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Abstract 

 

In this project, we developed a real-time electrochemical mediator assay to enable the assessment 

of cell numbers and cell viability. It allows us to monitor metabolism calculable down to a single 

cell in a low cost easy to use rapid assay, as yet not possible with current technology. The 

developed assay is based on the determination of oxygen. This was made possible via the use of 

electrochemical mediator ferrocene carboxylic acid (FcA). The FcA showed distinctive catalytic 

properties in interacting with reactive oxygen species generated from oxygen when compared to 

ferrocene methanol (FcMeOH). A deeper insight into the chemistry controlling this behaviour is 

provided. The behaviour is then taken advantage of to develop a cellular aerobic respiration 

assay. We describe the properties of the FcA system to detect, in real-time, the oxygen 

consumption of Escherichia coli DH5α (E. coli). We demonstrated that the FcA-based oxygen 

assay is highly sensitive, and using a population of cells, oxygen consumption rates could be 

calculated down to a single cell level. More importantly, the results can be accomplished in 

minutes, considerably outperforming current commercially available biooxygen demand assays. 

The developed assay is expected to have a significant impact in diverse fields and industries, 

ranging from environmental toxicology through to pharmaceutical and agrochemical industries. 

A significant start has been made into optimisation of the system into a commercially marketable 

product, including much work on mediator immobilisation and electrode synthesis. 

 

 



Chapter 1 

Introduction to “The Development of an Oxygen Electrochemical Sensor” reviewing the 

importance of metabolic rate, cell viability, and biochemical oxygen demand (BOD) assays and 

the systems currently in use and under development. This chapter critically assesses current 

system applications and reviews newly developing systems. The advantages and disadvantages 

of these systems are explored and an explanation is given for how this project aims to exploit and 

improve on these points for the design and development of a brand new assay. 

 

Chapter 2 

The electrochemical and biological theory and techniques used within this project, for the 

development of a new electrochemical biosensor, are covered in this chapter. 

 

Chapter 3 

This chapter describes in detail the investigation and assessment in the use of ferricyanide and 

ferrocene carboxylic acid (FcA) as electrochemical mediators for the direct measurement of 

metabolic rate. This is measured via direct electron production, as a result of cellular metabolism 

using E. coli as a model of study. 

 

Chapter 4 

The detailed experimental characterisation and investigation of the electro-catalytic properties of 

ferrocene derivatives, FcA, ferrocene dicarboxylic acid (FcDA), and ferrocene methanol 



(FcMeOH) towards oxygen are presented in this chapter. This includes critical analysis of their 

use as mediator in an electrochemical oxygen sensor, and the discovery of the application of the 

second oxygen peak, and the vital role it plays in the BOD assay using FcA as mediator are 

covered. In addition, the application and investigation of an FcA-based BOD sensor for cell 

number detection, cell viability and cytotoxicity, and oxygen production are detailed providing 

proof of concept in the application of this FcA-based BOD sensor. This work to the application 

of a patent (patent application number WO2015036612 A1) and publication of a paper (‘Real-

time electrocatalytic sensing of cellular respiration’). 

 

Chapter 5 

This chapter details a series of studies and application of mediator immobilisation techniques for 

the optimisation of the FcA-based BOD sensor. The attempted immobolisation techniques, as 

described in this chapter, includes screen printing, drop coating, and chemical immobilisation by 

self assembled monolayer (SAM) and diazonium electrode surface modification.  

 

Chapter 6 

This chapter concludes the current project and critically reviews the future direction of the 

current project in the research and development of a commercially viable product. 
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Chapter 1 

Introduction 

 

1.0 Introduction 

The applications of electrochemical sensors are diverse and are found in many analytical 

instruments used in environmental [1] and food industries [2], pharmaceutical and clinical 

laboratories [3, 4], as well as, point-of-care (bedside testing) devices [5-7]. In recent years, 

there has been marked interest in the use of electrochemical sensors in the field of biological 

(electrochemical biosensors) analysis because of their high sensitivity, selectivity and 

efficacy [8-10]. Currently Biochemical Oxygen Demand (BOD) assay techniques are limited 

and it is envisaged that an electrochemical approach in the development of BOD assays could 

address these limitations. The current methods used to determine BOD are time consuming, 

taking up to 5 days, and the results can vary by up to 20% depending on the laboratory [11]. 

BOD assays are predominantly used in monitoring water quality [11], however with the 

development of an electrochemical biosensor with the qualities of high sensitivity, selectivity 

and efficacy it could have much broader scope for use within a BOD assay. Besides the 

obvious benefits to the water treatment industry there could be opportunities in areas such as 

the food industry, environmental industry and in medical research. 

 

1.1 Metabolism: Aerobic respiration  

Biochemical Oxygen Demand assays could facilitate biological studies in many ways, for 

example, in cell cycle and cell viability studies. Life forms metabolise energy sources, e.g. 
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sugars, protein and fat, into useable energy, stored as adenosine triphosphate (ATP) by 

respiration [12]. In the majority of cases, organisms convert the different kinds of food 

sources from their complex forms in to glucose and consume oxygen in the metabolism 

process to producing ATP. Therefore, further discussion herein will be focus on using 

respiration of glucose and the consequent consumption of oxygen as an example. Aerobic 

respiration is a metabolic pathway that relies on oxygen as a terminal electron acceptor. 

Aerobic respiration generates a maximum theoretical yield of 38 ATP from every single 

glucose molecule, although figures range between 30 and 38 ATP due to complexities and 

variations in the electron transport chain and ATP synthase [13] compared to 2 ATP in 

anaerobic pathway [14].  Though many organisms can use anaerobic respiration for a short 

period of time, aerobic respiration tends to be the favoured pathway. Some bacteria such as 

Escherichia coli (E.coli), are classified facultative anaerobes, and will switch between 

aerobic, anaerobic or fermentative metabolism dependent on environmental conditions even 

in the presence of oxygen. 

 

The aerobic respiration pathway is essentially the same between different types of organisms 

and can be broken down and simplified into the following steps (figure 1.1.1) [14]. 1) 

Glycolysis, which is the conversion of glucose into pyruvate. 2) The conversion of pyruvate 

into acetyl CoA. 3) The citric acid cycle, also known as tricarboxylic acid cycle (TCA) or 

Krebs cycle in which the electron donors NADH and FADH2 are generated. 4) Electron are 

transferred from the aforementioned electron donors through the electron transport chain and 

results in the reduction of  molecular oxygen and in the process forms metabolic water 

(equation 1.1) [15]. In eukaryotic cells, step 1 to 3 is take place inside the mitochondria and 

the electron transport chain is located on the inner mitochondria membrane. Whereas 
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prokaryotic cells, step 1 to 3 is taken place inside the cytoplasm and the electron transport 

chain is located on the cell membrane. 

 

Figure 1.1.1 A simplified diagram of the aerobic respiration pathway[14]. 

2H
+
 + 2e 

-
 + ½O2 → H2O     (Equation 1.1) 

 

In summary, electron production and oxygen consumptions always occur in the aerobic 

metabolism pathway. The measurement of either/both electron production or oxygen 

consumption could therefore be utilised for indirectly measuring the aerobic metabolic rate. 

  

Glucose

TCA

NADH FADH2

e-

Electron transport chain26 - 34 ATP

H+

O2

e-

H2O

Pyruvate

Glycolysis

2 ATP

2 ATP

Acetyl CoA
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1.2 Direct and indirect measurement metabolism  

 1.2.1 Direct measurement of metabolism 

Assays that are based upon direct measurement of metabolism are widely used in cell biology 

research mainly as viability assays. They are often used as a tool in pharmaceutical and 

medical industries, especially for drug testing and research, for example to measure cell 

cytotoxicity for cancer drug testing [16], and cytotoxicity of plastic additives, 2,2-bis(4-

hydroxyphenyl)propane [17]. Drugs/chemicals that are toxic to the cell will kill the cell, thus 

disrupting cellular metabolism and causing the cell to die. Tetrazolium salt (MTT) assay is 

the most commonly used viability assay in biomedical research [18]. It directly measures 

metabolism by incubation of the cell samples, with a specific metabolite which can be 

selectively measured by colourimetric techniques. The MTT assay is carried out by 

incubating the yellow tetrazolium dye, 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide, with cell samples for 1 to 4 hours allowing time for the cells to take up the dye. As 

the dye enters the living cells, through metabolism the yellow tetrazolium dye is reduced to 

form an insoluble formazan salt (purple) by NADH-dependent oxidoreducatase enzymes [19, 

20] (figure 1.2.1.1). This formazan salt acts as a marker for viable cells and is measured by 

absorbance of light at 560 nm wavelength. A higher measurement of absorbance at this 

wavelength is a sign of a high percentage of cell viability calculated comparatively to zero 

cell, and untreated cell controls (negative and positive controls). As dead cells do not 

metabolise the yellow tetrazolium dye to form the formazan salt, a low percentage viability 

will show low absorbance.  
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Figure 1.2.1.1 MTT being reduced by NADH to form formazan. 

 

The biggest disadvantage of the MTT assay is it is an end point assay and it only measures 

the viability as a percentage relative to the positive and negative controls. Therefore in order 

to perform a cytotoxicity concentration or time point cytotoxicity experiment, a large amount 

of cell culture is required. This is a time consuming, labour intensive and costly process 

relative to a non-end point assay. In addition, the multi-step protocol of washing and cell 

fixation introduces higher risk of error due to sample loss. A real time, non-end point 

metabolic rate related viability assay would greatly shorten the time, and labour 

intensiveness, of viability determination. Continual recording of a single sample under 

different experimental conditions would also reduce greatly the error due to sample 

inconsistencies. This would greatly benefit the pharmaceutical and medical research 

industries in advancing drug research, by providing more accurate data with respect to drug 

toxicity. 

 

1.2.2 Indirect measurement of metabolism – biochemical oxygen demand 

The alternative means of measuring metabolic rate is by measuring the rate of oxygen 

consumption, as oxygen is the terminal electron acceptor as seen in the electron transport 

NADH NAD+

Reduction

MTT

Yellow

Formazan

Purple
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chain section 1.1. Oxygen consumption is proportionally linked to cell numbers, viability, 

growth rate and the phase of cell cycle that an individual cell is in [21, 22]. Biochemical 

Oxygen Demand (BOD) could potentially be used in many industries. Currently, BOD is 

mainly used in wastewater treatment and food industry [23]. Domestic waste water and waste 

water from the food industry or the paper industry contain different levels of waste 

contaminants. These need to be monitored and cleaned to avoid environmental damage. In 

waste water treatment, microorganisms are used as part of the treatment to remove organic 

contaminants. Microorganisms metabolises organic contaminants as an energy source and in 

the process, oxygen is consumed. The level of oxygen consumption, gives a measurement of 

the metabolism of the organic contaminants in waste water by microorganisms, and as such is 

an indirect measurement of the level of organic contaminants in the waste water. This is 

normally conducted using a 5 days BOD (BOD5) assay, however longer assay time has been 

reported, such as the 7 days BOD (BOD7) used in Finland [23]. This is carefully monitored to 

ensure effective waste water treatment. In addition, after organic contaminants are removed, 

the microorganisms in the treated waste water must also be removed before the treated waste 

water could be released back into the environment. If not removed the microorganisms may 

also have detrimental affects to the ecosystems at release sites. Therefore careful monitoring 

of both the treatment process and the microorganism removal process is vital to prevent 

release of contaminants and microorganisms into the environment [24].  

 

In environmental studies, it is important to understand the life time of chemicals used in 

agriculture and their impact on the environment, preventing their build up to toxic levels [25]. 

Chemicals such as pesticides and insecticides are harmful, not only to the target pests and 

insects, but also to humans, other mammals and fish. There has been much focused research 

on bioremediation techniques to detoxify contaminated environments using aerobic 
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microorganisms. These aerobic microorganisms utilise pesticides and insecticides as a source 

of carbon, nitrogen and phosphates, breaking down the complex molecules to a usable source 

of energy which is fed back into the TCA cycle (figure 1.2.2.1) [26]. BOD could be used as a 

tool to monitor the rate of pesticide and insecticide breakdown by bacteria [25].  

 

 

Figure 1.2.2.1 A simplified diagram of the aerobic metabolism of 

pesticides/insecticides/organophosphates by microorganisms [26]. 

 

 1.2.3 Current biochemical oxygen demand assay in the market 

  1.2.3.1 Photometric methodology 

The international standard water quality determination is also known as the closed bottle test 

which is based on the Winkler’s method [27]. Samples are placed into a closed bottle and 

Pesticide/insecticide/organophosphates

TCA cycle intermediates

TCA

NADH FADH2

e-

Electron transport chain26 - 34 ATP

H+

O2

e-

H2O
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stored in the dark at 20 °C for 5 days. Dissolved oxygen level is measured and compared 

between the control sample (without incubation) and the test sample (after incubation) with 

the Winkler’s method. The Winkler’s method is a 5 stages chemical reaction (figure 

1.2.3.1.1) procedure that first fixates the dissolved oxygen in the solution which culminates in 

production of iodine in the solution with a yellow brown colour (often a starch indicator is 

used to enhance the colour change). The iodine is then titrated with sodium thiosulfate to 

produce sodium iodide which is a clear solution. Finally the amount of sodium thiosulfate 

required to titrate the sodium iodide is used to calculate the oxygen dissolved in the sample 

solution at the point of oxygen fixation.  

 

 

Figure 1.2.3.1.1 The 5 stage chemical reactions in the Winkler methodology. 

 

However, because of the limited nutrient and oxygen supply that can be sealed in the bottle 

for the 5 to 7 days incubation, the range of measurement is narrow, 0 to 6 mg/L [27]. In 

addition, due to this low sensitivity, the assay takes 5 days and sometimes longer [23, 28]. 

The long incubation period required means it is impossible to get immediate result limiting 

the application of the assay. Also because of the 5 day minimum incubation period the assay 

can not match the high throughput demands of hospital or food industry uses. The assay is 

also reported to be very inaccurate with a 20% variability [27]. It also requires protective 

MnSO4 + 2KOH Mn(OH)2 + K2SO4

4Mn(OH)2 + O2 + 2H2O  4Mn(OH)3

2Mn(OH)3 + 3H2SO4Mn2(SO4)3 + 6H2O 

Mn2(SO4)3 + 2KI  2MnSO4 + K2SO4 + I2

2Na2S2O3 + I2 Na2S4O6 + 2NaI 

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5
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clothing for sample preparations and laboratory equipment to perform the final reading, 

seriously restricting the portability of the assay. Moreover, this is an end point assay drawing 

comparison between the oxygen level at day 5 and a sample at time point 0. This does not 

meet the technological requirements for pharmaceutical and medical research industries for a 

real time BOD assay, or the field base work necessary in environmental studies. There are 

some automated machines that have been designed to help minimising the error introduced by 

the multiple step assays, however this exacerbates the issues in lack of portability. Attempts 

have been made to improve the accuracy on this BOD assay by adaptation with manometric 

method [28], photometric method using alternative dye kits (such as Hach Lange LCK554 

and 555) and measurements using spectrophotometry [27], and electrochemical probe [29-31] 

(Clark’s electrode) instead of using iodine.  

 

1.2.3.2 Manometric methods 

The manometric BOD method was developed in 1948 by Caldwell and Langelier [27]. The 

measurement is conducted by placing the microorganisms with nutrient broth in a sealed 

bottle connected to a manometer. As the microorganisms metabolise the nutrients, oxygen is 

consumed and carbon dioxide is produced. The carbon dioxide produced during metabolism is 

absorbed by a sodium hydroxide pellet know as an absorber within the bottle. The decreased 

in pressure is measured by the manometer as the oxygen is consumed [32] (figure 1.2.3.2.1). 

The advantage of this assay compare to the standard BOD5 assay, is the result can be obtained 

throughout the test [32]. It also allows detection using samples with higher cell density as the 

amount of oxygen that is trapped in the bottle is larger [27]. However, the standard test 

duration like the Winkler method is 5 days, thus too slow for high throughput industrial uses. 

In addition, the large amount of oxygen that is trapped in the bottle also make the sensitivity 

of the assay very low [27]. 
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Figure 1.2.3.2.1 A diagram of a manometric methods bottle [28]. 

 

1.2.3.3 Optical sensor 

The Optical dissolved oxygen sensor based BOD assay is based on the use of fluorescence 

quenching [33]. A fluorescent dye is usually trapped in a gas-permeable membrane at the tip 

of the sensor. Ruthenium complexes are the most commonly used as the intensity of the 

fluorescence is at a one to one ratio with O2 molecules present [34, 35]. Light at a specific 

excitation wavelength is applied to the dye causing it to fluoresce, however the resultant 

fluorescence is inversely proportional to the concentration of oxygen present. The intensity or 

the lifetime of the fluorescence is then detected by a photodiode allowing calculation of 

oxygen concentration present in the sample [34, 35]. These probes require less maintenance 

than an electrochemical electrode, and unlike electrochemical systems the Optical sensor does 

not consume any oxygen [35]. However, there are many potential influence factors, e.g. 

temperature variations, pH, metal ions and oxidation processes [36]. Long term aging 

(instability) of the trapped luminescent chemical would also cause variation in the readings 

and require re-calibration [37]. Membrane fouling is also a big issue for this type of 

Pressure sensor

Sodium hydroxide pellet

Sample
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membrane reliant sensor, as microorganisms, e.g. bacteria, like to grow on the membrane 

which is very difficult to clean. This would affect the membrane’s performance and lifetime 

[38]. 

 

 

 

1.2.3.3.1 Simplified graphical representation of the optical sensor. 

 

 

1.2.3.4 Clark’s electrode 

The Clark type electrode allows for direct measurement of oxygen concentration usually via 

the use of a silver/silver chloride anode and a platinum or gold cathode. A reaction chamber 

holds the sample for measurement and is separated from the electrodes by a polyethylene or 

Teflon membrane, allowing the diffusion of only oxygen from the reaction solution into a 

saturated KCl solution in which the electrodes are bathed [29-31] (figure 1.2.3.4.1). The 

system is calibrated by measurement of the current generated using a 100% saturated O2 

buffer and a 0% saturated O2 buffer. For measurement of oxygen consumption a sample can 

be loaded into the reaction chamber and the initial current measured giving a percentage O2 

saturation of the solution. The current generated can be measured over time thus allowing the 

Optical 
sensor

Lumiphore
Membrane

Excitation light Emitted light
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measurement of oxygen consumption. The measurement range is normally between 0 to 20 

mg/l with an error of ± 0.03 mg/l, an error of up to 0.15% [39]. 

 

 

Figure 1.2.3.4.1 Simplified graphical representation of the Clark’s electrode. 

 

The Clark electrode while being a useful tool in field and laboratory testing and allowing 

continual measurement of O2 does have some serious limitations. The system is dependent on 

O2 diffusion across a semi-permeable membrane which requires maintenance and limits the 

use of the electrode in certain conditions, for example where oil or algae may be present and 

the sample may block the membrane. Also calibration can be complicated as it requires the 

temperature to remain constant and for 100% and 0% O2 dissolved solutions to be prepared 

and set up to give the percentage range of the electrode. These calibration solutions can be 

confirmed by the use of spectrophotometry. However, this is a time consuming process in the 

laboratory and not be very adaptable to the field environment [40]. 

KCl
Membrane

Ag

Pt
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1.2.3.5 Summary. 

Due to the current limitation of BOD technology, BOD assays are not currently applied in 

many sectors. Further development of BOD technology is required in order for the 

technology to be a useful analytical tool in other sectors. The requirements for development 

of new BOD assays are the combination of the following points; (1) rapid – measurements 

that could be made in seconds to provide real time/close to real time readings to meet 

industrial high throughput demands, (2) accurate – reliable and reproducible results to cut 

down labour intensiveness and time, (3) sensitive – requiring small sample sizes, especially 

in biological and environmental work, where sample size may be an issue, (4) simple – both 

in terms of practical use and to increase accuracy by limiting interference with the sample, 

and (5) portable – ideal for field based studies, such as in environmental studies or hospitals. 

The current BOD methodologies in the market and the focus of current BOD research have 

been based around these 5 requirements. However, none of the BOD methodologies currently 

in the market covers all these essential criteria. 

 

1.3 Electrochemical sensor 

Research into electrochemical sensors, especially electrochemical biosensors, is a field that 

has and is continuously expanding. Full or partial electrochemical sensor and biosensors are 

wildly used in many sectors, including food e.g. sugar [9], environmental e.g. pH, oxygen [8] 

and health care sectors e.g. glucose [41] and cholesterol [42]. In recent years, many 

“reagentless systems” have been undergoing development [43]. In these “reagentless 

systems”, reactions take place at the electrode surface by immobilising an analyte and a 

selective interface in close proximity or integrated with a transducer as working electrode 

[44]. This approach can be use directly, no interface, or indirectly, with a selective interface 

which is called the mediator. The “reagentless systems” do not require the end user to add in 
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any reagents before using the system, which allows them to be cost effective, rapid, reliable 

and simple to operate [8-10]. Due to these factors popular demand is driving research for ever 

more, new and electrochemical based sensors boosting their continual development. Research 

is focused on improving selectivity giving even more accurate results, pushing the boundary 

of detection limits to improve sensitivity, thus reducing sample size requirements, and 

response time for reduced assay interference. 

 

1.3.1 Use of mediator in electrochemical biosensors 

An electrochemical mediator is defined as electroactive species which is added to a 

reduction-oxidation (redox) system and acts as an “electron shuttle” to provide redox 

coupling between the electrode and analyte [45] (figure 1.3.1.1). There are several 

characteristics for an “ideal” electrochemical mediator: (1) to have a reversible or 

quasireversible behaviour; (2) a low (close to 0 V) redox potential to avoid interference from 

other electrochemically active species in samples; (3) fast electron transfer; (4) solubility in 

the electrochemical media; (5) stable in both oxidised and reduced forms to sustain the 

adopted experimental condition; and (6) should have no interactions with the analyte in a 

manner which would alter the redox potential [46].  
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Figure 1.3.1.1 Electrochemical mediator acting as an “electron shuttle” between electrode 

and analyte. 

 

Electrochemical mediators are particularly important in electrochemical biosensors because 

they allow the sensor to function at a lower working redox potential. By reducing the working 

potential range, it is possible to avoid interference from common metabolites in biological 

samples, such as uric acid, ascorbic acid, and glutathione. These molecules can also undergo 

redox and mask the electrochemical signal [44]. More importantly, with the fast redox 

kinetic, the use of electrochemical mediator also helps facilitate the electron transfer process 

[45]. Structurally similar mediators, that differ by side chain functional groups only, will have 

similar formal potential. However, depending on if the side chain functional group is electron 

donating (such as methyl groups) or electron withdrawing (such as sulfate group), the formal 

potential will shift either more negatively or positively, respectively [45]. Some commonly 

used mediators and their redox potential versus saturated calomel reference electrode (SCE) 

are listed below (table 1.3.1.2) [44]. In addition, working at a potential closer to 0 V reduces 

the risk of disturbing the cell membrane potential when analysing biological samples [47].  
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Table 1.3.1.2 List of commonly used mediators with their redox potential. 

Mediator Redox potential (versus SCE) mV 

1,1-dimethyl ferrocene 100 

Ferrocene 165 

[Fe(CN)6]
4−

 180 

N-ethyl phenazene −172 

 

 1.3.2 Electrochemical mechanism 

The usual mediator base electrochemical sensors mechanisms follow a mixture of 

electrochemical (E) and chemical (C) steps [48-50]. One of the most common combinations is 

the E-C-E mechanism [51, 52]. For example, the electrochemical sensor for the determination 

of Sudan I (1-(phenylazo)-2-naphthol) uses multiwall carbon nanotube-modified glassy 

carbon electrode (MWCNT/GCE), and functions via an E-C-E mechanism [53]. This E-C-E 

mechanism is a 4 electron 4 proton process where Sudan I is electrochemically reduced to 

hydrazol compound (E1), a 2 electron 2 proton reaction. This develops into a very rapid 

chemical reaction (C) leading to the production of an electroactive substance (α-amino 

naphthol quinoneimine). This electroactive substance then undergoes a second 2 electron 2 

proton electrochemical reaction (E2). This E-C-E reaction is summarised in figure 1.3.2.1. 
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Figure 1.3.2.1 Summary of the E-C-E electrochemical reaction mechanism of Sudan 1 dye. 

 

Other combinations of electrochemical reaction mechanism also occur, such as that of first 

generation glucose biosensor [54]. In this first generation glucose biosensors, glucose oxidase 

(FAD) is reduced by glucose in a chemical process (C1) to form glucose oxidase (FADH2) and 

gluconolactone. Glucose oxidase (FADH2) in a second chemical reaction (C2) reduces 

Oxygen (O2) to form Glucose oxidase (FAD) and hydrogen peroxide (H2O2). Finally, using a 

platinum electrode with an applied potential of +0.6V (vs Ag/AgCl) an electrochemically (E1) 

step oxidise the hydrogen peroxide to form O2, hydrogen gas (H2) and 2e
-
, The glucose 

biosensor electrochemical reaction mechanism is a chemical-chemical-electrochemical (C-C-

E) mechanism. Figure 1.3.2.2 summarises the C-C-E mechanism of first generation glucose 

biosensor. 

 

 

 

2e- + 2H+ OH-

H2O

+2e- + 2H+
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Figure 1.3.2.2 Schematic representation of the C-C-E electrochemical reaction mechanism of 

first generation glucose biosensor 

 

The electrochemical reaction mechanism of an electrochemical sensor differs for each system, 

and understanding the electrochemical reaction mechanism allow further improvement of the 

system to be achieved. Taking the above example of the first generation glucose biosensors, 

the limiting factor of the system is the systems dependence on oxygen. Oxygen tension is 1 

order of magnitude lower than physiological glucose level. Therefore, to improve the 

accuracy of glucose biosensors, the second generation glucose biosensors were developed, 

exploiting further the understanding of the C-C-E mechanism by removal of the oxygen 

dependent step [54]. The first mediator based glucose biosensor was produced, using a 

mediator to act as the electron acceptor in place of oxygen. Figure 1.3.2.3 summarises the C-

C-E mechanism of second generation glucose biosensor. 

 

 

Figure 1.3.2.3 Schematic representation of the C-C-E electrochemical reaction mechanism of 

second generation glucose biosensor 
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However, in second generation glucose biosensor, oxygen still remains an influence factor 

which could compete with the mediator leading to low accuracy, this is especially apparent 

when glucose level is low. To overcome this issue, current trend in glucose biosensor 

development has been focused on changing the electrochemical reaction mechanism by 

removing the oxygen influencing step (and the mediator step) entirely, heading towards a 

reagentless glucose biosensor. Currently no third generation glucose biosensors have been 

developed [54], but research has been focused on an electrochemical reaction mechanism 

which is E-C based (figure 1.3.2.4). Several different concepts have been tested where the 

glucose oxidase enzyme is directly immobilised onto the electrode to act as direct transfer of 

electrons, missing a chemical step where the electrons are transferred either to oxygen or 

mediator. This third generation glucose biosensor could potentially be highly selective to 

glucose without interference from oxygen. 

 

 

 

 

Figure 1.3.2.4 Schematic representation of the C-E electrochemical reaction mechanism of 

the trend in glucose biosensor development 
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Therefore, to develop a BOD electrochemical biosensor, it is important to understand the 

electrochemical reaction mechanism taking place so that improvements could be made to 

achieve a BOD sensor that is sensitive, selective and rapid. 

 

1.3.3 Developing electrochemical based electrochemical oxygen sensor 

There have been many attempts in development of electrochemical BOD sensors, and most of 

these sensors are focused on developing a system for high throughput analysis. There is the 

microbial fuel cell system, which uses a two compartment system separated by a proton 

exchange membrane (figure 1.3.3.1) [55]. The anode compartment (negative electrode), the 

anaerobic compartment, contains anaerobic microorganisms which degrade organic matter 

and generate electrons and protons. The protons will pass through the proton exchange 

membrane from the anode to the cathode compartment (positive electrode aerobic 

compartment), whereas electrons generated will pass from the anode to the cathode through 

an external electrical circuit. At the cathode end, oxygen is electrochemically reduced to 

water. The electrons travelling through the external circuit are measured as current, and this 

measurement is proportional to the biochemical oxygen demand of the system. This newly 

improved method greatly cuts down the analysis time from the standard 5 day BOD5 assay, 

and can be conducted is as little as 30 mins. More importantly, the data obtained is in good 

correlation (r
2
 = 0.999) with data obtained from the standard BOD5 method [56]. 
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Figure 1.3.3.1 Schematic of the microbial fuel cell BOD sensor [55]. 

 

In addition to the microbial fuel cell system, electrochemical BOD systems using redox 

mediators were also developed. A ferricyanide mediated BOD assay was developed in the last 

decade [57-60]. The principal on which the assay functions, is to incubate samples in a 

deoxygenated environment with ferricyanide. In such an environment, instead of oxygen, 

cells are forced to use ferricyanide (in the oxidised form) as substitute for the terminal 

electron acceptor in the aerobic metabolic pathway into ferrocyanide (reduced form) [61]. 

Samples are then incubated for a fixed period of time, depending on the assay parameters and 

the cell sample type, sometimes up to 6 hours [62]. Following the incubation period the 

sample is analysed by either chronoamperometry [61, 62] or linear sweap voltammetry for 

determination of the concentration of ferrocyanide (the form having undergone reduction) 
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which is a direct indication of BOD as it indicates the concentration of the oxygen the cells 

would have consumed [62]. 

 

There are currently still some limitations with this assay system. Measurements cannot be 

taken as whole samples, only the supernatant is used for actual detection, therefore the assay 

allows an end point measurement only, with the same limitations as discussed previously for 

example with the BOD5 assay. Also, it is really only suitable to the laboratory environment 

due to equipment requirements. The assay requires incubating cells in relatively high 

concentration, for example 250 mM ferricyanide from Pasco’s study [61], and 55 mM 

ferricyanide from Morris’s study [63], for prolonged incubation periods between 1 and 6 

hours. Studies have shown low concentration of ferricyanide stimulates cell proliferation [64, 

65], however high concentration inhibit cell proliferation [64] the result of which may affect 

reliability of results. This effect on cell proliferation is just one example of how the assay 

procedure and chemicals could affect the physiological statues of microorganisms or 

mammalian cells. There are potentially more physiological effects, however currently more 

studies in to this are required. In addition, as incubation time and the required concentration of 

ferricyanide varies dependent on cell types and concentration, optimisation of the assay is 

required before performing the assay on each different sample type. 

 

1.3.4 Biological applications in electrochemical sensor development 

The current research in electrochemical sensors, in the biological setting, have been focused 

on improving the compatibility of the assay with whole cell analysis [66]. Studies have been 

mainly focused on bacterial (prokaryotic cells) models because the redox machinery is 

situated on the cell membrane which is easy to access. Whereas, for eukaryotic cells, where 

the major redox machinery, are situated on the mitochondria membrane inside the cell. 
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Approaches to form interfaces to improve cell-to-electrode attachment and electron transfer 

vary greatly between prokaryote and eukaryote cell types. Approaches used in prokaryote 

cell, cell-to-electrode interfaces include: (i) altering the anode surface charge by ammonium 

treatment to make the anode surface positively charged. This increases compatiblity with the 

overall negative charge of the cell surface membrane in microbial fuel cell systems [67]. The 

result being increased efficiency by an order of magnitude of electron transfer, between the 

bacteria and the anode, aided by bacterial attachment to the anode surface. (ii) Use of 

electrochemical mediators for electron shuttling in microbial fuel cells [68]. (iii) Use of 

electroactive linkers attached directly to specific redox enzymes from the cell surface 

membrane of the bacteria to the electrode [69]. Eukaryote cell-to-electrode interface is more 

challenging because the redox mechanism is within the cell, and not located on the cell 

surface membrane. Therefore, cell-to-electrode interface methodologies have been focused on 

using electroactive linkers, such as synthetic ion channels and carbon nanotubes, that are 

directly inserted into the cell membrane. There are several challenges to this method, the main 

challenge is to insert these synthetic electroactive linkers without killing the cell [70]. 

 

 

1.4 Conclusion 

There are many different types of approaches used for metabolic rate based assays currently 

available in the market place, and under development. The direct measurement of production 

of electrons based system, MTT, is mainly used in the biomedical research sector as viability 

assay [16, 18]. However, this is a time consuming and labour intensive process, which 

provides only ratiometric results relative to control samples which also have to be prepared. In 

addition, the assay requires a high number of replicates to produce reliable results due to the 

complicated manual protocol including sample washing for example. Each step in the 
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protocol has the potential to introduce errors into results. Due to these many replicates and the 

need for control samples each experiment requires many sample cultures adding to the labour 

intensiveness. Also due to it being an end point assay it is not possible to take multiple 

measurements from a single sample for example an hourly measurement of a drugs influence 

on a sample cell culture. For this type of experiment multiple samples would have to be 

produced for controls and replicates, plus all of these would need to be multiplied by the 

number of time points required to be tested. All of these factors result in this being a relatively 

time, labour, and cost inefficient process, and for this reason particularly in the medical sector 

there is high demand for a new system. 

 

A developing alternative system to MTT that also directly measurements production of 

electrons, is a solution based ferricyanide-mediated electrochemical assay [61]. This has not 

currently been applied to the medical and medical research sectors yet. This assay offers 

potentially far higher accuracy comparatively to the MTT system, as it allows for the actual 

measurement of electron production. By measuring electrons production directly it no longer 

relies on a ratiometric approach as used with MTT. The protocol of the ferricyanide-mediated 

assay has far less manual steps involved, which could reduces the potential for errors through 

laboratory techniques. However, the prolong incubation of live samples with high 

concentration of ferricyanide causes some negative effects. Ferricyanide is known to affect 

cell proliferation [64, 65] which has lowered the credibility of experiments. Plus the removal 

of oxygen and ensuring it is sealed of the live cell samples during incubation may create a 

technical challenge for example in the use of 96 well plates. In the use of cytotoxicity assay, 

as the incubation time is required, only mid, (hours), to long, (days) term effects of 

drugs/toxic can be measured. The prolong incubation with mediator also makes it an end point 

assay, with the same disadvantages as exhibited with the MTT assay. Therefore a large 
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amount of live samples is required if the ferricyanide-mediated electrochemical assay is 

employed as cytotoxicity assay in biomedical research. To solve this problem would need the 

development of a non-end point assay.  

 

Current in the market, there are some assays available based on the indirect measurement of 

metabolic rate, measuring BOD. Both the Clark type electrode system and the optical sensor 

offer a non-invasive, non-end point measurement of dissolved oxygen and have been used in 

medical research [71, 72]. The main advantage of these assays is that they can continuous run 

taking multiple readings, and record responses to stimuli over time as a result of changes to 

BOD. However, the reliance of the system on a semi-permeable membrane, limits detection 

rates to the rate of oxygen diffusion, and both systems are prone to membrane fouling. There 

is a delayed response to dissolved oxygen level in the sample due to the oxygen diffusion 

through the membrane. The systems cannot be used directly in samples containing cells 

unless they are adhesive cell lines, as they could clog the membrane, reducing or stopping 

oxygen diffusion through the membrane. The result of membrane fouling is a false reduction 

of dissolved oxygen concentration reading, or unknown change to diffusion rate. On top of 

everything the cost of the systems are also quite expensive, and involve frequency 

maintenance (change of membrane and cleaning) and calibrations. 

 

The food and sewage industries require waste water processing to avoid environmental 

contamination, and in general this is managed using the standard BOD5 assay. BOD5 as 

discussed, involves the sealing of a sample into an airtight container with a carbon dioxide 

eliminating element (usually a sodium hydroxide pellet), and the measurement of pressure 

change within the container due to cellular oxygen consumption, thus BOD. By elimination of 

the carbon dioxide gas released by cellular respiration and incubation in the dark the assay is 
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made very specific to oxygen consumption. Whilst sample sizing is none prohibitive of the 

use of BOD5 assay in this case there is a requirement for large sample volumes and long 

incubation periods due to low sensitivity. Long incubation periods however require the use of 

laboratory space as sample need to be incubated in the dark for between 5 and 7 days, thus the 

system has no potential for portability in the current state. Whilst specific to oxygen 

consumption, there are many steps for oxygen fixation and sample preparation for 

colorimetric measurements at the end of the incubation period, which introduces potential for 

error and reducing accuracy. Inaccuracy is also introduced due to the sample being sealed for 

a prolonged period which as oxygen is reduced due to consumption may affect cellular 

metabolic rate thus introducing errors to results. If not for the problems of membrane fouling 

the Clark type electrode and the optical sensor would be a viable option for waste water 

management, as it is easier to be developed into automated system. 

 

What is really needed for all industries currently using assays to measure cellular metabolism 

is to produce a system that effectively combines the advantages of each of the systems 

discussed. A cost effective, time efficient, rapid, simple and portable system would allow 

much improvement to current methodologies and open up potential new avenues for use 

where current system restrictions prohibit the use of assays. To achieve this research should 

focus on an electrochemical solution. Electrochemical sensors are capable of detection down 

to single electron exchanged reaction, instead of detecting in a ratiometric manor. The 

addition of a mediator would also facilitate the electron transfer in the system to increase 

sensitivity. It can also lower the working potential to minimise chances of interference by 

electroactive components in the sample, and disturbance of the membrane potential of the 

living cells in the sample. Immobilisation on to a working electrode would allow for a quicker 

sample preparation, more biocompatible, highly sensitive and cost effective system. 
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Immobilisation would also allow for a non-end point assay which as discussed is a major 

disadvantage for example of the MTT assay. Removal of the reliance of a membrane which 

has been shown to introduce disadvantages as seen in the Clark type electrode and the optical 

sensors systems would be greatly beneficial. 

 

1.5 PhD Aim 

The aim of this project is to develop an electrochemical system with the combined properties 

of fast, cost effective, practical and accurate, for the measurement of cellular metabolic rate. 

This will be accomplished either by direct measurement of the electron production or indirect 

measurement of the oxygen consumption. The initial focus of the project would be the 

identification of the ideal electrochemical mediator. System development would include proof 

of concept, mediator identification, practical application exploration, and finally system 

optimisation through mediator immobilisation. 
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Chapter 2 

Techniques 

2.1 Electrochemical techniques 

The basic principal of electrochemical analytics relevant to this project, involves the 

application of a known potential (E), and measurement of the resultant current. The current is 

influenced by electrochemical reactive species in a conductive medium completing a circuit.  

 

 2.1.1 Electroanalytical Techniques 

A typical electroanalytical setup consists of a three-electrode cell, and the applied voltage is 

controlled by a potentiostat, a simplified diagram can be seen in figure 2.1.1 [1]. A potential 

is applied at the working electrode to enable electrochemical reactions of interest to occur. 

The reference electrode monitors the potential delivered to the working electrode, which then 

feeds back this information to the potentiostat [2]. The potentiostat measures any difference 

(iR) in the potential that is delivered to the working electrode and makes adjustments to the 

output until the desired potential is fed to the working electrode, this mechanism is termed 

feedback [3]. The two common reference electrodes used for electroanalytical studies 

described in this thesis include saturated calomel (SCE) and silver-silver chloride (Ag/AgCl) 

electrodes [4]. 
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Figure 2.1.1 A simplified diagram of a 3 electrode potentiostat system. (O) is the operational 

amplifier, (V) is the electrometer, (I/E) is the current to voltage convertor and (C) is the data 

acquisition system [1]. 

 

In a SCE, there are 2 fritted compartments (figure 2.1.2). The inner fritted compartment 

contains mercury which is in contact with a pool or a paste of calomel (Hg2Cl2) and 

potassium chloride (KCl) mixture. Usually a platinum wire is embedded into the mercury to 

complete the external circuit. A fritted junction is located at the end of the inner compartment 

to allow contact of saturated KCl in the outer compartment to complete the circuit. The redox 

reaction of the electrode is show in equation 2.1[2]. 

Hg2Cl2 + e
-
 ↔ 2Hg + 2Cl

-
    (Equation 2.1) 
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This reaction has a potential of 0.241 V compared to a standard hydrogen electrode which is 

0 V. 

 

Figure 2.1.2 A diagram of a saturated calomel electrode. 

 

In a Ag/AgCl electrode, a silver rod is coated with silver chloride and soaked in saturated 

KCl solution (figure 2.1.3). The half cell redox reaction is shown in equation 2.2[2]. 

 

  AgCl(s) + e
-
 ↔ Ag(s) + Cl

-    
(Equation 2.2) 

 

The reaction has a known 0.222 V potential compared to a standard hydrogen electrode. 
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Figure 2.1.3 A diagram of a silver-silver chloride elecrode. 

 

2.1.2 Linear sweep voltammetry using microelectrode 

Linear sweep voltammetry (LSV) is conducted similarly to cyclic voltammetry (CV) (section 

2.1.3), with two major differences; (1) the potential is applied in one direction only, over time 

(figure 2.1.2.1) and (2) linear sweep voltammetry can be conducted using microelectrodes or 

macroelectrodes, the former was used in this project. Initially the potential is set at a level 

where the targeted electrochemical species cannot be oxidised or reduced (figure 2.1.2.2, 0 to 

0.2 V). A scan rate is then set where the potential is increased or decreased over time, 

measured in volts per second (Vs
-1

). As the sweep is performed it will reach a point where a 

faradaic current (figure 2.1.2.2, 0.2 to 0.5 V) is generated as a result of an electrochemical 

reduction or oxidation reaction of the targeted electrochemical species taking place at the 

electrode surface.  

 

Microelectrodes are defined as electrodes with critical dimensions in the 

micrometer/nanometer range (falling in the range of 0.1 to 50µm), and is comparable to or 
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smaller than the diffusion layer thickness [5]. A smaller diffusion layer thickness ensures a 

higher mass transport diffusion rate, see figure 2.1.2.3. The diffusion layer around the 

macroelectrode is planar and the microelectrode is hemispherical. As a result, there is an 

increase in concentration gradient around the microelectrode, and therefore the diffusion 

layer is confined around the microelectrode. Whereas, the concentration gradient around the 

macroelectrode is spread throughout the plane, leading to an extension of the diffusion layer 

to the surrounding bulk solution to achieve a similar concentration gradient needed for mass 

transport [5]. When a microelectrode is used for LSV, due to the increased diffusion gradient 

generated in the proximity of the electrode surface, mass transport rates are sufficient to keep 

up with the rate of the redox reaction taking place. This is an important property of 

microelectrodes used in linear sweep voltammetry, whereby removing the diffusion 

limitation from the electrochemical system, the peak current reaches a steady state [6]. This 

steady state voltammetry method is convenient for determining the amounts of oxidised and 

reduced forms of the electroactive species within the solution [7]. The difference between the 

anodic and cathodic steady state current plateau shows a proportional representation of the 

total amount of mediator in the system, by measuring the difference of each relative to 0 

current you can determine the proportion of the mediator that is in the oxidised and reduced 

form (figure 2.1.2.4). 

 

   or   

Figure 2.1.2.1 Typical representation of an linear sweep voltammetry excitation waveforms. 
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Figure 2.1.2.2 Typical linear sweep voltammetry data with a macroelectrode. 

 

 

 

 

 

Figure 2.1.2.3: The diffusion layer around the macroelectrode is planar and the 

microelectrode is hemispherical. The population of electroactive species affecting the 

microelectrode exceeds the macroelectrode. 
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Figure 2.1.2.4: A typical experimental response for linear sweep voltammetry showing 3 

different results. 

 

2.1.3 Cyclic Voltammetry using macroelectrode  

Cyclic Voltammetry (CV) consists of a cycling potential in a forward direction until reaching 

a switching potential, at which point, the potential is reversed. This is carried out at a set scan 

rate (section 2.1.2) and is summarised in figure 2.1.3.1 [8]. 
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or  

 

Figure 2.1.3.1: A typical representation of an excitation waveform 

 

The data is acquired and plotted as the resulting current versus the potential, as summarised 

in figure 2.1.3.2. The reaction is determined as reversible when the ∆Ep is close to or less 

than 0.059V/n at 25 °C [9], and any deviation greater than 0.059V/n would indicate a loss of 

reversibility in the reaction. This value is obtained from equation 2.1, where n is the number 

of electrons in the redox reaction [10]. Reversibility is also demonstrated when the anodic 

and cathodic currents are the same, see equation 2.2. In addition, a redox couple is reversible 

when the formal reduction potential (E
0
) lies midway between Epa and Epc (equation 2.3) 

[10]. At the formal reduction potential, the mediator should be half in oxidised form and half 

in reduced form on the working electrode surface. 
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Figure 2.1.3.2: A typical experimental response for cyclic voltammetry.  

 

∆Ep = Epa – Epc = 0.059V/n    (Equation 2.1) 

Ipa/ipc = 1       (Equation 2.2) 

  E
0
 = (Epa + Epc)/2      (Equation 2.3) 

 

There are two factors, faradic current and capacitance, which contribute to the observed 

current in a cyclic voltammagram. Peak current is proportional to the concentration of the 

analyte being studied. The faradic current is the current generated through a chemical redox 

reaction. The capacitance current is a result of the charging of the ‘double layer’ (figure 

2.1.3.3) in which the inner layer, known as the inner Helmholtz plane (IHP) runs parallel to 

the working electrode. The IHP is composed of a monolayer of orientated solvent molecules, 

and absorbed neutral and unsolvated ions. The outer layer, known as the outer Helmholtz 
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plane (OHP), is physically separated by the barrier formed by the IHP. The OHP is made up 

of solvated ions. The region beyond this ‘double layer’ is known as the ‘diffusion layer’, and 

the solvated ions in this region are arranged accordingly to the electrostatic interactions 

between them. Solvated ions that are further away from the electrode surface have greater 

entropy, forming the bulk solution, which is no longer affected by the electrode [11]. 

 

 

Figure 2.1.3.3: Model of double layer 

 

The peak currents for a reversible system is calculated using the Randles-Sevick equation, 

where the ip is the peak current (A), n is the number of electrons, A is the surface area of the 

electrode (cm
2
), D is the diffusion coefficient (cm

2
S

-1
), C

0
 is the concentration of the ions of 

interest in the bulk solution (mol cm
-3

) and v is the scan rate (Vs
-1

), see equation 2.4 [9]. 
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The peak current for an irreversible system could also be calculated using equation 2.5 [12], 

where α is the transfer coefficient and na is the number of electrons in the rate limiting step 

are introduced into equation 2.4. 

 

 ip=(2.69x10
5
)n(αna)

1/2
AD

1/2
C

0
v

1/2
     (equation 2.5) 

 

2.1.4 Amperometry in stirring solution 

Amperometry is a technique that applies a fixed potential that will generate an oxidation or 

reduction faradaic current from the electroactive compound of interest in a solution whilst 

stirring at a fixed rate (figure 2.1.4.1 i). By stirring, the rate of mass transport is increased 

sufficiently to keep up with the rate of electron transfer, and so a steady state current can be 

maintained (figure 2.1.4.1 ii). As the solution is stirring, there is a constant feed of fresh 

analyte to the electrodes therefore the limit of the current becomes the concentration of the 

analyte. As the concentration of analyte is increased the current generated is increased. In this 

project, amperometry was used as a technique to synthesise a reagent for another experiment 

rather than an analytical technique.  
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Figure 2.1.4.1 (i) A typical representation of an excitation waveform. (ii) A typical 

experimental response for amperometry. 

 

2.2 Screen printing 

The basic principle of screen printing for electrochemistry purposes is to push a conductive 

ink (for example carbon, graphite or silver) through a mesh that has been layered with a 

pattern of illustration[13-15]. Figure 2.2.1 (i) is a plan view diagrammatic example of screen 

printing although there are techniques which would flood the whole surface of the mesh with 

ink also. As the squeegee moves in the direction show it pushes the ink and the mesh into 

contact with the substrate surface where the exposed sections of the pattern allow for the ink 

to be forced through (figure 2.2.1(ii)). Where the ink is forced through the mesh the ink 

adheres to the substrate surface resulting in the printed pattern on the substrate (figure 

2.2.1(iii)). Conductive ink is often mixed with mediators and/or enzymes for printing the 

working electrodes depending on the function of the system [16, 17].  
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Figure 2.2.1 (i) An example of the plan view of the screen. (ii) The side view of the screen in 

(i). (iii) Graphic explanation of how the ink is pushed through the screen by the squeegee [13-

15]. 

 

2.3 Optical density 

A UV/visible spectrophotometer was used to determine cell culture density for this project by 

measuring the optical density (OD) of the samples. The concept of the spectrophotometer is 

Exposed mesh

Squeegee

Ink

Pattern

i

Frame
Squeegee Ink

Open area Screen

Nest

Substrate

ii

iii



48 
 

drawn in figure 2.3.1[18].  A light source, e.g. UV lamp shines light through the light 

dispersion device where the wavelengths of light are dispersed. The light is then passed 

through a slit which allows the device to control the wavelength of light that is transmitted to 

the sample cuvette. Light passes through the sample and is detected after transmission 

through the sample. The decrease in light density detected after transmission through the 

sample gives a reading of light absorption. When used for measuring cell density, the 

machine is zeroed by using a cuvette containing only the culture medium but no cells. As cell 

number increases in the sample cuvette the medium become cloudier, therefore allowing less 

light through and subsequently less light is detected after transmission through sample 

cuvette. The reading is often referred to as absorbance, however cells are mostly transparent, 

therefore it is more accurately described that the turbidity of the sample solution is measured. 

A 1 OD sample was taken and the actual cell number was counted using a hemocytometer. 

From the actual cell number calculation it can be determined the cell count in each sample 

according to the OD reading. 

 

 

Figure 2.3.1 A simplified diagrammatic explanation of how a UV/visible spectrophotometer 

works [18]. 
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2.4 Liquid Chromatography Electrospray Ionisation Mass Spectrometry 

Liquid Chromatography Electrospray Ionisation Mass Spectrometry (LC-ESI-MS) was 

conducted using an Alliance e2695 (Waters Limited) liquid chromatography (LC) instrument 

directly coupled to a Xevo-G2-XS-ToF (Waters Limited) mass spectrometer (MS). The LC 

instrument is used in the injection of samples that are not volatile enough for gas 

chromatography (GC) coupling [19]. In addition, the LC serves as a pump for delivering a 

solvent for the delivery of the injected sample for electrospray ionisation (ESI).  

 

ESI technique uses electrical energy to assist in the ionisation of the sample injected in the 

solvent [20]. The injected sample and delivered solvent is forced through a fine metal 

capillary that is at a high potential relative to the wall of the unit. The solution exiting the 

capillary tube tip is sprayed out, with the assistance of dry nitrogen gas used as a nebuliser 

gas, as extremely small charged droplets. The droplets are charged at the same polarity as the 

voltage applied to the capillary, in this experiment, a positive voltage is applied to the ESI 

capillary. With the aid of a secondary source of heated dry nitrogen gas (desolvation gas), the 

droplets of solvent exiting the capillary tube tip vaporises and becomes smaller in radius and 

the surface charge density increases. As the surface charged density of the droplet increases 

from solvent vaporisation, the charged droplet will reach a critical point where the sample 

ions at the droplet surface are ejected into a gas phase, which is then sampled by the sampling 

cone down a time-of-flight (ToF) analyser. The sample ions formed during ESI could exist in 

several forms. Sample ions could exist as the molecular charged ion [M]
+
, hydrogen adduct 

[M+H]
+
, solvent adducts [M+S]

+
, salt adducts [M+salt]

+
 and/or combination of adduct 

formation [M+S+salt]
+
 [21]. The events taking place by ESI technique is diagrammatically 

depicted in figure 2.4.1. 
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Figure 2.4.1 Ionisation of samples by electrospray ionisation. M
+
 are the sample ions ejected 

from the charged droplets. 

 

The charged ions enter the time-of-flight (ToF) mass analyser through the sampling cone. 

The ToF region of the mass spectrometer is under vacuum, as the ions enter the ToF, it enters 

through a series of ion optics. The ion optics are responsible for applying a fixed energy 

which accelerates the ions at the same energy down a flight tube in a straight line. The ions 

then travel through the flight tube and reach the detector in the order of increasing mass [22, 

23], see figure 2.4.2 for a diagrammatic representation of the events in a ToF analyser. The 

data is then recorded by a computer and displayed as mass (m) to charge (z) ratio (m/z). 
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Figure 2.4.2 Diagrammatic representation of events taking place inside a Time of Flight 

Analyser. 
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 Chapter 3 

The study of electrochemical biosystems for cellular 

sensing 

3.1 Introduction 

3.1.1 Justification of choice of mediators - Ferrocene carboxylic acid (FcA) and 

ferri/ferro-cyanide (FCN
3-

/ FCN
4-

) 

In biological systems, many biological compounds show irreversible redox behaviour 

characteristic of slow heterogenous electron transfer at the electrode surface [1]. To study 

these electrochemical behaviours, electrochemical mediators (ECM) are used to promote the 

electron transfer process, acting as an “electron shuttle” to provide redox coupling between 

the electrode and redox species of interest. An ideal ECM should meet several essential 

requirements to fulfil the role as an “electron shuttle”. Firstly, an ECM should be highly 

stable under the experimental conditions, is non-cytotoxic, does not interfere with cellular 

behaviour, and should play a ‘spectator role’ in the observation and reporting of cellular 

signalling. An ECM does not undergo changes during the electron transfer, since any changes 

would compromise repeatability and reliability of the system. The ECM should have 

reversible behaviour, defined as absolute self-regeneration of the system allowing 

reproducibility and reliability of the experiment, without alterations to the experimental 

environment. The ECM redox potential should be lower than the other common 

electrochemically active molecule in the biological medium, e.g. zinc, magnesium, that can 

interfere due to being electrochemically active in the same potential window. Finally, an 

ECM should have a lower redox potential than the electrochemically active components that 
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are being studied, to maximise specific sensitivity tuned to detect, report and present an 

absolute finding [2].  

 

Iron-based ECMs are of particular interest, this is because iron plays an essential role in 

cellular biology, especially in cellular survival [3, 4]. The role of iron in cellular biology 

includes promoting cell proliferation [5], formation of haemoglobin [6], regulating intra-

cellular reactive oxygen species (ROS) level [7], and more importantly iron in the heme 

group of cytochrome c, and iron-sulphur proteins play an important role in the transport of 

electrons through the electron transport chain [8]. In mammalian cells, a family of 

cytoplasmic membrane ferrireductase, such as duodenal cytochrome B (Dcytb) [9], stromal 

cell-derived receptor 2 (SCDR2) [10] and six transmembrane epithelial antigen of the 

prostate (STEAP) [11] are capable in reducing extra-cellular free iron. These ferrireductases 

helps regulating iron intake [3, 9] and have a downstream effect on intra-cellular ROS level 

[12, 13] through reducing extra-cellular Fe
3+

 to Fe
2+

. ROS plays an important role as a 

secondary cell signalling messenger [14], such as its contradicting role in the control of cell 

proliferation [14] and ROS-mitogen-activated protein kinase (MAPK) pathway induced 

apoptosis (programmed cell death) [15]. Therefore, from a cell biology perspective, it is vital 

information to profile and monitor intracellular ROS levels to decipher when ROS levels 

become signalling for cell proliferation or for programming cell death. In addition to profiling 

and monitoring of ROS through studying ferrireductase, it may be possible through 

developing surface bound ECM, to electrochemically control the activity of these 

ferrireductases and control cell proliferation or cell death. This could potentially be medically 

beneficial, such as cancer related studies [16], to control the death of cancer cells.  

 



56 
 

FcA and FCN
3-

/ FCN
4-

 [17, 18] are of particular interest due to their fast electron exchange, 

thus minimising competitive interference with oxygen, and also fulfil the requirements of an 

ideal ECM for biological studies. FcA was one of the earliest developed and characterised 

ECM for use in early glucose detection [19, 20]. It is non-cytotoxic at mM concentration [21] 

compared to other ferrocene derivatives and has the highest mediator performance index in 

bacterial studies [22]. Mediator performance index, ∆Imax/KM ratio, is defined as the 

enzyme-mediator interaction and determines the performance of the electron acceptor. In 

addition, the solubility of FcA in water plays a crucial role in its mediator performance index. 

FcA is slightly more soluble in water than ferrocene making it compatible for biological 

studies.  However, ferrocene dicarboxylic acid (FcDA) and ferroceneboracic acid (FBA) are 

highly water soluble, which would cause a significant decrease in the mediator concentration 

at the near-cell membrane space leading to poorer mediator performance. Moreover, FDA 

and FBA, acid groups are highly effective electron-acceptors and could possibly facilitate 

electron transfer  between the enzyme and itself [22]. Therefore, FcA, is a good candidate for 

this study because it fulfils all the requirements of an ideal ECM for biological studies. In 

addition, FcA has a carboxylic acid functional group which makes it ideal for performing 

surface chemistry, for example N,N'-Dicyclohexylcarbodiimide (DCC) coupling or 1-Ethyl-

3-(3-dimethylaminopropyl) carbodiimide (EDC) coupling, in order to synthesize a surface 

bound ECM system, e.g. Self Assembled Monolayers (SAM) [23]  (figure 3.1.1.1). 

  



57 
 

 

Figure 3.1.1.1Chemical structure of FcA 

 

Another well studied mediator,  FCN
3-

/ FCN
4-

 (figure 3.1.1.2) are highly water soluble iron-

based derivatives which has been studied for its electrochemical catalytic properties and used 

in biological assays [24, 25], especially for enabling glucose detection. This well developed 

glucose detection system had demonstrated that FCN is a good electron acceptor, therefore 

capable in accepting electrons from reduced glucose oxidase and report to the system [25]. 

More importantly, FCN
3-

/ FCN
4-

 could be used in these cellular studies at high concentrations 

(mM levels) and does not exhibit toxicity to cells. Therefore, FCN
3-

/ FCN
4-

 is a good 

candidate and compatible with biological studies. FCN
3-

 has also been developed into a 

ferricyanide mediated biological oxygen demand system (FM-BOD) [26, 27], where FCN 

was shown to be able to replace oxygen as the terminal electron acceptor during glucose 

metabolism [28-30].  FCN
3-

 is reduced to FCN
4-

 as a replacement of oxygen in the role of 

terminal electron acceptor during glucose metabolism in cells incubated in oxygen depleted 

environment for a prolonged period. The concentration of FCN
3-

 reduced to FCN
4-

 was then 

measured by linear sweep voltammetry [31] and chronoamperogram [27, 32] using 

microelectrodes. Moreover, this highly water-soluble feature of FCN
3-

/ FCN
4-

 makes it 

difficult to pass through the cell plasma membrane, and therefore, ideal for use as an 

extracellular ECM [33]. 
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Figure 3.1.1.2 Chemical structure of FCN
3-

/ FCN
4-

 

 

3.1.2 Biological model 

A biological model that could act as biocatalysts, that could produce extra-cellular electrons, 

was required to test out the theory and compare the mediator’s electro-catalytic properties. 

Aerobic bacteria, Escherichia coli (E. coli) DH5-α was used as a model for preliminary 

optimisation of the system. During aerobic metabolism, every molecule of glucose 

metabolised by the bacteria produces 24 electrons (figure 3.1.2) [34]. This rich source of 

electrons is ideal for testing the ability of live cells to chemically reduce FcA and FCN
3-

. In 

addition, E. coli reproduce at a much faster rate than mammalian cell lines, thus they provide 

a better system for refining the electrochemical method before testing in mammalian cell 

lines in future studies.  The metabolic machinery in bacteria is more accessible, as most of 

them are located on the cell membrane [35] therefore the ECM does not need to diffuse in 

and out of the cell to access the generated electron pool. Whereas in eukaryote models, most 

of the metabolic machinery is found within the cell (the mitochondria) making it difficult to 

access.  Moreover, studies on E. coli models are well defined, and serve to provide a 

backbone for the migration onto mammalian cell work.  
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Figure 3.1.2 Glucose is metabolised in E.coli via the glycolysis and tricarboxylic acid cycle 

(TCA) to produce 24 electrons [34]. 

 

3.1.3 Electron transfer from E.coli to ECM 

The role of a biological electrochemical mediator is to capture electrons released by the 

biological organism which is acting as a reduction catalyst. In summary the route to sensing 

external electron transfer is to start with an ECM that is in the reduced form which is then 

electrochemically oxidised to mediator (Ox ).  The oxidised mediator diffuses to the cell and 

interacts with its metabolic machinery where it is reduced (mediator (Red)), and then diffuses 

to the electrode where it is subsequently oxidised again (figure 3.1.3.1). The mediator was 

first electrochemically oxidised, then chemically reduced by the catalyst in this case E.coli, 

and finally electrochemically oxidised by the system, this is referred to as the E-C-E 

mechanism (See section 1.3.2 for more detail). This leads to an enhancement in the oxidation 

current and decrease in the reduction current obtained, because the magnitude of the peak 

current is governed by the iron concentration as explained by the Randles-Sevcik equation 

FAD

FADH2
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[36] (See section 4.5.2 for more detail). Figure 3.1.3.2 shows a diagrammatic depiction of 

the events that take place during a CV study [37]. 

 

 

Figure 3.1.3.1 Schematic diagram of bioelectrocatalysm of mediator. 
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[37] 

Figure 3.1.3.2 Voltammogram modified from Jamal (2009) [37] (a) show the cyclic 

voltammetry of ECM in the absence of E.coli, and (b) in the presence of E.coli.  

 

3.1.4 E.coli metabolic rate 

The rate at which E.coli produce electrons is proportional to the glucose metabolic rate [34]. 

The factors that could possibly affect metabolic rate of E.coli includes; (1) Growing phase of 

E.coli [38]; (2) Temperature [39]; (3) Nutrient availability [40] and (4) Oxygen availability 

[41].  The effects of these factors require investigating so that we could optimise the 

electrochemical assay.  

 

In a fresh E.coli sub-culture, the growth rate of cells is low, this is defined as a lag phase [38]. 

The cells then enters the exponential phase defined as the rapid increase of cell culture 

population [38]. When the cells have reached certain saturation, due to the limitation of 

oxygen and nutrient available in solution, cell growth will reach a stationary phase. In the 

stationary phase, cell viability decreases [38]. It was important to determine the E.coli growth 
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curve/timeline which would allow accurate identification of the optimal time point to harvest 

the cells when they are most efficiently producing electrons. By investigating the above it was 

envisaged that we could optimize the system to detect the bioelectrochemical catalytic effect 

of the cells as previously hypothesized. 

 

3.2 Aim 

The aim of the work described in this chapter was to assess the suitability of the mediators 

FCN
4-

 and FcA to facilitate electron transfer from a model cell. Additionally, it would allow 

us to determine the most appropriate mediator to develop into a surface immobilised mediator 

sensing system in later studies.  

 

3.3 Objectives 

The objectives of chapter 3 were to test both mediators in a biological system and see if the 

cellular reduction capacity could be monitored in real-time and to establish which mediator is 

more sensitive for detection electron transfer from cells. 

1) Test if FcA and FCN
4-

 can be used as a reporter mediators for a real-time 

bioelectrochemical metabolic rate sensing system. 

2) Compare the sensitivities of the two mediators. 

 

3.4 Methods and materials 

3.4.1 Chemicals 

All reagents were purchased from Sigma-Aldrich, apart from LB broth was purchased from 

Fisher Scientific. Phosphate buffer saline (PBS) was prepared by mixing 50 mM K2HPO4 and 

0.1 M KCl solution with 50 mM KH2PO4 and 0.1 M KCl solution until the solution reaches 
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pH 7.3. PBS was then autoclaved, sealed in glass bottles and then stored in a cool dark place 

until used. 

 

3.4.2 Escherichia coli DH5-α culture before optimisation 

E. coli DH5-α was stored on LB agar plates at 4 °C. E. coli were sub-cultured in liquid LB 

broth medium the day before the experiment was performed. The LB broth was allowed to 

grow for 18 hours at 37 °C on a shaker at 200 rpm in conical flasks. Bacteria were sub-

cultured at 1:5 dilution in fresh LB broth in conical flasks and incubated at 37 °C on a shaker 

for 5 hours. Bacteria were subsequently harvested by centrifugation at 3261 g and washed 

twice in 10 ml of sterile PBS before finally re-suspending in PBS. Cell density measurements 

were performed at OD600 nm using a Cecil CE1020 UV spectrometer. The cell suspension was 

kept on ice for up to 5 hours until cells were needed for assaying. 

 

3.4.3 Electrochemical measurements (Cyclic voltammatry (CV)) 

An electrochemical cell consisting of a Saturated Calomel reference Electrode (SCE), 3 mm 

diameter glassy carbon working electrode and platinum counter electrode were used in the 

cyclic voltammetric studies. A Gamry 600 potentiostat with data acquisition software was 

used for electrochemistry experiments. All electrodes were rinsed with acetone and high 

quality deionised water in between CVs. The glassy carbon electrode was polished with 50 

nm alumina powder for 5 min prior to each CV being performed. Cyclic voltammetric studies 

were performed on solutions of 2 mM ferrocene carboxylic acid (FcA) or potassium 

hexacyanoferrate(II) trihydrate (FCN
4-

) in PBS, with/without 0.5 mM of glucose and 

with/without 1 OD of E.coli. The voltammograms were recorded using an initiating potential 

of -0.2 V with a switching potential of 0.6 V and an end potential of -0.2 V while using FcA 

as mediator. The voltammograms were recorded using an initiating potential of -0.1 V with a 
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switching potential of 0.45 V and an end potential of -0.1 V while using FCN
4-

 as mediator. 

All CVs were performed at 5 mV sec
-1

 scan rate.  

 

3.4.4 Electrochemical measurements (Linear sweep voltammatry (LSV)) 

An electrochemical cell consisting of an Ag/AgCl reference electrode, 0.3 µm platinum 

working electrode and platinum counter electrode were used in the cyclic voltammetric 

studies. A Gamry 600 potentiostat with data acquisition software was used for 

electrochemistry experiments. All electrodes were rinsed with acetone and high quality 

deionised water in between LSVs. The working micro platinum electrode was polished with 

50 nm alumina powder for 5 min prior to each LSV being performed. Linear swipe 

voltammetric studies were performed on solutions containing 2 mM potassium 

ferricyanide(III) (FCN
3-

) in PBS, with/without 10 mM of glucose and with/without 2 OD of 

E.coli. The voltammograms were recorded using an initiating potential of -0.05 V and an end 

potential of -0.05 V at scan rate 100 mVsec
-1

.  

 

3.4.5 Electrochemical oxidation of FcA 

A three electrodes system, consisting of an Ag/AgCl reference electrode, carbon sheet as 

working electrode and a platinum counter electrode were used in the electrochemical 

oxidising FcA process. The electrochemical cell was placed on a magnetic stirrer. 2 mM of 

FcA in PBS was placed inside the cell and chronoamperometry was ran at a potential of 

0.45V for 10 hours. 
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 3.4.6 Growth rate study of solid to liquid medium sub-culture of E.coli 

A colony of stocked E.coli (on agar plate) was scooped and placed into a flask of 200 ml LB 

broth. The flask was then incubated at 37°C on shaker for the length of the experiment. 

Samples were taken from the flask and cell density measurements were performed at OD600 nm 

using a Cecil CE1020 UV spectrometer every hour (0 to 11 hours). 

 

 3.4.7 Growth rate study of liquid to liquid medium sub-culture of E.coli 

Solid to liquid sub-culturing was performed (See section 3.4.6) and the sub-culture was 

incubated at 37°C on shaker overnight. 10 ml, 20 ml and 50 ml of the overnight culture were 

then put into a fresh flask of 200 ml LB broth and incubated at 37°C on shaker for the length 

of the experiment. Samples were taken from the flask and cell density measurements were 

performed at OD600 nm using a Cecil CE1020 UV spectrometer every 30 minutes for up to five 

hours. 

 

3.4.8 Growth rate study between conical flasks and baffled flasks culture of E.coli 

A solid to liquid medium sub-culture of E.coli was performed as described in section 3.4.6. 

The overnight culture was diluted in 1 to 21 ratio of fresh LB broth in conical flasks or baffled 

flasks and incubate at 37°C on shaker for the length of the experiment. Cell density 

measurements were taken every 30 minutes for baffled flask cultures at OD600 nm using a Cecil 

CE1020 UV spectrometer. Cell density of measurement of concial flask cultures were taken 

after 0, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7, hours of incubation. 
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3.4.9 Glucose consumtion rate study of E.coli during resuscitation incubation 

period  

A solid to liquid medium sub-culture of E.coli was performed as descriped in section 3.4.6. 

Overnight culture were then sub-cultured at 1:21 dilution in fresh LB broth in baffled flasks 

and incubated at 37 °C on a shaker for 2 hours. Bacteria were subsequently harvested by 

centrifugation at 3261 g and washed twice in 10 ml of sterile PBS before finally re-

suspending in PBS. Cell density measurements were performed at OD600 nm using a Cecil 

CE1020 UV spectrometer. The cell suspension was kept on ice for the length of experiment. 

After stored on ice for 0, 1, 2, 3, 4, and 5 hours, 2 OD of E.coli were diluted in 10 ml of PBS 

containing 10 mM of glucose and incubated at 37 °C on a shaker for 1 hour. Glucose 

concentration of the resuscitation cultures were measured before and after the incubation 

using a Accu-chek active blood glucose meter. 

 

3.4.10 Mass spectrometry analysis of FcA 

1mg/ml of FcA was prepared in HPLC grade methanol, and further diluted 1:1000 in HPLC 

grade methanol, to make a final concentration of 1ug/ml of FcA. 1ul of the 1ug/ml FcA was 

manually injected into the LC-MS (Waters Limited Synapt G2S TOF-MS using Waters 

Limited nanoAcquity systems as the LC system running HPLC grade methanol as mobile 

phase). The analysis was conducted using electrospray (ESI) ionisation technique in negative 

ionisation mode. Data analysis was conducted using Waters Limited Masslynx 4.1.  

 

3.5 Results and discussion 

3.5.1 Cell samples preparation  

Cell samples preparation protocol was obtained from previous master student’s project. The 

stock E.coli DH5-α was stored at 4 °C on agar plate (figure 3.5.1.1 i). The stock was sub-
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cultured into LB broth and incubated at 37 °C over night (figure 3.5.1.1 ii). The overnight 

culture was then sub-culture into fresh LB broth in a 1 in 5 dilutions and re-incubate for 5 

hours on the day of experiment (figure 3.5.1.1 iii). This step of LB to LB sub-culturing would 

further stimulate the growth of E.coli by introducing fresh nutrients from the broth, therefore 

ensuring the culture would enter the exponential growth phase. This is important because cells 

in exponential growth phase is when cell metabolism is at its peak, and therefore,  would have 

a higher degree of electron transfer [38]. The cells were then collected by centrifugation, and 

to ensure that no LB broth was left in the sample, samples were washed in PBS twice and 

finally re-suspended in PBS and stored on ice for duration of the experiment (figure 3.5.1.1 

iv). Residual LB broth was removed through thorough PBS wash because complex medium 

may contain electrochemically active components which could out compete and interfere with 

our ECM and/or produce unexpected redox peaks. To resuscitate the cells from ice, an 

appropriate amount of sample was taken off of ice and incubated at 37 °C for 30 minutes with 

glucose (figure 3.5.1.1 v). Finally, the resurrected cells were mixed with FcA/FCN
4-

 in PBS 

to perform the CV experiments (figure 3.5.1.1 vi).  
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Figure 3.5.1.1 Summary of cyclic voltammetry experimental sample preparation process. 

  

3.5.2 Monitoring electron transfer from E.coli via FcA and FCN
4-

 

Samples were prepared as described in section 3.5.1, (A) Controls were FcA / FCN
4-

 in PBS 

alone (n=4/3), (B) FcA/FCN
4-

 with added 0.5 mM glucose (n=5/3), and  experimental sample 

(C) FcA/FCN
4-

 was added to a 0.5 mM glucose solution and 1 OD of live E.coli (n=5/3), then 

CVs were performed. Figure 3.5.2.1 and 3.5.2.2 show typical CVs obtained with a three 

electrode system consisting saturated calomel reference electrode (SCE), platinum counter 

electrode and a 3mm glossy carbon working electrode with solutions of 2 mM  FcA or FCN
4-

 

as the mediator. All CVs were performed at a slow scan rate, 5 mV s
-1

, because we expected 

the rate of electron transfer from the cells to be relatively slow[42]. Consequently if a cyclic 

voltammogram was recorded at fast scan rates the electron transfer from the cells may well be 

missed. A summary of the anodic and cathodic peak currents obtained from cyclic 

voltammograms at approximately 245 mV and 193 mV taken from FcA CVs (Figure 3.5.2.1) 
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are plotted in figure 3.5.2.3 and figure 3.5.2.4. Summary of ipa around 155 mV and ipc around 

99 mV taken from FCN
4-

 CVs (Figure 3.5.2.2) are plotted in figure 3.5.2.5 and figure 

3.5.2.6. From the preliminary CV data, no differences was observed between samples 

containing mediators in PBS alone, mediators and glucose in PBS and mediator with glucose 

and E.coli. Note that an extra oxidation peak was observed in the CV of FcA at around 287 

mV, this will be discussed later (please see chapter 4). We hypothesised that we would see a 

catalytic enhancement in the oxidation signal of the reporter mediator due to cellular 

reduction, however, this was not the case. 

 

 

Figure 3.5.2.1 Typical cyclic voltammograms recorded with a GC working electrode using 

PBS solutions containing 2 mM FcA, 0.5 mM glucose and 1 OD of E.coli. All CVs were 

performed at scan rate 5 mVs
-1

. 
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Figure 3.5.2.2 Typical cyclic voltammograms recorded with a GC working electrode using 

PBS solutions containing 2 mM FCN
4-

, 0.5 mM glucose and 1 OD of E.coli. All CVs were 

performed at scan rate 5 mV s
-1

. 

 

 

Figure 3.5.2.3 A histogram of the mean ipa obtained from the cyclic voltammograms shown 

in figure 3.5.2.1. (n=4-5, ± 1 SD) 
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Figure 3.5.2.4 A histogram of the mean ipc obtained from the cyclic voltammograms shown 

in figure 3.5.2.1. (n=4-5, ± 1 SD) 

 

 

Figure 3.5.2.5 A histogram of the mean ipa obtained from the cyclic voltammograms shown 

in figure 3.5.2.2. (n=3-4, ± 1 SD) 
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Figure 3.5.2.6 A histogram of the mean ipc obtained from the cyclic voltammograms shown 

in figure 3.5.2.2. (n=3-4, ± 1 SD) 

 

The data does not show any classical external electron transfer from the cells as depicted in 

figure 3.1.3.2, we envisaged this could be due to the low number of electrons being expelled 

and therefore cyclic voltammetry at a macro-electrode was not sensitive enough to measure 

the external electron transfer. Therefore an investigation into E.coli external electron transfer 

was performed with an established method based on linear sweep voltammetry using 

microelectrodes. It would be expected that this method would generate a steady state 

voltammogram and allows quantitation of the amount of mediator reduced by the cells over 

the extended incubation period [31].  E.coli cultures were prepared the same way as described 

in section 3.5.1.1 except in process (v) (figure 3.5.1.1), FCN
3-

 was added into the 

resuscitation incubation and the incubation time was extended to one hour. The reasoning 

behind this was that the mediator was in the oxidised form, therefore incubating it with E.coli 

cells would allow more time for the cells to produce sufficient electrons and subsequently 

lead to a higher rate of electrons transfer from the cell to the mediator. The whole 
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resuscitation incubated sample was then examined using linear sweep voltammetry (LSV) 

with a 0.3 µm diameter platinum micro working electrode (figure 3.5.2.7) in order to 

measure if any FCN
3-

 was reduced to FCN
4-

 by the E.coli. Note: anodic current is 

proportional to the bulk concentration of FCN
4
, whereas, the cathodic current is proportional 

to the bulk concentration of FCN
3-

. The results demonstrated that in the absence of E.coli, 

FCN
3-

 was stable in the oxidized form at 37 °C for one hour, because no E.coli was present to 

reduce FCN
3-

 to FCN
4-

. Whereas, when E.coli was cultured with 10 mM of glucose, 

according to the anodic to cathodic ratio, about 96 % of FCN
3-

 in the solution was reduced to 

FCN
4-

. In the presence of E.coli, but absence of glucose, only around 28 % of FCN
3-

 was 

reduced. This is possibly due to base-line metabolism of glucose pre-stored within the E.coli 

while it was in culture prior to conducting the experiment. The LSV data show the E.coli 

cells were actively reducing the mediator, while the CV data did not. This is possibly because 

the LSV is measuring bulk changes in concentration of FCN
3-

 to FCN
4-

, whereas in CV 

experiment we were monitoring real time changes in FCN
3-

 reduction. This may suggest the 

CV experiments were not sensitive enough to measure FCN
3-

 reduction by cells in a real-time 

manner. Moreover, it may be possible the E.coli cells used in these experiments were not in 

optimal condition, therefore, further optimization of cellular work was needed. 
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Figure 3.5.2.7 LSV showing the ratio of FCN
3-

/FCN
4-

 in the different experimental 

conditions (black line) E.coli with 10m M glucose, (blue line) E.coli without glucose, and 

(red line) 10 mM glucose and no E.coli. LSV was scanned from -0.05 to 0.45 V at scan rate 

100 mV s
-1

. 

 

FcA was purchased  in the reduced form and therefore to replicate the  LSV experiment we 

attempted to electrochemically oxidise all FcA via chronoamperometry using carbon sheet on 

stirrer and holding the potential at 0.45 V (figure 3.5.2.8 i).However, the oxidised form of 

FcA did not appear stable and precipitated from solution (figure 3.5.2.8 ii and iii). 
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i   ii   iii  

Figure 3.5.2.8 (i) After 10 hours on chronoamprometry, FcA turned green into ferricinium. 

(ii) Precipitation observed. (iii) 10 hours electrochemically oxidised FcA after storing at 4 °C 

over night. 

 

The concept of developing an FcA and/or FCN
3-

/FCN
4-

 mediated real time biological 

metabolic rate measuring system should be feasible which was confirmed by the LSV study. 

One of the factors that could have lead to the failure in the macro-electrode based system, 

using E.coli as our model, could be that the  cells were harvested not at its peak metabolic 

state (exponential growth rate) leading to low levels of external electron transfer. Therefore, 

cell culture condition needed further optimisation. In addition, an extra oxidation peak was 

observed in the CVs obtained from FcA at approximately 287 mV, this requires further 

investigation.  
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3.5.3 Cell culture condition optimisation 

The E.coli sample preparation protocol in the preliminary studies (section 3.5.1), was 

obtained from previous master student. This protocol may not be refined for our work as 

suggested by our preliminary studies result not showing any detection of electrochemical 

catalytic event in the system. This pointed to the possibility that our cell condition could be 

one of the contributing factors. Therefore, a series of cell culture condition optimization 

experiments were performed.  

 

The protocol was broken down and investigated step by step from the very beginning.The first 

step of E.coli sample preparation was sub-culturing the stock E.coli from solid to liquid 

medium (Figure 3.5.1.1 (ii)). The growth curve of solid to liquid medium sub-culture was 

investigated. All E.coli growth rate studies were conducted by indirectly measuring cell 

density (optical density (OD)) using UV spectrometer reading at 600 nm. E.coli were sub-

cultured from solid medium (agar plate) to liquid medium (liquid broth (LB)), and incubated 

at 37 °C on a shaker. OD measurements were taken every hour. The data (figure 3.5.3.1) 

shows when E.coli was sub-cultured from solid agar to LB medium, there is a 6 hours lag 

phase period, where the bacterial growth is relatively slowly. After 6 hours in culture, E.coli 

growth enters an exponential growth rate lasting approximately 2-3 hours, where the bacteria 

grow rapidly. The bacterial growth then enters a stationary phase after 10 hours of culture, 

where there is very little growth (n=3, ± 1 SD). A possible reason for the long lag phase of 

E.coli could be due to the cells needing to adapt from one growing condition (solid agar) to 

another growing condition (LB). We conclude from this that the agar to liquid broth medium 

culture was not an ideal way to time precisely for when experiments should be conducted at 

the optimal growth condition. Therefore LB to LB culturing was studied, for which we 

hypothesized that this would remove the adaptation factor and shorten the lag phase.  
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Figure 3.5.3.1 The growth pattern of E.coli when sub-cultured from solid agar to liquid broth 

(LB) medium. This Figure shows the growth rate of E.coli presented as OD over time in 

hours (n=3, ± 1 SD). 

 

LB to LB culturing experiment was conducted to determine the optimal sub-culture dilution, 

since nutrient content is a limiting factor for bacterial growth, finding the balance between 

cell numbers and nutrient availability is vital. The nutrient concentration with regards to time 

is influenced by the bacterial cell density within the culturing medium [43]. E.coli cells were 

sub-cultured solid to liquid medium overnight to allow the culture to reach the maximum cell 

density. On day two, 10, 20 and 50 ml of cells from the confluent flask were diluted in 200 ml 

of fresh liquid medium. Growth rate studies (figure 3.5.3.2) of the 3 dilution cultures showed 

10 in 200 ml dilutions was the optimal sub-culturing dilution as the growth curve was the 
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steepest. This means the 10 in 200 ml dilution sub-cultured cells were growing at the most 

optimal rate out of the 3 dilutions studied. 

 

Figure 3.5.3.2 Growth rate study of LB to LB culturing of E.coli. The growth pattern of 

E.coli, sub-culturing stationary phase bacteria into freshly prepared LB medium, at different 

dilution factors; (blue) 50 ml stationary phase bacterial solution: 200 ml fresh LB medium, 

(red) 20ml stationary phase bacterial solution: 200 ml fresh LB medium, and (green) 10 ml 

stationary phase bacterial solution: 200 ml fresh LB medium. E.coli sub-cultured at dilution 

factor 10 ml stationary phase bacterial solution: 200 ml fresh LB medium (green) showed the 

steepest gradient, and therefore, a faster exponential growth rate compared to the other 

dilution factors (blue and red) (n=3, ± 1 SD). 
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Oxygen availability is also one of the major factors affecting growth rates of E.coli, therefore, 

a comparison study of culturing E.coli in conical flasks and baffled flasks was performed. 

The typical bacterial culturing conical flasks (figure 3.5.3.3 i) were used in previous studies. 

Baffled flask in figure 3.5.3.3 ii is another type of bacterial culturing flasks which are 

specific for aerobic bacterial culturing [43]. The baffle indents of the baffled flasks folds 

culture medium and increases oxygen level in the medium. In theory, the more availability of 

oxygen should increase aerobic bacterial proliferation. The data (figure 3.5.3.4) suggested 

that cultures grown in baffled flasks have a higher proliferation rate and higher maximum cell 

density. This is because the baffled flasks, alongside with culturing on a shaker, the shaking 

movement of the medium hitting the baffle of the baffled flask  are suggested to  higher 

oxygen availability into the culture solution during incubation [43].  

i   ii  

Figure 3.5.3.3 Picture of (i) concial flask and (ii) baffled flask. 
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Figure 3.5.3.4 Growth rate study of E.coli using different culture flasks. The growth rate of 

E.coli cultured in conical flasks and baffled flasks was studied using the liquid to liquid 

culturing technique, and at dilution factor 10 ml stationary phase bacterial solution: 200 ml 

fresh LB medium. E.coli cultured in baffled flasks (blue) showed steeper gradient exponential 

growth rate than when cultured in conical flasks (green) (n=3, ± 1 SD). 

 

During the resuscitation incubation process of sample preparation (figure 3.5.1.1 v), E.coli 

was re-suspended in PBS and glucose only. PBS was used, as complex media like LB broth 

could potentially contain electrochemically active species which could produce unexpected 

peaks and interfere with the reading. To ensure the E.coli had sufficient resources for glucose 

metabolism, glucose was added into the culture. An investigation was performed to determine 

if 1mM of glucose, as directed in the original protocol (figure 3.5.1.1), was sufficient nutrient 
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to sustain 2 OD of E.coli cells during the 1 hour resuscitation incubation and the period of the 

electrochemistry experiments (figure 3.5.3.5). The cell culture method (figure 3.5.1.1, 

process i through iii), was adjusted as follows; LB to LB sub-culturing was performed in 

baffled flasks, diluted 1 in 21 and incubated at 37°C on a shaker for 2 hours. The cells were 

then harvested and washed in PBS twice then stored on ice in PBS (figure 3.5.1.1, process 

vi). An aliquot of 10 ml of cells at 2 OD cell density treated with 10 mM glucose was taken 

and put through the resuscitation procedure after storing on ice for different time periods. The 

glucose concentrations in the samples were measured before and after resuscitation 

incubation. The results of these glucose measurements (figure 3.5.3.5) show that 2 OD /ml of 

E.coli consumed on average 1.6 mM (SD=±0.2, n=3) glucose in one hour. This demonstrated 

that 1 mM of glucose was insufficient in the resuscitation incubation process suggested in the 

original method.  Moreover cell density measurements were taken before and after the one 

hour resuscitation incubation showing no change from the original 2 OD after 1 hour (data 

not shown).  The cell density correlates to the number of cells however gives no 

measurement of cell respiration, which is related to the cell glucose consumption.  As the cell 

density remains unchanged we can therefore use the glucose consumption rate of the cells 

after different periods being stored on ice to measure how this affects the cells viability. The 

data (figure 3.5.3.5) shows that there were no differences in the glucose consumption rate of 

E.coli during resuscitation incubation when stored on ice for up to 5 hours, thus suggesting 

E.coli cell viability is unaffected by storage on ice for up to 5 hours. Therefore, E coli 

electrochemical experiments reported hereafter are only stored for under the maximum 

storage time of 5 hours. The optimized method is summarized in (Figure 3.5.3.6.). 
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Figure 3.5.3.5 Glucose concentration study. E.coli was stored on ice for different period of 

time, and upon resuscitation from ice, 10 mM glucose was added and the glucose 

concentration was measured (blue). The E.coli was then cultured in an incubator at 37 °C for 

1 hour, and then a final glucose concentration was measure (red). The results showed E.coli 

can be resurrected and viability is unaffected after up to 5 hours storage on ice, with 

metabolic capacity equivalent to cells not stored on ice.(n=3, ±=SE) 
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Figure 3.5.3.6 Summary of optimised cyclic voltammetry experimental sample preparation 

process. 

 

In summary, the series of cell culture optimisation experiments conducted are as follows; (1) 

growth curve of the E.coli in solid to liquid medium sub-culture; (2) optimal liquid to liquid 

medium sub-culture dilution were established; (3) oxygen supply during cell culture was 

maximised; (4) glucose supply for cell culture in length of incubation was optimised; and (5) 

maximum length of time that sample can be stored on ice was established. These optimisation 

experiments ensure that the E.coli samples are producing electrons at their maximal rate 

during the electrochemical assay. This should maximise the chance for our electrochemical  

system to detect any catalytic effects.  
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3.5.4 Purity of FcA 

In the preliminary studies (section 3.5.2), an extra oxidation peak of FcA appeared in the CV 

studies at approximately 287 mV (figure 3.5.2.1). One possible reason for this post-oxidation 

peak could be explained by reactant absorption on the working electrode [44]. However the 

overall CV behavior does not fit into the theory of reactant absorption. A pre-reduction peak 

should appear if there is strong reactant absorption of the mediator on the working electrode 

[45], and this was not observed.  

 

Another possibility for causing the post-oxidation peak could be due to contamination of the 

mediator with something that displays non-reversible electrochemical behaviour. To confirm 

if this was the case, mass spectrometry analysis was performed to check for contaminants in 

the mediator. Data obtained from negative electrospray ionisation mass spectrometry analysis 

confirmed the FcA used in these studies was greater than 97% pure as stated in the 

specification document from Sigma-Aldrich (figure 3.5.4.1). 

 

Figure 3.5.4.1Mass spectrometry data conducted in negative electrospray ionisation. 

 

3.6 Conclusion 

In this chapter, preliminary CV studies were conducted on the both FCN
4-

 and FcA mediated 

systems, but, no catalytic event was detected. However, LSV experiments demonstrated the 

actual system should be working because the E.coli cells were actively reducing the bulk 
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FCN
3-

 to FCN
4-

. This suggests the E.coli cells were actively metabolising, and their 

metabolim is detectable. It is possibly the CV experiments did not work but LSV experiments 

worked because the cell culture condition and the sensitivity of the system was not high 

enough. In addition, a post oxidation peak was observed in the CV obtained from FcA at 287 

mV vs SCE reference electrode. It is unclear at the point why there is a post oxidation peak 

found in FcA but not in FCN. The next chapter, Chapter 4, will look at and fully investigate 

into the theory of the post oxidation peak. More importantly, break through advancement into 

FcA-based biosensor. 
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Chapter 4 

Development of the bio-oxygen demand measuring 

system 

Chapter 4 is based upon an article entitled: 

"Real-time electrocatalytic sensing of cellular respiration" Nga-Chi Yip, Frankie J Rawson, 

Chi Wai Tsang, Paula M Mendes. Biosensors and Bioelectronics, 2014, 57, 303-9 [1] 

 

Abstract: In the present work we develop a real-time electrochemical 

mediator assay to enable the assessment of cell numbers and chemical 

toxicity. This allowed us to monitor metabolism down to a single cell in 

a low cost easy to use rapid assay which is not possible with current 

technology. The developed assay was based on the determination of 

oxygen. This was made possible via the use of electrochemical mediator 

ferrocene carboxylic acid (FcA). The FcA showed distinctive catalytic 

properties in interacting with reactive oxygen species generated from 

oxygen when compared to ferrocene methanol (FcMeOH). A deeper 

insight into the chemistry controlling this behaviour is provided. The 

behaviour is then taken advantage of to develop a cellular aerobic 

respiration assay. We describe the properties of the FcA system to 

detect, in real-time, the oxygen consumption of Escherichia coli DH5α 

(E. coli). We demonstrated that the FcA-based oxygen assay is highly 

sensitive, and using a population of cells, oxygen consumption rates 

could be calculated down to a single cell level. More importantly, the 
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results can be accomplished in minutes, considerably outperforming 

current commercially available biooxygen demand assays. The 

developed assay is expected to have a significant impact in diverse fields 

and industries, ranging from environmental toxicology through to 

pharmaceutical and agrochemical industries. 

 

Chapter 4 is also based upon a patent entitled: 

“Oxygene sensor comprising a ferrocene compound.” Patent publication 

number WO2015036612 A1[2]. 

 

Abstract: The invention relates to a ferrocene carboxylic containing 

assay system which may include a cellulose acetate membrane 

containing ferrocene. The assay is used to detect the presence of 

aerobic micelles in various substances based on the demand for oxygen. 

Individual cellscan be located on an electrode and oxygen demand can 

be calculated for individual biocompatible cells. 
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4.1 Background - Choosing the mediator 

In an electrochemical cell, the oxygen reduction reaction happens at potentials from 0 V or 

lower [3]. In aqueous electrolyte such as PBS, the O2 molecules are reduced via two 

pathways which include a 2 or 4 electron pathway [4]. Regardless of which pathway the O2 

was being reduced, in an alkaline aqueous environment, the reduced O2 (O2
-
) would always 

react with surrounding H2O molecules and produces HO2
-
 and OH

-
. Combining these points, 

from chapter 3 section 3.5.2, the CVs of FcA were started at potential 0 V in an aqueous 

electrolyte (PBS) with a slight alkaline (pH 7.3) environment.  It is suggested that as the 

CVs are conducted these reactive oxygen species (ROS), namely HO2
-
 and OH

-
 were 

generated in the system. Both HO2
-
 and OH

-
 are strong reducing agents [5]. We 

hypothesised that the ROS generated in the system react with the electrochemically oxidised 

FcA and cause the unexpected oxidation peak. In this Chapter, we further investigate the E-

C-E mechanism as mentioned in section 3.1.3. 

 

Cassidy’s study [3] has also observed similar catalytic behavior in FcA and 1,1’-ferrocene 

dicarboxylate (FcDA).According to Cassidy’s paper both FcA and FcDA also have the E-C-

E superoxide catalytic properties [3]. So it is possible other ferrocene derivatives may also 

exhibit similar properties. The catalytic property of these ferrocene derivatives will differ to 

varying degrees as they have different functional groups. As suggested by Batterjee’s 

study[6], the functional groups “steric bulk” shielding and the electron withdrawing effect 

would result in changes to the redox kinetics. These may affect the normal non-catalytic 

redox peak and catalytic oxidation peak location, normal redox kinetic and the 

electrochemical catalytic kinetics. All these factors need to be investigated and understood 

in order to select the most appropriate mediator to further develop the system. 
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Ferrocenemethanol (FcMeOH) was selected to perform parallel electrochemical and 

electrochemical catalytic property studies along with FcA. FcMeOH was selected for a 

number of reasons; 1) As FcMeOH is also a ferrocene derivative, therefore, it may also have 

O2 electrochemical catalytic property ; 2) As the functional group of FcMeOH is a carbonyl 

group short compare to FcA (see figure 4.1.1), this can be use to test if Batterjee’s 

suggestion [6] regarding the electron withdrawing effect is correct. We hypothesize that 

FcMeOH, due to the lack of this carbonyl group compared to FcA, has a lower “steric bulk”, 

and therefore should have less electron withdrawing effect. This would result in FcMeOH 

having a lower redox potential. Data from Cassidy’s study on FcDA, which has an 

additional carboxylic acid group compared to FcA (see figure 4.1.1), will be pooled with 

data from FcA and FcMeOH studies to help us understand the different effect of the 

functional groups on the electrochemical and electrochemical catalytic properties of the 

mediators.  The best mediator for the system can then be selected using the criteria of lowest 

redox potential and quickest kinetics.  These properties combined should provide the 

greatest sensitivity while also reducing the risk of the electrochemical process disturbing the 

cell’s normal membrane potential [7]. 
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i ii  

iii  

Figure 4.1.1 Chemical structures of (i) ferrocenemethanol, (ii) ferrocene carboxylic acid 

and (iii) ferrocene dicarboxylic acid. 

 

4.2 Aim 

The aim of this section of work was to investigate the electrochemical properties of the 

chosen mediators. This would also help to aid our understanding of how different functional 

groups affect the mediators’ electrochemical behaviour. More importantly, it provides vital 

information for selecting the most suitable mediator for testing the concept on biological 

models, and explores the potential usage of the system. 
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4.3 Objectives 

The objectives are as follows; 

1) To confirm the post oxidation peak in CVs obtained from FcA is due to the 

catalytic reaction with ROS. 

2) To confirm if FcMeOH has catalytic property towards superoxides. 

3) To investigate the electrochemical properties of FcA and FcMeOH.  

4) To investigate the electrochemical catalytic properties of FcA and FcMeOH. 

5) To compare data obtained from objectives 2 and 3 and data from Cassidy’s report 

involving FcDA and select the most suitable mediator. 

6) To test the system on biological models. 

 

Objective 1 

CVs were conducted on oxygenated and de-oxygenated (nitrogen degassed) 2 mM FcA 

solutions to confirm if the post peak is caused by oxygen. 

 

A preliminary scan rate study was performed with oxygenated FcA solutions and a plot 

summary drawn up of the post peak.  Data was put into a current functional plot to confirm 

if the rate limiting step is a chemical one. 

 

Objective 2 

Ascertain the viability of using FcMeOH as a test mediator offering catalytic properties 

towards superoxides.  This is determined by conducting CV tests with FcMeOH as mediator 
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in oxygenated and nitrogen purged de-oxygenated solutions as was conducted in section 

4.5.1 with FcA as mediator. 

 

Objective 3 

Scan rate study of FcA and FcMeOH to investigate the basic electrochemical properties of 

the mediators. 

 

Objective 4 

Perform and compare scan rate studies of deoxygenated and oxygenated solutions with FcA 

and FcMeOH as mediators and to use the disappearance of the catalytic peak to compare the 

catalytic kinetics of each mediator. 

 

Objective 5 

Combine data from FcA and FcMeOH studies in objectives 2 and 3 and data of FcDA from 

Cassidy’s report to select the most suitable mediator using criteria as discussed for further 

development. 

 

Objective 6 

Put the system into practical use by investigating biological models, e.g. E.coli, fresh water 

samples and mammalian cells. 
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 4.4 Methods and materials 

4.4.1 Chemicals 

LB broth was purchased from Fisher and ferrocene methanol was purchased from Acros 

Organics. All other reagents were purchased from Sigma–Aldrich. All solutions prepared 

were oxygenated by being exposed to air in atmospheric conditions. There was no artificial 

oxidation of the solution performed. Phosphate buffer saline (PBS) was prepared by mixing 

50 mM K2HPO4 and 0.1 M KCl solution with 50 mM KH2PO4 and 0.1 M KCl solution until 

the solution reaches pH 7.3. PBS was then autoclaved and sealed in glass bottles then stored 

in a cool dark place until used. 

 

4.4.2 Escherichia coli DH5-α culture 

E. coli DH5-α was stored on LB agar plates at 4 °C. E. coli were sub-cultured in liquid LB 

broth medium the day before the experiment was performed. The LB broth was allowed to 

grow for 18 hours at 37 °C on a shaker at 200 rpm in baffled flasks. Bacteria were sub-

cultured at 1:21 dilution in fresh LB broth in baffled flasks and incubated at 37 °C on a 

shaker for 2 hours. Bacteria were subsequently harvested by centrifugation at 3261 g and 

washed twice in 10 ml of sterile PBS before finally re-suspending in PBS. Cell density 

measurements were performed at OD600 nm using a Cecil CE1020 UV spectrometer. The cell 

suspension was kept on ice for up to 5 hours until cells were needed for assaying. 

 

4.4.3 Electrochemical measurements 

An electrochemical cell consisting of a Ag/AgCl reference electrode, 3 mm diameter glassy 

carbon working electrode and platinum counter electrode were used in the cyclic 

voltammetric studies. A Gamry 600 potentiostat with data acquisition software was used for 

electrochemistry experiments. The glassy carbon electrode was polished with 50 nm 
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alumina powder for 5 min prior to each CV being performed. Cyclic voltammetric studies 

were performed on solutions of 2 mM ferrocene carboxylic acid (FcA) and ferrocene 

methanol (FcMeOH) in PBS. The voltammograms were recorded using an initiating 

potential of 0 V with a switching potential of 0.6 V and an end potential of 0 V. CVs in the 

absence of E. coli and fresh water samples cells were generated at scan rates from 5 to 2000 

mV s
-1

 for FcA and FcMeOH in the presence of air (oxygenated). Additionally, cyclic 

voltammetry was performed on deoxygenated solutions containing FcMeOH and FcA that 

were purged of oxygen with oxygen free nitrogen, at scan rates of 5–40 mV s
-1

 and 5 mV s 
-

1 
, respectively. 

 

4.4.4 Electrochemical determination of bacterial cell numbers 

Before each assay, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4 OD of E. coli were pre-incubated with 10 

mM of glucose in PBS at 37 °C on a shaker in conical flasks for 30 minutes. These solutions 

were then diluted by half. FcA was then added to give a final concentration of 2 mM and 

cyclic voltammograms (CVs) were recorded at 5mVs
-1

. 

 

4.4.5 Cytotoxicity measurements 

A 5 ml stock solution containing E. coli (4 OD) was prepared in PBS, containing 10  mM 

glucose as the growth substrate and HPLC grade ethanol at a final concentrations of 0, 2.5, 

5, 10 and 12.5%, v/v. This E. coli suspension was then incubated in a shaking incubator at 

37 °C for 1 hour. Optical density (OD) measurements were taken before and after 

incubation to verify if any cellular growth occurred during the 1 h incubation. For 

electrochemical interrogation, a 3.5 ml sample of the incubated E.coli suspension was added 

to 3.5 ml of 4 mM FcA in PBS. This gave a final working assay concentration used in cyclic 

voltammetric studies of E. coli at 2 OD and FcA at a concentration of 2 mM. Cyclic 
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voltammetry was then performed at a scan rate of 5mVs
-1

. For agar plate growth assays, the 

E. coli suspension was diluted to 1:1000, 1:100,000, 1:500,000 and 1:1,000,000 prior to 

seeding onto the agar plates. These agar plates were then incubated for 20 h at 37 °C 

followed by colony counts after the incubation period. 

 

4.4.6 Fresh water sample testing 

Algae rich fresh water samples were collected from two different water sources, namely 

from a canal and from a stream (Vale water). None living organism controls (acellular 

controls) were prepared by filtering the water samples through a 0.5 µm filter. 3.5 ml of each 

sample was mixed with 3.5 ml of 4 mM FcA giving a final concentration of 2 mM FcA. 

Cyclic voltammetry was then performed at a scan rate of 5 mV s
-1

. 

 

4.5 Results and discussion 

 4.5.1 Catalysis of superoxide 

Two experiments were conducted to confirm the post oxidation peak of FcA CVs were 

electro-catalytic peaks. The first experiment, a scan rate study was conducted on 2 mM of 

FcA in PBS. The summary of the post oxidation peak currents of FcA would confirm if the 

rate limiting step in the system is a chemical-chemical step or an electrochemical step in two 

ways. Firstly, the scan rate studies show that the post-oxidation peak current of FcA decrease 

as the scan rate increase (figure 4.5.1.1). Secondly, plotting the post-oxidation peak current 

of FcA in a current functional plot (figure 4.5.1.2), demonstrates that the FcA post-oxidation 

peak is not under diffusion control but indicates that the rate limiting step is a relatively slow 

chemical step. This is because the data line is linear with a gradient [8]. 
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Figure 4.5.1.1 Cyclic voltammogram showing the FcA post-oxidation peak current decrease 

with the increase in scan rate. 

 

 

Figure 4.5.1.2 Current function plot of FcA post-oxidation peak. This FcA post-oxidation 

peak is not under diffusion control because the line is linear with a gradient. 
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In the second experiments, CVs were conducted with nitrogen purged and non-purged FcA 

samples (figure 4.5.1.3). If the post oxidation peak of FcA was an O2 catalytic peak, 

removing oxygen from the samples should also remove the post oxidation peak. The data 

shows purging of samples with nitrogen, removing all oxygen by displacing with nitrogen in 

solution, removes the post-oxidation peak.  

 

  

Figure 4.5.1.3 Typical cyclic voltammograms recorded from PBS solutions containing 

2 mM FcA in the absence of air (deoxygenated) and the presence 

of air (oxygenated). 

 

Revisiting the data shown in the preliminary studies section 3.5.2, and the additional data 

from the scan rate studies of FcA and oxygen containing vs nitrogen purged sample studies, 

there is evidence that the FcA post-oxidation peak is directly related to the concentration of 

dissolved oxygen in the samples. In figure 3.5.2.1, the FcA post-oxidation peak current of 

samples containing E.coli is dramatically smaller than in samples that do not contain E.coli. 

This smaller post-oxidation peak can be explained as a result of E.coli consumption of 
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oxygen in aerobic metabolism during the period of experiment. Therefore, the source of 

superoxide is decreased, resulting in a smaller post-oxidation peak. 

 

4.5.2 Confirmation of FcMeOH catalytic property 

Before conducting electrochemical characterisation experiment of FcA and FcMeOH, it was 

important to confirm FcMeOH also displays the superoxide catalytic property as seen in 

FcA and FcDA [3]. Therefore, CVs were performed on oxygenated and deoxygenated 

solutions of PBS containing 2 mM FcMeOH. Typical CVs obtained are shown in figure 

4.5.2.1.  Data shows that FcMeHO has a decreased ipa in deoxygenated solutions compared 

to oxygenated solutions. This confirmed that FcMeHO does have superoxide catalytic 

properties due to the same mechanism explained earlier, and shows the same convoluted O2 

catalytic peak that has been observed in other FcDA study [3].  

 

 

Figure 4.5.2.1 Typical cyclic voltammograms recorded from PBS solutions containing 

2 mM FcMeOH in the absence of air (deoxygenated) and the presence of air (oxygenated).  
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4.5.3 Electrochemical characterisation 

Following confirmation FcMeOH does have the superoxide catalytic property; Data for both 

CVs obtained from oxygenated and deoxygenated 2 mM FcA (figure 4.5.1.3) and FcMeOH 

(figure 4.5.2.1) were put together for comparison (figure 4.5.3.1). The overall 

electrochemical characterisation studies were then conducted.  

 

 

Figure 4.5.3.1 Summary of cyclic voltammograms recorded from PBS solutions 

containing2 mM FcMeOH (figure 4.5.2.1) and FcA (figure 4.5.1.3) in the absence of air 

(deoxygenated) and the presence of air (oxygenated). 

 

There is a major difference between the CVs recorded from solutions containing FcA and 
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oxidation peaks were observed (figure 4.5.3.1 O2 and O3) at mean peak potentials of 352 

mV and 394 mV. The mean separation in peak potential (∆Ep) for FcA and FcMeOH is 66 

mV (±1SD=1.572) and 70 mV (±1SD=4.561), respectively. The values for the mean 

oxidation peak current over reduction peak current (ipa/ipc) are 0.993 (±1SD=0.022) and 

0.997 (±1SD=0.007), respectively. These values indicate that both FcA and FcMeOH are 

displaying a quasi-reversible electrochemical behavior [9, 10].  The mean peak potential 

(Ep) values for FcMeOH are 257 mV (±1SD=3.194) for the oxidation peak and 187 mV 

(±1SD=1.518) for the reduction peak, whereas in the case of FcA, they are 353 mV 

(±1SD=0.643) for the oxidation peak and 287 mV (±1SD=1.692) for the reduction peak. 

These values for FcMeOH and FcA are similar to the values reported in the literature[9]. 

Additionally, a second oxidation peak is observed at approximately 394 mV (±1SD=1.510), 

which is slightly higher than 317 mV reported in Cassidy’s study [3] and is likely due to the 

use of different electrolytes. From Cassidy’s report, ipa of FcDA is around 368 mV versus 

SCE which is equivalent to 413 mV versus Ag/AgCl [11]. This study showed FcMeOH 

requires much less energy to trigger the electrochemical redox event than FcA and FcDA 

(See figure 4.5.3.1) as highlighted by the lower peak potential values. This would be 

advantageous to an electrochemical bio-oxygen demand assay, since the applied potential 

for the cyclic voltammteric scans would be lower, and therefore, lowering the risk of 

influencing cellular membrane potential [7], thereby avoiding perturbations of cells 

metabolism induced by electronic fields.  Additionally, it minimises the possibility of 

encountering problems with interfering species. 

 

We suggest that the difference in behavior observed for FcA, FcMeOH and FcDA (from 

Cassidy's report) [3] in terms of the position of peak potentials is caused by the different 

functional groups. FcA contains 1 carbonyl group, FcDA contains 2 carbonyl groups and 
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FcMeOH contains 1 hydroxyl group. The electron withdrawing effect of the carbonyl group 

adjacent to the cyclopentadienyl ring would lead to lowering the electron density around the 

iron (Fe
2+

) center, meaning the ferrocene requires a larger over-potential to be oxidized and 

evidence for this behavior has been reported by others for different ferrocene derivatives[12, 

13].  This would decrease the ability of the Fe
2+

 to lose electrons, therefore, as observed, a 

higher potential is required to electrochemically oxidize FcDA compared to FcA, and even 

higher compared to FcMeOH, resulting in FcMeOH having a lower redox potential than 

FcA (figure 4.5.3.1) and FcDA [12, 13]. 

 

A scan rate study was performed with solutions of FcMeOH and FcA and typical peak 

current obtained at the varying scan rates are plotted in figure 4.5.3.2. The peak currents for 

both FcA (▲) and FcMeOH (◆) are proportional to the square root of the scan rate. This 

well-known behavior indicates that the peak current is under diffusion control. We also 

noted that at higher scan rates the electrochemical O2 peak (figure 4.5.3.1 peak O3) 

observed for FcA is no longer present. We were interested in ascertaining the rate of 

diffusion of the mediators as this can influence the sensitivity of the system. Using the 

Randles-Sevcik equation (ip=(2.69x10
5
)n

3/2
AD

1/2
Cν

1/2
), the diffusion coefficient (D) of 

FcMeOH and FcA were calculated from 5 mVs
-1 

oxidation peak data (Peak O1 and O2 from 

figure 4.5.3.1). The diffusion coefficient for FcMeOH (D=7.87 x 10
-7

 cm
2
s

-1
)  is similar to 

that reported in the literature (D=2.50 x 10
-7

 cm
2
s

-1
) [14]. Whereas, the diffusion coefficient 

for FcA (D=7.08 x 10
-7

 cm
2
s

-1
) is a magnitude smaller than reported in literature (D=4.30 × 

10
-6

 cm
2
s

-1
) [10]. It is not a surprise that the diffusion coefficient for FcMeOH and FcA 

obtained in our study are not identical to those reported in the literature, since the viscosity 

of the room temperature ionic liquids used would greatly influence the diffusion coefficient 

of the mediator[14]. We show that FcMeOH has a faster diffusion coefficient than FcA in 
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our study, which could be explained by the fact that FcMeOH (Mw=216.06 g mol
-1

) is a 

smaller molecule than FcA (Mw=274.05 g mol
-1

). 

 

At this stage, data was suggesting that FcMeOH was the most ideal mediator, as it has the 

lowest redox potential among FcA and FcDA [3] along with a faster diffusion rate than FcA. 

It should provide the most sensitive system of the three mediators with the lowest risk of 

interference. 

 

 

Figure 4.5.3.2 Plot of oxidation and reduction peak currents versus square root of 

scan rate from CVs obtained for FcA (see figure 4.5.3.1 O2) and FcMeOH (see figure 

4.5.3.1 O1)  at varying scan rates. 
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peak current obtained from CVs scaled with FcMeOH solution in the presence (figure 

4.5.3.1 O1-oxygenated, mean = 6.75 µA, ±1SD = 0.037) and absence (figure 4.5.3.1 O1-

deoxygenated, mean = 6.48 µA, ±1SD = 0.053) of oxygen. This comparison showed that 

CVs recorded in the presence of oxygen resulted in an increase in the magnitude of the O1 

peak of approximately 200 nA and the equivalent decrease in the reduction peak occurred 

(figure 4.5.3.1). The magnitude of the oxidation peak current measured from CVs recorded 

with solutions of FcMeOH which can be attributed to oxygen, is equal to the difference 

between the peak current obtained in the presence and absence of oxygen. We conclude that 

any current generated which is associated with the presence of O2 is convoluted with the 

normal FcMeOH electrochemistry. Additionally, results from the current function plots for 

FcMeOH (figure 4.5.4.1) also supports this proposition as the correlation coefficients 

obtained at low scan rates prior to subtracting the deoxygenated peak (R
2
 = 0.965) lies 

between the deoxygenated correlation coefficient value of R
2
 = 0.752 and O2 

electrocatalytic current correlation coefficient value of R
2
 = 0.982. However, when cyclic 

voltammetry was performed with solutions of FcA in a deoxygenated solution, the O3 peak 

current associated with the presence of oxygen (figure 4.5.3.1 O3) was no longer observed. 

We conclude that the O3 peak (figure 4.5.3.1) observed in the CV recorded in the presence 

of FcA arises from the existence of oxygen in the assay solution. For simplicity the current 

that is attributed to the presence of oxygen is termed the O2 electrocatalytic current. 
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Figure 4.5.4.1 Current functional plot of ipa and ipc for FcA and FcMeOH; peak currents 

obtained from cyclic voltammograms recorded from solutions of FcMeOH-oxygenated 

◆, FcMeOH-deoxygenated +, non-electrocatalytic FcA-oxygenated (figure 4.5.3.1 O2) ▲, 

FcA-oxygenated O2 electrocatalytic peak * (figure 4.5.3.1 O3), difference between peak 

currents obtained for FcMeOH-oxygenated and FcMeOH-deoxygenated which termed the 

electrocatalytic O2 peak ● < 20 mV s
-1

). Insets represent current values at lower scan rates. 
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function (figure 4.5.4.1 iv).  This lack of relationship at relatively fast scan rates is 

indicative of a diffusion limited process and supports the data obtained in figure 4.5.3.2. 

However, when we analyze the plot at slower scan rates there is a deviation from this 

behavior when oxygen is present both for FcA and FcMeOH (figure 4.5.4.1 i, ii, and iii) 

and is indicative of an electrocatalytic process [15]. 

 

In the absence of oxygen, the current function plot for FcMeOH (<20 mV s
-1

) yields a 

correlation coefficient value
 
 of  R

2
=0.752  (figure 4.5.4.1 i), suggesting the current is 

diffusion limited as expected for a simple 1 electron transfer event. On the other hand, in the 

presence of oxygen the electrocatalytic current obtained for FcMeOH (attained by 

subtracting the peak current obtained in the presence of oxygen minus the peak current 

obtained in the absence of oxygen) is directly correlated to scan rate in the current function 

plot with a correlation coefficient value of R
2
=0.982, indicative of a non-diffusion limited 

process (figure 4.5.4.1 ii). This relative large correlation provides supporting evidence that 

the electrocatalysis is occurring via the proposed E-C-E mechanism and we attribute this 

deviation to a slow chemical step which is rate limiting. 

 

The correlation coefficient values obtained for current function plot for the non-

electrocatalytic FcA peak (figure 4.5.3.1 O2) in the presence of oxygen yields a relatively 

low correlation coefficient value of R
2
=0.872 at low scan rates (figure 4.5.4.1 i).  This 

indicates that the peak current even at slower scan rates (<40mV s
-1

) is under diffusion 

control as expected for a simple 1 electron transfer redox process. Moreover, the current 

function values obtained for the electrocatalytic O2 peak for FcA (figure 4.5.4.1 ii) yield a 

correlation coefficient of R
2
=0.985 indicating the current is under non-diffusion control and 

we suggest this arises due to this peak representing the electrocatalytic oxidation. This 
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deviation from diffusion controlled behavior is attributed to the chemical step being rate 

limiting which is similar behavior to that observed with FcMeOH. Consequently, oxidation 

peak O2 (figure 4.5.3.1) is largely non-catalytic current arising from the redox events of the 

FcA alone whereas the electrocatalytic O2 peak (figure 4.5.3.1 O3) represents the 

electrocatalytic oxidation of superoxide. 

 

The proposed mechanism for O2 electrocatalytic current with FcA and FcMeOH is attributed 

to the oxygen which is electrochemically reduced at 0 V forming a superoxide anion (O2
−
) 

and is supported by Cassidy[3].  This conclusion is elucidated by the fact that on removal of 

the oxygen there is a decrease in current observed with FcMeOH (figure 4.5.3.1) and 

removal of the electrocatalytic O2 peak in CVs obtained for FcA. The O2
−
 subsequently 

chemically oxidises water forming the reactive oxygen species hydroxyperoxyl (HO2
−
) and 

a hydroxyl ion (OH
−
). As we scan through the voltammogram in a forward direction the Fc 

is electrochemically oxidised to Fc
+
. We suggest the OH

−
 and HO2

−
 generated chemically 

reduce Fc
+
 to Fc and at the same time the chemically reduced mediator would be once again 

electrochemically oxidised. This leads to a catalytic enhancement in the magnitude of the 

oxidation peak current as the concentration of reduced Fc is increased in the presence of 

oxygen. Moreover, it is well understood that peak current is proportional to concentration of 

redox molecules under investigation and explains why in deoxygenated solutions we see a 

decrease in the electrocatalytic peak oxidation current for FcMeOH and FcA. The 

mechanism we propose is an electrochemical-chemical-electrochemical (E-C-E) system. It 

can be presumed that the chemical steps must be relatively slow because with increasing 

scan rate there is no increase in the observed O2 electrocatalytic current above 20 mVs
-1

 for 

FcMeOH, and 40 mV s
-1

 for FcA. We suggest that the reason for this difference is because 

the rate at which the chemical step occurs is slower with the FcMeOH than the FcA. This is 
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also supported by figure 4.5.4.2 in which we show the actual charge transfer coefficient for 

the electrocatalytic oxidation is fast for the FcA when compared to FcMeOH. Consequently, 

FcA produces a larger electrocatalytic current under the same condition. On the other hand, 

according to Cassidy's study of FcDA, it was suggested that FcDA has an even faster 

electrocatalytic kinetics toward superoxides than FcA. This is because the O2 

electrocatalytic current of FcDA does not disappear even at scan rate 100 mV s
-1 

[3]. 

 

This behavior of the O2 electrocatalytic peak for FcA is de-convoluted, whilst for FcMeOH 

it is convoluted, and occurs at higher potentials than the simple non-electrocatalytic current 

for the FcA which could also be explained by the different functional groups. This 

difference is caused by the fact that after the Fc is oxidized into Fc
+
, the Fe

3+
 centre interacts 

with the surrounding OH
− 

and HO2
−
.  These findings suggest that the Fe

3+
 centre is 

instantaneously reduced by the reactive oxygen species forming an adduct, wherein the 

carbonyl group on the FcA makes the adduct relatively stable. This causes a further 

lowering of the electron density of the iron centre when compared to FcA alone.  As a 

result, an even higher oxidation peak potential is needed to oxidise FcA resulting in the 

separation of the O2 electrocatalytic peak. On the other hand, the FcMeOH adduct is not 

stabilized and instantaneously oxidises. Therefore, the catalytic signal seen for FcMeOH is 

not separate from the normal FcMeOH signal when compared with the FcA.  

 

The oxidation peak potential of FcMeOH  (figure 4.5.3.1  O1 ) and FcA  (figure 4.5.3.1  O2 

and O3) obtained from cyclic voltammograms performed in the presence of oxygen were 

plotted against logarithm of scan rate (figure 4.5.4.2). As seen from the figure, there were 

no changes in oxidation peak potential for scan rates up to about 100 mVs
-1

 in the case of 

FcMeOH (figure 4.5.4.2 FcMeOH O1 peak) and FcA non-electrocatalytic peak (figure 
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4.5.4.2 FcA O2 peak). For scan rates beyond 100 mVs
-1

, both peak potentials mentioned 

changed linearly with log of scan rate with correlation coefficient values of R
2
=0.937 and 

R
2
=0.955 for FcA-oxygenated non-catalytic peak (figure 4.5.4.2 FcA O2 peak) and 

FcMeOH-oxygenated (figure 4.5.4.2 FcMeOH O1 peak). On the other hand, the FcA 

electrocatalytic peak (figure 4.5.4.2 FcA O3 peak) yielded a correlation coefficient value of 

R
2
=0.964 from very low scan rates (5mVs

-1
 to 40 mVs

-1
). These observations indicated 

FcMeOH (figure 4.5.4.2 FcMeOH O1 peak) and FcA-non-electrocatalytic peak (figure 

4.5.4.2 FcA O2 peak) were quasi-reversible over the scan rate range of 5 to 100 mVs
-1

 and 

irreversible beyond 100 mVs
-1

. Whereas in the case of the FcA electrocatalytic process 

(figure 4.5.4.2 FcA O3 peak) is irreversible from 5-40 mV s
-1

.  

 

By comparing the graphical lines for the irreversible behavior we can ascertain that the 

electrocatalytic current for FcMeOH is convoluted with the non-electrocatalytic current.  

We can calculate the charge transfer coefficients (αna) for the various peaks by using 

equation 4.1 in which, ∆Epa/∆logv  is equivalent to the gradient of the plots obtained in 

figure 4.5.4.2. 

 

Equation  4.1 

    

     
 

     

     
 

In which Epa (V) is the oxidation peak potential, v is scan rate in mV s
-1

, na is the number of 

electrons in the rate determining step and α is the charge transfer coefficient in which with 

increasing faster charge transfer process. R is the standard gas constant, T is the standard 

temperature in Kelvin at 25
o
C. 
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The charge transfer coefficient value of 0.28 was obtained for the FcA non-electrocatalytic 

peak. In contrast, the FcA electrocatalytic peak (figure 4.5.4.2 FcA O3 peak) has an α value 

of 0.77 for one electron. This indicates two electrons are involved in this oxidation. 

However, due to the nature of FcMeOH electrocatalytic peak and non- electrocatalytic peak 

being convoluted, the FcMeOH electrocatalytic peak potential just simply cannot be extract 

for the α value calculation.  

 

 

Figure 4.5.4.2. Oxidation peak potential versus logarithm of scan rate measured for 

FcMeOH-oxygenated, FcA-oxygenated. 
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system, the slower chemical electron transfer kinetics in the reduction of FcMeOH in the 

presence of oxygen would make the system less sensitive. FcDA has the fastest catalytic 

redox kinetics with the superoxide but also has the highest Epa. This is the least favourable 

because a high potential could disturb the cellular membrane potential [7]. FcA has a unique 

and separate electrocatalytic O2 peak, which is favourable, because this would simplify the 

system of study. In the absence of a unique and separate electrocatalytic O2 peak, two CV 

studies are conducted in the presence of and absence of oxygen in order to obtain the 

electrocatalytic signal. In the case of FcA, a single CV can be recorded from which the 

electrocatalytic O2 peak is directly measured. 

 

4.5.5 Testing on biological model 

E. coli (strain DH5α) was used to characterise the ability of FcA to monitor cellular 

respiration via oxygen concentration. Optical density measurements were calibrated by 

determining the E. coli cell numbers, using a haemocytometer, in 1 ml of 1 OD solution. 

According to the counting, it was about 54,441,260.7 cells in 1 ml of a 1 OD suspension. 

This was followed by serial dilution of the stock E. coli solution to the appropriate 

concentrations in PBS. The cell solution was subsequently pre-incubated with 10 mM of 

glucose then mixed to a final concentration of 2 mM FcA. Two consecutive cyclic 

voltammograms were performed on solutions containing varying numbers of cells (0, 0.25, 

0.5, 1.75, 1, 1.25, 1.5, 1.75 and 2 OD) and figure 4.5.5.1 summarises the first of the two 

consecutive cyclic voltammograms conducted to demonstrate the magnitude of the FcA 

electrocatalytic O2 peak. As expected, an increase in E. coli concentration in the system 

leads to an increase in oxygen consumption, and therefore, a decrease in the electrocatalytic 

O2 peak current (figure 4.5.5.1 (i)). In addition, the decrease in the electrocatalytic O2 peak 

current is directly proportional to the increase in E. coli cell numbers (figure 4.5.5.1 (ii)).  
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Figure 4.5.5.1 (i) Shows typical CVs obtained for the first of the two cycles for solutions 

containing different E. coli concentration of 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, and 2 OD 

with 2 mM FcA. (ii) Shows a plot of OD600mn vs. electrocatalytic O2 peak current obtained 

from cyclic voltammograms in (i) All CVs were performed at a scan rate of  

5 mVs
-1
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During the assay the E. coli would be continuously consuming oxygen, and this could be 

monitored in near real-time by measuring the change in the catalytic peak current between 

two consecutive cycles. The electrocatalytic O2 peak current generated on the first cycle and 

the second cycle is exactly one cyclic voltammetric scan apart at a fixed scan rate of 5 mVs
-

1
. A plot of the electrocatalytic O2 peak current documented from the two cycles at the 

varying cell concentrations can be observed figure 4.5.5.2 (i). Assay solutions containing 

higher cell numbers resulted in a larger difference in the magnitude of the current between 

the cycles. It is also worth mentioning that there is always an 18% drop in the magnitude of 

the electrocatalytic O2 peak observed between the first and second cyclic voltammetric cycle 

in the control study (cyclic voltammetry conducted in the absence of E. coli). This indicates 

that oxygen from the atmosphere cannot dissolve into solution at sufficient rates to replenish 

electrochemically consumed oxygen. It will therefore not interfere with measurement of O2 

in cellular assays. Therefore, any current decrease measured that was greater than 18% 

between the first and second electrocatalytic O2 peak can be assigned to oxygen 

consumption by the E.coli. Moreover, a decrease in the peak current obtained for the 

electrocatalytic O2 peak between the two cyclic voltammetric cycles is directly proportional 

to the increase in E.coli cell numbers (figure 4.5.5.2 (ii)). Using Eq. (2), the oxygen 

consumption rate down to a single cell level (cells per second) was calculated to be 

approximately 1.12 × 10
-17

 moles s
-1

 cell
-1

, which is similar to the values published in the 

literature (4.31 × 10
-20

 mole s
-1

 cell
-1

)
 
for E. coli strain K-12 [16].  The difference in oxygen 

consumption rate observed in our study using E. coli strain DH5-α and the K-12 strain is 

likely due to the difference in metabolic demands between the two E. coli strains and the 

different culture conditions resulting in the cells being at different stages of the growth 

cycle. In addition, the experimental setup, the method of measurement and the experimental 

condition between this study and in the literature are very different. Therefore, the accuracy 
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and sensitivity between the different measuring methods and the conditions of the cells at 

the point of measurement will cause variations. More importantly, in this study, we 

demonstrated for the first time the simplicity and the accuracy and sensitivity of the FcA-

mediated system. 

 

Equation 4.2 

(i) 

                                  
                                                           

                         
 

(ii) 

                              
  

                              
                

 

Where: X = percentage of current drop between 2 cycles due to the limitation of oxygen 

diffusion to the electrode. This percentage drop varies with different electrolytes, and is 

obtained by doing a non-living organism control e.g. filtering the samples; ip = the peak 

current (A); n = the number of electrons; α = the transfer coefficient (See section 4.5.4); na 

= the number of electrons in the rate limiting step; A = the surface area of the electrode 

(cm
2
); D = the diffusion coefficient (cm

2
S

-1
) calculated from the non-electrocatalytic FcA 

peak (figure 4.5.3.1  O1) using the Randles-Sevcik equation for reversible system (See 

section 4.5.3); ν = the scan rate (Vs
-1

). 
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Figure 4.5.5.2 (i) A histogram of the magnitude of the mean electrocatalytic O2 peak 

current obtained from the cyclic voltammogram on the first cycle and second cycle (0, 0.25, 

0.5, and 0.75 OD). (ii) Summarizes the first and second electrocatalytic O2 peak ipa 

difference minus 18% (negative control – cyclic voltammetry studies conducted in the 

absence of E. coli), calculated as the limitation in the rate of oxygen dissolving into the 

system, (n=5, ±1SE). In addition to the detection of oxygen consumption, we have also 
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shown our system to be compatible in the measurement of oxygen increase in solution (see 

section 4.5.7). 

 

4.5.6 Electrochemical cytotoxicity assay 

To confirm FcA-mediated system can accurately report on the metabolic rate of cells and to 

demonstrate the wide capabilities of the developed assay the FcA was used to detect the 

toxicity of a model toxin ethanol. Cyclic voltammetry studies were conducted using a fixed 

number of E. coli (4 OD) and incubated with different concentrations of ethanol (0, 2.5, 5, 

10, and 12.5% (v/v)) and 2 mM FcA.  Ethanol was used because it is cytotoxic to E. coli 

through the disruption of plasma membrane [17]. It is hypothesized that an increase in 

ethanol concentration would lead to a decrease in the number of viable cells. Consequently, 

this would lead to a decrease in oxygen consumption and therefore an increase in the 

generated electrocatalytic O2 peak current. In addition, a control was performed in which the 

optical density of E. coli was measured post-incubation with ethanol to ensure the same 

number of cells were still present prior to performing cyclic voltammetric studies to confirm 

any difference was not due to bulk changes in cells density. Moreover, our electrochemistry 

assay results for analyzing the toxic effects that ethanol had on the cells were compared to a 

standard viable agar plate method of toxicity testing to enable validation of our system.  

 

The electrocatalytic O2 peak currents generated in CVs in the presence of ethanol and cells 

are summarized in figure 4.5.6.1 i. In the presence of relatively high ethanol concentrations, 

a decrease in oxygen consumption and consequently increase in the electrocatalytic O2 peak 

current was observed.  As expected the magnitude of the peak current was inversely 

proportional to increase in ethanol content. A complete loss in oxygen consumption was 

determined at 12.5% (v/v) ethanol, indicating that no respiring cells remain since the 
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electrocatalytic O2 peak current of the negative control (cyclic voltammetry studies in the 

absence of cells) is approximately the same as cell incubated with 12.5% (v/v) ethanol. In 

addition, the number of respiring cells was confirmed by the growth assay (figure 4.5.6.1 ii) 

with the increase in ethanol concentration, there was a decrease in viable cells numbers and 

a complete loss in cell viability at 12.5% (v/v) ethanol concentration matching the 

electrochemistry results. Moreover, the optical density study confirms the number of cells 

pre- and post- ethanol incubation was consistent, see figure 4.5.6.1 iii. This further 

demonstrated the biological compatibility and sensitivity of the FcA-mediated system. 

Moreover, a key advantage of toxicity assay developed was that it is much more rapid 

compared to the standard plate viability assay which takes 24 hours to perform compared to 

seconds with the our electrochemical methods.  In addition, our system reports sub-lethal 

toxicity which is missed by the plate viability assay as we see that there is no significant 

difference at concentrations of ethanol obtained equal to and below 10%.  This is because 

over the 24 hours period the cells can recover from the lower concentration and therefore 

the sub-lethal toxicity is missed which is reported by the electrochemistry assay.  This is 

important and demonstrates a key advantage of our toxicity assay as pharmaceutical 

companies are interested in avoiding sub-lethal toxicity. The developed electrochemical 

method (figure 4.5.6.1 i) is also more precise than the plate viability assay as indicated by 

the much larger standard error bars (figure 4.5.6.1 ii).  
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Figure 4.5.6.1 (i) Summarises the magnitude of the mean electrocatalytic O2 peak current 

difference between the first and second cyclic voltammetric cycles for solutions of cells at 4 

OD at varying concentrations of ethanol (0, 2.5, 5, 10, or 12.5% (v/v)). A cyclic 

voltammogram was conducted in the absence of E. coli which acted as a negative control 

(n=5, ±1SE). (ii) Summarise the mean colony counts post-ethanol incubation of same batch 
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of cells used in the cyclic voltammetry study (n=14-16, ±1SE). (iii) Summarises the mean 

optical density measured by UV spectrophotometer at 600 nm post-ethanol incubation of the 

same batch of cells used for cyclic voltammetry studies and agar plate bacterial growth 

assay, (n=5, ±1SE). 

 

4.5.7 Measurement of oxygen production in samples 

In order to investigate further the applicability of the developed FcA mediated oxygen 

demand assay for multiple applications, experiments were performed with Algae-rich fresh 

water samples. These were collected from nearby natural water resources, namely from a 

canal and from a stream (Vale water). A sample of the water sources were filtered to remove 

all living organisms and decaying matter, serving as acellular controls.  This allowed us to 

obtain the standard percentage current drop due to the limitation of oxygen diffusion in 

different electrolyte environments. From simple observation, the water sample collected 

from the canal appears a darker shade of green than the water sample from the Vale (figure 

4.5.7.1 i), suggesting that the former had higher algae content. After filtration, both water 

samples became clear (figure 4.5.7.1 ii). CVs were generated for acellular controls and raw 

water samples from the canal and Vale stream and the O2 electrocatalytic peak currents 

were measured. A summary of the current changes and percentage current changes between 

the two cyclic voltammetric cycles for both raw samples and control samples are plotted in 

figure 4.5.7.2. Using Equation 4.2 part ii, the electrocatalytic O2 peak current of the first 

cycle can be used to calculate the overall oxygen contained in the sample. For the Vale and 

canal water samples a total oxygen concentration of 341.6 µM and 351.3 µM was 

calculated, respectively. Interestingly, during the time frame of the 2 consecutive cyclic 

voltammteric scans being performed on the raw environmental water samples, the oxygen 
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content increased which was opposite to result observed with E.coli solutions. In the case of 

E.coli samples, the cells were consuming oxygen in the solution therefore the decrease of 

the electrocatalytic O2 peak at the second cycle is greater when comparing to the acellular 

controls. That is if one calculates the percentage change in current between the first cycle 

from the second cycle of acellular control, and then subtract the equivalent percentage 

change calculated from the E. coli working sample at OD 0.75, a relative negative change 

when compared to the acellular control of approximately of -33% is calculated (18%-51%=-

33% values obtained from figure 4.5.5.1 ii). The value of -33% represents an oxygen 

consumption.  For the case of the raw water samples obtained from the Vale and canal an 

approximate relative change, when working samples were compared to acellular controls, of 

+14% and +18% were calculated, respectively.  The larger value obtained for the canal 

sample of 18% is indicative of a high algae content as previously observed by a deeper 

green colour of the sample. Algae are capable of photosynthesizing and producing oxygen 

and consequently this experimentally proves the canal water had a higher algae content than 

the Vale water.  In this study, the electrocatalytic O2 peak obtained from the second CV 

generated in the presence of the raw algae rich water samples showed a relatively much 

smaller decrease in the current when comparing it to the acellular controls.  This indicates 

that there is an increase in oxygen content over time for the raw water samples. By inputting 

the data into Equation 4.3, where X is defined as in Equation 4.2 i, an increase in oxygen 

level of 2.522 × 10
-9

 moles s
-1

 and 3.422 × 10
-9

 moles s
-1

 was obtained from the vale and 

canal water, respectively. These experiments demonstrated that FcA mediated oxygen 

demand assay can also be used for detecting increases in oxygen content in solution over 

time, not just for detecting oxygen consumption. 
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Figure 4.5.7.1 (i) Image of water sample collected from canal and the stream (Vale water). 

Showing water sample collected from the canal has a darker grade of green. (ii) Image of 

both water sample after being filtered. 
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Figure 4.5.7.2 (i) shows a histogram of the magnitude of the mean electrocatalytic O2 peak 

current obtained from the cyclic voltammograms on the first cycle and second cycle 

(Filtered and raw Vale/canal water samples (n=3)). (ii) shows a histogram of the mean 
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percentage electrocatalytic O2 peak current drop between first cycle and second cycle in the 

cyclic voltammogram (Water control (n=2), filtered and raw Vale/canal water samples 

(n=3)) (±1SD). 

Equation 4.3 

                         
                                                           

         
 

 

4.6 Conclusion 

In this chapter, a full investigation of FcA and FcMeOH electrochemical properties and their 

ability to electrocatalytically report on oxygen concentration via its interaction with OH
-
 and 

HO2
-
 was conducted. Data were compared with FcDA data from Cassidy’s study and the 

most suitable mediator was selected. The ability of FcA to monitor oxygen was taken 

advantage of to develop a rapid cellular respiration assay which could be monitored in near 

real-time, faster than any current comparable biochemical oxygen demand (BOD) assay. 

This assay was shown to be able to report accurately on the cell numbers present and was 

adapted to be used as a rapid toxicity assay on the E.coli model. Additionally, data showed 

that the oxygen demand assay developed can be used in a complex water environment to 

determine total oxygen concentration and shows that the method is sensitive to oxygen 

increases also. It is envisaged [2] that the developed assay has potential to impact on fields 

and industries ranging from environmental toxicology through to pharmaceutical and 

agrochemical industries as demonstrated by the shortening of a commercially available bio-

oxygen demand assay down to minutes rather than 5 days.  
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The next step is to increase the sensitivity of the assay and further develop the assay into 

more application compatible system, e.g. mammalian cell, hand held system. 
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Chapter 5 

Immobilization of mediator 

5.1 Introduction 

A detailed account of the invention and development of a ferrocene carboxylic acid (FcA) 

mediated oxygen demand assay (patent publication number WO2015036612 A1) was 

documented in Chapter 4. In Chapter 5, we expand on this study looking into the refinement 

of the FcA-oxygen demand assay into a system which is more user friendly and fit for 

commercial use. The current system, as described in chapter 4, using dissolved mediator has 

several disadvantages. Firstly, this method requires a bench top setup consisting of a 

potentiostat and an electrochemical cell with solution mixing to conduct the experiment. In 

many areas of work and study this would limit the practicality of employing this system, for 

example in field based environmental studies where facilities could be limited. Secondly, it 

has limited practical use on biological cell line studies because it is difficult to ensure 

sufficient biological cell numbers and mediator, in close proximity to the working electrode 

area. This is especially the case for adherent biological cell lines (biological cell lines that are 

not in suspension). It becomes difficult to place the adherent cultured cells close enough to 

the working electrode in a dissolved mediator system. Cells could either block the mediator 

as cells could adhere to the electrode, or they adhere to the flask away from the working 

electrode area. It is possible to force adherent cell lines into solution, but this is not be 

optimal because this would highly affect adherent cells survival [1, 2]. Adherent cell line 

survival is highly regulated by cell-matrix adhesion through many pathways [1, 2]. Adherent 

cell lines would not achieve peak metabolism when they are in suspension, and may behave 

differently compare to when they are in optimal condition. This would render results from 
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adherent cell line studies, e.g. drug testing, toxicology studies and cell signalling, invalid. 

Thirdly, when mediator is dissolved in solution, diffusion becomes one of the rate limiting 

steps, as the mediator needs to diffuse to the electrode in order for the electrochemistry to 

happen. Diffusion rate is highly affected by temperature, osmolarity and concentration and a 

system affected by such environmental conditions could give rise to inconsistent results [3]. It 

is thus concluded that the way forward is to develop a system removing the disadvantages of 

dissolved mediator in solution by means of fixation of FcA mediator on a working electrode. 

 

The immobilisation of mediator on electrodes for electrochemical biosensors has become 

more and more popular since Clarks and Lyons, 1962 [4] for the following reasons. The 

immobilised mediator becomes a non-diffusion redox station which facilitates electron 

transfer from mediator to electrode, thus resulting in higher current density and increase 

signal to noise ratio [5]. The immobilized mediators on the electrode surface allows repeat 

usage of the electrodes and measurement over prolonged time periods, as no reagent needs to 

be replaced or replenished [6]. It also allows development into portable chip electrode 

systems. The immobilisation of mediators allow the systems to work at relatively smaller 

potential (closer to 0V) and minimises background interference [5]. Mediator immobilisation 

techniques are widely used by many different types of electrochemical sensors, including 

glucose [7-9], fructose [10] and cholesterol [11, 12] meters. Common mediator 

immobilisation methods include, screen printing [7, 8], drop coat and seal/immobilized in a 

semi-permeable membrane [10, 13] and chemical immobilisation [14, 15].  
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Screen printed electrodes are widely used in many different electrochemical biosensors, 

including DNA sensors, aptasensors, immunosensors and enzymatic biosensors [16]. The 

method is a relatively simple, quick and low cost mix and print procedure. This method 

reduces the amount of FcA needed by concentrating the FcA on the electrode surface, rather 

than it being diluted throughout the bulk solution. Screen printing can be used in small batch 

studies (potentially homemade) with screen-printing machines for research purposes, as well 

as, industrial scale printing. It also allows flexibility in electrode design, shape, material, and 

adhesion material [17], and a two or three electrode system can be printed on a small area 

therefore reducing experimental sample size. Screen printed electrodes have the potential to 

be easily made into a chip based portable systems [9, 18], and 96 well cell culture plate 

systems for adhesive cell lines [17]. In addition to all the aforementioned advantages of 

screen printed electrodes, this method of immobilisation of the FcA requires no chemical 

modification of the carboxylic acid group. The analyte, FcA, can be simply mixed in a 

conductive paste and then printed as a thick film onto the substrate. Therefore, no chemical 

modification is needed thus preserving the single carboxylic acid functional group, identified 

in chapter 4, to be crucial for the presence of the separate O2 catalytic peak.  

 

Drop coating analyte onto a screen printed electrode then fixing the analyte with permeable 

membrane is another method widely used in electrochemical biosensor synthesis [19]. There 

are a large variety of membranes with different properties which could be used in drop 

coating. However, there are only a few membranes which are compatible for biosensors, of 

which must have a non-biofouling environment. Nafion and cellulose acetate are two 

commonly used membranes which have non-biofouling environments. Nafion is a negatively 

charged polymer and allows positively charged molecules to pass through while preventing 

negatively charged molecules repelled by the negatively charged polymers [19]. Whereas, 
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cellulose acetate is a neutral polymer and will allow both negatively and positively charged 

molecules to pass through [20]. This neutral polymer is popular among electrochemical 

biosensors for example cholesterol meter [12], uric acid meter [21] and paracetamol sensor 

[22]. Cellulose acetate was specifically chosen for this section of work because it would 

allow charged species of molecules to pass through. This is an important characteristic 

because the FcA mediator in the system is indirectly measuring oxygen content by directly 

measuring reactive oxygen species, namely HO2
-
 and OH

-
. If nafion was to be used, the 

negative polymers would repel the reactive oxygen species from the mediator which is 

immobilised under the membrane, therefore a high likelihood of no detection. This method, 

similar to screen printing, reduces the amount of FcA needed by concentrating the FcA on the 

electrode surface, rather than it being diluted throughout the bulk solution. A downside of this 

method is that it relies on the permeability of the membrane, which may affect the 

accessibility of oxygen to the electrode by introducing another diffusion layer for oxygen 

between the bulk and electrode. 

 

Self-assembled monolayers (SAM) are used extensively as a bridge between the mediator and 

electrode in biosensors. It provides a controlled uniformed monolayer on the electrode 

surface, forming a bridge of fixed distance between the redox centre (mediator) and the 

electrode [23]. Forming a controlled and uniform monolayer of the surface of the electrode 

gives two main advantages. Firstly, formation of a controlled and uniform monolayer should 

give rise to less peak signal variation and secondly there should be less variation between the 

surfaces of different electrodes produced in the same way relatively for example to drop 

coating and screen printing. Gold substrate was chosen to synthesise the SAM-ferrocene 

electrode as this produces a strong thiolate-gold (Au-S) bond when compared to other metals 

for example silver [24] or copper through absorption [24, 25]. The protocol for synthesis of 
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the SAM modified electrode is simple and contains few steps and is highly reproducible. The 

clean substrate is incubated into diluted thiol-SAM solution before rinsing with the same 

solvent and drying with a gas such as argon [25, 26]. The major disadvantage of 

immobilisation of FcA by means of SAM modified electrode is that the coupling reaction of 

the FcA mediator onto a SAM molecule would alter the monocarboxylic acid group.  This 

could lead to the loss of the separated O2 catalytic peak, as reported in Chapter 4. Also the 

use of gold as substrate could reduce the effectiveness of the system when used in 

conjunction with other techniques, such as microscopy and colourimetry.  

 

Diazonium salt is another popular chemical, used as a bridge between substrate and mediator, 

for electrochemical sensor modified electrodes. It is believed to produce a covalent bond 

between the diazonium molecule and the substrate being relatively more electrochemically 

stable than the thiol based bonding [27, 28]. It can also be electrochemically grafted on 

different materials, including glassy carbon [29], gold [27], indium tin oxide (ITO) [30]. 

While sharing the same potential chemical downsides as SAM, the biggest advantage of 

using diazonium is that transparent ITO substrate can be use. This is beneficial because the 

system could be integrated with other techniques, e.g. microscopy and colourimetry. It may 

also potentially be more electrochemically stable than SAM surface [27, 28]. The surface 

synthesis is however, far more complicated than in SAM surface synthesis and relatively less 

controlled in terms of surface thickness. 
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5.2 Aim 

The aim of this chapter is to further develop FcA mediated oxygen demand assay system by 

immobilisation of the mediator. The purpose is to improve the sensitivity, user friendliness, 

portability, and cost effectiveness of the system.  

 

5.3 Objectives 

The objectives are as follow; 

1. To assess different screen printing approaches, from hand screen printing, in-house 

screen printing and industrial screen printing. 

2. Test the viability of drop coat immobilization of FcA. 

3. Investigate SAM and diazonium techniques for chemical immobilisation of the FcA 

mediator. 

 

Objective 1 

Hand screen printing was conducted as a preliminary study for proof of concept for 

compatible of screen printing and carbon paste ink with the FcA mediated oxygen demand 

assay. In-house and industrial screen printing was conducted to further optimize/troubleshoot 

screen printing techniques. 
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Objective 2 

Drop coat technique was investigated as an alternative method for non-chemical 

immobilisation of the FcA mediator for comparison with screen printing technique. 

 

Objective 3 

The two most commonly used techniques for chemical immobilization, SAM and diazonium 

were assessed to determine the viability of the technique for the FcA-mediated oxygen 

demand assay system. Gold was used for SAM modified surfaces. Gold and Indium tin oxide 

(ITO) substrates were used for diazonium surface for comparative purposes, as diazonium 

can bind strongly to both and ITO has an advantage for being transparent. 

 

5.4 Methods and materials 

 5.4.1 Chemicals 

Carbon graphite paste was purchased from Gwent Electronic Materials Limited, UK. Indium 

tin oxide (ITO) single-side coated glass was purchased from Delta Technologies Limited, 

USA. Gold substrates were purchased from George Albert PVD, Germany.10 x PBS, glass 

slides, were purchased from Fisher Scientific, UK. Sodium Nitrate, FcA, 11-(Ferrocenyl) 

undecanethiol, cellulose acetate (CA), p-phenylenediamine, 1-dodecanthiol, 11-amino-1-

undecanethiol and 4-aminothiophenol were purchased from Sigma Aldrich, UK. Acetone was 

purchased from VWR, UK. Acetate Film (OHP acetate), paint brush were purchased from 

Ryman Stationary, UK. Industrial screen printed electrode strips (Part: 9601219 rev. A. Ink 

Vendor: 1), GSI Technologies, USA. Ferrocene NHS ester was purchased from fivephoton 
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biochemical. 1, 1’-ferrocene carboxylic acid NHS ester was kindly provided by Dr. Aaron 

Acton. 

 

5.4.2 Hand screen printing 

A 1 x 3 cm hole was cut out from an acetate film and the film was then placed on a glass 

slide. 10 % w/w FcA was mixed with carbon graphite paste and brushed on the glass slide 

using the acetate film as a stencil. The printed electrode was placed in an oven at 90 °C for 30 

minutes to dry. 

 

5.4.3 In-house screen printing 

The DEK 248 screen printer was used to conduct the screen printing. Printing carbon graphite 

paste alone was used to optimise the printer settings and conditions. Different print gap 

distances, force and speed were all tested. Chips were then dried at 65 °C for 30 minutes. 

Images were taken, using a Zeiss Lab.A1 AX10 microscope attached with a Qimaging 

Micropublisher 3.3 RTV imaging camera, for each chip before and after they were dried.  

 

 5.4.4 Gwent Electronic Materials Limited screen printingIn collaboration with 

Gwent Electronic Materials Limited investigations were performed to troubleshoot the porous 

issue identified in the carbon paste. The viscosity of the carbon graphite paste and the tension 

of the screen in the in-house DEK 248 printer was analysed using a Tetko tension meter. 

Carbon graphite paste was printed on both glass and PET substrates then dried in an oven at 

90°C for 30 minutes. Carbon graphite paste adhesion was tests by, a scrape test, using a 
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spatula to scratch the electrodes printed on both substrates, and a sticky tape test, by applying 

and removing a strip of sticky tape. A porous test was conducted by putting an adhesive well 

on the carbon paste and then adding a few drops of PBS into the well. For thoroughness the 

test was repeated after a further 30 minutes of drying at 90°C. 

 

 5.4.5 Drop coat 

Industrial screen printed electrode strips (Part: 9601219 rev. A. Ink Vendor: 1) were provided 

by GSI Technologies. The strip electrodes consist of a 2 mm diameter carbon paste electrode, 

a carbon counter electrode and a Ag/AgCl reference electrode. A solution of 10 mM FcA in 

ethanol was dropped onto the carbon working electrodes and allowed to dry at room 

temperature. After the FcA had dried, 0.5, 0.7 and 1 % w/v of cellulose acetate (CA) was 

dissolved in 9:1 ratio acetone to water, then dropped on top of the dried FcA. The samples 

were either placed in an oven to dry for 15 minutes at 65°C or dried in room temperature for 

30 minutes. 

 

5.4.6 Cleaning of gold and ITO substrates 

Gold and ITO substrates were cleaned by rinsing with ethanol, drying with argon gas and 

exposed to Ultraviolet ozone for 60 minutes. The substrates were then rinsed and stored in 

ethanol, and used within 24 hours. 
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5.4.7 Preparation of SAM surfaces on gold 

Cleaned gold substrate was placed in 1 mM of 1-dodecanthiol (DDT), 11-amino-1-

undecanethiol (UDT-NH2) or 4-aminothiophenol (phenol-NH2) in ethanol for 24 hours. After 

24 hours, SAM-coated gold were rinsed and sonicated for 5 minutes in ethanol before use. 

 

 5.4.8 Diazonium-grafting on gold or ITO substrates 

Diazonium was grafted on UV-ozone cleaned gold or ITO substrates as described in Rawson, 

2013 [31]. A diazonium solution containing 10 mM p-phenylenediamine was mixed with 

sodium nitrite in a 1:1 ratio in 10 ml of 0.5 M HCl and left on the bench for 3 minutes. The 

gold or ITO substrate was then connected to the working electrode wire and dipped into the 

diazonium solution and held at -0.6 V potential for either 10, 20, 25, 30 or 60 seconds. The 

substrates were then rinsed with water and dried with argon gas, then rinsed again with 

ethanol and dried with argon gas.  

 

Diazonium-ferrocene (di-Fc) modified surfaces were prepared by incubating the diazonium 

modified surfaces in 1, 1.2, 2, 3 or 5 mM ferrocene carboxylic N-hydroxysuccinimide ester 

(FcA-Ester) or 5 mM 1, 1’-ferrocene carboxylic acid NHS ester (FcDA-Ester). Ethanol, 

dimethylformamide (DMF), and dichloromethane (DCM) were used as solvents and DCM 

was also used with and without triethylamine (TEA) to aid the grafting reaction, each either 

overnight or for 24 hours. These diazonium-ferrocene (di-Fc) modified substrate were rinsed 

and sonicated in ethanol for 5 minutes before use. 
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5.4.9 Cyclic Voltammetry 

All CVs described in Chapter 5 was conducted using three electrode cell, consisting of a 

working electrode (each of which is the electrode being modified to immobilise the mediator 

in the respective sections), counter electrode (Pt) and reference electrode (Ag/AgCl). CVs 

described in hand screen printing, in-house screen printing, and chemical immobilised 

mediator sections were conducted using a 5 mm diameter Teflon cell. This was to ensure a 

fixed exposed surface area for CV measurement. All hand screen printed CV work was 

conducted in 1 x PBS with a scan rate of 5 mVsec
-1

. All in-house screen printing CV work 

was conducted in 2 mM FcA in 1 x PBS at 5 mVsec-1 for two consecutive cycles. 

 

Cyclic voltammetry was used for chemical immobilisation section. CVs were conducted, on 

SAM 11-(Ferrocenyl) undecanethiol modified gold surface and dizonium-ferrocene (di-Fc) 

modified gold surface for stability investigation. Electrochemical stress was induced by 

performing 10 consecutive cycles of CV in 1 x PBS at 100 mVsec
-1

 on each sample. The 

ferrocene peak current obtained from the CVs were plotted and compared. 

 

For the SAM-modified electrode investigation, the electrochemical stability of the thiol-Au 

bond was determined by measuring the SAM surface concentration difference between SAM-

modified surface that has and has not been subjected to electrochemical stress. 

Electrochemical stress was induced by performing 50 consecutive cycles of CV in 1 x PBS at 

100 mVsec
-1

. The SAM surface concentration was measured by scanning samples from 0 to -

1.5 to 0 V at 100 mVsec
-1

 in 0.1 M nitrogen degassed KOH to obtain the desorption peak of 
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SAM on the gold surface. The concentration of surface SAM was then calculated using 

equation 5.1 in section 5.5.2.1.2. 

 

Diazonium grafting integrity on gold and ITO surfaces were determined by conducting CV 

experiments in 1 mM ferricyanide solution in PBS at 100 mVsec
-1

, scanning from 0.6 V to -

0.2 V back to 0.6 V, for 1 cycle. If the diazonium modified surface is stable, the ferricyanide 

signal would be blocked so no corresponding peak current shown in the CV. The stability of 

diazonium grafted on gold and ITO surfaces were determined by performing CV using 

diazoniaum modified surface with and without applying electrochemical stress. The electrode 

chemical stress was induced in the same way as SAM-modified surfaces. 

 

Diazonium grafted ITO surface storage stability test was conducted by inserting the grafted 

chip onto the Teflon cell. The chip and Teflon cell were cleaned, by rinsing with water, 

drying with argon gas, then washing with ethanol and finally drying again using argon gas. 1 

x PBS was added to the Teflon cell and 1 CV cycle was run at 100 mVsec
-1

 from 0 to 0.6 and 

back to 0 V. The chip and Teflon cell were then cleaned using the above method. Then a 

second CV experiment was conducted in 1 mM ferricyanide solution in PBS run at 100 

mVsec
-1

 from 0.6 to -0.2 and back to 0.6 V for 1 cycle. The chip and Teflon cell was cleaned 

once again, and parafilm was used to protect the Teflon cell from dust. The whole procedure 

mentioned was conducted on days 0, 1, 3, 5, and 7. 

 

CV experiments done on drop coated industrial printed electrodes were conducted by 

clamping the individual electrodes to the potentiostat. The printed electrodes were then 
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dipped into 1 x PBS solution. Two different CV settings were used. The first setting scans 

from 0 V to 0.6 V and back to 0 V at 5 mVsec
-1

. The second setting scans from 0 V to 0.6 V 

and back to 0 V for 25 consecutive cycles at 100 mVsec
-1

. 

 

 5.4.10 Mass Spectrometry 

All MS analysis was conducted using an Alliance e2695 liquid chromatography (LC) system 

directly attached to a Xevo-G2-XS-ToF mass spectrometer. The LC system was used to 

directly inject the relevant samples and deliver the sample in methanol mobile phase at 100 

µl/min, using electrospray ionisation (ESI) technique for MS analysis. The capillary voltage 

for ESI analysis was set to 3 kV in positive polarity, and the sampling cone voltage was set to 

40 V. The source temperature was set to 130 °C, desolvation temperature set to 350 °C. Dry 

nitrogen gas was used as nebuliser gas (100 L/hr), desolvation gas (800 L/hr) and sample 

cone gas (60 L/hr). 

 

Samples of FcA-Ester and FcDA-Ester were prepared at 0.5 mg/ml in each of the following 

solvents, ethanol, tetrahydrofuran (THF), and dimethylformamide (DMF) both with and 

without 1 mM triethylamine (TEA) additive. MS were performed on samples diluted in 

ethanol, THF, and DMF without TEA at 0 and 48 hours. MS were performed on samples 

dilutaed in ethanol with or without TEA at 0, 1, 2, 24 and 48 hours.  
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5.5 Results and discussion 

 5.5.1 Screen printing 

  5.5.1.1 Hand screen printing 

Preliminary work was performed to screen print an electrode by hand. A 1 X 3 cm hole was 

carefully cut out from an acetate film and the film was then placed on a glass slide. 10 % w/w 

FcA was mixed with carbon graphite paste and brushed on the glass slide using the acetate 

film as a stencil (figure 5.5.1.1.1). The printed electrode was placed in an oven at 90 °C for 

30 minutes to dry.  

 

 

Figure 5.5.1.1.1 Hand screen printing method 

 

Electrodes were then placed into a teflon cell with a 5 mm diameter opening and filled with 

PBS. CV was then conducted using the electrode in PBS with Pt counter electrode and 

Ag/AgCl reference electrode at 5 mV sec
-1

. Carbon graphite paste was chosen as a diluent for 

1 cm
3 cm

Acetate film Glass slides

Acetate film

Carbon graphite paste



145 
 

printing the working electrode. It is cheaper than silver paste, more stable while stored in air, 

and more importantly GC electrodes showed no signal interference when used with FcA, as 

described in Chapter 4. CV with the hand screen printed carbon paste-FcA electrode shows a 

second oxidation peak (figure 5.5.1.1.2 O2), the O2 catalytic peak, as seen in Chapter 4 

(section 4.5.3, figure 4.5.3.1). This means the carbon paste is not compromising the unique 

O2 catalytic property of FcA with HO2
-
 and OH

-
. The CVs were imported into the Linkfit 

software to calculate the O2 catalytic peaks (figure 5.5.1.1.2 O2), where each peak was 

analysed five times and a mean value generated. An increase in the peak current, of the O2 

catalytic peak from an average of 1.36 µA (n=2), in the dissolved FcA system, to an average 

of 9.02 µA (n=2), using hand screen printed system was observed. This could be due to, or a 

combination of, the following factors; an increase of the actual working concentration of 

FcA, whereby immobilisation has successfully localised the FcA in the proximity of the 

electrode. The immobilisation also means the FcA is no longer dissolved in the bulk solution, 

and therefore it’s diffusion factor is eliminated. Additionally, it could also be due to an 

increase in working area as the solution was soaking through the electrode paste (figure 

5.5.1.1.3).  
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Figure 5.5.1.1.2 Typical cyclic voltammograms recorded with hand screen printed carbon 

paste (dotted line) and carbon paste-FcA (solid line) working electrodes using PBS solutions. 

All CVs were performed at a scan rate of 5 mVsec
-1

. (n=2). Also showing the O1 normal 

oxidation peak and the O2 O2 catalytic peak. 
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Figure 5.5.1.1.3 Photo image of the bottom of the hand screen printed electrode showing 

PBS solution soaking through the electrode paste. 

 

With the sample solution soaking through the electrode paste, the electrode working area is 

no longer a 2D area but an unknown, uncontrolled, 3D area including the depth of the 

electrode. This unknown working electrode area would prevent us from calculating the O2 

concentration by introducing a second variable into Equation 2 ii in section 4.5.5. The peak 

separation however was greatly increased, which could also be due to limitations in the hand 

screen printing process. The hand printing technique using a simple brush does not create a 

very smooth surface which may affect the conductivity of the electrode [32]. The poor 

conductivity would then increase the electron transfer resistance, thus lowering the electron 

transfer rate resulting in a big variation in ∆Ep [33-35]. In the dissolved FcA system, an Epa 

was obtained at 352 mV relating to the ferrocene electrochemistry and for O2 catalytic peak 

an Epa of 394 mV (figure 4.5.3.1). The Epc was approximately 286 mV, resulting an ∆Ep 

about 66 mV (figure 4.5.3.1). In the hand screen printed electrode system, the Epc was 

approximately 246 mV and Epa was approximately 425 mV, resulting an ∆Ep approximately 

179 mV (figure 5.5.1.1.2). Microscopy images of the hand screen printed carbon paste-FcA 
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electrode (figure 5.5.1.1.4) had revealed cracks on the electrode surface, confirming the 

bigger ∆Ep in hand screen printed system was due to the poor printing.  

 

 

Figure 5.5.1.1.4 20 X microscopy image of 10 % w/w FcA in carbon paste hand print 

electrode. 

 

In order to confirm that the big peak separation is due to the hand print electrode, another 

well known mediator was used to repeat the experiment. CV was obtained in 1 mM 

ferricyanide in PBS using hand printed carbon paste electrode or GC electrode (figure 

5.5.1.1.5). An increase of ∆Ep from 63 mV (using GC electrode) to 330 mV (using a hand 

printed electrode) was also observed in the ferricyanide system confirming the hand screen 

printing has affected the reversibility and causes the peak’s shape to not be as pronounced. 
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Figure 5.5.1.1.5 Cyclic voltammogram obtained from PBS only (n=2) and 1 

mM ferricyanide in  PBS (n=3) using a hand printed carbon electrode. As comparison 

1 mM ferricyanide in PBS using a GC electrode (n=3) 

 

In conclusion, compared to the dissolved FcA system, the hand screen printed carbon paste-

FcA electrode system has preserved and enhanced the separated O2 catalytic peak property of 

FcA, which is fundamentally crucial for the FcA-mediated bio-oxygen demand measuring 

system. However the porous carbon paste electrode made the working electrode area 

unknown, therefore as the reaction is no longer confined to the electrode surface, but 

throughout the whole printed area, measurements are invalidated by introducing a second 

variable into equation 2 ii in section 4.5.5. In addition, due to limitations of the hand screen 

printing process, in particular the roughness of the surface, the electrode resistance has 
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increased therefore decreased the reversibility and made the peak shape not pronounced. The 

next step to improve the system was to try an in-house screen printer.  

 

5.5.1.2 In-house screen printing  

The DEK 248 screen printer was used to conduct the screen printing. The aim of the initial 

study was to thoroughly test different settings on the screen printer, to achieve a smooth and 

homogeneous electrode surface. Printing carbon ink alone was used to optimise the printer 

settings and conditions. Different print gap distances (the distance between the screen and 

substrate), force (the downward force exerted on the screen by the blade) and speed (how fast 

the blade moves across the screen) were all tested. Electrodes were then dried at 65 °C for 30 

minutes. Images were taken with microscopy for each chip before and after they were dried. 

Table 5.5.1.2.1 lists the details of the screen printer settings tested. Microscopy images show 

how the settings make a difference on the electrode surface when they are wet, and it was 

noted that inconsistencies were seen across the printed surface even on the same electrode. 

Microscopy images of all fully dried in-house screen printed electrodes (figure 5.5.1.2.2), 

and hand screen printed electrodes look similar. 
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Table 5.5.1.2.1 Table of different settings tested on the screen printer and O2 catalytic peak 

current obtained from each samples produced by each setting by running CV using the 

printed samples in 3 mM FcA in PBS at 5 mV sec
-1

. 

Setting: Image X 5 (wet) Print Gap  

(mm) 

Force 

(Kg) 

Speed  

(mm sec
-1

) 

O2 

catalytic 

peak 

current 

(µA) 

1 

 

2.2 0.65 20 5.91 

2 

 

3 2.65 20 6.96 

3 

 

2.6 2.65 20 4.42 

4 

 

2.6 2.65 10 4.69/4.92 
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5 

 

2.2 2.65 10 4.63/4.71 

 

  

Figure 5.5.1.2.2 Typical image of a dried screen printed carbon electrode. 

 

To ascertain if the in-house screen printing method improved the function of the electrodes, 

and to find out which in-house screen printer setting was the best, CVs were performed. Each 

fully dried in-house screen printed carbon paste electrodes was tested in 3 mM FcA in PBS at 

5 mV sec
-1

. Typical CVs of 2 consecutive cycles of the electrodes printed with setting 3 are 

shown in figure 5.5.1.2.3, although results are typical for all the electrodes printed regardless 

of the screen printing settings. Figure 5.5.1.2.3 shows the in-house screen printing method 

has improved the electron transfer rate of the system as the ∆Ep has decreased in range from 

71 mV to 87 mV, dependent on the printer setting, compared to 179 mV obtained from the 

hand printing method. This is comparatively much closer to the ∆Ep of 66 mV obtained using 

a standard GC electrode (section 4.5.3). The O2 catalytic peak current in the first cycle 



153 
 

showed no differences between the electrodes produced using the various settings on the 

screen printer except setting 2 (table 5.5.1.2.1). However, the O2 catalytic peak current in the 

second cycle drops dramatically, ranging from 45 % to 59 %, in all electrodes compared to 

FcA in solution system, using GC electrode, which was an 18% drop (figure 5.5.1.2.3). 

 

As the 3 mM FcA in PBS solution was placed into the electrochemical cell, the solution 

instantly soaked through the electrode paste (figure 5.5.1.2.4). During the first CV cycle, 

oxygen within the electrode paste and in close proximity to the electrode is consumed. The 

diffusion rate of oxygen from the bulk solution to the proximity of the electrode (figure 

5.5.1.2.5, diffusion 1), causes an 18% drop in oxygen concentration in the solution in close 

proximity to the electrode at room temperature in the second CV cycle. This is as 

demonstrated in the dissolved FcA system in chapter 4. However, in addition to diffusion 

layer 1, in the in-house screen printed electrode system, an extra diffusion layer is introduced 

due to the porosity of the electrode paste (figure 5.5.1.2.5, diffusion 2). This has introduced 

an unknown drop in oxygen percentage concentration in close proximity to the electrode and 

inside the electrode paste. In this case it ranged from 45 % to 59 %, the difference possibly 

being due to the different thickness of the paste. It shows that the porous property of the 

electrode has not only invalidated the measurement of oxygen concentration at the first CV 

cycle, but also completely void the system’s ability as an oxygen consumption assay, as the 

percentage drop of the O2 catalytic peak current in CV cycle 2 can no longer be accurately 

reproduced.  
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Figure 5.5.1.2.3 Typical two consecutive cyclic voltammograms recorded from 3 mM FcA in 

PBS solutions using carbon paste screen printed working electrodes. 

 

 

Figure 5.5.1.2.4 Image of PBS solution soaking through the screen printed electrode. 
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Figure 5.5.1.2.5 The porous carbon paste electrode has created an addition diffusion layer for 

oxygen. 

 

The in-house screen printing has greatly improved the electron transfer rate of the dissolved 

mediator system. This was reflected in the decreased of ∆Ep of dissolved FcA in range from 

71 mV to 87 mV, which is very closed to using a standard GC electrode which has a ∆Ep of 

66 mV at 100 mV sec
-1

. However, the porous condition of the screen printed electrode has 

not improved. This is critically affecting the accuracy and function of the FcA-mediated 

oxygen demand assay which need to be addressed. Therefore, the provider of the carbon 

paste was consulted and collaborated for a trouble shoot mission. 

 

5.5.1.3 Industrial screen printing (Gwent) 

Studies were performed to elucidate why the carbon paste electrode was porous. Viscosity of 

the screen printing ink affects the shear rate of the ink[36], which is essential for the screen 

printed electrode quality e.g. thickness and roughness of the printed electrode[37]. Too low 

viscosity would lead to pinholes and very thin coverage of paste. Too high viscosity may 
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cause the printed pattern to spread on standing[38]. To ensure the viscosity of the carbon 

paste was not the reason for the porous electrode, e.g. causing pinholes, a viscosity test was 

carried out on the supplied carbon paste. The viscosity test was performed using a Searle 

rotational viscometer, HAAKE viscotester 550 (figure 5.5.1.3.1). The carbon paste was 

placed in the middle of the rotator and spun at a fixed speed while the resistant was measured. 

The test confirms the viscosity of the carbon paste is within specification set out by the 

guidelines of Gwent (confidential business information, therefore actual data is not 

presented), therefore showed that the carbon paste ink was in good condition for screen 

printing. 

 

 

Figure 5.5.1.3.1 Viscosity test carried out by a member of staff. 

 

With increased use, the mesh that makes up the screen used in screen printing become loose, 

and this loss of tension can result in lateral movement, smudging the printed pattern as the 

blade pushed along the surface of the screen during printing [39, 40]. Any movement of the 
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screen would cause inconsistencies in the printing process which could affect the function of 

the electrode, for example incomplete adhesion to the substrate surface due to smudging. To 

establish if this was the cause of the printed electrode being porous, the tension of the screen 

in the in-house screen printer was measured using a Tetko tension meter. The tension was 

found to be within guideline tolerances for a stainless steel mesh screen (15-45 N cm
-1

)
 [39]

, 

thus confirming the condition of the screen was not the reason the printed electrodes were 

porous. 

 

Another possible reason for the porous nature of the ink is it’s adherence to the base 

substrate. Wettability plays a vital role in surface adhesion and the subsequent coating 

efficiency of a media on a substrate, in this case the GC ink [41]. For example a hydrophilic 

media will have better wettability with a hydrophilic substrate than with a hydrophobic 

substrate. Ink suppliers do not disclose the nature of the solvent in their inks, therefore the 

hydrophilicity of the ink is unknown. Polyethylene terephthalate (PET) is a commonly used 

substrate in screen printing because of its mechanical and chemical properties [42], with a 

different hydrophilicity compared to glass [43, 44]. Therefore, PET was chosen as an 

alternative substrate for testing as the differences in hydrophilicity may have improved 

wettabilty with the carbon paste ink. 

 

Carbon ink was printed on both glass and PET substrates then dried in an oven at 90°C for 30 

minutes. Adhesive tests were carried out afterwards. A spatula was used to lightly scrape the 

electrodes printed on both substrates. The electrodes printed on glass scrapped off a lot easier 

than the electrodes printed on PET (figure 5.5.1.3.4). 
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Figure 5.5.1.3.4 Adhesion testing of carbon paste electrodes printed on PET and glass by 

scrapping with a spatula. 

 

The next adhesion test was carried out by putting sticky tape on the electrodes printed on both 

substrates and subsequently removing the tape. The electrodes printed on glass substrate were 

removed almost entirely when the sticky tape was removed, whereas most of the electrodes 

printed on PET substrate remained intact (figure 5.5.1.3.5). Both adhesion tests demonstrated 

that carbon paste has a much stronger adhesion to PET substrate than glass substrate. 

Glass 

PET 



159 
 

 

Figure 5.5.1.3.5 Showing the tape which was stuck to and then removed from electrodes 

printed on glass and PET substrates. 

 

A DEK 1202 screen printer was used on the day to print the carbon paste on glass and PET 

surface for comparison. The DEK 1202 screen printer is much smaller and features more 

simple controls than the DEK 248 previously used, and as such, is ideal for quick 

troubleshooting and method development purposes. The condition of the blade is absolutely 

paramount to the successful printing of the electrodes, as a dull or deformed blade edge 

would not be able to push the ink through the screen evenly and could affect how consistent 

the printed surface is. This explains why the in-house screen printed electrodes printed on the 

DEK 248 had inconsistencies across the printed surface (figure 5.5.1.3.2).  Blade condition is 

maintained by ensuring the gap between screen and substrate is such that the downward force 

needed on the blade is as low as possible, thus protecting the blade from any unnecessary 

Glass PET 
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pressure. If the gap is too large and thus the force to high, it could also cause inconsistent 

printing as the screen can bounce during printing and flick ink or touching back onto the 

substrate. This explains the mesh like pattern seen on the in-house screen printing on setting 5 

(table 5.5.1.2.1). The system setting should always be “print then flood”, this setting causes 

the machine to flood a thin layer of ink on the screen after each print. This thin layer of ink is 

important to prevent any residual ink from drying in the screen mesh where it could affect the 

next print run. If any mediators or enzymes were mixed into the ink before printing, a mixer 

should be used to ensure the mediators or enzymes were mixed well into the ink (figure 

5.5.1.3.3). 

 

Setting 5 Spot 1 Spot 2 

Sample 1 

  

Sample 2 

  

Figure 5.5.1.3.2 Microscopy images taken from different sections of the printed electrodes 

made using the in-house DEK 248. These images show printing inconsistencies. 
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Figure 5.5.1.3.3 Example of the mixer that is used for blending mediators or enzymes into 

screen printing ink. 

 

Finally, a porosity test was carried out on electrodes printed on both glass and PET substrates 

(figure 5.5.1.3.6). A waterproof sticker was used to create a well into which a few drops of 

PBS was placed on both electrodes and left for 3 minutes. The underside of the electrodes 

were observed after the 3 minute interval and despite better adhesion to PET, PBS was still 

seen soaked through both electrodes (figure 5.5.1.3.7).  
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Figure 5.5.1.3.6 Wells were created on top of the carbon paste electrodes printed on both 

glass and PET substrates. 

 

 

Figure 5.5.1.3.7 Image of the back of the carbon paste electrodes printed on both glass and 

PET substrates. Both show proof of being porous to PBS as the ink appears wet and darker in 

colour. 

 

Glass 

PET 
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At this point, the only reasons for the electrodes being porous could be a drying problem or 

the nature of the carbon paste ink. To confirm it was not due to the poor drying, all of the 

printed electrodes were placed back in the oven for another 30 minutes at 90 °C. The porous 

test was repeated yielding the same results. 

 

It was concluded that the screen printed electrodes were porous as a result of the nature of the 

carbon paste ink. The graphite in the ink is formed in sheet like structures that are cross 

linked throughout the overall structure. By nature the sheet structures would move when in 

contact with liquid and therefore will be porous. The results are very positive and show the 

second catalytic O2 peak and ∆Ep similar to the FcA system in solution. This is all a good 

indicator that screen printing is a viable option for the production of FcA printed electrodes, 

however future work is needed to focus on the prevention of the analyte soaking through the 

porous ink. Much research would be needed in the development of a carbon ink suitable for 

this project, particularly in respect to the need for multiple cycle CV analysis. Unlike many of 

the currently commercially available meters e.g. glucose and cholesterol which only have a 

single CV cycle analysis, and therefore do not suffer the problem of unknown diffusion rate 

through the carbon paste electrode in the consecutive cycles. Without this multiple CV cycle 

analysis step the system would not allow the near real time measurement of O2 consumption. 

Both the type of carbon powders and pasting liquids have been shown to greatly affect the 

surface and 3D structure of the resultant carbon paste ink [45], so such development would be 

a big project in itself. It could involve a very in-depth long term project to develop a non-

porous carbon paste electrode without having manufactures to disclose their classified 

product information and protocols.  
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5.5.1.4 Drop coating and cellulose acetate membrane 

Another option was to use industrially pre-printed carbon electrodes and drop coat FcA on 

the electrode and seal it with permeable membrane. Industrial screen printed electrode strips 

(Part: 9601219 rev. A. Ink Vendor: 1) were provided by GSI Technologies. The strip 

electrodes consist of a 2 mm diameter carbon paste electrode, a carbon counter electrode and 

a Ag/AgCl reference electrode. A solution of 10 mM FcA in ethanol was dropped onto the 

carbon working electrodes and allowed to dry (figure 5.5.1.4.1 i). After the FcA had dried, 

0.5, 0.7 and 1 % w/v of cellulose acetate (CA) was dissolved in 9:1 ratio acetone to water, 

then dropped on top of the dried FcA. The samples were then placed in an oven to dry for 15 

minutes at 65°C. The appearance of cracks on the surface of the membrane was noted 

following the drying process. 
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i  ii  

Figure 5.5.1.4.1 Image of electrode after (i) 10 mM of FcA in ethanol is dropped and dried 

on the working electrode and (ii) different concentration of CA membrane in 90% acetone 

dropped on top of the dried FcA. 

 

CVs were conducted on six drop coated electrodes that were prepared using the method 

above with 1% w/v CA, these are shown in figure 5.5.1.4.2. The CVs obtained from all six 

samples are clearly different in appearance, firstly the ipa and ipc values differ greatly, and 

secondly there are clear differences in the exhibition of the O2 catalytic peak. These are 

probably a result of the irregular cracks on the surface of the electrode. As these irregular 

cracks allow the sample electrolyte and oxygen to reach the electrode without controlled 

diffusion through the membrane, depending on how the cracks were formed. As the cracks 

are formed in an irregular way the resultant CV’s data are irreproducible. 
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Figure 5.5.1.4.2 CVs obtains from PBS with the FcA and 1% CA membrane drop coated 

industrial screen printed working carbon electrode. 

 

In an attempt to resolve the issue of the membrane cracking, electrodes were again prepared 

in the same way as explained above with 0.3, 0.5 and 0.7 % w/v CA membrane, except this 

time they were dried at room temperature for 30 minutes to avoid cracking.  No visible cracks 

were formed with this method drying at room temperature. However, it was noted that 

following drop coating with membrane the orange coloured FcA (seen in figure 5.5.1.4.1 i) 

and white CA had mixed forming a yellow spot on the electrode (figure 5.5.1.4.1 ii).  
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CVs were obtained as before, using electrodes with 0.3% 0.5 % and 0.7 % CA membrane, 

typical CVs are shown in figure 5.5.1.4.3. Data suggested that 0.5 % and 0.7 % CA could be 

too thick for O2 to diffuse readily through the membrane in the short time period of the CV 

scan however, 0.3% shows the O2 catalytic peak figure 5.5.1.4.3 iii. 

 

Figure 5.5.1.4.3 Preliminary CVs obtained from PBS using 10mM FcA and CA membrane 

drop coated electrodes containing (i) 0.7 % (n=1), (ii) 0.5 % (n=1) and (iii) 0.3 % (n=3) CA 

at 5 mV sec
-1

, (iv) Linear sweep voltammetry of three electrodes as prepared in (iii) to show 

the reproducibility of the O2 catalytic peak. 
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Linear sweep voltammetry using electrodes prepared with 0.3 % CA were carried out to test 

the reproducibility of the results having found this to be the suitable concentration to exhibit 

the O2 catalytic peak.  Data shown in figure 5.5.1.4.3 iv, shows the O2 catalytic peak is 

exhibited for each repeat and so results are reproducible. However there are some variations 

in peak current which can be explained by previous observations. The FcA appeared to 

dissolve into the droplet of membrane solution, and as the droplet spreads into the electrode 

the droplet becomes non-uniform. This means there will be minor variations in the 

concentration of FcA on the actual electrode area which may lead to these minor variations in 

results shown. 

 

Prior to conducting a scan rate study, an electrode stability test was performed on the 0.3% 

CA electrodes by running 25 consecutive CV cycles at 100 mVsec
-1

 in PBS, see figure 

5.5.1.4.4. The data shows the FcA peak current was gradually decreasing over the 25 CV 

cycles. This suggested that the FcA was slowly leaching from the electrode surface. There are 

two possible explanations; firstly, the FcA could be leaching through the membrane whilst 

the CA membrane is still intact. Secondly, the CA membrane could be slowly dissolving into 

the bulk solution, leading to the FcA leaving the electrode proximity. The latter was 

subsequently observed to be correct, figure 5.5.1.4.5 shows a photograph of the 0.3% CA 

prepared electrode (i) pre 25 CV cycles and (ii) post 25 CV cycles. In the pre 25 CV cycles 

electrode, the FcA and CA drop coat can easily be identified as a yellow/orange patch on the 

working electrode, however this is no longer present post 25 CV cycles. As a result of this 

loss of the membrane surface over the duration of the CV scan, a scan rate study could not be 

performed. 
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Figure 5.5.1.4.4 Typical CV obtained from PBS using 10 mM FcA and CA membrane drop 

coated electrodes containing 0.3 % CA at 100 mV sec
-1

 for 25 cycles. (n=3) 
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i  ii  

Figure 5.5.1.4.5 Image taken of 10mM FcA and CA membrane drop coated electrode (i) 

before and (ii) after 25 cycles of CV in PBS. 

 

The data suggests that drop coat of FcA and oxygen permeable membrane onto an 

industrially printed electrode could be a solution to the screen printed electrodes being 

porous. However, the result demonstrated CA membrane is incompatible with the FcA-

mediated oxygen demand assay, because the drop coated surface is unstable when conducting 

electrochemical assays. Therefore, other methods of mediator immobilisation were 

investigated. 
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5.5.2 Chemical immobilisation 

 5.5.2.1 SAM-modified surface  

  5.5.2.1.1 SAM-Fc modified surface stability study 

Self-assembled monolayers (SAM) are commonly used as a bridge between substrate and 

analyte in modifying electrodes [23]. To ensure the modified surfaces are stable whilst 

electrochemical assays are conducted, an electrochemical stability test was carried out on 

SAM bridged modified ferrocene electrodes. If the electrochemical tests show the SAM 

bridge surfaces are stable under electrochemical influences, it is hereby termed 

electrochemically stable. Whereas, if the electrochemical tests show the SAM bridge surfaces 

are unstable under electrochemical influences, it is hereby termed electrochemically unstable. 

Gold substrate chips were cleaned in the UV-Ozone machine for at least 1 hour before 

incubating in 1 mM 11-(Ferrocenyl) undecanethiol (UDT-Fc) (figure 5.5.2.1.1.1) in ethanol 

overnight.  

 

 

Figure 5.5.2.1.1.1 Structure of 11-(Ferrocenyl)undecanethiol. 
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Samples were sonicated in ethanol for 5 minutes and dried with argon gas before CVs were 

run for 10 cycles at 100 mV sec
-1 

(figure 5.5.2.1.1.2) (all CVs throughout section 5.5.2 

conducted on gold or ITO substrates use a Teflon cell with a 5mm opening except when 

grafting the diazonium onto the substrate, see section 5.5.2.2.1). Figure 5.5.2.1.1.3 is a 

summary of redox peak current obtained from figure 5.5.2.1.1.2 which shows that the 

ferrocene currents have dramatically reduced within 10 cycles. The decrease of redox peak 

current suggests that the surface attached ferrocene is not stable during the electrochemical 

experiment. However, the cause for the reduction in peak current with cycle number and 

therefore, surface concentration of bound ferrocene could be as a result of 2 factors. Firstly, 

the thiol bond between the substrate and SAM is not stable and therefore the conjugated 

alkane thiol and ferrocene molecule comes away from the surface. Secondly, the ferrocene 

moiety is not stable. Further investigation was required in order to identify the point of 

instability. 

 

 

Figure 5.5.2.1.1.2 is a typical CV obtained from 10 cycles of CV of UDT-Fc in PBS. (n=2) 
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Figure 5.5.2.1.1.3 Summary of redox peak current obtains from figure 5.5.2.1.1.2. 

 

5.5.2.1.2 Further investigation into SAM-modified surface stability 

study 

Although the UDT-Fc SAM modified surfaces showed electrochemical instability with a 

decrease in redox peak current over increasing CV cycles, because the SAM-modified 

surface synthesis is relatively simple, therefore, further investigation was carried out. Data 

from section 5.5.2.1.1 shows that the overall UDT-Fc molecule was not electrochemically 

stable, however, it is not certain if the electrochemical instability is due to the thiol bond 

between the alkane chain and the substrate or the alkane chain-Fc bond. Literature shows that 

diazonium could also be used as a bridge like SAM to synthesis di-Fc surfaces which forms 

even stronger bonds with the metal substrates [27, 28]. A possible reason for the high 

diazonium modified surface stability is the delocalisation of electrons in benzene ring 

structure of the aryl amine. If the benzene ring is the reason for the diazonium modified 

surface having high stability, it is possible we can still use SAM as the bridge as long as a 
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benzene ring structured SAM is used. This could potentially result in a chemical 

immobilisation process that has both advantages of relatively simple preparation offering less 

error, and yet increased stability for a SAM-Fc surface. 

 

To investigate this possibility, it was necessary to establish if the instability of the original 

SAM UDT-Fc surfaces was due to the thiol bond or the ferrocene coupling. To investigate 

this, three different SAM molecule were picked to do a stability test using cyclic 

voltammetry. 1-dodecanethiol (DDT) (see figure 5.5.2.1.2.1 i), 11-amino-1-undecanethiol 

(UDT-NH2) (see figure 5.5.2.1.2.1 ii) and 4-aminothiophenol (phenol-NH2) (see figure 

5.5.2.1.2.1 iii). UDT-NH2 and phenol-NH2 were chosen to allow investigation of the 

stabilising effect of the benzene group versus an alkane chain. DDT was chosen as it is very 

similar to the UDT-NH2 having only a carbon group changed with an amine group, and 

would be a control to see how the NH2 group affects stability. If the DDT and UDT-NH2 are 

electrochemically unstable then it would confirm that the thiol bond is the reason the original 

UDT-Fc (section 5.5.2.1.1) surfaces were unstable. If data shows that the thiol-Au bond is 

stable then the alkane chain-Fc bond must be unstable and causing the decreased ferrocene 

peak current over multiple cycles. Alternatively if the DDT and UDT-NH2 are found to be 

electrochemically unstable but the phenol-NH2 is electrochemically stable it confirms that the 

thiol-Au bond could be being stabilised by the benzene ring. 
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i           ii            iii  

Figure 5.5.2.1.2.1 Chemical structure of (i) 1-dodecanthiol (DDT), (ii) 11-amino-1-

undecanethiol (UDT-NH2) and (iii) 4-aminothiophenol (phenol-NH2). 

 

To test the electrochemical stability of each SAM molecule, gold substrate chips were 

cleaned in the UV-Ozone machine for at least 1 hour before incubating in either 1 mM DDT, 

UDT-NH2, or phenol-NH2 in ethanol for 24 hours. Samples were sonicated in ethanol for 5 

minutes and dried with argon gas before CVs (cyclic voltammetry) were performed. CVs 

were performed from a starting potential of 0 V to -1.5 V finishing at 0 V at 100 mV sec
-1

 in 

0.1 M KOH. The extended negative potential would reduce the thiol bond removing all the 

SAM molecules from the gold substrate chips, and generating a desorption peak [46, 47]. The 

desorption peak is used to calculate the surface coverage of SAM yielded by 24 hours 

incubation on gold substrate calculated with Equation 5.1 [48]. After the CV, samples were 

cleaned in water then ethanol each time and finally dried with argon gas, before being put 

back into the same SAM solution and incubated for another 24 hours. After the re-absorption 

of SAM [47], samples were again sonicated in ethanol for 5 minutes and dried with argon gas 
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before 50 cycle CVs in PBS solution were run scanning from 0 V to 0.6 V and back to 0 V 

potential, the same range used when performing the FcA-mediated oxygen demand assay, at 

100 mV sec
-1

. Each sample was then rinsed with water and dried with argon gas, then rinsed 

with ethanol and dried with argon gas again. Finally, the desorption CV was run again as 

before to calculate the coverage of SAM on the gold substrate following the 50 cycle CVs. 

Data from the first desorption CV and second desorption CV could allow for comparison of 

surface coverage of SAM before and after the 50 cycle CV in PBS was run and give 

comparison of the electrochemical stability of each DDT, UDT-NH2, and phenol-NH2. 

 

Equation 5.1 

        

Where: Γ = surface coverage (mol cm-2), Q= the charge obtained by integrating the 

desorption peak, n = the number of electrons, F = Faraday constant, A is the electrode area. 

 

Desorption data of DDT, UDT-NH2 and phenol-NH2 prepared gold substrate chips are 

presented in figure 5.5.2.1.2.2, figure 5.5.2.1.2.3 and figure 5.5.2.1.2.4 respectively. CV data 

is shown in figure 5.5.2.1.2.2 i, figure 5.5.2.1.2.3 i and figure 5.5.2.1.2.4 i, and finally the 

summary of DDT, UDT-NH2 and phenol-NH2 surface coverage with and without 50 cycles 

of CV in PBS are plotted in figure 5.5.2.1.2.2 ii, figure 5.5.2.1.2.3 ii and figure 5.5.2.1.2.4 ii. 

The surface coverage of DDT was shown to decrease when we compared the surface 

coverage before and after the 50 cycles of CV in PBS. This confirms it was the thiol both 

between UDT-Fc and the gold substrate that was broken in section 5.5.2.1.1. UDT- NH2 also 

shows the surface coverage decreased compare the surface coverage before and after the 50 
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cycles of CV in PBS. This confirms it was not the amine group affecting the stability of the 

SAM surface. Finally, phenol-NH2 also demonstrates a surface coverage decrease comparing 

before and after 50 cycles of CV in PBS. This shows that benzene ring was not the factor 

contributing to the diazonium modified surfaces’ electrochemical stability.  
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Figure 5.5.2.2.2 (i) Typical CV obtained from DDT modified surface desorption peak in 0.1 

M KOH before and after 50 X cycles of CV in PBS. (ii) Concentration of DDT present on the 

electrode surface calculated using data from figure 5.5.2.2.2 (i) and equation 5.1. (n=2) 
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Figure 5.5.2.2.3 (i) Typical CV obtained from UDT- NH2 modified surface desorption peak 

in 0.1 M KOH before and after 50 X cycles of CV in PBS. (ii) Concentration of UDT- NH2 

present on the electrode surface calculated using data from figure 5.5.2.2.3 (i) and equation 

5.1. (n=3) 
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Figure 5.5.2.2.4 (i) Typical CV obtained from Phenol-NH2 modified surface desorption peak 

in 0.1 M KOH before and after 50 X cycles of CV in PBS. (ii) Concentration of UDT- NH2 

present on the electrode surface calculated using data from figure 5.5.2.2.4 (i) and equation 

5.1. (n=2) 
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Having investigated further into the electrochemical stability of SAM modified electrode 

surfaces, it was concluded that the reason for the electrochemical instability of the SAM 

modified electrode surfaces when applying potential, is that the thiol bond on the gold 

substrate was being electrochemically oxidised and cleaved [49]. This is supported by the 

evidence that the phenol-NH2 SAM (benzene-sulphur-gold bond) was cleaved whereas when 

bound as aryl-amine (benzene-carbon-gold bond) in the case of diazonium grafting the bond 

is stable. There are other methods that maybe able to help strengthen the thiol-Au bond. In 

low pH environment, the thiol-Au would become coordinate bond which is strong than 

covalent bond in high pH [50]. However, lowering the electrolyte pH would make the system 

less compatible for biological system, for example mammalian cell lines [51]. In conclusion, 

at this stage the thiol-gold bond instability at the require working potential needed to run the 

FcA mediated oxygen demand assay, renders SAM modified surface electrodes unsuitable for 

FcA immobilisation. For this project, and at this stage, literature suggested investigation 

would be better focused into testing diazonium as a bridge for FcA immobilisation, due to it 

having stronger bridge to substrate bonding. 

 

  5.5.2.2 Diazonium Modified Surface  

   5.5.2.2.1 Preliminary diazonium modified surface stability study 

Another popular method used to bridge substrate and analyte in modifying electrodes is to 

use diazonium electrochemical grafting to produce diazonium modified (di) surfaces. The 

electrochemical stability of this also needed testing to ensure the stability of the grafting for 

the intended assay conditions. To this end, an aryl amine was grafted on UV-ozone cleaned 

gold substrate via diazonium electrochemical grafting as described in Rawson, 2013 [31]. 10 

mM p-phenylenediamine was mixed with sodium nitrite in a 1:1 ratio in 10 ml of 0.5 M HCl 
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and left on the bench for 3 minutes (figure 5.5.2.2.1.1 i). Substrate chips was then connected 

to the working electrode wire and dipped into diazonium and sodium nitrite solution and held 

at -0.6 V potential for 10 second (figure 5.5.2.2.1.1 ii). Substrate chips were then rinsed with 

water and dried with argon gas, then rinsed again with ethanol and dried with argon gas. Di 

surfaces were then left in 1 mM ferrocene carboxylic acid NHS ester (FcA-Ester) in ethanol 

overnight (figure 5.5.2.2.1.1 iii). Diazonium-ferrocene (di-Fc) samples were sonicated in 

ethanol for 5 minutes before conducting CV.  

 

Figure 5.5.2.2.1.1 A diagrammatic explanation of diazonium-ferrocene (di-Fc) surface 

synthesis. 

 

Ten consecutive CV were performed with the di-Fc surface in PBS at 100 mV sec 
-1

 (figure 

5.5.2.2.1.2). Figure 5.5.2.2.1.3 is a summary of the ferrocene redox peak current extracted 

from figure 5.5.2.2.1.2 and the data suggests that di-Fc is stable within the 10 cycles of CV. 

However the ferrocene redox current of the di-Fc surface at 572 nA, was significantly smaller 

than the UDT-Fc surfaces at 6.96 µA. This is because in comparison to the manufacturer 
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prepared UDT-Fc which has ferrocene attached to each SAM molecule, there are 2 steps in 

the process of synthesising the surface that could affect the yield. Both the coverage of 

diazonium salt and coupling efficient of ferrocene onto the diazonium salt can account for the 

reduced yield. Optimisation work is required in order to increase the multi-step synthesis 

yield. 

 

Figure 5.5.2.2.1.2 Ten consecutive cycles of CV conducted in PBS using di-Fc modified 

electrode. 
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Figure 5.5.2.2.1.3 Plot of ferrocene redox peaks in 10 cycles obtained from figure 

5.5.2.2.1.2. The blue line shows the oxidation peak and the red line shows the reduction peak 

current. 

 

5.5.2.2.2 Diazonium grafting optimisation 

SAM surface fabrication by its nature produces a single layer coverage of the electrode 

surface however, comparatively diazonium grafting is much more complex. Many factors for 

example grafting duration [52], can affect the grafting process which can cause multilayer 

formation [53, 54]. Formation of multiple layers of excessive thickness of the diazonium as 

shown in figure 5.5.2.2.2.1, could cause blocking of electron transfer from the substrate to 

the redox centre rendering the electrode useless. Alternatively if the grafting is too thin or 

incomplete, for example there may be pinholes [30], the amount of mediator that can be 

coupled onto the surface would be limited and, the system would be vulnerable to 

interference from any electrochemically active species in the sample. In previous studies 120 

s was utilised to graft an aryle amine via electrochemical reduction of the corresponding 

diazonium on ITO [31] however this is greatly affected by environmental conditions e.g. 
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temperature. For example, from observation, when sodium nitrite was added into the p-

phenylenediamine solution (figure 5.5.2.2.1.1 i), the speed of colour change from clear to 

yellow of the 10 mM p-phenylenediamine was significantly affected by temperature 

variations in the laboratory. Therefore it was necessary to establish an optimal grafting time 

for the laboratory environment in which the studies were conducted. 

 

Figure 5.5.2.2.2.1 A diagrammatical representation of examples of diazonium grafting. 

 

An aryl amine was grafted on to gold and ITO substrate via electrochemical diazonium 

reduction in order to compare the grafting affinity of each substrate. Gold was used to allow 

comparison between SAMs and aryl amine modified surface via the diazonium 

immobilisation techniques, however unlike SAM modified surfaces, diazoniums can be 

grafted on many metals, therefore ITO substrate grafting was also investigated. ITO being 

transparent offers an advantage over gold substrate as it would allow the system to be 

integrated for use with other techniques such as microscopy and colourimetry. This could 

prove highly advantageous for use in biological applications. ITO and gold substrates were 

cleaned and dipped into p-phenylenediamine solution as described in section 5.5.2.2.1. The 

diazonium was then grafted on the substrates by applying a potential of -0.6 V for 0, 10, 20, 
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25, 30, and 60 seconds. Samples were rinsed with water and ethanol, before sonicating in 

ethanol for 5 minutes. The aryl amine modified gold and ITO electrodes were then used to 

perform CVs using a solution of 1 mM ferricyanide in PBS. The CV was started from a 

potential of 0.6 V with a switching potential of -0.2 V and an end potential at 0.6 V at 100 

mV sec
-1

. As the grafting time increases, so does the amount of diazonium salt grafted onto 

the substrate surface [55] until eventually the electrode is completely covered, thus blocking 

the electrons reaching the ferricyanide in the solution. The ideal grafting time would be the 

shortest possible time when we observe blockage of electron transfer, meaning complete 

surface coverage but minimal grafting layer thickness. 

 

Cyclic voltammograms generated for solutions consisting of 1mM ferricyanide using either 

gold or ITO electrodes modified via electrochemical grafting of diazonium, at  electrodes 

exposed to reduction potentials so facilitate grafting at varying lengths of are presented in 

figure 5.5.2.2.2.2 i and figure 5.5.2.2.2.3 i. The summary of ipc of ferricyanide at different 

grafting times of diazonium on gold and ITO substrates are plotted in figure 5.5.2.2.2.2 ii and 

figure 5.5.2.2.2.3 ii. CV data shows that there is no blockage of ferricyanide signals on both 

substrates at the 0 second control grafting time. It is seen as grafting time increases from 0 to 

20 seconds, increased amount of aryl amine are formed on the substrate surface slowing 

down the transfer of electrons [56], subsequently a decrease in ferricyanide signal is 

observed. This is also reported in other diazonium modified surfaces [30]. At 30 second 

grafting time in gold substrate and 25 second on ITO substrate it shows a stable, reliable 

blockage of ferricyanide signal. This suggested that diazonium has a slight quicker grafting 

kinetic on ITO compared to gold substrate. 
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Figure 5.5.2.2.2.2 (i) Typical CVs obtained from 1 mM ferricyanide in PBS solution scanned 

at 100 mV sec
-1

 with diazonium grafted onto gold substrate at 0, 10, 20, 25, 30, and 60 

second intervals. (ii) Plot summary of ipc of ferricyanide from Figure 5.5.2.2.2.2 i (n=3, ±1 

SD) 
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Figure 5.5.2.2.2.3 (i) Typical CVs obtained from 1 mM ferricyanide in PBS solution scanned 

at 100 mV sec
-1

 with diazonium grafted onto ITO substrate at 0, 10, 20, 25, 30, and 60 second 

intervals. (ii) Plot summary of ipc of ferricyanide from Figure 5.5.2.2.2.3 i (n=3, ±1 SD) 
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5.5.2.2.3 Diazonium modified surface stability 

Having found the optimum grafting time of 30 s and 25 s for gold and ITO substrates 

respectively a more thorough investigation into the electrochemical stability of the grafting 

was conducted using CV. As previously discussed in section 5.5.2.2.1, data in figure 

5.5.2.2.1.3 shows, the diazonium grafting to be electrochemically stable following 10 cycles 

of CV with grafting time of 10 s. Using the optimal grafting time, 30s and 25s respectively 

for gold and ITO diazonium modified substrate chips were prepared and tested with 50 cycles 

CV running at 0 V to 0.6 V finishing at 0 V in PBS at 100 mV sec
-1

. Before and after the 50 

cycles of CV in PBS was run the coverage of grafted diazonium was tested by CV with 1 mM 

ferricyanide in PBS as above. 

Data shows the diazonium grafted film was stable after 50 cycles of CV in PBS on both gold 

(figure 5.5.2.2.3.1) and ITO (figure 5.5.2.2.3.2) substrates. This is clearly visible as the 

ferricyanide mediated redox reaction was blocked before and after the 50 cycles of CV in 

PBS was run. 
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Figure 5.5.2.2.3.1 Typical CVs of 30s grafted diazonium modified gold substrate in 1 mM 

ferricyanide. The blue cycle is the CV obtained before running 50 cycles of CVs in PBS, and 

the red cycle is the CV obtained after running 50 cycles of CVs in PBS. The green cycle is 

the positive control with no diazonium grafted on the gold substrate. (n=3, control n=1) 
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Figure 5.5.2.2.3.2 Typical CVs of 25 s grafted di modified ITO substrate in 1 mM 

ferricyanide. The blue cycle is the CV obtained before running 50 cycles of CVs in PBS, and 

the red cycle is the CV obtained after running 50 cycles of CVs in PBS. The green cycle is 

the positive control with no diazonium grafted on the ITO substrate. (n=3, control n=1) 
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and production purposes. Previous results show diazonium has similar grafting kinetics on 

both gold and ITO substrate, as well as, electrochemical stability. Between gold and ITO, 

ITO is more favourable for biological integration of the system as it is transparent as 

previously discussed. Therefore, from this point onward, ITO was chosen to be the most 

optimal substrate to carry on the system development. 

 

Diazonium modified ITO surface was prepared as described earlier in the section with a 25 

seconds grafting to maximise coverage. Afterwards the fabricated electrodes were placed in 

the Teflon cell, and CVs were performed firstly with PBS as negative control to confirm there 

are no peaks with PBS alone. Afterwards they were rinsed with water and ethanol and finally 

a CV run 1 mM ferricyanide in PBS. Samples were rinsed with water then ethanol and dried 

with argon gas. After drying the telfon cell, it was covered with paraffin film and stored in a 

dry, dark and cool area. The CV run with 1 mM ferricyanide in PBS was repeated after 

storing in air for intervals of 1, 3, 5, and 7 days (n=5). Typical results are shown in figure 

5.5.2.2.4.1. All of the samples were shown to be stable on day 0, 1 and 3. One of the samples 

was shown to be unstable on day 5 and three were not stable on day 7. Therefore, it was 

concluded that the diazonium grafted film is stable for a maximum of 3 days after grafting if 

stored in a dry, cool and dark place.  



193 
 

 

Figure 5.5.2.2.4.1 Typical CV of diaoznium modified surface in 1 mM ferricyanide in PBS 

at 100 mV sec
-1

 after being stored in air for 0, 1, 3, 5, 7 days. (n=5) 
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may be involved in the aryl amine-mediator coupling reaction the second functional 

carboxylic acid group would be preserved for the separated O2 catalytic peak reaction. FcA-

Ester coupling was investigated first. 

 

Figure 5.5.2.2.5.1 Structure of FcA-Ester. 

 

 

Figure 5.5.2.2.5.2 Structure of FcDA-Ester. 
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Basic procedures were followed as in section 5.5.2.2.1 and figure 5.5.2.2.1.1 however 

diazonium grafting time, FcA-Ester coupling concentration and coupling incubation time 

were changed. Diazonium was grafted onto ITO surfaces for 25 seconds as shown to be 

optimal is section 5.5.2.2.2, FcA-Ester coupling concentration was tested at 1.2, 2, 3, and 5 

mM in ethanol to test for the optimal concentration. Finally the incubation time was set for 24 

hours to ensure incubation was sufficient for the coupling reaction to occur. All samples were 

sonicated for 5 minutes in ethanol prior to CVs being performed. 

 

CVs were performed on each sample in PBS scanning from 0 V to 0.6 V back to 0 V at scan 

rate 100 mV sec
-1

 (figure 5.5.2.2.5.3). Data shows that the coupling efficiency was very low, 

and there was no significant difference between the different FcA-Ester coupling 

concentrations tested. 
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Figure 5.5.2.2.5.3 Typical CVs obtained from PBS solution scanned at 100 mV sec
-1

 with di 

surface after incubated in 0 (Di), 1.2, 2, 3, and 5 mM FcA-Ester in ethanol for 24 hours. 

(n=2) 

In an attempt to improve the coupling efficiency alternative solvents were used for the 

coupling reaction. The same procedure was employed to produce di-Fc surfaces, with the 

exception of replacing ethanol with dichloromethane (DCM) and dimethylformamide (DMF). 

CVs were performed on each sample in PBS scanning from 0 V to 0.6 V back to 0 V at scan 

rate 100 mV sec
-1

 (figure 5.5.2.2.5.4). These alternative solvents however, did not show any 

improvement of the FcA-Ester coupling efficiency. In addition, a colour change was observed 

when the FcA-Ester was diluted in DCM and DMF. FcA-Ester diluted in ethanol stays 

yellow-orange, while FcA-Ester diluted in DCM and DMF change to a dark brown colour 

(figure 5.5.2.2.5.5). 
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Figure 5.5.2.2.5.4 Typical CVs obtained from PBS solution scanned at 100 mV sec
-1

 with di 

surface after incubated in 5 mM FcA-Ester in ethanol, DCM and DMF for 24 hours. The blue 

line, Di, is the di surface alone negative control. n=2 

 

 

Figure 5.5.2.2.5.5 Image of FcA-Ester dilated in Ethanol (left) and DMF (right) after 2 hours. 
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Triethylamine (TEA) is commonly used tertiary amine base in NHS ester - carboxylic acid 

reaction as it facilities the reaction [58]. The next batch of di-Fc samples were prepared by 

incubating di surface in 5 mM FcA-Ester and TEA in DCM for 24 hours. CVs were then 

performed using the samples as before (figure 5.5.2.2.5.6). The results show, there is no 

different between the coupling of the samples with and without TEA added. 

 

 

Figure 5.5.2.2.5.6 Typical CVs obtained from PBS solution scanned at 100 mV sec
-1

 with di 

surface after incubated in 5 mM FcA-Ester in DCM with or without TEA for 24 hours. The 

blue line, Di, is the di surface alone negative control. n=2 
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result as FcA-Ester coupling was obtained, coupling efficiency remains very low (figure 

5.5.2.2.5.7). 

 

 

Figure 5.5.2.2.5.7 Typical CVs obtained from PBS solution scanned at 100 mV sec
-1

 with di 

surface after incubated in 5 mM FcDA-Ester in ethanol, DMF and DCM with TEA for 24 

hours. The blue line, Di, is the di surface alone negative control. n=2 
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ascertain what reaction is occurring between the different solvents and the FcA-Ester and 

FcDA-Ester molecules, for this a series of mass spectrometry experiments were conducted. 

 

   5.5.2.2.6 FcA-Ester and FcDA-Ester mass spectrometry in 

different solvents 

Mass spectrometry (MS) was conducted to monitor the stability of FcA-Ester and FcDA-

Ester in the different solvents used for the coupling reaction for surface immobilisation. An 

Alliance e2695 liquid chromatography (LC) system directly attached to a Xevo-G2-XS-ToF 

mass spectrometer were used to conduct the experiments. The LC system was used to directly 

inject the relevant samples and deliver the sample in methanol mobile phase at 100 µl/min, 

using electrospray ionisation (ESI) technique for MS analysis. The capillary voltage for ESI 

analysis was set to 3 kV in positive polarity, and the sampling cone voltage was set to 40 V. 

The source temperature was set to 130 °C, desolvation temperature set to 350 °C. Dry 

nitrogen gas was used as nebuliser gas (100 L/hr), desolvation gas (800 L/hr) and sample 

cone gas (60 L/hr). 

 

Samples of FcA-Ester and FcDA-Ester were prepared at 0.5 mg/ml in each of the following 

solvents, ethanol, dichloromethane (DCM), tetrahydrofuran (THF) another commonly used 

solvent, and DMF both with and without 1 mM TEA. 

 

The mass spectrum was analysed using two criteria. Criteria 1, as mentioned in the method 

(see Chapter 2 section 2.4), both FcA-Ester and FcDA-Ester could form adducts with the 

solvent used, and the adducts it can possibly form are [M]
+
 the molecular ion, [M+H]

+
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hydrogen adduct from the solvent, [M+Salt]
+
 with salt being sodium (Na) or potassium (K) 

from the glassware, [M+S]
+
 adduct with the solvent, or combinations of all of these. In 

addition, criteria 2, isotope distribution of the molecular weight is also used to confirm the 

presence of iron (Fe). Fe in nature exists in four isoforms with relative abundance 
54

Fe 

(5.81%), 
56

Fe (91.64%), 
57

Fe (2.21%) and 
58

Fe (0.34%) [59]. The iron isotope pattern was 

used to confirm that the molecular weight of the ions observed contain iron. These 

parameters were used in the interpretation of the MS data. 

 

The samples in solvents without 1 mM TEA were injected (5 µl) at time points 0 and 48 hrs 

after dissolving in the relevant solvents. Mass Spectrometry analysis of FcA-Ester and FcDA-

Ester prepared in dichloromethane (DCM) was also analysed (data not shown). The mass 

spectrometry data was inconclusive, no FcA-Ester or FcDA-Ester ions were observed in the 

mass spectrum. This may be because FcA-Ester and FcDA-Ester in DCM does not form 

positively or negatively charged ions by electrospray ionisation technique. Therefore, at this 

stage, using electrospray ionisation it is not clear if FcA-Ester and FcDA-Ester is stable in 

DCM. Figure 5.5.2.2.6.1 and figure 5.5.2.2.6.2 summarise the result of the stability of FcA-

Ester and FcDA-Ester in ethanol (i), THF (ii) and DMF (iii) at 0 hrs and after 48 hrs in 

solution, respectively. The following molecular weight ions were observed for FcA-Ester in 

ethanol (figure 5.5.2.2.6.1 i) at time = 0 hrs; [M]
+
 = 327 and [M+Na]

+
 = 350, please see 

figure 5.5.2.2.5.1 for the molecular structure, formula, weight and relative % of isotopes of 

FcA-Ester (obtained from Chemdraw). After 48 hrs, molecular weight ions [M+Na]
+
 = 350 

and [M+Na+Ethanol]
+ 

= 396 were observed. FcA-Ester in THF (figure 5.5.2.2.6.1 ii) only 

showed molecular weight ion [M]
+
 = 327 in both time points 0 and 48 hrs. No molecular ions 

for FcA-Ester were observed in DMF (figure 5.5.2.2.6.1 iii) at time point 0 and 48 hrs. The 
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MS results suggest FcA-Ester is stable in both ethanol and THF for up to 48 hrs, but not in 

DMF.  

 

Figure 5.5.2.2.6.1 Mass spectrometry data obtained after FcA-Ester was diluted in (i) 

ethanol, (ii) THF and (iii) DMF after 0 and 48 hours. 

 

FcDA-Ester (figure 5.5.2.2.6.2), on the other hand, in ethanol shows molecular weight ions 

[M+Na]
+
 = 394 at time point 0 hrs but at 48 hrs shows mainly [M+Na+Ethanol]

+
 = 440, 

please see figure 5.5.2.2.5.2  for the molecular structure, formula, weight and relative % of 

isotopes of of FcDA-Ester (obtained from Chemdraw). FcDA-Ester in THF and DMF show 

[M+Na]
+
 = 394, but this disappears after 48 hrs. The MS data suggest FcDA-Ester is only 

stable in ethanol for up to 48 hrs, but not stable in THF or DMF. 
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Figure 5.5.2.2.6.2 Mass spectrometry data obtained after FcDA-Ester was diluted in (i) 

ethanol, (ii) THF and (iii) DMF after 0 and 48 hours. 

 

The MS data of FcA-Ester and FcDA-Ester suggested both compounds are stable in ethanol, 

therefore, only the MS data for FcA-Ester and FcDA-Ester in ethanol + 1 mM TEA is shown 

in figure 5.5.2.2.6.3. This was to confirm if TEA also reacted with the FcA-Ester and FcDA-

Ester (section 5.5.2.2.5). The samples in ethanol and 1 mM TEA were injected (5 µl) at time 

points 0, 1, 2, 24, and 48 hrs to monitor the stability of FcA-Ester and FcDA-Ester in 

presence of 1 mM TEA. FcA-Ester in the presence of 1 mM TEA forms different molecular 

weight ions, when compared to samples without 1 mM TEA. At time point 0 hrs, the 

molecular weight ions [M+Na+methanol]
+
 = 382 and [M+Na+ethanol]

+
 = 396 are observed, 

the former being formed as a result of the mobile phase solvent used in the delivery of the 
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sample for ESI. In the first two hours we observe the switching of adduct formation from 

primarily [M+Na+methanol]
+
 seen at 0 hr, to [M+Na+ethanol]

+
 primarily seen at 2 hrs. At 

the 2 hr time point, a molecular weight of 196, which does not contain iron as confirmed by 

the lack of iron isotope pattern, starts to appear. This molecular weight ion increases as 

[M+Na+ethanol]
+
 decreases at the 24 and 48 hr time points, and at 48 hr the major ion 

species seen is the 196 molecular weight and the [M+Na+ethanol]
+
 ion has significantly 

decreased.  
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Figure 5.5.2.2.6.3 Mass spectrometry data obtained after FcDA-Ester and FcDA-Ester was 

diluted in ethanol, after 0 1, 2, 24 and 48 hours. 

 

The FcDA-Ester only appears as the [M+Na]
+
 = 394 molecular weight ion in the presence of 

1 mM TEA and none of the other adducts are seen at any time point. Interestingly the 196 

molecular weight ion, not containing the iron isotope pattern, shows up also in the FcDA-

Ester experiment. Moreover, this 196 molecular weight ion appears at time point 1 hr, and 

progressively increases over time and the [M+Na]
+
 = 394 molecular weight ion decreases 

over time. At 48 hr, the [M+Na]
+
 = 394 molecular weight ion completely disappears. 
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In both cases of FcA-Ester and FcDA-Ester in ethanol with 1 mM TEA, experiments show a 

considerable MS spectrum difference from 2 hrs to 24 hrs. It’s after the 2 hr time point that 

the 196 molecular weight ion significantly increases and the sample ion decreases. This 

suggests that both FcA-Ester and FcDA-Ester are relatively stable in the coupling mixture for 

up to 2 hrs. 

 

The molecular weight ion 196 could possibly be due to further oxidation of the 

cyclopentadienides by TEA to dihydrofulvalene [60] from the reaction seen in figure 

5.5.2.2.6.4 

 

Figure 5.5.2.2.6.4 Shows the proposed reaction occurring for the increased presents of 

molecular weight ion 196. C5H5 (1,3-cyclopentadie-2-nide) (i) and  C6H5O2.(1,3-

cyclopentadie-2-nide-1-carboxylic acid) (ii) was further oxidised by TEAleading to the iron 

falling off from FcA and FcDA to form (iii) [1,1’-bi(cyclopentane)]-2,2’,4,4’-tetraene-2-

+

i ii

iii

iv
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carboxylate. Substitution of the carboxylic acid hydrogen with sodium (Na) would produce 

(iv) sodium [1,1'-bi(cyclopentane)]-2,2',4,4'-tetraene-2-carboxylate (Mw = 196). 

 

The molecular weight of [1,1'-bi(cyclopentane)]-2,2',4,4'-tetraene-2-carboxylic acid (figure 

5.5.2.2.6.4 iii) is 174, molecular ion 196 comes from the replacement of the carboxylic acid 

hydrogen with a sodium (174-1+23 = 196) (figure 5.5.2.2.6.4 iv). This would lead to the 

dissociation of the iron, thus explaining the loss of the iron isotope as observed in the MS 

data. 

 

In the process of ferrocene synthesis, a base, KOH, was used to produces potassium 

cyclopentadienide salt from cyclopentadiene [61] which is dark brown in colour. Potassium 

cyclopentadienide would then mixed with iron chloride to form ferrocene [61]. MS data 

showed that, in the presence of TEA, the iron is being removed effectively reversing this last 

step in the synthesis process. Both FcA-Ester and FcDA-Ester are also not stable in DMF. 

From observation in section 5.5.2.2.5, FcA-Ester and FcDA-Ester also turns brown when 

diluted in DMF, DCM and DCM with TEA. It is concluded that the cyclopentadiene ring in 

both ferrocene molecules reacted with the solvent and the base (TEA) which caused the iron molecule 

to detach from the ring. This is supported by both the observed colour changed of the sample and the 

disappearance of the ferrocene ion from the MS data. TEA is a common additive that facilities ester – 

carboxylic acid reaction, however, in this case the TEA has been shown to disturb the structure of the 

raw material, in this case ferrocene. MS data shows that both FcA-Ester and FcDA-Ester are stable in 

ethanol however, the coupling efficiency was shown to be very low for unknown reasons. Further 

investigation would be required for a suitable solvent and coupling method for the FcA or FcDA 

chemical coupling onto surface to work. 



208 
 

5.6 Conclusion 

In this chapter, some of the most commonly used methods of mediator immobilisation were 

investigated for production of electrodes with FcA mediator. Immobilisation was viewed as 

the next logical step for the reason mentioned  previously some of which include, increased 

practicality, removal of mediator diffusion rate limiting step, and improvement to data 

accuracy. Initially the decision was made to attempt immobilisation without chemically 

altering the FcA mediator as it was shown in chapter 4 the system was highly dependent on 

the preservation of the carboxylic acid functional group. To this end screen printing 

techniques were employed. Assuming a simple mix and print methodology, where a carbon 

ink was chosen as carbon had been previously used as an electrode material. Initial results 

were positive showing preservation of the separated O2 catalytic peak shown in chapter 4 

however there were problems with the system. While the system showed the increased signal 

strength expected this was later found to also be due to the porous nature of the carbon ink. 

By increasing the surface area of the electrode to an unknown area and also the addition of 

another diffusion gradient as the sample solution has to diffuse through the ink the initial 

positive results showed the system needed more investigation. Along with experts from 

Gwent further investigation was carried out and while remaining functional the issue of the 

carbon ink being porous remained. 

 

With no resolution found the next logical step was to use a commercially manufactured 

carbon electrode and immobilise the FcA into the surface of the electrode with an oxygen 

porous membrane. While this would introduce a diffusion layer it should prevent the issues 

found with the carbon ink being porous as found in the screen printing approach. Many 

membranes were considered with the criteria of being gas and aqueous permeable, however 
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few were found to be compatible. Many of the aqueous and gas permeable membranes are 

charge selective for example and therefore would be unsuitable for this purpose. AC 

membrane was finally chosen for further investigation as it fit the criteria well. FcA was drop 

coated onto the manufactured carbon electrodes followed by AC membrane. Results showed 

that while the system worked and the separated O2 catalytic peak was preserved, when 

consecutive cycles were run the signal strength continues to reduce. Further investigation 

showed signs that the membrane during the process of conduction the CV analysis was being 

removed form the surface of the electrode. Optimisation was attempted by changing the 

concentration of membrane used in the preparation of the electrode and also the preparation 

methodology. All approaches that still preserved the functionality of the system gave rise to 

the same problem of removal of the membrane during CV analysis. 

 

Having found screen printing and drop coating methods to be problematic, another approach 

was needed. While seemingly at risk of loss of the functional group of the FcA a surface 

chemistry approach was taken for mediator immobilisation. SAM and diazonium would be 

the chosen means for this chemical immobilisation approach. Having less chemical steps and 

therefore seemingly more simple SAM would be investigated first. Initially a SAM coupled 

with ferrocene was purchased, and when coupled onto a gold substrate electrode exhibited the 

separate O2 catalytic peak. This confirmed that the chemical coupling of ferrocene with the 

SAM molecule, had left the carboxylic acid functional group activity undisrupted. A 

significant drop in ferrocene current was being observed over the 10 CV cycles which 

indicated there was a decrease of ferrocene concentration on the electrode surface.  

Investigation was carried out to verify the point at which the ferrocene was being removed, 

and via desorption it was verified to be a weakness of the thiol-Au bond under the 
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electrochemical conditions. Alternative SAM molecules were tried however it was not 

possible to produce a SAM system stable at the required electrochemical conditions. 

 

Having found the thiol-Au bond to be the weak point in the SAM system of immobilisation 

but, that the chemical coupling of the ferrocene to still exhibits a ferrocene peak, diazonium 

surface grafting was attempted. Results showed that the grafting process was successful, and 

the di surface was electrochemically stable. Having established a strongly bonded bridge the 

project moved onto coupling of the ferrocene on to the diazonium bridge molecule. This was 

performed with different solvents and TEA to facilitate the reaction however each displayed 

little to no coupling efficiency. Having observed unexpected colour changes to the coupling 

solution and the low yield coupling the ferrocene mediator and coupling solutions were put to 

MS analysis.  MS analysis showed that FcA-Ester was stable in ethanol and THF and FcDA-

Ester was only stable in ethanol. It remains unclear as to why the coupling efficiency is so 

low. Further investigation is required in order to have ferrocene molecule couple onto di 

surface. 
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Chapter 6 

Conclusion and future work 

6.1 Conclusion 

Proof of concept and development of a brand new BOD system has been completed in this 

project, and the patent application has been filed. The O2 catalytic property of ferrocene 

derivatives was first reported by Cassidy’s research group in 1999 [1]. However, the O2 

catalytic properties between different ferrocene derivatives which is governed by the different 

functional groups has never been investigated, let alone put into practical applications. This 

project undertook to investigate the practical use of both the O2 catalytic property and to 

investigate the interaction of the different ferrocene derivatives with O2. FcA, FcDA and 

FcMeOH were each found to exhibit different O2 catalytic properties but it was the unique 

interaction of FcA due to the single carboxylic acid group that was most of interest. It 

exhibits the O2 catalytic property but more importantly has a unique separated O2 catalytic 

peak compared to the convoluted O2 catalytic peak with normal oxidation peak in the case of 

FcDA and FcMeOH. This allows with just a single cycle of CV to measure the concentration 

of O2 in a sample and with a small calculation of diffusion rate with a second cycle to 

measure the near real time consumption of O2. 

 

The FcA mediated BOD system offers potentially the fastest, and cheapest BOD developed to 

date, and a near real-time measurement of BOD that can be calculated down to single cell O2 

consumption measurement scale. The system requires no incubation time compare to the 

ferricyanide mediated BOD assay or standard BOD5. Any influence chemical or otherwise 
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introduced by the assay upon the targeted cell or cell line are minimised because there is no 

need for an incubation period due to the fast FcA O2 catalytic kinetics rate. The assay offers 

result acquisition of dissolve oxygen measured in just 4 minutes, and BOD requiring 2 cycles 

of CV to be run in just 8 minutes. The cost of the machine could be as low as currently 

commercially available glucose meters, and potentially similar costing for the electrode 

chips. Also of great importance, the system would require little to no maintenance. 

  

Pushing the concept to its full potential and a practical product range remains a challenge. In 

the current dissolved FcA mediated system, high accuracy, repeatability, and rapid 

measurement have been demonstrated. E.coli cell density was accurately measured, showing 

smaller standard error than using a viability assay compare to conventional agar plate colony 

count assay. Moreover and of great importance, it works with little or unnoticeable influence 

from complex media, e.g. LB broth. However improvements including sensitivity, portability, 

assay simplicity, and cost effectiveness are needed to truly optimise the system to a highly 

marketable product. This could potentially all be accomplished by successful immobilisation 

of FcA onto an electrode surface. The most commonly used immobilisation methods were 

tested in this project including screen printing, use of semi-permeable membrane and surface 

coupling chemistry. The unique requirements of this assay, namely the importance of 

preserving the mono-carboxylic acid group in the FcA and the multiple cycle CV have 

proven to greatly complicate this process. All attempts to date at immobilisation have shown 

promising signs for future development in various ways. 

 

Screen printing with FcA mixed carbon paste ink initially seemed to be the ideal 

immobilisation method for the FcA mediated BOD system. It is cost effective, easy to 
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synthesise, and more importantly, it preserved the important single carboxylic acid group in 

the FcA. It has demonstrated an enlarged O2 catalytic peak (chapter 5 section 5.5.1.1) 

compare to the FcA dissolved system (chapter 4 section 4.5.4). However, the porous 

property of the carbon paste ink has proved to be problematic for this particular system. In 

other single cycle systems such as glucose or cholesterol a porous ink would not cause a 

problem, however a system such as this that involving multiple cycles, it causes two main 

problems. Firstly the carbon paste ink being porous introduces an extra unpredictable 

diffusion layer for the O2 molecule after the first CV cycle.  This makes the system 

impossible to calibrate for the O2 diffusion rate from the control samples for BOD assay 

purpose. In addition, as the sample is soaking through the electrode, the working area 

changed from a known 2D area to an unknown 3D area. The unknown 3D working area 

invalidates the current to concentration calculation.  

 

The use of a semi-permeable membrane for trapping a mediator or enzymes onto an electrode 

surface is very common.  This seemed the obvious next approach however it was proven that 

the selection of the correct membrane for this system would be a big challenge. This system 

in particular necessitates the use of a biocompatible membrane that will not filter out oxygen 

and negatively charged ions, for example HO2
-
 and OH

-
, like the Nifron membrane. This is 

because the oxygen detection relies upon the reduction of oxygen producing negatively 

charged ROS which react with the FcA mediator. CA seemed the logical choice fitting 

seemingly all the criteria however it was proved not to be the case as seemingly under assay 

conditions the membrane is removed from the surface of the electrode. 
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Chemical immobilisation using SAM as bridge seems to be the next logical method to test. 

SAM-modified surfaces are wildly used for biosensor development and very easy to prepare. 

However, the thiol-Au bond is only stable in a very narrow range of potential [2]. After we 

tested the SAM-modified surface under the FcA mediated BOD assay’s working potential 

scanning range, surfaces have been shown to be unstable. This result was the same with 

different types of SAM molecules. Therefore, it was concluded, SAM is not suitable for this 

particular system. 

 

On the other hand, diazonium has been successfully grafted onto the electrode surface and 

tested stable under the operating conditions of this system. The biggest advantage of using 

diazonium as a bridge for FcA surface immobilisation is, the strong and stable bond shown 

by the finding of this project with ITO. ITO is transparent, which allows the system to be 

easily integrated with microscopy techniques, even fluorescence microscopy techniques. This 

gives the potential of the system to be used for dual purposes, allowing BOD to be recorded 

while at the same time using fluorescence microscopy, for example Fluo-4AM for 

intercellular Ca
2+

 level [3]. By allowing this dual data acquisition running in parallel on the 

same sample of cells, it provides much greater control, as well as, improved comparison 

between samples. It would potentially reduce the amount of cellular work involved in such 

experiments, offering a most cost effective, and time efficient workflow.  

 

The challenge with diazonium chemical immobilisation has arisen with the coupling stage of 

the reaction fixating FcA onto the diazonium post grafting on to the electrode surface. 

Following much investigation including coupling concentration, solvent coupling efficiency, 

and addition of base, coupling efficiency remains extremely low. MS was carried out and the 
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review of the data suggests, the cyclopentadiene ring structure in the ferrocene mediators 

tested are being deprotonated in the presents of base and certain solvents e.g. DMF. The peak 

with iron isotope pattern can be seen in the MS data to decrease over time and eventually 

disappear. This may have explained why the yield of diazonium-FcA-Ester or diazonium-

FcDA-Ester coupling is so low in DMF and when TEA is added. However, the low yield in 

coupling that is done in ethanol remains unclear, as MS data has shown that both FcA-Ester 

and FcDA-Ester are stable in ethanol, however, coupling efficiency remains extremely low. 

More work is required to optimise the coupling efficiency. 

 

6.2 Future work 

The concept of the FcA-mediated BOD system is there and proven. The future work revolves 

around optimisation and refinement of the system, and for the main part this would be to 

develop a solution for surface immobilisation. Screen printing shows great promise in terms 

of developing the system into a portable, cost effective and fast system for environment 

studies, food industry and waste water processing in particular. The future work would 

involve either development of a non-porous carbon paste ink, thus resolving the issues found 

in this project. Alternatively finding another stable conducting material that does not interfere 

with the FcA property to act as an ink carrier for electrode synthesis could prove a solution. 

 

On the other hand, diazonium bridged chemical immobilisation could potentially be ideal for 

the laboratory working environment. Dual measurement with integration of microscopy 

technologies via the utilisation of ITO as an electrode substrate by taking advantage of its 

transparency shows great potential. There is a risk that even with optimisation of coupling 
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completed that the system still may not sense oxygen. This would likely be due to the 

modification of the functional group leading to the loss of the separated O2 catalytic peak 

properties. It is also yet to be seen if the diazonium layer will block the initial reduction of the 

O2 molecule into HO2
-
 and OH

-
 as was shown to be the mechanism of FcA catalysis in 

chapter 4. Having stated this, it is still worthwhile carrying out optimization of the coupling 

as even if detection of dissolved O2 concentration is lost it can still be used as a ROS sensor. 

ROS is an important secondary messenger in cell signaling and closely related to cell 

metabolic rate. The system can still be developed into an important tool for molecular study. 

In addition, if carbon nano tube (CNT) can be coupled on top of the diazonium molecule 

before coupling FcA-Ester or FcDA-Ester on top, it could even give the potential for 

intracellular ROS detection. 
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