association with smaller ICV could perhaps be suggestive of an 

involvement of this locus in brain maturation and brain reserve. Recent reports 

suggest that rs3865444 influences CD33 expression, including in young adults in 

their twenties 26, and is associated with diminished internalization of amyloid β42 

peptide, and accumulation of neuritic amyloid pathology and fibrillar amyloid in 

vivo 26. 

Gene-based analyses revealed significant associations of HLA-DRB1 (index SNP 

rs9271192) with TBV. The HLA-DRB1 locus was recently identified to be associated 

with AD in the largest meta-analysis of AD 15. This locus is part of the major 

histocompatibility complex, class II, and our findings add support to the role of 
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autoimmunity in AD. The findings also suggest that the locus may be playing a role 

in pre-symptomatic stages of the disease, as we observe association with smaller 

brain volumes in non-demented older community persons.  

When combined in a weighted genetic risk score, AD risk variants were associated 

cumulatively with decreased HV. Interestingly the association was maintained with 

a similar effect size, although less significant, after removing the APOE locus from 

the analysis, suggesting that, in aggregate, novel AD risk loci are associated with 

smaller HV in non-demented older community persons. The AD genetic risk score 

also showed nominal association with smaller TBV. Although this association was 

no longer significant after removing the APOE locus, other loci were contributing to 

this association, as the APOE risk variant alone was not significantly associated with 

TBV.  

There were fewer associations with WMH burden and brain infarcts. Most 

associations with AD risk variants were observed for ICV, TBV, and HV. This may 

indicate that, even though they are strong predictors of dementia risk,5, 6 MRI-

markers of vascular brain injury could have less shared genetic determinants with 

AD than MRI-markers of brain growth and brain atrophy, as suggested by others 20. 

Noteworthy, our study only tested for overlap of genome-wide significant AD risk 

variants, did not explore shared heritability and may have been underpowered for 

less common variants with smaller effect size (Supplementary Figure 1).  

Our study has limitations. The 24 AD risk loci do not reflect the full spectrum of 

genetic susceptibility to AD and the index SNPs used may not be causal variants. 

The five GWAS of MRI-markers, although the largest of their kind, have fewer 

samples compared to the AD GWAS from which the loci have been obtained 15, 22-25.  

These five GWAS of MRI-markers were performed using imputed genotypes based 

on the HapMap2 panel, which does not cover rare variants and has lower 

imputation accuracy, especially for lower allele frequencies, compared to the more 

recent 1000 genomes reference panels. We therefore couldn’t analyze rare AD risk 

variants in the present study. In addition, despite major efforts to harmonize 

phenotype definitions across studies, there may be some residual heterogeneity in 
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methods for quantifying MRI-markers of brain aging. These elements could have 

reduced our power to detect associations of AD GWAS loci with MRI-markers of 

brain aging. The choice of 50 KB window for a gene based test does not account for 

potential regulatory effects on more distant genes. Our findings cannot be 

generalized to populations of non-European ancestry. Ongoing, larger multi-ethnic 

GWAS of MRI-markers of brain aging, as well as sequencing projects searching for 

rare variants associated with AD risk and MRI phenotypes may enable us to expand 

our findings in the future.  

CONCLUSION 

In conclusion, we have shown that novel AD genetic risk variants are associated 

with MRI-markers of structural brain aging in older, non-demented community 

persons. In aggregate, novel AD genetic risk variants were associated with smaller 

brain volumes, especially HV. Significant gene-based associations and suggestive 

single SNP-based associations with ICV, TBV and HV also provide interesting 

hypotheses for mechanisms underlying genetic associations with AD  
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ABSTRACT 
Background and Purpose: Genome-wide association studies have identified single 

nucleotide polymorphisms (SNPs) for intracranial aneurysms in clinical samples. 

Additionally, SNPs have been discovered for blood pressure, one of the strongest risk 

factors for intracranial aneurysms. We studied the role of these genetic variants on 

occurrence and size of unruptured intracranial aneurysms, discovered incidentally in a 

general community-dwelling population. 

Methods: In 4,890 asymptomatic participants from the Rotterdam Study, 120 intracranial 

aneurysms were identified on brain imaging and segmented for maximum diameter and 

volume. Genetic risk scores (GRS) were calculated for intracranial aneurysms (10 SNPs), 

systolic blood pressure (33 SNPs) and diastolic blood pressure (41 SNPs). 

Results: The GRS for intracranial aneurysms was not statistically significantly associated 

with presence of aneurysms in this population (OR: 1.16; 95%CI, 0.96-1.40; P=0.119), but 

showed a significant association with both maximum diameter (difference in log-

transformed mm per SD increase of GRS: 0.10; 95%CI, 0.02-0.19; P=0.018) and volume 

(difference in log-transformed μl per SD increase of GRS: 0.21; 95%CI, 0.01-0.41; P=0.040) 

of aneurysms. GRSs for blood pressures were associated with neither presence nor size 

of aneurysms. 

Conclusions: Genetic variants previously identified for intracranial aneurysms in clinical 

studies relate to the size rather than the presence of incidentally discovered, unruptured 

intracranial aneurysms in the general population.  
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INTRODUCTION 
Unruptured intracranial aneurysms are incidentally discovered in imaging studies in 

approximately 2% of the general population.1 Rupture of an intracranial aneurysm can 

result in a non-traumatic subarachnoid hemorrhage (SAH), an acute condition with high 

morbidity and mortality rates. For early risk stratification and potential treatment, it is 

therefore important to better understand the pathophysiology of aneurysm 

development. 

Several risk factors for ruptured intracranial aneurysms have been identified, including 

age, gender, smoking, aneurysm size and location.2-4 In addition, an important 

modifiable risk factor for ruptured intracranial aneurysms is hypertension.5 Less is known 

about risk factors for development of intracranial aneurysms, although there is some 

overlap with risk factors for rupture, including gender, smoking and hypertension.6, 7 

Genetic factors also play an important role in intracranial aneurysms, which is evidenced 

by the fact that persons with a positive family history have a higher risk of developing 

intracranial aneurysms compared to the general population.8 More recently, genome-

wide association studies have identified multiple single nucleotide polymorphisms 

(SNPs) associated with intracranial aneurysms.9 Importantly, most studies investigating 

genetics of intracranial aneurysms have done so in a clinical setting, thereby typically 

including patients presenting with ruptured aneurysms or persons screened for high 

familial risk. In such settings, it cannot be discerned whether these SNPs affect the 

development of intracranial aneurysms or lead to growth and rupture of already present 

aneurysms. A population-based setting provides a unique opportunity to study the 

effect of these SNPs on unselected unruptured aneurysms. 

We investigated in a community-dwelling population the association of SNPs for 

intracranial aneurysms with the occurrence and size of unruptured aneurysms, 

incidentally detected on research imaging. Furthermore, we also studied SNPs for high 

blood pressure and their association with presence and size of unruptured intracranial 

aneurysms. 
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METHODS 

The online-only Data Supplement provides further details on the methods. 

Setting and study population 

This study was embedded in the prospective Rotterdam Study10, a population-based 

cohort study in the Netherlands. Between 2005 and 2014, 5,832 unique persons have 

undergone magnetic resonance imaging (MRI) of the brain.11 The study cohort was 

genotyped across the whole genome, with genotype data available for 4,890 out of 

5,832 subjects. 

Assessment intracranial aneurysms on MRI 

Reported incidental findings by research physicians were reassessed by a 

neuroradiologist and categorized accordingly. None of the participants had a history of 

SAH. Detected intracranial aneurysms were manually segmented. A 3D-model of the 

aneurysm was reconstructed, enabling us to calculate maximum diameter and volume 

of saccular intracranial aneurysms.  

Construction of the Genetic Risk Score 

Due to the small effects of individual SNPs and the relatively small number of aneurysms 

in our population-based setting, we constructed a genetic risk score to leverage the 

cumulative effect of all SNPs, allowing us to achieve higher power. For primary analyses 

we restricted to SNPs reaching a genome-wide significance (P < 5 × 10-8) in Caucasian 

populations, but in secondary analyses we included SNPs from non-Caucasian 

populations. The extracted SNP data is described in Supplementary Table 1. 

Statistical analysis 

We used logistic regression to associate genetic risk scores with presence of intracranial 

aneurysms (yes/no). Among persons with aneurysms we used linear regression to 

associate genetic risk scores with size of saccular intracranial aneurysms. Size was 

defined in both maximum diameter (mm) and volume (μl). For subjects with multiple 

saccular aneurysms, we calculated total aneurysm size by summing up the size of all the 
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saccular aneurysms. In all analyses we adjusted for age, sex and additionally for smoking 

status, systolic blood pressure, diastolic blood pressure and use of blood pressure-

lowering medication (antihypertensives, diuretics, beta blocking agents, calcium 

channel blockers, and ACE-inhibitors). Because persons could have multiple saccular 

aneurysms, hence greatly determining total aneurysm size, we also adjusted for number 

of aneurysms when performing analyses for size. 

 

RESULTS 
In 4,890 MRI-scans we found 120 aneurysms in 109 unique persons (2%), with 10 persons 

having multiple aneurysms (max 3 per person). The persons with intracranial aneurysms 

had a mean age of 65.4 ± 11.9 years and 73 (67.0%) were women. Of the 120 aneurysms, 

Table 1 | Study Characteristics

Variables Persons with
intracranial 
aneurysms (n=109) 

Persons without 
intracranial aneurysms 
(n=4781) 

Women 73(67.0%) 2610(54.6%)

Age, years 65.4±11.9 65.2±10.9

Smoking  

    Never 17(15.6%) 1380(28.8%)

    Past 50(45.9%) 2427(50.8%)

    Current 42(38.5%) 974(20.4%)

Systolic blood pressure, mmHg 140.3±23.1 140.0±21.4

Diastolic blood pressure, mmHg 82.9±11.6 82.4±10.9

Blood pressure-lowering
medication 

50(45.9%) 1712(35.8%)

Hypertension* 64(58.7%) 2427(50.8%)

Number of aneurysms 120 —

    Fusiform aneurysms 7(5.8%) —

    Saccular aneurysms 113(94.2%) —

        Maximum diameter, mm† 5.5(4.3-7.4) —

        Volume, μL† 52.8(27.6-125.6) —

*Defined as systolic blood pressure >= 140 or diastolic blood pressure >= 90. 
†Median with interquartile range. 
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114 (95%) were located in the anterior circulation and 113 (94.2%) were saccular with a 

median (interquartile range) maximum diameter of 5.5 mm (range 4.3-7.4) and volume 

of 52.8 μL (range 27.6-125.6). The 4,781 persons without aneurysms had a mean age of 

65.2 ± 10.9 years and 2610 (54.6%) were women. Study characteristics are described in 

Table 1. We did not find any significant associations between genetic risk scores and 

presence of intracranial aneurysms (Table 2).In contrast, the genetic risk score for 

intracranial aneurysms showed a significant age-sex-adjusted association with 

maximum diameter (difference in log-transformed mm per SD increase of GRS: 0.10; 

Table 2 | Association of Genetic Risk Score and presence of Intracranial Aneurysms 

Genetic Risk Score (per SD increase) OR (95%CI) P 

Model 1* 
    Intracranial Aneurysm (10 SNPs) 1.16(0.96;1.40) 0.119 
    Systolic Blood Pressure (33 SNPs) 1.15(0.95;1.39) 0.166 
    Diastolic Blood Pressure (41 SNPs) 1.09(0.90;1.32) 0.386 
Model 2† 
    Intracranial Aneurysm (10 SNPs) 1.17(0.96;1.41) 0.112 
    Systolic Blood Pressure (33 SNPs) 1.14(0.94;1.38) 0.190 
    Diastolic Blood Pressure (41 SNPs) 1.06(0.88;1.29) 0.525 

*Adjusted for: age, sex.  
†Adjusted for: age, sex, smoking, systolic blood pressure, diastolic blood pressure, 
blood pressure-lowering medication. 

Table 3 | Association of Genetic Risk Score and Saccular Aneurysm Size 

Genetic Risk Score (per SD increase) Max. Diameter (95%CI) P Volume (95%CI) 

Model 1* 
    Intracranial Aneurysm (10 SNPs) 0.10(0.02;0.18) 0.018 0.21(0.01;0.41) 
    Systolic Blood Pressure (33 SNPs) 0.02(-0.07;0.10) 0.728 0.01(-0.20;0.22) 
    Diastolic Blood Pressure (41 SNPs) -0.02(-0.11;0.07) 0.662 -0.06(-0.27;0.15) 
Model 2† 
    Intracranial Aneurysm (10 SNPs) 0.12(0.04;0.20) 0.006 0.26(0.06;0.46) 
    Systolic Blood Pressure (33 SNPs) 0.03(-0.06;0.13) 0.496 0.05(-0.18;0.27) 
    Diastolic Blood Pressure (41 SNPs) -0.02(-0.11;0.08) 0.707 -0.06(-0.28;0.16) 

*Adjusted for: age, sex, number of aneurysms. 
†Adjusted for: age, sex, number of aneurysms, smoking, systolic blood pressure, 
diastolic blood pressure, blood pressure-lowering medication. 
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95%CI, 0.02-0.18; P=0.018) and volume (difference in log-transformed μl per SD increase 

of GRS: 0.21; 95%CI, 0.01-0.41; P=0.040) of saccular aneurysms. The association remained 

statistically significant after additional adjustment (Table 3). Creating a genetic risk score 

by including SNPs identified in non-Caucasian populations yielded slightly attenuated, 

but still statistically significant results (Supplementary Table 2 and 3). Individual analyses 

for each SNP of the risk score are shown in Supplementary Table 4. Two SNPs (rs1333040 

and rs6475606) showed nominal significance with intracranial aneurysm size, but did 

not survive Bonferroni correction. Results for alternative methods of calculating 

aneurysm size are shown in Supplementary Table 5. No significant associations were 

found for the genetic risk scores of systolic blood pressure and diastolic blood pressure. 

DISCUSSION 

In this study of community-dwelling persons, genetic risk variants for intracranial 

aneurysms were not associated with presence of unruptured, incidentally discovered 

intracranial aneurysms. However, these genetic variants in combination were found to 

relate to larger size of incidental saccular aneurysms. Genetic risk variants for blood 

pressure were associated with neither presence nor size of intracranial aneurysms.  

A major strength of our study is, that we obtained unruptured intracranial aneurysms in 

a population-based setting, allowing us to investigate the association between genetic 

risk factors and intracranial aneurysm presence in truly asymptomatic individuals. 

Another strength is the manual segmentation of the entire aneurysm, enabling us to 

calculate saccular aneurysm volume instead of only the diameter, thus representing 

actual aneurysm size more accurately. A limitation of our study is the relatively old age of 

participants. Although aneurysmal SAH incidence increases with age12, a substantial 

portion of patients presenting with SAH are young adults. Due to the high morbidity and 

mortality associated with rupture of aneurysms, these patients were probably not 

included in our cohort of elderly persons. Combined with the limited statistical power 

considering a total of 109 cases, this could also explain why we did not find a statistically 

significant association for presence of aneurysms. Furthermore, the incidental 

aneurysms in the current study were typically small (median volume = 52.8 μL), which 

could make measurements inaccurate. However, inter-rater agreement was excellent for 
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both the maximum diameter and volume, indicating that the estimated aneurysm size 

was reliable. Also, intracranial aneurysms are more prevalent in persons with rare 

genetic diseases such as Loeys-Dietz Syndrome and Polycystic Kidney Disease. Even 

though information about the occurrence of these diseases was not available in our 

population, we expect the influence to be minimal in our cohort of healthy persons. 

Most genetic variants for aneurysms have been identified using cases from a clinical 

setting, i.e., patients with rupture of intracranial aneurysms. In such a setting, it cannot 

be discerned whether these genetic variants affect the development of intracranial 

aneurysms or lead to growth and rupture of already present aneurysms. In our 

community-dwelling population, we did not find a statistically significant association 

between these genetic variants and the presence of incidental intracranial aneurysms, 

although the confidence interval for the odds ratio included values that would indicate a 

potentially important association (OR as large as 1.40). The absence of a statistically 

significant association may thus reflect low statistical power. Interestingly, despite the 

small numbers of persons with aneurysms, we did find an association between these 

genetic variants combined and the size of intracranial aneurysms, which is one of the 

strongest risk factors for rupture.13 In addition, large aneurysms also have an increased 

risk of further enlargement.14 Taken together, our findings suggest that SNPs previously 

associated with intracranial aneurysms in a clinical setting are likely associated with the 

aneurysm size in the general population and thus, potentially with their subsequent 

rupture. 

A previous study in patients presenting with SAH did not find any association between 

similar genetic variants and diameter of aneurysms at the time of rupture15, using 7 of 

the 10 SNPs we used. Possible explanations for the difference in results between studies 

are the difference in study population, and the fact that aneurysm rupture may 

potentially affect the observed aneurysm size.  

Further research could explore the predictive ability of genetic risk scores, identifying 

additional SNPs to enhance discrimination and rupture risk classification in persons with 

intracranial aneurysms. We specifically created genetic risk scores for blood pressure 

genes because hypertension is one of the strongest modifiable risk factors associated 
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with aneurysm rupture. However smoking and heavy alcohol consumption, among 

other risk factors, are also strongly associated with aneurysm formation and rupture,5 

and future research should focus on these as well. 

CONCLUSION 
We demonstrated that genetic risk variants identified for intracranial aneurysms from a 

clinical setting were not associated with aneurysm presence in the general population. 

However we did show that these genetic risk variants affect aneurysm size, known to be 

one of the strongest risk factors for rupture. This possibly suggests that the clinically 

identified SNPs are mainly associated with aneurysm rupture, rather than with the 

presence of aneurysms in a general population.  
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ABSTRACT 
The aim of our study is to investigate whether single nucleotide dystrophin gene 

(DMD) variants associate with variability in cognitive functions in healthy 

populations. The study included 1,240 participants from the Erasmus Rucphen 

family (ERF) study and 1,464 individuals from the Rotterdam Study (RS). The 

participants whose exomes were sequenced and who were assessed for various 

cognitive traits were included in the analysis. To determine the association between 

DMD variants and cognitive ability linear (mixed) modeling with adjustment for age, 

sex and education was used. Moreover Sequence Kernel Association  Test  (SKAT)  was  

used  to  test  the  overall  association  of  the  rare  genetic variants present in the DMD 

with cognitive traits. Although no DMD variant surpassed the pre specified 

significance threshold (p < 1*10-4), rs147546024:A>G showed strong association (β 

= 1.786, p-value = 2.56*10-4) with block design test in the ERF study, while another  

variant  rs1800273:G>A showed suggestive association  (β  =  -0.465,  p-value  = 

0.002) with Mini-mental state examination test in the RS. Both variants are highly 

conserved, although rs147546024:A>G is an intronic variant, whereas, rs1800273:G>A 

is a missense variant in the DMD which has a predicted damaging effect on the 

protein. Further gene based analysis of DMD revealed suggestive association (p-

values = 0.087 and 0.074) with general cognitive ability in both cohorts. In 

conclusion, both single variant and gene based analyses suggest the existence of 

variants in the DMD which may effect cognitive functioning in the general 

populations.  
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INTRODUCTION 
The dystrophin gene (DMD) is localized on the X chromosome. Variants in DMD have 

been recognized as a cause of the most common form of muscular dystrophy during 

childhood, Duchenne muscular dystrophy (DMD).1 This disorder leads to progressive 

muscle weakness and less well described non-progressive central nervous system 

manifestations.2 

A consistent finding among patients with DMD is the reduction in Full-Scale 

intelligence quotient. Although most individuals are not intellectually disabled, 

risk for cognitive impairment is increased among affected males and up to 30 % of 

patients have intellectual disability.3-5 Apart from intellectual abilities, frequently 

reported neurocognitive function  impairment  has  been  published.6   Deficits  in  

short-term  memory,  executive functions, visuospatial ability, as well as deficits in 

some aspect of attention, problems with narrative, linguistic and reading skills have 

been described, irrespective of general intelligence.7-12 Moreover, a higher incidence 

of different neuropsychiatric disorders, such as autism spectrum, attention deficit 

hyperactivity disorder, obsessive-compulsive disorders and social behavior problems 

has been revealed among affected males.13-17 

The impact of DMD on cognitive ability in cognitively healthy populations has not 

been studied to the best of our knowledge, therefore in the current study we aim to 

investigate whether single nucleotide DMD variants associate with variability in 

cognitive functions in general populations, suggesting loci in the DMD 

contributing to cognition, besides genuine DMD variants. 

METHODS 

Study populations 

Our study population consisted of subjects from Erasmus Rucphen Family (ERF) and 

Rotterdam Study (RS). Erasmus Rucphen Family is a family based study that includes 

inhabitants of a genetically isolated community in the South-West of the 

Netherlands, studied as part of the Genetic Research in Isolated Population (GRIP) 

program.18 Study population includes approximately 3,000 individuals who are 
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living descendants of 22 couples who had at least six children baptized in the 

community church. All data were collected between 2002 and 2005. The population 

shows minimal immigration and high inbreeding, therefore frequency of rare alleles 

is increased in this population. All participants gave informed consent, and the 

Medical Ethics Committee of the Erasmus University Medical Centre approved the 

study. 

The Rotterdam study (RS) is a prospective, population-study from a well-defined 

Ommoord district in the Rotterdam city that investigates the occurrence and 

determinants of diseases in the elderly.19 The cohort was initially defined in 1990 

among approximately 7,900 persons who underwent a home interview and extensive 

physical examination at the baseline and during follow-up rounds every 3-4 years. 

Cohort was extended in 2000 and 2005.19 RS is an outbred population, 

predominantly of Dutch origin. The Medical Ethics Committee of the Erasmus 

Medical Center, Rotterdam, approved the study. Written informed consent was 

obtained from all participants. 

Data collection procedure 

Participants from both cohorts underwent extensive neuropsychological examination. 

In ERF study different cognitive domains were assessed using Dutch validated 

battery of neuropsychological tests.20,21  We focused on neurocognitive domains which 

are known to be affected in patients with DMD.8-12  General cognitive ability was 

assessed with the Dutch Adult Reading Test (DART). Memory function was measured 

with a word learning test from which immediate recall and learning scores were 

derived while executive function was assessed with the Trail Making Test parts A 

and B (TMT)22 and verbal fluency tests.22 Visuospatial ability was assessed with the 

WAIS-III block-design subtest. 

In the RS global cognitive function was assessed with the Mini-mental state 

examination test (MMSE), while executive function and information processing speed 

were assessed  with  the  Letter-Digit  Substitution  Task  (LDST)23,  the  Word  

Fluency  Test (WFT)24,  and  the  abbreviated  Stroop  test.25   Examination  was  

performed  at  baseline (MMSE) and during follow up rounds (MMSE, LDST, 
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WTF).Participants from the both cohorts who had dementia or clinical stroke were 

excluded from the analysis as these conditions can influence  neuropsychological 

assessment. 

Genotyping/Sequencing 

The exomes of 1,336 individual from the ERF population were sequenced “in- 

house” at the Center for Biomics of the Cell Biology department of the Erasmus MC, 

The Netherlands, using the Agilent version V4 capture kit on an Illumina Hiseq2000 

sequencer using the TruSeq Version 3 protocol. The sequence reads were aligned 

to the human genome build 19 (hg19) using BWA and the NARWHAL pipeline.26,27 

The aligned reads were processed further using the IndelRealigner, MarkDuplicates 

and TableRecalibration tools from the Genome Analysis Toolkit (GATK) and Picard 

(http://picard.sourceforge.net). Genetic variants were called using the Unified 

Genotyper tool of the GATK. About 1.4 million Single Nucleotide Variants (SNVs) were 

called and after removing the low quality variants (QUAL < 150) we retrieved 577,703 

SNVs in 1,309 individuals. Further, for prediction of the functionality of the variants, 

annotations were performed using the SeattleSeq database 

(http://snp.gs.washington.edu/SeattleSeq Annotation131). 

In the Rotterdam study exomes of 1,764 individuals from the RS-I population were 

sequenced using the Nimblegen SeqCap EZ V2 capture kit on an Illumina 

Hiseq2000 sequencer and the TrueSeq Version 3 protocol. The sequences reads 

were aligned to the human genome build 19 (hg19) using Burrows-Wheeler 

Aligner.27 Subsequently, the aligned reads were processed further using Picard 

(http://picard.sourceforge.net), SAMtools28 and Genome Analysis Toolkit (GATK).29 

Genetic variants were called using Unified Genotyper Tool from GATK. Samples with 

low concordance to genotyping array (< 95%), low transition/transversion ratio (< 

2.3) and high heterozygote to homozygote ratio (> 2.0) were removed from the 

data. The final dataset consisted of 903,316 SNVs in 1,524 individuals. 

Statistical analysis 

Baseline descriptive analysis was performed with SPSS version 17. Deviation from  
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normality of cognitive functions was assessed by histograms and P-P plots. As the 

ERF study includes related individuals, all single variants in DMD were tested for 

association applying additive linear-mixed modeling with the „mmscore‟ function 

adjusting for age, sex and education in the GenABEL library of the R software.30  The 

„mmscore‟ function uses the relationship matrix estimated from genomic data in the 

linear mixed model to correct for relatedness among the samples. Additionally, for 

the most interesting results gender stratified analysis was also performed. As most of 

these cognitive tests are correlated (the 

Pearson correlation coefficient ranged from 0.219 to 0.670), in order to adjust for 

multiple testing we first calculated the effective number of independent tests using 

the eigenvalues of a correlation matrix using Matrix Spectral Decomposition 

(matSpDlite) software31, finally Bonferroni correction was applied for the effective 

number of independent tests. The same strategy was also adopted for modeling 

linkage disequilibrium between the SNVs of the DMD. Considering the number of 

independent cognitive tests and independent variants, the significance threshold 

was set to 0.05/(4 independent cognitive tests*124 independent variants) = 1.00*10-

04, whereas suggestive threshold was set to 1/(4 independent cognitive tests*124 

independent variants) = 2*10-3. SNVs were coded 0, 1, 2 for genotypes AA, AB, BB in 

females respectively and 0, 2 for genotypes A, B in males. Since sequencing is likely to 

reveal several variants that may be population specific, we also performed the gene-

based Sequence Kernel Association Test (SKAT), a test specifically  designed  to  

analyze  rare  sequence  variation  in  a  specific  gene/region.32 Assessing the joint 

effect of multiple variants within the gene/region, the SKAT is proposed as a more 

powerful approach for rare variants than a classical single variant analysis and 

several burden tests.32 The significance threshold for gene-wise analysis was set to 

0.05/4 independent cognitive tests = 0.0125, while the suggestive threshold was set to 

¼ independent test = 0.25. 

To assess the relationship between the SNVs variants outside the protein-coding 

regions with gene expression in the tissue we used the Genotype-Tissue Expression 

(GTEx) project database.33 The data were deposited in GWAS Central (HGVST1824). 
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RESULTS 
General characteristics of the studied populations are shown in Table 1. The mean 

age in ERF was 48 years and 39 % of the participants were males while mean age in 

RS was around 68 years and 44 % of the participants were males. Around 30 % of 

participants in the ERF study had only primary education compared to around 36 % 

subjects in the RS. 

Number of SNVs in the DMD discovered by exome sequencing was 165 in the ERF and 

482 in the RS (Supplementary Table 1). Around 70 % of variants in the DMD had 

minor allele frequency (MAF) lower than 0.05 in ERF compared to around 98 % of 

variants in the RS. The results of the association analysis between SNVs in the DMD 

and cognitive functions with nominal level of significance in ERF study are presented 

in Table 2. Although none of the findings surpassed multiple testing correction 

using a Bonferroni threshold of 1.00*10-04, strong association was observed between 

rs147546024:A>G (β = 1.786, p-value = 2.56*10-04) and the block design test. Gender  

Table 1 | Descriptive statistics of the study populations. 

 ERF RS baseline RS follow up 

N 1241 1464 902 
Age 47.9 (14.4) 68.1 (9.4) 72.0 (7.1) 
Gender (% of males) 39.3% 44.3% 44.8% 
Education (% of only primary education) 29.8% 35.6% 29.3% 

Cognitive tests 
Dutch Adult Reading Test, mean (sd) 58.56 (20.31)
AVLT - Immediate recall, mean (sd) 4.37 (1.69)
AVLT - Learning, mean (sd) 33.55 (9.01)
Ratio TMT-B / TMT-A, mean (sd) 2.68 (1.02)
Verbal fluency, mean (sd) 61.66 (18.21)
Block design test, mean (sd)
Mini-mental state examination, mean (sd)

8.24 (2.77)  
27.7 (1.8)

 
27.7 (2.0) 

Letter-Digit Substitution Task, mean (sd) 27.0 (7.2) 
Word Fluency Test, mean (sd) 21.3 (5.5) 
ERF – Erasmus Rucphen family study; RS - Rotterdam study; N -  number of participants; AVLT - 
Auditory Verbal Learning Test; TMT- A, TMT- B - Trail Making Test parts A and B; 
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Figure 1. Carriers of the SNV that achieved the strongest association in the ERF  study 
Carriers are indicated in gray. 
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Figure 2. Carriers of the overlapping SNV in the ERF study. 
Carriers are indicated in gray. 
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stratified analysis showed nominally significant association in both genders (β = 1.796, 

p-value = 0.009 in males and β = 1.623, p-value = 0.018 in females). This rare (A G) 

variant with MAF of 0.011 was localized in the intron 1 of the DMD 

(chrX.hg19:g.33146086A>G) and although being highly conserved over species 

(Conservation score GERP = 4.08) has an unknown effect on the protein. Based on 

localization, we studied the relationship of this variant with gene expression in 

human tissues GTEx database but no significant eQTLs were found for this variant.  

The family-based design of the ERF study allowed us to check if all the carriers (n = 24) 

of this variant were closely related. All carriers were connected to each other in 10 

generations (Figure 1). 

Next, we explored the association of rs147546024:A>G in the population based 

study (RS). Even though rs147546024:A>G is a previously identified genetic variation 

in dbSNP database (present in six copies in 1000 Genomes with a MAF of 0.004) it 

was not present in RS and was not in linkage disequilibrium with any of the other 

SNVs of DMD. This prompted us to look for overlapping variants between the two 

studies. Among 34 overlapping variants we identified the most interesting 

overlapping finding that is shown in Table 3. Among these variants rs1800273 

(chrX.hg19:g.31986607G>A), had similar MAF in both studies (0.038 in the ERF 

and 0.033 in the RS), similar effect size and same direction of the effect in both 

cohorts and was suggestively associated with Block design test in the ERF study (β = 

-0.424, p-value = 0.066) and with MMSE in RS (β = -0.465, p- value = 0.002) (Table 3). 

This G>A variant is localized in exon 45 of the DMD and is classified as a missense 

variant with a predicted damaging effect on the protein (POLYPHEN score = 0.99, 

conservation score GERP = 2.52). This variant is present in 23 copies in 1000 Genomes 

with a MAF of 0.014. All carriers of the variant in the ERF were connected to each 

other (Figure2). 

In the gene based analysis using SKAT suggestive associations (p-values 0.087 and 

0.074) were also observed both in ERF and RS for DART and MMSE respectively. 
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DISCUSSION 
The aim of this study was to investigate possible impact of genetic variants in the 

DMD on cognitive ability in the general population. Even though none of the DMD 

variants surpassed the pre specified significance threshold, rs147546024:A>G was 

suggestively associated with block design test in ERF, whereas rs1800273:G>A was 

nominally associated with Mini-mental state examination test in the RS and 

marginally associated with block design test in ERF. 

rs147546024:A>G is localized in the intron 1, 196 bp far from the promoter of full- 

length protein isoform (Dp427p) which is expressed predominantly in the Purkinje 

cells of the hippocampus. The frequency of this variant in 1000 Genomes was 

observed to be 0.005 in individuals of European origin compared to ERF where the 

frequency was 0.011. This enrichment is expected due to genetic drift and isolation 

of the ERF population.18 Functional prediction of this variant showed high 

conservation score and unknown effect on the protein while gene expression 

analysis found no significant eQTLs in various human tissues. Interestingly, the rare 

allele of rs147546024:A>G was associated with better cognitive performance on block 

design test which is designed to assess visuospatial ability. Similar to some studies 

which have described a sex differences in cognitive ability with a male advantage 

on the spatial domains34, our study confirmed slight, but not significant, higher 

scoring of males on block design test. It is known that better performance on block 

design test is associated with autistic spectrum disorder35-37 and DMD is recognized as 

one of susceptibility genes for autism disorder.38,39  Suppression of the global 

configuration in order to process the information in a detailed fashion, essential for 

this test, is described as a main characteristic of autistic patients.40-43 

Another biologically interesting finding while searching for overlapping variants in 

both studies was the missense G A variant, rs1800273:G>A, which we found 

associated with block design test in ERF and the test of global cognitive ability 

(MMSE) in RS. This variant was observed at a frequency of 0.033 in the individuals 

of European origin and absent in those of African and Asian origin. Localized in exon 

45 of the DMD, this variant was classified as a missense variant with a predicted 



Chapter 4.1.3 

318  

damaging effect on the protein. Since the DMD has three upstream and four 

intragenic promoters which control expression of full-length (Dp427c, Dp427m, 

Dp427p) and short protein isoforms (Dp260, Dp140, Dp116, Dp71), exon 45 is 

present in the four different isoforms (Dp427c, Dp427m, Dp427p, Dp260) among 

which Dp427c and Dp427p are expressed in the brain.44  The Dp427c is expressed 

predominantly in neurons of the cortex and the CA regions of the hippocampus. It 

has been shown that this form of protein dystrophin colocalizes with inhibitory 

GABA receptor clusters at the postsynaptic membranes of hippocampal and 

neocortical pyramidal neurons where modulate synapse function.45-48 According to 

various studies this dystrophin isoform has a stabilizing effect on the GABA 

receptors by limiting their lateral diffusion outside the synapse.49,50  Importance of 

GABA receptors for the regulation of cognition, emotion and memory is increasingly 

being recognized.51,52 The Dp427p is expressed in the cerebellar and hippocampal 

Purkinje cells and in the cortical brain.53,54 However, exon 45 does not affect three 

shorter DMD isoforms (Dp140, Dp116 and Dp71) which are known to be associated 

with cognitive function in DMD.55,56 rs1800273:G>A was detected earlier in DMD 

patients and is present in the Leiden Muscular dystrophy database.57 Since majority 

of DMD patients have cognitive impairment, the association of rs1800273:G>A with 

DMD may represent association with cognitive impairment. However presence of this 

variant and lack of the dystrophin protein - which can by itself lead to cognitive 

impairment - would make it difficult to study the separate effect of this variant in DMD 

patients. 

One of the difficulties that our study had to deal with is heterogeneity in 

classification of phenotypes. Even though various cognitive tests are used in the 

studied populations, different cognitive domains can be compared since they are 

correlated. Therefore, moderate correlation (the Pearson correlation coefficient 0.429, 

p-value < 0.0001) between visuospatial ability and global cognition ability in the 

ERF, as well as correlation (the Pearson correlation coefficient 0.460, p-value < 

0.0001) between visuospatial ability and executive function which is recognized 

as a central domain of cognitive  functioning58,59    allow  us  to  compare  

association  of  the  most  interesting overlapping variant with block design test in 
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the ERF and MMSE test in the RS. 

The majority of variants called in our study were rare variants. Even though there is 

growing evidence that rare variants contribute to etiology of different complex 

traits, the search for rare variants is very difficult and challenging. Standard methods 

used to test for association with single common genetic variants are not powerful 

enough for the analysis of rare variants.60-62 Therefore with the available sample size, 

our study had limited power to detect association. This we attempted to 

overcome using the recently proposed gene based analysis (SKAT) design for rare 

variant analysis.32 Assessing the cumulative effect of multiple variants in DMD implied 

only suggestive p-value for both cohorts. Still like other approaches that deal with 

rare variants this approach also has limitations in terms of power but suggestive p-

values generated by SKAT pointed out that variants in the DMD may effect 

cognitive functioning in healthy populations. 

In conclusion, analyzing the sequence variants in the exon of DMD in two 

cognitively healthy cohorts we find evidence of association of DMD with cognitive 

functioning in healthy individuals. Larger studies are required for confirmation. 

SUPPLEMENTARY MATERIAL 
Supplementary Information is available at European Journal of Human Genetics website 

(http://www.nature.com/ejhg) 
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4.2.1. Alzheimer’s disease 
genes and the brain 

 

Fine-mapping the effects of Alzheimer’s disease risk loci on brain morphology.  
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ABSTRACT 
Background: The neural substrate of genetic risk variants for Alzheimer’s disease (AD) 

remains unknown. We studied their effect on healthy brain morphology to provide 

insight into disease etiology in the pre-clinical phase.  

Methods: We included 4071 non-demented, elderly participants of the population-

based Rotterdam Study who underwent brain MRI and genotyping. We performed 

voxel-based morphometry (VBM) on all gray matter voxels for 19 previously identified, 

common AD risk variants. Whole-brain expression data from the Allen Human Brain Atlas 

was used to examine spatial overlap between VBM association results and expression of 

genes in AD risk loci regions. 

Results: Brain regions most significantly associated with AD risk variants were the left 

postcentral gyrus with ABCA7 (rs4147929, p = 4.45 × 10-6), right superior frontal gyrus by 

ZCWPW1 (rs1476679, p = 5.12 × 10-6), and right postcentral gyrus by APOE (p = 6.91 × 10-

6). Though no individual voxel passed multiple testing correction, we found significant 

spatial overlap between the effects of AD risk loci on VBM and the expression of genes 

(MEF2C, CLU, SLC24A4) in the Allen Brain Atlas. Results are available online on 

www.imagene.nl/ADSNPs/. 

Conclusion: In this single largest imaging genetics dataset worldwide, we found that AD 

risk loci affect cortical gray matter in several brain regions known to be involved in AD, 

as well as regions that have not been implicated before.  
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INTRODUCTION  
Alzheimer's disease (AD) is a complex neurodegenerative disease and the most common 

cause of dementia. It has a long preclinical phase, during which there are no symptoms 

but structural brain changes can already be detected, such cortical atrophy and localized 

atrophy of the hippocampus 1,2. 

In recent years, common genetic risk factors for AD have been discovered through large 

meta-analyses of genome-wide association studies (GWAS) 3. However, the underlying 

neurobiological substrate leading to AD for the genes assigned to these risk loci remains 

to be uncovered. Identifying the brain structures affected by these genes can increase 

our understanding of AD and aid future functional studies. Previous studies have 

investigated some of the AD risk loci in relation to neuroimaging measures 4–7. However, 

they were generally focused on candidate regions that are known to play a role in AD, 

such as the hippocampus 6,7 or did not investigate all known risk loci 4,5. Unbiased 

approaches for analyzing brain images have great potential to give novel insights that 

would not have been considered a priori. Voxel-based morphometry (VBM) is a 

hypothesis-free technique for analyzing brain imaging data that characterizes regional 

tissue concentration differences across the whole brain, without the need to predefine 

regions of interest 8. Using VBM, we studied the association of 19 AD genetic risk loci 

with gray matter morphology at the voxel level in 4071 non-demented elderly from the 

Rotterdam study. This study provides insight into non-diseased brain morphology. Such 

knowledge is complementary and intertwined with better understanding disease 

etiology in the pre-clinical phase. Subsequently, we co-localized our results with publicly 

available genetic expression data. We thus identified genetic associations with known as 

well as novel regions affected in AD. 
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Table 1 |The most significant voxel-wise association signals with p-values<10-5. Brain 

region labeling based on the Hammer Atlas segmentation.  

Risk variant  
 

Gene* 
Minimum 
p-value 

Effect 
direction 

Brain Region 

rs4147929 ABCA7 4.46x10-6 - 
postcentral 
gyrus left 

rs1476679 ZCWPW1 5.12x10-6 + 
superior 
frontal gyrus 
right 

rs429358/rs7412 APOEε4 6.91x10-6 + 
postcentral 
gyrus right 

rs11771145 EPHA1 8.91x10-6 - 
precentral 
gyrus right 

rs190982 MEF2C 9.55x10-6 + 

lateral 
remainder of 
occipital lobe 
right 

Genetic Risk Score All 8.02x10-6 + 
postcentral 
gyrus right 

Genetic Risk Score 
Without 
APOE 

1.47x10-5** + 

lateral 
remainder of 
occipital lobe 
right 

Effect direction indicates beta sign, and demonstrates risk loci associated with increasing gray 

matter tissue (+) or decreasing gray matter tissue (-).     

* Assigned risk gene according to Lambert et al [1] 

** P-value is not less than 10-5, shown to compare with GRS without exclusion APOE. 
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METHODS 

Study Population 

The Rotterdam Study is an ongoing population-based cohort study in the Netherlands 

investigating diseases in the elderly and currently consists of 14,926 residents of 

Rotterdam who were aged 45 years or more at baseline 9,10. The initial cohort was started 

in 1990 and expanded in 2000 and 2005. The whole population is subject to a set of 

multidisciplinary examinations every four years. MRI was implemented in 2005 and 5430 

persons scanned until 2011 were eligible for this study. We excluded individuals with 

incomplete acquisitions, scans with artifacts hampering automated processing, 

participants with MRI-defined cortical infarcts, and subjects with dementia or stroke at 

the time of scanning. This resulted in a final study population of 4071 non-demented 

persons with information available on both genome-wide genotyping and MRI data. The 

Rotterdam Study has been approved by the Medical Ethics Committee of the Erasmus 

MC and by the Ministry of Health, Welfare and Sport of the Netherlands , implementing 

the Wet Bevolkingsonderzoek: ERGO (Population Studies Act: Rotterdam Study). All 

participants provided written informed consent to participate in the study and to obtain 

information from their treating physicians. 

Imputation of genotypes 

The Illumina 550K and 550K duo arrays were used for genotyping. Samples with low call 

rate (<97.5%), with excess autosomal heterozygosity (>0.336) or with sex-mismatch were 

excluded, as were outliers identified by the identity-by-state clustering analysis (outliers 

were defined as being >3 standard deviation (SD) from population mean or having 

identity-by-state probabilities >97%). A set of genotyped input SNPs with call rate >98%, 

MAF >0.001 and Hardy–Weinberg equilibrium (HWE) P-value > 10−6 was used for 

imputation. The Markov Chain Haplotyping (MACH) package version 1.0 software 

(Imputed to plus strand of NCBI build 37, 1000 Genomes phase I version 3) and minimac 

version 2012.8.6 were used for imputation. APOE status was genotyped separately, using 

a polymerase chain reaction, as described in 11. APOEɛ4 was coded as the number of 

ApoEɛ4 alleles. 
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MRI acquisition and processing 

From August 2005 onwards, a dedicated 1.5 Tesla MRI scanner (GE Healthcare, 

Milwaukee, Wisconsin, USA) is operational in the Rotterdam Study research center in 

Ommoord. This scanner is operated by trained research technicians and all imaging data 

are collected according to standardized image acquisition protocols 10. Brain MRI scans 

included a high-resolution 3D T1-weighted fast RF spoiled gradient recalled acquisition 

in steady state with an inversion recovery pre-pulse (FASTSPGR-IR) sequence with thin 

slices (voxel size<1mm3) 10. 

Voxel based morphometry (VBM) was performed according to an optimized VBM 

protocol 12. First, all T1-weighted images were segmented into supratentorial gray 

matter (GM), white matter (WM) and cerebrospinal fluid (CSF) using a previously 

described k-nearest neighbor (kNN) algorithm, which was trained on six manually 

labeled atlases 13. FSL software 14 was used for VBM data processing. Then, all GM density 

maps were non-linearly registered to the standard GM probability template. For this 

study we chose the ICBM MNI152 GM template (Montreal Neurological Institute) with a 

1x1x1 mm3 voxel resolution. The MNI152 standard-space T1-weighted average structural 

template is derived from 152 structural images, which have been warped and averaged 

into the common MNI152 co-ordinate system after high-dimensional nonlinear 

registration.  A spatial modulation procedure was used to avoid differences in absolute 

GM volume due to the registration. This involved multiplying voxel density values by the 

Jacobian determinants estimated during spatial normalization. All images were 

smoothed using a 3mm (FWHM 8mm) isotropic Gaussian kernel.  

Statistical analysis 

Linear regression models were fitted with voxel values of GM modulation density as the 

dependent variable and age, sex, and the number of reference alleles (risk alleles for 

Alzheimer’s  disease, Supplementary Table 5) as independent variables. In total 

1,534,602 voxels were processed. To perform a nonparametric permutation test, we 

randomly shuffled the genotype data between persons and performed the VBM 

association analysis with all 1,534,602 voxels in gray matter. This was repeated 10,000 
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times and for every permutation we saved the minimum p-value. Subsequently, we took 

the 5th percentile of this minimum p-value distribution to compute FWE p-value 

threshold, which was 3.0 x 10-7 15. This was then divided by 19 to account for the number 

of independent SNPs, resulting in the final threshold of 1.66 x 10-8. 

Genetic Risk Score 

Genetic risk scores (GRS) were constructed by multiplying the number of risk alleles by 

their reported odds ratio (after natural logarithm transformation) for the disease, and 

summing this weighted allele score of each variant up into a disease risk score for AD16. 

We tested a GRS based on all 19 AD SNPs and second GRS excluding APOEɛ4. 

APOEɛ4 stratified analysis 

To investigate whether it is possible to enrich association signal of AD variants on brain 

morphology we split our sample into groups with increased chance for AD pathology by 

stratifying it for APOEɛ4 status. In total there were 1168 carrier and 2903 non-carrier in 

our data set.  

The Allen Human Brain gene expression analysis 

The Allen Human Brain Atlas (http://human.brain-map.org) includes RNA microarray 

data collected from the postmortem brains of six donors, with no known 

neuropsychiatric or neuropathological history. Around 500 samples per subject, per 

hemisphere were tested for expression profiles of 29,191 genes represented by 58,692 

pro bes. The expression profiles were normalized across samples and across different 

brains as described previously 17.In our analysis we used the three Caucasian donors. For 

each of these donors we extracted expression profiles of 216 genes, which are located 

within ± 500kb from AD risk loci and used the MNI coordinates to map the location of 

the samples. For each probe we derived z-score statistics, which represent deviation of 

gene expression in that sample relative to background expression. Next, using the VBM 

association results from all 19 tested AD SNPs, we formed clusters at the significance 

threshold of p-value<0.05 and identified all tissue samples localized inside these clusters 

or within 10 voxels from them.  
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We performed 10.000 random VBM analyses to generate p-value maps of null 

associations. We formed clusters, based on a p-value threshold of < 0.05, and linked 

these to probes as described above.  For three donors and all probes in the 216 genes (in 

total 667) we calculated the t-test statistic with a null hypothesis that expression of the 

gene within clusters is not significantly different from background expression. We saved 

the minimum p-values for every random VBM map. Subsequently, we took the 5th 

percentile of this minimum p-value distribution to compute the FWE p-value threshold. 

The obtained threshold was 1.7x10-5 . Then we performed the same t-test with the AD 

VBM maps. Thus, we compared expression of genes around AD risk loci in regions 

identified in the VBM analysis with their background expression in the brain. 

Regional analysis 

We used the Hammer atlas 18 to segment the gray matter into 36 regions for both 

hemispheres and compare effects on specific brain regions. We summed all voxels 

values inside segmented region to estimate gray matter volume. For every risk locus and 

brain region we run the same regression model as for the VBM analysis. 

Visualization 

To provide easy access to the study results, we developed an online interactive 

visualization tool (www.imagene.nl/ADSNPs/).  
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RESULTS 

Voxel-based morphometry of AD risk loci to  

The study population for VBM analysis consisted of 4071 non-demented persons with 

information available on both genome-wide genotyping and MRI data from the 

population-based Rotterdam Study. The mean age was 64.7 (± 10.7) years and 2251 

(55%) subjects were women. 

We studied the association of 19 AD risk loci with 1,534,602 voxels of gray matter. None 

of the associations reached the multiple-testing correction threshold 1.66x10-8. Table 1 

shows all associations between AD risk loci and gray matter voxel density with 

suggestive evidence for association p-values < 1 x 10-5. The strongest associations of 

gray matter voxel with AD risk loci were found in the left postcentral gyrus, right 

superior frontal gyrus, and right postcentral gyrus. In Figure 1 we show the three-

dimensional maps of the nominally significant (p-value<0.05) associations for the APOE 

risk loci. The negative clusters of APOE are located close to the medial temporal lobe, in 

particular around the hippocampus, whereas positive clusters are mainly in the occipital 

lobe. The GRSs association also did not reach the correction threshold. The strongest 

signal for risk score with APOE was found in the postcentral gyrus right (p-

value=8.02x10-6) and for the risk score without APOE in the lateral remainder of the 

occipital lobe right (p-value=1.47x10-5). On Supplementary Figure 1 are shown maps for 

all risk loci from Table 1. Supplementary Table 2 provides the full list of the top three 

associated clusters of voxels for each risk locus and more detailed statistical information. 

All study results are available and can interactively be explored on the ImaGene website: 

www.imagene.nl/ADSNPs/. 

In APOEɛ4 stratified analysis none of the signals passed the threshold, however variant 

in MEF2C loci showed much more significant association compare to full sample size 

analysis (Supplementary Table 5). Additionally, the association signal for non-carrier was 

in general less significant (Supplementary Table 6). 

Spatial overlap with gene expression 



Alzheimer’s disease genes and the brain  

 335 

4 

To investigate whether the effect of AD risk loci on VBM overlaps with gene expression 

in the brain, we used the Allen Human Brain Atlas data. We overlapped brain regions 

identified through our VBM analysis with the maps of samples from three Allen Human 

Brain Atlas donors (Figure 3). We compared expression within the identified voxel 

clusters with background expression. In total we tested the expression profiles of 216 

protein-coding genes, located ± 500kb from the AD variants (Supplementary Table 1). 

We found that MEF2C, CLU, SLC24A4 were significantly expressed (p-value<1.7x10-5) in 

the identified voxel clusters compared to other genes at that particular locus. 

Interestingly, these were the genes that were previously assigned as the risk genes at 

each respective locus based on a review of the available literature 3 (Table 2). 

Additionally, we found genes showing significantly different expression, which are 

located in the risk loci but were previously not proposed as the causal gene for AD. 

These are: NGEF (p-value=7.57x10-16) for the region around rs35349669 and GSTK1 (p-

value=1.01x10-5) for the region around rs11771145. Supplementary Table 2 provides the 

full list of genes and more detailed statistical information.  

Regional analysis  

Figure 2 provides a heat map showing all AD risk loci and their effect on different brain 

regions sorted by lobe. None of the association signals passed Bonferroni correction, 

however several loci showed nominal significant association (p-value <0.05; cells with 

stars on Figure 2), among them variant in EPHA1 with less tissue in caudate and in insula, 

CELF1 with more tissue in accumbens and APOE with very strong positive effect in the 

occipital lobe. Variants in APOE, FERMT2, PTK2B, CASS4 and MS4A6A showed the 

strongest effect on hippocampus and were associated with smaller gray matter volume. 

Risk variants in EPHA1 and SORL1 had the largest negative effect on deep gray matter 

structures: putamen, thalamus, and pallidum.   
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Figure 3 | Example of spatial overlap between VBM association map for the MEF2C 

risk variant and MEF2C gene expression probes from Allen Human Brain Atlas.  

(A) –samples (red color) distribution from “donor9861” of Allen Human Brain Atlas; (B) – 

clusters of associated with MEF2C risk loci voxels (blue color) identified through VBM analysis 

formed using p-value threshold 0.05; (C) – Spatial overlap between Allen Brain probes and 

VBM clusters; (D) – example of VBM cluster and assigning sample location to them. 
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DISCUSSION 
This study presents the association of 19 genome-wide significant AD risk loci 3 with VBM 

of the gray matter, among 4071 middle aged and elderly subjects from the population-

based Rotterdam Study. The unprecedented sample size has enabled this unbiased 

whole grey matter investigation of established risk variants and their effect on brain 

morphology. We found nominally significant associations with the left postcentral gyrus, 

the right superior frontal gyrus and the right postcentral gyrus. Furthermore, through 

comparing our VBM results to the Allen Brain atlases of human gene expression, we 

found significant spatial overlap for genes previously assigned to be the causal gene in 

these loci (CLU, SLC24A4 and MEF2C). Additionally, we identified two genes, not 

previously suggested to be the causal gene in AD (GSTK1 and NGEF), of which the 

expression in the brain significantly overlaps with our VBM results. 

There currently exists no consensus for voxel-wise genetics studies regarding the 

significance threshold for avoiding false positive findings while not to being too 

conservative 19,20. A number of data processing and statistical analysis methods have 

been proposed in the literature to address this issue for neuroimaging analysis21–23. 

However, all these methods rely on a set of assumptions about the statistical structure of 

the data. Therefore, in our study we decided to use unbiased, but more conservative, 

non-parametric permutation methods to define the statistical threshold of significance. 

Although this is the largest genetic VBM study conducted to date, none of the voxels 

passed this conservative multiple testing correction. However, we have previously 

shown that AD risk loci are associated with cognitive functioning in the general 

population 11,16,24,25 as well as hippocampal volume in a larger sample (N= 9,232)7. This 

showed that subclinical effects of AD risk loci exist and that effects on gray matter could 

be expected. Additionally, we constructed genetic risk scores, to explore the combined 

effect of all AD SNPs on brain morphology. The association signal of GRSs also did not 

pass correction threshold and the strongest signal for GRS with APOE was driven by 

APOE variant, while for GRS without APOE by MEF2C variant (Supplementary Figure 2). 

Furthermore, it is reasonable to assume that the effects of the risk loci are not restricted 

to a single voxel, but rather to a cluster of voxels spanning a certain brain region. 
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Therefore, we further explored the nominally significant associations we found by using 

the Allen Brain Human Atlas to analyze gene expression, and using Hammer brain atlas 

to estimate average effect on specific brain regions.  

In Hammer regional analysis, we found that risk loci for Alzheimer’s disease affect brain 

morphology in established regions such as the hippocampus (e.g. loci near APOE, 

FERMT2, PTK2B), putamen, thalamus (SORL1, EPHA1), as well as regions not often 

reported on including the insula (EPHA1) and occipital lobe (APOE). The heat map in 

Figure 2 summarizes the association results over the whole brain.  

Alzheimer’s disease is a complex disorder with multiple variants from different pathways 

involved in its etiology26,27. Therefore, as previously shown6, the effect of these variants 

on brain morphology could also differ and have different directions. Figure 2 provides a 

detailed map of such heterogeneous effects. For example, large brain structures, such as 

the temporal lobe and central regions, are affected differently. Also, some risk loci have a 

different direction of effects, e.g. FERMT2 is associated with less tissue and SORL1 with 

more tissue in the temporal lobe. Of particular interest is that we found the positive 

association of APOE with the occipical lobe, which could possibly be explained by 

cerebral amyloid angiopathy (CAA). Indeed, CAA is linked to APOEε4 carriership 28,29 and 

has a predilection for the occipital neocortex 30. Moreover, CAA is involved in Alzheimer’s 

disease 31 and is characterized by ß-amyloid deposition in the media and adventitia of 

small and medium sized arteries. In healthy subjects, this may be observed as an 

increase in gray matter tissue density because of the influx of cells to clear the deposits. 

More research on the effects of AD risk loci on brain morphology is needed to further 

unravel the biological substrates involved in disease etiology.  

Previous case-control studies showed ambiguous differential expression of putative 

causal genes for AD in the brain 32 or reported that the regional expression of each of the 

risk loci did not match the pattern of brain regional distribution in Alzheimer pathology 
33. Most of AD variants are non-coding and for the follow up studies would be very 

important to explore the potential roles of these intronic and intergenic regions in the 

regulation of gene expression. Confirmed functional variants underlying validated 

GWAS hits are still sparse in the literature34,35, when considering all the diseases and traits 
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studied, but each of these is extremely valuable to the respective research and clinical 

environments. In our study, we found significant spatial overlap between VBM results in 

the Allen Human Brain atlas with some of the previously identified genes (CLU, SLC24A4 

and MEF2C). This could mean that genetic variability in these genes could act on gray 

matter density through differences in expression. This is also in line with the fact that 

most trait-specific GWAS signals are non-coding and probably act through modulation 

of gene expression36. Our results also suggest that VBM analysis combined with 

expression data could provide evidence for new candidate genes in genetic loci, where 

the causal gene has not been strongly established by biological experiments37. In AD 

loci, examples are NGEF for rs35349669 and GSTK1 for rs11771145. Although the index 

variant rs35349669 is located within INPP5D, this gene is expressed at low levels in the 

brain 3 and the linkage peak spans multiple genes with suggestive signals, including 

NGEF 3. Neuronal Guanine Nucleotide Exchange Factor (NGEF), among its related 

pathway is signaling by G protein–coupled receptors (GPCRs), which are involved at 

many stages of AD disease progression, and this class of receptors is a potential 

therapeutic target for AD 38. Glutathione S-transferase Kappa 1 (GSTK1) is member of the 

superfamily of enzymes that function in cellular detoxification. Interestingly, a significant 

decrease of glutathione transferase activity in different brain regions in patients with 

Alzheimer disease was previously reported 39, suggesting a possible link to Alzheimer 

through diabetes 40,41. 

Our study also has several limitations. The 19 AD risk loci do not include all genetics 

variants associated with AD and the index variants used may not be the causal variants. 

Another consideration is that the cross-sectional nature of our analyses precludes us 

from inferring causality from the associations. Although reverse causality is unlikely for 

genetic variants, it remains unclear whether our findings represent developmental or 

degenerative effects. The absence of significant association, as we mentioned before, 

could be due to strict permutation threshold or lack of power of our study sample size 

compare to GWAS analysis where these risk loci were discovered. Additionally, in the 

experiment to determine spatial overlap between gene expression and regions 

identified through VBM, a number of considerations need to be taken into account. First, 

the threshold to form the clusters is a manual parameter and could be set to a different 
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threshold. However, with decreasing p-value threshold the number and size of the 

clusters goes down lnot enough clusters linked to samples to perform such analysis. 

Second, gene expression depends on the time of measurement and could be different 

over the lifespan and even during the day 42. Second, the association between a risk 

locus and tissue density does not necessarily require the causative gene to be expressed 

in the same brain region, but could also be through a downstream effect of a functional 

pathway. Third, given the difficulties in obtaining brain tissue samples, these analyses 

are all based on relatively small samples. 

CONCLUSION 
Using a voxel-based morphometry study in over 4000 non-demented individuals, we 

provide a list of candidate brain regions that are potentially affected by AD risk loci and 

worthy of further study. Although detecting significant genetic effects on individual 

voxels will require even larger sample sizes, we show that data can be exploited by 

incorporating additional information in the analysis, such as gene expression data. 
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ABSTRACT 
Background: Frontotemporal lobar degeneration (FTLD) is a neurodegenerative disease 

characterized by brain atrophy of the frontal and anterior temporal lobes. The associated 

frontotemporal dementia syndromes are clinically heterogeneous and the pattern of 

affected cortical regions varies between subtypes. The TMEM106B rs1990622 

polymorphism is associated with FTLD, but little is known about how it affects the brain.  

Methods: We investigated the rs1990622 polymorphism in relation to regional brain 

volumes to identify potential structures through which TMEM106B confers risk for FTLD. 

In 4413 non-demented and stroke-free participants from the population-based 

Rotterdam Study, 150 cortical brain structures and 6 commissural regions were 

segmented from magnetic resonance imaging (MRI).  

Results: We found a distinct pattern of association between rs1990622 and grey matter 

volume of left-sided temporal brain regions important for language processing, 

including the superior temporal gyrus (β = -88.8 μL per risk allele, p = 7.64 x 10-5), which 

contains Wernicke’s area. The risk allele was also associated with a smaller anterior 

commissure cross-sectional area (β = -.167 mm2, p = 4.90 x 10-5) and posterior part of the 

corpus callosum (β = -15.3, p = 1.23 X 10-5), both of which contain temporal lobe 

commissural tracts.  

Conclusions: The asymmetric, predominantly left-sided involvement suggests an effect 

of TMEM106B on functions lateralized to the dominant hemisphere, such as language. 

These results show that, in non-demented persons, TMEM106B influences the volume of 

temporal brain regions which are important for language processing.  
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INTRODUCTION 
Frontotemporal lobar degeneration (FTLD) is a heterogeneous pathological entity with 

the common feature being prominent frontal and anterior temporal lobe atrophy.1 The 

diverse pathology that can be detected in the brains of patients serves as the basis of 

classification into more homogeneous subgroups.2 These pathological subgroups 

correspond to clinically defined syndromes including behavioral-variant frontotemporal 

dementia, semantic dementia and progressive non-fluent aphasia, with strong 

relationships between certain pathological subgroups and clinical syndromes (e.g., 

between TDP-43 inclusions and semantic dementia).3,4 

A recent genome-wide association study implicated single-nucleotide polymorphisms at 

the TMEM106B-gene in the risk of FTLD.5 Although the initial discovery of TMEM106B 

was in the strictly defined subgroup of FTLD with TDP-43 inclusions,5 it was replicated in 

a more heterogeneous patient group.6 TMEM106B risk variants were subsequently 

associated with cognitive impairment in amyotrophic lateral sclerosis and the 

pathological presentation of Alzheimer’s disease.7,8 TMEM106B encodes a glycoprotein 

that co-localizes with progranulin, another FTLD risk factor, in late endo-lysosomes.9 

FTLD-associated variant rs1990622 is in complete linkage disequilibrium with the 

potential functional coding variant p.T185S, and has been suggested to affect 

progranulin levels and function.10  

The rs1990622 risk allele A is common (~60%) and only increases susceptibility for FTLD 

marginally (odds ratio = 1.3), leaving the majority of carriers free of clinical disease.5,6 It is 

currently unknown if carriers of the risk variant do have subclinical, structural brain 

changes in regions relevant to the pathophysiology of FTLD. Frontal and temporal 

cortical atrophy is a hallmark of FTLD and the patterns of cortical involvement are part of 

the diagnostic criteria used for differentiating between subtypes.1,2,11-14  The regional 

atrophy reflects neuronal loss, mostly of cortical layer III, which contains the commissural 

fibers.15-17  The corpus callosum (CC) and anterior commissure (AC) are reduced in size in 

FTLD patients, with the distribution of atrophy in these commissural tracts 

corresponding to the cortical damage.11,16,18-20  



Chapter 4.2.2 

348  

Here we investigated the relation of rs1990622 with cortical grey matter and 

interhemispheric white matter within the Rotterdam Study,21 a large population-based 

study of the elderly, to identify potential brain structures through which TMEM106B 

confers risk for FTLD.  

Table 1 | Study population characteristics.

Characteristic Total (n=4413) 

Demographics

Age, years, mean (SD) 64.7 (10.8) 

Women, n (%) 2446 (55.4%) 

Brain volumetry

Intracranial volume, mL, mean (SD) 1487.1 (160.3) 

Grey matter volume, mL, mean (SD) 605.5 (58.3) 

White matter volume, mL, mean (SD) 438.9 (62.4) 

Rs1990622 genotype

AA carriers, n (%) 1546 (35.0%) 

AG carriers, n (%) 2089 (47.3%) 

GG carriers, n (%) 778 (17.6%) 
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MATERIALS AND METHODS 

Subjects 

The Rotterdam Study is an ongoing prospective cohort study that aims to investigate 

causes and determinants of diseases in the elderly.21 Residents of Rotterdam, a city in 

The Netherlands, were recruited from 1990 onwards and the current study population 

consists of 14,926 subjects aged 45 years or over at baseline.21 The Medical Ethics 

Committee of the Erasmus Medical Center and the review board of The Netherlands 

Ministry of Health, Welfare and Sports both approved the study. Informed consent was 

obtained from all subjects.  

Genotyping and quality control 

In 11,496 participants of the Rotterdam Study, genotyping was performed on 550K and 

610K Illumina arrays.21 The genotyped dataset was restricted to persons who reported 

that they were from European descent. Ethnic outliers were further excluded using IBS 

distances > 4SD. Duplicates and/or 1st or 2nd degree relatives were excluded using IBS 

probabilities >97%, as well as samples with gender mismatch and excess autosomal 

heterozygosity. Variants with call rate below 95.0%, those failing missingness test, with a 

Hardy–Weinberg equilibrium p-value<10-6, and minor allele frequency<1% were also 

removed. 

MRI data acquisition and image processing 

To study early structural brain changes of neurodegenerative disease, magnetic 

resonance imaging (MRI) was introduced into the core protocol of the Rotterdam Study 

from 2005 onwards.22 Brain MRI data were acquired with a dedicated 1.5T MR unit (GE, 

Milwaukee, USA) during a 30 minute imaging protocol that was previously described in 

detail.22 This protocol included high resolution axial fluid-attenuated inversion recovery 

(FLAIR), T1- and T2-weighted sequences. Of the 5637 participants with MRI scans 

available, genotyping was performed in a random subset of 4735 persons. Volumetric 

measures of the cortical grey matter and CC were successfully acquired in 4699 (99.2%) 

MRI scans (remaining 36 scans failed due to technical issues) with the FreeSurfer 
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software (version 4.5.0): cortical grey matter was automatically segmented and 

parcellated into 75 regions per hemisphere,23 whereas the CC was divided into five parts, 

namely anterior, mid-anterior, central, mid-posterior and posterior.24 The AC cross-

sectional area was manually segmented in 4732 (99.9%) scans in the mid-sagittal plane 

with high intra-rater reliability (intra-class correlation coefficient = 0.91 in 100 scans) 

using an in-house developed MeVisLab extension which has been made available online 

(see Supplementary Material and http://www.mevislab.de). Outliers, which were defined 

as brain structure volumes falling outside of μ ± 2.5σ, were visually inspected and 

removed if necessary. Trained raters viewed all scans to determine presence of brain 

infarcts using FLAIR, T1- and T2-weighted sequences, and these were classified as 

cortical infarcts in case of grey matter involvement.25  

Data analysis 

Excluded from analyses were people with dementia (according to DSM-III-R26, n=55), 

clinical stroke (baseline medical history and continuous monitoring27, n=162) and MRI-

defined cortical infarcts (n=105), leaving 4413 participants with successful segmentation 

of FreeSurfer structures and/or the AC. Multiple linear regression models, with age and 

sex as covariates, were used to examine associations between rs1990622 and the left 

and right volume of the 75 cortical regions and CC and AC commissural tracts. 

Additionally, the effects on the significant structures were investigated for four 

previously reported TMEM106B variants that are in high linkage disequilibrium with 

rs1990622 and potentially functional (p.T185S and rs1042949)28 or have also been 

genome-wide significantly associated with FTLD (rs6966915 and rs1020004)5. The Sidak 

corrected significance level to maintain α=0.05 for testing 156 correlated outcomes 

(mean correlation ρ=0.25) was determined at p<1.14 x 10-3 (see Supplementary 

Methods).29 For the significant structures, we additionally adjusted for the first four 

principal components to control for potential population stratification. The explained 

variance was calculated by squaring the semipartial correlation coefficients between 

rs1990622 and the brain structures. All analyses were performed with SPSS version 21 

(IBM).
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Table 2 | Nominally significant associations of rs1990622 with cortical grey matter 

volumes and commissural tracts. 

Brain structure Beta (95% CI) P-value R2 

Left hemisphere  

Superior temporal sulcus -88.8 (-44.8;-132.8) 7.64 x 10-5 0.29% 

Angular gyrus -66.1 (-27.1;-105.2) 9.14 X 10-4 0.21% 

Middle temporal gyrus -76.9 (-31.1;-122.8) 1.00 X 10-3 0.18% 

Intraparietal sulcus and transverse parietal sulci -36.4 (-9.9;-62.9) 7.15 X 10-3 0.15% 

Precuneus -42.0 (-10.7;-73.4) 8.60 X 10-3 0.14% 

Central sulcus -26.5 (-5.0;-47.9) 1.55 X 10-2 0.11% 

Middle-posterior cingulate gyrus and sulcus -16.1 (-2.5;-29.6) 2.02 X 10-2 0.10% 

Lateral aspect of the superior temporal gyrus -38.7 (-4.8;-72.5) 2.51 X 10-2 0.09% 

Supramarginal gyrus -43.5 (-3.9;-83.2) 3.13 X 10-2 0.09% 

Subparietal sulcus -15.1 (-0.8;-29.5) 3.82 X 10-2 0.09% 

Precentral gyrus -31.8 (-1.2;-62.4) 4.14 X 10-2 0.07% 

Posterior transverse collateral sulcus -5.7 (-0.2;-11.3) 4.29 X 10-2 0.09% 

Right hemisphere  

Supramarginal gyrus -64.3 (-26.9;-101.6) 7.51 X 10-4 0.22% 

Vertical ramus of the lateral sulcus anterior 

segment 

-7.3 (-2.7;-11.8) 1.91 X 10-3 0.21% 

Planum temporale of the superior temporal gyrus -20.1 (-6.7;-33.4) 3.20 X 10-3 0.17% 

Precuneus -42.5 (-13.6;-71.4) 3.96 X 10-3 0.16% 

Superior temporal sulcus -67.1 (-20.2;-114.0) 5.08 X 10-3 0.14% 

Medial occipito-temporal and lingual sulcus -22.7 (-6.3;-39.0) 6.52 X 10-3 0.13% 

Opercular part of the inferior frontal gyrus -28.4 (-7.8;-49.0) 7.00 X 10-3 0.15% 

Subcentral gyrus (central operculum) and sulci -23.3 (-5.4;-41.2) 1.08 X 10-2 0.13% 

Inferior temporal sulcus -21.8 (-4.7;-38.9) 1.25 X 10-2 0.11% 

Transverse temporal sulcus -5.2 (-1.0;-9.3) 1.46 X 10-2 0.13% 

Anterior part of the cingulate gyrus and sulcus -31.0 (-4.7;-57.4) 2.09 X 10-2 0.09% 

Lateral orbital sulcus -8.8 (-1.2;-16.4) 2.38 X 10-2 0.11% 

Table 2 continued.
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Postcentral sulcus -29.6 (-3.9;-55.2) 2.40 X 10-2 0.11% 

Lateral occipito-temporal gyrus -39.1 (-5.1;-73.1) 2.43 X 10-2 0.10% 

Lateral occipito-temporal sulcus -14.6 (-1.7;-27.6) 2.69 X 10-2 0.09% 

Long insular gyrus and central sulcus of the insula -9.8 (-0.8;-18.7) 3.18 X 10-2 0.10% 

Middle-anterior cingulate gyrus and sulcus -18.5 (-1.4;-35.6) 3.40 X 10-2 0.08% 

Inferior temporal gyrus -50.5 (-2.2;-98.8) 4.04 X 10-2 0.08% 

Anterior occipital sulcus and preoccipital notch -13.7 (-0.6;-26.8) 4.05 X 10-2 0.09% 

Commissural tracts  

Anterior commissure -.167 (-.087;-.248)† 4.90 X 10-5 0.34% 

Corpus callosum, posterior -15.3 (-8.4;-22.1) 1.23 X 10-5 0.41% 

Corpus callosum, mid-posterior -7.3 (-3.6;-11.1) 1.21 X 10-4 0.26% 

Corpus callosum, central -6.9 (-3.4;-10.5) 1.20 X 10-4 0.27% 

Corpus callosum, mid-anterior -4.6 (-0.6;-8.5) 2.32 X 10-2 0.09% 

Corpus callosum, anterior -8.5 (-2.0;-15.0) 1.01 X 10-2 0.12% 

Betas are in μl per risk allele of rs1990622. 

Brain structures surviving multiple testing (p<1.14 x 10-3) are indicated in italic. 
†Beta is in mm2 per risk allele of rs1990622 

R2 is the variance of the brain structure that is explained by rs1990622, calculated by squaring 

the semipartial correlation coefficient. 
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RESULTS 

Population characteristics 

In the final sample of 4413 participants, mean (S.D.) age was 64.7 (10.8) 

years with 2446 (55.4%) women. The call rate of rs1990622 was high 

(>99.9%) with the minor allele (G) frequency corresponding to previous 

reports in healthy, non‐demented populations (0.41) (see Table 1).5,6  

Cortical grey matter 

The risk allele A of rs1990622 was strongly associated with lower grey matter volume of 

the left superior temporal gyrus (β = -88.8 μL per allele, 95% confidence interval (CI) = -

44.8 to -132.8, p = 7.64 x 10-5) and the directly neighboring angular gyrus (β = -66.1, 95% 

CI = -27.1 to -105.2, p = 9.14 x 10-4) and middle temporal gyrus (β = -76.9, 95% CI = -31.1 

to -122.8, p = 1.00 x 10-3) (see Figure 1 and Table 2). The effect was less pronounced in 

the right superior temporal gyrus (β = -67.1, 95% CI = -20.2 to -114.0, p = 5.08 x 10-3) (see 

Figure 1 and Table 2). Post-hoc stratification for self-reported handedness revealed an 

opposite pattern in left-handed persons (n = 195), with a larger effect size for the right 

superior temporal gyrus, although this group was small (see Supplementary Table S1). 

After additional adjustments were made for the superior temporal gyrus volume of the 

contralateral side, the association between rs1990622 and left superior temporal gyrus 

volume remained significant (p = 3.58 x 10-3), but not for the right superior temporal 

gyrus (p = 5.72 x 10-1).  

Furthermore, rs1990622 was associated with a lower volume of the right supramarginal 

gyrus (β = -64.3 μL per allele, 95% CI = -26.9 to -101.6, p = 7.51x 10-4) (see Figure 1 and 

Table 2). Other nominally significant associations are reported in Table 1, with the full 

results for all cortical grey matter volumes per hemisphere provided in Supplementary 

Table S2. Adjustment for the first four principal components did not affect the 

associations between rs1990622 and the brain structures. 
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Commissural tracts 

For the commissural tracts, we found rs1990622 to be associated with CC volume in an 

anterior-to-posterior gradient, with risk allele carriers having lower volumes towards the 

posterior pole (see Figure 1 and Table 2). Additionally, the risk allele was associated with 

a smaller AC cross-sectional area (β = -.167 mm2 per allele, 95% CI = -.087 to -.248, p = 

4.90 x 10-5) (see Figure 1 and Table 2). Similarly, adjusting for the first four principal 

components made no difference on the associations. 

Age x SNP interaction 

An interaction term of ‘age x rs1990622’ for all structures that survived multiple testing 

correction showed a larger effect of rs1990622 with increasing age, but was only 

significant for the anterior commissure cross-sectional area (p=0.004). 

Other TMEM106B variants 

Additional variants in TMEM106B that have been reported to be associated with risk of 

FTLD (p.T185S, rs1042949, rs6966915 and rs1020004) were in high linkage 

disequilibrium with rs1990622 and showed a similar pattern of association (see 

Supplementary Table S3).  
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DISCUSSION 

In this study we investigated TMEM106B in relation to structural brain measures in non-

demented individuals and show that rs1990622 affects cortical regions and commissural 

tracts that are known to be important for semantic processing. This suggests that 

TMEM106B may increase the risk of FTLD by acting on this intermediate phenotype, 

which has particular relevance for the language-based dementia subtypes. We found 

that the risk allele of rs1990622 is associated with a smaller volume of the superior 

temporal gyrus, especially in the left hemisphere. This brain region includes structures 

such as Wernicke’s area that are involved in language processing, a function which in the 

majority of right-handed persons is lateralized to the left (dominant) hemisphere.30 

Problems with language processing are an established clinical feature of frontotemporal 

dementia subtypes such as semantic dementia and progressive non-fluent aphasia. 

Brain atrophy is evident across the whole spectrum of FTLD, but the affected regions and 

pattern of progression varies between subtypes.2,4 Semantic dementia patients typically 

have FTLD with type C TDP-43 inclusions, corresponding to asymmetric, predominantly 

left-sided temporal lobe atrophy.2,4 In this light, it is worth noting that the original 

discovery of TMEM106B was in a strictly defined group of FTLD patients with TDP-43 

inclusions.5 Progressive non-fluent aphasia also causes left-sided superior temporal lobe 

atrophy, but regions more severely affected compared to semantic dementia include the 

right supramarginal gyrus.31 Interestingly, this was the only right-sided cortical region 

that was significantly associated with rs1990622.  

Patients with asymmetric temporal lobe atrophy have impairments in different functions 

depending on which side is affected and the hemispheric specialization.32 The left-to-

right hemispheric shift we observed within left-handed persons suggests that 

TMEM106B is not purely influencing anatomical variation of the left superior temporal 

gyrus, but rather plays a more important role in the actual cognitive functions within 

that structure that are also known to shift to the dominant hemispheres. However, 

although this reversed association is intriguing, it should be carefully interpreted since 

handedness itself is not a specific measure of language lateralization (only 30% of left-
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handed persons are right-dominant),30 and our assessment of handedness was based on 

self-reported data from participants.   

We additionally showed that the risk allele of rs1990622 is associated with gradually 

smaller volumes towards the posterior pole of the CC and a smaller cross-sectional area 

of the AC. Commissural tracts facilitate the interhemispheric cross-talk of the brain and 

are known to be affected by neurodegenerative diseases such as Alzheimer’s and 

FTLD.16,20,33,34 TMEM106B might contribute to the interhemispheric disconnection of 

brain regions involved in the pathophysiology of FTLD. Moon et al. showed that the AC 

thickness measurement could be used to distinguish between AD, FTLD and healthy 

controls.20 Interestingly, in their study, the AC was smallest in the semantic dementia 

subtype.20  Northam et al. have shown that reductions in the temporal connections of 

the posterior CC result in language impairment in adolescents if the AC is also reduced 

in size.35 Since our findings point to brain structures that are important for language, 

information on related phenotypes would be of interest. However, in the Rotterdam 

Study no cognitive tests measuring semantic processing are available, underlining the 

need for future studies to explore functional correlates of the neuroanatomical findings. 

Although TMEM106B is a genetic risk factor for FTLD, we now observe anatomical brain 

differences in a population free of clinical neurodegenerative disease.  The same allele 

that increases risk of FTLD was consistently associated with smaller brain volumes, with 

none of the 156 structures reaching even nominal significance in the opposite direction. 

TMEM106B explained less than 0.4% of the observed variance of the investigated brain 

structures, suggesting it does not severely affect (the volume of) structures such as the 

superior temporal gyrus by itself, but rather has a clinically significant impact in 

combination with other risk factors. Others suggested that disease might develop in 

patients who are vulnerable to additional genetic modifying factors such as 

TMEM106B.10 This was compatible with reported roles of TMEM106B in patients with 

amyotrophic lateral sclerosis and Alzheimer’s disease.7,8 It was recently shown that 

TMEM106B might cause disease through interaction with APOE, the major genetic risk 

factor for Alzheimer’s Disease.36 Our study provides additional evidence for this 

‘increased susceptibility’ hypothesis and specifically points to temporal lobe pathology. 
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However, even though we examine the effects of TMEM106 in an aging population, we 

cannot firmly attribute the structural brain differences that we found to degenerative 

processes due to the cross-sectional nature of this study. Risk allele carriers could for 

example have a smaller anterior temporal lobe as a consequence of impaired 

development during brain growth in early life. Although we were not able to study 

association with brain volume longitudinally, we have performed additional analyses to 

evaluate a potential interaction effect between rs1990622 and age for the significant 

structures. We found a significant interaction term for the anterior commissure, which 

showed that the effect of rs1990622 was stronger with increasing age. This suggests that 

the effect could be attributed to a process later in life, e.g. neurodegeneration. However, 

because such age-interaction was not observed for the other brain structures, 

TMEM106B could also affect brain development earlier in life. Although APOE’s  role of in 

neurodegeneration is well-documented, developmental brain changes have now been 

found in infant carriers of the risk allele.37 This adds to the complexity of 

neurodegenerative disorders and further emphasizes the role of our study in generating 

an agenda for future research, rather than making final conclusions based on our results. 

Longitudinal MRI studies are needed to investigate this relationship of TMEM106B with 

brain volumes. 

Also, the smaller volumes of the CC and AC area suggest that interhemispheric 

connections are reduced, but it is possible that the number of neuronal fibers is similar 

but that they are more densely packed. Techniques that can specifically isolate fiber 

tracts within white matter structures, such as diffusion tensor imaging, can provide more 

insight into which specific white matter tracts are more affected and how TMEM106B 

influences the microstructural integrity. 

To obtain valid measurements of brain volumes, with a balanced investment of 

manpower, we excluded persons with stroke and MRI-defined cortical infarcts, since 

these affect the grey matter of the brain and can distort the image post-processing. 

Additionally, we visually inspected scans when brain structure volumes fel out of 2.5σ 

and, if needed, excluded these outliers. Although this leaves the majority of scans 

uninspected, we note that any residual measurement error would only dilute the 

association between rs1990622 and the brain volumes. 
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The volumes of different brain structures are correlated and partly depend on shared 

environmental and genetic factors. The Sidak corrected significance level takes such 

interdependence into account using the correlation matrix across structures, thereby 

providing an adequate and data-driven adjustment. Even though our findings would 

even have survived the stringent Bonferroni correction, we chose to implement the 

appropriate Sidak correction for future reference by other studies, since using Bonferroni 

in similar situations could lead to false-negative findings in studies that are not as well-

powered as ours. 

In conclusion, our findings show that FTLD-associated TMEM106B variant rs1990622 

influences the volume of temporal brain regions – in particular left hemispheric - and 

interconnectivity of the temporal lobes in an elderly population free of dementia. This 

indicates that the importance of TMEM106B extends outside of the realm of FTLD and 

mainly affects structures that are involved in language. Future studies should therefore 

investigate the effect of TMEM106B on the different aspects of semantic processing. 
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4.2.3. Frontotemporal lobar 
degeneration gene 
recessive effect 

No evidence for a recessive effect of TMEM106B rs1990622 variant in the general 
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ABSTRACT 
We read with interest the article by Hernández et al. on the TMEM106B genetic variant 

rs1990622 that modifies the risk for frontotemporal dementia (FTD) 1. Although the 

authors were underpowered to detect a significant association with FTD risk in their 

case-control study (n/N=146/381), the effect was concordant with the expected 

direction and slightly decreased in p-value under a recessive model. Similarly, meta-

analysis of published data was more significant assuming a recessive effect for the 

rs1990622 CC genotype.  
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MAIN TEXT 

Previously we showed that the additive effect of rs1990622 is not restricted to FTD but 

that this variant also affects brain structure in the general population free of dementia2. 

Given the findings of Hernández et al. we aimed to determine whether this recessive 

model also holds for the association of rs1990622 in the general population. In line with 

our previous publication, we investigated this question in 4413 non-demented and 

stroke-free participants from the population-based Rotterdam Study who underwent 

both genotyping and magnetic resonance imaging (MRI).3,4 The eight brain structures 

that previously survived multiple testing correction were analyzed under three different 

models: additive (as published), recessive, and dominant. 

As shown in Table 1, associations under both the recessive and dominant model were 

either in the same order of magnitude or less significant than the additive model. This 

does not support the notion of a recessive effect, as found by Hernández et al., in our 

population-based sample in which we investigated brain structure. Rather, it seems to 

suggest that each T allele increase confers an additional risk. We agree with the authors 

that larger studies will provide us the definitive answer with regard to the genetic model 

under which rs1990622 predisposes to FTD. 

REFERENCES 

1. Hernández, Isabel, et al. 
"Association of TMEM106B 
rs1990622 Marker and 
Frontotemporal Dementia: 
Evidence for a Recessive Effect and 
Meta-Analysis." Journal of 
Alzheimer's Disease (2014). 

2. Adams, Hieab HH, et al. 
"TMEM106B Influences Volume of 
Left-Sided Temporal Lobe and 
Interhemispheric Structures in the 
General Population." Biological 

psychiatry (2014). 
3. Hofman, Albert, et al. "The 

Rotterdam Study: 2014 objectives 
and design update." European 
journal of epidemiology 28.11 
(2013): 889-926. 

4. Ikram, M. Arfan, et al. "The 
Rotterdam Scan Study: design and 
update up to 2012." European 
journal of epidemiology 26.10 
(2011): 811-824. 



Chapter 4.2.3 

364    

Ta
bl

e 
1 

| A
ss

oc
ia

tio
ns

 o
f t

he
 T

M
EM

10
6B

 rs
19

90
62

2 
va

ria
nt

s 
w

ith
 b

ra
in

 s
tr

uc
tu

re
s 

su
rv

iv
in

g 
m

ul
tip

le
 te

st
in

g 
co

rr
ec

tio
n 

in
 A

da
m

s 
et

 a
l. 

[2
] u

nd
er

 d
iff

er
en

t g
en

et
ic

 m
od

el
s.

 

 
A

ss
oc

ia
tio

n 
of

 rs
19

90
62

2 
w

ith
 b

ra
in

 s
tr

uc
tu

re
s 

 
A

dd
iti

ve
 m

od
el

 
D

om
in

an
t m

od
el

 
Re

ce
ss

iv
e 

m
od

el
 

Br
ai

n 
st

ru
ct

ur
e 

Be
ta

 
P-

va
lu

e 
Be

ta
 

P-
va

lu
e 

Be
ta

 
P-

va
lu

e 

Le
ft

 h
em

is
ph

er
e  

 
 

 
 

 
 

Su
pe

rio
r t

em
po

ra
l s

ul
cu

s 
-8

8.
8 

7.
64

 X
 1

0-0
5  

-1
33

.4
 

1.
32

 X
 1

0-0
3  

-1
08

.0
 

1.
13

 X
 1

0-0
3  

A
ng

ul
ar

 g
yr

us
 

-6
6.

1 
9.

14
 X

 1
0-0

4  
-1

14
.5

 
1.

91
 X

 1
0-0

3  
-7

1.
4 

0.
01

53
 

M
id

dl
e 

te
m

po
ra

l g
yr

us
 

-7
6.

9 
1.

00
 X

 1
0-0

3  
-1

37
.0

 
1.

54
 X

 1
0-0

3  
-8

1.
0 

0.
01

90
  

Ri
gh

t h
em

is
ph

er
e 

 
 

 
 

 
 

Su
pr

am
ar

gi
na

l g
yr

us
 

-6
4.

3 
7.

51
 X

 1
0-0

4  
-6

8.
8 

0.
05

12
 

-9
6.

3 
6.

20
 X

 1
0-0

4  
Co

m
m

is
su

ra
l t

ra
ct

s 
 

 
 

 
 

 
A

nt
er

io
r c

om
m

is
su

re
† 

-.1
67

 
4.

90
 X

 1
0-0

5  
-.1

65
 

0.
03

04
 

-.2
60

 
1.

98
 X

 1
0-0

5  
Co

rp
us

 c
al

lo
su

m
, p

os
te

rio
r 

-1
5.

3 
1.

23
 X

 1
0-0

5  
-2

1.
5 

8.
61

 X
 1

0-0
4  

-1
9.

6 
1.

42
 X

 1
0-0

4  
Co

rp
us

 c
al

lo
su

m
, m

id
-p

os
te

rio
r 

-7
.3

 
1.

21
 X

 1
0-0

4  
-9

.9
 

4.
96

 X
 1

0-0
3  

-9
.7

 
5.

69
 X

 1
0-0

4  
Co

rp
us

 c
al

lo
su

m
, c

en
tr

al
 

-6
.9

 
1.

20
 X

 1
0-0

4  
-8

.1
 

0.
01

46
 

-9
.9

 
1.

91
 X

 1
0-0

4  
Be

ta
s a

re
 in

 μ
l p

er
 ri

sk
 g

en
ot

yp
e(

s)
 o

f r
s1

99
06

22
: p

er
 T

 a
lle

le
 u

nd
er

 a
dd

iti
ve

 m
od

el
, f

or
 th

e 
T/

C 
an

d 
T/

T 
ge

no
ty

pe
s u

nd
er

 th
e 

do
m

in
an

t m
od

el
, a

nd
 

fo
r t

he
 T

/T
 g

en
ot

yp
e 

un
de

r t
he

 re
ce

ss
iv

e 
m

od
el

.  
† 

Be
ta

s a
re

 in
 m

m
2 

pe
r r

isk
 g

en
ot

yp
e(

s)
 o

f r
s1

99
06

22
. 

. A
ll 

an
al

ys
es

 w
er

e 
ad

ju
st

ed
 fo

r a
ge

 a
nd

 se
x.

 
   



Multiple sclerosis genes and the brain 

 365 

4 

4.2.4. Multiple sclerosis genes 
and the brain 

 

Genetic susceptibility to multiple sclerosis: brain structure and cognitive function 

in the general population 

AUTHORS 

M Arfan Ikram1,2,3 Meike W Vernooij1,2, Gennady V Roshchupkin2,4, Albert Hofman1,5, 

Cornelia M van Duijn1, André G Uitterlinden6, Wiro J Niessen2,3,7, Rogier Q Hintzen3, Hieab 

HH Adams1,2 

  

Chapter 4.2.4 

Multiple sclerosis genes 
and the brain 



Chapter 4.2.4 

366  

ABSTRACT 
Background: Multiple sclerosis (MS) affects brain structure and cognitive function, and 

has a heritable component. Over a hundred common genetic risk variants have been 

identified, but most carriers do not develop MS. For other neurodegenerative diseases, 

risk variants have effects outside patient populations, but this remains uninvestigated 

for MS. 

Objectives: To study the effect of MS-associated genetic variants on brain structure and 

cognitive function in the general population. 

Methods: We studied middle-aged and elderly individuals (mean age=65.7 years) from 

the population-based Rotterdam Study. We determined 107 MS variants and 

additionally created a risk score combining all variants. Magnetic resonance imaging 

(N=4710) was performed to obtain measures of brain macrostructure, white matter 

microstructure, and grey matter voxel-based morphometry. A cognitive test battery 

(N=7556) was used to test a variety of cognitive domains. 

Results: The MS risk score was associated with smaller grey matter volume over the 

whole brain (βstandardized =-0.016;p=0.044), but region-specific analyses did not survive 

multiple testing correction. Similarly, no significant associations with brain structure 

were observed for individual variants. For cognition, rs2283792 was significantly 

associated with poorer memory (β=-0.064;p=3.4x10-5).  

Conclusion: Increased genetic susceptibility to MS may affect brain structure and 

cognition in persons without disease, pointing to a ‘hidden burden’ of MS. 
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INTRODUCTION 
Multiple sclerosis (MS) is a multifactorial disease of the central nervous system, but the 

etiology has not been entirely unraveled. Magnetic resonance imaging (MRI) is an 

important cornerstone in detecting structural brain changes in MS patients, with the 

most striking features being the characteristic white matter lesions, which represent 

demyelination of nerve fibers.1 These lesions are thought to be the end stage of various 

immunological mechanisms that results in the destruction of myelin in MS.1 However, 

there is a long preclinical phase in which less severe white matter damage is already 

present but remains hidden on conventional MRI images. Diffusion tensor imaging (DTI) 

can capture such microstructural changes and it has shown that the normal-appearing 

white matter is in fact diffusively affected in patients.2,3 More recently, the importance of 

grey matter pathology in MS has also been highlighted, possibly as a result of 

demyelination or secondary to axonal damage.4 Grey matter damage is already 

detectable in the early phases of disease and can become quite severe.5 

Not only are these structural brain changes important contributors to the motor and 

sensory deterioration seen in MS patients,6 cognitive dysfunction is also a frequent and 

debilitating functional impairment among MS patients,7,8 Such cognitive deficits are 

most common in verbal memory and processing speed, with over half of the patients 

showing impairment.9 Other cognitive processes that are affected include information 

processing, executive functioning, and attention.7  

The complexity of MS observed on imaging and in clinical presentation is mirrored in its 

genetics background. MS has a substantial genetic basis that is of a polygenic origin, 

with many common variants exerting modest effects on disease susceptibility.10,11 

Currently, over 100 MS risk variants have been discovered with high statistical 

confidence through large-scale association studies.12-16 The major histocompatibility 

complex (MHC) region harbors some risk alleles with a relatively large effect 

(DRB1*15:01, odds ratio 2.92; DLB1*13:03, 2.66),17 whereas the non-MHC variants only 

account for risk increases in the range of 1.03-1.34 times.16 While these genetic variants 

are common (minor allele frequencies between 5% and 50%16), MS has a relatively low 

prevalence and incidence rate.18 Thus, the majority of carriers of these variants do not 
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develop clinically diagnosed disease. The question therefore arises whether these risk 

variants might have a subclinical effect on the brains of apparently healthy individuals 

without MS. 

Here, we aimed to investigate the potential effects of a genetically elevated risk of MS on 

the brain in the general population. Specifically, we determined whether MS-associated 

genetic variants are related to differences in brain structure and cognitive function in 

over 7000 middle-aged and elderly participants of the population-based Rotterdam 

Study. 
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METHODS 

Study population 

This work was performed in the Rotterdam Study,19 a population-based cohort study in 

the Netherlands including a total of 14,926 participants (aged >=45 years at enrollment) 

that was initiated in 1990. The overall aim of the study is to investigate causes and 

determinants of chronic diseases in elderly people. Since 2002, an extensive cognitive 

test battery was implemented in the core protocol, and since 2005, all participants 

underwent brain MRI.20 For this study, we excluded 29 participants with either 

definite/probable MS (N=27), or possible MS (N=2) based on records of general 

practitioners. 

Genotyping and imputation 

Of the 14,897 participants free of MS, genotyping was successfully performed in 11,481 

using the Illumina 550K, 550K duo, and 610K quad arrays.19 Samples were removed that 

had a call rate below 97.5%, gender mismatch, excess autosomal heterozygosity, 

duplicates or family relations and ancestry outliers, and variants were removed with call 

rate below 95.0%, failing missingness test, Hardy–Weinberg equilibrium p-value<10-6, 

and minor allele frequency<1%. Genotypes were imputed using MACH/minimac 

software21 to the 1000 Genomes reference panel. 

Genetic risk score 

We studied all variants reported at genome-wide significance in the most recent and 

largest genome-wide association study of the International Multiple Sclerosis Genetics 

Consortium (IMSGC).16 Variants in the MHC region were not analyzed since these are not 

covered by standard genotyping arrays and, given the complexity of imputing classical 

alleles, require a dedicated effort. Of the 110 non-MHC variants, 3 could not be imputed 

in our dataset nor had reliable proxy variants. 

Since the increase in risk of MS is small for individual variants, we calculated a combined 

genetic risk score to enable detection of the collective associations. This risk score was 

constructed by adding up all the risk alleles per individual weighted by their log-
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transformed, reported effect size for the association with MS. A higher genetic risk score 

corresponds to more risk variants and thus a higher risk of MS. Furthermore, we 

calculated a second risk score that excluded all 31 variants with pleiotropic effects on 

other autoimmune disease (Table S8 from IMSGC GWAS16), leaving 76 MS-specific 

variants. 

Image acquisition 

Since the introduction of a dedicated MRI machine in the Rotterdam Study in 2005, MRI 

scanning was done in 4,917 on a 1.5-T MRI unit with a dedicated eight-channel head coil 

(Signa HD platform, GE Healthcare, Milwaukee, USA). The MRI protocol consisted of 

several high-resolution axial sequences, including a T1-weighted (slice thickness 

0.8mm), T2-weighted (1.6mm), and fluid attenuated inversion recovery (FLAIR) sequence 

(2.5mm). The DTI sequence was a single shot, diffusion weighted spin echo EPI sequence 

(TR/TE 8000/68.7; ASSET factor 2; acquisition matrix 96×64; FOV 21cm, 38 contiguous 

slices with slice thickness of 3.5mm). A detailed description of the MRI protocol was 

presented previously.20  

Image processing 

Of the 4917 persons who came for MRI, we excluded 70 without a T1-weighted 

sequence. All T1-images were segmented into supratentorial gray matter, white matter 

and cerebrospinal fluid using a k-nearest neighbor (kNN) algorithm.22 White matter 

lesions were segmented based on T1 tissue maps and an automatically detected 

threshold for the intensity of FLAIR scans.23 To distinguish between the temporal, 

parietal, occipital, and frontal lobes, scans were non-rigidly registered to a template.24 

After visual inspection of all segmentations, an additional 137 persons were excluded 

because of poor quality, leaving 4710 for analysis. 

Of these 4710 persons, voxel-based morphometry was performed with an optimized 

protocol using the FSL software.25 Grey matter density maps were non-linearly 

registered to a the ICBM MNI152 template (Montreal Neurological Institute). The MNI152 

standard-space T1-weighted average structural template has a 1x1x1 mm3 voxel 

resolution and was derived from 152 structural images, which were averaged into the 
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common MNI152 co-ordinate system after high-dimensional nonlinear registration. To 

avoid effects of the registration step on the grey matter we implemented a spatial 

modulation procedure by multiplying voxel densities with the Jacobian determinants 

estimated during spatial normalization. Finally, images were smoothed using an 

isotropic Gaussian kernel of 3mm (FWHM 8mm). After quality control, 88 persons with 

insufficient registration quality were excluded, leaving 4622 persons for the voxel-based 

morphometry analyses. 

Of the 4710 persons with successfully segmented tissues, 295 did not have DTI 

sequences. Preprocessing of DTI data was done using a standardized pipeline that 

includes eddy current and head-motion correction.26 This data was combined with the 

tissue classification to obtain global values in the normal-appearing white matter for 

four DTI measures, namely fractional anisotropy, mean diffusivity, radial diffusivity, and 

axial diffusivity. Next, 27 white matter tracts were segmented using diffusion 

tractography to obtain tract-specific diffusion measures.27 For 12 bilateral tracts, the 

mean of the left and right values was used, resulting in 15 tracts for analysis. We 

excluded persons with poor segmentation of a single (N=180) or multiple tracts (N=92), 

leaving 4143. 

Cognitive function 

Since the cognitive testing began in 2002, out of the 11,481 subjects, 7556 had cognitive 

function assessment. Cognitive function was assessed with the multiple 

neuropsychological test: a 15-word verbal learning test (based on the Rey’s recall of 

words), the Stroop Color and Word Test, the Letter-Digit Substitution Task and a word 

fluency test (animal categories). A measure of general cognitive function (‘G-factor’) was 

obtained through principal component analysis.  

Statistical analyses 

We investigated the association of the genetic risk scores (per standard deviation 

increase) and individual variants (per risk allele increase) with neuroimaging and 

cognitive outcomes using linear regression models. All analyses were adjusted for age 

and sex, and additionally for intracranial volume in the macrostructural and DTI analyses. 
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For the 107 individual variants, the multiple testing threshold was set to p<0.00047 

(0.05/107). Since the neuroimaging measures and cognitive tests consist of correlated 

data, the actual number of independent tests was calculated using 10,000 permutations. 

For α=0.05 this yielded the following corrected significance thresholds: 0.0036 for the 

macrostructural measures, 0.0016 for the DTI tracts, 0.0055 for the cognitive tests, and 

3.0 x 10-7 for the VBM analyses. 

RESULTS 

Study population 

The characteristics of the study population are shown in Table 1, separately for 

participants with neuroimaging or cognition data available. The samples largely 

overlapped (N=4684) and were comparable with respect to age and sex.  

Brain macrostructure 

First, we investigated the relation between genetic risk for MS and gross volumetric 

measures of brain structure, across the whole brain and within individual lobes (Figure 

1A). Nominally significant associations with smaller total grey matter volumes were 

detected for the risk score, which became stronger after restricting to MS-specific 

variants. When separated by lobe, the effects were most prominent for grey matter in 

the frontal lobe. For the single variant analyses, the five most significant associations are 

shown in Figure 1A. None of the individual variants survived multiple testing correction 

in the whole brain analyses, corrected for the number of variants (p<4.7x10-4), or the 

lobar analyses, additionally adjusted for the number of independent lobar volumes 

(p<3.4x10-5). There was no enrichment for association compared to the null distribution 

for any of the whole brain tissue volumes (Figure 1B). Table S1 contains all results. 
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Voxel-based morphometry 

For a more in depth investigation of grey matter, we performed voxel-based 

morphometry. Surface-based representations of the results of the genetic risk score are 

shown in Figure 2A, with the strongest association in the left superior parietal gyrus 

(p=2.1x10-5). Of all variants, only rs212405 had voxel associations surviving the brain-

wide significance level of p<3.0x10-7 (Figure 2B), namely with larger grey matter volume 

in the right posterior temporal lobe (p=1.5x10-7). This association was no longer 

significant after adjustment for all tested variants (threshold p<2.8x10-9). The top VBM 

associations results are listed in Table S2.  

White matter microstructure  

Next, we studied measures of microstructural differences of the white matter in 15 white 

matter tracts using 4 diffusion tensor imaging parameters (Figure 3A-D). No significant 

effects were detected for the non-MHC risk score, while three associations were found 

with the MS-specific score. In the single variant analyses, two variants survived multiple 

testing correction for the number of genetic variants (p<4.7x10-4), but not further 

adjustment for the tracts (p<1.5x10-5). The variant rs1813375 showed nominal 

significance with 24 out of 60 tract measures (lowest p=5.4x10-5, superior longitudinal 

fasciculus), and rs759648 was associated with 15 out of 60 tract measures (lowest 

p=1.5x10-4, parahippocampal cingulum). Table S3 contains all DTI results. 

Cognitive function 

Finally, we explored functional differences in the sample with cognitive data (Figure 4). 

The MS-specific risk score was associated with poorer delayed recall (p=0.039). For the 

single variants, rs2283792 also associated with poorer delayed recall (p=3.4x10-5), 

surviving multiple testing correction for both number of variants (p<4.7x10-4) and also  

for the cognitive tests (p<5.1x10-5). Table S4.contains all cognition result. 
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DISCUSSION 

Here we show the relation of genetically elevated risk for MS with brain structure and 

function in middle-aged and elderly individuals from the general population who are 

free of MS. Scores combining all common genetic risk variants were associated with 

smaller grey matter volumes, in particular in the frontal lobe. Single variant analyses 

revealed associations with white matter microstructure (rs1813375) and cognitive 

function (rs2283792), but only the latter survived multiple testing correction. 

MS has traditionally been viewed as a heritable disease primarily affecting women of 

certain ages and geographic regions. However, genes involved in MS could exert more 

widespread detrimental effects in the general population than thus far suspected. We 

have previously shown that for other neurodegenerative diseases genetic risk variants 

can also affect cognitive function and brain structure in the general population,28-30 

which included Alzheimer’s disease, Parkinson’s disease, frontotemporal lobar 

degeneration, and amyotrophic lateral sclerosis. Others have suggested that 

schizophrenia risk variants are also associated with structural brain changes in persons 

without disease,31 but such an effect was disputed in the general population.32 Other 

found genetic overlap between MS and putamen volume on a genome-wide scale.33 

Our study suggests that MS variants may also play a role outside of the MS population, 

but most findings do not reach pre-defined thresholds for statistical significance. Given 

that MS is a demyelinating disease, we put emphasis on white matter changes by 

investigating both its macro- and microstructure. Macrostructural MRI measures 

included both the volume of the white matter and the volume of T2-weighted 

hyperintensities, or ‘white matter lesions’, which are a marker of demyelinated white 

matter.1 Furthermore, we quantified the white matter microstructural integrity using DTI, 

which has been shown to be decreased in MS patients.1,2 Importantly, this loss of 

integrity picked up by DTI is seen earlier than macrostructural damage on conventional 

MRI,1 making it particularly attractive for our research question. The top five variants for 

each of the four diffusion parameters showed consistent results across the white matter 

tracts: the risk alleles were associated with presumably better white matter integrity, i.e. 

higher FA but lower MD, RD, and AD. The strongest and most widespread effect was for 
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rs1813375, an intergenic variant without known function. However, not even this variant 

would survive additional multiple testing correction for the DTI tracts. 

Since the role of grey matter in MS is increasingly apparent, we also examined the grey 

matter using macrostructural measures and voxel-based morphometry. For the global 

and lobar volumes, both risk scores were associated with smaller grey matter volumes 

over the whole brain and particularly in the frontal lobe. Frontal lobe atrophy is present 

in patients with MS and also correlates with the degree of cognitive dysfunction.34 

Contrary to the DTI analyses, the most significant individual variants did not show a 

similar pattern of association. We also attempted to map the effects of MS variants in 

detail using voxel-based morphometry, but no results surpassed multiple testing 

correction. 

Besides structural measures, we also studied the effect of genetic risk of MS on cognitive 

outcomes. The significant risk variants were generally associated with worse cognition, 

but only rs2283792 survived multiple testing for all variants and cognitive tests. Each 

additional risk allele was associated with a 0.064 standard deviation decrease in the 

delayed recall test, which measures memory performance. Interestingly, memory 

impairment is among the most common cognitive deficits in persons suffering from MS.9 

This variant lies within MAPK1, but affects expression of multiple genes across various 

tissues. In the brain, the chromatin of this region contains H3K4me1, H3K27ac, and 

H3K9ac marks. This included tissue samples obtained from the hippocampus, an 

important brain structure for memory. If this finding is validated in other studies it could 

help understand the molecular mechanism underlying this association. 

Overall, the combined impact of all genetic risk variants, as captured by the risk scores, 

was modest and suggests that MS variants do not have a large effect on the brain in the 

general population, but are instead restricted to MS patients. Such risk variants could 

exert their effect only when another environmental factor is present or through gene-

by-gene interaction. Also, it is possible that the findings would have been stronger in a 

different population. Future studies might consider to study younger individuals, as the 

subclinical effects may have been obscured in our elderly population by the presence of 

age-related brain changes. 
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Another explanation is that we did not have enough power to detect any effects. 

However, the 110 MS variants explain almost 20% of the variance in disease 

susceptibility,16 which is comparable to or even higher than many other complex 

diseases. The use of a genetic risk score further reduced the multiple testing burden, but 

this did not reveal any strong associations. The variants themselves might not have 

similar effects on the various neuroimaging measures and cognitive tests, and a 

combined score could thus have decreased power. Furthermore, other traits might need 

to be considered. Enlarged perivascular spaces are an emerging cerebrovascular disease 

marker and potentially related to inflammation.35 Their enlargement is seen in MS and 

may captured other pathology. 

While our focus was on brain structure and cognitive function, any subclinical effect of 

these variants need not be restricted to the brain. Another interesting line of research 

could be to study effects on the immune system. In this light, it should be noted that the 

IMSGC GWAS identifying and/or confirming the 110 MS risk variants employed the 

ImmunoChip for genotyping.16 In its design, this genotyping platform was enriched for 

variants near immune-related genes and known autoimmune disease loci, thus making 

immune-related traits worthwhile for future studies on subclinical effects of MS variants. 

Conversely, this means that the current set of variants may be depleted for those 

primarily affecting the brain. Since many of the MS risk variants are indeed also 

associated with other autoimmune diseases, we constructed a second risk score that 

only included MS-specific variants, and is therefore potentially more related to brain-

related traits. This MS-specific risk score showed a trend for more significant associations 

across the investigated traits, although the findings still did not surpass the multiple 

testing threshold. 

In conclusion, this exploratory study suggests carriers of MS risk variants may at most 

have subtle differences with respect to brain structure and cognitive function, but 

further evidence is needed to confirm this.  
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ABSTRACT 
Background and Purpose: Perivascular enlargement in the brain is a putative imaging 

marker for microvascular brain damage, but this link has not yet been confirmed using 

direct in vivo visualization of small vessels. We investigated the relation between 

microvascular calibers on retinal imaging, and enlarged perivascular spaces [ePVSs] on 

brain MRI.  

Methods: We included 704 participants from the Rotterdam Study. Retinal arteriolar and 

venular calibers were measured semi-automatically on fundus photographs. ePVSs were 

counted in the centrum semi-ovale, basal ganglia, hippocampus, and mesencephalon, 

using a standardized rating method. We determined the association between retinal 

vascular calibers and ePVS with negative binomial regression models, adjusting for age, 

sex, the other vascular caliber, structural brain MRI-markers, and cardiovascular risk 

factors.  

Results: Both narrower arteriolar and wider venular calibers were associated with more 

ePVSs in the centrum semi-ovale and hippocampal region. Rate ratios (95% confidence 

interval) for arterioles in the centrum semi-ovale and hippocampus were 1.07 (1.01-1.14) 

and 1.13 (1.04-1.22), respectively, and for venules 1.08 (1.01-1.16) and 1.09 (1.00-1.18), 

respectively. These associations were independent from other brain MRI-markers, and 

cardiovascular risk factors. 

Conclusions: Retinal microvascular calibers are related to ePVSs, confirming the putative 

link between microvascular damage and enlarged perivascular spaces. 
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INTRODUCTION 
Enlarged perivascular spaces [ePVSs] in the brain, also known as Virchow-Robin spaces, 

have emerged as a promising imaging biomarker for vascular brain pathology.1 These 

are spaces filled with interstitial fluid that surround the blood vessels as they extend into 

the brain. Increasing evidence suggests that ePVSs are affected by vascular risk factors, 

including high blood pressure and inflammation.2 Additionally, ePVSs are strongly 

associated with other structural imaging markers, such as white matter lesions [WMLs] 

and lacunes, both hallmarks of cerebral small-vessel disease.3 In histopathology, ePVSs 

and characteristics of microvascular diseases are often found concomitantly, further 

indicating that ePVSs might reflect damage to cerebral microvessels.4 However, the link 

between microvascular damage and ePVSs has not yet been shown in vivo. The main 

difficulty is to directly assess the cerebral microvessels (<200 μm) in vivo with current 

brain imaging techniques. A robust alternative is visualization of the retinal 

microvasculature, as the retinal and cerebral microvasculature share anatomy, 

physiology and embryology.5 Indeed, there is convincing evidence showing links 

between retinal microvascular damage and (sub)clinical vascular brain disease.6 Here, we 

investigated the association of retinal microvasculature with ePVSs in the general 

population. 

METHODS 

See Supplemental Methods for detailed methods. 

Setting and Study Population 

This study was embedded within the population-based Rotterdam Study.7 Between 

2004-2006, we randomly invited 1,073 persons for brain MRI, of which 704 non-

demented persons had complete scans and gradable fundus transparencies. The 

Rotterdam Study has been approved by the medical ethics committee according to the 

Population Study Act Rotterdam Study. Written informed consent was obtained from all 

participants. 
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Measurement of retinal vascular calibers 

Fundus photographs centered on the optic disc were analyzed with a semi-automated 

system (Interactive Vessel ANalyzer (IVAN)) following standardized protocols.8 For each 

participant one summary value was calculated for the arteriolar and venular calibers (in 

μm), and adjusted for possible magnification variations to approximate absolute 

measures.  

Enlarged perivascular spaces rating 

Perivascular enlargements were counted according to a previously published protocol9 

in the centrum semi-ovale, basal ganglia, hippocampus, and mesencephalon, areas in 

which ePVSs frequently occur. PVSs were identified by their linear, ovoid, or round 

shape, and considered enlarged when their diameter was ≥1 mm.9  

Statistical analysis 

We used negative binomial regression models to determine the association between 

retinal vascular calibers and count of ePVSs. Rate ratios (interpreted as ratios of ePVSs 

count) with 95% confidence intervals were estimated per SD decrease in arterioles, or 

increase in venules. We adjusted for age, sex, and the other vascular caliber, and 

additionally for structural brain MRI-markers (intracranial volume, WML volume, infarcts, 

and microbleeds), and for cardiovascular risk factors. We explored effect modification by 

stratifying for sex, hypertension, diabetes mellitus, and smoking. Analyses were 

performed using SPSS 21.0 (IBM corp., Armonk, New York). 

RESULTS 

Study population characteristics are reported in Table 1. Average age was 66.0 years, 

and 52% were females. We found that narrower arteriolar calibers and, to a lesser extent, 

wider venular calibers were significantly associated with more ePVSs in the 

hippocampus and centrum semi-ovale. Adjusting for structural brain MRI-markers and 

cardiovascular risk factors slightly attenuated these associations, but these remained 

statistically significant (Table 2). Excluding participants with a history of stroke (n=11) did 

not change the associations. Stratified analyses revealed no interactions (pinteraction >0.05). 
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Table 1 | Characteristics of the study population, N=704

Characteristic

Age, years 66.0 (5.1) 
Female 365 (52%) 
Systolic blood pressure, mmHg 143.1 (17.8) 
Diastolic blood pressure, mmHg 81.0 (10.3) 
Anti-hypertensive medication 249 (35%) 
Body mass index, kg/m2 27.5 (3.9) 
Total cholesterol, mmol/L 5.7 (0.9) 
High-density lipoprotein cholesterol, mmol/L 1.4 (0.4) 
Diabetes mellitus 65 (9%) 
C-reactive protein, mg/L 2.1 (3.7) 
Carotid plaque score≥4 173 (25%) 
Current smoker 89 (13%) 
 
Intracranial volume, ml 1138.4 (115.5) 
WML volume*, ml 3.5 (2.1-7.0) 
Infarcts 58 (8%) 
Cerebral microbleeds 111 (16) 
 
Retinal arteriolar diameter, μm 149.3 (15.3) 
Retinal venular diameter, μm 232.4 (22.1) 
Regions of ePVSs *
 Centrum semi-ovale 6.0 (3.0-11.0) 
 Basal ganglia 3.0 (1.0-5.0) 
 Hippocampus 3.0 (1.0-5.0) 
 Mesencephalon 2.0 (0.0-3.0) 
Values are presented as means (standard deviation) or as numbers. 
*Values are presented as median (interquartile range), because of skewed distribution. 
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DISCUSSION 

Here, we found that narrower arteriolar and wider venular calibers were associated with 

more ePVSs, independently of structural brain MRI-markers, and cardiovascular risk 

factors. 

Previous studies showed that ePVSs are related to subclinical and clinical vascular brain 

disease,1, 2  supporting that perivascular enlargements reflect microvascular damage. 

However, no study has directly investigated in vivo the association of PVSs with 

microvasculature. We provide the first in vivo evidence that microvascular calibers are 

related to ePVSs, but the mechanism remains undetermined. 

First, PVSs drain interstitial and cerebrospinal fluid to the subarachnoid space, and 

eventually into cervical lymph nodes. Hence, a failure in this transmission may result in 

hemodynamic pressure differences that might manifest themselves in changed vascular 

calibers. Future studies are warranted to show how that would specifically lead to 

narrower arterioles. Second, narrower arterioles may lead to a state of cerebral 

hypoperfusion, eventually resulting in atrophy, and thus to perivascular enlargement. 

This ischemic mechanism is further supported by findings showing wider venular 

calibers to be associated with cerebral hypoxia.10 Finally, it is also possible that shared 

risk factors explain the relation between retinal microvascular calibers and PVSs. 

Structural MRI-markers of cerebral small-vessel disease, or cardiovascular risk factors, are 

likely candidates as confounders, but these factors did not fully explain the association in 

our study, indicating that other processes also play a role. These include 

arteriolosclerosis, inflammation, venous collagenosis, and cerebral amyloid angiopathy. 

Interestingly, ePVSs in the brain regions most associated with the retinal vessels, namely 

the centrum semi-ovale and hippocampus, are related to cerebral amyloid angiopathy.11 

The perivascular drainage system in the basal ganglia is thought to process amyloid 

more efficiently and ePVSs there are associated more to vascular pathology. However, 

we did not find a significant association of retinal vascular calibers and ePVSs in the basal 

ganglia. 
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Strengths of our study are the population-based setting, the standardized rating 

protocol, and the extensive available data on brain MRI-markers and cardiovascular risk 

factors. A limitation is the cross-sectional design of our study, which precludes 

inferences on the temporal link between microvascular damage and ePVSs. Also, it is 

difficult to completely rule out misclassification of small infarcts as perivascular 

enlargements. This potential differential misclassification may have led to 

overestimation of our associations. However, since we used count data on PVSs as 

outcome, a single or even a few misclassified infarcts are unlikely to have majorly 

influenced our results. Finally, we used a static measure of the microcirculation instead 

of dynamic functional measures synchronized on the cardiac cycle. This may have 

caused random misclassification, leading to an underestimation of our associations.  

In conclusion, our study shows that microvascular calibers are related to ePVSs, 

independent of structural MRI-markers of cerebral small-vessel disease, and 

cardiovascular risk factors. 
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ABSTRACT 

Background: Neurodegenerative diseases are a major cause of cognitive impairment and 

can ultimately lead to dementia. Genome-wide association studies have uncovered 

many genetic variants conferring risk of neurodegenerative diseases, but their role in 

cognitive impairment remains unexplored. 

Methods: In the prospective, population-based Rotterdam Study, 3605 non-demented 

persons aged ≥55 years were genotyped, screened for MCI in 2002-2005 and underwent 

continuous follow-up for dementia until 2012. Weighted polygenic risk scores of genetic 

variants for Alzheimer’s disease (AD), Parkinson’s disease (PD), and the frontotemporal 

lobar degeneration/amyotrophic lateral sclerosis disease spectrum (FTLD/ALS) were 

constructed and investigated for association with mild cognitive impairment (MCI) and 

subsequent conversion to dementia.  

Results: In total, 360 (10.0%) persons had MCI, of whom 147 (4.1%) amnestic and 213 

(5.9%) non-amnestic. The AD risk score was associated with both MCI subtypes (odds 

ratio for all MCI 1.15 [95% CI, 1.03-1.28]), whereas PD and FTLD/ALS risk scores were 

associated only with non-amnestic MCI (odds ratios 1.15 [1.00-1.32] and 1.19 [1.03-1.37], 

respectively). The AD risk score, but not PD and FTLD/ALS risk scores, was associated 

with an increased risk of dementia (hazard ratio 1.55 [1.37-1.77]).  

Conclusions: Genetic evidence supports the view that multiple neurodegenerative 

pathways lead to MCI and that subsequent conversion to dementia, primarily of the AD 

subtype, is mainly due to the AD pathway(s).  
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INTRODUCTION 
Aging populations worldwide face an increasing burden of neurodegenerative 

diseases.1 Major diseases, in terms of mortality, morbidity and health care costs, include 

Alzheimer’s disease (AD), Parkinson’s disease (PD), frontotemporal lobar degeneration 

(FTLD) and amyotrophic lateral sclerosis (ALS). Cognitive impairment is most prominent 

in AD2,3 and FTLD4, but it is also an important feature of PD5 and ALS.6 Our genetic 

understanding of these neurodegenerative diseases has improved considerably over the 

past years through large-scale genome-wide association studies that have identified a 

large number of novel risk variants.7-12 However, due to the hypothesis-free design of 

genome-wide association studies, it remains largely unknown how these genetic 

variants lead to cognitive decline and ultimately clinical disease. 

The severe deterioration in cognitive function seen in neurodegenerative diseases is 

often preceded by a pre-clinical stage with only subtle cognitive deficits that deteriorate 

over time. Mild cognitive impairment (MCI) describes this intermediate state and is 

variable in both its clinical presentation and conversion to dementia.3 Given that MCI 

provides a window of opportunity for preventive or therapeutic interventions, it is 

important to uncover risk factors for MCI and factors that lead to conversion of MCI to 

dementia. The diagnosis of MCI is made on clinical grounds and, although cognitive 

abilities are highly heritable,13 the genetic basis of MCI remains largely unknown.2 APOE, 

the major risk gene in AD, is known to play a role in MCI,14 but whether other, recently 

identified genetic variants for neurodegenerative diseases are also involved has yet to 

be determined.  

In this study, we investigated the effect of genetic risk variants of AD, PD, FTLD and ALS 

on MCI status and subsequent conversion of MCI to dementia.   
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METHODS 

Setting 

The Rotterdam Study is an ongoing population-based cohort study in the Netherlands 

investigating diseases in the elderly and currently consists of 14 926 residents of 

Rotterdam who were aged 45 years or more at baseline.15 The initial cohort was started 

in 1990 and expanded in 2000 and 2005. The whole population is subject to a set of 

multidisciplinary examinations every four years. Genotyping was performed in 11 496 

participants at study entry. MCI status was assessed only between 2002 and 2005, and 

was available in 4198 participants. This resulted in a final study population of 3605 non-

demented persons with information available on both genome-wide genotyping and 

MCI status, who were subsequently followed up for the development of dementia until 

2012. The Rotterdam Study has been approved by the medical ethics committee 

according to the Population Study Act Rotterdam Study, executed by the Ministry of 

Health, Welfare and Sports of the Netherlands. A written informed consent was obtained 

from all participants. 

Genotyping 

The Illumina 550K and 550K duo arrays were used for genotyping. We removed samples 

with call rate below 97.5%, gender mismatch, excess autosomal heterozygosity, 

duplicates or family relations and ethnic outliers, and variants with call rate below 95.0%, 

failing missingness test, Hardy–Weinberg equilibrium p-value<10-6, and minor allele 

frequency<1%. Genotypes were imputed using MACH/minimac software to the 1000 

Genomes phase I version 3 reference panel (all population). APOE-ε4 genotyping was 

performed separately using polymerase chain reaction and was available in 3524 (97.8%) 

participants.16 

Genetic risk scores 

We searched the literature for genetic variants for AD, PD, FTLD and ALS. Given our 

population-based setting, we focused on sporadic mutations and therefore excluded 

mutations of familial disease (e.g., PS1, PS2 and APP in AD and PGN in FTLD). Since 
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various candidate gene studies have been performed that implicated hundreds of 

variants in these four neurodegenerative diseases, we have tried to minimize false-

positives by including only those variants that were genome-wide significant in the 

largest meta-analysis of that disease. We chose to use this objective threshold and did 

not base decisions on functional work that potentially corroborated the findings. 

Notable loci that did not pass this strict threshold were CD33 and ACE. Other variants 

that were considered but not included were not genotyped nor imputed with sufficient 

quality (R2<.5) in our dataset, and a suitable proxy variant was absent: these were 

typically rare (TREM2, PLD3, GBA) or in the poorly covered HLA-region (AD: rs111418223, 

PD: rs115736749, rs9275326). 

For our analyses we identified 19 variants for AD, 25 variants for PD, 1 variant for FTLD 

and 2 variants for ALS (Table 1).7-12,17-19  Since FTLD and ALS are considered extremes of 

the same disease spectrum, and the FTLD variant is also implicated in ALS, we decided to 

pool the three variants together for increased power. The variant rs3849943 is tagging 

the C9orf72 hexanucleotide expansion, which itself was not assessed in our study.9  

Genetic risk scores were constructed by multiplying the number of risk alleles by their 

reported odds ratio (after natural logarithm transformation) for the disease, and 

summing this weighted allele score of each variant up into a disease risk score for AD, PD 

and FTLD/ALS. Similarly, a combined genetic risk score of all neurodegenerative disease 

variants was created. 

MCI screening 

From 2002-2005 onwards, we implemented extensive cognitive testing to allow for 

screening of MCI. All participants of the three Rotterdam Study sub-cohorts who were 

alive in 2002-2005 were invited to undergo these tests and assessed for MCI. However, 

as the third sub-cohort of the Rotterdam Study is comprised of relatively young 

participants (45 years and over), but still would yield a considerable number of screen-

positives for MCI,  it was not included in the current study population at risk. MCI was 

defined as the presence of both subjectively and objectively measured cognitive 

impairment, in the absence of dementia.3  
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Subjective cognitive impairment was considered present if persons reported complaints 

on any of three questions on memory (difficulty remembering, forgetting what one had 

planned to do, and difficulty finding words) or three questions on everyday functioning 

(difficulty managing finances, problems using a telephone, and difficulty getting 

dressed). Objective measures of cognitive functioning were neuropsychological tests 

(Letter-Digit Substitution Task, Stroop test, Verbal Fluency Test, and the 15-Word verbal 

Learning Test based on Rey’s recall of words) that were incorporated into robust 

compound scores of memory function, information-processing speed, and executive 

function, as described previously.20 Scores below 1.5 SD of the age- and education-

adjusted means were considered indicative of objective cognitive impairment. MCI was 

further classified as ‘amnestic’ in case of an objective memory deficit (irrespective of 

other domains), or as ‘non-amnestic’ if only other cognitive domains were affected. The 

MCI assessment in the Rotterdam Study was previously described in more detail.21 

Assessment of dementia 

Participants were screened for dementia at each of the Rotterdam Study examination 

rounds and additionally by using information obtained from the general practitioners 

and regional outpatient care centers (follow-up completed until January 2012).15 Mini-

Mental State Examination (MMSE)22 and the Geriatric Mental Schedule (GMS)23 were used 

to identify high-risk individuals (MMSE<26 or GMS >0) for an additional interview with 

the Cambridge Examination for Mental Disorders in the Elderly (CAMDEX).24 When 

required, further neuropsychological testing and neuroimaging were used by a 

consensus panel for diagnosis according to established criteria for dementia (Diagnostic 

and Statistical Manual of Mental Disorders, Third Edition, Revised (DSM-III-R)) and 

Alzheimer’s Disease (National Institute of Neurological and Communicative Diseases and 

Stroke/Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA)).25,26 

Statistical analyses 

Genetic risk scores were transformed into z-scores to facilitate comparisons of their 

effect per standard deviation increase across each score. Logistic regression models 

were used to examine associations between the risk scores and MCI status. To evaluate 
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conversion of MCI to dementia and incident dementia in cognitively normal persons 

separately, Cox proportional hazard models stratified for MCI status were used. 

Additionally, the effects of individual variants were explored and considered significant 

after Bonferroni correction for the number of tested variants (p=0.05/47=0.0011). 

Regressions models were adjusted for age and sex, and additionally for vascular risk 

factors. Furthermore, potential interaction between the genetic risk scores and age-at-

onset of MCI and dementia was examined.  

To determine diagnostic and predictive accuracy of the genetic risk scores, the area 

under the receiver operating curve was calculated for a basic model including age and 

sex, and compared with a model additionally incorporating the genetic risk scores.  

All analyses were performed with SPSS version 22, IBM. 

  



Chapter 5.2.1 

424  
  

Ta
bl

e 
1 

| L
is

t o
f k

no
w

n 
ge

ne
tic

 v
ar

ia
nt

s 
th

at
 in

cr
ea

se
 ri

sk
 o

f n
eu

ro
de

ge
ne

ra
tiv

e 
di

se
as

es
.  

D
is

ea
se

 
RS

 ID
 

Ch
r. 

Po
si

tio
n 

Lo
cu

s 
A

lle
le

1 
A

lle
le

2 
O

R 

A
D

 
rs

66
56

40
1 

1 
20

76
92

04
9 

CR
1 

A
 

G
 

1.
18

 
A

D
 

rs
67

33
83

9 
2 

12
78

92
81

0 
BI

N
1 

T 
C 

1.
22

 
A

D
 

rs
35

34
96

69
 

2 
23

40
68

47
6 

IN
PP

5D
 

T 
C 

1.
08

 
A

D
 

rs
19

09
82

 
5 

88
22

34
20

 
M

EF
2C

 
G

 
A

 
0.

93
 

A
D

 
rs

10
94

83
63

 
6 

47
48

77
62

 
CD

2A
P 

G
 

A
 

1.
10

 
A

D
 

rs
27

18
05

8 
7 

37
84

15
34

 
N

M
E8

 
G

 
A

 
0.

93
 

A
D

 
rs

14
76

67
9 

7 
10

00
04

44
6 

ZC
W

PW
1 

C 
T 

0.
91

 
A

D
 

rs
11

77
11

45
 

7 
14

31
10

76
2 

EP
H

A
1 

A
 

G
 

0.
90

 
A

D
 

rs
28

83
49

70
 

8 
27

19
51

21
 

PT
K2

B 
C 

T 
1.

10
 

A
D

 
rs

93
31

89
6 

8 
27

46
76

86
 

CL
U

 
C 

T 
0.

86
 

A
D

 
rs

10
83

87
25

 
11

 
47

55
78

71
 

CE
LF

1 
C 

T 
1.

08
 

A
D

 
rs

98
33

92
 

11
 

59
92

35
08

 
M

S4
A

6A
 

G
 

A
 

0.
90

 
A

D
 

rs
10

79
28

32
 

11
 

85
86

78
75

 
PI

CA
LM

 
A

 
G

 
0.

87
 

A
D

 
rs

11
21

83
43

 
11

 
12

14
35

58
7 

SO
RL

1 
C 

T 
0.

77
 

A
D

 
rs

17
12

59
44

 
14

 
53

40
06

29
 

FE
RM

T2
 

C 
T 

1.
14

 
A

D
 

rs
10

49
86

33
 

14
 

92
92

69
52

 
SL

C2
4A

4 
T 

G
 

0.
91

 
A

D
 

rs
41

47
92

9 
19

 
10

63
44

3 
A

BC
A

7 
A

 
G

 
1.

15
 

A
D

 
rs

42
93

58
/r

s7
41

2 
19

 
45

41
19

41
/4

54
12

07
9 

A
PO

E 
ε4

 
ε2

/3
 

3.
69

 
A

D
 

rs
72

74
58

1 
20

 
55

01
82

60
 

CA
SS

4 
C 

T 
0.

88
 

PD
 

rs
11

41
38

76
0 

1 
15

48
98

18
5 

G
BA

 
C 

G
 

1.
57

 
PD

 
rs

35
74

90
11

 
1 

15
51

35
03

6 
G

BA
 

A
 

G
 

1.
76

 
PD

 
rs

82
31

18
 

1 
20

57
23

57
2 

RA
B7

L1
 

T 
C 

1.
13

 
PD

 
rs

10
79

75
76

 
1 

23
26

64
61

1 
SI

PA
1L

2 
T 

C 
1.

14
 

PD
 

rs
64

30
53

8 
2 

13
55

39
96

7 
A

CM
SD

 
T 

C 
0.

87
 



Genetic risk of neurodegenerative diseases, MCI, and dementia 

 425 

5 

  

Ta
bl

e 
1 

co
nt

in
ue

d.
 

PD
 

rs
14

74
05

5 
2 

16
91

10
39

4 
ST

K3
9 

T 
C 

1.
21

 
PD

 
rs

12
63

74
71

 
3 

18
27

62
43

7 
M

CC
C1

 
A

 
G

 
0.

84
 

PD
 

rs
34

88
42

17
 

4 
94

42
10

 
TM

EM
17

5 
A

 
C 

1.
25

 
PD

 
rs

34
31

18
66

 
4 

95
19

47
 

TM
EM

17
5 

T 
C 

0.
78

 
PD

 
rs

11
72

46
35

 
4 

15
73

71
01

 
BS

T1
 

A
 

C 
1.

12
 

PD
 

rs
68

12
19

3 
4 

77
19

89
86

 
FA

M
47

E 
T 

C 
0.

90
 

PD
 

rs
35

61
82

 
4 

90
62

61
11

 
SN

CA
 

A
 

G
 

0.
74

 
PD

 
rs

76
81

15
4 

4 
90

76
37

03
 

SN
CA

 
A

 
C 

0.
84

 
PD

 
rs

19
93

47
 

7 
23

29
37

46
 

G
PN

M
B 

A
 

G
 

1.
12

 
PD

 
rs

59
13

23
 

8 
16

69
70

91
 

FG
F2

0 
A

 
G

 
0.

92
 

PD
 

rs
11

78
96

73
5 

10
 

12
15

36
32

7 
IN

PP
5F

 
A

 
G

 
1.

77
 

PD
 

rs
32

96
48

 
11

 
13

37
65

36
7 

M
IR

46
97

 
T 

C 
1.

10
 

PD
 

rs
76

90
47

98
 

12
 

40
61

44
34

 
LR

RK
2 

T 
C 

1.
17

 
PD

 
rs

11
06

01
80

 
12

 
12

33
03

58
6 

CC
D

C6
2 

A
 

G
 

1.
10

 
PD

 
rs

11
15

80
26

 
14

 
55

34
88

69
 

G
CH

1 
T 

C 
0.

89
 

PD
 

rs
24

14
73

9 
15

 
61

99
41

34
 

VP
S1

3C
 

A
 

G
 

1.
11

 
PD

 
rs

14
23

5 
16

 
31

12
17

93
 

ST
X1

B 
A

 
G

 
1.

09
 

PD
 

rs
11

86
80

35
 

17
 

17
71

51
01

 
SR

EB
F 

A
 

G
 

0.
94

 
PD

 
rs

12
45

64
92

 
18

 
40

67
33

80
 

RI
T2

 
A

 
G

 
0.

91
 

PD
 

rs
81

18
00

8 
20

 
31

68
16

6 
D

D
RG

K1
 

A
 

G
 

1.
11

 
FT

LD
  

rs
19

90
62

2 
7 

12
28

37
87

 
TM

EM
10

6B
 

G
 

A
 

0.
61

 
A

LS
 

rs
38

49
94

3 
9 

27
54

33
82

 
C9

O
RF

72
 

C 
T 

1.
17

 
A

LS
 

rs
34

51
76

13
 

17
 

26
61

02
52

 
SA

RM
1 

T 
C 

0.
83

 
Ab

br
ev

ia
tio

ns
: A

D
 =

 A
lz

he
im

er
’s 

di
se

as
e,

 A
LS

 =
 A

m
yo

tr
op

hi
c 

la
te

ra
l s

cl
er

os
is,

 F
TL

D
 =

 F
ro

nt
ot

em
po

ra
l l

ob
ar

 d
eg

en
er

at
io

n,
 C

hr
. =

 C
hr

om
os

om
e,

 M
CI

 
= 

M
ild

 c
og

ni
tiv

e 
im

pa
irm

en
t, 

O
R 

= 
O

dd
s r

at
io

, P
D

 =
 P

ar
ki

ns
on

’s 
di

se
as

e,
 R

A 
= 

Ri
sk

 a
lle

le
.  

 



Chapter 5.2.1 

426  

Table 2 | Study population characteristics. 

Characteristic Total (N=3605) 

Demographics  
Age, years 71.9 (7.2)

Females 2057 (58.2%) 
Educational level

     Primary education 360 (10.1%)
     Lower vocational education 1022 (28.7%) 
     Lower secondary education 585 (16.4%)

     Intermediate vocational education 967 (27.1%)
     General secondary education 145 (4.1%)

     Higher vocational education 438 (12.3%)
     University 49 (1.4%)

Vascular risk factors  
Hypertension 2912 (81.0%) 
Diabetes mellitus 529 (14.7%)

Waist circumference, cm 93.6 (11.8)

Total cholesterol, mmol/L 5.61 (0.99)
HDL-cholesterol, mmol/L 1.45 (0.40)
Smoking 

     Never 1054 (29.2%) 
     Former 1998 (55.4%) 
     Current 553 (15.3%)

Cognition  
Letter-digit substitution task, no. of items/min 27.1 (6.8)

Stroop test (color word interference), s 56.4 (21.0)

Verbal fluency test, no. of animals/min 20.9 (5.1)

15-word verbal learning test, no. of words 6.54 (2.69)

Diagnosis  
MCI 360 (10.0%)
     Amnestic 147 (4.1%)
     Non-amnestic 213 (5.9%)
Dementia 
     Incident cases 191 (5.3%)

     Follow-up time, years 6.04 (1.50)
Values are mean (SD) or number (percentage). Missing values are present in educational level 
(n=39), hypertension (n=9), waist circumference (n=9), and cholesterol levels (n=59). 
Abbreviations: MCI = Mild cognitive impairment, HDL = High-density lipoprotein.   
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RESULTS 

Population characteristics 

Mean (SD) age was 71.9 (7.2) years and 2057 (57.1%) were women. A total of 360 (10.0%) 

participants met the criteria for MCI, of whom 147 (4.1%) with amnestic and 213 (5.9%) 

with non-amnestic MCI. Mean (SD) follow-up was 6.0 (1.5) years, during which 191 

persons were diagnosed with dementia (156 with AD). More characteristics can be found 

in Table 2. 

MCI status 

The association with MCI status was significant for the genetic risk score of AD (OR=1.15 

[1.03 - 1.28]) and suggestive for PD (1.10 [0.99 – 1.23]) and FTLD/ALS (1.09 [0.98 - 1.22]). 

Investigating subtypes of MCI separately, we found an association with amnestic MCI for 

the risk score of AD only (1.16 [0.99 - 1.36]) which attenuated after excluding APOE from 

the risk score (1.11 [0.94 - 1.31]). In contrast, risk scores of AD, PD and FTLD/ALS were all 

associated with the subtype of non-amnestic MCI (see Table 3). The combined risk score 

for all neurodegenerative diseases was significantly associated with MCI, particularly 

non-amnestic MCI. Results were similar after adjustment for education and vascular risk 

factors (see Table S1).  

Investigating the objective and subjective complaints that make up the MCI diagnosis 

revealed that the AD score associated with subjective memory complaints (Table 4). The 

AD score without APOE as well as PD and FTLD/ALS affected objective measures of 

cognitive complaints, particularly information-processing speed and executive function, 

although PD also related to problems getting dressed. No significant interactions were 

detected between the risk scores and age-at-onset of MCI. In single variant analyses, AD 

risk variant rs6733839 near BIN1 was associated with MCI after Bonferroni correction 

(Table S2 for all results). 

Conversion to dementia 

The risk score for AD, but not for PD and FTLD/ALS, was associated with incident 

dementia. This association was particularly strong for conversion from MCI (1.59 [1.23 - 
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2.05]). Exclusion of APOE attenuated the association of the AD risk score with incident 

dementia, remaining only borderline significant among persons without MCI (1.21 [1.02-

1.43]). The combined genetic risk score was significantly associated with incident 

dementia. The associations were similar after additional adjustment for vascular risk 

factors (see Table S3). There was a significant interaction between the AD genetic risk 

score and age-at-onset of dementia (p=0.003), which indicated a stronger genetic effect 

when age at onset was lower. 

Among all variants individually, only APOE survived multiple testing. Other AD variants 

that were related to incident dementia were rs983392 (MS4A6A), rs10948363 (CD2AP) 

and rs9331896 (CLU). Interestingly, rs6733839 (BIN1) which was associated with MCI, was 

not associated with incident dementia. The results of the genetic risk scores are in Table 

5 and of single variants in Table S4. Additionally, the AD risk score without APOE was 

examined after stratification for APOE ε4 carrier status ( Table S5).  

Diagnosis and predictive accuracy 

The addition of the genetic risk scores to models of age and sex for diagnosing MCI and 

predicting dementia resulted in small increases of <0.025 of the area under the receiver 

operating curve (see Table 6).  
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DISCUSSION 
We found in a population-based cohort study that a genetic risk score for AD was 

associated with amnestic and non-amnestic MCI, whereas genetic risk scores for PD and 

FTLD/ALS only associated with non-amnestic MCI. Furthermore, only the genetic risk 

score for AD was associated with incident dementia, which attenuated after exclusion of 

APOE. The diagnostic and predictive accuracy of these risk scores was only modest. 

We found that genetic susceptibility to various neurodegenerative diseases associates 

with MCI. The clinical concept of MCI could therefore reflect an underlying 

heterogeneity of disease pathways leading to deterioration of cognitive functions. 

Amnestic MCI, the subtype which increases risk of AD, was associated with APOE, but the 

novel AD risk variants identified through GWAS were related more to the non-amnestic 

subtype. AD genes might thus influence different cognitive domains, with the common 

feature of (jointly) increasing risk of AD. The role APOE of in Alzheimer’s disease is well-

documented, and is often used as a model for ‘typical’ AD: neurodegeneration starting 

in the medial temporal lobe, giving episodic memory problems, amnestic MCI and then 

leading to dementia. It is therefore interesting to see that the novel genetic loci are 

acting differently from APOE, and the underlying pathophysiological mechanism(s) 

might also be different and thus result in this atypical presentation. Studying the novel 

loci separately and in combination could complement our current knowledge of the 

pathophysiology, and might eventually even warrant more detailed subtyping of the 

heterogeneous entity of AD.  Non-amnestic MCI was associated with various genetic risk 

factors of PD and FTLD/ALS, which indicates that further characterization of MCI 

subgroups might also be appropriate. 

Alternatively, these associations could be explained by persons with incipient disease 

who were classified as having MCI. However, all persons meeting criteria of dementia, 

including causes of AD, PD and FTLD, were excluded from the analyses with MCI, and a 

minimal contribution of ALS is expected due to our community-based setting. 

Unfortunately, family members or caregivers were generally not present during the 

center visits, and could therefore not be asked about subjective cognitive complaints of 

the participant. Also, visuospatial functions were not explicitly assessed. However, given 
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the extensive collection of both interview data and cognitive tests for each participant, it 

seems unlikely that this would results in a substantial number of undiagnosed MCI cases. 

Another consideration is that we were unable to assess incident MCI, since MCI 

screening was only performed at the baseline of our study. However, because genetic 

variants reflect life-long exposure, reverse causality or unmeasured confounding is 

highly unlikely.  

A potential limitation is that we have not completed follow-up of participants until the 

end of their lifetimes, which would correspond to an expected 30 years of additional 

follow-up. Although mean age was already 72 years at baseline, and Cox proportional 

hazard models took the variation in starting age and follow-up time into account, we 

further evaluated whether age-at-onset modifies the association of the risk scores, which 

was true only for the AD risk score including  APOE. Nonetheless, competing risks are a 

potential source of bias, and this bias remains even after following persons until the end 

of their lifetimes. 

MCI is often called an intermediate stage, implicitly suggesting that it is merely an earlier 

form of dementia with more cognitive functions still remaining intact, but this might not 

be an adequate representation of MCI. Although risk factors between 

neurodegenerative diseases and MCI overlap, many people with MCI remain stable or 

can even return to normal.2,3 In our study, the AD genetic risk score indeed associated 

with both MCI and incident dementia, but examining the individual risk variants 

separately suggests that each of these two processes could be driven by different 

factors; e.g., BIN1 contributes more to initiating MCI (OR=1.32, p<.001) than to 

conversion to AD (OR=1.13, p=.31). If validated in other studies, these findings could 

help prioritize certain AD targets for early intervention. Since only part of the MCI 

population develops dementia, the heterogeneity of this group could therefore provide 

an explanation why some genes only predispose to MCI, namely that this factor for 

example mostly causes a stable MCI subtype. Also, the dementia trajectory spans 

decades, and even infant changes have recently been implicated.27 Rather than a single 

process that is responsible for all dementia pathology across its various stages, different 

processes might either predispose to, initiate, or propagate cognitive decline. Which 

process is affected by a gene, and in particular when in the dementia trajectory this 
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process is relevant, might thus be reflected in stronger associations with MCI, that are 

less prominent later (conversion to dementia), such as with BIN1. 

We note that the majority of our dementia cases were due to AD. Therefore, we were 

unable to detect any association of the other genetic risk scores with dementia due to 

PD or FTLD/ALS. It is possible that separate genetic risk scores increase the risk of 

disease-specific dementia subtypes only, but this needs to be studied further. An 

important consideration is that variant rs3849943 is tagging the GGGGCC expansion 

within open reading frame 72 (C9orf72), which was shown to be responsible for this 

GWAS signal on chromosome 9.9 This expansion is present in 4-21% of sporadic ALS 

cases.28,29 Phenotypes of neurodegenerative diseases are uncommon when less than 20 

expansions are present, and it usually requires more than 50 expansions for ALS cases to 

develop dementia. Since we were unable to assess the exact number expansions, and 

given our population-based setting, it is possible that the average number of expansions 

was low in our current study. Future efforts should therefore investigate this locus in 

more detail to understand its role in MCI and subsequent conversion to dementia. 

Our diagnostic and prediction models incorporating the genetic risk scores resulted in 

marginal improvement of diagnosing MCI and predicting dementia. This is in line with 

two previous studies that used a smaller set of variants.30,31 It has been questioned if a 

sufficient level of accuracy will ever be achieved for complex diseases, as unraveling 

their complete causal pathways may be impossible.32 However, further genetic 

discoveries in combination with other risk factors might eventually prove the clinical 

utility of polygenic risk scores, as has been shown for age-related macular degeneration 

and height.33,34 Importantly, the genetic variants that are currently known explain only 

little of the variance in disease risk of AD, PD, FTLD and ALS. Uncovering the “missing 

heritability” through larger GWAS and the novel focus on rare variants could improve 

the clinical utility of genetic risk scores. Additionally, the current genetic variants could 

have a larger effect through gene-gene and gene-environment interaction. Stratification 

for APOE ε4 carrier status showed differences in associations of the various risk scores, 

but this needs to be explored further. Moreover, non-genetic factors could aid in more 

accurately diagnosing MCI and predicting dementia by themselves.  
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In conclusion, MCI is genetically heterogeneous, whereas dementia develops through 

disease-specific mechanisms. Future research should focus on disentangling different 

genetic causes of MCI and subsequent conversion to dementia.  
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ABSTRACT 
Introduction: We investigated whether a risk score based on genetic risk variants for 

Parkinson's disease (PD) is associated with the risk and improves prediction of incident 

PD, and whether the risk score is associated with basic activities of daily living (BADL) in 

healthy individuals. 

Methods: Within the population-based Rotterdam Study, we genotyped 26 independent 

risk variants for PD and constructed a genetic risk score in 7167 participants who were 

free of parkinsonism and dementia at baseline (1990 or 2000). Participants were 

followed for a maximum of twenty years for the onset of parkinsonism, dementia or 

death until January 1, 2011 (median follow-up 12.1 years). We studied the relationship 

between the genetic risk score and incident PD with adjustment for age, sex, smoking 

and parental history. In an independent sample of 2997 persons free of parkinsonism 

and dementia, we studied whether the PD risk score was associated with BADL. 

Results: During follow-up (median 12.1 years), 99 persons were diagnosed with incident 

PD. The genetic risk score was associated with incident PD (hazard ratio per standard 

deviation risk 1.25 [95% confidence interval=1.02;1.55]), but did not substantially 

improve prediction (change in C-statistic 0.687 [0.628; 0.745] to 0.698 [0.635; 0.760], 

ΔC=0.011 [-0.011;0.033]). The genetic risk score was associated with a higher probability 

of any impairment in BADL (odds ratio=1.11 [1.00;1.23]). 

Conclusion: Genetic variants for PD are associated with the risk of incident PD in the 

general population and with impairment in daily functioning in individuals without 

clinical parkinsonism, but do not improve the clinical prediction of PD. 
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INTRODUCTION 
Parkinson’s disease (PD) is the second most common neurodegenerative disorder 

among the elderly.1 Clinically, the disease is characterized by parkinsonism, an absence 

of markers suggestive of other causes, and supportive prospective criteria.2 Clinical PD is 

preceded by a prodromal phase during which neurodegeneration has already started, 

but the signs defining parkinsonism are not present.3 During this period, individuals 

often experience a combination of early motor and non-motor signs and symptoms that 

could affect their daily activities, ranging from subtle movement deficits under 

challenging conditions to autonomic dysfunction, rapid eye movement sleep behavior 

disorder, and depression.4 

Several factors are associated with an altered risk of incident PD, such as environmental 

risk factors (e.g., smoking, exposure to pesticides) and early clinical features (e.g., 

anosmia, rapid eye movement behavior disorder).1, 5 However, there is a lack of empirical 

data on whether these factors can identify a large group of persons at high risk for the 

disease from the general population. During the last decade, several studies have 

suggested a substantial genetic contribution to PD, including the identification of risk-

increasing mutations in GBA and LRRK2 that are common in PD patient populations,6, 7 

with a large proportion of contributing genes still to be identified.8 In addition, genome-

wide association studies have yielded a total of 28 independent risk variants that are 

common at a population level, 22 of which are genome-wide significant.9 Recent case-

control studies have shown a risk score based on these variants may contribute to 

discrimination of PD patients and healthy controls,10, 11 and average genetic risk may be 

higher in patients with an early disease age at onset.12  However, the clinical usefulness 

of these variants in prospectively predicting PD remains untested. Also, it is unclear 

whether these risk variants evoke symptoms related to PD in individuals without clinical 

parkinsonism, leading to subtle problems in daily functioning.  

We hypothesized that a genetic risk score based on currently identified risk loci would 

be a risk factor for incident PD in the general population, and that the genetic risk score 

would improve prediction of PD. Furthermore, we hypothesized that PD genes affect 

daily activities in community-dwelling individuals without parkinsonism.  
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METHODS 

Study design and setting 

The study was embedded in the Rotterdam Study, a large, prospective, population-

based study in the Netherlands.13, 14 The original study cohort (RS-I) started in 1990 and 

consisted of 7983 community-dwelling people aged 55 years and older, residing in the 

suburb Ommoord, Rotterdam. They were re-examined every 4 years, with the last re-

examination between 2009 and 2011. In 2000, the cohort was expanded with 3011 

people aged 55 years and older (RS-II). The last follow-up examination for this subcohort 

took place between 2011 and 2012. The study was approved by the Medical Ethics 

Committee of Erasmus MC University Medical Center Rotterdam, the Netherlands. All 

participants provided written informed consent to participate in the study. 

For PD prediction analyses, all participants in RS-I and RS-II free of parkinsonism and 

dementia at baseline with available genotype information on 26 risk loci for PD were 

eligible (n=7705). Of these persons, 7224 were interviewed at baseline on their smoking 

habits (never, past, current) and parental history of PD. Finally, 51 persons refused to 

provide informed consent, leaving 7167 participants (93.1%) for PD prediction analyses. 

We followed participants for a maximum of twenty years for onset of PD from baseline 

until the first of: onset of parkinsonism, onset of dementia, death or 1 January 2011.  

For basic activities of daily living (BADL) analyses, we invited all participants (n=3855) 

who were still alive, free of parkinsonism as well as free of dementia at the time of the 

last center visit round of both cohorts (RS-I in 2009-2011 and RS-II in 2011-2012). Of 

these persons, 3046 (79.0%) agreed to participate and were able to participate. Twenty-

five persons were excluded because of unknown smoking status at time of the BADL 

assessment and another twenty-four persons did not complete their BADL assessment, 

leaving 2997 persons for BADL analyses. 

Genotyping  

The Illumina 550K (RSI), 550K duo, and 610 quad (RSII) arrays were used for genotyping. 

We removed samples with call rate below 97.5%, gender mismatch, excess autosomal 
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heterozygosity, duplicates or family relations and ethnic outliers, and variants with call 

rate below 95.0%, failing missingness test, Hardy–Weinberg equilibrium p-value<10-6, 

and minor allele frequency<1%. Genotypes were imputed using MACH/minimac 

software to the 1000 Genomes phase I version 3 reference panel (all population).  

In the largest genome-wide association study of PD to date, 22 genome-wide significant 

primary variants, four secondary signals that remained significant in conditional analyses 

as well as two sub-genome-wide significant, potential risk variants were associated with 

the risk of disease at genome-wide significance in persons without known mutations in 

genes associated with mendelian forms of PD.15 An overview of the of risk alleles as well 

as their reported effect size for the association with PD is presented in Supplementary 

file 1. Two of these variants were not genotyped in our dataset, nor reliably imputed 

(R2<.3), and also lacked a proxy variant (rs113579895, MAPT; rs115462410, HLA-DQB1), 

leaving 26 variants for analysis.  

Ascertainment of parkinsonism and PD 

At baseline, all participants were screened at the research center for signs of 

parkinsonism.16 Individuals who screened positive received a structured clinical workup 

by a research physician specialized in neurologic disorders to establish parkinsonism. 

Persons who were suspected of having PD were further evaluated by an experienced 

neurologist. 

During follow-up, we used four overlapping modalities to screen for potential 

parkinsonism: in-person screening (every 4 years), in-person interviews, use of 

antiparkinson medication, and clinical monitoring alerts.17 Of all persons who screened 

positive in any of these methods, complete medical records were studied and case 

reports were drawn up covering all potentially relevant information to establish 

presence and subtype of parkinsonism. These case reports were evaluated by a panel led 

by an experienced neurologist. PD was only diagnosed after exclusion of parkinsonism 

associated with preexistent dementia, use of anti-dopaminergic drugs and 

cerebrovascular disease, multiple system atrophy, progressive supranuclear palsy and in 

the absence of evidence for other rare causes (e.g., corticobasal degeneration).16 Persons 
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who first developed PD and then dementia within 1 year of the diagnosis of PD were 

also considered PD cases. After initial diagnosis, medical records of all incident 

parkinsonism cases (both PD and secondary) continued to be scrutinized until the end of 

the study period for new information that could lead to a revision of the diagnosis. 

Ascertainment of dementia 

Participants were screened for dementia at baseline and follow-up examinations using a 

three-step protocol,18 comprising two brief tests of cognition to screen all subjects and 

the Cambridge Examination for Mental Disorders of the Elderly in individuals with 

positive screen results.19 Additional information was obtained from in-person 

examination by a neuropsychologist, clinical monitoring and neuro-imaging . A 

consensus panel, led by a neurologist, decided on the final diagnosis in accordance with 

standard criteria using the DSM-III-R criteria for dementia.  

Basic activities of daily living 

Basic activities of daily living (BADL) was assessed based on the disability index from the 

Stanford Health Assessment Questionnaire, which consisted of 20 items constituting 

eight components: dressing and grooming, arising, eating, walking, hygiene, grip, reach, 

and activities.20 In our study, two out of three items of eating (ability to lift a glass of milk 

and ability to cut meat) were combined into one. Items were scored from 0 to 3, as 

follows: 0=without difficulty, 1=with some difficulty, 2=with much difficulty, and 

3=unable to. Component scores were calculated as the highest scored item per 

component.20 The BADL score was calculated by summing all components, obtaining a 

score between 0 and 24. We considered scores from 0 to 8 as no to mild disability and 

from 8 to 24 as moderate to severe disability.21 

Statistical analysis 

We constructed a genetic risk score for each individual, by adding up their number of 

risk alleles weighted by the log-transformed, reported risk-increasing or risk-decreasing 

effect size for the association with PD.9 Risk scores were transformed into z-scores to 

facilitate evaluation of their effect per standard deviation increase. A higher genetic risk 
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score corresponds to a larger weighted number of risk alleles and thus a higher risk of 

PD. We constructed two models: model I comprised age and sex for overall analyses, and 

only age for sex-stratified analyses. Model II comprised model I plus parental history of 

PD and smoking (never, past, current), and model III comprised model II plus the genetic 

risk score.  

We investigated the association between the genetic risk score and incident PD by 

comparing each model using the method proposed by Fine and Gray, which takes into 

account the risk of competitive events (i.e., incident dementia or death).22 In 

subanalyses, we separately added interaction terms between the genetic risk score and 

age, sex, smoking, and parental history to model III. The discriminative value of both 

models was expressed with Uno’s C-statistic, which takes into account right-censoring.15 

Separately, we repeated the prediction analysis after addition of the GBA p.E326K variant 

to the risk score (its weight was calculated using the previously meta-analysed odds 

ratio of 1.71).23 In other sensitivity analyses, we assessed the cross-sectional 

discriminative value of the risk score by combining prevalent PD cases with complete 

covariate data (n=68) and incident PD cases and performing logistic regression analyses.  

To study the association between the genetic risk score and activities of daily living, we 

dichotomized BADL scores for having any difficulty in daily functioning or none. Because 

of the highly skewed distribution of BADL scores in our population,(Supplementray file 

2) we used a binary logistic regression model to analyze the association of the genetic 

risk score with any difficulty in BADL, adjusting for age, sex and smoking. We report p-

values based on 1000 permutations. In separate subanalyses, we added interaction 

terms between the genetic risk score and age, sex and smoking to the model. 

Furthermore, we used multinomial logistic regression models to examine the association 

of the genetic score with mild and moderate to severe BADL impairment separately. 

Also, we examined associations between the genetic risk score and impairment on each 

BADL domain separately using logistic regression models. Finally, we examined the 

association of each of the 26 single risk variants with any impairment in BADL, adjusting 

for age, sex, and smoking with a Bonferroni correction for 26 comparisons (p=0.05/26). 
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RESULTS 
Characteristics of the study population at risk for PD and the persons examined for daily 

activities are presented in Table 1. In Supplementary file 3, we present population 

characteristics stratified by incident PD case status. During follow-up (median 12.1 

years), 99 (1.4%) individuals suffered from incident PD and 930 (13.0%) from incident 

dementia, while a total of 3286 (45.8%) persons died.  

  

Table 1 | Population characteristics 

Characteristic
At risk for PD* 

BADL 
examination** 

Number of individuals 7167 2,997
Women (%) 4135 (57.7) 1756 (58.6) 
Age at baseline, mean, y (SD) 67.3 (8.4) 76.8 (6.6) 
Smoking (%)  
 Never 2353 (32.8) 1036 (34.6) 
 Past 3,237 (45.1) 1672 (55.8) 
 Current 1,580 (22.0) 289 (9.6) 
Parental history (%)  
  No 6,962 (97.1) -
  1 parent with PD 205 (2.9) -
  2 parents with PD 3 (<0.1) -
PD, Parkinson’s disease; BADL, activities of daily living; y, year; SD, standard deviation.  
Smoking status was assessed at baseline for PD risk prediction analyses and during the last 
center visit for BADL analyses.  
*Included in longitudinal association and prediction analyses for Parkinson’s disease.  
**Included in cross-sectional association analyses for activities of daily living.  
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Table 2 | Prediction of incident Parkinson’s disease in the general population  

 HR (95% CI) C-statistic (95% CI) 

 
Model I  0.659 (0.599; 0.720) 
Age 1.05 (1.03; 1.07)
Female 0.66 (0.44; 0.98)
 

Model II 0.687 (0.628; 0.745) 
Age 1.05 (1.03; 1.07)
Female 0.48 (0.30; 0.76)
Smoking (past) 0.57 (0.35; 0.94)
Smoking (current) 0.36 (0.18; 0.70)
> 1 parent with PD 1.29 (0.40; 4.15)
 
Model III 0.698 (0.635; 0.760) 
Age 1.05 (1.02; 1.07)
Female 0.48 (0.30; 0.76)
Smoking (past) 0.57 (0.35; 0.93)
Smoking (current) 0.36 (0.19; 0.71)
> 1 parent with PD 1.25 (0.39; 4.03)
Genetic risk score 1.25 (1.02; 1.55) 

HR, hazard ratio for incident Parkinson’s disease per standard deviation increase in risk score. 
CI, confidence interval.   For smoking, the reference category was never.   
 

Table 3 | Genetic risk score and basic activities of daily living 

BADL N (%) OR (95%CI) P value 

 

No impairment 
461  
(15.4) 

1.000 
(reference) 

 

Any impairment 
2536 
(84.6) 

1.110
(1.002; 1.230) 

0.016 

  Mild impairment 
2017 
(67.3) 

1.123
(1.013; 1.246) 

0.020 

  Moderate to 
severe impairment 

519  
(17.3) 

1.020
(0.889; 1.171) 

0.768 

BADL, basic activities of daily living. N, number of persons. OR, odds ratio. 95%CI, 95% 
confidence interval. 
Odds ratio per standard deviation increase in genetic risk score. 
Reference category for both mild and moderate to severe impairment is no impairment. 
All analyses were adjusted for age, sex and smoking. 
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In Table 2, we show that the genetic risk score was independently associated with the 

onset of PD. There was no significant interaction between the genetic risk score and any 

of the covariates in the model (p=0.57 for interaction with age; p=0.81 with sex; p=0.59 

with smoking, p=0.88 with family history). Adding smoking and parental history to age 

and sex yielded borderline improvement in the prediction of incident PD (change in 

C=0.027 [-0.002; 0.056]), while addition of the genetic risk score to age and sex also 

produced improvement (change in C=0.038 [0.000; 0.076]). As shown in table 2, the 

genetic risk score did not improve prediction beyond age, sex, smoking and parental 

history (change in C =0.011 [-0.011; 0.033]). The GBA p.E326K variant had a minor allele 

frequency of 0.021 in our population, and incorporation of this variant in the genetic risk 

score did not affect its incremental predictive value (change in C = 0.009 [-0.009;0.026]).  

The univariate C-statistic of the genetic risk score was 0.56 [0.48; 0.64]. In cross-sectional 

sensitivity analyses, the genetic risk score yielded a similarly small improvement of C-

statistics  beyond age, sex, smoking and parental history (C=0.663 to C=0.677). 

The genetic risk score was associated with any impairment in BADL (p=0.016). There was 

no significant interaction of the genetic risk score with age, sex, or smoking (p>0.10 for 

all interaction terms). As shown in Table 3, the genetic risk score was significantly 

associated with mild impairment (p=0.020), but not with moderate to severe 

impairment (p=0.768) in separate analyses. In contrast to the overall BADL-score, the 

genetic risk score was not associated with any of the eight BADL domains separately 

(p>0.20 for each domain).  

None of the 26 single risk variants was associated with impairment in BADL after 

Bonferroni correction. Interestingly, risk alleles in three PD loci were nominally 

borderline associated with any impairment BADL: GCH1 (rs11158026; p=0.055), CCDC62 

(rs11060180; p=0.058) and GBA-SYT11 (rs35749011; p=0.054). None of the remaining 23 

variants was associated with any impairment in BADL (p>0.10 for each variant). 

DISCUSSION 

In this large population-based sample with a median of 12 years of follow-up, we found 

that a genetic risk score for PD based on the most recent set of genome-wide significant 

variants was associated with a modest but significant increase in the risk of PD. However, 
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in addition to age, sex, smoking status at baseline and parental history, the genetic risk 

score hardly improved the prediction of incident PD. In cross-sectional analyses, we 

further found that the genetic risk score was associated with any and with mild 

impairment in BADL.  

As far as we know, only case–control studies have previously been employed to examine 

the use of a genetic risk score for PD to discriminate between PD cases and healthy 

controls.10-12, 24 These studies showed that a risk score based on these variants may 

contribute to discrimination of PD patients and healthy controls,10, 11 and average 

genetic risk may be higher in patients with an early disease age at onset.12 In a recent 

diagnostic case-control study of PD, the univariate C-statistic of a genetic risk score that 

comprised 30 genetic variants including the 26 used in our study ranged from 0.62 to 

0.64,11 which was slightly higher than in our predictive study (C-statistic=0.56). This 

relatively small difference may be explained by the difference in study design: in case-

control studies, controls are recruited with strict criteria that ensure maximal distinction 

from PD cases, whereas participants in prospective, population-based studies such as 

the Rotterdam Study are included irrespective of PD risk. The advantage of prospective 

population-based studies is that all participants were included and followed up using 

the same methodology, and following up persons in the general population presumably 

ensured a realistic estimate of the risk of incident PD. Several limitations of our study 

should be noted, however. We lacked histologic confirmation on PD diagnosis, 

suggesting that misclassification of PD cases occurred. The detailed in-person and 

clinical information on the presence and possible causes of parkinsonism throughout 

the study period make it unlikely that the misclassification was differential. Still, non-

differential misclassification may underestimate the predictive ability of the genetic risk 

score for histologically confirmed PD. Also, part of the RS-I cohort used for prediction of 

PD was also among the discovery cohorts of the PD genes: the overlap comprised 44 

incident PD cases (0.3%) and 5609 controls (5.9%).9 We believe that it is unlikely that this 

small proportion of overlap influenced our findings. In addition, current effect estimates 

were based on a GWAS of PD cases across various Caucasian populations. It is possible 

that other variants have larger effects in the Dutch population than the published 

tagging SNPs. Including these population-specific variants in the risk score could 
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improve power. Furthermore, we were probably underpowered to a small improvement 

in PD prediction and, similarly, to detect interaction of the genetic risk score with 

traditional risk factors and parental history. In addition, we could only assess the 

predictive value of the risk score for incident PD in persons aged 55 years and older. 

Since high polygenic risk is associated with a lower age of onset of PD,12 this probably 

led to a slight underestimate of the predictive value of the genetic risk score, 

considering the relatively small proportion of PD patients aged younger than 55 at a 

population level.1 

The main motivation for learning how to predict PD is to identify PD patients as early as 

possible. At this time, although neuroprotective agents with sustainable effects remain 

elusive, PD manifestations can often be treated or delayed effectively, and surveillance 

could allow early symptomatic treatments, perhaps with long-term benefits on quality 

of life.25, 26 As the pathological processes of PD advance, early clinical features become 

increasingly more prevalent in prediagnostic PD patients than in controls,27 and 

discrimination of clinical PD patients and healthy controls can be accurately established 

(as reflected by high C-statistics) using just one early feature (impaired olfaction).11 

However, during the early pathological phase of PD, clinical differences between 

prediagnostic PD patients and controls are generally not yet overt, and discrimination 

between these groups is less accurate, as reflected by lower C-statistics. Early prediction 

is therefore based on basic demographics (e.g., age, sex, family history) and 

environmental risk factors (e.g., smoking, exposure to pesticides). The discriminative 

value of demographics is remarkably similar for long-term prediction (as in our study) 

and clinical diagnosis of PD as in diagnostic studies,10, 11 with integrative demographic C-

statistics typically ranging from 0.60 to 0.70. Smoking was previously included in a 

diagnostic model for PD,10 but contributed insufficient independent information to be 

included in a recent integrative diagnostic algorithm for PD.11 The latter was surprising 

for two reasons. First, smoking is common at a population level, and current smoking in 

particular is strongly inversely associated with PD in case-controls studies.28 Second, PD 

patients who smoke are able to quit smoking more easily than controls,29 making the 

discriminative value of smoking even higher for PD diagnosis than for PD prediction. 
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Over the past few years, genetic risk scores have been shown to be of marginal value in 

prediction of diseases with strong preexistent demographic and clinical factor-based 

predictive models.30, 31 However, they have enabled improvement in prediction of 

diseases without such models,32, 33 and in a recent diagnostic study of Alzheimer’s 

disease, genetic risk scores based on GWAS variants and APOE variants improved 

diagnostic accuracy beyond age and sex.34 In this study of more than 7000 individuals, 

we showed that addition of a genetic risk score for PD did not improve prediction 

beyond age, sex, smoking and parental history. Thus, our findings do not support a role 

for routine PD risk allele genotyping in a clinical setting at this time. This is similar to our 

previous observation of that genetic risk variants had limited predictive value for 

Alzheimer’s disease and all-cause dementia.35, 36 As more PD risk variants become known, 

however, their incorporation into the genetic risk score may explain more of the 

heritability that was first implied by familial aggregation of PD,37 and is now estimated to 

be 0.27.8 A recent meta-analysis showed that mild to severe GBA mutations are more 

common in PD populations than in controls.6 For the carriers of the severe GBA 

mutations, it has been suggested that the high increase in risk of PD (OR 14.6 – 19.3) may 

warrant a closer clinical follow-up,6 similar to carriers of the G2019S mutation in the 

LRRK2 gene.38 However, the predictive value of such rare variants at a population level 

remains undetermined, and we note that the current genetic risk score did not include 

the G2019S mutation in LRKK2 and only focused on the p.E326K variant in GBA. 

To our knowledge, this is the first study to investigate the relationship of a genetic risk 

score for PD with daily activities in the general population. The genetic risk score was 

associated with any impairment in BADL, suggesting that alleles with an established 

association with PD may also affect prodromal phenotypes linked with PD in the general 

PD-free population. Interestingly, we observed a clear association of the genetic risk 

score with mild impairment in BADL, but not with moderate to severe impairment. We 

offer two possible explanations for this observation. First, since we excluded individuals 

with parkinsonism and dementia from our analyses, the majority of persons with 

moderate to severe impairment probably comprised individuals with common, non-

neurodegenerative diseases (e.g., locomotor diseases, COPD 39). We note that we are 

unaware of substantial genetic overlap with PD for these diseases or of empirical 
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evidence for antagonistic pleiotropic effects of PD risk variants on BADL.. Second, we 

studied risk variants that are relatively common in the general population, and these 

variants may affect BADL more subtly than rarer risk variants with larger effect sizes on 

the risk of PD.  

In conclusion, in this study in the general population, a genetic risk score based on 26 

independent risk variants was associated with a higher risk of incident PD and a larger 

probability of impairment in BADL, but did not result in a substantially better prediction 

of PD beyond age, sex, smoking and parental history. Our results suggest that the use of 

this weighted combination of known risk loci is not yet as useful for the prediction of the 

risk of PD as it is for further elucidating the etiology of the disease. However, we were 

probably underpowered to detect a small improvement in PD prediction. 
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ABSTRACT 
In this thesis I used genetics and neuroimaging to study complex neurological diseases. 

This chapter places the main findings into context and also includes a discussion of 

methodological considerations and clinical implications. I conclude by describing 

strategies for future research, also looking beyond neurodegenerative and 

cerebrovascular diseases.  
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GENETIC DISCOVERIES 
Genetics play an important role in many neurological diseases.1-4 Understanding which 

genetic factors are relevant for a particular disease can yield insight into the 

pathophysiology and potentially lead to novel therapies. Furthermore, it can improve 

diagnosis and prediction by removing part of the uncertainty of who has or will develop 

a disease. Genome-wide association studies (GWAS) in tens of thousands of individuals 

have identified hundreds of genetic risk variants for neurodegenerative and 

cerebrovascular diseases,5-11 but the amount of variance in disease susceptibility that is 

explained by these variants is relatively small. The remaining unexplained variance is 

also called 'missing heritability',12 and we aimed to uncover part of it in chapter 3 using 

an imaging genetics approach. 

We studied the genetic determinants of imaging markers that are important for 

diseases. In contrast to dichotomous clinical diagnoses of healthy versus diseased, 

quantitative biomarkers obtained from imaging can classify individuals in a continuous 

and biologically more plausible manner (see Figure 1). These biomarkers take into 

account residual variation within groups of persons that are classified as healthy or 

diseased, thereby also capturing differences in severity of disease. Such information is 

lost by dichotomization, making continuous phenotypes statistically more powerful for 

detecting (genetic) effects. Furthermore, genetic effects on biomarkers might be larger, 

and thus easier to detect, compared to the effect sizes observed for neurological 

diseases: the multifactorial nature of most brain diseases means that there is 

heterogeneity in the underlying causes. Biomarkers that isolate specific disease 

processes would reduce the noise from other causes, assuming that this component is 

indeed genetically more homogeneous. Naturally, this raises the question: Which 

neuroimaging phenotypes should be used as biomarkers for which diseases? 
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One criterion on which to select neuroimaging phenotypes is that they should capture 

part of the disease process. To this end, studies are necessary to determine their 

associations with diseases, with longitudinal studies being in the unique position to 

investigate disease as it develops. An informative marker has added value beyond the 

clinical diagnosis, and it should be noted that any link need not be causal: as long as the 

biomarker classifies individuals in a more meaningful way than ‘healthy’ versus 

‘diseased’ it does not matter whether it is a causally related risk factor, a consequence of 

disease, or even a confounded association. The only prerequisite for identifying disease 

genes is that the underlying genetic determinants are shared between the biomarker 

and disease of interest (see section 6.4 about genetic correlation). Structural imaging 

markers have been widely investigated in relation to clinical outcomes and are the focus 

of chapter 3.1. Partly motivated by the high heritability, initial GWAS on these structural 

phenotypes have focused on intracranial volume,13,14 a marker of brain reserve,15 and the 

volumes of various subcortical structures,14,16,17 which have been related to 

 
Figure 1 | The value of biomarkers beyond clinical diagnosis. 
Plot illustrating the relation between biomarker values, disease severity, and clinical diagnosis. 
The blue line depicts values of a hypothetical biomarker in relation to disease severity. The red 
line indicates the point at which a sufficient amount of damage due to the disease leads to the 
clinical diagnosis. While labelling persons as 'healthy' or 'diseased' can successfully separate 
the most severe cases from those with less severe disease, the biomarker values provide 
additional information on the actual placement of an individual within the spectrum of 
di
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neurodegenerative and psychiatric diseases.18-20 The paucity of large-scale neuroimaging 

studies, however, has made current efforts underpowered. So far only 9 variants have 

been identified for these structural phenotypes and they fail to explain a substantial 

amount of the phenotypic variance. We found 33 additional loci for these and several 

novel traits, including the first genome-wide variants for the size of the brainstem, 

amygdala, pallidum, accumbens, and the anterior commissure. Furthermore, the 

additional loci identified for some phenotypes begin to highlight certain pathways. For 

intracranial volume, for example, we found that there is an enrichment for variants near 

genes involved in growth pathways. The most prominent was PI3K-AKT signaling: it is 

related to brain overgrowth disorders21,22, with AKT3 deletions causing microcephaly 

syndromes23 and AKT3 duplications cause macrocephaly.24 Our results show that the 

effect of these genes is not restricted to persons who have severe syndromes, but also is 

of importance for determining brain size in the general population. 

Besides genes implicated in human disease our GWAS are also informative for more 

fundamental biological research on brain development. We noted a striking overlap 

between studies of the anterior commissure in model organisms and the first 

investigation of genes influencing the human anterior commissure in chapter 3.3.1. 

Mouse and fruit fly experiments pointed to several gene families that are important for 

the development of commissural tracts and we now find genetic associations either 

within or very close to such genes: the Semaphorin SEMA6A and the Ephrin EPHA3 loci 

are the two most significant loci in our anterior commissure GWAS, and they both 

belong to these major families of commissural genes. It is difficult to do experimental 

studies in humans that capture the complexity of the intricate network of commissural 

neurons, and approaches that capture part of this process (e.g., migration during 

development) are often not feasible for high-throughput. Our in vivo genetic analyses 

have now identified reliable candidate genes for further experimental studies to 

understand their exact function in interhemispheric communication.  

Neuroimaging can also measure the extent of cerebrovascular disease, which is covered 

by chapter 3.2, and includes prominent imaging markers of small vessel disease, 

intracranial atherosclerosis, and cerebral blood flow.25,26 Stroke patients typically have 
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subclinical cerebrovascular disease that can already be detected on MRI before a clinical 

event takes place.27-29 In vascular dementia, imaging markers of cerebrovascular disease 

are part of the diagnostic criteria,30 and their relevance for other types of dementia is 

increasingly being appreciated.31,32 For intracranial carotid artery calcification, we 

reported the first GWAS and identified two significant loci, of which one was replicated 

in a sample of clinical stroke patients. GWAS have already identified 5 variants for white 

matter hyperintensities,33 while efforts have been unsuccessful for brain infarcts,34 and 

not yet undertaken for other markers of cerebrovascular disease. For enlarged 

perivascular spaces, such studies are complicated by the fact that heterogeneous 

methods exist for their assessment. In  chapters 2.1 and 2.2 I described a reliable rating 

protocol for enlarged perivascular spaces to enable collaborative studies on these 

markers. These steps are the groundwork for facilitating multi-site genetic studies of 

such imaging markers, which will hopefully yield more insight into cerebrovascular 

disease in coming years.  

Additionally, gene discovery is contingent on the imaging marker itself being genetically 

determined. Heritability studies can inform on the relative contribution of genes to the 

observed variation between individuals. Traditionally, such studies were done in 

families, but recently developed methods now also make this possible in samples of 

unrelated individuals.35,36 In chapter 3 I report the first heritability studies for both 

established and emerging imaging markers and found that they have a considerable 

genetic component using studies of both related and unrelated individuals. We found 

most investigated imaging markers to be suitable for genetic studies. The volumes of 

subcortical brain structures and in particular the brainstem were highly heritable, and 

this was also the case for some of the vertex-wise and voxel-wise measures of subcortical 

grey matter structures. Other imaging markers also showed substantial heritability: the 

amount of intracranial carotid artery atherosclerosis, size of the anterior commissure, 

and certain gait parameters. How does this further our understanding of these traits? 

Here too it is good not to dichotomize traits into ‘heritable’ versus ‘not heritable’ since 

the degree of heritability varies a lot. The heritability analysis of the shape of subcortical 

structures in chapter 3.3.3 showed regions within the same structure with both high and 

low heritability. Partly this could be explained by the fact that some measures contain 
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more measurement error than others. However, even when focusing on those measures 

that were very reproducible there exists a large variation in heritability. This indicates 

that the influence of genes on brain structure really does vary and some regions of the 

brain are more determined by environmental factors. Depending on which regions are 

the most relevant for neurological diseases, research can refocus on either genetic or 

environmental risk factors. Another conceptual advance is illustrated by chapter 3.3.2: 

while some gait domains initially showed a quite promising heritability, we found that 

this was mainly driven by genes underlying height and weight. So although there are 

clinical correlates of these gait domains beyond height and weight, subsequent genetic 

studies do not seem promising for revealing novel associations besides those identified 

for these two anthropometric traits. Especially given the large sample sizes for height 

and weight GWAS,37,38 it is unlikely that scarcely collected gait data could ever provide a 

meaningful contribution.   

So far, the largest GWAS discovery sample of a neuroimaging marker comprised 13,171 

individuals,17 only 5% of the GWAS of height, another quantitative trait for which 697 

variants were identified in a study of 253,288 individuals.38 To work toward similar 

successes in imaging genetics, we undertook larger studies. In chapter 3, I describe 

GWAS of intracranial volume, hippocampal volume, and other subcortical brain 

structures in the largest discovery samples to date, identifying 33 novel genetic variants 

in 16,000-37,000 individuals. Similarly, for cerebrovascular disease markers we identified 

the first genome-wide significant variants for the amount of intracranial carotid artery 

atherosclerosis. We also studied, for the first time, emerging markers such as the anterior 

commissure and gait parameters. In total, we were able to report 42 significant novel 

associations for the various markers in chapter 3. Some of the identified variants were 

indeed related to clinical outcomes. Perhaps the best illustration of the biomarker 

approach comes from chapter 3.3.1, where I described a GWAS of the anterior 

commissure. Here, we were able to detect a strong association of genetic variants near 

the gene TMEM106B with the size of the anterior commissure. This particular gene was 

previously identified to increase the risk of frontotemporal lobar degeneration in a 

sample of 567 cases and 3,380 controls (p = 2.7 x 10-9). In the GWAS of  the anterior 

commissure, however, we achieved a more significant signal in a smaller sample of the 
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older cohorts (3,015 individuals; p = 3.8 x 10-11). In some way this can be seen as an 

intentional form of sampling bias: the associations in these older individuals are not 

representative of the general population. This approach is helpful when the goal is 

enrich for associations of a disease processes that occur in a certain population, but not 

if the goal is external validity.  

While bigger may be better, another worthwhile approach is further refinement of the 

neuroimaging phenotype. For total brain volume, no genetic variants could be detected 

using sample sizes of almost 10,000 individuals.13 While larger studies might indeed 

uncover some of its genetic determinants, it remains a rather crude phenotype that 

aggregates the entire brain into a single measure. Studying the volume of the 

hippocampus already gives better results, but also this is a crude phenotype. In chapter 

2.4, we illustrated how further refinement of the hippocampal structure at a voxel-wise 

level can yield a stronger association. This chapter was aimed at solving the 

methodological problems that currently obstruct us from performing an actual genome-

wide and brain-wide search for association signals.  

 
Figure 2 | From gene to disease: understanding the pathophysiological mechanism. 
Schematic overview of DNA variation eventually causing clinical disease. The 
pathophysiological mechanism could lead to various subcellular effects such as altered 
methylation, gene expression, or protein function. This can in turn affect measurable 
endophenotypes, including neuroimaging markers. 
Abbreviations: CNV = copy number variation, SNP = single nucleotide polymorphism 
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UNDERSTANDING PATHOPHYSIOLOGY 

Another avenue for combining neuroimaging and genetics is by exploring the effects of 

known disease genes on the changes that occur in the brain. While GWAS have 

identified genetic variants for disease, there is still a long way from genetic association 

to pathophysiological mechanism (see Figure 2). These variants have in common that 

they confer risk for a particular disease, but the pathophysiological mechanism is not 

necessarily the same. For complex diseases in particular, this potentially opens up 

research to several different pathways. Imaging genetics can shed light on which 

specific pathways are actually involved by studying known genetic variants for a disease 

in relation to the relevant imaging markers of that disease. 

Since genetic variants primarily exert subcellular effects, a lot of efforts in recent years 

aimed to systematically map these: expression quantitative trait loci, predicted 

damaging effects on protein structure, and epigenetic modifications are among many 

characteristics that can inform on the potential functionality of genetic variants.39-44 But 

these subcellular effects eventually translate into clinical disease by affecting the brain, 

and determining the type of changes can improve our understanding of the disease 

mechanism. Similar to the previous question on genetic discoveries, here too the 

question arises: which phenotypes to use?  

One approach is to have the selection of phenotypes guided by prior knowledge of the 

presumed pathophysiological mechanism through which the gene leads to disease. 

Chapter 4.1 considered genetic disease variants in relation to such candidate 

phenotypes: Alzheimer’s disease variants and several key vascular and degenerative 

markers (chapter 4.1.1), intracranial aneurysm variants and the presence and size of 

aneurysms (chapter 4.1.2), and the dystrophin gene and cognitive function (chapter 

4.1.3). For example, when investigating the genetic variants for the occurrence 

symptomatic aneurysms in a sample from the general population, we found that these 

variants were associated with the size of the aneurysms rather than their presence per 

se. This was an interesting finding that suggested that these genetic variants for 

clinically relevant aneurysms were perhaps not leading to persons developing an 

aneurysm, but increasing the size of an existing aneurysm and thus risk of rupture. 



Chapter 6 

460  

Another approach to understand pathophysiology is to be unbiased towards certain 

hypotheses, to prevent any confirmation bias by only selecting phenotypes supporting 

prior beliefs, as is done in chapter 4.2. These studies can still be in line with patterns that 

would be expected a priori, such as the effects of risk variants for frontotemporal lobar 

degeneration being mainly on frontal and temporal brain regions (chapters 4.2.2 and 

4.2.3), but they could also point to regions not implicated before as with brain-wide 

studies of Alzheimer’s disease variants (chapter 4.2.1).  

Another critical question in study design is which study population to use. The study of 

patients may be obvious, but is the effect of ‘disease genes’ really restricted to patients? 

One finding suggesting otherwise is that most of the risk variants are common in the 

general population, with minor allele frequencies between 1-50%.5-11,13 Although it is 

possible that common risk variants only cause disease in a subset of carriers, e.g. 

because they exert an effect only in combination with other risk factors, there is also an 

alternative explanation: patients with a clinical diagnosis of disease are at the extreme 

end of a continuous spectrum, with non-diseased carriers of the risk variants showing 

less severe phenotypes. Knowledge on which of these explanations applies to risk 

variants can further our understanding of what causes disease. The studies in chapter 4 

were all done in the general population to test this hypothesis. For variants of nearly all 

diseases we indeed found effects outside patient populations: Alzheimer’s disease, 

intracranial aneurysms, frontotemporal lobar degeneration, Parkinson’s disease, and 

amyotrophic lateral sclerosis. Only for multiple sclerosis (chapter 4.2.4) the effect of risk 

variants was not as apparent. In the field of psychiatry, research has been conflicting 

with regard to the effects of schizophrenia risk variants on structural brain changes in 

the general population.45-47 However, while GWAS are generally done in a collaborative 

setting and include a replication stage, this is rarely a requirement for such follow up 

studies on potential pathophysiological mechanisms. For many of these findings, formal 

replication of the results could provide stronger evidence for the suspected role of 

disease variants in the general population.  
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Figure 3 | Shared variance between neuroimaging, genetics, and disease 
susceptibility. 
Venn diagram of the variance in imaging, genetics, and disease, and their interrelations. The 
intersections (formally denoted by ∩) indicate shared variance between imaging and disease 
(A), genetics and disease (B), imaging and genetics (C), and variance that is common across all 
three traits (D). 

EXPLORING CLINICAL RELEVANCE 

Besides genetic discoveries and understanding pathophysiology, imaging genetics 

ideally results in clinical translation. While insight into pathophysiology might reveal 

drug targets, such translations typically take decades before a treatment is actually 

implemented.48 However, clinical utility does not only incorporate treatment, but also 

covers diagnosis and prediction. For this purpose, it is important to consider the 

variance observed in imaging, genetics, and disease (see Figure 3). Each of these three 

traits shows differences between individuals, corresponding to brain differences 

measurable on imaging, carrier status of genetic variants, or whether someone is 

diseased or not. The non-overlapping parts in Figure 3 consist of variance that is 
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restricted to one of these three traits. This includes both variance that is biologically 

unrelated to the other traits as well as measurement error (e.g. noise in image 

acquisition, genotyping errors, or misclassification of disease status). However, part of 

the variance is shared and can be leveraged to derive clinical value, forming the basis of 

chapter 5. 

The intersection of imaging and disease, i.e. the shared variance between the two, is 

denoted by the letter A in Figure 3 (i.e., including D). This is part of the variance captured 

by imaging that is informative for disease. Given that many imaging markers are novel, 

their clinical relevance is yet unclear. In chapter 5.1, I determined clinical correlates of a 

variety of novel imaging markers. For enlarged perivascular spaces, there were 

associations with cardiovascular risk factors and cerebrovascular disease (chapter 5.1.1 

and chapter 5.1.2). The number of enlarged perivascular spaces in the basal ganglia, for 

example, were related to hypertension beyond other risk factors or markers of 

cerebrovascular disease, suggesting that this might be a complementarily imaging 

marker for disease prediction. Similarly, intersection B represents the genetic variants 

that are associated with disease. Their clinical relevance was explored in chapter 5.2, 

specifically to determine whether these variants can improve individual prediction of 

symptoms and diseases. Genetic risk factors of four neurodegenerative diseases were 

related to mild cognitive impairment and incident dementia (chapter 5.2.1), and genetic 

risk of Parkinson’s disease was related to basic activities of daily living and incident 

Parkinson’s disease (chapter 5.1.2). However, the added predictive value of these genetic 

variants was low, in line with findings from recent studies.49,50 This indicates that the 

currently identified variants for these neurodegenerative diseases do not yet have 

enough explanatory power to provide meaningful discrimination between individual 

who will develop disease versus those who will not.  



General discussion 

 463 

6 

FUTURE RESEARCH 
In this section I describe future directions for research that I consider to have potential to 

move the field further forward beyond the work performed in my thesis. 

For genetic discoveries, the most obvious approach is to increase the sample size for 

discovery. This has been successful for other complex traits,11,37,38,51,52 and there is little 

doubt that this will also improve the power in genetic studies of imaging markers. The 

research I have presented in this thesis used data from the Cohorts for Heart and Aging 

Research in Genomic Epidemiology (CHARGE)53 and Enhancing NeuroImaging Genetics 

through Meta-Analysis (ENIGMA)54 consortia. These global collaborations incorporate 

the vast majority of studies with both neuroimaging and genetic data available. The 

research in chapter 3.1 shows that the current maximal sample size that can be attained 

is at most 35,000 individuals, which includes those of non-European descent. Large 

biobanks have been initiated in past years,55,56 and the first batches of data have already 

become available for analysis.57-62 Biobanks are likely to receive a prominent role in 

genetic discoveries within the coming years, and it is therefore imperative that their 

limitations are also acknowledged, such as potential bias in such large-scale data 

collection. For the UK Biobank, for example,  9.2 million persons were invited to 

participate, whereas only slightly over 5% were actually recruited.63 From an 

epidemiological perspective this low participation rate is worrying because it has the 

potential to induce non-response bias and further complicate the generalizability of the 

obtained results. Replication of results across different population can alleviate those 

concerns, but will be increasingly difficult for effects that have been detected by pooling 

all available data together. 

Statistical power can also be improved in ways other than adding more samples. One 

such approach is by reducing the measurement error in both genetics and imaging. 

The haplotype reference consortium has pooled together 65,000 human haplotypes to 

create a reference panel to which genotypes with minor allele frequencies as low as 

0.1% can still be reliably imputed.64 Advances in DNA sequencing and reductions in the 

associated costs also pave the way for obtaining whole genomes sequences.65 This will 

enable the identification of the causal variants instead of tagging variants, where the 
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association signal is diluted. Similarly, imaging markers contain noise that is due to the 

equipment or subsequent image processing. While ultra-high field strength MRI 

scanners can provide more detail of the brain,66-69 it also comes with drawbacks for 

participants in the form of longer scanning times and dizziness.70 Furthermore, a large 

amount of data has already been acquired in the past decades and improved image 

processing can also reduce measurement error. In case persons have been scanned 

more than once, the additional images can be taken along to reduce the noise in the first 

image using longitudinal image processing techniques.71-74 These techniques are 

employed to study changes in the brain in a longitudinal setting,75-79 but they have not 

been applied to generate cross-sectional measures where the noise has been reduced 

and which are subsequently analyzed on their own. In a preliminary analysis within the 

Rotterdam Study of over 2000 individuals who have been scanned twice, I calculated the 

volume of the left hippocampus using two methods (Figure 4): extracting the 

hippocampus from each scan separately (‘cross’) for time point 1 (TP1) and time point 2 

(TP2), or by extracting the hippocampus using a longitudinal image processing pipeline 

(‘long’). Next, I determined which part of the variance in hippocampal volume is 

determined by genetics. For the cross-sectional measures of hippocampal volume the 

heritability was comparable for both time points at slight more than 30%. Intriguingly, 

the heritability was almost 55% when information from the other scan was taken along 

when determining the hippocampal volume. Since this analysis was done in the same 

set of individuals and scans, it suggests that the longitudinal processing helps extract 

true biological variance in hippocampal volume. Studies that have multiple scans 

available could thus boost power for genetic discoveries by using data from another 

time point. However, the advantages and disadvantages of such an approach needs to 

be carefully studied before large-scale application. While it might be reasonably argued 

that measurement error is random, recent research has suggested that, for example, the 

amount of head motion during resting state functional MRI is also heritable.80 If image 

processing algorithms are affected by the presence of motion this will result in a 

differential misclassification, a form of information bias. Such factors resulting in 

measurement error are not specifically considered in imaging genetics studies (and to a 



General discussion 

 465 

6 
certain extent imaging studies in general), and it also remains to be determined how 

these influence longitudinal processing. 

A final approach to maximize statistical power is by using more powerful statistical 

techniques. In chapter 2.3 I describe a novel meta-analytical technique that allows for 

combining results from multiple studies in a way that yields the same results as a pooled 

analysis, which is statistically the most powerful, but does not require the raw data to be 

shared. This is relevant for many collaborative settings where the individual participant 

data  cannot be shared due to various including legal, ethical, and logistic reasons. Such 

collaborations currently resort to less powerful meta-analytical techniques, but 

implementation of our novel method can both adhere to restrictions of not sharing 

individual participant data without compromising on statistical power. It will also be 

possible to include studies with small sample sizes that would otherwise have been 

 
Figure 4 | Noise between two scans for cross-sectional versus longitudinal 
processing. 
Differences in hippocampal volume between the first and second scan using cross-sectional 
processing (red) versus longitudinal processing (green). TP = time point. 
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excluded in a conventional meta-analysis. This not only reduces statistical power, but 

potentially leads to a selection bias. Furthermore, in this thesis I focus on univariate 

linear regression models for analyzing associations between genetic variants and 

imaging markers. Here too there is room for improvement with more sophisticated 

methods including machine learning algorithms, e.g. deep learning or support vector 

machines.81-85 

The selection of imaging markers will have an important impact on future research in a 

more general sense. Even though we might be able to obtain a more accurate 

hippocampal volume, this by itself is a fairly gross measure and simplifies the complexity 

within this brain structure. Genes themselves might affect specific regions of the brain 

and the use of an aggregate measure can make such localized effects difficult to find. An 

illustration of this is a genetic locus that was associated with hippocampal volume in 

chapter 3.1.2, using a sample of over 30,000 individuals, and was also genome-wide 

significant in chapter 2.4 when performing GWAS of all 7,000 voxels in the hippocampus. 

The latter analysis was done in only 4,400 individuals, but the higher resolution provided 

by studying voxels was able to outweigh the smaller sample size. An important part of 

this thesis was to make such genome-wide association studies of many (imaging) traits 

possible, and that has now been successfully done as described in chapter 2.4. Future 

studies should therefore not be restricted by previous computational and logistic issues 

that prohibited the use of novel imaging markers that aim to measure the brain in more 

comprehensive and biologically meaningful ways, usually with thousands to even 

millions of values. Naturally, these refined imaging markers can be of benefit to genetic 

discoveries, but perhaps even more so for understanding the pathophysiology of 

neurological diseases. Emerging imaging markers that can be relevant for 

neurodegenerative diseases include cortical thickness, surface area, and gyrification.86-91 

For cerebrovascular diseases genetic studies are needed on enlarged perivascular spaces 

and brain microbleeds.92-97 Phenotyping of the brain for genetic studies need not be 

restricted to conventional MRI imaging. Future studies can extend the scope of imaging 

genetics to other clinically relevant and heritable imaging markers, including the 

microstructural integrity of white matter as measured by diffusion tensor imaging and 

functional connectivity assessed by functional MRI. 98-112  
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A further consideration is that while a phenotypic correlation may exist between 

imaging markers and neurological diseases, and both may be heritable, this does not 

necessarily mean that the underlying genes are also shared. The presence of a genetic 

correlation is thus also important when determining whether a certain imaging marker 

is relevant for a certain disease. Currently, there has not been a systematic mapping of 

genetic correlations between imaging markers and neurological diseases. Such a study 

would provide valuable information for researchers regarding which imaging markers 

they actually need to investigate, especially as novel imaging markers are constantly 

being developed.113-129 Even when the most relevant markers for a disease of interest 

have been identified, the genetic correlation will never be perfect. A risk of using 

markers of diseases for genetic discoveries will thus be that the identified variants are 

not necessarily related to the disease outcome. However, I would like to describe how a 

genetic correlation is not a requirement per se for variants to have a clinical utility. I now 

return to Figure 3 and focus on the genetic variants influencing imaging markers which 

are in intersection C and can be divided into two groups: those also associated with 

disease, intersection D, or those only influencing the imaging markers, i.e. the remaining 

part of intersection C. The genetic variants in D explain part of the variance in disease 

susceptibility, likely because the effect of these variants is exerted through changes in 

the brain that are captured by these imaging markers. Identification of such variants, as 

described in chapter 3, can thus directly be used to investigate their clinical utility in 

predicting disease onset, severity, or specific symptoms. For the remaining part of 

intersection C, the added value for prediction is less direct. Since only part of the 

variance in imaging markers is related to disease (intersection A), methods to reduce the 

‘non-relevant’ variance could results in neuroimaging phenotypes with a better 

predictive performance. Thus genetic variants that influence clinically relevant imaging 

markers, but are themselves not related to disease, could help accentuate the variance 

in imaging markers that can predict disease. So, even when a genetic correlation 

between an imaging marker and disease is lacking, the identified genetic variants might 

still harbor clinical value. 

Eventually the goal is to map the effects of all genetic variants on the brain so that this 

information can be leveraged for understanding pathophysiology and determining their 
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clinical relevance, as described above. Ideally, as with GWAS summary statistics, we will 

have publicly available repositories with these neuroimaging maps. It will then be 

possible to link genetic profiles of neurological diseases to the accompanying brain 

differences or to see whether a certain radiological presentation has a genetic basis. 

Furthermore, cross-investigations with other sources of biological data (e.g., 

transcriptomics, proteomics, metabolomics, microbiomics) can amplify the synergistic 

value of imaging genetics. These data represent yet another dimension that can be 

added on top of imaging and genetics, and may therefore also require novel methods 

to be developed for facilitating such studies.  

CONCLUSION 
In this thesis, I have used an imaging genetics approach to report novel gene 

discoveries, add to our understanding of the pathophysiology of neurological diseases, 

and explore the clinical relevance of genetics and neuroimaging. Furthermore, I describe 

how future research can build upon this work. Genetic discoveries can be boosted with 

larger samples, particularly biobanks, but also by using more comprehensive 

genotyping, refined imaging markers, and smarter data analysis. With the surge of novel 

imaging markers, it will also be good to determine which are the most relevant for 

specific outcomes. For this, a systematic investigation is needed of the phenotypic and 

genetic correlations between these markers and neurological diseases. Also, there is 

promise in combining imaging genetics with other biological data, but come with their 

own methodological challenges. Novel genetic discoveries can eventually lead to clinical 

translation, but the life cycle of such translational research can span many decades.48 

Similarly, most advancements in this thesis will not have a direct impact on patients or 

their physicians. Rather, this research lays groundwork to enable tangible clinical 

translation in the future. 
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ENGLISH SUMMARY 
In this thesis I studied complex neurological diseases and focused on those of a 

neurodegenerative or cerebrovascular nature, which include very common and 

debilitating diseases. I have used genetics and neuroimaging to further our 

understanding of these diseases and the main findings, described in chapters 2 through 

5, are summarized here. 

Chapter 2 deals with methodological aspects related to genetics and neuroimaging. 

Chapter 2.1 describes a method for assessing a novel neuroimaging marker, enlarged 

perivascular spaces on MRI – an emerging marker of cerebrovascular disease – whereas 

chapter 2.2 presents a newly initiated global consortium to systematically investigate 

the clinical relevance of this marker.  In chapter 2.3 we present a novel meta-analysis 

method for increased power and flexibility when individual participant data cannot be 

shared between sites. This is a common issue in multi-site studies, which are routinely 

performed in the field of genetics and increasingly so in neuroimaging. Building further 

upon this method, we developed a novel software in chapter 2.4 that enables genome-

wide and brain-wide association studies, overcoming the huge computational and 

logistic limitations. Finally, chapter 2.5 highlights potential biases in a recent study on 

the transmissibility of amyloid-β , which illustrates how causal inference can be affected 

in observational studies. 

Chapter 3 reports genetic discoveries of imaging markers, including those linked to 

neurodegeneration (chapter 3.1), cerebrovascular disease (chapter 3.2), and emerging 

imaging markers that are not as well established (chapter 3.3). In the largest discovery 

samples to date, we identified a total of 33 novel genetic variants in studies of 25,000 to 

34,000 individuals. We describe studies of intracranial volume (chapter 3.1.1) , 

hippocampal volume (chapter 3.1.2), and the volumes of other subcortical brain 

structures (chapter 3.1.3). We further found genetic overlap between some of these 

markers and neurodegenerative diseases, which can aid in the discovery of disease 

genes. In chapter 3.2.1 I review our current knowledge of the genetics of cerebrovascular 

disease, which remains limited compared to other fields within neurology. Chapter 3.2.2 

then describes the first estimates of the heritability of intracranial carotid artery 
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calcification and also identifies its first genetic determinants. In chapter 3.3.1, I studied 

the anterior commissure, a recently proposed imaging marker for neurodegeneration, 

and present the first heritability and genetic association analyses. Similarly, chapter 3.3.2 

describes the first comprehensive investigation of the genetic determinants of human 

gait, which was imaged using an electronic walkway. Next, I focus on two emerging 

neuroimaging phenotypes: the shape of subcortical brain structures (chapter 3.3.3) and 

the grey matter density (chapter 3.3.4). These markers describe the structure of the brain 

with greater detail than the established markers by using thousands to millions of 

measures. We found both to be promising for genetic studies with high heritabilities, 

but also with regional variability in the extent of the genetic contribution. 

Chapter 4 covers known disease genes and their effects on the brain, using candidate 

imaging markers (chapter 4.1) and unbiased searches of the brain (chapter 4.2). In 

chapter 4.1.1 we studied Alzheimer’s disease genetic variants in relation to several key 

vascular and neurodegenerative markers and found these variants contribute to 

structural brain aging. In chapter 4.1.2, we report that variants for clinically diagnosed 

intracranial aneurysms relate to the size rather than the presence of aneurysms that 

were discovered incidentally in the general population. Chapter 4.1.3 describes a study 

of dystrophin gene variants and cognitive function, where no significant association was 

found. In the subsequent chapters, we report brain-wide studies of genetics variants that 

increase the risk of Alzheimer’s disease (chapter 4.2.1), frontotemporal lobar 

degeneration (chapter 4.2.2 and chapter 4.2.3), and multiple sclerosis (chapter 4.2.4). We 

found that ‘disease variants’ also have subclinical effects on the brains of non-diseased 

individuals from the general population.    

Chapter 5 focuses on the clinical relevance of neuroimaging and genetics for 

neurological disease, which is yet to be established for novel imaging markers (chapter 

5.1) and recently identified genetic variants (chapter 5.2). In chapter 5.1.1, we study 

demographic and cardiovascular determinants of enlarged perivascular spaces and find 

that their burden is determined by various factors with considerable regional specificity, 

pointing towards a multifactorial origin. In chapter 5.1.2 we further find that enlarged 

perivascular spaces are related to the retinal microvasculature, providing strong 

evidence that these represent small vessel disease. Chapter 5.2.1 covers a study of 



Summary / Samenvatting  

 477 

7 

genetic risk factors for four neurodegenerative diseases in relation to mild cognitive 

impairment and incident dementia, and chapter 5.1.2 investigates the genetic risk of 

Parkinson’s disease in relation to basic activities of daily living and incident Parkinson’s 

disease. While both studies showed associations of the genetic variants with clinical 

endpoints there was little improvement in the ability to predict symptoms and disease 

at an individual level.  
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DUTCH SUMMARY 
In dit proefschrift heb ik complexe neurologische ziektebeelden bestudeerd met een 

nadruk op neurodegeneratieve en cerebrovasculaire aandoeningen, welke 

veelvoorkomend zijn en slopende gevolgen kunnen hebben. Ik heb gebruik gemaakt 

van genetica en beeldvorming van de hersenen om ons begrip van deze ziektebeelden 

te bevorderen. De voornaamste bevindingen uit hoofdstukken twee tot en met vijf 

worden hier samengevat. 

Hoofdstuk 2 behandelt methodologische aspecten die belangrijk zijn voor genetica en 

hersenbeeldvorming. Hoofdstuk 2.1 beschrijft een methode voor het bepalen van een 

nieuwe marker op hersenbeeldvorming, vergrote perivasculaire ruimtes op MRI – een 

opkomende marker van cerebrovasculaire aandoeningen – terwijl hoofdstuk 2.2 een 

recent geïnitieerd globaal consortium presenteert om systematisch te bestuderen wat 

de klinische relevantie is van deze marker. In hoofdstuk 2.3 presenteren we een nieuwe 

meta-analyse methode: deze methode verbetert de statistische kracht en flexibiliteit 

wanneer data van individuele deelnemers niet gedeeld kan worden tussen verschillende 

onderzoeksgroepen. Dit is een vaak voorkomend probleem in studies met meerder 

groepen, welke routinematig worden uitgevoerd binnen de genetica en ook steeds 

vaker in het veld van hersenbeeldvorming. Voortbouwend op deze methode hebben wij 

een nieuwe software ontwikkeld in hoofdstuk 2.4 die het mogelijk maakt om genoom-

wijde en brein-wijde associatie studies uit te voeren door het wegnemen van 

beperkingen in de rekenkracht en logistiek. Tot slot benadrukt hoofdstuk 2.5 mogelijke 

aanwezigheid van bias in een recente studie over de overdraagbaarheid van het 

amyloid-β eiwit, wat illustreert hoe de causale gevolgtrekking kan worden beïnvloed in 

observationele studies. 

Hoofdstuk 3 rapporteert genetische ontdekkingen van markers uit de beeldvorming, 

met inbegrip van markers die verband houden met neurodegeneratie (hoofdstuk 3.1), 

cerebrovasculaire aandoeningen (hoofdstuk 3.2), en opkomende markers welke nog niet 

gangbaar zijn (hoofdstuk 3.3). In de grootste ontdekkingsstudies tot nu toe hebben wij 

in totaal 33 nieuwe genetische varianten ontdekt door het onderzoeken van 25.000 tot 

34.000 deelnemers. We beschrijven studies van het intracraniële volume (hoofdstuk 
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3.1.1) , het volume van de hippocampus (hoofdstuk 3.1.2), en het volume van andere 

subcorticale hersenstructuren (hoofdstuk 3.1.3). We hebben verder gevonden dat er 

genetische overlap is tussen deze markers en neurodegeneratieve aandoeningen, wat 

kan helpen bij het ontdekken van nieuwe ziektegenen. In hoofdstuk 3.2.1 geef ik een 

overzicht van onze huidige kennis van de genetica van cerebrovasculaire aandoeningen, 

die relatief beperkt blijft in vergelijking met andere gebieden binnen de neurologie. 

Hoofdstuk 3.2.2 beschrijft vervolgens de eerste schattingen van de erfelijkheid van 

calcificaties van de intracraniële halsslagader en identificeert ook de eerste genetische 

determinanten. In hoofdstuk 3.3.1 bestudeerden we de grootte van de commissura 

anterior, een recent voorgestelde marker van neurodegeneratie, en presenteren we de 

eerste erfelijkheid en genetische associatie analyses. Evenzo hoofdstuk 3.3.2, welke het 

eerste uitgebreide onderzoek beschrijft naar de genetische determinanten van het 

menselijke looppatroon, wat werd afgebeeld met behulp van een elektronische 

loopmat. Vervolgens richt ik me op twee opkomende hersenbeeldvorming markers: de 

vorm van de subcorticale hersenstructuren (hoofdstuk 3.3.3) en de grijzestofdichtheid 

(hoofdstuk 3.3.4). Deze markers beschrijven de hersenstructuur in groter detail dan de 

gangbare markers door duizenden tot miljoenen maten te gebruiken. Wij vonden beide 

markers veelbelovend te zijn voor genetische studies vanwege de hoge erfelijkheid, 

maar er was ook regionale variabiliteit in de mate waarin genen bijdragen. 

Hoofdstuk 4 bestudeert bekende ziektegenen en hun effect op de hersenen, 

gebruikmakend van kandidaat beeldvormingsmarkers (hoofdstuk 4.1) en studies vrij van 

bias (hoofdstuk 4.2). In hoofdstuk 4.1.1 onderzochten we genetische varianten voor de 

ziekte van Alzheimer in relatie tot enkele belangrijke vasculaire en neurodegeneratieve 

markers en vonden dat deze varianten bijdragen aan structurele hersenveroudering. In 

hoofdstuk 4.1.2 rapporteren wij dat genetische varianten voor klinisch 

gediagnosticeerde intracraniële aneurysmata meer samenhangen met de grootte dan 

de aanwezigheid van aneursmata die onvoorzien zijn ontdekt in de algemene 

bevolking. Hoofdstuk 4.1.3 beschrijft een studie van genetische variatie in het dystrofine 

gen en cognitieve functie, waarin geen significante associatie was gevonden. In de 

volgende hoofdstukken rapporteren wij breinwijde studies van genetische varianten die 

het risico verhogen op de ziekte van Alzheimer (hoofdstuk 4.2.1), frontotemporale 
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lobaire degeneratie (hoofdstuk 4.2.2 en hoofdstuk 4.2.3), en multiple sclerosis 

(hoofdstuk 4.2.4). We vonden dat ‘ziektegenen’ ook subklinische effecten hebben op de 

hersenen van personen zonder ziekte uit de algemene bevolking.   

Hoofdstuk 5 richt zich op de klinische relevantie van hersenbeeldvorming en genetica 

voor neurologische aandoeningen, wat nog moet worden vastgesteld voor nieuwe 

markers uit de beeldvorming (hoofdstuk 5.1) en recent geïdentificeerde genetische 

varianten (hoofdstuk 5.2). In hoofdstuk 5.1.1 bestuderen we demografische en 

cardiovasculaire determinanten van vergrote perivasculaire ruimten en vinden we dat 

hun ernst bepaald wordt door meerder factoren met een aanzienlijke specificiteit per 

hersengebied, wat wijst op een multifactoriële oorsprong. In hoofdstuk 5.1.2 zien we 

verder dat vergrote perivasculaire ruimten gerelateerd zijn met de retinale 

microvasculatuur, een sterke aanwijzing dat deze een vaatlijden vertegenwoordigen van 

de kleine hersenvaten. Hoofdstuk 5.2.1 heeft betrekking op een studie naar genetische 

risicofactoren voor vier neurodegeneratieve aandoeningen en hun relatie met milde 

cognitieve stoornissen en het ontwikkelen van dementie in de toekomst, en hoofdstuk 

5.1.2 onderzoekt het genetisch risico op de ziekte van Parkinson met betrekking tot het 

uitvoeren van dagelijkse activiteiten en het ontwikkelen van de ziekte van Parkinson in 

de toekomst. Hoewel beide studies associaties tonen tussen genetische varianten en 

klinische eindpunten was er weinig verbetering in het vermogen om de symptomen en 

ziekten op individueel niveau te voorspellen. 
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EPILOGUE 
Epidemiology aims to answer one of the key questions humans currently face: what 

causes disease? 

It is clear that for the numerous diseases that can befall us, the culprits can take various 

forms: they might be genes, what you eat and drink, or your environment. 

Consequently, an epidemiologist must become fluent in the relevant subject matter of a 

particular disease if he or she truly wishes to understand it. This is why epidemiologists 

can be seen asking you to fill out questionnaires, measuring your local water quality, or 

taking blood samples for further analysis in lab. The required skills and knowledge 

cannot be set in stone, making it a truly remarkable discipline. The drive to understand 

disease therefore leads to considerable heterogeneity between epidemiologists, but it is 

also what binds them. 

The work in this thesis, where I investigated complex neurological diseases, underlines 

these characteristics of epidemiology. The chapters describe 'classic epidemiology', but 

also mathematics, bioinformatics, neuroimaging, genetics, and cell biology. Beyond the 

contents of these chapters, this thesis is also built upon friendship, collaboration, 

politics, anger management, business, and a healthy dose of mind games. 

Although genetics is a key part of my thesis, it is important to realize the impact of your 

environment. During the past years, I was able to get a lot done, meaning I am indebted 

to a lot of people.  

Guiding me through this journey, my supervisors have been crucial along the way. 

My promotors Prof.dr. Hofman and Prof.dr. Van der Lugt:  

Bert, thank you for the opportunity to be part of your department. Our first conversation 

was during my interview where I applied for the NIHES research master, and requested 

to do this in parallel to medical school and another research master. From all the people 

I had spoken to about this triple degree idea, you were literally the only person who 

supported me from the beginning. I have tried to repay this faith with my grades and 

master theses, and this doctorate thesis is the first fruit that was grown on this diverse 

education. Also, I would like to thank you for tempering two of my fears of growing old: 
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losing my passion and losing my hair. Although you don't believe in the term yourself, I 

think you are a great example of 'healthy aging'. 

Aad, thank you for your contributions to the various manuscripts. I appreciate your 

attention to detail and also enjoyed our conversations about the ‘big picture’. Your 

passion for radiology has definitely rubbed off on me during the past years.  

My co-promotors (Prof.)Dr. Ikram and Dr. Vernooij:  

You are both principal investigators at the Rotterdam Study, an impressive population-

based study that is very suitable to investigate the central question of my thesis. 

However, larger studies are constantly being initiated, newer MRI scanners are 

becoming available, and the genetic technologies are revolutionized every few years. 

Why then choose to do my doctorate research here? More important than all these 

factors are the people you work with. I can honestly say that without you being my co-

promotores, I would have probably even passed up the beautiful Rotterdam Study. 

Arfan, you would typically be late to meetings, but compensate by immediately having 

great input. I joined the department around your thesis defence and it gives me joy that 

you are now becoming professor when I am defending mine. While you scientific 

achievements have been widely recognized, I also admire your broad interest and in-

depth knowledge of other fields, whether it is physics, religion, or music.  

Meike, your work ethic is unparalled. I often forget that besides running a successful 

research group you are also working in the clinic, and additionally have an active life 

beyond the Erasmus MC. It is amazing that you remain so approachable for your 

students and are always looking out for their best interests. It certainly explains why are 

loved by all who know you, and I feel lucky for having you as a co-promotor. 

They say that the greatest compliment you can give your teachers is to surpass them, so 

I would like to thank you both for setting the bar extremely high for my PhD. I am sure 

your accomplishments will continue to motivate me during the rest of my career. 

I’m also honered to have as part of my reading committee Prof.dr. Kushner, Prof.dr. 

Franke, and Prof.dr. Grabe. Steven, you’re an inspiration for every young researcher and 

for me in particular for combining basic science with population level research. Barbara, 

you do wonderful work and I look forward to seeing Nijmegen and Rotterdam become 
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closer partners. Hans, it’s inspiring to see you involved in so many endeavors but still 

managing to stay (or appear) relaxed at the same time. 

I would also like to thank the Prof.dr. Tiemeier, Prof.dr. Uitterlinden, and Dr. White for 

being part of my committee: 

Henning, while collaborations are usually initiated with a research question in mind, I 

can say that for me working with you is actually a goal by itself. André, thank you for 

your input on the various papers, especially when there was strict submission deadline! 

Tonya, it’s great to see someone in your position who has retained a thorough 

understanding of all aspects of her field of research. 

Given the impressive committee, I obvisously was left with no choice but to intimidate 

them with my paranymphs Sirwan Darweesh and Gennady Roshchupkin. This does 

not only apply to your physical prowess, but also your academic achievements. 

Sirwan, before everything, you are truly an amazing friend. I cherish the valuable time 

we have spent together during past years, which have had a unique impact on me. I was 

excited that you decided to join our department and not at all surprised to see your rise 

to the top in such a short period. You surely have an amazing future ahead of you, which 

I will be following with the utmost interest. 

Gena, I couldn’t have wished for a better intellectual sparring partner during my PhD 

than you. From day one it felt like you were a longtime friend and this feeling has only 

become stronger after all the papers, ‘short’ stories, and discussions of various scientific 

and non-scientific topics. I look forward to our secret plan to take over Rotterdam. 

Thank you both for having my back and let’s continue the paranymph outings! While our 

marital status allows this, of course. 

Next I would like to thank the participants of the Rotterdam Study, whose selflessness 

made this research possible. I feel connected with the Rotterdam Study, as we both had 

our conception in 1989 and actual birth in 1990. Many people have contributed to make 

this effort as successful as it is, which I couldn’t possibly all name here, but I would like to 

mention at least a few of them. Frank, Yolande, and Nano, your continuous support of 

researchers is much appreciated. Also, I’m very grateful to the MRI personnel, including 

Charlotte, Pauli and Lydia: your dedication lies at the basis of all the data we publish on.  
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Furthermore, the former and current principal investigators of the Rotterdam Study for 

their vision and hard work. In particular, I would like to mention Prof.dr. Breteler, 

Prof.dr. Van Duijn, and Prof.dr. Franco: 

Monique, I couldn’t have wished for a better introduction to science. Your cirtical and 

results-oriented thinking have taught me a lot. I have to admit that as a teenager I was 

surprised that, instead of a textbook on the principles of epidemiology, your first 

suggested piece of literature was ‘The Art of War’ by Machiavelli. However, it makes 

sense now. Good luck with the new RS, I’m sure it will make a big impact on the field!  

Cornelia, thank you for your valuable comments on manuscripts during the past years. 

Oscar, your positive energy is contagious and this effect is noticeable department-wide.  

Making sure that all runs smoothly, there were Hetty, Jacqueline, Erica, and Gabrielle. I 

am very thankful for the secretarial support over the past years! 

Leading up to my PhD, I have been lucky to receive an extraordinary scientific training.  

From NIHES, I would like to thank Astrid, Annet, Koos, Lenie, and Neetlje. From MolMed, 

my gratitude goes out to Prof.dr. Grootegoed, Benno, Dr. Poot, and Dr. Moen: 

Raymond, while your track record initially attracted me to work in your lab, it was your 

mentorship that made me request an exception to stay there for a prolonged period. I 

greatly appreciate your advice on research projects, career choices, and personal 

matters. I hope we can build on the cellular epidemiology concept in the coming years. 

Maaike, I’ve learned a lot from you about labwork, going from holding a pipet wrongly 

to performing elaborate experiments. You perfectly balanced out Raymond with your 

orderliness. Although our years of work is represented by ‘only’ a single paper in my 

publication list, it holds a special place in my heart. 

I would further like to thank Prof.dr. Frens and Prof.dr. Themmen. Maarten, you did an 

amazing job with the Honours Class. The program resulted in the connections that 

ultimately led to this thesis, and it was a great platform to meet and befriend likeminded 

students. I am proud to have been a part of it and hear similar things about the Erasmus 

University College. Good luck on your next steps! 

Over the course of my PhD, I have shared offices with fantastic colleagues: Ben, thanks 

for your warm welcome into the group. I’m glad we could work together and wish you  
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all the best in the clinic and with the family life. 

Vincent, thank you for some of the most unproductive times at the office, which is one 

of the dangers of having a similar (i.e., great) sense of humor.  But I also should thank you 

for some of the most productive times, when discussing ideas for new projects, 

statistical or epidemiological concepts, or splitting the helpdesk work. It was a priviledge 

to be your paranymph and I can’t wait to be there to celebrate your next achievements. 

Saloua, oh Saloua. How I miss you. You inspired one of my candidate 11th propositions: 

“If there was a SPSS gene, it would be located on the Y chromosome.” All kidding aside 

though, your hard work and pragmatic mindset are truly an inspiration.  

Rens, I miss walking into an office filled with pictures of legs. I hope you will be able to 

satisfy your needs as a neurologist. Please come back every now and then for a match! 

And a rematch! 

Liz! What can I say, we really had a        of a time. I wish you all the best at Harvard 

with Carlo. Thanks for staying in touch. You will probably be hearing about the great 

postdoc positions that Rotterdam is offering. 

Daniel, I always had difficulty to determine what I enjoyed more: your presence, or the 

sound of your computer. Even though your stay in Boston made me realize I probably 

got the better half of the deal, I’m still looking forward to having you back. 

Ryan, the most popular person of Erasmus MC. It’s unbelievable how much work you got 

done, given that you were always helping out others, not least of all myself. Thanks for 

feeding me lots of sweets and always being available! 

Tavia, you might be perfect. I’m pretty sure you are. I didn’t think I could ever love 

someone as much as I love food, and you proved me right. Our lunches and dinners 

were amazing, and I can’t wait to finish the ever-growing to-do list. Plus thanks for the 

geese! They look oriental. And yes, you’re perfect. 

Eline and Jory, I enjoyed your short but pleasant company in the office. 

Next, my colleagues from the neuro-epi group: 

Kamran, I’m glad you decided to return to Rotterdam, the city where everything 

happens (except for our lunch meetings). I’m looking forward to continue seeing you do 

great things. 

Hazel, you were an adequate colleague. Other people that I would like to thank are 
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… hihi  Oh Hazel, where to start? One of the first things I found out about you is that 

you also love sushi. It wasn’t long before it became clear that we have much more in 

common: a geeky attraction to scripting, never closing a single web page (since you 

might need it some day), germophobia, other obsessive compulsive behaviours, and our 

favorite hobby – incidental finding ratings. However, there obviously are some 

differences too. For example, you would be much happier than me if the KRTHAP1 gene 

was suddenly reactivated in humans. While this hasn’t changed for me, other things 

have. I want to thank you for loosening me up a bit, or perhaps even too much: I think 

we can agree we were both quite successful in exploring the limits of what can and 

cannot be said (that’s why they invented chocolate, right?). Hazel, thanks forever. 

Saira, I can’t wait to see you the 22nd of November! Thanks so much for booking a last 

minute flight, it wouldn’t be the same without you!  If however this does not make you 

feel guilty enough to fly across the Atlantic, please know that for me you never left – I 

still want to jump in and talk to you when I walk by your old office. 

Abbas and Jasper, I’m very glad to have had such talented students. While you are both 

completing your medical studies now and considering to specialize afterwards, I think it 

is clear you would also have promising careers in research. 

Frank, your research topic made you the centre of our group and I think we’ve learnt a 

lot from your healthy scepticism during the neuro meetings. It’s too bad you will be 

travelling during my defence! Also, given your sense of humour, you might have realised 

there is a reason this is the only part of my thesis written in British English. 

Lotte!! When people say ‘Guess what?’ my standard reply is ‘You’re pregnant?’. I was so 

happy that one day when I guessed correctly! I’m jealous of Vinz because he gets to 

spend more time with such a loving, talented, and energetic person. 

Sanaz, how I enjoyed our shared interests. You are into self-mockery, and I’m also a big 

fan of mocking you. It’s also not a coincidence that we both have a Dr. Phil seat / gossip-

chair in our room. Thanks for the good times and for making me feel normal! 

Sven, as a member of the three STW-musketeers you were essential for the scientific 

output. Besides this, you’re also politically savvy and a very likable person. I can’t wait for 

the moment a mini-Sven appears at our department!  

Vanja, pile moje lepo! I always wondered what was under those bangs and I’m glad I  
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found out it was a dedicated and generous mind. Thanks for all the edible gifts from 

your trips, I’m pretty sure I can still smell one of them. I’m hopeful you will still come by 

quite often when you’re doing your PhD! 

Unal, I’ve rarely seen someone so focused on getting results and I admire how much 

time and effort you spent on self improvement. But enough on foosball. 

I also shared many moments with other colleagues from the neuro-epi: Ana, Ayesha, 

Eline, Elisabeth, Hoyan, Marielle, Marileen, Pauline, Pinar, Renée, Renske, Sander, Silvan, 

Sonja, Thom, Unal, and Vincent K. 

My thanks also go out to others in our department, in particular the genetic 

epidemiology unit with Najaf, Dina, Adriana, Shazad, Ashley, and Ivana. For the cluster 

support, this includes Maarten and Lennart: thank you for the quick responses to my 

queries. Lennart, luckily my thesis is already written in English, so I don't need to 

translate it for you :). 

Furthermore, I thank Natalie for the ups and downs of debugging PLINK, experimenting 

with our favorite function, and the discussions about ALBI and other new software. Your 

unquenchable thirst for improvement is admirable and I foresee a great career ahead of 

you. Maybe in the field of neuro? Abbas, it has been great to see you grow over the 

years at our department and I envy your colleagues in London. Others I would like to 

mention are Carolina, Fernando, Janine, Symen, and Paul. 

Much of the work in this thesis wouldn’t have been possible without our close 

collaboration with BIGR, headed by Prof.dr. Niessen: Wiro, you have set up an amazing 

department and the many honors and prizes are a testimony to this. The team you have 

established is simply amazing. 

Marius, you rock! I was really excited when, after sharing a lot of laughs, we finally also 

got to work together. While you now moved to Cambridge, it’s luckily only a short fly 

away hihi. ;) 

I’m also grateful for all the hard work of others, including: Annereet, Fedde, Florian, 

Hakim, Henri, Marcel, Marleen, Raimon, Wyke, and Yuan. 

I have been privileged to work with many international collaborators as well through the 

CHARGE, UNIVRSE, and ENIGMA consortia. With great sample size comes great statistical 
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power and responsibility. My experiences gave me the fullest confidence that the future 

is in able hands, only a few of which I mention here: Sudha Seshadri, Lenore Launer, 

Myriam Fornage, Will Longstreth, Helena Schmidt, Josha Bis, Paul Nyquist, Stephanie 

Debette, Joanna Wardlaw, Ganesh Chauhan, Vincent Chouraki, Claudia Satizabal, Albert 

Smith, Edith Hofer, Charles DeCarli, Bernard Mazoyer, Reinhold Schmidt, Alexander 

Teumer, Tomáš Paus, Katharina Wittfeld, Mohamad Habes, Michelle Luciano, Christopher 

Chen, Paul Thompson, Derrek Hibar, Neda Jahanshad, and Boris Gutman. 

Sudha, I have met people who were either very smart, friendly, strong, or huggable, but 

is so rare to all these traits in a single person. You continue to inspire me and 

undoubtledly many others. 

Paul, it’s truly amazing to work with the busiest person I know. When I visited your lab 

for half a year, I think there were two weeks where you weren’t traveling. Nonetheless, 

you always make time for everyone and you still pay attention to details when reviewing 

a paper. LONI is very successful and an important reason for this is its excellent team: 

Derrek, I miss you! Neda, I miss you more! Boris, I miss you even… ok, I definitely miss 

Neda the most. I really enjoyed working with you guys and I’m happy that you visited 

Rotterdam a few times. You are always welcome again, and the same goes for Adam, 

Jason, Josh, Madeleine, Priya, and Sarah, as well as the other LONI peeps. 

I am also grateful to Alfred Aho, Peter Weinberger and Brian Kernighan. 

I feel lucky to have such great friends who value the quality of our contact above the 

quantity. I hope that this thesis serves as a good alibi for the past years. 

Spring, the ostrich delivery always was the highlight of my week. Two pistachios fighting 

(in) a nuclear reactor. Thank you so much for never delivering an ostrich. 

Sinan, every now and then when work gets too stressful I think about your helmets. I 

hope you will continue to grow the collection in the future to reach your final goal of 

having approximately three helmets. 

Michael, your charitable work is an inspiration to all of us, but especially to Martinox. 

Evgeny, one of my fondest memories is of the day when someone we don’t know settled 

a lawsuit. I wish you could have been there! 

Rick, I would love to do a genetic study on you about stress resilience. Thanks for the 

great times  and for giving me something to look forward to during my internships!  
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Nevertheless, genetics remain important, so I’d like to end by thanking my family.  

 أول الشجرة بذرة

At the first place my parents: 

Thank you for planting the seed that would would turn into this thesis. 

Pipi, you taught me to set big goals and work harder than everyone else to achieve 

them. I’m glad I inherited some of your appetite for knowledge and critical thinking, and 

I’m relieved you are not part of my committee. Thank you for raising me to be 

independent, but also for letting me know (very often) that you are there for me if I need 

anything. 

Mimi, you taught me important lessons on dedication, compassion, and respect. 

Furthermore, I learned a lot about cooking, crocheting, and fashion design. Although I 

was often immersed in my laptop, your presence brought me a lot of joy and motivation, 

even though I might not have always shown this. Thank you for making me understand 

the value of family and for keeping us together. 

I also owe a lot to my brothers, who nurtured this seed further: 

Hu, you repeatedly reminded me that relaxing is just as important as work, if not more 

so. Looking back, I regret not taking you up on more offers to do things together 

because of a deadline, but we will compensate this surely! Thank you for being who you 

are, but above all, thank you for expanding our family: Hanin, I couldn’t have wished for 

a sweeter sister.  

Ha, all the pages in this book would not suffice to thank you for what you have done for 

me. You cultivated my creativity (HiHa-ballen), passion to save lives (the 'kussen'-

incident), work ethic (Pokémon), scientific thinking ('leuk' discussiëren), and you taught 

me to live life to the fullest (the legendary CTCT trip). You are incontestably the smartest 

person I know, and your guidance is the foundation of this thesis and all my 

achievements. While it is an unreachable goal, I motivate myself by aiming to catch up to 

you one day. Thank you. 

“Congratulations! Now, you found the most important magic in the world. It is love and 

friendship and mmhvummduokbm!”. 
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