
Spin and Lattice Structures in
Materials with Competing
Interactions Investigated by
Neutron Scattering Techniques

by

Lingjia Shen

A thesis submitted to
The University of Birmingham
for the degree of
DOCTOR OF PHILOSOPHY

Condensed Matter Group
School of Physics and Astronomy
College of Engineering and Physical Sciences
The University of Birmingham

October 2016



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 



Abstract

Neutron diffraction and small angle neutron scattering have been used to explore three different materials,

including γ-CoV2O6, Pr0.5Ca0.5Mn0.97Ga0.03O3, and Y2(Cr1−xGax−0.5Sb0.5)2O7, in which the magnetic or

crystallographic properties are closely related to the comepting interactions.

In the quasi-one-dimensional magnet γ-CoV2O6, we demonstrate that the magnetic ground state below

6.6 K (TN) is composed of two single-k phases in a volume ratio of 65(1) : 35(1). The minority phase modulated

by k2 = (-0.25, 0, 0.25) undergoes an incommensurate short range order to commensurate long range order

transition while cooled through 5.6 K (T ∗). On the other hand, the majority phase modulated by k1 =

(0.5, 0, 0) remains commensurate and long range ordered down to the lowest temperature probed (1.5 K). We

propose that this magnetic phase separation is linked to the competition between the single-ion anisotropy

and frustrated spin exchange interactions in γ-CoV2O6.

In the strained manganese perovskite Pr0.5Ca0.5Mn0.97Ga0.03O3, the electronic phase separation (e.g.

orbital order, polaron) is linked to the competition between the Jahn-Teller distortion which tends to localize

the carriers and the ferromagnetic double-exchange. By varying the magnetic field at 150 K where the system

is a paramagnet, we have found a novel carrier delocalization transition, which enhances the local Jahn-Teller

distortion, at Bc1 = 5.1 T. Surprisingly, most of the spins (∼ 97.5 %) remain paramagnetic at Bc1, and only

become ferromagnetic at Bc2 = 7.9 T, where the strong anisotropic strains are softened, accompanied by

a giant magnetostriction effect. Most of all, the magnetoresistance of Pr0.5Ca0.5Mn0.97Ga0.03O3 remains

detectable up to Bc2. Our results strongly suggest that colossal magnetoresistance is governed by two

mechanisms: (I) carrier delocalization, and (II) ferromagnetic double-exchange.

In the diluted pyrochlores Y2(Cr1−xGax−0.5Sb0.5)2O7, the nonmagnetic sites does not percolate until xc

= 0.61. However, we cannot detect any magnetic long range order in Y2CrSbO7 (x = 0.5) down to 2 K.

We propose that bond disorder caused by the weak ionic size mismatch between Cr3+ (0.615 Å) and Ga5+

(0.600 Å) has a nonnegligible role in Y2CrSbO7. This is confirmed by our simulations in which the bond

disorder has a much lower percolation threshold at xc’ = 0.23, which means that Y2CrSbO7 is dominated

by the percolative bond disorder. As a result, we argue that Y2CrSbO7 is a potential spin glass candidate

which is caused by bond disorder. In this class of spin glasses, the spin freezing temperature scales with the

bond disorder strength in the absence of spin-lattice coupling. This is consistent with the very weak bond

disorder and the lack of any transition above 2 K in Y2CrSbO7.
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CHAPTER 1

INTRODUCTION

Competing interactions in strongly correlated electron systems often lead to many phases which are close,

or even identical, in free energy at low temperatures. As a result, the physical properties are very sensitive to

external perturbations such as doping, magnetic field, pressure, etc [1, 2]. In the first part of this chapter, we

will briefly recall some key concepts in quantum mechanics. With this knowledge, we will demonstrate several

particle-particle interacting ‘forces’, including the Coulomb interaction, spin exchange interactions, spin-orbit

coupling, and so forth. These terms are of particular importance in understanding the physics discussed in

this thesis. Finally, we will show how the competition of these interactions can lead to exotic particle

condensation using several example materials. Following this chapter, there will be a chapter introducing

the various experimental techniques referred to in this thesis. We will then present work illustrating new

potential effects of these competing interactions. Chapter 3 looks at magnetic phase separation in γ-CoV2O6,

a frustrated quasi-one-dimensional magnet. Chapter 4 is mainly about the decoupling of carrier delocalization

and ferromagnetism in the strained manganese perovskite Pr0.5Ca0.5Mn0.97Ga0.03O3. In the final chapter,

we will illustrate the absence of magnetic long range order in the diluted pyrochlore compound Y2CrSbO7.

1.1 Fundamental concepts

1.1.1 Orbital angular momentum

In classical mechanics, the angular momentum (~L) of a macroscopic object is defined as ~L=~r× ~p, where ~p

is the linear momentum and ~r is the spatial position of this object. However, it is necessary to adjust this

formula in order to correctly describe the ‘orbit’ of a microscopic quantum mechanical particle (e.g. atom,

electron). The vector ~L therefore becomes an operator (L̂) instead: L̂= i~r̂×O. Assuming Li (i = x, y, z)
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is the projection of the orbital momentum along a particular axis so that L̂2 = L̂2
x + L̂2

y + L̂2
z, the following

commutation relations are obtained

[L̂i, L̂
2] = 0, [L̂i, L̂j ] = iεijk~L̂k (i 6= j 6= k), (1.1)

Figure 1.1: Angular distribution of s, p, d orbitals, from Ref. [3].

This means that the two operators, L̂i and L̂2, share the same set of eigenfunctions

| l, ml >= Ylml
(θ, φ) ∝ Pml

l (cosθ)eimlφ, (1.2)

where l (l = 0, 1, 2, ...),ml (ml = −l, −l + 1, ..., 0, ..., l − 1, l),Pml

l (cosθ) and εijk are angular, magnetic

momentum quantum numbers, Legendre polynomials and Levi-Civita symbol, respectively [4, 5]. As we shall

focus on the 3d (l = 2) transition metal (TM) oxides in this thesis, we plot out the angular dependence

of eigenfunctions belonging to s (l = 0), p (l = 1) and d orbitals in Fig. 1.1. Linear combinations of the

eigenfunctions at a fixed l value are used in this figure. For the p orbitals, we have

Yx =
1√
2

(Y11 + Y1−1), (1.3)
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Yy =
1

i
√

2
(Y11 − Y1−1), (1.4)

Yz = Y10. (1.5)

For the d orbitals, we have

Yxy =
1

i
√

2
(Y22 − Y2−2), (1.6)

Yx2−y2 =
1√
2

(Y22 + Y2−2), (1.7)

Yyz =
1

i
√

2
(−Y21 − Y2−1), (1.8)

Yzx =
1√
2

(−Y21 + Y2−1), (1.9)

Yz2 = Y20. (1.10)

However, one can never measure the three components of L̂, as per eq. 1.1. In the following treatments, we

will always use the z-component (L̂z) as the commutative operator of L̂2 and m as the magnetic momentum

angular number instead of ml. Moreover, we can obtain the eigenvalues of L̂2 and L̂z which are L2 = l(l−1)~,

Lz = m~, respectively.

In classical systems, if a magnetic field ~B is applied to a particle with charge e, its Zeeman energy will be

E = −~µ · ~B, (1.11)

where ~µ =
e

2me

~L is the magnetic moment of this charged particle [5]. As mentioned above, these vectors

are replaced by operators in quantum mechanics. As a result, the eigenstate of an electron can be described

by the following equations:

µ̂ =
e

2me
L̂, µ̂z =

e

2me
L̂z. (1.12)

If we further assume the magnetic field is along the z -direction and the electron is in an eigenstate with

eigenvalues l and m, the resulting energy change, which can be meausured, is

∆E =
eBm~
2me

= mµBB, (1.13)

where µB =
e~

2me
is the Bohr magneton and takes the value 9.274× 10−24 Am2 [5].
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1.1.2 Spin angular momentum

The electron not only has an orbital angular momentum (L̂), but also possesses an intrinsic spin angular

momentum (Ŝ). As shown by Dirac, it is purely quantum mechanical in origin [6]. Three 2× 2 matrices,

named the Pauli spin matrices, are useful for describing the spin operator Ŝ

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

 . (1.14)

We then define Ŝ as

Ŝ =
1

2
σ̂ =

1

2
(σx, σy, σz). (1.15)

We have adopted the convention that the angular momentum is measured in units of ~. Then commutation

relations can be obtained for the spin operators

[Ŝi, Ŝ
2] = 0, [Ŝi, Ŝj ] = iŜk (i 6= j 6= k). (1.16)

The spin quantum number, S, is
s

2
(s = 0, 1, 2...) and its z -component Sz can take 2s+1 possible values

between -S and S.

1.1.3 Total angular momentum

With the knowledge of both orbital and spin angular momenta, we can define the total momentum (Ĵ) of a

system

Ĵ = L̂+ Ŝ. (1.17)

At this point it is helpful to introduce the Landé g-factor (g). For the orbital angular momentum, µ̂L =

e

2me
L̂, which we can write as µ̂L = gLµBL̂, where gL = 1. It is nontrivial to calculate the Landé factor for

the spin angular momentum (gs) [5]; it is gS ≈ 2 [4, 5]. Bear in mind that our angular momentum is in units

of ~.

For the total magnetic moment

µ̂J = µB(gLL̂+ gSŜ) = gJµB Ĵ , (1.18)

where gJ is the Landé g-factor of the total angular momentum. In order to obtain an expression for gJ using
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gL, gS , J, L and S (J, L and S are eigenvalues of Ĵ , L̂ and Ŝ), we mutiply both sides of eq. 1.18 by Ĵ

µB(gLL̂ · Ĵ + gSŜ · Ĵ) = gJµB Ĵ
2. (1.19)

And by inserting the following known expressions into eq. 1.19,

Ĵ2 = J(J + 1), L̂2 = L(L+ 1), Ŝ2 = S(S + 1), (1.20)

L̂ · Ĵ =
1

2
(Ĵ2 + L̂2 − Ŝ2), (1.21)

Ŝ · Ĵ =
1

2
(Ĵ2 − L̂2 + Ŝ2), (1.22)

we obtain the Landé g-factor for the total angular momentum

gJ = gL
J(J + 1) + L(L+ 1)− S(S + 1)

2J(J + 1)
+ gS

J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)
. (1.23)

Experimentally, we always measure the eigenvalues of Ĵ2 and Ĵz. As a result, we define two very important

parameters: the effective magnetic moment (Meff ) and the saturation moment along the field direction (Ms)

Meff = gJµB
√
J(J + 1), Ms = gJJµB . (1.24)

1.1.4 Paramagnetism

A material is expected to be paramagnetic in one of two conditions:

(i) the spins are well isolated in space so that the interaction energy between each pair (Ei) of spins is

negligible;

(ii) the thermal fluctuation energy (kBT, kB ≈ 8.617 × 10−5 eV K−1 is the Boltzmann constant) overwhelms

Ei.

In both cases, Ei is insignificant to the spin orientations. However, a non-zero magnetic moment will be

induced by applying a magnetic field. The energy of the electron with total angular momentum Ĵ is gJmµBB

(m = −J, −J + 1, ..., J − 1, J). As a result, the partition function is

Z =
J∑

m=−J
exp(gJmµBB/kBT ). (1.25)
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So the mean value of the total magnetic angular momentum m is

< m >=

J∑
m=−J

m × exp(gJmµBB/kBT )

J∑
m=−J

exp(gJmµBB/kBT )

. (1.26)

The magnetization of a system with n free spins can be determined by

M = ngJµB < m > . (1.27)

By writing y = gJµBJB/kBT and Ms = ngJJµB , we finally obtain

M = Ms
2J + 1

2J
coth(

2J + 1

2J
y)− 1

2J
coth(

y

2J
), (1.28)

where the BJ(y) =
2J + 1

2J
coth(

2J + 1

2J
y)− 1

2J
coth(

y

2J
) is the Brillouin function [4].

In the small y region (y� 1, often corresponding to low magnetic field and not very low temperatures),

the susceptibility is expressed by

χ =
M

H
≈ µ0M

B
=
nµ0M

2
eff

3kBT
, (1.29)

using the Maclaurin expansion of coth (y). As a result, χ∝ 1/T and one can extract Meff (eq. 1.24) by

measuring χ in the paramagnetic region.
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1.1.5 Crystal fields

Figure 1.2: (a) MO6-octahedron. M = TM ion (black solid). Oxygens are red solids. The orthogonal axes

are also labelled. (b) Crystal field splitting of the d orbitals.

For the 3d TM ion oxides, another important feature to consider is the local crystal environment due to the

exposed d orbitals. This effect is much weaker for 4f rare earth ions in which the 4f orbitals are well shielded

by the 5s and 5p outer shells. In the compounds investigated in this thesis, such crystal fields originate from

the overlap between the d orbitals of TM ions (e.g. Mn3+, Mn4+, Cr3+, Co2+) and the p oxygen orbitals. For

example, when an 3d TM ion is placed on the center of an octahedron where oxygens occupy the vertices

(Fig. 1.2a), the degeneracy of the d orbital will be lifted (Fig. 1.2b).

As shown in Fig. 1.1, the lobes of the dxy, dxz and dyz orbitals (called t2g orbitals) all point along the

diagonal directions between the x, y and z axes. However, the dz2 and dx2−y2 orbitals (called eg orbitals)

have their lobes lying along the main axes. Since the neighbouring 2p oxygen orbitals are also pointing

along the three main axes (Fig. 1.1), the eg orbitals will have a stronger electrostatic energy produced by

the electrons in the 2p oxygen orbitals. As a result, the five level d orbitals split into two groups, with the

three-fold t2g orbitals lying underneath the two-fold eg orbitals (Fig. 1.2b). The calculation of the energy gap

(∆oct) between the two levels can be found in Ref. [7]

It is also worth mentioning the empirical Hund’s rules which are used to predict the electron filling se-

quence in the d orbitals if they are not fully occupied [4]. They are arranged in decreasing importance:

1. The configuration with lowest energy is also the configuration with maximum S.

2. When (1) is fullfilled, the next step to lower the energy is to maximize L.
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3. J = |L - S| if the shell is less than half filled, otherwise J = |L + S|.

These rules work very well for predicting the electronic configuration of 4f ions. In contrast, big discrepancies

may occur for 3d TM ions due to the presence of the crystal field [4]. Indeed, even the first of Hund’s rules

may be ignored if the crystal field is strong enough [8]. Moreover, Hund’s rules match the experiment much

better if one assumes that the orbital quantum number L = 0 [4]. This effect is called orbital quenching and

prevails in many TM oxides. However, non-zero angular momentum states can be introduced in systems

where the spin-orbit coupling is nonnegligible, e.g, α-CoV2O6 [9].

1.1.6 Jahn-Teller distortion

Figure 1.3: (upper) A Jahn-Teller distortion (elongation) for the MO6-octahedron. (bottom) The degeneracy

lifting after the distortion. The energy is lowered because the dz2 level is lowered. The energy saving for

lowering the dxz and dyz levels is balanced by the energy raising of the dxy level [4].

In a TMO6-octahedral environment, deviation of oxygen ions from their equilibrium positions is usually not

favoured. An increase in the energy, proportional to the square of the distortion, will be introduced [4, 2].

However, this motion may also lower the energy by lifting the orbital degeneracy of the central TM ion.

The resulting lattice change is called a Jahn-Teller (JT) distortion. As discussed in the last section, the

five-fold degeneracy of the 3d orbitals can be lifted by the crystal field effect to form eg (two-fold) and t2g

(three-fold) levels. When a JT effect happens, these levels may be further split [4]. This is achieved by

changing the overlap between the 3d TM orbitals and the 2p oxygen orbitals. Consequently, the energy of

certain orbitals is raised, while for the others’ it is lowered. Fig. 1.3 corresponds to the case of ‘elongation‘
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along the z -axis. For the Mn3+ ion (3d4), the four electrons singly occupy the dyz, dxz, dxy and dz2 orbitals,

respectively. The JT distortion thus lowers the total energy related to these occupied d orbitals. When

placed into a lattice arrangement, such TMO6-octahedral distortion may become cooperative [2, 10]. As

will be demonstrated in this thesis, the cooperative JT distortion is crucial to understand various emergent

properties in mixed-valence perovskite manganites.

1.2 Interactions

1.2.1 Coulomb interactions

In a multiple orbital system, we can write the kinetic energy of the electrons as

Ĥkin =
∑

~j,~j′,γ,γ′,σ

tγγ
′

~j~j′
c†~jγσc~j′γ′σ, (1.30)

where ~j is the site occupied by magnetic ions, γ and σ label the orbital and spin states, respectively [2]. The

Coulomb potential is

ĤC =
1

2

∑
~j

∑
γ1γ2γ′

1γ
′
2

∑
σ1σ2σ′

1σ
′
2

< γ1σ1, γ2σ2 || γ′1σ′1, γ′2σ′2 > c†~jγ1σ1
c†~jγ2σ2

c~jγ′
2σ

′
2
c~jγ′

1σ
′
1
. (1.31)

In solid-state physics, an electron’s state (σ, γ,~j) can be described by the Wannier function, φγ σ (~j), which

is composed of a complete set of orthogonal functions [11]. Following this approach, the matrix element in

eq. 1.31 can be given by [10]

< γ1σ1, γ2σ2 || γ′1σ′1, γ′2σ′2 >=

∫ ∫
d~jd~j′φ∗γ1σ1

(~j)φ∗γ2σ2
(~j′)g~j−~j′φγ′

1σ
′
1
(~j)φγ′

2σ
′
2
(~j′). (1.32)

As a result, the Hamiltonian for a general problem is Ĥ = Ĥkin + ĤC . However, it is very difficult to exactly

solve these complicated interactions. Alternatively, eq. 1.31 can be replaced by an effective Hamiltonian

consisting of several parts as long as they can capture the essential underlying physics. For the 3d TM ions

investigated in this thesis, we have already shown that the five-fold orbitals split into eg and t2g levels due

to the crystal field effect. In many systems, e.g. manganese oxides, the t2g spins are very localized and less

affected by external perturbations. They can be treated as a ‘core-spin’ Ŝ~j so that the Coulomb coupling

between electron(s) in the eg (ŝi) and t2g orbitals in one TM ion may be described by a Hund’s coupling
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term

ĤHund = −JH
∑
i

ŝiŜ~j . (1.33)

Another term Hel−el is required to account for the remaining Coulomb interactions between eg electrons [2,

10].

1.2.2 Exchange interactions

In the non-interacting limit, two indistinguishable electrons can be separately described by a spatial wave

function ψi (r) (i = a, b) [5]. One can use these functions to construct the spatial wave functions (Φ) of an

interacting two-electron system. Considering the exchange symmetry of Fermions as well as the spin part of

the wave function [5], there are two possible forms for Φ

Φ1 =
1√
2

[ψa (r1)ψb (r2) + ψa (r2)ψb (r1)]χs, (1.34)

Φ2 =
1√
2

[ψa (r1)ψb (r2)− ψa (r2)ψb (r1)]χt, (1.35)

where χs (χt) represents the singlet S = 0 (triplet S = 1) spin state [5]. Given the Hamiltonian (Ĥ) of the

system, one can also calculate the energy difference of the two possible states

∆E = E1 − E2 = 2

∫
φ∗a (r1)φ∗b (r2)Ĥφ∗a (r2)φ∗b (r1)dr1dr2. (1.36)

If ∆ E is negative (positive), a singlet (triplet) state is favoured, corresponding to two spins antiparallel (parallel)

to each other. We can also construct an effective Hamiltonian (Heff ) using the following procedures

S2
tot = (Ŝ1 + Ŝ2)2 = Ŝ2

1 + Ŝ2
2 + 2Ŝ1Ŝ2. (1.37)

Since Stot = 0, 1 and S1,S2 = 1/2, we obtain

Ŝ1Ŝ2 =
1

4
(triplet) or − 3

4
(singlet). (1.38)

Finally, Heff can be written as

Heff =
1

4
(E1 + 3E2)− (E1 − E2)Ŝ1Ŝ2. (1.39)
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The spin part of Heff is called the exchange interaction

Ĥex = −2JŜ1Ŝ2, (1.40)

where J =
E1 − E2

2
is the exchange constant. The main origin of such exchange interactions in solids is the

electron-electron Coulomb repulsions [4, 5].

For the many-body systems, there is an interaction between each pair of spins. It is very useful to

introduce the isotropic Heisenberg model

Ĥ = −
∑
ij

JijŜiŜj , (1.41)

where Jij is the exchange constant between each pair of spins. This model can be reduced to a XY-model if

the exchange is two-dimensional and an Ising-model if the exchange is one-dimensional [1]. Considering only

the nearest neighbour exchange, the relative alignment of the two neighbouring spins is determined by the

sign of the exchange constant.

If the wavefunctions of two neighbouring magnetic ions are sufficiently overlapping, a direct exchange

interaction is expected to set in. However, this term is usually less important in determining the magnetic

ground state in oxides because the corresponding magnetic ions are well separated in space. Thus indirect

exchange interactions must be taken into account.

Superexchange interaction

Figure 1.4: Superexchange process. The electron hopping is marked by dashed arrows. Antiferromagnetic

spin alignment is achieved in this one-orbital model.
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Superexchange is one type of indirect exchange which prevails in magnetic oxides. The nonmagnetic ion O2−

acts as an intermediary between the two magnetic ions. To simplify the physical process of superexchange,

we assume the 2p oxygen orbital overlaps with the same d orbital on each side of it (Fig. 1.4), and that

there is only one unpaired electron on the magnetic ion. To lower the kinetic energy of the system, this

electron tends to hop to the oxygen site. To accommodate this change, the 2p electron with the same spin

direction will hop into the d orbital of the other magnetic ion. Since this orbital is already singly occupied,

the new electron has to adopt the opposite spin direction due to the Pauli exclusion principle, resulting in

an antiferromagnetic alignment between the neighbouring spins (Fig. 1.4).

In practice, the overlap of orbitals (p, d) is much more complicated. Depending on the TM-O bond

length and the TM-O-TM bond angle, the magnetic exchange can even vary from antiferromagnetic to

ferromagnetic. A set of empirical rules, called the Goodenough-Kanamori rules, are helpful for determining

the correct magnetic order in many oxides [12]. For example, the superexchange between two magnetic ions

with partially filled d shells is strongly antiferromagnetic if the TM-O-TM bond angle is 180◦, whereas a 90◦

superexchange interaction is ferromagnetic and much weaker. Further information can be found in Ref. [12].

Double exchange interaction

Figure 1.5: Double exchange mechanism in mixed-valence oxides.

In the superexchange framework, the unpaired electrons are only allowed to hop within the TM-O-TM bond,

meaning the system is an insulator. A ferromagnetic metallic state can also occur in some mixed-valence

magnetic oxides. This state is tuned by the double exchange mechanism. As shown in Fig. 1.5, mixed-

valence is required to host double exchange in order to make sure the hopping range is extended (empty
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orbitals), otherwise the superexchange mechanism will be recovered. Secondly, ferromagnetic alignment of

the neighbouring spins is favoured since the strong Hund’s couping from the core spins in the t2g orbitals

will try to align the eg spin along them. The double exchange mechanism can qualitatively explain the

charge transport properties in mixed-valence systems such as Fe3O4 and La1−xSrxMnO3, though not in a

comprehensive way [10, 13].

1.2.3 Dzyaloshinsky-Moriya interaction

If the centre of the bond connecting two spins does not contain inversion symmetry, the anisotropic exchange

interaction Dzyaloshinsky-Moria (DM) interaction is allowed [14]. It is the higher order correction of the

Dirac equation and couples the exicted state of one ion and the ground state of the other [4]. It takes the

form

ĤDM = Dij · Ŝi × Ŝj , (1.42)

where ~Dij is a vector and its direction depends on the symmetry [14]. The DM interaction can play a

significant role in pyrochlore lattices [15], as the geometry permits a non-zero DM term.

1.2.4 Magnetic dipolar interaction

The long range interaction between two magnetic dipoles with magnetc moments ~J1, ~J2 separated by ~r can

be expressed by

Hdip =
µ0

4πr3
[ ~J1 · ~J2 −

3

r2
( ~J1 · ~r)( ~J2 · ~r)]. (1.43)

This term is small (a few Kelvin) and therefore not important at high temperatures. However, for those

oxides where the magnetism comes from rare earth ions with very large magnetic moments, the dipolar

interaction still needs to be considered [4, 15].

1.2.5 Spin-orbit coupling

Although spin-orbit coupling is a relativistic effect in origin, it can be phenomenologically understood using

a classical model [4]. In the electron reference frame, the motion of the electron orbiting can be alternatively

viewed as the motion of nucleus. As a result, an additional magnetic field term exists,

~B =
~ε × ~v

c2
, (1.44)
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where ~ε = −~δ ~V (~r), v is the orbiting velocity and ~V (~r) is the potential energy of the electron. As mentioned

above, this magnetic field will interact with the electron spin (m̂) in the form of

ĤSO = −1

2
m · B =

e~2

2mec2r

dV (r)

dr
Ŝ · L̂, (1.45)

where ~L̂ = me~r×~v and ê = (ge~/2m)Ŝ [4]. Since most orbital wave functions (e.g. p, d) have aspherical dis-

tributions (Fig. 1.1), the spin-orbit coupling is responsible for the magnetocrystalline (single-ion) anisotropy

(Ĥan) in materials.

1.2.6 Electron-phonon coupling

Figure 1.6: Two eg-active JT modes.

For a TMO6-octahedron, there are 7 (number of ions)× 3 (three dimensional motion) = 21 JT modes in total

to consider. Since we shall focus on mixed-valence manganese oxides in this thesis, only 2 modes, usually

written as Q2 and Q3, are important to the eg orbital splitting of Mn3+ [2]. These two modes are depicted

in Fig. 1.6. The potential change of an electron related to the JT distortion, assuming the presence of both

modes is

∆VJT =
2
√

6

21

9

a4
< r2 >

[
Q2

0 1

1 0

+Q3

1 0

0 −1

], (1.46)

where r and a are the electron - Mn3+ and oxygen - Mn3+ distance, respectively [2]. We replace the matrices

in this equation by the Pauli symbols in eq. 1.14. Then we can express the total energy by including the
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energy penalization caused by distortion itself

Ĥ = −g(Q2σx +Q3σz) +
1

2
Mω2[Q2

2 +Q2
3], (1.47)

where g = -(2
√

6/21) 9
a4 < r2 >. Finally, by applying the second-quantization process and summing over all

sites (i = 1, 2, 3...), the electron-phonon coupling term of the system is

Ĥel−ph =
∑
i

−
[
2g(Q2iT

x
i +Q3iT

z
i ) + (kJT /2)(Q2

2i +Q2
3i)
]
, (1.48)

where kJT =Mω2 and T x,y,zi are pseudospin operators [2]. In theoretical calculations, the dimensionless

parameter λ = g/
√
kJT t (t is the hopping amplitude in eq. 1.30) is used to characterize the electron-phonon

coupling strength [10].

1.2.7 Ruderman-Kittel-Kasuya-Yosida interaction

The exchange between localized magnetic ions in metals is mediated by the conducting electrons. This type

of indirect exchange is known as the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction [4, 16, 17, 18]. Its

Hamiltonian takes the form of

HRKKY (r) ∝ cos(2kF r)

r3
, (1.49)

where r is the distance between two localized magnetic ions, and kF is the radius of the Fermi surface which

is assumed to be spherical [4]. The key feature revealed by eq. 1.49 is that the RKKY interaction is long

range in nature with its sign oscillating as a function of r.

1.3 Frustrated magnetism

1.3.1 Geometric frustration

In addition to the competing interactions, sometimes referred as ‘random frustration’ in the literature [15],

‘geometric frustration’ also plays an important role on determining the magnetic structure in relevant systems.

As shown in Fig. 1.7a, when the antiferromagnetically coupled spins are assigned to occupy the corners

of the triangular (tetrahedral) lattice, the antiparallel configuration between each pair of spins cannot be

achieved simultaneously. This effect is called ’geometric frustration‘. A pyrochlore lattice (A2B2O7) has a

cubic crystallographic structure (space group Fd-3m) and consists of two sets of corner-sharing tetrahedral
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sublattices occupied by A and B ions, respectively 1.7b & 1.7c. Geometric frustration is allowed in this lattice,

and can give rise to exotic states (e.g. spin ice, spin glass and spin liquid) in magnetic compounds with this

structure.

Figure 1.7: (a) Antiferromagnetically coupled spins on a triangular (upper) or tetrahedral (bottom) lattice

unit. Corner-sharing tetrahedral sublattices in a pyrochlore structure (shaded) formed by (b) A (green solids),

and (c) B (blue solids) ions [19]. Oxygen ions are omitted.

We will now look at several detailed examples drawing on the fundamentals discussed above, that provide

the spur for the main work presented in this thesis. We will first discuss the glassy pyrochlore Y2Mo2O7.

This compound is supposed to enter an ordered state at low temperatures without the presence of bond

disorder. We will then carry on to the pyrochlore Y2Mn2O7 to show how the sample quality (disorder) can

affect the magnetic long range order in this compound. These two systems are very important to understand

the diluted pyrochlore Y2CrSbO7 studied in Chapter 5 of this thesis. We have attributed the lack of magnetic

long range order in this compound down to 1.8 K to the percolative bond disorder caused by the ionic radius

mismatch between Cr3+ and Sb5+ on the B-sites.

1.3.2 Spin glass in Y2Mo2O7

When magnetic frustration is combined with some sort of disorder (e.g. site disorder, bond disorder), a spin

glass (SG) state may appear. Experimentally, a SG material exhibits the following properties [20]:

1. At low field, the ac susceptibility has a cusp at a temperature T f , the SG transition, and this temper-

ature is frequency dependent.

2. No sharp anomaly is observed in the heat capacity data.
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3. The susceptibility is history dependent below T f , i.e. the zero-field-cooled (ZFC) and field-cooled (FC)

data diverge below T f .

4. Magnetization decays with time below T f

5. Absence of long range order below T f [15]. As an example, the magnetic properties of the classic SG

compound Cu1−xMnx are displayed in Fig. 1.8.

Figure 1.8: SG behaviour in a Cu1−xMnx alloy [20]. Temperature dependences of (a) ac susceptibility, (b)

heat capacity, and (c) ZFC (branch b and d) and FC (branch a and c) dc susceptibility curves. (d) Spin

relaxation at various temperatures, where ~S(~q, t) ∝< ~Si(t) · ~Sj(0) >T exp[i~q · (~ri − ~rj)] and q = 0.093 Å−1.

The pyrochlore compound Y2Mo2O7 has magnetic Mo4+ ions occupying the B-sites. By fitting the

susceptibility at high temperatures, a large/negative Curie-Weiss temperature ΘCW' -200 K is obtained. On

the other hand, the Mo4+ ions have an effective moment of 2.55µB/Mo, indicating that the orbital moment

is probably quenched in Y2Mo2O7 [21] (Fig. 1.9). As shown in Fig. 1.9, clear divergence between ZFC and FC

susceptibility curves are observed at T f = 22 K, suggestive of a SG transition. This feature is further studied

by nonlinear susceptibility as well as neutron scattering techniques [22, 23]. Typical scaling behavour of a
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SG is observed near to T f (Fig. 1.9). Moreover, quasielastic spin excitations are detected above T f . At low

temperatures, these fluctuations are replaced by a static short range order with correlation length less than

5 Å (Fig. 1.10).

Figure 1.9: (Left) Inverse susceptibililty versus temperature (solids) curve of Y2Mo2O7. The black line is a

linear fit to its high temperature part [21]. (Top right) ZFC and FC curves when B = 0.01 T [23]. (Bottom

right) Nonlinear susceptibility χnl analyzed according to the critical scaling model in Ref. [23]

Based on the experimental evidence provided above, the SG state in Y2Mo2O7 is well established. How-

ever, the driving mechanism of this state has still not been fully understood yet. In general, magnetic

frustration and disorder are the building blocks for a SG state. For example, the spin exchange in the

Cu1−xMnx alloy is of the RKKY type, the sign of which is very sensitive to the distance between the two

magnetic sites (eq. 1.49) [20]. The SG state in this compound is caused by the site disorder of Mn. Several

investigations, including extended X-ray-absorption fine structure (EXAFS) and nuclear magnetic resonance

(NMR) and neutron pair distribution function (PDF), have been carried out to characterize the local disorder

level in Y2Mo2O7 [24, 25, 26]. These results reveal: (i) discrete lattice distortions which may suppress the

magnetic frustration [26], and (ii) very weak bond length fluctuations (6 5 % for Mo-Mo bond)[24]. Never-
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theless, such a disorder level is too low to induce a SG state according to the conventional mean field theory

predictions [27].

Figure 1.10: (Left) Low energy inelastic neutron spectrum of Y2Mo2O7 at different temperatures [22].

(Right) Elastic magnetic structure factor S(Q) versus scattering vector (Q) plot at 1.4 K [22].

An alternative approach of modelling a pyrochlore spin lattice with bond disorder is to start from the

classical Heisenberg antiferromagnet in eq. 1.41, where the ground state is highly degenerate [15, 28]. Bond

disorder produces exchange fluctuations ~∆ to the original average exchange constant ~J . Saunders et al

treat ~∆ as a perturbation to the ground state degeneracy in the weak disorder limit (| ~∆ |� | ~J |) [29]. By

parametrizing the ground states in terms of a gauge field, they project ~∆ into the nearest neighbour exchange

interactions so that effective long range interactions are generated [29]. Using Monte Carlo simulations, a

SG transition at a finite temperature T f is found. However, the predicted T f only scales with | ~∆ | and is

much smaller than the experimentally determined value in Y2Mo2O7 (∼ 22 K) [29, 23]. In order to correctly

reproduce T f , an additional spin-lattice coupling term is required, as revealed in Ref. [30]. Finally, we note

the origin of spin-lattice coupling in Y2Mo2O7 may be related to the orbital frustration according to the

latest X-ray and neutron PDF investigations as well as density functional theory (DFT) calculations [31, 32].
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1.3.3 Long range order in Y2Mn2O7

Figure 1.11: Heat capacity data measured by Reimers et al [33] (a) and Shimakwa et al [34] (b). (c)

ZFC and FC magnetization versus temperature curves at B = 0.15 mT (circle), 0.56 mT(square) and 10 mT

(triangle) [33]. (d) Magnetization versus magnetic field curves at various temperaures. From top to bottom:

1.8 K, 5 K, 7.5 K, 10 K, 15 K, 20 K, 25 K, 30 K, 35 K, 40 K, 45 K, 50 K [33]. (e) Real and imaginary parts of

the ac susceptibility. The inset shows the frequency dependence at low temperatures [33].

To the best of our knowledge, the magnetic structure of Y2Mn2O7 is still a mystery. Earlier studies by

Reimer et al [33] did not show any transition in the heat capacity data. Instead, typical magnetic properties

belonging to a SG, e.g. frequency dependence of ac susceptibility, divergence between ZFC and FC curves,

were observed (Fig. 1.11). The SG scenario is further supported by small angle neutron scattering measure-

ments (Fig. 1.12) [35]. In addition to the Lorentzian term which describes the conventional ferromagnetic

spin-spin correlations, a Lorentzian-squared term is required to fit the neutron intensity as a function of

scattering vector Q

I (Q) =
A

(Q2 + 1/ξ21)
+

B

(Q2 + 1/ξ22)2
, (1.50)

where the second term is used to characterize the random field in the sample [35]. From the temperature

dependence of ξ1 in Fig. 1.12, it is clear that true long range ferromagnetic order is never reached [35].
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Since rare earth manganese pyrochlores cannot be grown at ambient pressure, these compounds must

be synthesized using high pressure methods [15]. Another explanation for the earlier observations is poor

sample quality. This would also explain the low saturation moment measured in high magnetic field on

those samples. Although it should be 3µB/Mn assuming the orbital moment is quenched, only 2µB/Mn was

reached at B = 4 T. In fact, weak ferromagnetism was observed in the neutron powder diffraction patterns at

7 K, which apparently contradicts the SG scenario [33]. Much better samples were produced by Shimakawa et

al [34], who have observed a λ-shape peak in the heat capacity measurements as well as 3µB/Mn saturation

moment at much lower field B = 2 T (Fig. 1.11b). Unfortunately, there has been no subsequent work on these

improved samples since then.

Figure 1.12: Small angle neutron scattering measurements on Y2Mn2O7 [35]. (Left) Neutron intensity versus

scattering vector Q at different temperatures (solids). The solid and dotted lines are the numerical fits using

eq. 1.50 with and without the instrumental resolution function. (Right) Temperature dependences of the two

types of magnetic correlation length, ξ1 and ξ2.

1.4 Phase separation

The ground states of some systems tend to be intrinsically inhomogeneous due to the competition of multiple

interactions. This phenomenon is commonly described as ‘phase separation’. In this section, we will introduce

two types of phase separation compounds: (I) Ca3Co2O6 in which the phase separation is related to the

competing magnetic interactions, and (II) manganese perovskites in which the phase separation involves

nonmagnetic interactions, and spans from atomic to micrometre scales. In Chapter 3, we will present another
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compound, γ-CoV2O6, in which the phase separation is also of magnetic origin. Unlike Ca3Co2O6 which

shows a dynamic phase separation effect, the phase separation of γ-CoV2O6 is static. In Chapter 4, we

will demonstrate how the phase separation in a strained manganese perovskite is coupled with the carrier

transport and magnetic order by varying the magnetic field.

1.4.1 Dynamic phase separation in Ca3Co2O6

Figure 1.13: (a) Crystallographic structure of Ca3Co2O6 [36]. (b) The triangular Co sublattice in the ab-

plane [36].

Ca3Co2O6 consists of face-sharing Co(I)O6 octahedra and Co(II)O6 trigonal prisms alternately running along

the crystallographic c-axis (Fig. 1.13a). In the ab-plane, the Co ions form triangular units, allowing geometric

frustration (Fig. 1.13b). Since the nearest neighbour (NN) interchain Co-Co distance (5.2 Å) is much larger

than the NN intrachain Co-Co distance (2.6 Å) [37], the dominant spin exchange interaction is within the Co

chain. At low temperatures, earlier neutron powder diffraction measurements carried out by Aasland et al

revealed a ferrimagnetic state formed by the low spin (S = 0) Co(1) sites and the high spin (S = 2) Co(II)

sites [37]. The Ising anisotropy along the c-axis is related to the strong crystal field effect [38].

More interest was triggered in this material on the recent discovery of the long wavelength intrachain

spin density wave (SDW) phase below T c' 25 K [39]. In an intermediate temperature region, a slow order-

order transition to a commensurate antiferromagnetic (CAFM) phase is observed [40] (Fig. 1.14a-b). Since the
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thermal equilibrium is never realized within the measuring time [40, 41], it is essentially a dynamic phase sep-

aration effect in Ca3Co2O6. The magnetic structure in this intermediate region is further complicated by the

observation of ferrimagnetic microphases using the small angle neutron scattering technique [42] (Fig. 1.14c).

Figure 1.14: (a) -(b) Dynamic phase separation in Ca3Co2O6 measured by neutron powder diffraction. An

new peak belong to the CAFM phase gradually develops in 6 h of counting time at 10 K [40]. (c) Small angle

neutron scattering patterns at different temperatures. The instrumental resolution limited peaks along the

qc are the first reflections of the SDW phase [39]. The broad steaks along qab are linked to the ferrimagnetic

microphase [42].

Most of the measured magnetic properties in Ca3Co2O6 have been quantitatively understood by the

model proposed in Ref. [43]

H =
∑
i, j

Jijσ
z
i σ

z
j −H

∑
i

σzi − Γ
∑
i

σxi , (1.51)

where Jij = J1, J2 and J3 stand for the NN intrachain exchange, NN interchain exchange and next NN
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interchain exchange constants, respectively. This model was solved by quantum Monte Carlo simulations [43].

A mean field approach has also been adopted to find the spin modulation. The result is an up-up-down

ferrimagnetic state in the ab-plane triangular lattice at the lowest temperatures. However, they also locate

an incommensurate SDW phase in an internediate region. Since the propagation vector of this SDW is

temperature dependent, they argue the very slow dynamics in Ca3Co2O6 is related to these metastable

phases. By adding weak long range exchange coupling which is not included in that model, the SDW phase

may be further stablized, as observed in Ca3Co2O6 [43, 39].

1.4.2 Mixed-valence perovskite manganites

Structure

Figure 1.15: (a) Basic structure of a cubic perovskite with chemical fomula ABO3. (b) Resistance at 300 K

(ρ(300K)) as a function of r̄A (inset) Curie temperature obtained from ρ versus temperature curve as a

function of ρ(300K) [44]. (c) The ‘universal’ phase diagram defined by the tolerence factor [44].

The basic cubic perovskite (ABO3) structure is displayed in Fig. 1.15a. In the mixed-valence manganites

discussed below, e.g. La1−xCaxMnO3 and Pr1−xCaxMnO3, this cubic symmetry is broken so that an or-

thorhombic lattice with space group Pnma (a∼ c∼
√

2b) is formed. As a result, the 6 equivalent oxygen

positions in the MnO6-octahedron split into two groups: 2×O(1) and 4×O(2) [45]. In the Pnma setup,

MnO(2) bonds are mostly in the ac-plane, while the two MnO(1) bonds are mainly along the b-axis.

The Mn4+/Mn3+ charge separation in perovskite manganites are often realized by substituting rare earth

ions (RE3+) on the A-sites with alkali metal ions (A2+) [10]. Due to the ionic size mismatch between RE3+
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and A2+, different levels of substitution will apply different internal stresses to the Mn-O-Mn bonds. Since

the effective electron hopping amplitude is very sensitive to the Mn-O-Mn bonds, the average ionic radius of

the A site (r̄A) plays an important role on the carrier transport properties in RE1−xAxO3 (Fig. 1.15b) [44].

Most of all, it is found that a ‘universal’ phase diagram, which does not rely on the type(s) of ions occupying

the A-sites, can be produced by defining a ‘tolerance factor’, t = dA−O/
√

2dMn−O(Fig. 1.15c) [44].

Besides the static distortion caused by A-site substitution, the other type of structural distortion in

perovskite manganites is the dynamic Jahn-Teller distortion which couples the lattice and electron together

as discussed in Sec. 1.2.6 [10, 46]. As to be discussed later, this effect is the key to understand the insulator

state in relevant systems [46, 47].

Colossal magnetoresistance effect

Figure 1.16: (a) Phase diagram of La1−xCaxMnO3 [2], with CAF = canted antiferromagnetism, CO = charge

order, FI = ferromagnetic insulator, FM = ferromagnetic metal and AF = antiferromagnetism. (b) Magneti-

zation, resistance and magnetoresistance as a function of temperature when x = 0.25 [2].
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The colossal magnetoresistance (CMR) effect, a drastic drop in resistance by applying a magnetic field, is

one of the most spectacular discoveries in mixed-valence manganese oxides [48]. The CMR effect exist in

a wide range of materials possessing strong electron-phonon coupling [10]. For example, La1−xCaxMnO3

(0.26 x 6 0.5) shows a metal-like state below the ferromagnetic Curie temperature (TC) due to the prevail-

ing double exchange interactions between spins (Fig. 1.16a). By varying the temperature, a metal-insulator

transition is observed concomitant with the ferromagnetic-paramagnetic transition at TC. Surprisingly, the

CMR effect also occurs in a narrow region around TC (Fig. 1.16b).

Another interesting family of CMR compounds, e.g. Pr1−xCaxMnO3 (0.36 x 6 0.5), does not develop

ferromagnetism at low temperatures (Fig. 1.17a) [49]. Instead, these systems are insulators in the entire

temperature region and have an antiferromagnetic ground state [50]. Unlike La1−xCaxMnO3 (0.26 x 6 0.5)

where CMR only exists in a narrow region close to TC, CMR can be observed from the lowest temperature

probed (4.2 K) and persists deeply into the paramagnetic region (Fig. 1.17b) [51]. Interestingly, the insulating

state cannot be recovered after removing the magnetic field at low temperatures.

Figure 1.17: (a) Phase diagram of Pr1−xCaxMnO3, with FMI = ferromagnetic insulator, CO = charge order,

AFMI = antiferromagnetic insulator and CG = cluster glass [49]. (b) Resistivity as a function of magnetic

field at various temperatures when x = 0.35 [51].

26



Spin, charge and orbital order

Figure 1.18: d3x2−r2/d3y2−r2 orbital order under Pbcm space group (a ' b'
√

2c) setup [52]. The orbital

orientations of the Mn3+ ions are marked by the lobes. The black and red arrows show the spin arrangement

in the z = 0 plane. The spins in the z = 1/2 plane are reversed (unchanged) for the CE (pseudo-CE) type

antiferromagnetic order [50].

The magnetic order in CMR manganites couples tightly to the charge and orbital degrees of freedom [2].

Fig. 1.18 shows the d3x2−r2/d3y2−r2 orbital order which is commonly observed in Pr1−xCaxMnO3 (x > 0.3) [52].

Since only Mn3+ has an occupied eg orbital, orbital order is often accompanied by some sort of charge order.

The antiferromagnetic spin arrangement of Pr1−xCaxMnO3 in the ab-plane (space group Pbcm, a ' b'
√

2c)

has also been shown in Fig. 1.18. And it is called charge-exchange (CE) or pseudo-CE type antiferromag-

netism, in which the spins in the ab-plane couple antiferromagnetically or ferromagnetically along the c-

axis [50].
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Electronic phase separation and colossal magnetoresistance

Figure 1.19: (a)-(b) Resistivity versus temperature curves under different electron-phonon coupling strengths

λ with fixed n. Details of the density parameter n can be found in Ref. [47]. (c)-(d) Resistivity versus

temperature curves at various magnetic fields with fixed n [47]. (e) Temperature dependence of the standard

deviation of Mn-O bond lengths in La1−xCaxMnO3 measured by Booth et al. [53]. Clear softening of the

distortion is observed below TC.

Various models have been proposed to explain the electronic phase separation (e.g. polarons, charge order)

in mixed-valence manganese oxides [10, 54]. Here we will follow the treatments carried out by Millis et al

where the electron-phonon coupling is through the dynamic Jahn-Teller distortion [47]. First of all, we define

an effective Hamiltonian

Ĥeff = Ĥkin + ĤHund + Ĥel−ph + ĤZeeman. (1.52)

These terms represent the kinetic energy (eq. 1.30), Hund’s intraband coupling (eq. 1.33), electron-phonon cou-

pling (eq. 1.48), and Zeeman energy (eq. 1.11), respectively. They have solved Ĥeff by assuming ĤHund→∞.

When the electron-phonon coupling strength (characterized by λ = g/
√
kJT t (t in eq. 1.48) is strong enough,

a gap in the electron spectral function, corresponding to the formation of polarons, only opens above

TC (Fig. 1.19a & 1.19b). Most of all, the CMR effect can be reproduced by tuning the magnetic field in

ĤZeeman (Fig. 1.19c & 1.19d). The existence of a Jahn-Teller distortion in the CMR temperature region, e.g.

above TC in La1−xCaxMnO3 (0.26 x 6 0.5), has been confirmed using local probe techniques such as PDF

and EXAFS [53, 55, 46](Fig. 1.19e). Since not all of the Mn ions are Jahn-Teller active, the dynamic Jahn-

Teller distortion will lead to inhomogeneities on the atomic scales, i.e. electronic phase separation [10]. The
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collapse of electronic phase separation has been proposed as the driving mechanism of CMR and received

overwhelming evidence experimentally [56, 57, 58].

Micrometre phase separation and colossal magnetoresistance

Figure 1.20: (Top-left) Schematic view of the Ln0.5Ba0.5MnO3 lattice in the ac-plane, where the a-axis

is horizontal [59]. (Bottom-left) Magnetization and resisitivity of the two end compounds as a function of

temperature [59]. (Top-right) Dark field images of La5/8−yPryCa3/8MnO3 [60]. The charge disordered ferro-

magnetic area is dark. (a) y = 0.375 and T = 20 K (ferromagnetic). (b) y = 0.4 and T = 17 K (ferromagnetic).

(c) y = 0.4 and T = 120 K (Paramagnetic). (Bottom-right) Schematic show of the percolation process as a

function of magnetic field [60].
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The other type of phase separation, namely micrometre phase separation, comes from quenched disorder

in manganese oxides. The two end configurations of the bc-plane lattice structure of Ln0.5Ba0.5MnO3 are

shown in Fig. 1.20. While the most ordered state corresponds to the A-site chain along the b-axis alternatively

occupied by Ln and Ba ions, the least ordered state is made of both ions randomly distributing on these sites.

Distinct magnetic and electric transport properties are observed in these two configurations with identical

bulk chemical formulae, stressing the role of disorder [59]. Since quenched disorder is often inevitable in

these systems, it is necessary to include it to explain some experimental observations. Beside the electronic

phase separation on the atomic scales, a second phase separation phenomenon on much larger scales has

been observed (Fig. 1.20) [60, 61]. In relevant systems dominated by disorder, CMR is also associated with

the percolation of the ferromagnetic conducting paths (Fig. 1.20) [60, 61, 2].
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CHAPTER 2

EXPERIMENTAL TECHNIQUES

2.1 Sample synthesis

Several polycrystalline samples were prepared for this thesis using the ceramic method [62]. The detailed syn-

thesis procedures are provided in the corresponding chapters. In general, this method contains the following

steps:

1. High purity raw metal oxides in the correct stoichiometric proportions are ground together using an

agate pestle and mortar.

2. The resulting homogeneous mixture is then pressed into a pellet by applying hydrostatic pressure in

order to reduce the empty space between particles.

3. The pellet is heated in a furnace to trigger the solid state reaction.

A solid state reaction is realized by the diffusion of ions in the raw mixture. Since these ions need sufficient

energy to break and reform chemical bonds as well as migrate over long atomic distances, these reactions are

slow and require high temperatures [62].

2.2 Scattering techniques

The majority of the experimental work discussed in this thesis was done using a variety of scattering tech-

niques, described below. First, however, we look at some basic concepts in scattering theory.
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2.2.1 Basic scattering theory

As a beam of particles characterized by the wavevector ~ki hits a target, those particles will be scattered to

form a certain distribution in space and time (Fig. 2.1). Such a distribution can be described in terms of a

quantity known as the cross-section (σ). We can set up a detector a distance D from the target to measure

the number of particles scattered in a given direction (θ,φ) and energy (E ). If D� the dimensions of the

detector and the target, we can define the partial differential cross-section
d2σ

dΩ dE
, where the solid angle

dΩ = sinθdθdφ [63]. If the scattering process is elastic (|~ki|= |~kf | in Fig. 2.1), we will be only measuring the

differential cross-section
dσ

dΩ
; this quantity is the focus in this thesis.

Figure 2.1: Geometry for a scattering process.

In a typical neutron (X-ray) scattering process, the wavelength (∼ 10−10 m) of the incident particles is

much larger than the effective range (∼ 10−14 m) of the interaction between the particle and target. As a

result, the scattered wave is independent of φ [63]. If the scattering process only involves a single target with

fixed position, the scattered wavefunction at the point of r may be written as

ψf =
f (θ, λ)

r
exp(ikr). (2.1)

In reality, we are measuring a crystal consisting of a large number of atoms occupying crystallographic sites
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labelled as Rj (j = 1, 2...). Eq. 2.1 therefore needs to be modified to

ψf = exp(i~kf · ~r)
∑
j

fj (θ, λ)
exp(i ~Q · ~Rj)
|~r − ~Rj |

, (2.2)

where ~Q=~ki -~kf . When counting the number of of neutrons N (θ, λ) with wavelength λ scattered in the

direction of θ, the distance between the detector and target (r) is always much larger than the size of the

sample. This means we can use the approximation |~r - ~Rj |= r. N (θ, λ) deflected into a small area δS of the

detector is then related to |ψf |2 by

N(θ, λ) ∝ δS
∣∣∣∑
j

fj (θ, λ)
exp(i ~Q · ~Rj)

r

∣∣∣2 = δΩ|Fhkl|2, (2.3)

where hkl are the Miller indices and Fhkl is the structure factor. If the system contains a large number of

crystals with random orientations, i.e. in a powder form, the measured intensity can be expressed as [64, 63,

65]

I = I0r
2
e

1 + cos22θ

2

1

16π rL
λ3|Fhkl|2n

1

V 2
c

DVp, (2.4)

where I0 is the intensity per unit area of the incident beam, r2e = 7.9× 10−26 cm2 (re is called the Thomson

scattering length),
1 + cos22θ

2
is the polarization factor, L is the Lorentz factor which depends on the

experimental configuration, n is the multiplicity of the hkl -lattice plane, Vc is the volume of a unit cell, D is

the temperature (Debye-Waller) factor and Vp is the total volume of the powder. A detailed discussion on

these parameters can be found in Ref. [64, 63, 65]
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2.2.2 X-ray powder diffraction

Figure 2.2: (a) Distribution of X-ray emission intensity as a function of wavelength. The broad background

with a lower limit is Bremsstrahlung. The sharp peaks are from the relaxation process. (b) Typical relaxation

processes (purple solid line) after the electron in the K -shell (E1) is emitted (red dotted line).

The X-ray powder diffraction (XRPD) technique was used to characterize the crystallographic structure

of our sample in a Bruker D8 Advance diffractometer. Lab-based X-rays are generated by bombarding a

metal target with electron beams accelerated in an electric field. We can estimate the wavelength (λ) of

the generated X-rays by combining the energy conservation rule, Planck’s energy – frequency relation and de

Broglie wavelength equation:

λ >
hc

eU
≈ 1.24 × 104

U
Å, (2.5)

where h, c, e, U are the Planck constant, speed of light, charge of electron and voltage, respectively. As a

result, X-rays with wavelength on atomic scales (∼ a few Å) can be generated by applying an appropriate

voltage of around 10 kV [64].

A copper (Cu) target was used in our experiments. A more accurate description of the radiation process

after the target is struck by electrons consists of two parts (Fig. 2.2a). The first part is called Bremsstrahlung

which is responsible for a broad distribution of wavelength with a lower limit determined by eq. 2.1. The

second part generates the particular wavelengths used in a typical diffraction measurement. When the

incoming electrons strike the Cu target, an electron in a specific shell (n = i) is excited to a higher and
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unoccupied state, leaving this shell empty. This is followed by the relaxation of another electron from a

higher energy shell (n = j, j > i) to this low energy and empty shell (n = i), as well as the emission of a

photon with a wavelength

λij =
hc

Ej − Ei
, (2.6)

where Ei and Ej are the energies of the denoted shells (Fig. 2.2b). The strongest emission isKα, corresponding

to i = 1 and j = 2. In practice, a filter or a crystal monochromator is used to remove the unwanted wavelengths.

We have used a curved germanium crystal monochromator to select only the CuKα1 line (λ= 1.5406 Å).

For the crystallographic structure determination, it is very important to understand the term f (θ, λ)

which is called the atomic form factor (eq. 2.1 - eq. 2.4). In a X-ray scattering case, this term can be writen

as

f (θ, λ) = Zg(Q)re, (2.7)

where Z is the atomic number and Q =
4π sinθ

λ
is the wavevector transfer in eq. 2.2. Analytical approxima-

tions to g(Q) can be found in Ref. [66].
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2.2.3 Neutron powder diffraction

Neutron production

Figure 2.3: Schematic demonstrations of (a) fission [67], and (b) spallation processes [68].

A neutron is composed of one up and two down quarks with charges of 2/3 and -1/3, respectively. Similarly

to the X-rays, neutrons can be used for structure determination since the de Broglie wavelength of thermal

neutrons is of the same order as the atomic distances in solids. An important advantage of using neutron

diffraction is that neutrons are very sensitive to light elements such as hydrogen, whereas these elements
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are almost ‘transparent’ to X-rays (eq. 2.7) [63]. Moreover, the neutron carries a magnetic moment so that

they can also interact with unpaired electrons. This makes the neutron diffraction a powerful tool to probe

magnetic structure. Neutrons used for scientific purpose in large facilities can be produced by fission and

spallation [69].

Typically, a nuclear fission reaction is triggered when a neutron is absorbed by a 235U nucleus. This is

followed by a chain of reactions where medium-heavy elements and more neutrons are generated. While some

of those neutrons, 1.5 out of 2.5 for each fission in average, are still needed to maintain the chain reaction,

other neutrons will leave the fuel with a kinetic energy around 2 MeV (Fig. 2.3a). On the other hand, neutrons

can also be produced in a spallation process where a heavy target (e.g. tungsten) is bombarded by high energy

protons (∼ 1 GeV). The products include neutrons, pions, muons, neutrinos and so forth (Fig. 2.3b).

The spallation process can be either pulsed or continuous. For example, the ISIS pulsed neutron and

muon source at the Rutherford Appleton Laboratory in Oxfordshire of the United Kingdom operates at 50

Hz and produces a pulse of polychromatic neutrons every 20 milliseconds. The Swiss Spallation Neutron

Source (SINQ) at Paul Scherrer Institute of Switzerland produces continuous neutrons [69]. The kinetic

energy of the neutrons produced by these reactions is on the order of MeV. The corresponding de Broglie

wavelength (λ) is estimated to be around 2.86× 10−4 Å [63]. As a result, additional treatment is required to

slow these fast neutrons down. This is realized by injecting them into a moderator filled with light atoms

(e.g. H, D, Be). These injected neutrons are scattered inelastically by these light atoms in the moderator and

eventually brought into thermal equilibrium described by the Maxwellian distribution

φ(v) ∝ v3 exp(
1

2
mv2/kBT ), (2.8)

where v is the velocity of the output neutrons, φ (v)dv is the output neutron flux density between v and

v + dv, m is the neutron mass, T is the temperature of the moderator and kB is the Boltzmann constant [63].
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Diffractometers

Figure 2.4: Experimental setup of the D20 2-axis diffractometer at ILL, France [70].

The Bragg’s law, 2dhklsinθ=λ, can be rewriten as dhkl =
λ

2sinθ
. As a result, in order to measure the lattice

spacing dhkl, one can scan either the scattering angle θ or the incident wavelength λ. In the first case,

a monochromator single-crystal is used to create a beam of neutrons with a constant wavelength. The

experimental setup of the D20 diffractormeter in the Institut Laue-Langevin (ILL) is illustrated in Fig. 2.4.

The second method of measuring dhkl, i.e. scanning λ, is called the time-of-flight (TOF) technique. Typical

TOF neutron diffractometers include WISH and HRPD at ISIS, UK. λ is determined by measuring the flying

time (t in second) of the neutrons. For example, the ‘departure time’ of a neutron flight can be controlled by

the pulse rate in a spallation neutron source. Then the flying time can be obtained by counting the ‘arrival

time’ on the detectors. Since the total flight path (L in kilometre) is a known parameter, λ in Å can be
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obtained by [63]

λ = 3.956
t

L
. (2.9)

Nuclear scattering length b

Figure 2.5: Coherent nuclear scattering length b as a function of atomic number Z [71].

In most neutron scattering processes which do not involve magnetic interactions, f (θ, λ) in eq. 2.1 - eq. 2.4

can be replaced by a simple constant -b called ‘scattering length’ (Fig. 2.5). Compared with the atomic form

factor in the X-ray scattering case, the scattering length -b [64]

1. is invariant with respect to θ and λ.

2. is isotope sensitive.

3. has two different values for nuclei with a non-zero spin.

4. does not vary with atomic number Z in a trivial or monotonic way.

Magnetic form factor

As mentioned above, neutrons also carry a magnetic dipole moment which can interact with the magnetic

field produced by the unpaired electrons. When a neutron is scattered with a wavevector ~Q=~ki -~kf , it is

only sensitive to the magnetic moment ( ~M) perpendicular to ~Q: M⊥= ~M - ( ~M · ~Q) ~Q [63, 64]. The magnetic
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differential cross-section can be writen as

(
dσ

dΩ

)
m

∝ |Fm(Q)|2
∑
α, β

(δαβ − ~Qα ~Qβ) ×
∑
R

exp(−i ~Q · ~R) < Mα
0 >< Mβ

R >, (2.10)

where Fm(Q) is the magnetic form factor, δαβ is the Kronecker delta, the subscripts α and β denote the

projection on the x, y and z axes, and R is the position of the unpaired electron [63].

Considering a magnetic ion has both spin and angular momentum, its magnetic form factor Fm(Q) can

be expressed as

gJFm(Q) = gL
J(J + 1) + L(L+ 1)− S(S + 1)

2J(J + 1)
F0 + gS

J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)
(F0 + F2), (2.11)

where the physical meaning of the Landé g-factors can be found in Chapter 1.1.3. The term Fn is related to

the nth order spherical Bessel function jn( ~Q ·~r) and the normalised density of the unpaired electrons ρ(~r) [63]

Fn = 4π

∫ ∞
0

jn( ~Q · ~r)ρ(~r)r2dr. (2.12)

It is worth noting that the magnetic form factors are ion-dependent. In practise, Fm(Q) can be parametrized

using an analytical approximation [66].

2.2.4 Small angle neutron scattering

As described by Bragg’s law, d =
λ

2sinθ
, a structure with reflections at very small angles θ has a very long

lattice spacing d, e.g. vortex lattices in superconductors [72]. In general, the small angle neutron scattering

(SANS) technique is used to measure the incoherent and coherent structure on large scales, typically between

10 Å and 1000 Å[69, 64, 73]. Fig. 2.6 shows configuration of the state-of-the-art SANS-1 instrument located at

the Forschungsreaktor München II (FRM-II), Germany [74]. Before reaching the velocity selector, neutrons

have a broad distribution of wavelength (λ)e.g. between 4.5 Å and 30 Å for SANS-1, FRM-II. By rotating

the turbine in the velocity selector at a given frequency, only neutrons with the selected wavelength are able

to pass. In reality, these selected neutrons still have a distribution of wavelengths (∆λ/λ∼ 10 %). To control

the angular divergence of the neutron beam that comes out from the velocity selector, these neutrons are

sent through a collimation chamber, the inner walls of which are made of strong neutron absorbers. The

collimated neutrons are then scattered by the sample and measured on the large 2-dimensional detector in

the high vacuum detector tank. Since the detector unit has a fixed size, the scattering angle (θ in eq. 2.1)
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being measured only depends on the distance between the detector and the sample. Besides these common

features, a SANS instrument in a reactor source can also perform TOF type measurements by using a chopper

disk setup (Fig. 2.6).

Figure 2.6: The SANS-1 instrument at FRM-II, Germany [75].

The SANS process can be described by the general scattering theory discussed in Chapter 2.2. As a

result, the scattering intensity I(Q), where Q is the amplitude of the wavevector transfer Q =
4πsinθ

λ
is

proportional to the square of the structure factor |FQ|2. According to Ref. [73], the term f(θ, λ) in F(Q)

(eq. 2.3) can be replaced by a density function ρ(Rj), where j labels the position of an individual scatterer,

and the summation is replaced by an integral:

I(Q) =

∫
V1

∫
V2

ρ(R1)ρ(R2)e−iQ(R1−R2)dV1dV2. (2.13)

The integration can be carried out in two steps: (1) over all pairs with equal distance |r |= |~R1 - ~R2|, (2) over

all relative distances:

I(Q) =

∫
V

ρ̄2(r)e−iQrdV, (2.14)

where ρ̄2(r) =
∫
V1
ρ(R1)ρ(R2)dV1 can be regarded as the density function of a point in a fictious C -space

which represents the pair with relative distance r in the ordinary space [73].

Now we discuss the specific SANS problem which meets the following two restrictions: (a) the scattering

target is isotropic, and (b) there is no long range correlation. The first restriction means that the phase term

e−iQr in eq. 2.14 can be replaced by its average < e−iQr >=
sinQr

Qr
[73]. The second restriction indicates
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that the density functions of the pair separated widely enough in ordinary space should be independent so

that ρ̄2(r)→ a constant Vρ̄2 when r→∞ [73]. Since this constant term (background) does not contribute to

the intensity I(Q) based on eq. 2.14, it is the density fluctuation ∆ρ, also refered as the contrast term, in the

finite region that matters in a SANS process [73]. In other words, if the system is homogeneous on the scales

investigated by SANS, no relevant information can be probed. This makes the SANS technique an ideal tool

to study the phase separation phenomenon discussed in Chapter 1.4 [10].

2.3 Magnetometry

2.3.1 Magnetic Property Measurement System (MPMS)

The MPMS, manufactured by Quantum Design, can be used to measure the magnetization of a material. It

includes five principal components [76]:

1), Temperature control system.

2), Magnet control system.

3), Superconducting quantum interference device (SQUID).

4), Sample handling system.

5), Computer operating system.

Figure 2.7: (a) A SQUID is formed by two parallel Josephson junctions [77]. (b) Working mechanism of the

SQUID. Any weak change in the flux signal will be detected in the output voltage channel as well [77].

A SQUID is formed by two superconductors separated by thin insulating layers (Fig. 2.7a). This structure

has two parallel Josephson junctions which allow the tunelling of Cooper pairs [78]. Since the SQUID is
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able to measure the change of a magnetic field associated with one flux quantum (< 10−14 T), it is very

sensitive to weak magnetic signals [78]. Compared with other techniques, the SQUID-based magnetometer

has particularly high resolution (between 10−7 and −8 emu) in magnetization measurements [76].

The most important unit in the MPMS is the closed superconducting loop composed of the detection

coils, the SQUID and the connecting wires. When a measurement is performed, the sample is moved through

the superconducting detection coils located at the center of the magnet. The movement will induce an

electric current in the detection coils. Due to the coupling between the SQUID and the detection coils, the

induced electric current will lead to a change of the output voltage in the SQUID, which is proportional to

the magnetization of the sample (Fig. 2.7b) [76, 78].

Most of our magnetization data were collected using a MPMS-XL with magnetic field range -5.0 T to

5.0 T and temperature range 1.8 K - 350 K, respectively [76].

2.3.2 Vibrating Sample Magnetometer (VSM)

Figure 2.8: Schematic construction of a VSM [79].
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VSM is based on Faraday’s law: an electromagnetic force is generated in a coil where the flux through the coil

is changed [79]. As shown in Fig. 2.8, the sample holder is usually controlled by an oscillator which produces

sinusoidal signal. During the vertical vibration, the magnetic sample attached on the bottom of the holder

will induced a voltage Um in the pickup coils: Um (t) = -
∂φ

∂t
, where φ is the magnetic flux and t is the time.

Consider the pickup coils with n windings and a surface area S, we will have the following expression if the

applied magnetic field H is a constant:

Um = −nS ∂B
∂t
∝ −nSMcos(ωt), (2.15)

where M is the magnetization of the sample, and ω is the frequency of the vertical sinusoidal movement of

the sample [79].

Magnetization measurements based on VSM are normally much quicker than those using a SQUID.

However, the experimental resolution of a VSM is lower (∼ 10−6 emu) than the SQUID’s (<10−7 emu),

making them more suitable to measure materials with strong magnetic signals [79]. In this thesis, an Oxford

Instruments MagLab VSM was used to collect the magnetization up to 12 T between 2 K and 200 K.

2.4 Physical Property Measurement System (PPMS)

Figure 2.9: Schematic representation of a four-point probe array [80].

We have carried out resistance measurements in a PPMS-9 (Quantum Design) using the four-point probe

technique [80, 81]. Unlike the two-point probe technique which measures the contact resistance as well as the
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intrinsic resistance of the sample, the four-point probe technique significantly reduces the contributions of

the contact resistance by separating the current injection from the voltage reading (Fig. 2.9).
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CHAPTER 3

A QUASI-ONE-DIMENSIONAL MAGNET, γ-COV2O6

3.1 Background

3.1.1 Magnetic structure of α-CoV2O6

Figure 3.1: (Left) Crystallographic structure of αCVO. Edge-sharing CoO6 octahedral chains run along the

b-axis. V and O(3) cites are omitted for clarity. (Right) Projection of the Co-sites in the ac-plane. The

triangular arrangement allows geometric frustration.
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CoV2O6 crystallizes in two polymorphs, the monoclinic α-CoV2O6 (αCVO) and the triclinic γ-CoV2O6

(γCVO) [82, 83]. In both structures, the magnetic Co2+ has 6 nearest neighbour O2−, forming an octahedral

crystal field environment. The space group of αCVO is C2/m. The CoO6 octahedra form edge-sharing

chains along the crystallographic b-axis (Fig. 3.1), which are spatially separated by the VO6 chains. As a

result, the spin lattice of αCVO is quasi-one-dimensional. On the other hand, the space group of γCVO is

P 1̄. In contrast with the single crystallographic site for Co in αCVO, there are two inequivalent Co sites

in γCVO. Similar to the αCVO case, the γCVO structure also forms edge-sharing CoO6 chains along the

b-axis, whereas these chains are separated by a complex VO4-VO6 network between them (see next section).

In this section, we will discuss the magnetic properties of αCVO, which have been studied comprehensively

by both experiments and theories. The other polymorph γCVO, which is the focus of this chapter, has not

been as studied in the past. We present these studies in the next section.

T = 300 K a = 9.2531(2) Å b = 3.5040(1) Å c = 6.6201(1) Å β= 111.617◦

Atom x y z Uiso (Å2)

Co 0 0 0 0.0090(10)

V 0.3055(19) 0.5 0.3388(26) 0.0090(10)

O(1) 0.1536(2) 0.5 0.1131(3) 0.0110(6)

O(2) 0.4640(2) 0.5 0.2744(4) 0.0110(6)

O(3) 0.1916(2) 0.5 0.5622(4) 0.0110(6)

Table 3.1: Refined lattice parameters, atomic positions and isotropic displacement parameters (Uiso) of

αCVO at 300 K [84].

The refined structural parameters of αCVO at 300 K can be found in Table. 3.1 [84]. Since the Co-O

bonds (∼ 2 Å) in the CoO6 octahedron are much shorter than the others (>3.2 Å), the nearest neighbour

(NN) intrachain spin exchange is very strong [85]. Moreover, interchain Co-O-Co superexchange paths are

also found in αCVO. By projecting these paths into the ac-plane, the Co exchange network can be treated as a

quasi-triangular lattice which permits the geometric frustration (Fig. 3.1), as discussed in Chapter 1.3 [84, 15].

Previous susceptibility measurements have revealed that αCVO shows strong Ising anisotropy along the c-

axis (Fig. 3.2a) [86]. Since the saturation magnetic moment along the easy c-axis (4.4µB/Co) greatly exceeds

the spin-only value for Co2+ (3.0µB/Co) (Fig. 3.2b), there must be a strong orbital contribution. Local

structure analysis suggests that Co ions reside in a strongly distorted oxygen-octahedral environment [9, 87].
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This may lift the orbital moment quenching in αCVO, as verified by the X-ray magnetic circular dichroism

(XMCD) spectroscopy measurements [9]. The resulting complex crystal field (Fig. 3.3a), combined with the

spin-orbit coupling, is responsible for the strong Ising anisotropy seen in αCVO[9, 87, 88].

Figure 3.2: (a) Temperature dependence of the magnetic susceptibilities of αCVO. The solid line is a fit using

the Ising chain model described in Ref. [86]. (b) Magnetization versus magnetic field curves taken at 5 K.

Figure 3.3: (a) The CoO6-octahedron distortion in αCVO and the schematic crystal field levels [9]. (b) Spin

exchange paths between Co ions [85]. Interchain and intrachain couplings are in blue and red, respectively.

48



Besides the strong Ising anisotropy, the competing spin exchange interactions are also crucial to fully

understand the magnetic structure of αCVO (Fig. 3.3b) [85]. For example, a 1/3-plateau in magnetization

can be stablized between 1.6 T and 3.3 T at 5 K by applying a magnetic field along the c-axis (Fig. 3.2b).

This type of metamagnetic transition is a typical manifestation of magnetic frustration [43] and has been

observed in other systems such as Ca3Co2O6 and SrCo6O11 [89, 90]. By taking the longitudinal components

of J1, J2, J3 and J4 (Fig. 3.3b) into an effective Hamiltonian:

Ĥ =
∑
i > j

Jijσiσj − h
∑
i

σi, (3.1)

where σi is the pseudo-spin variable along the magnetic easy axis at i -site, Saúl et al have successfully

reproduced this intermediate 1/3-plateau state (Fig. 3.4a) [85].

Figure 3.4: (a) Simulated magnetization versus magnetic field curve [85]. Inset: the corresponding magnetic

structures in the ac-plane. (b) Magnetic field dependence of lattice parameters (p =a, b, c,β and Volume) [91].

Neutron powder diffraction measurements have also been performed to investigate the magnetic structure

of αCVO [84, 92, 91]. The results are consistent with the theoretical predictions in Ref. [85] (Fig. 3.4a) as

well as the bulk susceptibility data [86, 92]. For the zero field magnetic structure, ferromagnetic Co-chains

along the b-axis are antiferromagnetically coupled to their NN chains in the ac-plane. The spins form a

collinear arrangement in the ac-plane with a tiny tilting angle ∼ 9.3◦ with respect to the c-axis [92]. For

the 1/3-plateau state, the intrachain spin arrangement is still ferromagnetic. However, there are two spin-up

chains for every one spin-down chain in the ac-plane (Fig. 3.4a). Alternatively, it can be viewed as an ’up-

up-down’ pattern in the ac-plane. At the highest field, where the full saturation is reached, all the interchain
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spin arrangements become ferromagnetic. In all investigations, the spin orientations have been found to be

insensitive to the magnetic field [84, 92, 91]. In addition, a magnetostructural coupling effect is also observed

in αCVO [84, 92]. The unit cell volume (V) and b-axis are considerably increased between 0 T and 2.5 T

when the antiferromagnetic order is suppressed, as depicted in Fig. 3.4b.

To conclude this part, we now write down a more accurate Hamiltonian to describe the interactions in

αCVO [85]

Ĥ = H0 −D
∑
i

Ŝ2
iz +

∑
i>j

J
‖
ijŜizŜjz +

∑
i>j

J⊥ij (ŜixŜjx + ŜiyŜjy), (3.2)

where H 0 is the spin independent term, D is the single-ion anisotropy constant, x, y, z are the axes in a

Cartesian coordinate system and z is the magnetic easy axis. αCVO can be viewed as a magnet with

strong anisotropy and competing spin interactions. At the limit of D� ‖ ~Jij |, it is clear that a collinear

spin structure is favored since having every spin lying along the z -axis will produce the lowest energy [93,

94, 95]. Oppositely, a noncollinear spin structure may be formed if the competing spin exchange terms ( ~Jij)

dominate [93, 94, 95, 96]. It is worth noting that the 1/3-plateau in magnetization can still occur in the

absence of any single-ion anisotropy or geometric frustration [96]. From this point of view, the collinear spin

structure of αCVO is strongly related to the overwhelming single-ion anisotropy in this structure [9, 87].

50



3.1.2 Previous investigations on γ-CoV2O6: a 2-k Ising magnet?

Figure 3.5: Left: Co-chains along the b-axis in γCVO. Right: Projection of the Co-sites in the ac-plane.

Compared with the monoclinic αCVO, the triclinic γ-CoV2O6 (γCVO) with space group P 1̄ is less under-

stood. The room temperature structural parameters of γCVO are summarized in Table. 3.2 [82]. Except

Co(1) which is an inversion center, e.g. of two adjacent Co(2) ions (Fig 3.5), most of the atoms occupy a

low symmetry position. Similarly, γCVO also has Co-chains running along the b-axis composed of alternate

Co(1)-Co(2) ions in a ratio of 1:2. Since the xz -coordinates of Co(2) are small, the projections of Co ions

belonging to the same chain in the ac-plane are very close to each other (Fig. 3.5). As to be demonstrated in

the next section, the intrachain spin exchange in γCVO is much stronger than any interchain coupling. This

means the in-plane arrangement of Co ions in Fig. 3.5 can be approximately described as weakly coupled

Co-clusters. Unlike αCVO where β is close to 120◦ (Table 3.1), β of γCVO is close to 90◦. The corresponding

Co-cluster lattice is more rectangular than triangular, meaning the geometric frustration not as significant

in γCVO.

We will briefly discuss the spin exchange paths of γCVO here, although more details will be introduced

in the following section. Due to the presence of two inequivalent Co-sites, one needs at least two exchange
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constants, J1 and J2, to describe the intrachain Co(1)-Co(2) and Co(2)-Co(2) spin exchanges. On the other

hand, a Co-O-Co interchain exchange path does not exist in γCVO. This means the V-sites need to be

involved in the Co spin exchange process. As to be demonstrated later, at least five such interchain exchange

paths (J3, J4, J5, J6, J7) need to be considered.

a = 7.164(5) Å b = 8.872(14) Å c = 4.806(4) Å α= 90.29(9)◦ β= 93.66(4)◦ γ= 102.05(9)◦

Atom Multiplicity x y z Biso (Å2)

Co(1) 1 0 0.5 0 0.63(2)

Co(2) 2 0.0199(1) 0.1685(1) 0.0203(2) 0.60(1)

V(1) 2 0.7121(1) 0.9699(1) 0.4593(2) 0.51(2)

V(2) 2 0.7115(1) 0.6067(1) 0.4550(2) 0.53(1)

V(3) 2 0.5806(1) 0.2628(1) 0.1206(2) 0.48(1)

O(1) 2 0.1657(7) 0.4885(5) 0.3469(10) 0.89(6)

O(2) 2 0.8442(6) 0.6387(5) 0.1701(9) 0.74(6)

O(3) 2 0.1798(6) 0.6989(5) 0.8905(9) 0.78(6)

O(4) 2 0.1548(6) 0.0192(5) 0.8255(9) 0.70(6)

O(5) 2 0.1671(7) 0.8931(5) 0.3415(10) 0.95(6)

O(6) 2 0.7850(6) 0.7992(5) 0.6368(9) 0.70(6)

O(7) 2 0.4762(6) 0.9143(5) 0.7011(9) 0.71(6)

O(8) 2 0.4746(6) 0.5780(5) 0.7011(9) 0.70(6)

O(9) 2 0.5236(7) 0.7534(5) 0.2015(10) 0.86(6)

Table 3.2: Room temperature lattice parameters, atomic positions and isotropic displacement parameters

(Biso) of γCVO [82].

Bulk magnetization and heat capacity measurements have been performed on γCVO [97, 98, 99, 100, 101].

The antiferromagnetic ordering (TN) is between 6 K and 7 K (Fig. 3.6a & b). This value is much lower than

TN = 14 K∼ 15 K in αCVO [86], indicating a weaker interchain coupling in γCVO. On the other hand, strong

Ising-like anisotropy is also observed in this compound, and the magnetization along the b-axis is much larger

than those of other directions (Fig. 3.6b & c). The 1/3-plateau state can only be triggered when the magnetic

field is applied to the b-axis (Fig. 3.6b). Based on these results, it has been suggested that the Ising anisotropy

is still maintained in γCVO.
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Figure 3.6: (a) Heat capacity data of αCVO and γCVO [101]. (b) and (c) Magnetization curves of γCVO

single-crystal and powder [99]. The (b) magnetic field, and (c) temperature scans were taken at T = 1.8 K

and B = 0.1 T, respectively.

Although neutron diffraction has been used to investigate γCVO, the corresponding magnetic structure

has not been fully established to date [98, 99, 100]. Kimber et al observed the magnetic reflections at low

temperatures and could not assign all of the reflections with one propagation vector [98]. However, they

were only able to partially solve the spin structure using a propagation vector k1 = (0.5, 0, 0) (Fig. 3.7a).

The second propagation vector k2, as they pointed out, is perhaps related to the competition between

superexchange interactions and single-ion anisotropy in γCVO (eq. 3.2) [98]. A later investigation carried out

by Lenertz et al confirms k1= (0.5, 0, 0) and proposes k2= (0.25, 0.5, 0) [99]. As shown in Fig. 3.7c, the full

diffraction pattern can be refined using these two modulations. However, they have applied a large number

of hypothetical constraints in the refinement procedure. Most importantly, the peak profile around 2θ= 26◦

in Fig. 3.7a cannot be fully fitted by the crystallographic structure refinement in Ref. [98], indicating that it

has a magnetic component. Unfortunately, both k1= (0.5, 0, 0) or k2= (0.25, 0.5, 0) fail to produce a magnetic

reflection at this position (corresponding to 2θ= 23◦∼ 24◦ in Fig. 3.7c measured by Lenertz et al). As a

result, the complex magnetic structure in γCVO remains to be unveiled.

53



Figure 3.7: Neutron powder diffraction patterns collected by Kimber et al [98] at (a) λ= 2.8 Å, T = 2 K and

(b) λ= 1.79 Å, T = 2 K and Lenertz et al [99] at (c) λ= 2.423 Å, T = 1.7 K.

Compared with αCVO, the CoO6-octahedra in γCVO is much less distorted. This can be characterized

by the following distortion parameter

δ =
1

N

∑
i

(
di− < d >

< d >
)2 × 104, (3.3)

where di are the Co-O bond lengths, N = 6 for an octahedron and <d> is the average bond length [87].

It gives δ= 55 in αCVO and δ= 2.1, 4.8 for the two inequivalent Co-sites in γCVO [87]. Correspondingly,

the crystal field splitting should be weak and therefore the orbital quenching stronger in γCVO (Fig. 3.8a),

as confirmed in both experimental and theoretical investigations [88, 99, 9, 97, 100]. This also means the

single-ion anisotropy in this compound is weaker compared with the αCVO case. As discussed in eq. 3.2, a

noncollinear structure is favored when the exchange frustration is dominant in the system. A recent time-of-

flight inelastic neutron spectroscopy study on the powder sample suggests that one-dimensional magnetism

is not able to fully justify their observations [87].
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To finish this part, we summarize the important points based on previous investigations:

1), γCVO cannot be treated as a geometrically frustrated magnet.

2), Exchange frustration coexists with single-ion anisotropy, whereas the latter is weaker compared with the

αCVO case.

3), Bulk magnetization measurements tend to support the Ising anisotropy and orbital quenching in γCVO.

4), The Ising anisotropy cannot fully account for the inelastic neutron spectroscopy results.

5), Preliminary neutron diffraction measurements indicate a 2-k magnetic structure.

6), The field-induced 1/3-plateau ferrimagnetic (FI) state does not exist in the entire region below TN (3.8b).

Figure 3.8: (a) Local CoO6 enviroments of γCVO and the schematic crystal field level splitting [9]. Magnetic

phase diagram of (b) αCVO and (c) γCVO [101].
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3.2 Results

3.2.1 Research motivations

Figure 3.9: Single-crystal diffraction patterns of γCVO collected at λ= 2.31 Å, T = 1.5 K.

As mentioned above, one of the spin modulations k1 = (0.5, 0, 0) in γCVO has been confirmed by both

Kimber et al [98] and Lenertz et al [99]. The second wavevector k2 = (0.25, 0.5, 0) proposed by Lenertz et

al [99] cannot index all of the remaining peaks, e.g. the magnetic reflection ∼ 4πsinθ

λ
= Q = 1.026 Å in

Fig. 3.7. We have performed single crystal neutron diffraction measurements on the TriCS instrument at PSI

and have verified k1, but could not find any reflection with a wavevector transfer k2 = (0.25, 0.5, 0) (Fig. 3.9).

Under the angular resolution of the previous investigations, the magnetic reflections belonging to different
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modulations are highly overlapped. For example, there are only 3 visible reflections not indexed by k1 in

Fig. 3.7a, which makes it very hard to exactly determine k2. Moreover, the Ising anisotropy revealed by the

bulk magnetization measurements does not coincide with the inelastic neutron scattering data carried out

by Wallington et al [87]. Apparently, the magnetic structure of γCVO is the key to answer this question. As

a result, further neutron diffraction investigations on γCVO with a better resolution are highly demanded.

We therefore carried out a new neutron powder diffraction study.

3.2.2 Data collection and analysis

Both single crystals and powders of γCVO were investigated. Powder samples have were synthesized using

the ceramic method. A homogeneous mixture of CoC2O4 ·H2O and V2O5 in a molar ratio of 1 : 1 were

sintered at 873 K in air for 80 hours. The single crystals of γCVO were grown by the flux method; details of

the procedure are given in Ref. [97]. Magnetic susceptibility data were collected using a Magnetic Property

Measurement System (MPMS, Quantum Design). The existence of magnetic frustration in γCVO is exper-

imentally supported by the commonly used frustration index f = |θCW/TN| = 1.66(3) (θCW: Curie-Weiss

temperature, TN: Néel temperature). We carried out diffraction measurements on powder samples using the

cold neutron powder diffractometer DMC at the Swiss Spallation Neutron Source (SINQ). Two neutron wave-

lengths, 2.4586 Å and 4.5 Å, were used. The longer wavelength provided the necessary angular resolution to

distinguish the magnetic Bragg peaks. 6 g of powder was loaded into a thin Al cylinder (6 mm in diameter) and

then into a cryostat to probe temperatures down to 1.5 K. Single crystal neutron diffraction measurements

were performed on the TriCS instrument at SINQ. These data (not shown here) confirm the propagation vec-

tor k1 = (0.5, 0, 0) of the magnetic structure found by Kimber et al. [98] and Lenertz et al. [99], but we did not

find peaks corresponding to the second propagation vector (0.25, 0.5, 0) proposed in Ref. [99]. Furthermore,

we find a magnetic Bragg peak at Q' 1.03 Å−1 in our powder diffraction profiles (Fig. 3.13) that cannot be

indexed using either of the previously found propagation vectors.

The neutron powder diffraction patterns have been analyzed using the FullProf package [102]. This soft-

ware is based on a least-squares method called ‘Rietveld refinement’ [103]. The basic principles of Rietveld

refinement are discussed in Appendix A. In order to solve the magnetic and crystallographic structure of

γCVO at low temperatures, we have chosen to simultaneously refine two patterns collected under different

wavelengths (4.5 Å and 2.4586 Å). The shorter wavelength enables us to determine the crystallographic struc-

ture, whereas the longer wavelength offers necessary angular resolution to determine the correct k2 and then

to solve the magnetic structure. Here we have chosen to demonstrate the refinement procedure under the two

57



single-k phases (phase separation) scenario. We note a second scenario, corresponding to the one double-k

phase as proposed by Kimber et al and Lenertz et al [99], along with a comparison between the two will also

be discussed in the next Section 3.2.3.

Propagation vector k1 = (0.5, 0, 0) k1 = (0.5, 0, 0) k2 = (-0.25, 0, 0.25)

Symmetry operator Γ1
1 Γ1

2 Γ1
1

{1|000} 1 1 1

{-1|000} 1 -1 ——

Table 3.3: Irreducible representations of the magnetic little group Gk of the propagation vector k1 = (0.5, 0, 0)

and k2 = (-0.25, 0, 0.25) for γCVO.

We have first carried out a representation analysis to investigate the symmetry constraints of the magnetic

structure by using the BasIreps option in the FullProf package. [104]. This requires the crystallographic

symmetry as well as the propagation vector of the magnetic ordering to determine the magnetic little group

Gk in which the elements leave the propagation vector invariant. The magnetic representation (Γmag) of a

crystallographic site can then be decomposed into a series of irreducible representations (IRs)

Γmag =
∑
v

nvΓ
µ
v , (3.4)

where nv is the number of times that the IR Γv of order µ appears in Γmag [105].

For the P 1̄ space group of γCVO, there are only two elements in Gk (Table. 3.3). Under the k1 = (0.5, 0, 0)

modulation, the magnetic representations of Co(1) and Co(2) are

Γk1
mag(1) = 3Γ1

2 and Γk1
mag(2) = 3Γ1

1 + 3Γ1
2, (3.5)

respectively. Since only one IR can be involved in a second-order transition, very useful information can be

obtained by such representation analysis. For example, Γ1
2 indicates that the Co(2) spin should be either

parallel (Γ1
2) or antiparallel (Γ1

1) with its central inversion replica Co(2). On the other hand, there is only

one element in Gk under the second modulation (Table. 3.3), which has been identified as k2 = (-0.25, 0, 0.25)

in our investigations. We shall extend the relevant discussion in the next subsection. The key message here

is that the inversion symmetry of Co(2) is broken for the spin lattice modulated by this k2. As a result, one

should refine Co(2)- and Co(2)- sites independently.
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Figure 3.10: Powder diffraction patterns obtained at T = 1.5 K. The calculated pattern (black solid lines)

correspond to the first step described in the context. The vertical bars, from top to bottom, label the

reflections of nuclear, k1, k2 and Aluminium (sample holder), respectively. The Rietveld factors (Appendix A)

are also displayed.
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Figure 3.11: Evolution of the Rietveld factors of the neutron diffraction pattern at λ= 4.5 Å in the refinement

process.

Since the low temperature crystallographic structure of γCVO has been analyzed in the past, we have

used the atomic positions, lattice parameters, and isotropic displacement parameters (Biso) listed in Ta-

ble 3.2 ( [98]) as our starting parameters. For the magnetic structure, we have followed the bulk susceptibility

measurements which suggest an Ising anisotropy along the b-axis and a magnetic moment of 3µB/Co for

both Co(1)- and Co(2)- sites [9, 97, 99, 100, 98]. We have used a tripled pseudo-Voigt function to fit the

peak shape [106], the starting parameters of which can be found in Ref. [107]. In the first step, we have

only refined the scale factors, lattice parameters and zero shifts of the detector. As shown in Fig. 3.10, the

calculated patterns are already very close to the experimental observations. In the following, we have freed

other parameters in the following sequence:

1. Atomic positions and the amplitudes of the magnetic moments on Co(1)- and Co(2)- sites.

2. Peak shape parameters and asymmetry parameters.
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3. Background.

4. Spin orientation of Co(1) in the k1 phase.

5. Spin orientation of Co(2) in the k1 phase.

6. Spin orientation of Co(1) in the k2 phase.

7. Spin orientation of Co(2) in the k2 phase.

For the k1 modulation, several initial trials have ruled out Γ1
2 on Co(2)-sites. This produces a zigzag

ferromagnetic Co chain along the b-axis. For the k2 modulation, several constraints have been applied during

the fitting process. This will be discussed in the next subsection. By ending this subsection, we note that the

refinement converges in each step and the fitting quality is also greatly improved over this process (Fig. 3.11).

3.2.3 Magnetic phase separation in γ-CoV2O6

Magnetic frustration occurs when a system’s total free energy cannot be minimized by optimizing the inter-

action energy between every pair of spins. This can be caused by competing interactions [96] or by geometry

e.g. antiferromagnetic interactions on a triangular or tetrahedral unit [15]. As a result, the ground state of

a frustrated magnet is often highly degenerate [1]. The degeneracy can be lifted by perturbations such as

additional interaction terms [15], quantum fluctuations [108], and so forth. Various exotic spin states may also

result, as found by numerical simulations [109, 110]. Evidently, experiments are essential to verify the nature

of the interactions, determine their parameters and to confirm the presence of any emergent states.

Another consequence of competing interactions may be phase separation, a common phenomenon among

colossal magneto-resistance (CMR) manganites and high-T c superconductors [10, 111]. There are no con-

straints on the type of these interactions, though so far most phase separation phenomena require non-

magnetic Hamiltonian terms (e.g. Coulomb interaction, electron-phonon coupling). Recently, phase separation

possibly of purely magnetic origin was studied in SrCo6O11 where a ‘devil’s staircase’ is realised [112], though

the volume fractions of the competing phases were not determined. Dynamic phase separation has also been

observed in the quasi-one-dimensional (Q1D) Ca3Co2O6 [40] and possible microphases have also been reported

here [43, 42]. To our knowledge, static or dynamic phase separation exclusively caused by competing spin

exchange interactions, e.g. exchange frustration, on a non-geometrically frustrated lattice has not presently

been reported.
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Figure 3.12: (a) Crystal structure of triclinic γCVO. Oxygen anions (omitted for clarity) occupy the corner

of the shaded polyhedra. (b) Possible interchain spin exchange paths displayed in two unit cells for Co(1)

and Co(2), respectively.

We report magnetic phase separation in the triclinic cobaltate compound γ-CoV2O6 (γCVO). γCVO has

space group P1̄ with edge-sharing CoO6-octahedra arranged in zigzag chains along the crystallographic b-

axis. These chains are well separated by a VO4-VO6 polyhedral-network between them (Fig. 3.12a) [82]. Unlike

its polymorph α-CoV2O6 (αCVO), the transverse nearest neighbour (NN) exchange in γCVO must involve

V5+ [86]. This significantly weakens the interchain exchange interaction strength as evidenced by a lower

ordering temperature in γCVO [86, 97, 98]. As shown in Fig. 3.12a, there are two inequivalent cobalt sites,

Co(1) and Co(2). For the Co(2)-Co(2) exchange, there is only one Co2+-O2−-V5+-O2−-Co2+ (COVOC)

path along the a-axis (Fig. 3.12b). In contrast, two very similar COVOC paths are found along the c-axis,

affording the possibility of the so-called ‘random frustration’ caused by competing interactions [15]. For the

Co(1)-Co(1) exchange, no NN COVOC path is found along the a-axis and only one such path is located

along the c-axis. Surprisingly, a skew path between interchain Co(1) and Co(2) sites is also found. Its length

is close to those of the transverse ones, meaning these skew paths are just as important for the magnetic

structure. First of all, they can set up correlations between Co(1) spins along the a-axis. Second, since the
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intrachain exchange is mainly ferromagnetic, an antiferromagnetic skew exchange would complicate the final

magnetic structure or even lead to further frustration.

Figure 3.13: Neutron powder diffraction pattern measured at λ= 4.5 Å, T = 1.5 K. The red solid dots are

experimental observations. The black and blue lines are the calculated pattern and the difference using the

2 -phase model. Black, pink and green vertical bars mark the nuclear, k1- and k2- modulated Bragg positions,

respectively. Right inset: Sketch of the ac-plane magnetic structure modulated by k2 in a 5x5 unit cell. Left

inset: A weak reflection indexed as (0.5, 1, 0) around 0.931 Å.

On cooling the system down to 1.5 K from the paramagnetic state, magnetic Bragg peaks are observed

in the low-Q region (Fig. 3.13). The refined lattice parameters (Table 3.4) are consistent with previous

works [98, 99]. In addition to the k1 = (0.5, 0, 0) wavevector proposed by Kimber et al. [98], corresponding

to ferromagnetic bc-planes antiferromagnetically coupled along the a-axis, we find that a second propa-

gation vector k2 = (-0.25, 0, 0.25) is required to index the rest of the peaks. The in-plane spin modulation

of k2 is shown schematically in the right inset of Fig. 3.13. We also find short range correlations down to

the lowest temperature probed (1.5 K). Their contributions below the incommensurate-commensurate lock-

in transition T ∗= 5.6 K are treated in two self-consistent ways: (a) Gaussian functions are used to fit the

diffuse profiles on the tails of the main peaks at Q1 = (−0.25, 0, 0.25) at ∼ 0.39 Å−1 and Q2 = (0.5, 0, 0)
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at ∼ 0.45 Å−1, respectively (Fig. 3.15b). The background is fixed during the refinement after subtraction of

such profiles. (b) Alternatively, they are regarded as a part of the background so that the background is also

refined. These two methods produce essentially identical magnetic structures within our fitting resolution.

Although rare, multi-k structures have been predicted and experimentally confirmed in some frustrated

systems [113, 114, 109, 110, 115, 116]. We therefore propose two possible magnetic structures for γCVO: (I) a

single phase with 2-k-modulation, or (II) two 1-k phases (phase separation). As shown by the Rietveld factors

in Table 3.4, both scenarios turn out to fit the data reasonably well, although with some caveats. Possible

phase differences between the two inequivalent Co-sites and between the two modulations have been fixed

to zero, since we found that these parameters either resulted in unphysically large magnetic moments or did

not converge within the fitting resolution. We could not solve exactly the spin orientations modulated by k2

in either scenario, since the relevant free parameters were highly correlated, resulting in unphysically large

standard deviations in the Rietveld refinements.

We have also tested a ‘minimal model’ for each scenario where all spins modulated by k2 lie along the b-

direction; this is based on the assumption of Ising-like anisotropy along the crystallographic b-axis [97, 99, 100].

This minimal model was then relaxed by allowing spin canting in the ab-, or bc- plane on each Co-site. For

the 2-k single phase scenario, this canting does not improve the original refinement produced by the minimal

model, and so the corresponding spin orientations are fixed to the b-axis. In a triclinic lattice, we note the spins

will still have components in the ac-plane even if the b-axis Ising anisotropy is strictly followed (Table 3.4).

The refinement is not sensitive to additional spin canting on Co(1)-sites in the phase separation scenario

(fixed along the b-axis for these sites in Table 3.4), but it is considerably improved by including canting in

the bc-plane on Co(2)-sites (see below).

Both scenario I and II fit the data reasonably well. However, the global average of the magnetic moment

along the b-axis (M b) obtained by the 2-k solution is 4.3(3) µB . This is close to the value in αCVO where

there is large spin-orbit coupling (SOC) [86, 92, 84, 9]. Crystallographic structure analysis shows that the

distortion of the CoO6-octahedron is much weaker in γCVO than in αCVO [87]. This leads to a very small

orbital contribution to the total moment in γCVO, as revealed by X-ray magnetic circular dichroism (XMCD)

spectroscopy and theoretical calculations [9, 88]. The result is a global average spin moment of ∼ 3.2µB/Co,

mainly pointing along the b-axis, in agreement with magnetization measurements [98, 100, 99, 97]. We

point out that the 2-~k solution is inconsistent with this value. On the other hand, the phase separation

model produces M b = 3.04(9) µB/Co, in excellent agreement with magnetization, XMCD data, as well as

theoretical predictions [9, 88, 98, 100, 99, 97].
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Scenario I 2-k

a, b, c (Å) 7.1515(4) 8.8555(3) 4.7951(2)

α,β, γ (◦) 90.144(5) 93.948(2) 102.110(6)

Moments Ma (µB) Mb (µB) Mc (µB)

Co(1) : k1 -0.5(2) 2.5(1) 0.3(3)

Co(2) : k1 0.2(1) 2.44(7) -0.5(2)

Co(2) : k1 0.2(1) 2.44(7) -0.5(2)

Co(1) : k2 -0.4(1) 2.0(6) -0.01(1)

Co(2) : k2 -0.21(4) 1.0(2) -0.003(4)

Co(2) : k2 -0.5(1) 2.5(5) -0.01(1)

Scenario II† 2-phase

a, b, c (Å) 7.1524(4) 8.8560(3) 4.7954(2)

α,β, γ (◦) 90.137(6) 93.949(2) 102.122(7)

Moments Ma (µB) Mb (µB) Mc (µB)

Co(1) : k1 [65(1) %] -1.7(3) 2.9(3) 1.1(3)

Co(2) : k1[65(1) %] -1.1(2) 3.1(1) -0.2(2)

Co(2) : k1[65(1) %] -1.1(2) 3.1(1) -0.2(2)

Co(1) : k2[35(1) %] -0.69(4) 3.3(2) 0.008(4)

Co(2) : k2[35(1) %] -0.57(5) 2.8(2) 1.5(4)

Co(2) : k2[35(1) %] -0.65(2) 3.1(1) -0.008(2)

Rietveld factors Rp (%) Rwp(%) χ2

2-k 6.29 5.78 4.796

2-phase• 6.25 5.77 4.749

2-phase† 6.20 5.72 4.657

2-phase‡ 6.20 5.77 4.728

Table 3.4: Magnetic and lattice parameters of γCVO at T = 1.5 K. Constraints on the spin orientations for

the k2 modulation have been applied; see main text for details. Co(2) is the central inversion replica of Co(2).

The isotropic displacement parameters (Biso) and V atomic positions were fixed to the values reported in

Ref. [98]. Lattice parameters, O and Co positions were refined using data at λ = 2.4586 Å. Three sets of

Rietveld factors, corresponding to the minimal model (•), inequivalent (†) and equivalent (‡) spin canting on

Co(2)- and Co(2)- sites, are listed for the 2-phase scenario.
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We will now discuss the magnetic structure of this phase separation scenario in detail. Previous suscep-

tibility measurements on γCVO single crystals [97] show that the Co ions still possess Ising-anisotropy along

the crystallographic b-axis. Recently, this anisotropy has been challenged by a time-of-flight inelastic neutron

scattering study which suggests that one-dimensional magnetism along the b-axis is not sufficient to address

all of their observations [87]. According to our refinement, the global average moment (M) is 3.17(8) µB/Co.

When we compare this to M b we see that bulk Ising-anisotropy is mostly maintained in γCVO. On the

other hand, we find that canting in the ac-plane for spins in the k1 phase is necessary to match some very

weak reflections [Fig. 3.13(left-inset)]. For example, the refined structure of the Co(1)-spins in the k1 phase

shows components along all 3 crystal axes (Table 3.4). Since the projections of Mb on both a- and c- axes

are weak, e.g. -0.61µB/Co(1) and -0.01µB/Co(1), respectively, in the k1 phase, the additional non-negligible

in-plane magnetic moments obtained in our refinements strongly indicate that the spins in γCVO do not

lie solely along the b-axis. This might be related to the complex CoO6-octahehral distortion seen in this

compound [88, 9].

By relaxing from the ‘minimal model’, we can estimate the strength of spin canting in the k2 phase.

By allowing canting in the bc-plane on the Co(2)-sites, i.e. 29(8)◦ towards the c-axis, the refinement quality

characterized by the three Rietveld factors is considerably improved (Table 3.4). This canting angle changes

to 19(9)◦ and the Rietveld factors are increased if we keep the inversion symmetry between Co(2)- and Co(2)-

sites. These results support the breakdown of inversion symmetry on Co(2)-sites in the spin lattice. This

breakdown is only allowed in the k2 phase based on the representation analysis.

We have also investigated the temperature dependences of the two phases. The magnetic reflections

generated by k2 = (-0.25, 0, 0.25) are greatly suppressed on heating from 5.6 K (=T ∗) to 5.8 K. For example,

the Q3 = (0.75, 0, 0.25) reflection at ∼ 0.77 Å−1 can barely be resolved above T ∗, and the remnant intensity is

mainly composed of the (0.5, -1, 0) reflection arising from the k1 phase (Fig. 3.13). Concomitantly, emergent

reflections which cannot be indexed using either k1 = (0.5, 0, 0) or k2 = (-0.25, 0, 0.25) appear in a broad Q-

range (Fig. 3.14a). As the temperature increases further beyond T ∗, the emergent reflection on the left of

(0.75, 0, 0.25) continuously shifts towards the low-Q region until it falls under the strong diffuse scattering

background at 6.6 K (Fig. 3.14a). By fitting 5 clearly observable emergent reflections, we can rule out the

possibility of a commensurate modulation above T ∗ for these reflections. Unfortunately, an extensive search in

incommensurate space produces sets of solutions that cannot be distinguished within our resolution. The peak

between 1.33 Å−1 and 1.38 Å−1 consists exclusively of Q4 = (1.5, 0, 0) and Q5 = (-0.5, 0, 1) reflections of the k1

phase. Although its intensity starts to drop around T ∗ (Fig. 3.15a), no additional peaks are observed around
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Figure 3.14: (a) Selected regions of the powder diffraction patterns between 5.4 K and 6.6 K, showing the
shifting reflections. The peak positions in the intermediate region are fitted with Gaussian functions (solid
lines). A constant vertical shift has been applied to patterns measured above T ∗. The remnant peak above
T ∗ is indexed as (0.5, -1, 0). (b) Temperature dependence of the (1.5, 0, 0) and (-0.5, 0, 1) reflections generated
by k1, which in contrast do not shift. (c) Temperature dependences of the x and z components of k2 around
T ∗.
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it (Fig. 3.14b). This suggests that the appearance of the incommensurate peaks above T ∗ is not related to the

k1 phase. Since previous heat capacity measurements did not reveal any phase transition at T ∗ [97, 98, 101],

these features are consistent with a commensurate-incommensurate lock-in transition of the k2 phase. We find

that only two of the three components of the general incommensurate wavevector, k2 = (kx, ky, kz), can be

uniquely determined at each temperature from the 5 clearly observable incommensurate peaks. Setting ky = 0,

we may plot the temperature dependence of k2 = (kx, 0, kz) in Fig. 3.14c. The temperature dependence of the

normalized integrated intensity of the Q3 reflection is also plotted in Fig. 3.15a. TN for the k1 phase has been

determined to be 6.6 K (the corresponding normalized intensity versus temperature plot has the steepest slope

at this point). Since no reflection indexed by k2 can be observed above TN, we expect that both phases share

the same transition temperature. It is also worth noting that both solutions only give one reflection between

0.6 Å−1 and 0.74 Å−1. Correspondingly, the Q3 reflection is not resolution limited (Fig. 3.14a), meaning that

the k2 phase becomes short range ordered between T ∗ and TN.

Strong diffuse scattering profiles appear above T ∗ (Fig. 3.15c), and are detectable up to 25 K (Fig. 3.15d).

When T >TN, the magnetic incoherent scattering background is stabilized, making it possible to study the

pure magnetic diffuse scattering signals by subtracting the nuclear contributions taken at 35 K. As shown in

Fig. 3.15b, these profiles still center around Q1 at TN. Fitting them with a Lorentzian function produces a

correlation length (ξ) of 94(4) Å. This is much smaller than ξ∼ 230 Å at 1.5 K by fitting the diffuse tails of

Q1 and Q2 reflections (Fig. 3.15b). Although spin fluctuations set in well above TN in γCVO, it is very hard

to extract their positions at high temperatures due to the extra scattering signals from small angles as well

as the weak intensities. However, these spin fluctuations are more related to the k2 modulation, as revealed

by our analysis at temperatures close to TN. Given that the k1 phase populates the majority (∼ 65 %) of the

sample, the dominant spin fluctuations related to k2 above TN are very surprising.

Incommensurate magnetic microphases with a metastable propagation vector have been studied theoreti-

cally on a geometrically frustrated lattice with Ising anisotropy [43]. At very low temperatures, the magnetic

structure is commensurate, while metastable incommensurate microphases exist in the intermediate region. It

is also suggested that additional subtle coupling terms may stabilize the incommensurate state, as realized

in Ca3Co2O6 [39]. On the other hand, both single-ion anisotropy and exchange frustration are present in

both αCVO and γCVO [87, 88]. As suggested in Refs. [93, 94, 95, 96], the system will form a collinear spin

structure if the single-ion anisotropy is stronger compared with the spin exchange interactions, whereas an

incommensurate noncollinear spin structure is favoured oppositely. The collinear spin arrangement of αCVO,

which possesses a very strong SOC, is consistent with this description [84, 92, 9, 87]. For the γCVO compound
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Figure 3.15: (a) Normalized intensity versus temperature plots of reflections at Q2 = (0.5, 0, 0) and
Q3 = (1, 0, 0) + k2, and the magnetic Bragg peak ∼ 1.35 Å−1 consisting of Q4 = (1.5, 0, 0) and Q5 = (-0.5, 0, 1)
reflections. (b) Intensity versus Q curve around the Q1 = (-0.25, 0, 0.25) and the Q2 reflections at (upper)
1.5 K, and (bottom) 6.6 K, respectively. Nuclear scattering background, taken at 35 K, has been subtracted
for the 6.6 K pattern. The solid lines are fits described in the text. (c) - (d) Evolution of the diffuse scattering
signals in the low-Q region as a function of temperature.
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where the SOC is much weaker [9], we propose it is close to the collinear-noncollinear phase boundary. The 2 -

phase separation may be caused by local chemical disorder. Alternatively, other types of interactions may be

required to further stablize such a state. For example, it has been suggested that the magnetoelectric coupling

is responsible for the additional ferrimagnetic microphase in Ca3Co2O6 [42]. We note this term is also allowed

for the k2 phase of γCVO due to the broken inversion symmetry of the Co(2) spin lattice [117, 118, 119].

Finally, the complexity of magnetism in γCVO can be further stressed by the reported observation on single

crystal samples of magnetic reflections possibly indexed by k3 = (-1/3, 0, 1/3) below T ∗ [100], which are not

seen in our study.
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3.3 Conclusions and future work

In summary, we have investigated the magnetism of γCVO as a function of temperature using neutron

powder diffraction technique. We have established that its low temperature spin structure essentially consists

of two single-k phases in a ratio about 65(1) : 35(1). This is the first confirmation of phase separation in

a material possessing magnetic ‘exchange frustration’ but not ‘geometric frustration’. For the minority

phase, a crossover between long range commensurate and short range incommensurate magnetic order is

observed at T ∗. Above the magnetic ordering temperature, strong spin fluctuations are observed. Within

our experimental resolution, these fluctuations are exclusively modulated k2.

γCVO can be described by the Hamiltonian writen in Eq. 3.2. Compared with αCVO, the single-ion

anisotropy term is weaker in γCVO. This may be responsible for the noncollinear spin structure of the k2

phase. The onset of the collinear k1 phase may indicate the anisotropy constant (D) and spin exchange

constants (J⊥, J‖) are lying in the critical region where k1 and k2 states are degenerate. Alternatively, phase

separation indicates Eq. 3.2 may be inadequate to describe γCVO.

Further investigations on this compound are demanded. From a theoretical point of view, it is essential

to establish a model which can produce phase separation and incommensurate-commensurate crossover in

one of the phases. On the other hand, we shall also perform diffraction measurements on single-crystals

to exactly solve its magnetic structure. As discussed in Ref. [118, 117], a magnetoelectric coupling effect is

possible in similar systems. Moreover, the polarized neutron diffraction technique is a powerful tool to study

the nature of the short range correlation at high temperatures.
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CHAPTER 4

MIXED-VALENCE MANGANESE PEROVSKITE,

PR0.5CA0.5MN0.97GA0.03O3

4.1 Background

4.1.1 Multiple scale phase separation and colossal magnetoresistance

Colossal magnetoresistance (CMR), which describes a drastic drop in resistance caused by either magnetic

field or temperature (Fig. 4.1b), is commonly observed in mixed-valence manganites [2, 10]. Spatial inhomo-

geneities can spontaneously develop in these materials (phase separation, see Chapter 1.4.2). Phase separa-

tion on atomic scales, including polarons (Fig. 4.1c), charge order, orbital order, is often referred as electronic

phase separation. This can be related to electron-lattice coupling, electron-electron Coulomb repulsion, and

so forth [2, 10]. On the other hand, phase separation on a scale of several hundred nanometres to a few

micrometres (Fig. 4.1c) is typically caused by disorder or strains [2, 10, 54].

Currently, it is widely believed that CMR is triggered by the collapse of phase separation on multiple

scales [2, 10, 46, 47]. As illustrated in Fig. 4.1, micrometre-scale ferromagnetic metallic domains, which

percolate while a large enough magnetic field is applied, have been observed in La1−xCaxMnO3 (x∼ 0.3) [61].

Correspondingly, CMR in this compound has also been found to correlate with the collapse of polarons

(Fig. 4.1c) [120, 56, 57]. These results suggest that both types of phase separation are important to the

carrier transport in La1−xCaxMnO3 (x∼ 0.3). However, the specific role of each phase in the magnetoresistive

process is not clear to date. For example, carrier delocalization is often linked to the ferromagnetic Zener

double-exchange (DE) [10, 60, 61, 58, 121, 57, 122]. At first sight, this statement may be correct since the

ferromagnetic order favors a metal-like state [2]. However, it is questionable in CMR manganites, where the

driving mechanism of carrier localization is not DE [2, 10, 46]. Especially for systems showing atomic scale
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Figure 4.1: (a) Scanning tunneling spectroscopic images (0.61µm× 0.61µm) of La0.73Ca0.27MnO3 obtained
just below TC [61]. The corresponding magnetic field is labeled in each image. (b) Temperature dependence
of Mn magnetic moment and electric resistivity of La0.7Ca0.3MnO3 [61]. (c) Field dependence of the polaron
reflection (1.4, K, O) in La0.7Ca0.3MnO3 when T = 270 K (TC = 257 K) [120].

inhomogeneities (e.g. polarons, charge/orbital order), i.e. electronic phase separation, DE is less important

to the carrier transport than electron-lattice coupling [46]. As a result, it is of particular importance to clarify

whether the spin degree of freedom offers an independent force to tune the carrier transport in the carrier

delocalization process.

Indeed, the multiple scale phase separation can be reproduced within a unified picture [54]. Ahn et al

have suggested a model based on the coupling between the electronic and elastic degree of freedom [54],

whereas the micrometre phase separation is often linked to the random potential effect caused by quenched

disorder in other theories [59, 123]. In other words, by applying additional short-range and long-range strain

modulation to the system, both electronic (atomic size) and micrometre phase separation are generated. Since

it is feasible to realize strain engineering on thin films, the role of strains on CMR has been investigated.

For example, strain-mediated anisotropic electric transport properties have been observed in epitaxially

grown La5/8−xPrxCa3/8MnO3 films, where the strain is introduced by locking the lattice to an orthorhombic

NdGaO3 substrate [124]. The conducting domain percolation process in a strained manganite is also found

to correlate with the strains [125]. Microwave impedance images of the Nd0.5Sr0.5MnO3 thin film epitaxially

grown on a (110) SrTiO3 substrate are displayed in Fig. 4.2b. At low fields, the system is composed of
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Figure 4.2: (a) Resistance versus magnetic field curve of Nd0.5Sr0.5MnO3 at T = 10 K. (b) Microwave images
at different magnetic field. The black regions mark the MnOx particles [125]. The arrows mark the isolated
rodlike ferromagnetic conducting domains which exist at zero field [125]. The strained controlled anisotropic
growth regions are highlighted on the left.

randomly distributed rodlike conducting domains (marked by blue arrows). This is a signature of spontaneous

micrometre phase separation at zero field [125]. When the percolation is triggered (∼ 6.6 T), these percolative

conducting domains (yellow regions) have clear preferential orientations along the (001) and (11̄0) axes of the

substrate. These results unambiguously point out that the percolation process, i.e. collapse of micrometre

phase separation, in strained thin film manganites is governed by the strains rather than the quenched

disorder [124, 125].

Besides the ‘substrate locking’ in thin films, strains can also nucleate in bulk manganese oxides. For

example, Pr0.7Ca0.3MnO3 is a heavily strained system in the charge/orbital order (COO) region as evidenced

by the anisotropic broadening of its Bragg reflections (Fig. 4.3) [126]. This is in sharp contrast with the optimal

COO compound Pr0.5Ca0.5MnO3 where the strain presence could be barely detected [127]. Since the COO
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Figure 4.3: Anisotropic strain broadening of the (202)/(040) reflections of Pr0.7Ca0.3MnO3

(TCOO≈ 200 K) [126].

of Pr0.7Ca0.3MnO3 is much weaker than that of Pr0.5Ca0.5MnO3 [51, 128], strains may have an effect on the

electronic phase separation as well [54]. Unfortunately, the role of anisotropic strains on the electric transport

properties in bulk systems has not been investigated so far.

4.1.2 Electronic phase separation and magnetostriction

Due to the strong coupling between elastic and electronic degrees of freedom, the crystallographic structure

of CMR compounds is also susceptible to the applied magnetic field. Fig. 4.4b shows the magnetic polaron

intensity (I ) and the polaron correlation length (ξ) of La0.5Ca0.5MnO3 as a function of magnetic field [58].

This sudden drop of I around 3 T agrees with the onset of magnetoresistance in Fig. 4.4c, as well as the giant

volume magnetostriction (ω) in Fig. 4.4c. Based on these observations, the Holstein ‘small polarons’, which are
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localized charge carriers temporarily confined to a single cation site due to the local lattice deformation, have

been argued to exist in La0.5Ca0.5MnO3 and the change in ω is the manifestation of its lattice component [58,

129].

Figure 4.4: (a) Volume magnetostriction, (b) polaron intensity (left) and polaron correlation length (right),

(c) resistivity of La0.5Ca0.5MnO3 as a function of magnetic field at T = 1.1TC [58]. (d) Linear magnetostric-

tion of Pr0.5Ca0.5MnO3 at T = 4 K [128]. (e) Phase diagram of Pr0.5Ca0.5MnO3 determined by the resistivity

(solids) and linear magnetostriction (triangles), where AFM = antiferromagnet, COI = charge ordered insu-

lator, M = metal and CLI = charge localized insulator [130].

On the other hand, a giant linear magnetostriction (∆L/L) effect has been observed in the optimal COO

compound Pr0.5Ca0.5MnO3 (Fig. 4.4d). Similarly, the transition of ∆L/L occurs in the region of CMR, as

revealed in Fig. 4.4e where the black solid points mark the phase boundary determined by the resistivity
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measurements and the open triangles are from the ∆L/L data [128, 130]. As a result, the giant ∆L/L

has been attributed to the structural transition (elongation of the crystallographic c-axis) caused by the

destruction of COO in Pr0.5Ca0.5MnO3 [128].

4.1.3 Electronic phase separation and Jahn-Teller distortion

Figure 4.5: σ2 for the Mn-O pair-distribution function [55], as a function of magnetic field and temperature

in La1−xCaxMnO3 (x = 0.21, 0.3, 0.4, 0.45). The solid line is a fit of σ2 in the non-Jahn-Teller active lattice

CaMnO3.

In this part, we briefly review the relationship between electronic phase separation and Jahn-Teller distortion

(Chapter 1.1.6 & 1.2.6) in mixed-valence manganese oxides. Jahn-Teller distortion is an important source of

electron-phonon coupling [46]. Therefore it is argued to be one of the driving mechanisms of electronic phase

separation [2, 10]. For example, a carrier can be ‘self-trapped’ in the local potential minimum produced by the

strong electron-phonon coupling. The resulting quasiparticle is called a ‘Jahn-Teller polaron’ [46]. Extended

X-ray absorption fine structure (EXAFS) spectroscopy is a powerful tool to probe the local MnO6-octahedron.

The Jahn-Teller distortion level can be characterized by the width (σ) of the Gaussian distribution used to
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Figure 4.6: (a)The field dependence of σ2 (open circles) and magnetization (solids) of La0.5Ca0.5MnO3 [132].
(b)-(d) The field dependence of the ferromagnetic, antiferromagnetic and COO Bragg reflections of
Pr0.7Ca0.3MnO3, respectively [122].

fit the data [55, 131]. Fig. 4.5 demonstrates the evolution of σ2 by varying both temperature and magnetic

field in the ferromagnetic lanthanide compounds La1−xCaxMnO3 (x = 0.21, 0.3, 0.4, 0.45) where the CMR

occurs around TC [55, 2]. All samples are significantly distorted in the paramagnetic region. On further

cooling, σ2 is greatly suppressed when ferromagnetism sets in (T <TC). Similarly, applying a magnetic field

is also able to suppress the Jahn-Teller distortion. For the other family of CMR compounds with COO,

the field dependence of Jahn-Teller distortion has also been investigated. As shown in Fig. 4.6a, the sudden

increase in magnetization of La0.5Ca0.5MnO3 is accompanied by the decrease of the distortion parameter

σ2 =< (R − R̄)2 >, where R is the Mn-O bond length and R̄ is the average Mn-O bond length [132]. Since

this type of metamagnetic transition is a common signature of COO melting (Fig. 4.6b-d) [122], these results
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suggest that the Jahn-Teller distortion is not favoured in the charge/orbital disordered state.

4.1.4 Pr0.5Ca0.5Mn1−xMxO3, M = Ga, Al, Co, Ti, etc

Figure 4.7: Magnetic field - temperature phase diagrams of Pr0.5Ca0.5MnO3 (left) and

Pr0.5Ca0.5Mn0.97Ga0.03O3 (right).

Instead of tuning the hole composition on the A-site of a manganese perovskite (AMnO3), substituting

Mn with other ions directly affects its spin, charge and orbital ordering. For example, the robust COO in

Pr0.5Ca0.5MnO3 can be significantly weakened by a minor Ga3+ substitution (3 %) (Fig. 4.7) [128, 133]. This

gives the first hint that the electronic phase separation in relevant systems is coupled to these point defects.

Ultrasharp magnetic field induced magnetization steps

Many investigations have been focused on the low temperature multi-step ultrasharp metamagnetic tran-

sitions, sometimes also described as magnetic avalanches, in these systems [134, 135, 136, 137]. As shown

in Fig. 4.8, ultrasharp metamagnetic transition (width less than 0.2 mT based on the inset of Fig. 4.8d) in

Pr0.5Ca0.5Mn0.95Co0.05O3 abruptly sets in between 4.6 K and 4.7 K. When the temperature is further low-

ered down to 3 K, additional steps appear in the high field region (Fig. 4.8d). In an extreme case, Hardy et
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al have shown that hundreds of magnetization steps can be realized by cooling Pr0.5Ca0.5Mn0.97Ga0.03O3

to 1.5 K [138]. Each step in magnetization corresponds to a sudden growth of ferromagnetism while the

CE (or pseudo-CE) type antiferromagnetic order in the sample is partially suppressed [139, 127]. Since the

CE (or pseudo-CE) type antiferromagnetic order in manganites couples tightly with the orbital degree of

freedom [2, 122, 52], this antiferro-ferromagnetic transition is also accompanied by a cooperative change of

the local lattice distortion, as discussed in the previous section. This sort of diffusionless structure change

in manganites is the analogue of the martensite-austenite transformation in alloys [138, 140]. As a result, a

martensitic scenario, in which the spin related energy (e.g. exchange interactions, Zeeman energy) is compet-

ing with the elastic energy associated with the strains at the antiferromagnetic/ferromagnetic interfaces, has

been proposed to quantitatively understand these magnetic avalanches. In this scenario, the spins are locked

by these strains at low fields so that the bulk magnetization is not sensitive to magnetic field. However, a

sudden growth of ferromagnetism will be promoted once these spins are unlocked by magnetic field.

Figure 4.8: a-d, Magnetic field versus magnetization curves of Pr0.5Ca0.5Mn0.95Co0.05O3 under various con-

ditions. FC = field cool, ZFC = zero field cool.
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Anisotropic strains and crystallographic phase separation

Figure 4.9: Selected region of the synchrotron X-ray powder diffraction (λ= 0.500111(12) Å) patterns of

Pr0.5Ca0.5Mn0.97Ti0.03O3 [127] at (a) room temperature and (b) 5 K. Two crystallographic phases are needed

to fit all the Bragg reflections at 5 K. (c) Temperature dependence of the lattice parameters (left) and the

volume fraction of each phase (space group Pnma). Phase-1: CE phase. Phase-2: pseudo-CE phase. (d)

Neutron powder diffraction patterns of Pr0.5Ca0.5Mn1−xTixO3.

The crystallographic structures of some Pr0.5Ca0.5Mn1−xMxO3 systems have been studied by the high-

resolution synchrotron X-ray diffraction technique [127, 141, 142]. In the charge/orbital ordered region, these

systems are found to be strongly strained. The presence of anisotropic strains will broaden the corresponding
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Bragg reflections (Fig. 4.9b), which can be described by the Stephens formalism [143]:

σ2
hkl =

H+K+L=4∑
H,K,L

SHKLh
HkK lL, (4.1)

where σ2
hkl is the broadening of the (h, k, l) reflection and SHKL are the parameters refined from the peak

shape [102, 106]. For the Pr0.5Ca0.5Mn1−xMxO3 compounds with an orthorhombic unit cell, this equation

reduces to six non-zero terms:

σ2
hkl = S400h

4 + S040k
4 + S004l

4 + S220h
2k2 + S202h

2l2 + S022k
2l2. (4.2)

As an example, the X-ray diffraction patterns of Pr0.5Ca0.5Mn0.97Ti0.03O3 above and below the COO

temperature (∼ 240 K), measured by Garćıa-Muñoz et al [127], have been displayed in Fig. 4.9a-b. At room

temperature, the pattern can be refined within a single phase approach and the strain broadening parameters

are negligible (Table. 4.1). In sharp contrast, these Bragg peaks are significantly broadened at 5 K. Moreover,

there are more than four peaks in this region, meaning the single phase approach is not enough to match all

these peaks. Alternatively, a two phase approach is able to capture all these features (Fig. 4.9b). Indeed, the

crystallographic phase separation picture is required to explain the coexistence of CE and pseudo-CE anti-

ferromagnetic phases in this compound revealed by the neutron powder diffraction measurements (Fig. 4.9d).

Table 4.1: Volume fractions, unit cell distortions (D) and strain parameters of Pr0.5Ca0.5Mn0.97Ti0.03O3 [127].

Fraction D S400 S040 S004 S220 S202 S022

Room temperature 100 % 0.997 0.178(3) 0.087(1) 0.160(6) -0.134(5) 0.89(1) -0.165(7)

5 K (CE) 55 % 0.9764 0.175(9) 0.239(4) 0.33(1) -0.02(2) 1.32(3) -0.02(2)

5 K (pseudo-CE) 45 % 0.9855 2.17(6) 3.02(6) 4.3(1) -2.9(1) 7.8(2) -4.5(2)

Besides the Jahn-Teller distortion which is related to the MnO6-octahedron, the distortion of the unit

cell can be charaterized by a parameter D =

√
2b

a + c
(with space group Pnma). An undistorted lattice

would have D = 1, where D 6= 1 in distorted cases [127, 141, 142]. As shown in Table. 4.1, the unit cell of

Pr0.5Ca0.5Mn0.97Ti0.03O3 is almost undistorted at room temperature, whereas both CE and pseudo-CE

phases are highly distorted at 5 K. It is worth noting that the CE phase in all Pr0.5Ca0.5Mn1−xMxO3

compounds has a more distorted unit cell than the pseudo-CE phase. This is also consistent with the

Pr1−xCaxMnO3 family [50]. Most of all, COO in both families seems to correlate with D, i.e. the unit
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cell distortion tends to stabilize COO [51, 128, 127, 139]. As a result, the COO in the CE phase is more

robust than that of the pseudo-CE phases, which is responsible for the two-step metamagnetic transition

phenomenon observed in these systems [133, 135]. Specifically, the low field transition is due to the COO

melting in the pseudo-CE phase, while higher magnetic field is needed to suppress the COO in the CE phase.

We also emphasize that the less distorted pseudo-CE phase is transforming into the CE phase as tempera-

ture is lowered (Fig. 4.9c). On the other hand, the pseudo-CE nuclear lattice is much more strained compared

with the CE nuclear lattice (Table. 4.1). This may be caused by the inhomogeneous distribution of M ions in

the sample, as stated in Ref. [127].

4.2 Results

4.2.1 Research motivations

In general, by equipping small angle neutron scattering (SANS) and time-of-flight neutron powder diffraction

(TOF-NPD) techniques with state-of-the-art sample environments, we want to monitor the evolution of

the multiple scale phase separation by varying the magnetic field; as well as check their coupling to the

crystallographic lattice. Based on the previous studies, the spin degree of freedom seems to be indispensable

to the carrier delocalization [10, 60, 61, 58, 121, 57, 122], whereas DE is not the driving force of the carrier

localization in CMR manganites [2, 10, 46]. On the other hand, spins can be locked by strains through

magnetoelastic coupling [138]. To our knowledge, the correlation between DE and carrier delocalization in a

strained manganite has not been studied to date.

On the other hand, the giant volume (linear) magnetostriction observed in manganese perovskites has

been associated with the collapse of electronic phases such as polarons and COO (Fig. 4.4). This scenario

has never been verified using the diffraction technique, which directly probes the lattice parameters of the

unit cell. Instead, most of the microscopic structure investigations performed in the past have focused on the

local Jahn-Teller distortion. All these measurements suggest that the Jahn-Teller distortion in manganese

perovskites is weakened by magnetic field across the melting of polarons (COO) (Fig. 4.5 & 4.6).

Besides the magnetism and electric transport properties, the orbital physics is another key concept in

transition-metal oxides [52]. For the CMR compounds, an orbital order populates when the system is an

insulator [2, 10]. However, the orbital arrangement in the metallic region remains an open question so far.

Even in the metallic region, a large fraction of localized carriers should still survive due to the low electric

conductivity of the ‘bad metal’ [2, 144, 145]. These localized carriers are expected to promote some sort of
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orbital arrangement such as orbital order or orbital liquid [52]. For example, Cépas et al have suggested a

dx2−y2 type orbital order may be stabilised by magnetic field in the half-doped manganites where the zero

field orbital order is d3x2−r2/d3y2−r2 type [146]. However, magnetic field induced orbital order has never

been observed in these systems. Among all the factors, Jahn-Teller distortion is the key to understand the

nature of orbital order. First of all, the crystal field splitting, which correlates with the electron-phonon

coupling strength λ (Chapter 1.2.6), is determined by the amplitude of Jahn-Teller distortion. This means a

larger Jahn-Teller distortion corresponds to more localized charge carriers [2, 47]. Secondly, the Jahn-Teller

distortion mode is responsible for the symmetry of the active eg orbital [10].

In summary, we are trying to answer the following three questions by carrying out this research project:

1. Does DE couple to the carrier delocalization in a strained manganite?

2. Is the collapse of electronic phase separation responsible for the giant magnetostriction effect in a

strained manganite?

3. What is the magnetic field dependences of the Jahn-Teller distortion in a strained manganite?

4.2.2 Data analysis

Time-of-flight neutron powder diffraction

The patterns obtained from TOF-NPD measurements have been analyzed using the Rietveld method de-

scribed in Appendix A. In this part, we will use the patterns taken at T = 150 K/B = 0 T and T = 150 K/B = 10 T

as an example to show the general refinement procedure. We have chosen the space group Pnma to describe

the crystallographic structure of Pr0.5Ca0.5Mn0.97Ga0.03O3 (PCMGO) [139]. For the TOF-NPD pattern, the

convolution pseudo-Voigt with back-to-back exponential functions are required to fit the profiles of the Bragg

reflections [106, 147]. The instrumental resolution parameters were obtained by measuring the standard

Na2Ca3Al2F14 sample. For the pseudo-CE phase, these parameters have been fixed and only the 6 strain

parameters (Stephens formalism [143]) were allowed to vary during the refinement. For the CE phase, it is

much less strained and only occupy a minor fraction at high temperatures [127, 141, 142, 139]. As a result,

only the Gaussian component Sig-2 was refined to fit the peak profiles [106, 147]. A third phase, coming from

the Al-holder has been treated properly using the LeBail method [148].
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In this paragraph, only the sloping background at small d-spacings has been fitted. As discussed in

Ref. [127, 141, 142, 139], Pr0.5Ca0.5Mn0.97Ga0.03O3 demonstrate crystallographic phase separation in the

COO region (T <∼ 240 K). However, the more distorted CE phase has a very low volume fraction at high

temperatures (Fig. 4.9c). Since the TOF-NPD technique does not have as high resolution as the synchrotron

X-ray diffraction, it is reasonable to check whether this minority CE phase can be resolved at 150 K. The re-

fined pattern using a 1-phase model is shown in Fig. 4.10a. Although the overall fitting quality is satisfactory,

it is clear that the peak intensities around 2.70 Å (3.82 Å) have been under- (over-) estimated. On the other

hand, the 2-phase refinement produces much better profiles to match these peaks (Fig. 4.10b). The refined

lattice parameters, atomic positions, strain parameters and phase fractions are listed in Table 4.2.
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Table 4.2: Refined structural parameters of PCMGO under the Pnma space group. The isotropic displace-

ment parameters have been fixed to the values in Ref. [141]. The pattern at 250 K was refined using the

1-phase model.

T = 250 K T = 150 K, pseudo-CE phase T = 150 K, CE phase

Volume fraction (%) 100 92(3) 7.5(5)

a (Å) 5.4109(6) 5.4142(5) 5.497(3)

b (Å) 7.6176(7) 7.5939(4) 7.508(3)

c (Å) 5.4024(6) 5.4047(6) 5.398(1)

D 0.9963(1) 0.9926(1) 0.9747(5)

(Pr, Ca) site (x, 0, z )

x 0.031(2) 0.039(1) 0.127(9)

z -0.006(3) -0.000(2) -0.24(1)

O(1) site (x, 0, z )

x 0.486(2) 0.490(2) 0.47(1)

z 0.071(2) 0.070(1) 0.18(1)

O(2) site (x, y z )

x 0.285(1) 0.282(1) 0.261(8)

y 0.0358(5) 0.0359(5) 0.051(4)

z -0.283(1) -0.282(1) -0.289(9)

S400 1.9(3) 2.6(3) 0

S040 0.29(3) 1.68(7) 0

S004 0.4(1) 2.5(3) 0

S220 -1.3(2) -2.9(3) 0

S202 1.0(3) 4.8(4) 0

S022 0.1(2) -2.9(3) 0
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Figure 4.10: Rietveld refinements on the pattern collected at 150 K/0 T using the (a) 1-phase and (b) 2-phase

models. From top to bottom, the vertical bars label the Bragg position of the pseudo-CE phase, Al in (a)

and pseudo-CE phase, CE phase, Al in (b).
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In order to provide further evidence of the presence of a minor CE phase, we have adopted an alternative

approach: we go back to the 1-phase model, whereas we also refine the background below the Bragg reflections

at large-d spacings. Then we compared the profiles of this ‘background’ with the profiles of the CE phase

obtained from the 2-phase refinement. As shown in Fig. 4.11, the fitting quality is significantly improved

comparing with the other 1-phase fitting in Fig. 4.10a.

Figure 4.11: Rietveld refinement on the pattern collected at 150 K/0 T. Only one crystallographic phase was

refined, while the other minor phase was treated as the background (see main context).

Most of all, the profiles of the CE phase are also captured in the background refinement (Fig. 4.12b). The

refined structural parameters are also consistent with those in Table 4.2 within the errors, which further proves

the validity of this 1-phase+background method (Fig. 4.12a &c). In sharp contrast, the structural parameters

obtained from both 1-phase+background and 2-phase methods do not match with those obtained from the

simple 1-phase method, as revealed in Fig. 4.12a &c.
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Figure 4.12: (a) and (c) Comparisom of the structural parameters obtained from the 3 different methods

discussed in the main context. (b) The CE-phase profiles, corresponding to d ' 2.7 Å, extracted from the

2-phase (red) and 1-phase+background (black) methods.

The 1-phase+background method used at zero magnetic field can be extended to the high field refinements.

Since the nuclear Bragg reflections at large d-spacings will be superimposed by the strong ferromagnetic

signals in the ferromagnetic region, it would be very hard to refine the minor CE phase. Moreover, the CE

COO has been proven to be more robust against the magnetic field than the pseudo-CE COO [51, 128, 139,

127]. This leads to a two-step metamagnetic transition in the Pr0.5Ca0.5Mn1−xMxO3 family [133, 135]. Based

on our estimation, we should still be able to resolve the ferromagnetic transition caused by the minor CE COO

melting as long as we can reach the corresponding critical field. However, the second metamagnetic transition,

which is associated with the collapse of CE COO, is much smoother compared with the one in the low field

region [133, 135]. This continuous feature may further prohibit us from observing the CE COO melting.

Since we shall mainly focus on the majority pseudo-CE phase here, the 1-phase+background treatment is a

more suitable choice. If the critical field of CE COO melting is beyond our reach in experiments, such ‘CE

background’ would not change with the varying field. On the other hand, any continuous or discontinuous
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intensity increase due to the CE COO melting will be captured by this method as well. We note this will

not affect the pseudo-CE phase refinement since we can experimentally resolve enough peaks.

Figure 4.13: Main panel, Rietveld refinement of the pattern collected at 150 K/8 T. Inset: A comparison

between the 150 K/8 T and 150 K/0 T patterns. The absence of (0, 1, 1) peak clearly indicates the preferential

orientation of the spins with respect to the crystallographic structure.

Since the field-induced ferromagnetism is well established in relevant systems [139], we can escape the rep-

resentation analysis and start from the lowest symmetry where spins are parallel with each other. The spin ori-

entation, on the other hand, can be obtained by analyzing the intensities of the ferromagnetic Bragg reflections

in the high-d region. For example, we cannot probe any intensity at first Bragg point (0, 1, 1) (Fig. 4.13inset),

which immediately indicates the spins are not alighed along the magnetic field; and they do not have a major

component along the a-axis. Based on the discussion in Chapter 2.44, the spin orientation can be further

pinned down by checking the (0, 2, 0) and (1, 0, 1) reflections. The strongest intensity is observed at (1, 0, 1).

The (0, 2, 0) reflection does not have an obvious change at 8 T. As a result, the spins should be perpendicular

to (1, 0, 1), i.e. the b-axis in an orthorhombic lattice. This hypothesis has been confirmed by the Rietveld
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refinement on the pattern (Fig. 4.13). The refined magnetic moment is ∼ 1.6µB/Mn. We note this should be

an underestimated value due to the presence of 90◦ type domains.

Impurity phase: We have also detected three weak peaks which belong to neither of the phases discussed

above. Their intensities are not temperature dependent. The strongest peak is located at ∼ 2.46 Å in

Fig. 4.10, 4.11 and 4.13. We have identified this impurity phase as Mn3O4 [149], which has also been discovered

in the relevant system Pr0.5Ca0.5Mn1−xCoxO3 [141].

Small angle neutron scattering

Figure 4.14: The scattering geometry in a SANS experiment. The magnetic field is along the z -axis. The

scattering vector is denoted as q.

Now we consider an isotropic polycrystalline magnetic material which does not possess net magnetization at

zero field. When the magnetic field is turned on, the magnetic moment will be aligned along the magnetic
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field. Provided that the 2-dimensional detector is always perpendicular to the direct beam (Fig. 2.6) and the

neutrons are only sensitive to the magnetic moment perpendicular to q, the intensity detected at a wavevector

transfer q can be writen as

I(q,Ψ) = IA (q) + IB (q) sin2Ψ, (4.3)

where Ψ is the angle between the magnetic field and q (Fig. 4.14), IA (q) contains the isotropic nuclear

scattering signal as well as the magnetic scattering signal from the spins not aligned by the magnetic field,

IB (q) sin2Ψ is the pure magnetic signal from the spins aligned by the magnetic field [150, 151, 152].

We have covered a wide q range from 2.2× 10−3 Å−1 to 0.23 Å−1 in our experiments. This enables us to

monitor the magnetic field dependence of micrometre and electronic phase separation simultaneously. For

the micrometre phases, they can be described by the modified Porod’s equation:

Im (q) = 2π(∆ρm)2(
S

V
)mq

−4exp(−q2σ2
m), (4.4)

where (∆ρm)2 is the magnetic contrast, (
S

V
)m is the magnetic specific nonferromagnetic/ferromagnetic in-

terface parameter which is related to the domain dynamics, σm is the half width of the magnetic interface

profile [153]. On the other hand, the magnetic polarons can be treated as atomic scale inhomogeneities using

a Lorentzian function

Ip (q) = I0
ξ2

1 + q2ξ2
, (4.5)

where ξ is the characteristic size of these polarons [58]. We have also observed the incommensurate orbital

order at zero field [154]. As a result, an additional Gaussian term is required

IOO = Aexp(
−(q − qc)2

2W 2
)/W
√

2π, (4.6)

where qc is the center of the peak, A is the area, W is the width. Finally, another Porod’s equation is used

to describe the nuclear scattering [152]

Inuc (q) = 2π(∆ρnuc)
2(
S

V
)nucq

−4exp(−q2σ2
nuc). (4.7)

Most of the data discussed in this thesis were collected using a 17-Tesla horizontal magnet [155]. This

means the magnetic field is always perpendicular to q so that the scattering pattern should be isotropic based
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on eq. 4.3. As a result, the total intensity I (q) was obtained by summing all the intensities at the same q point

in the 2D detector. We used three different instrumental configurations to cover the wide q range (2.2× 10−3 Å

to 0.23 Å). As discussed in Chapter 2.5, q is a function of the scattering angle θ and the wavlength λ. In

practice, θ can be tuned by changing the distance between the sample and detector (L) (Fig. 2.6). In order to

cover the required q range, both L and λ can be modified. Experimentally, we are only counting the number

of neutrons instead of directly measuring the scattering cross-section. This means the intensities need to be

normalized into absolute units (cm−1) in order to merge the three patterns (Fig. 4.15) [156].

Iabs (q) =
I (q)

Φ0 TrΩ (q) t d
, (4.8)

where Φ0 is the incident neutron flux, Tr is the transmission, Ω (q) is the solid angle at q, t is the measuring

time and d is the thickness of the sample [156].

Figure 4.15: T = 150 K, B = 2 T. (a) I (q)-q curves under different instrumental configurations. (b) The

merged curve. The shaded areas mark the overlapping regions.

Unfortunately, we did not measure the transmission parameters properly during the experiment. A slight

rescaling has been applied to the data after treatment using eq. 4.8 (Fig. 4.15b). We note this additional

treatment does not affect the absolute values of the parameters in the exponential brackets in eq. 4.4 - eq. 4.7.

Although the values of other parameters, e.g. the magnetic specific interface (
S

V
)m, will not have any physical

meaning, their field dependence still reflects the physics of the sample.

We will use the I (q) versus q curve collected at 150 K/2 T to demonstrate the data analysis process.
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Under the horizontal field setup, we fit the experimental curve by

I (q) = Im + Ip + IOO + Inuc. (4.9)

As shown in Fig. 4.16a, this model is able to fit the experimental data quite well. More importantly, it is clear

each term has its own active region. For example, the intensity in the very low-q region is dominated by the

nuclear scattering. This is expected since the object size is proportional to q−1 and the crystalline grains are

normally on micrometre scales. For the incommensurate orbital order and polarons, we will discuss them in

the next subsection.

Figure 4.16: (a) I (q) versus q curve at 150 K/2 T under the horizontal field setup and the simulated contri-

butions using eq. 4.9. (b) I (q) versus q curve at 150 K/10 T under the vertical field setup and the simulated

contributions using eq. 4.7.

We have also used a vertical field setup (11-Tesla magnet) to double check the validity of the Inuc term.

In this case, the magnetic field is parallel to qx, i.e. horizontal direction in the 2D detector. According to

eq. 4.3, the intensity along qx (Ψ = 0) should exclusively contain the nuclear scattering signal when the spins

are aligned. As depicted in Fig. 4.16b, the Porod’s term Inuc is able to fully reproduce the experimental

observations.

In conclusion, we have demonstrated that eq. 4.9 is a very good model to fit the experimental data under

the horizontal field setup.
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4.2.3 Zero field magnetism at T = 150 K

Figure 4.17: Main panel: ZFC and FC curves of PCMGO recorded on warming under B = 0.05 T. The bump

marked by the double arrow is caused by a minor impurity phase identified as Mn3O4 (see main text). Inset:

Inverse ZFC susceptibility versus temperature curve (open circles). Its linear part above ∼ 350 K has been

fitted by the CW law (dotted line). The hatched area marks the onset of ferromagnetism.

Fig. 4.17 (main panel) shows the low field (B = 0.05 T) susceptibility (M/H) data of PCMGO as a function of

temperature. At high temperatures, both curves overlap. A sudden upturn is observed below TC = 100 K in

both curves, corresponding to the onset of a ferromagnetic order. On further cooling, zero-field-cooled (ZFC)

and field-cooled (FC) curves begin to diverge below TB = 80 K, which is associated with the cooperative

freezing of the first-order antiferromagnetic to ferromagnetic transition in the literature [157]. Moreover,

a weak bump appears around 34 K in both ZFC and FC curves. This coincides with the appearance of an

additional peak around 4.93 Å in our TOF-NPD pattern (Fig. 4.18). Since it is a ferromagnetic Bragg position

of the impurity phase Mn3O4, we interpret this bump to be the onset of ferromagnetism of Mn3O4 [149].

The inverse ZFC susceptibility versus temperature curve is plotted in the inset of Fig. 4.17. At very
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high temperatures, we have applied a Curie-Weiss fit (purple dotted line). The CW model is only valid

at the ‘free spin’ limit, i.e. spins are not ‘talking’ to each other [4]. Obviously, additional spin correlations

occur in PCMGO below ∼ 350 K. This is often linked to the precursor of electronic phase separation such as

orbital order and polarons [141, 58, 59]. The onset temperature of electronic phase separation in PCMGO is

determined to be TOO≈ 260 K, where the M/H versus temperature curve has the steepest slope. We adopted

the OO term in the subscript since we have observed OO in PCMGO, as to be discussed below.

Figure 4.18: Zero field TOF-NPD pattern of PCMGO collected at 10 K (red) and 150 K (blue), respectively.

The antiferromagnetic Bragg reflections at large d-spacings have been indexed. The black arrows mark the

ferromagnetic Bragg positions. The additional peak around 4.93 Å is the magnetic Bragg reflection of Mn3O4

(see main text).

We have also used the TOF-NPD technique to explore the magnetism in PCMGO. As shown in Fig. 4.18,

magnetic Bragg reflections belonging to both CE (odd index along b∗) and pseudo-CE (even index along

b∗) antiferromagnetic order can be observed at T = 10 K, further supporting the presence of crystallographic

phase separation in PCMGO. The low temperature ferromagnetism revealed by the susceptibility measure-
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ments has also been confirmed: additional intensity has been established on top of the ferromagnetic Bragg

point (black arrows). A peak around 4.93 Å is corresponds to the ferromagnetic reflection of the impurity

phase Mn3O4 [149]. At T = 150 K, no magnetic reflections can be resolved, which is consistent with the

bulk susceptibility measurements. As a result, we conclude PCMGO is a heavily strained paramagnet with

electronic phase separation at T = 150 K and B = 0 T.

4.2.4 Magnetoresistance and magnetic field dependence of magnetization at T

= 150 K

Figure 4.19: Resistance (R) versus magnetic field curve and the derivatives (
dR

dB
) of PCMGO at 150 K. The

critical fields B1 and B2 are labeled by vertical lines (see main context).
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Figure 4.20: Main panel: Magnetization versus magnetic field curve (red line) of PCMGO at 150 K. The

black arrows mark the field sweeping direction. The blue line is a linear fit to the low field part where the

system is paramagnetic. The critical fields B1 and B2 are labeled by vertical lines (see main context). Inset:

Enlarged version of the shaded area in the main panel.

After determining the zero field state of PCMGO at T = 150 K, the next step is to switch on the magnetic

field. As shown in Fig. 4.19, the resistance (R) undergoes a large drop in the high magnetic field (B) region.

This magnetoresistance curve has the steepest slope at B1 = 5.1 T. The transition at B1 is often linked to

the melting of electronic phase separation in literatures [58, 51, 122]. For the PCMGO case, the microscopic

nature of the transition at B1 will be discussed in the next subsection. Since the melting of electronic

phase separation (e.g. orbital order) is also accompanied by the onset of ferromagnetism in other relevant

compounds [122], we have explored the bulk magnetization (M ) as a function of B in Fig. 4.20. The M -B

curve is linear at low fields, indicating that PCMGO is still paramagnetic. Further increasing B results in a
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clear hysteresis effect as well as a sudden increase of magnetic moment. The latter is regarded as a signature

of ferromagnetism. The critical field of this paramagnetic-ferromagnetic order transition is B2 = 7.9 T, where

the M -B curve has the steepest slope. Between B2 and 11.5 T, we cannot probe any new transition based on

the magnetization measurements. In the R-B curve, no transition is observed at B2 (Fig. 4.19). We are able

to resolve magnetic hysteresis from ∼ 3.2 T up to the highest field meausured (11.5 T). There is no hysteresis

at zero field (paramagnetism). As a result, the magnetic hysteresis effect of PCMGO at 150 K is more likely

caused by some sort of crystallographic structure transition rather than magnetic domain dynamics.

To conclude this subsection, we have found two critical magnetic fields, B1 = 5.1 T and B2 = 7.9 T, using

the same criterion (steepest slope) on the same sample batch. As discussed above, two successive electronic

phase melting transitions of are expected due to the crystallographic phase separation in PCMGO. Since the

pseudo-CE phase is less distorted, it is more susceptible to the magnetic field [50, 51, 128, 139]. However, the

transition at B1 and B2 cannot be explained by this scenario. The pseudo-CE phase occupies the majority

volume of the sample (92(3) %), which is not consistent with the very weak change of magnetization at

B1. On the other hand, the magnetization change at B2 is too large to be atrributed to the minority CE

phase (7.5(5) %). At this point, it seems the transition at B2 is more likely to be related to the onset of

ferromagnetism in the pseudo-CE phase. In this case, the percolation of conducting domains in this phase

sets in (at B1) well ahead of the bulk population of ferromagnetism (at B2). The ferromagnetic conducting

phase fraction (φ) can be estimated by the following equation

M = φMs + (1− φ)χB, (4.10)

where Ms is the saturation moment and χ is the susceptibility of the paramagnetic insulating phase [153].

Taking the magnetization (2.9µB/Mn) at 11.5 T as Ms, the ferromagnetic phase fraction in the pseudo-CE

phase of PCMGO is estimated to be 2.5 %, which is much lower than φc = 15 % in a standard isotropic 3D

percolation model [158]. The uncertainties of our estimation have two major sources: (I) PCMGO is not fully

saturated at 11.5 T, (II) the minor CE phase may also contribute to Ms in the high field region.

Similar phenomena (Fig. 4.19 and Fig. 4.20) have been reported in the strained compound Pr0.7Ca0.3MnO3 [126,

153]. Although there is no direct evidence, the lower φc (7 %) in Pr0.7Ca0.3MnO3 has been attributed to

the filamentary percolation which has been observed in Pr0.67Ca0.33MnO3 [121]. In other words, the system

may form some ferromagnetic conducting filaments of nanometric diameter while keeping the majority por-

tion insulating. As long as the percolation is triggered by magnetic field, the CMR effect will occur. On

the other hand, since the majority of the sample is still insulating (paramagnetic or antiferromagnetic), the
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magnetization is not supposed to exhibit any large change across such percolation.

4.2.5 Collapse of electronic phase separation induced by magnetic field at T =

150 K

Figure 4.21: The magnetic field dependences of SANS patterns of PCMGO under the same scale (100 – 900

neutron counts per standard monitor). Each patterm covers a q-range from -0.2 Å−1 to 0.2 Å−1 in both

directions. The narrow vertical slit on the left of each pattern is coming from a dead detector tube.

Assuming the magnetoresistance of PCMGO is caused by the formation of conducting filaments in magnetic

field and the electronic phase separation (e.g. orbital order, polarons) is a bulk behaviour, the majority of the

sample will still be insulating, i.e. possessing electronic phase separation, between B1 and B2. The second

assumption should hold in all relevant CMR manganites since there is no evidence showing the electronic

phase separation is not a bulk behaviour to the best of our knowledge. For the specific PCMGO case, the

electron diffraction techique has been employed to search for the structure modulation caused by the electronic
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phase separation [142, 159]. In most of the crystallites studied, they have observed extra diffraction spots

which are the characteristic signatures of charge/orbital order [142, 159].

As discussed above, PCMGO is paramagnetic at 150 K. In all the relevant compounds, e.g. PCMGO and

Pr1−xCaxMnO3, the orbital order is reported to be incommensurate in the paramagnetic region [142, 154,

159]. We have observed this incommensurate orbital order of PCMGO in our SANS measurements. Fig. 4.21

shows the field dependences of the SANS patterns after subtraction of the background data measured at

B = 16 T where the electronic phase separation is almost fully suppressed based on our qualitative analyses

(see the next paragraph). In the low field region, a ring-like pattern is observed. These corresponds to

a broad peak centered at ∼ 0.075 Å−1. The ring intensity is relatively stable against magnetic field when

B 6 4 T. However, it is drastically suppressed between 4 T and 6 T. When B > 6 T, additional intensities start

to accumulate around the center of these patterns. These intensities are also field dependent. They represent

the scattering signals from the micrometre phases (eq. 4.4) rather than the electronic phases based on our

qualitative analyses (see the next paragraph).

We note that this type of background subtraction is only for quantitative demonstration. As shown

in eq. 4.4-eq. 4.7, there are additional contributions to the neutron scattering signals in the high-q region,

meaning the ‘background’ refered to above may also be field dependent! The best way to extract different

contributions out from the total scattering intensity is to fit the I-Q curves using eq. 4.9, as displayed in

Fig. 4.16. Fig. 4.22a shows the field dependence of the integrated intensity (IOO) of the incommensurate

orbital order peak. IOO is greatly suppressed between 4 T and 6 T, indicating the transition at B1 = 5.1 T is

caused by the melting of orbital order. Interestingly, a very weak peak centered at 0.04(1) Å−1 is required

to fit the curves above 4 T. The intensity of this peak is temporarily enhanced between 6 T and 10 T (B3)

followed by a gradual decrease at higher fields up to 16 T. We attribute this peak to the incommensurate

orbital order in the minority CE phase. We have also detected the presence of atomic size clusters in PCMGO.

They are often linked to the size of magnetic polarons (carrier hopping range) [58]. The correlation length

(ξ) of these polarons as a function of magnetic field is plotted in Fig. 4.22b. Similar with the orbital order,

ξ also gives a big drop between 4 T and 6 T. While a weak enhancement is observed between 6 T and 8 T,

ξ is gradually suppressed above B3 as well. Fig. 4.22d plots the evolution of the magnetic specific interface

parameter (S/V) in magnetic field (eq. 4.4). This parameter reflects the magnetic domain dynamics on much

larger scales than that of the electronic phase separation. It peaks exactly around B2, meaning it is coupled

to the bulk magnetization.
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Figure 4.22: Magnetic field dependences of (a) integrated intensity (IOO) of the orbital order peak, (b)

polaronic correlation length (ξ), (c) coherence length (Lc) of orbital order and (d) magnetic specific interface

(S/V). The vertical lines mark the positions of B1 and B2.

Now we discuss the field dependences of IOO and ξ in detail. The orbital order is short range ordered in

the entire field region probed. As shown in Fig. 4.22c, its coherence length (Lc) is 18 - 34 Å below B1. In the

high field region, Lc increases to 200 - 400 Å. This agrees with our scenario that the weak peak above B1 is

from the orbital order in the minority CE phase. As proposed in Ref. [127], the distribution of Ga ions is not

homogeneous in PCMGO: Ga richer in the pseudo-CE region and Ga poorer in the CE region. Due to the

direct substitution of Mn with Ga, the orbital order of Mn ions are very sensitive to the substitution level.

It is expected that the orbital order will be more disturbed (weakened) in the Ga richer region (pseudo-

CE phase). On the other hand, the orbital order is less affected in the Ga poorer region (CE phase) so

102



that it is more robust and long range ordered. We note that this type of short range orbital order peak

may also be regarded as the signature of the correlations between polarons [56, 57]. Under this scenario,

although the integrated intensity drops to zero when the bulk ferromagnetic order is triggered, it will be

temporarily enhanced in close proximity to the ferromagnetism, as observed in Refs. [56, 57]. For ξ, which

probes the carrier hopping range within one polaron, larger ξ below 6 T may indicate the weaker electron

phonon coupling strength in the pseudo-CE phase. As a result, the carriers are less localized [46, 47]. The

drop of ξ between 4 T and 6 T can be explained as the delocalization of carriers in the pseudo-CE region.

As a result, the corresponding ξ diverges and exceeds the probing region of our SANS measurements. When

B>B1, the collapse of electronic phase separation in the minority CE phase is very smooth (Fig. 4.22a & b).

Due to the presence of the nonmagnetic Ga ions which exist as point defects in PCMGO, ξ is expected to

drop to the ionic size of Ga3+ when the electronic phase separation is completely suppressed.

To conclude this subsection, we have proved that the percolation at B1 is caused by the collapse of elec-

tronic phase separation in the majority pseudo-CE phase, while the transition at B2 revealed by the bulk

magnetization measurements is related to the domain dynamics on micrometre (or even larger) scales. As

stated above, electronic phase separation should populate in the whole sample to the best our knowledge.

This means our observation rules out the filamentary percolation scenario proposed in Ref [121]. In other

words, IOO is not supposed to change a lot across B1 if the corresponding percolation is due to the conduct-

ing filaments formation. For some reason, the spins are ‘locked’ across the conducting paths percolation in

PCMGO. An important message revealed by these observations is that the carrier delocalization (magne-

toresistance) in mixed-valence manganese oxides is essentially driven by the electronic phase separation on

atomic scales rather than the long range spin order.

4.2.6 Discussion

A possible candidate for the spin locking in mixed-valence manganese oxides is the strains. As discussed in

Chapter 4.1.4, the martensitic scenario is commonly used to interpret the field induced magnetic avalanches at

very low temperatures. Besides the carrier delocalization which prevails the double exchange interactions, the

elastic energy is also important to realize the ferromagnetic spin alignment. As a result, additional energy is

required to flip the spins which are ‘locked’ by the strains. The strains in PCMGO can be phenomenologically

characterized by the 6 anisotropic strain parameters using the Stephens formalism (see chapter 4.1.4 & 4.2.2).

The field dependences of these anisotropic strains parameters are plotted in Fig. 4.23. At B2, an obvious

anomaly can be seen in all parameters. Except S400 which has relatively larger errors, other strain param-
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eters are robust in the low field region; but are significantly weakened across B2, indicating the suppressed

anistropic strains at high fields. These results support that the spins in PCMGO have been locked by the

strong anisotropic strains. This explains the observation that no more than 2.5 % of PCMGO is ferromagnetic

at B1 (see chapter 4.2.4).

Figure 4.23: Magnetic field dependences of the anisotropic strain parameters of PCMGO at 150 K. The

vertical lines mark the positions of B1 = 5.1 T and B2 = 7.9 T.

We have also investigated the field dependences of the lattice parameters and the unit cell volume (Fig. 4.24).

In the low field region, our measurements cannot resolve any transition across B1 for all those parameters. In

contrast, the lattice parameters are strongly coupled to the bulk magnetization curve (see Fig. 4.20) around

B2, resulting in a giant negative volume magnetostriction in the high field region (Fig. 4.24b). Both linear

and volume magnetostriction effects have been reported in CMR manganites previously [58, 128]. These

phenomena were interpreted as the consequence of the melting of the electronic phase separation (polarons,

orbital order) [58, 128]. However, our results unambiguously suggest the onset of ferromagnetism is the real

trigger. Since the onset of ferromagnetism often overlaps with the melting of electronic phase separation

in systems where the spins are not effectively locked by the strains (e.g. Pr0.5Ca0.5MnO3) [128, 127], we

emphasize that it is very difficult to distinguish the roles of electronic phase separation and ferromagnetism
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in the magnetostrictive process of these materials.

Figure 4.24: Magnetic field dependences of (a) the lattice parameters and (b) unit cell volume of PCMGO

at 150 K. The vertical lines mark the positions of B1 and B2.

Electron-phonon coupling (EPC) is very important to the formation of electronic phase separation in CMR

manganites [46, 2, 10, 47]. Besides the ’tolerance factor’ which involves stresses on the Mn-O-Mn bonds from

the ionic size mismatch on the rare-earth (Re) sites (Re1−xAxMnO3), the Jahn-Teller (JT) distortion of the

MnO6-octahedron is another type of EPC [46, 44]. Previous investigations have revealed strong evidence of

the coupling between the JT distortion and the electronic phase separation [55, 131, 160]. For example, the

JT distortion is significantly softened when carrier delocalization occurs [55, 131, 132]. Due to the presence

of the JT distortion, the carriers can be ‘self-trapped’ on atomic scales, causing an insulating state to the

bulk sample [46]. Therefore it is not surprising to observe such softening since a weaker JT state favours

carrier delocalization. However, the JT distortion does not necessarily need to be softened in order to realize

the carrier delocalization from the theoretical point of view [2, 47]. As discussed in Chapter 1.2.6, the JT

distortion can be parameterized by a EPC constant λ. It has been demonstrated by Millis et al that CMR

can be triggered by simply switching on the magnetic field while keeping the value of λ fixed [47].

On the other hand, the JT distortion sometimes leads to orbital order since it breaks the 2-fold degeneracy

of the eg crystal-electric-field (CEF) level [52]. As shown in Fig. 1.6 of Chapter 1.2.6, there are two types of

JT modes which are eg-active. The Q3 mode corresponds a elongation of the Mn-O bond along the b-
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axis (Pnma space group configuration) and compression of the two Mn-O bonds in the ac-plane. The Q2

mode only involves two opposite motions of the two Mn-O bonds in the ac-plane. If we label the two eg

orbitals as dx2−y2 and dz2 , the Q3 mode tends to completely split these two orbitals, whereas the split

orbitals are a mixture of dx2−y2 and dz2 in the Q2 mode [161]. In systems with both CE and pseudo-CE

types of antiferromagnetic order (e.g. Pr1−xCaxMnO3), the Q2 mode has been argued to be responsible for

the d3x2−r2/d3y2−r2 orbital order [2, 52, 162]. As mentioned above, the melting of orbital order in relevant

systems is often accompanied by the softening of the JT distortion [132]. A plausible interpretation to this

effect is the weakened eg CEF spliting. Moreover, as pointed out in Ref. [163], the orbital order can also be

melted by the enhancement of of the JT distortion in layered manganites, although such behaviour has not

been reported in manganites with perovskite structure so far.

Figure 4.25: (a) - (c) Magnetic field dependences of the Mn-O bond lengths in a MnO6-octahedron. (d)

Magnetic field dependences of the local (left axis, blue solids) and global (right axis, red solids) lattice

distortion parameters. The vertical lines mark the positions of B1 and B2.
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We have explored the field dependences of the Mn-O bonds of PCMGO (Fig. 4.25a-c). When B6B1, the

Mn-O bond along the b-axis (dbMn−O) is shorter than the other two Mn-O bonds in the ac-plane [dacMn−O(1),

dacMn−O(2)]. Since dacMn−O(1) is slightly different from dacMn−O(2), both Q2 and Q3 modes should exist in

this region. When the magnetic field increases from 5 T to 6 T, we cannot resolve any change in the dbMn−O

channel, whereas two opposite motions have been observed in the dacMn−O(1) and dacMn−O(2) channels. This

corresponds to a enhancement of the Q3 mode. This transition can be further addressed by using the JT

distortion constant (σJT )

σJT =

√
1

3

∑
i=1,2,3

(diMn−O − d̄Mn−O)2, (4.11)

where diMn−O is the individual Mn-O bond length and d̄Mn−O is the mean Mn-O bond length [132]. As

shown in Fig. 4.25d, σJT is clearly enhanced across B1. In contrast, no change can be resolve across B2

in all these parameters. We have also plotted out the global unit cell distortion parameter D =

√
b

a+ c
in

Fig. 4.25d. Apparently, the unit cell remains robust across B1 and becomes significantly less distorted above

B2, indicating a strong coupling to the spin order.

To finish this subsection, we have proved that the carrier delocalization at B1 is not related to the

filamentary percolation proposed in Ref. [121]. It is caused by the collapse of electronic phase separation

in the whole sample. Contradicting previous experimental investigations [132], the carrier delocalization in

PCMGO is an exceptional case where the JT distortion is enhanced. This is realised by further mixing the

two eg orbitals, dx2−y2 and dz2 , to suppress the d3x2−r2/d3y2−r2 orbital order, rather than recovering the

2-fold degeneracy of the eg level. The spins are ’locked’ in place by the strong anisotropic strains in PCMGO.

While these spins are not coupled to the electronic phase separation, our results unambiguously reveal a

strong spin-lattice coupling on the unit cell level, which is the real cause of the giant magnetostriction effect

commonly observed in these systems.

4.3 Conclusions and future work

In this project, we have investigated the magnetic field dependences of electronic phase separation, spin and

crystallographic structure in the paramagnetic region of the strained manganese perovskite PCMGO. We

have found that the carrier delocalization is caused by the collapse of electronic phase separation in the

whole sample. Surprisingly, this process is assisted by the enhancement of JT distortion (Q2 mode) rather

than the opposite way which has been commonly observed in other perovskite manganites. On the other

hand, the long range ferromagnetic order is insignificant to the carrier delocalization process in this strained
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compound. We clarify that the giant volume magnetostriction effect does not come from the melting of

electronic phase separation (polarons, orbital order), as proposed in Ref [58, 128]. It is more related to the

strong spin-lattice coupling. Most of all, we emphasize spins are still very important to the magnetoresistance.

As depicted in Fig. 4.19, the R-B curve does not start to flatten until B2. Based on these results,

we propose that the CMR effect is essentially governed by two independent mechanisms: (I)

carrier delocalization caused by the collapse of electronic phase separation (II) ferromagnetic

double-exchange interaction. We stress it is very difficult to distinguish the roles of these two processes

across the magnetoresistive transition in systems where the anisotropic strains are weak.

In the future, it would be very interesting to investigate the magnetic field dependences of electronic phase

separation, spin and crystallographic structure in the magnetic ordered region of PCMGO. Moreover, it is

also worth revisiting the other strained compound Pr0.7Ca0.3MnO3 where bulk ferromagnetism and carrier

delocalization are also separated in the magnetic field [153].
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CHAPTER 5

DILUTED PYROCHLORE, Y2(CR1−XGAX−0.5SB0.5)2O7

5.1 Background

5.1.1 Magnetic 3d transition-metal pyrochlores

Figure 5.1: (a) Heat capacity versus temperature curves (open squares) of Dy2Ti2O7. The black solids are

the Monte-Carlo simulations for the dipolar-spin-ice model [15]. (b) Illustration of the water ice and spin ice

configurations.

As discussed in Chapter 1.3, the pyrochlore structure has a chemical formula A2B2O7 [15]. Due to the

predominant magnetic dipolar interactions, rare-earth (RE) pyrochlores with nonmagnetic B-sites usually

do not develop long range spin order until very low temperatures, e.g.∼ 1 K in Gd2Ti2O7 [4, 15]. In most

cases, the magnetic ground state is highly degenerate. For example, the ground state spin configuration in
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RE2Ti2O7 (RE = Dy, Ho) can be described by two spins pointing towards the center of the RE-tetrahedron and

the other two pointing outwards (Fig. 5.1). This two-in/two-out structure is reminiscent of the arrangement

of protons in water ice, so it is named as ‘spin ice’ (Fig. 5.1b). Due to the cubic structure of these pyrochlores

(space group Fd3̄m), there are six energetically equivalent two-in/two-out spin configurations on each RE-

tetrahedron, and therefore the number of ground states in a bulk sample is infinite, making the system highly

degenerate at low temperatures [15].

Figure 5.2: Heat capacity versus temperature curves of (a) Ho2Mn2O7 and (b) Yb2Mn2O7. The solid lines

are lattice contributions. (c) Field dependences of magnetization of Ho2Mn2O7 and Yb2Mn2O7 collected at

5.0 K. (d) Heat capacity data on Y2Mn2O7 measured by different groups [15].

In sharp contrast, long range ferromagnetic order with very high Curie temperature has been real-

ized in RE pyrochlores with magnetic transition-metal (TM) ions on B-sites (Fig. 5.2a - c) [35]. As shown

in Fig. 5.2a & b, TC is found to be around 38 K in Ho2Mn2O7 and Yb2Mn2O7. Compared with the very low
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transition temperature (∼ 1 K) in RE pyrochlores with nonmagnetic B-sites, the high TC in RE2TM2O7

indicates the important role of TM ions to the acutual spin ordering.

Although these RE manganese pyrochlores show ferromagnetic behaviour at low temperatures (Fig. 5.2c).

The paramagnetic-to-ferromagnetic order transition window revealed by the heat capacity measurements is

very broad (Fig. 5.2a & b). This may indicate the presence of disorder in those systems. Since these compounds

are not stable at ambient pressure at any temperatures, they must be prepared using high pressure methods

in order to secure the Mn4+ oxidation state [164]. However, a careful check on the valence of the Mn ions

as well as the chemical stoichiometry has not been performed to date. As shown in Fig. 5.2d, heat capacity

data of Y2Mn2O7 reported by different groups show very clear discrepancies [15]. These observations suggest

that the magnetic properties in manganese pyrochlores are very sensitive to the disorder. We also note that

an additional Lorentzian-squared term is required to produce satisfactory fits to the small angle neutron

scattering data collected in these system [35]. This Lorentzian-squared term is commonly found in materials

with site-disorder.

5.1.2 Structural disorder and magnetism

The disorder in manganese pyrochlores is related to the quality of the samples. It has been suggested

that structural disorder could well be intrinsic in other pyrochlore compounds, and more importantly, be

responsible for the lack of long range spin order in corresponding systems [15, 24, 25, 26, 29, 30, 165, 166,

167]. For example, a dipolar spin ice model, which contains the nearest neighbour exchange and long range

dipolar interactions [168], has been argued to be appropriate to describe Tb2Ti2O7. Using the estimated

values of the coupling constants, a long range antiferromagnetic order should develop below ∼ 1 K. However,

neutron scattering measurements on both single crystals and powder of Tb2Ti2O7 have revealed no static

magnetic order but short range correlations between Tb3+ spins on the nearest neighbour scales down to 50

mK [169, 170]. Moreover, muon spin relaxation measurements have only observed paramagnetic fluctuations

down to 60 mK [171]. As a result, the magnetic ground state of Tb2Ti2O7 has been established to be a spin

liquid (or cooperative paramagnet) [15]. On the other hand, the crystal field degeneracy of the non-Kramer

Tb3+ ion is susceptible to Jahn-Teller distortions [172]. Since the magnetoelastic coupling usually suppresses

frustration [173, 174], the spin liquid state of Tb2Ti2O7 may suggest frustration in lattice degrees of freedom

as well [175]. In other words, intrinsic lattice disorder plays a key role in the spin liquid physics of Tb2Ti2O7

through the magnetoelastic coupling, as revealed by multiple experiments [165, 166, 167].
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Figure 5.3: PDF as a function of distance r of Y2Mo2O7 at various temperatures. The fits are based on a

fully ordered model with anisotropic atomic displacement factors for all atoms [25]

As discussed in Chapter 1.3.2, the spin glass state in Y2Mo2O7 has been ascribed to the local structure

disorder. It is also demonstrated in Ref. [25] that the fits to the neutron pair-distribution-function (PDF)

always become worse on cooling, indicating the development of local disorder (Fig. 5.3). However, this

does not necessarily suggest any magnetoelastic coupling, as has been revealed in the Tb2Ti2O7, due to

the presence of disorder in both local and average structures at 300 K (Fig. 5.3). Recently, a new model,

in which the four Mo4+ ions on each Mo-tetrahedron obey a two-in/two-out displacement rule, has been

proposed by Thygesen et al based on their analyses of both X-ray and neutron PDF data [32]. They have

highlighted the key role of orbital frustration. The disorder of the spin exchange interaction comes from

the resulting cooperative O2− ion displacements. Nonetheless, the bond disorder level in Y2Mo2O7 is too

weak to generate any spin glass state according to the conventional mean field theory predictions [27]. This
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puzzle has been solved by Saunders et al who have successfully introduced a spin glass state at the weak

bond disorder limit [29]. However, the spin freezing temperature (T f) would scale with the disorder strength

(∆) in this model. This leads to an estimated T f which is 20-30 times smaller than that determined by the

experiments [30]. In order to fully reproduce the spin glass transition as well as the high T f in Y2Mo2O7,

the spin-lattice coupling term is required (Fig. 5.4), as demonstrated by Ref. [30].

Figure 5.4: Bond disorder strength (∆) - temperature (T) phase diagram obtained at b = 0.2, where b is

the spin-lattice coupling constant [30]. The nematic and spin glass transition temperatures are denoted by

squares and circles.
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5.1.3 RE2(Cr0.5Sb0.5)2O7, RE = Ho, Y, Dy, Tb, Er, etc

Figure 5.5: Neutron powder diffraction patterns (λ= 1.8857Å) of Ho2(Cr0.5Sb0.5)2O7 at (a) 298 K and (b)

1.5 K. Inset of (b): The refined magnetic structure at 1.5 K.

114



Nonmagnetic ion dilution in pyrochlores can be traced back to 1960s, when Bongers et al investigated the bulk

magnetism of RE2(Cr0.5Sb0.5)2O7 (RE = Ho, Y, Dy, Tb, Er, etc) [176]. For the Ho2(Cr0.5Sb0.5)2O7 compound,

it enters into a ferromagnetic-like state below TC ∼ 10 K [176]. This value is considerably larger when the

B-site is completely nonmagnetic (∼ 1 K in Ho2Ti2O7), indicating the important role of the magnetic TM ions

on B-site. Neutron powder diffraction experiments have been carried out on Ho2(Cr0.5Sb0.5)2O7 by Whitaker

et al [177]. Sharp magnetic reflections are clearly observed at low temperatures (Fig. 5.5). By assuming the

four Ho3+ spins on each tetraheron obey the two-in/two-out configuration and Cr3+ spins ferromagnetically

align along the c-axis [Fig. 5.5b(inset)], they have successfully refined the diffraction pattern at 1.5 K. Unlike

the highly frustrated two-in/two-out spin ice state in Ho2Ti2O7 [15], Whitaker et al have also suggested the

two-in/two-out structure of Ho3+ spins in Ho2(Cr0.5Sb0.5)2O7 is actually ordered due to the presence of

Ho3+-Cr3+ coupling [177].

5.2 Results

5.2.1 Research motivations

As reported in Ref. [177], Ho2(Cr0.5Sb0.5)2O7 develops long range magnetic order below 13 K. Ho3+-Cr3+

coupling plays a key role on the ordering of Ho3+ ions. However, it is not clear how this Ho3+-Cr3+ coupling

will affect the Cr3+ ordering. According to Bongers et al, the effective Cr3+-Cr3+ spin exchange is ferromag-

netic with Curie-Weiss temperature θCW ∼ 15 K [176]. At the first sight, one would expect an ordered (or

partially ordered) magnetic ground state in Y2(Cr0.5Sb0.5)2O7 since the Sb fraction (0.5) is still well below

the nonmagnetic ion percolation threshold on a pyrochlore lattice xc = 0.61 [178]. Moreover, Cr3+ is stable at

ambient pressure. This means the valence disorder which hinders the long range magnetic order in Y2Mn2O7

should not be important in Y2(Cr0.5Sb0.5)2O7.

It has been theoretically proposed that very weak bond disorder can introduce a spin glass state [29, 30].

In this model, the spin freezing temperature T f does not depend on the disorder level ∆ if there is spin-lattice

coupling in the system [30], as experimentally verified in Y2Mo2O7 [23]. However, T f will scale with ∆ in

the absence of spin-lattice coupling, and therefore be significantly lowered at the weak bond disorder limit

(Fig. 5.4) [29, 30]. As pointed out recently, the spin-lattice coupling in Y2Mo2O7 is essentially mediated by the

orbital degrees of freedom [32]. In magnetic 3d TM pyrochlores, the orbital moment is usually quenched [4],

which indicates the spin-lattice coupling is probably not dominant in these systems. As a result, the TM

pyrochlore family with very weak bond disorder is an ideal candidate to test the spin glass theory proposed
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in Ref. [29, 30] at zero spin-lattice coupling limit.

The spinel compound ZnCr2O4, in which the Cr3+ ions form a pyrochlore sublattice with corner-sharing

tetrahedra, is also worth mentioning. It enters into a co-planar antiferromagnetic state below TN = 12.5 K [179].

Since the cubic pyrochlore lattice with Heisenberg-type antiferromagnetic interactions cannot order [15], the

onset of antiferromagnetism has been attributed to the spin-driven lattice symmetry breaking at TN [179, 180,

174, 181]. As a result, a cooperative spin-lattice coupling exists in this special case, as included in the spin-

glass model by Shinaoka et al to account for the spin freezing transition in Zn1−xCdxCr2O4 (x> 0.01) [182].

More importantly, we highlight the magnetic ground state switches from antiferromagnetic to spin glass by

nonmagnetic ion dilution in Zn(Cr1−xGax)2O4 when x is between 0.2 and 0.25 [183, 184]. This critical value

is much lower than the nonmagnetic ion percolation threshold on a pyrochlore lattice: xc = 0.61 [178]. Non-

magnetic ion dilution can cause random distortion to the spin exchange network formed by TMO6-octahedra

due to the size mismatch between nonmagnetic and magnetic ions, and therefore leads to bond disorder. The

ionic radii of Ga3+ and Cr3+ are 0.62 Å and 0.615 Å, respectively. This places Zn(Cr1−xGax)2O4 to the weak

bond disorder limit. However, T f is not sensitive to ∆ in this compound due to the presence of spin-lattice

coupling [30].

Based on the discussions above, we have demonstrated that bond disorder is essential to understand the

spin glass state on a pyrochlore lattice. The spin freezing temperature T f is controlled by the bond disorder

strength ∆ and spin-lattice coupling. While the theories proposed by Saunders et al [29] and Shinaoka et

al [30] have been tested in the presence of both spin-lattice coupling and weak bond disorder, they have not

been verified in systems without spin-lattice coupling yet. In the following, we have proposed a potential TM

pyrochlore candidate Y2(Cr0.5Sb0.5)2O7 to test the relevant theories.

5.2.2 Data analysis

The neutron powder patterns have been refined using the Rietveld method described in Appendix A. We have

adopted the general crystallographic structure for a pyrochlore with space group Fd3̄m in our refinement [15].

The lattice parameters, atomic positions and isotropic atomic displacement parameters (Biso) in Ref. [177] by

refining the room temperature X-ray diffraction pattern of Y2(Cr0.5Sb0.5)2O7 have been used as the starting

parameters in our refinements. A Thompson-Cox-Hastings pseudo-Voigt convoluted with axial divergence

asymmetry function has been used to fit the peak shape of the nuclear reflections [106]. The magnetic Bragg

peaks which can be observed at high magnetic fields were fitted by a Gaussian function [106].
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5.2.3 Absence of magnetic order in Y2(Cr0.5Sb0.5)2O7: a spin glass candidate

Introduction

Magnetic frustration refers to systems where the total free energy cannot be minimized by optimizing the

interaction energy between each pair of spins [1]. It is responsible for the abundant spin structures in py-

rochlore compounds where ‘geometric frustration’, i.e. corner-sharing tetrahedral network consisting of mag-

netic cations, coexist with competing spin interactions [15]. The consequential magnetic ground state can

be highly degenerate (spin liquid) in a Heisenberg magnet with antiferromagnetic spin exchange interac-

tions [185, 186]. This degeneracy can be partially lifted in rare-earth compounds R2Ti2O7 (R = Dy, Ho) to

form a exotic state called ‘spin ice’ [15, 187, 188]. Strikingly, the quasiparticles excitations of a spin ice state

are found to resemble the behaviour of magnetic monopoles [189, 190]. Moreover, peculiar long range order

can also result in relevant systems. The low temperature spin modulation in Gd2Ti2O7 was initially proposed

to be 4-k with propagation vector k = [ 12
1
2
1
2 ]∗ [113]. Recently, this solution has been theoretically reproduced

by taking into account the thermal fluctuations which were not accessible within mean-field approaches [114],

but this model was challenged by Paddison et al recently [191]. Strong evidence using neutron diffraction

measurements has been provided to show it is essentially 1-k modulation in Gd2Ti2O7 [191].

Another interesting state which may rise in pyrochlores is spin glass (SG). In general, a SG state prevails

in systems dominated by randomness and frustration. For example, the sign of Ruderman-Kittel-Kasuya-

Yosida (RKKY) interaction in lightly doped Au1−xFex (x∼ 0.05) is very sensitive to the distance between

Fe-sites [192, 193]. SG in this class of materials is induced by zero-point spin exchange fluctuations, i.e

competing antiferromagnetic and ferromagnetic spin interactions. SG is also commonly observed in diluted

magnets around the nonmagnetic site percolation threshold [194]. Compared with these classic systems, the

appearance of SG on a ’clean’ pyrochlore lattice is nontrivial to understand. Clear signatures of SG have

been observed in Y2Mo2O7 [23, 195, 21]. Recent advancement in theory strongly point to the key role of

weak bond disorder on the spin freezing in geometically frustrated antiferromagnets [29, 196]. Moreover, an

additional spin-lattice coupling term is required to correctly reproduce the spin freezing temperature (Tf )

of Y2Mo2O7 [30]. These theories can also be applied to other SG compounds such as Zn1−xCdxCr2O4 and

Zn(Cr1−xGax)2O4 [30, 182, 183, 184]. On the other hand, Tf is expected to be controlled by the disorder

strength (∆) in the absence of spin-lattice coupling [29]. This will significantly reduce the onset temperature

of SG in relevant systems [30]. In Mo-pyrochlores, the spin-lattice coupling is essentially mediated by the

orbital degrees of freedom [32, 197]. However, this contribution is often insignificant in 3d transition-metal

(TM) pyrochlores due to the orbital quenching effect, making them ideal systems to validate the theory in
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the zero spin-lattice coupling limit. We note the cooperative spin-lattice coupling in the other 3d TM family,

Zn1−xCdxCr2O4 and Zn(Cr1−xGax)2O4, is related to a novel spin-Peierls-like phase transition, rather than

the conventional orbital physics [179, 180, 174, 181].

Following this idea, we have synthesized Y2(Cr1−xGax−0.5Sb0.5)2O7 (0.56 x 6 0.9) for investigation. By

randomly substituting the magnetic TM ions (Cr) with nonmagnetic ions (Sb/Ga), we have created site

disorder which is a conventional way of approaching SG [194]. Most of all, bond disorder is also introduced into

our samples due to the size mismatch between magnetic and nonmagnetic ions. This feature has been proven

to be responsible for the SG state in geometrically frustrated magnets. For the Y2CrSbO7 (x = 0.5) sample

which is well below the nonmagnetic site percolation threshold (xc' 0.61) [178], our high-resolution neutron

powder diffraction (HRNPD) measurements cannot detect any long range spin order down to 2 K. This is in

sharp contrast with the prevailing ferromagnetic spin exchange interactions as revealed by θCW = 20.1(6) K.

Compared with nonmagnetic site percolation, our simulations concerning disordered bond percolation predicts

a much lower threshold (x′c' 0.23). x′c is in excellent agreement with the onset of SG in Zn(Cr1−xGax)2O4

where x is between 0.2 and 0.25 [183, 184]. Our Rietveld refinement confirms the average Cr-O-Cr bond

angle [130.19(2)◦] is in the critical region where the corresponding spin exchange constant changes its sign.

The resulting zero-point spin exchange fluctuations may further assist the formation of SG in Y2CrSbO7

(x = 0.5).

Experiments

Polycrystalline samples of Y2(Cr1−xGax−0.5Sb0.5)2O7 (0.5 6 x 6 0.9) were synthesized by the traditional solid

reaction method. A homogeneously ground mixture of GaSbO4 (CrSbO4) and Y2O3 (4N) were heated in air

for 6 days at 1200 ◦C with several intermediate regrindings to prepare Y2GaSbO7 (Y2CrSbO7). GaSbO4

(CrSbO4) raw materials were preprared by sintering Ga2O3 (Cr2O3) (3N) and Sb2O3 (3N, 5 % excess to

compensate the volatilization) for 3 days at 640 ◦C, and then 5 days at 1200 ◦C with several intermedi-

ate regrindings as well. The intermediate temperature (640 ◦C) is to transform Sb2O3 into Sb2O4. Finally,

Y2Cr1−xGaxSbO7 were obtained by heating the stoichiometrically mixed Y2GaSbO7 and Y2CrSbO7 powders

for 5 days at 1200 ◦C.

The room temperature crystallographic structure of each sample was checked by the X-ray powder diffrac-

tion technique using a Bruker D8 diffractometer (Cu Kα1,λ= 1.5406 Å). Magnetic susceptibility data were

collected using a Magnetic Property Measurement System (MPMS, Quantum Design).
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Figure 5.6: (a) χ-T (left axis) and 1/χ-T (right axis) curves of Y2CrSbO7 measured at B = 0.01 T. The black

solid curve is a Curie-Weiss fit to the linear part of the χ-T curve at high temperatures. (b) Nonmagnetic

ion substitution level (n) dependence of site percolation probability (p). (c) Fraction of percolative magnetic

clusters (fm) as a function of the nonmagnetic ion fraction (n). The results were obtained by a 50-times

sampling simulation on a N×N×N (N = 64) lattice.
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HRNPD patterns were collected at the D2B powder diffractometer (λ= 1.594 Å) equipped with a 5-

Tesla vertical cryomagnet at the Institute Laue-Langevin (ILL) in Grenoble, France. About 8 g of powder

was hydraulically pressed into a cylinder (height = 11 mm, diameter = 13 mm) to avoid any field-induced

texture and then loaded into a vanadium container. Rietveld refinements were performed using the FullProf

package [102, 106].

A minor impurity phase YCrO3, with volume fraction 3.4(2) %, is necessary to match some very weak

peaks in our HRNPD patterns [Fig. 5.7(inset)]. The onset of antiferromagnetism in YCrO3 is responsible for

the kink around 142 K in our susceptibility curves (data not shown here) [177]. As a result, we will only show

susceptibility data measured below 120 K in the following.

Main results and discussion

Figure 5.7: (main panel) HRNPD pattern (red solids) of Y2CrSbO7 at T = 2.0 K, B = 0 T. Calculated pattern

(black line), nuclear Bragg positions (blue vertical line) and difference (purple line) are also displayed. (inset)

Enlarged version of a selected angle region. Additional peaks from YCrO3 (red arrows) and V (black arrow)

can be visualized.
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The low field (B = 0.01 T) susceptibility (χ) data of Y2CrSbO7 is shown in Fig. 5.6a. Although distinct

deviation from standard paramagnetic behaviour sets in below ∼ 40 K, no magnetic transition can be observed

down to the lowest temperature probed (1.8 K). By fitting the linear part of the inverse susceptibility (1/χ)

versus temperature curve between 40 K and 120 K, we obtained TCW = 20.1(6) K, meaning Y2CrSbO7 is a

highly frusrated system dominated by ferromagnetic spin exchange interactions. This is in sharp contrast

with the fully occupied compound Y2Mn2O7 (same electronic configuration 3d3) which has a ferromagnetic-

like state below 15 K [33, 34]. The absence of ferromagnetism in Y2CrSbO7 is confirmed by the HRNPD

pattern measured at 2.0 K (Fig. 5.7). Only nuclear reflections can be resolved in our refinement. The refined

crystallographic parameters of Y2CrSbO7 (x = 0.5) and Y2Cr0.4Ga0.6SbO7 (n = 0.8) at 2.0 K are listed in

Table 5.1.

Table 5.1: Structural parameters of Y2CrSbO7 and Y2Cr0.4Ga0.6SbO7. The corresponding HRNPD patterns

were refined under space group Fd3̄m (a = b = c, α= β= γ= 90◦). The only atomic position needs to be

refined is O2 (x, 0.125, 0.125) [177].

Y2CrSbO7 Y2CrSbO7 Y2CrSbO7 Y2Cr0.4Ga0.6SbO7

T = 300 K, B = 0 T T = 2 K, B = 0 T T = 2 K, B = 5 T T = 2 K, B = 0 T

a (Å) 10.1620(1) 10.15235(7) 10.15143(5) 10.15081(8)

x (O2) 0.4178(1) 0.41793(8) 0.41792(9) 0.4182(1)

B iso (Y) (Å2) 0.72(2) 0.69(1) 0.65(1) 0.58(1)

B iso (Cr) (Å2) 0.44(2) 0.34(1) 0.31(1) 0.51(2)

B iso (O1) (Å2) 0.15(3) 0.17(2) 0.08(2) 0.17(3)

B iso (O2) (Å2) 0.45(1) 0.439(8) 0.399(9) 0.37(1)

Cr - O2 (Å) 1.9810(6) 1.9787(3) 1.9785(4) 1.9774(5)

Cr - Cr (Å) 3.59282(3) 3.58940(2) 3.58907(1) 3.58885(2)

Cr - O2 - Cr (◦) 130.14(2) 130.19(1) 130.19(2) 130.31(2)

As mentioned above, a SG state often emerges in systems close to the nonmagnetic site percolation

threshold. To check the influence of site disorder in Y2CrSbO7, we have simulated the fraction of percolative

magnetic ions (fm) as well as percolation probability (p) at various nonmagnetic ion substitution levels

(x ). Our model predicts a site percolation threshold xc' 0.61 which is consistent with previous studies

(Fig. 5.6b) [178]. More importantly, 83 % of the sample (x = 0.5) is populated by the percolative magnetic

sites as shown in Fig. 5.6c. This suggests that site disorder is not strong enough to affect the magnetic
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properties of Y2CrSbO7 yet.

Figure 5.8: (a) Magnetization (M) - temperature (T) curve (purple) of Y2CrSbO7 at 5 T. The black solids is

the derivative of the M-T curve. The red arrow marks the position of TC. (b) TC - x plot (pink). xc is

labeled by the red line.
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Figure 5.9: (a) Magnetization (M) versus magnetic field (T) curve (red solids) of Y2CrSbO7 at 2 K. The blue

line is a linear fit to the data above 3.5 T. (b) HRNPD pattern and the Rietveld refinement of Y2CrSbO7 at

2 K/5 T. The blue arrow marks the ferromagnetic reflection at the reciprocal position (1, 1, 1).
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f m is very sensitive to x in the critical region of nonmagnetic site percolation (Fig. 5.6c). Thus another

possible explanation for the absence of magnetic order in the synthesized Y2CrSbO7 is off-stoichiometry

towards the x > 0.5 side. In order to rule out this scenario, we have studied the temperature dependence

of magnetization in Y2(Cr1−xGax−0.5Sb0.5)2O7 (0.5 6 x 6 0.9) in the high field region where the magnetic

frustration is suppressed. As shown in Fig. 5.8a, ferromagnetic-like behaviour is recovered under B = 5 T evi-

denced by a weak plateau at low temperatures. The Curie temperature (TC) is determined by the minimum

in the corresponding derivative curve. TC as a function of x is displayed in Fig. 5.8b. A sudden decrease of

TC is observed between x = 0.6 and x = 0.8. This is consistent with the nonmagnetic site percolation at

x c' 0.61 (Fig. 5.6b). Moreover, the magnetization (M ) of Y2CrSbO7 shows linear dependence on magnetic

field above B = 3.5 T (Fig. 5.9a). Extrapolating the high field M-B curve produces a saturation moment

(Msat) around 2.585µB/Cr. On the other hand, the total magnetic moment (Mtot = gJ, where g is the Landé

g-factor and J is the total angular momentum) of the Cr3+ ion can be obtained by fitting the linear part of the

low field 1/χ-T curve in Fig. 5.6a. By assuming the g is 2, we get Mtot = 3.12µB/Cr. The difference between

Msat and Mtot can be explained by the presence of non-percolative spin clusters in Y2CrSbO7 (Fig. 5.6c). As

a result, f m is around 83 % in Y2CrSbO7. This generates an effective nonmagnetic ion fraction xeff exactly

around 0.5. This confirms off-stoichiometry is not present in Y2CrSbO7. We have also refined the magnetic

structure at B = 5 T (Fig. 5.9b). This corresponds to a simple collinear ferromagnetic alignment along the

c-axis with a propagation vector k = (0, 0, 0) and an effective moment 2.4(1)µB/Cr. We note the spins can

also point along are axes due to the cubic symmetry (Fd3̄m) of a pyrochlore structure.

Besides the site disorder induced by random nonmagnetic ion substitution, bond disorder also exists in

such systems due to the inevitable size mismatch between magnetic and nonmagnetic ions. The ionic radii

of Cr3+, Sb5+ and Ga3+ are 0.615 Å, 0.60 Å and 0.62 Å, respectively. The small variations of ionic radii on

B-site puts Y2CrSbO7 to the weak bond disorder limit. The effect of nonmagnetic ion substitution can be

readily demonstrated by the x -dependences of Cr-O2-Cr bond angle, the Cr-O2 bond length and the isotropic

atomic displancement parameter of O2 in Table 5.1. Due to the random substitution of B-sites with Sb5+

ions, there are five Cr/Sb-tetrahedral configurations randomly distributed in the sample, corresponding to

empty, single, double, triple and full occupation by Cr ions (Fig. 5.10a - e). The bond disorder could apply

random strains to the BO6-octahedron, leading to random deviations of the Cr-O2-Cr bond angle from the

average value (Fig. 5.10f). We have calculated the substituting region where percolative magnetic clusters

exclusively consisting of fully Cr-occupied tetrahedral can be found (Fig. 5.10a). In this case, there will be no

bond disorder in the corresponding percolative magnetic region. As shown in Fig. 5.11a, the new percolation
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threshold (x ′c' 0.23) is signicantly reduced compared with x c' 0.61 for site disorder. Most of all, this model

is consistent with the observations in Zn(Cr1−xGax)2O4 where the Cr/Ga sublattice also has a pyrochlore

structure [183, 184]. While ZnCr2O4 has a antiferromagnetic ground state, substitution Cr3+ with Ga3+

switches this system to SG between x = 0.2 and x = 0.25 [183, 184]. Moreover, the effective ordered moment

is reduced by a factor of 20 % even at x = 0.05, which is close to 26 % predicted by our model. As a result,

our model should capture the essential physics in Y2CrSbO7. Y2CrSbO7 (x = 0.5) is in a region dominated

by bond disorder. We also note the fast drop of f m even below x ′c (Fig. 5.11b). This indicates the fraction

of long range order in relevant systems is extremely sensitive to the bond disorder strength even at the weak

limit.

Figure 5.10: (a) - (e) Five possible configurations of a single Cr/Sb-tetrahedron. The bonds are displayed by

dual-band cylinders. (f) Possible influence of bond disorder to the local structure in a unit cell. O2 oxygens

(green spheres) will deviate from their average position (translucent green spheres), producing a random

distribution of Cr/Sb-O2-Cr/Sb bond angles in the sample (red dotted lines). The Cr/Sb-tetrahedral network

is linked by black lines.
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Figure 5.11: (a) Pecolation probability (p) of bond disorder as a function of the nonmagnetic ion fraction (n).

(b) fm - n curve after taking bond disorder into account. The results were obtained by a 100-times sampling

simulation on 64×64×64 (black) and 48×48×48 (blue) lattices, respectively.
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Based on the prevailing bond disorder and the lack of long range order down to 1.8 K of Y2CrSbO7,

we propose SG as its possible magnetic ground state. The SG in Y2CrSbO7 may be further assisted by

the zero-point spin exchange fluctuations. The refined average Cr/Sb-O2-Cr/Sb bond angle and Cr/Sb-O2

distance are 130.19(1)◦ and 1.9783(3) Å, respectively (Table 5.1). According to the Goodenough-Kanamori

rules [12, 198], the nature of TM-O-TM spin exchange is mostly determined by the exchange bond angle and

the bond lengths. While both bond distance and the type of ion are fixed, the bond angle becomes the only

dominant parameter. Y2CrSbO7 belongs to a series of Cr3+ oxides with almost identical values of Cr-O bond

length [199]. As investigated in Ref [199], 130.19(1)◦ is in a critical region where the effective spin exchange

constant changes its sign. The zero-point spin fluctuations could be triggered by the bond disorder, as shown

in Fig. 5.10f.

The appearance of such SG states in weakly disordered pyrochlore lattices has been studied, e.g. Y2Mo2O7 [29,

196, 30]. It is shown that a SG can appear at very low bond disorder level. The corresponding T f will be

very low (scale with ∆) unless the spin-lattice coupling term is included. For Y2CrSbO7, the spin-lattice

coupling effect is expected to be insignificant due to the orbital quenching effect. On the other hand, the

disorder strengh is also weak evidenced by the small ionic size mismatch on B-sites. This makes Y2CrSbO7

a candidate to study purely weak bond disorder induced SG state in the absence of spin-lattice coupling.

5.3 Conclusions and future work

In summary, we have carried out susceptibility and HRNPD measurements on Y2(Cr1−xGax−0.5Sb0.5)2O7

(0.56 x 6 0.9). While Y2CrSbO7 is not sensitive to nonmagnetic site disorder based on multiple evidence,

we cannot observe any long range order down to the lowest temperature probed (1.8 K). We propose the

bond disorder caused by the ionic size mismatch between Cr3+ and Sb5+ is the origin of this phenemenon.

Further assisted by the zero-point spin exchange fluctuations, Y2CrSbO7 may be another SG candidate

among pyrochlores. Unlike Y2Mo2O7, the SG state in Y2CrSbO7 is exclusively caused by weak disorder

effect.

Our results also provide important motivations to future studies. For example, lower temperature

(T < 1.8 K) characterizations are neccesary to confirm the real state of Y2CrSbO7 above T = 0 K. More-

over, new materials are demanded to test n ′c predicted by our geometry model.
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CHAPTER 6

SUMMARY

6.1 γ-CoV2O6

We have performed neutron diffraction studies on the quasi-one-dimensional magnet γ-CoV2O6, which pos-

sesses competing magnetic interactions but not geometric frustration. We have found that the low tem-

perature magnetic reflections can be indexed by two propagation vectors, k1 = (0.5, 0, 0) and k2 = (-

0.25, 0, 0.25). More importantly, we propose that this compound develops two single-k phases in a volume

ratio of 65(1) : 35(1) below TN = 6.6 K. By further decreasing the temperature, the minority phase modulated

by k2 undergoes an incommesurate-commensurate lock-in transition at T ∗ = 5.6 K.

6.2 Pr0.5Ca0.5Mn0.97Ga0.03O3

We have studied the strained manganese perovskite Pr0.5Ca0.5Mn0.97Ga0.03O3 (PCMGO). By varying the

magnetic field at T = 150 K, where PCMGO has a paramagnetic ground state, the carrier delocalization

driven by the collapse of electronic phase separation (orbital order, polarons) occurs at Bc1 = 5.1 T. Surpris-

ingly, the Jahn-Teller distortion is enhanced above Bc1, contradicting the softening picture reported previ-

ously. On the other hand, the spins remain mostly paramagnetic across Bc1 and do not become ferromagnetic

at a much higher field Bc2 = 7.9 T, where a giant magnetostriction effect is observed. This decoupling between

carrier delocalization and ferromagnetism is related to the prevailing anisotropic strains in PCMGO. Most

of all, the magnetoresistance in PCMGO can be detected up to Bc2, rather than Bc1. These results strongly

suggest that colossal magnetoresistance is driven by two independent forces: (I) carrier delocalization, and

(II) ferromagnetic double-exchange.
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6.3 Y2(Cr1−xGax−0.5Sb0.5)2O7, 0.56 x 6 0.9

We have studied the magnetism of the diluted transition metal pyrochlores Y2(Cr1−xGax−0.5Sb0.5)2O7

(0.56 x 6 0.9). Although Y2CrSbO7 (x = 0.5) is well below the nonmagnetic site percolation threshold

xc' 0.61, both susceptibility and neutron powder diffraction measurements cannot detect any magnetic

long range order down to 2 K. We propose that the magnetic long range order in Y2CrSbO7 is suppressed

by the bond disorder, which has a much lower percolation threshold x′c' 0.23 based on our simulations,

caused by the weak ionic size mismatch between Cr3+ and Sb5+. Bond disorder in pyrochlores can lead to a

spin glass at low temperatures. In the absence of spin-lattice coupling, the spin freezing temperature scales

with the bond disorder strength based on the recent spin glass theories [30, 29]. As a result, Y2CrSbO7 is a

potential spin glass candidate with a very low spin freezing temperature due to its very weak bond disorder

and zero spin-lattice coupling.
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APPENDIX A

RIETVELD REFINEMENT

Experimentally, the ith intensity (I obs, i), together with the corresponding standard deviations (σi), of a

diffraction pattern is always recorded as a function of some variable (xi), e.g. scattering angle, time-of-flight

or energy. On the other hand, the calculated profile I calc can be expressed as

Icalc, i =
∑
n

Sn
∑
Q

In,QΩ(xi − xn,Q) + bn, (A.1)

where n labels the phase number, Sn is the scale factor, Q labels the Bragg reflection position, In,Q is the

calculated intensity, Ω is the reflection profile function which models both instrumental and sample effects,

bn is the background. Some of these parameters, e.g. L ad F have already been discussed in Chapter. 2.2.

In FullProf, the general expression of In,Q can be writen as

In,Q =
{
L, A, P, C, F 2

}
n,Q

, (A.2)

where L contains the Lorentz, polarization and mutiplicity factors, F is structure factor, A is the absorption

correction, P is the preferred orientation function and C includes the spherical corrections [102]. In the

Rietveld refinement process, I calc is being optimised by minimizing the chi-square parameter

χ2 =
∑
i

wi

{
Iobs, i − Icalc, i(α)

}2

, (A.3)

where wi is the weigting factor, α=
{
α1,α2,α3...

}
stands for the parameter space to be determined. From

mathematical point of view,

{
∂χ2

∂α

}
αopt

= 0 once the optimum parameters are (αopt) found [106].

By providing some initial guessing paramters αini, a Taylor expansion can be applied to I calc(α) around
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αini to start the iterative process. Until a convergence criterion is satisfied, the shifts of the parameters δα

by solving the normal equations in the mth cycle will be added to the starting parameters of the (m + 1)th

cycle: (αini)m+1 = (αini)m + δα,m. After finishing the simulation, an individual set of parameters are used

to judge the quality of this refinement. They include the profile factor Rp, the weighted profile factor Rwp

which can be expressed by [106]

Rp = 100 ×
∑
i |Iobs, i − Icalc, i|∑

i Iobs, i
, (A.4)

Rwp = 100 ×
{∑

i wi|Iobs, i − Icalc, i|2

wi
∑
i I

2
obs, i

}1/2

. (A.5)

In practice, a Rieveld refinement can easily get stuck due to various reasons such as a bad choice of starting

parameters, correlation between paramters and the large number of paramters to be fitted. As a result, some

expertise are required. For example, background, zero shift of the detector and lattice parameters can be

obtained first by an alternative Lebail profile matching approach [148]. Moreover, it is sensible to refine the

parameters step-by-step in the early stage. Although the detailed refinement procedure is sample specific, a

recommended sequence is summarized below [102]:

1, Scale factor.

2, The sloppy part of the background.

3, Atomic positions and Debye-Wallter factors.

4, Peak shape function and asymmetry parameters.

5, Microstructural parameters if required.

...
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