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Abstract

Background: New markers hold the promise of improving risk prediction for individual patients. We aimed to compare
the performance of different strategies to extend a previously developed prediction model with a new marker.

Methods: Our motivating example was the extension of a risk calculator for prostate cancer with a new marker that
was available in a relatively small dataset. Performance of the strategies was also investigated in simulations.
Development, marker and test sets with different sample sizes originating from the same underlying population were
generated. A prediction model was fitted using logistic regression in the development set, extended using the marker
set and validated in the test set. Extension strategies considered were re-estimating individual regression coefficients,
updating of predictions using conditional likelihood ratios (LR) and imputation of marker values in the development set
and subsequently fitting a model in the combined development and marker sets. Sample sizes considered for the
development and marker set were 500 and 100, 500 and 500, and 100 and 500 patients. Discriminative ability of the
extended models was quantified using the concordance statistic (c-statistic) and calibration was quantified using the
calibration slope.

Results: All strategies led to extended models with increased discrimination (c-statistic increase from 0.75 to 0.80 in test
sets). Strategies estimating a large number of parameters (re-estimation of all coefficients and updating using
conditional LR) led to overfitting (calibration slope below 1). Parsimonious methods, limiting the number of coefficients
to be re-estimated, or applying shrinkage after model revision, limited the amount of overfitting. Combining the
development and marker set using imputation of missing marker values approach led to consistently good performing
models in all scenarios. Similar results were observed in the motivating example.

Conclusion: When the sample with the new marker information is small, parsimonious methods are required to
prevent overfitting of a new prediction model. Combining all data with imputation of missing marker values is an
attractive option, even if a relatively large marker data set is available.
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Background
Markers for disease risk, such as genetic characteristics,
imaging, and biomarkers, may be useful to improve clin-
ical prediction models. Incorporating markers in multi-
variable prediction models should lead to better
individualized risk estimates, such that more personal-
ized medicine is achieved [1–3]. Data sets with new

marker data are however often relatively small [4]. This
poses a challenge since overfitting may easily occur in
developing prediction models with limited sample size
[5]. A new model with marker data incorporated may
then perform worse than a model without, if the latter
was based on a substantially larger data set.
Developing a prediction model with limited sample

size may lead to too optimistic estimates of predictor ef-
fects [6, 7]. Optimistic estimates of predictor effects lead
to poor calibration of a prediction model when applied
in new patients. Applying shrinkage techniques may
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limit this problem. In the same spirit as shrinkage, one
may consider updating existing prediction models using
parsimonious methods rather than refitting all model pa-
rameters [8]. Parsimonious updating methods consider
fewer parameters that need to be estimated, which is es-
pecially relevant in small samples.
Recently, a method was proposed that uses conditional

likelihood ratios (CLRs) for extension of an existing pre-
diction model. The CLRs are calculated for the marker
values conditional on the predictors in the existing pre-
diction model [9]. The predictions of the existing predic-
tion model are then updated by combining them with
the CLRs using Bayes rule.
If individual patient data from the development dataset

on which the existing prediction was developed are avail-
able, this set can be combined with the new dataset con-
taining information on the new marker. The advantage of
this approach is that the extended model may exploit all
available data on the predictor effects, although the marker
values in the development set are systematically missing.
After (multiple) imputation of the missing marker values,
an extended prediction model can be developed based on
the combined development and marker set.
In this study, we aimed to investigate the performance

of different strategies of extending an existing prediction
model with a new marker. We specifically focused on the
impact of small sample size of the marker set in simula-
tion studies and risks of overfitting. We first introduce a
motivating example of men at risk for prostate cancer,
followed by a description of various strategies to extend
an existing model and results from a simulation study. We
conclude with a discussion of our findings and recom-
mendations for the situation that the development data
set is or is not available at the time of model updating.

Methods
Motivating example
The European Randomized Study of Prostate Cancer
(ERSPC) is a large randomized study that provided the
basis for a number of clinical prediction models, presented

as risk calculators (RCs) [10–12]. One such risk calculator
(“ERSPC RC3”) estimates the probability of a positive sex-
tant biopsy in previously unscreened men based on three
clinical characteristics: prostate-specific antigen (PSA, a
continuous variable), prostate volume (a continuous vari-
able), and the result of a digital rectal exam (DRE, a binary
variable) [12]. The ERSPC RC3 was developed on a cohort
of 3,624 previously un-biopsied men (Table 1). Recently
the Prostate Health Index (PHI) has been proposed as a
promising marker, which should help to better discriminate
between patients with and without prostate cancer (Fig. 1)
[13, 14]. We aimed to extend the ERSPC RC3 with the new
marker PHI. Data were available from five European sites
that collected PHI in addition to the same variables used by
ERSPC RC3 (n = 1,243).
All datasets containing information on PHI showed

higher proportions of patients with cancer (42–58 %)
compared to the development set (24 %) (Table 1). The
marker set from Hamburg showed the highest PSA
levels (median 6.5 ng/l), which were far above the PSA
levels in the ERSPC development set (median 3.1 ng/l).
We extended the ERSPC RC3 using data from one site

to simulate the situation that only a small sample of pa-
tients with PHI is available. The extended ERSPC RC3
was subsequently validated in the data from the four
sites not used at model extension.

Strategies to extend a prediction model
We considered several strategies to extend an existing
prediction model developed using logistic regression
with a new marker (Table 2). The first method was not
to allow for any updating. This was considered the refer-
ence on which the extended models needed to improve
upon. The linear predictor lp0 of the existing, previously
developed, prediction model is given by:

lp0 ¼ αþ
X

i¼1

p
βixi;

where α is the model intercept, βi are the regression co-
efficients as available for the existing model, and xi the

Table 1 Characteristics of patients used at the development of ERSPC RC3 (ERSPC section Rotterdam) and characteristics of patients
collected at 5 different sites in Europe with information on the additional marker PHI

Variable Measure or category ERSPC Rotterdam Paris Rennes Munster Hamburg Milan

n = 3,616 n = 108 n = 188 n = 319 n = 182 n = 446

PSA (ng/ml) Median (25–75 percentile) 3.1 (2.8–3.6) 4.4 (3.5–5.6) 4.6 (3.5–5.8) 5.1 (4.1–6.4) 6.5 (4.4–9.6) 5.4 (4.2–7.0)

Prostate Volume 25 cc 739 (20 %) 22 (20 %) 48 (26 %) 78 (24 %) 83 (46 %) 271 (61 %)

40 cc 1728 (49 %) 59 (55 %) 60 (32 %) 96 (30 %) 23 (13 %) 140 (31 %)

60 cc 1149 (32 %) 27 (25 %) 80 (43 %) 145 (45 %) 76 (42 %) 35 (8 %)

Abnormal DRE Yes 1279 (35 %) 40 (37 %) 120 (64 %) 49 (15 %) 52 (29 %) 76 (17 %)

PHI Median (25–75 percentile) – 45 (34–61) 68 (42–121) 45 (32–59) 40 (30–61) 47 (37–57)

Cancer Yes 885 (24 %) 62 (57 %) 107 (57 %) 184 (58 %) 100 (55 %) 187 (42 %)
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predictors, with values from the new data set. Various
strategies for extending an existing prediction model
with a new marker were considered which fell into 3
classes: re-estimation of all regression coefficients, in-
cluding the coefficient for the new marker; Bayesian up-
dating of predictions using conditional likelihood ratios;
and imputation (Table 2). Re-estimation of the regres-
sion coefficients and Bayesian updating of predictions
using conditional likelihood ratios only require the
marker set, while the imputation approach also requires
the availability of the development set of the original
prediction model.

Re-estimation of regression coefficients
A straightforward way of extending the existing predic-
tion model would be to fit a logistic regression model to

the new marker data set only, containing the same vari-
ables as required for the existing model in addition to
the new marker as predictors. We label this strategy
“model revision with extension” [8, 15]. The linear pre-
dictor lp1 of this method becomes

lp1 ¼ α̂ þ
X

i¼1

p
β̂i xi þ β̂pþ1m;

where m is the novel marker, and the hats above
parameters denote the associated estimated regression
coefficients. Model revision with extension requires the
estimation of p + 2 parameters using data from the
marker set. In relatively small marker datasets, this strat-
egy may suffer from a tendency to overfit [6, 7]. To miti-
gate these problems, we additionally consider shrinkage
of the refitted coefficients towards the recalibrated

Fig. 1 Density estimate of PHI levels for cases and controls in the marker set

Table 2 Characteristics of the update methods and number of parameters estimated in the case study of prediction of prostate
cancer at biopsy

Method Data required Nr. Parameters estimated Nr. Parameters estimated in case study

Original Model No data 0 0

Model Revision with extension Marker set p +m + 1 5

Model Revision with shrinkage Marker set p +m + 1 5

Recalibration and extension Marker set m + 2 3

CLR Marker set 2 m (p + 1) + m (m + 1) 10

CLR simple Marker set m (p + 2) +m (m + 1)/2 6

Imputation Development and marker p +m + 1 5

p: number of predictors in original model, m: number of markers
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regression coefficients (“model extension with shrink-
age”) [8]. The regression coefficient of the new marker is
shrunken towards zero. The recalibrated regression coef-
ficients are obtained by first fitting a logistic regression
model with only a single covariate, i.e. the linear pre-
dictor of the original prediction model, lp0, to the new
marker dataset, yielding lp2 ¼ α̂ þ β̂overalllp0 . The linear
predictor of “model revision with shrinkage” is given by

lp3 ¼ ĉlp1 þ 1−ĉð Þlp2;
where ĉ is the heuristic shrinkage factor estimated by

ĉ ¼ max χ2revision−recalibrated−df ; 0
� �

χ2revision−recalibrated
;

χrevision − recalibrated
2 is the difference in-2 log-likelihood

between the extended and recalibrated model, and df is
the difference in degrees of freedom of the extended and
recalibrated model (p − 1 in our case).
Over fitting may also be limited by reducing the

number of estimated parameters. Therefore, we con-
sidered a third strategy by including the new marker in
the recalibrated prediction model (“recalibration with
extension”). Regression coefficients were estimated by
fitting a logistic regression model with the linear
predictor of the original model and the new marker as
predictors:

lp4 ¼ α̂ þ β̂overalllp0 þ β̂pþ1m:

Conditional likelihood ratio approach
The conditional likelihood ratio (CLR) approach as-
sumes that the new marker data set contains the same
predictors x1,…, xp, as the development data set as well
as additional information on the new marker m. The LR
of observing the marker values conditional on the pre-
dictors is estimated as:

LR ¼ f mjx1;…; xp; cancer
� �

f mjx1;…:; xp; no cancer
� � :

The prior odds of having cancer is given by the existing
prediction model: Prior Odds = exp (lp0). The posterior
odds is obtained by combination with the LR using Bayes
rule:

Posterior Odds ¼ Prior Odds � LR:

It has previously been proposed to estimate the com-
ponents of the LR using linear regression when the
marker is measured on a continuous scale [9]. The
marker set is split into two separate sets, one containing
all patients with cancer versus the other without cancer.
A linear regression model is fitted in each set, with the

marker as outcome and predictors as covariates. The nu-
merator and denominator of the LR can then be esti-
mated by

LR ¼ ϕμcancer;σcancer mð Þ
ϕμno cancer

; σno cancer mð Þ
;

where ϕ is the normal density function, μcancer and μno
cancer the fitted means of the new marker, and σcancer and
σno cancer the estimated standard deviations of the resid-
uals of the fitted linear regression models for patients
with and without cancer, respectively. We label this ap-
proach “CLR”.
This approach requires the estimation of 2 (p + 1) + 2

parameters, which may result in overfitted prediction
models. To limit the number of parameters that need to
be estimated the LR may also be estimated using one
linear regression model, with the marker as outcome
and the predictors of the existing model and an indicator
cancer yes/no as covariates (“CLR simple”). The number
of parameters estimated using this approach is p + 3.

Imputation approach
In the imputation approach the development and
marker set are both used to fit a prediction model con-
taining the predictors of the existing prediction model
plus the new marker. This is complicated by the fact that
marker values are systematically missing in the develop-
ment set. We used multiple imputation with chained
equations (mice) to impute the missing marker value 10
times [16]. In each of the completed datasets a model

was fitted with logistic regression. Let β̂i;j denote the re-

gression coefficient of predictor xi in the jth completed
dataset. The overall estimate of the regression coefficient
can be obtained using Rubin’s rules [17]. This overall es-
timate is simply the average of the estimates in each of
the 10 completed datasets:

β̂i ¼
1
10

X10

j¼1

β̂i;j:

Model performance
We assessed discrimination and calibration of the ex-
tended models. Discrimination refers to the ability of a
prediction model to discriminate between patients with
and without the outcome of interest. Discrimination was
quantified using the concordance statistic (c). For a sens-
ible model the c-statistic lies between 0.5 and 1. Where
0.5 means that the model does not discriminate better
than flipping a coin and 1 means that the model dis-
criminates perfectly. For a logistic regression model the
c-statistic is equivalent to the area under the ROC curve
[18]. Calibration measures the agreement between the
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predicted probabilities and observed outcomes. Calibra-
tion of the extended prediction models was quantified
using the calibration slope. Ideally the calibration slope
should be equal to 1.0 [5, 7].

Motivating example continued
The c statistic of the ERSPC RC3 was around 0.69 in all
five marker sets (Table 3). Extending ERSPC RC3 with
PHI typically led to an average increase in c of 0.05, from
0.69 to 0.74, across the different validation sets. In one in-
stance “model revision with extension” and “model exten-
sion with shrinkage” did not lead to better discrimination.
The calibration of the ERSPC RC3 model with or

without the PHI marker was suboptimal in all five
marker sets. The calibration slope was smaller than 1,
indicating that overall predictor effects were too ex-
treme. Models extended using “CLR” had the poorest
calibration slopes, whilst the “CLR simple” and the im-
putation approach showed slightly better calibration.
Calibration slopes of “recalibration with extension” were
typically close to one.

Simulation study
The five datasets containing information on the marker
PHI formed the basis for generating simulated develop-
ment and marker samples. Two settings were simulated,
one with the logistic regression model as the true under-
lying model and one with the “CLR method” as true
underlying model. In this way, we allowed for a fair
comparison between the two approaches: re-estimation
of the regression coefficients and the conditional likeli-
hood ratio approach.
The logistic regression model fitted in the five stacked

marker sets was considered the true underlying model
(Additional file 1: Table S1). It contained the predictors
PSA, prostate volume, DRE and PHI. Patients were
drawn with replacement from the five stacked PHI data-
sets and for each patient the probability of a positive
sextant biopsy was calculated with the logistic regression
model. The binary outcome variable was generated by
comparing the probability of a positive sextant biopsy
with an independently generated variable ui having a
uniform distribution from 0 to 1 with Yi = 1 if pi ≥ ui and
0 otherwise.
The true underlying prior model, i.e. without the

marker, for the setting with the CLR method was the

model fitted in the ERSPC RC3 data. The true under-
lying linear regression models, that are the components
of the likelihood ratio, were the models fitted in the five
stacked marker sets, separately for patients with and
without cancer (Additional file 1: Table S1).
The binary outcome was generated based on the prob-

ability of a positive sextant biopsy given by the prior
model, in a similar way as generating the outcome from
a logistic regression model. Subsequently, if the gener-
ated outcome was a positive biopsy, a value for PHI was
generated by drawing a random number from a normal
distribution with mean equal to linear predictor of the
regression model of PHI for men with a positive biopsy
and standard deviation equal to the associated standard
deviation of the residuals in the regression model. If the
generated outcome was a negative biopsy, the value for
PHI was based on the regression model for PHI for men
with a negative biopsy.
We considered three scenarios with varying sample

sizes of the development and marker samples: 1) 500 for
the development sample and 100 for the marker sample,
2) 100 for the development sample and 500 for the
marker sample and 3) 500 for the development sample
and 500 for the marker sample. In each scenario we gen-
erated 1,000 development and marker samples with the
same underlying models.
A prediction model containing PSA, prostate volume

and DRE was fitted on the development sample and
extended with PHI using the marker sample with re-
estimation of the regression coefficients or with the
conditional likelihood ratio approach. An independent
validation sample was generated with 100,000 patients
on whom the performance of the extended prediction
models was assessed. The validation sample was gener-
ated using the same models as the development and
marker sample. Performance measures considered
were the c-statistic and the calibration slope. All simu-
lations were done using R 2.14.1 [19], with multiple
imputation (10 times) using the mice package [20]. R-
scripts used in the simulation studies are available on-
line (Additional files 2 and 3).

Results
When the development sample contained 500 patients
and the marker sample 100 patients, the models without
the marker PHI showed a c-statistic of 0.69 in the

Table 3 Average and range of c statistic and calibration slopes in the prostate cancer case-study

Measure Original Model Model Revision Model Revision
with Shrinkage

Recalibration
with extension

CLR CLR simple Imputation

c-statistic 0.69 [0.68–0.69] 0.73 [0.69–0.75] 0.74 [0.73–0.75] 0.74 [0.73–0.75] 0.74 [0.73–0.75] 0.74 [0.73–0.75] 0.73 [0.73–0.74]

Calibration Slope 0.77 [0.71–0.82] 0.76 [0.42–1.08] 0.75 [0.41–1.06] 0.96 [0.55–1.72] 0.61 [0.54–0.72] 0.74 [0.59–0.91] 0.78 [0.66–0.93]

A previously developed prediction model (RC3) was extended with a marker (PHI) using data from one cohort and validated in four cohorts not used at
model development
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development samples (Fig. 2). Extending the prediction
model with the marker showed a c-statistic of around
0.73. “Recalibration with extension”, “CLR simple”, and
the “imputation approach” led to the largest increase in
c with relatively low variation.. Models extended with
“model revision with extension” and “CLR” showed cali-
bration slopes below one, indicating overfitting in the
small marker samples. Other extension methods showed
median calibration slopes closer to one, similar to the
model without the marker. The choice of true under-
lying model only influenced the model performance for
the “CLR” method, both in discriminative ability and
calibration and in all scenarios.
When the marker sample was larger, 500 patients, with

the same development sample size of 500, the variation
in c-statistic was much lower compared to the scenario
with a development sample of 500 and a marker sample
of 100 (Fig. 3).

The median calibration slopes were closest to one for
the methods “model extension with shrinkage” and “re-
calibration with extension”. The median calibration slope
of the models extended using “CLR” was well below one.
When the development sample contained only 100 pa-

tients and the marker sample 500 patients, more vari-
ation in c-statistic was found than in the other scenarios
reflecting the smaller sample size at development (Fig. 4).
The methods “model revision with extension”, “imput-
ation”, and “model revision with shrinkage” showed the
largest values for the c-statistic.
The median calibration slope of the prediction models

without the marker PHI was well below one, reflecting
too extreme predictions due to the small development
samples. Re-estimation of the regression coefficients and
the “imputation” approach improved the calibration
slopes with values close to one. “CLR” and “CLR simple”
showed median calibration slopes well below one.

Fig. 2 Calibration slope and c-statistic of updated models in a simulation study for development set size 500 and marker set size 100. Outcomes
were generated using a logistic regression model and the CLR model as the underlying true models. Box plots are based on 500 simulations

Nieboer et al. BMC Medical Research Methodology  (2016) 16:128 Page 6 of 10



Discussion
We compared different strategies of extending an exist-
ing prediction model with a new marker. We found that
when the dataset used to extend the prediction model
was small, parsimonious methods led to the largest in-
crease in discriminative ability of the prediction model,
but as the available sample size to extend the prediction
model increased more extensive extension methods out-
performed parsimonious methods. Strategies requiring
the estimation of many parameters, such as Bayesian up-
dating with conditional likelihood ratios estimated per
outcome (“CLR”) and “model revision with extension”,
resulted in too extreme predictions. Strategies that
required estimation of fewer parameters, such as “recali-
bration with extension” or “CLR simple”, and strategies
that applied shrinkage, all resulted in well-calibrated pre-
dictions for new subjects. The “imputation strategy” also
required the estimation of a relatively large number of

parameters, i.e. all individual regression coefficients, but
the combination of the development and marker sets led
to the largest data set possible. This strategy led to more
precise estimates of regression coefficients, and consist-
ently well performing prediction models.
The structure for simulating the datasets was based on

empirical data, which simplified the data generation pro-
cedure and avoided arbitrary choices in predictor distri-
butions and predictor effects [21]. The outcomes were
generated from a logistic regression model or from a
model that was consistent with the CLR method. This
allowed for a fair comparison between prediction models
based on logistic regression and based on the CLR
methods. As expected, the CLR methods showed lower
performance when the true underlying model was a lo-
gistic regression model. The methods that fitted logistic
regression models were less sensitive to the underlying
model generating the outcome.

Fig. 3 Calibration slope and c-statistic of updated models in a simulation study for development set size 500 and marker set size 500. Outcomes
were generated using a logistic regression model and the CLR model as the underlying true models. Box plots are based on 500 simulations
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Our simulation study used patients from one homoge-
neous underlying population, meaning that the predictor
effects in the development and marker sets were as-
sumed to be similar. In practice this may not be the case.
Predictor effects in the development and marker sets
may be truly different (heterogeneity), or the prediction
model may have been overfitted at development [22].
Both heterogeneity and overfitting lead to prediction
models with incorrect regression coefficients when
applied in the marker set. Methods using conditional
likelihood ratios to update predictions do not adjust pre-
dictor effects of the existing model. These methods are
hence not useful to extend models that have incorrect
regression coefficients for the marker set.
Our case study was based on a widely used risk prediction

tool for prostate cancer. We illustrate that adding a new
marker to such an existing prediction model may lead to
substantially better model performance, in particular better

discrimination. We recognize that multiple markers may be
available, all with the potential to improve discrimination.
For parsimony, markers can be selected in a stepwise for-
ward manner [8]. Or multiple markers can be combined in
a simple summary score, with the summary score added as
a single predictor. This approach was followed for the PHI
marker which consists of a combination of the biomarkers
PSA, free-PSA and [−2] proPSA [13].
We compared the performance of prediction models

in terms of calibration and discrimination. Recently,
other measures for clinical usefulness have been sug-
gested to assess the added value of markers, e.g. the net
reclassification index (NRI), net benefit, and relative util-
ity [23–25]. All these measures consider the number of
true positives and true negatives at particular risk
thresholds and are sensitive to the calibration of a pre-
diction model. Miscalibrated prediction models might
even show misleading performance when calculating the

Fig. 4 Calibration slope and c-statistic of updated models in a simulation study for development set size 100 and marker set size 500. Outcomes
were generated using a logistic regression model and the CLR model as the underlying true models. Box plots are based on 500 simulations
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NRI [26, 27]. The risk of overfitting should hence not be
taken lightly as induced by simply refitting a model in a
small data set where a new marker is available.
When possible, combining the development and valid-

ation sets is preferable, since this uses the full informa-
tion available in the development set and consequently
limits the risk overfitting.
A limitation of this study is that we considered a case

study in which relatively few regression coefficients were
estimated in the original model (3 in total). We expect
that differences between the different strategies would
become clearer when considering prediction models
containing larger number of predictors, or when smaller
marker sets are considered.

Conclusion
This study shows that the “imputation approach” is a
suitable strategy to improve prediction models with new
markers. This approach combines the data set used at
development of the existing prediction model with the
new marker data set. With access to only a small marker
data set, we recommend parsimonious methods, such as
“recalibration with extension” and “CLR simple”. Larger
marker data sets allow for more extensive updating of
the prediction model using “model revision with
shrinkage”.

Additional files

Additional file 1: Table S1. Coefficients used for generating datasets in
the simulation study. Table containing the coefficients used in generating
datasets in the simulation study. (DOCX 13 kb)

Additional file 2: Script 1. R-scripts for running the simulation study.
(R 9 kb)

Additional file 3: Script 2. R-script containing functions used for running
the simulation study. (R 2 kb)
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