
ADAPTIVELY IMPROVING PERFORMANCE
STABILITY OF CLOUD BASED APPLICATION
USING THE MODERN PORTFOLIO THEORY

by

FAISAL ALREBIESH

A thesis submitted to
The University of Birmingham
for the degree of
DOCTOR OF PHILOSOPHY

School of Computer Science
College of Engineering and Physical Sciences
The University of Birmingham
February 2016

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

Abstract

The increasing number of Software-as-a-Service(SaaS) services available in the cloud

market make them plausible and attractive for building cloud-based applications. How-

ever, performance instability is common in the cloud environment due to changes in supply

and demand of shared computational infrastructure and resources. Candidate services are

vulnerable to such instability. Current service selection and composition approaches do

not explicitly address performance fluctuations when building cloud-based applications.

This thesis proposes a novel approach to improve performance stability by leveraging on

the principles of design diversity and portfolio-based thinking when selecting and com-

posing cloud-based applications. The objective is to minimize the risks that could stem

from selecting and composing cloud-based services that are vulnerable to performance

instability.

More specifically, we present a self-adaptive approach which leverages the principle of

Modern Portfolio Theory to construct a diversified set of candidate services that share

the lowest possible correlation between their performances. The self-adaptive approach

makes an explicit trade-off between the costs, benefits and likely risks when performing

changes to the cloud-based applications.

In this thesis, we use two scenarios to illustrate the applicability and the effective-

ness of the approach. As scalability is of paramount importance for efficient dynamic

and adaptive selection and composition, the thesis adapt a systematic method to identify

the various scalability dimensions that can affect the working of the approach and conse-

quently evaluate the sensitivity of the approach to the identified dimensions. The thesis

concludes with possible directions for future work.

Acknowledgements

In the name of Allah , the Most Gracious and the Most Merciful.

First and foremost, Alhamdulillah, all praises to Allah for the strengths and His bless-

ing in completing this thesis. Then, I would like to express my sincere gratitude to my

advisor Dr. Rami Bahsoon for the continuous support he rendered to me towards my

Ph.D. study and related researches. Without his patience, motivation and guiding hand,

this thesis would not be what it is today. I could not have imagined having a better

advisor and mentor for my Ph.D. study.

Besides my advisor, I would like to thank the rest of my RSMG members: Dr. Rustam

stolkin, and Prof. Xin Yao, for their insightful comments and encouragement, but also

for the hard questions which incented me to widen my research from various perspectives.

in addition, A very special thanks goes out to Dr. Letcia Duboc for the comments and

suggestions she made in reference to Chapter 6 of this work.

Daily life in Computer Science has been a pleasure, because of all the friends that I

made during the course of the PhD. The heated discussions, informative comments and

passionate arguments that Ive had with Abdessalam Elhabbash, Momodou L Sanyang,

Mohammad Alshammari ,Mohammed Alwanain, and many others have contributed to

a rich, and fulfilling period of stay, in this institution. I should not forget to acknowl-

edge brother Osamah and sisters Lama and Maha for their continuous love, support,

understanding and good wishes whenever I needed.

Finally, I would like to thank my wife and best friend, Saja. Without her love, en-

couragement, support and editing assistance, I would not have finished this thesis. Her

tolerance of my occasional mood swings is a testament in itself of her unyielding devo-

tion and love. A debt of gratitude, more than I can ever repay, is owed to my parents

Mohammed and Hessah. Each year that I grow older, I realize just how much I owe you,

and how much of what I am, is due to you. You have been patient, indulgent and loving,

to a fault. Youve supported me through, what must have seemed like, crazy dreams and

ambitions. I shall not attempt to thank you, because words will not be enough. I love

you, and to you both, I dedicate this thesis.

CONTENTS

1 Introduction 1

1.1 Problem Definition . 4

1.1.1 Service Selection In Scaling Up Scenario 7

1.1.2 Cloud Services Composition Scenario 7

1.2 Proposed Solution . 9

1.3 Contributions of This Thesis . 11

1.4 The Thesis Storyline . 12

1.5 Structure of The Thesis . 15

1.6 Publications . 16

2 Qos-Aware Service Composition: State Of The Art 18

2.1 Basic Concepts and Related Standards to Web Services and Web Services

Composition . 19

2.1.1 Web Services . 19

2.1.2 Web Service Composition . 24

2.2 QoS-Aware Service Composition . 25

2.2.1 QoS Modelling and Description . 25

2.2.2 The Scope of QoS Constraints . 28

2.2.3 QoS-Aware Web Service Composition Models 28

2.2.4 Selection Strategy to Allocate the Composition 30

2.2.5 QoS-Driven Service Composition Adaptation 32

2.3 Discussion and Summary . 34

3 Design Diversity: Background on Software Diversity 38

3.1 Overview of Design Diversity Concept . 38

3.2 Questions . 39

3.3 Techniques and Methods for Implementing Software Diversity 42

3.3.1 Created Diversity . 42

3.3.2 Managed Natural Diversity . 43

3.4 Claimed Benefits and Trade-Offs of Applying Design Diversity 44

3.5 Concerns and Limitations Needed to be Taken into Account when Imple-

menting Design Diversity Solution . 45

3.6 Requirements and Challenges of Implementing Diverse Systems Using Nat-

ural Diversity . 46

3.7 Recommendations . 47

3.8 Summary . 48

4 Portfolio Based Web Services Selection: Improving Performance Sta-

bility in Scaling Up Scenario 49

4.1 Introduction . 50

4.2 Modern Portfolio Theory: Brief Background 50

4.2.1 What Problems Do Modern Portfolio Theory Address? 51

4.2.2 Modern Portfolio Theory . 51

4.2.3 Effective Diversification . 53

4.3 Effective Diversification in the Context of Web Service Selection: Analogy

and Mapping . 56

4.4 Assumptions of our Portfolio-based Web Service Selection in Scaling Up

Scenario . 58

4.5 Model For Portfolio-Based Web Service Selection in Scaling Up Scenario . 60

4.6 Self-Adaptation Mechanism for Portfolio-Based Web Service Selection in

Scaling Up Scenario . 63

4.7 Evaluation . 68

4.7.1 The Effectiveness of the Portfolio-Based Allocation 70

4.7.2 The Effectiveness of the Self-Adaptive Portfolio-Based Allocation . 75

4.7.3 Correlation Sensitivity in Portfolio-Based Allocation and Classical

Design Diversity Allocation . 78

4.7.4 The Scalability and the Effect of Increasing the Number of Web

Candidate Services on the Risk of throughput Fluctuation of the

Portfolio-Based Allocation . 82

4.8 Summary . 84

5 Portfolio-Based Cloud Services Composition : Improving Performance

Stability in a Cloud Service Composition 86

5.1 Introduction . 86

5.2 Effective Diversification in the Context of Cloud Service Composition . . . 87

5.3 Assumption for the Cloud Service Composition 90

5.4 Model for Portfolio-Based Cloud Service Composition 90

5.5 Self-Adaptation Mechanism for Portfolio-Based Cloud Services Composi-

tion . 93

5.6 Evaluation . 97

5.6.1 Simulation Settings . 98

5.6.2 The Effectiveness of the Portfolio-Based Composition 99

5.6.3 Effectiveness of the Composition Algorithms Under Positive, Neg-

ative and Weak Correlations . 101

5.6.4 The Effectiveness and the Stability of the Self-Adaptive Mechanism 104

5.6.5 A Prototype Using CloudSim Environment 109

5.7 Conclusion . 112

6 Systematic Elaboration Of Scalability Requirements Using Scalability

Goal-Obstacle Analysis: The Cloud Services Composition 114

6.1 Introduction . 114

6.2 Background . 115

6.2.1 A Brief Introduction to KAOS Goal-Oriented Modelling 115

6.2.2 Overview Of Goal Obstacle Analysis 118

6.2.3 Scalability Assumption . 119

6.2.4 Scalability Goal . 120

6.3 Scalability Goal-Obstacle Analysis . 121

6.3.1 Identifying Scalability Obstacles . 122

6.3.2 Assessing Scalability Obstacles . 124

6.3.3 Resolving Scalability Obstacles . 125

6.4 Scalability Goal-Obstacle Analysis for Portfolio-Based Service Composition 126

6.4.1 Goal Modelling of Portfolio Based Composition 127

6.4.2 Agents and Goals in the KAOS Goal Model 127

6.4.3 Scalability Goal-Obstacle Analysis of Portfolio-Based Services Com-

position . 128

6.5 Scalability Goals . 133

6.6 Scalability Evaluation . 133

6.7 Conclusion . 136

7 Conclusion and Future Work 137

7.1 Contributions of This Thesis . 138

7.2 Concluding Remarks . 140

7.3 Future work . 141

7.3.1 A Fast Heuristic Portfolio-based Services Composition Algorithm

that Seeks Near Optimal Solution 141

7.3.2 Multi-Objective Cloud Services Composition Algorithm 142

7.3.3 Realistic Implementation on The Cloud 142

List of References 144

Appendix: A- KAOS Goal Oriented Model 156

Appendix: B- CloudSim Prototype Data 160

LIST OF FIGURES

1.1 The Historical Record of Performance for Two Cloud Providers Dimen-

sion Data-South Africa and Indonesian Cloud From the 18/5/2014 to 16

/6/2014 [3]. 4

1.2 A Representation of the Cloud Service Composition (CSC) Problem. . . . 9

2.1 Web Service Model . 21

3.1 Claims Versus Trade-offs of Design Diversity. Bars Show the Total Number

of Reported Concerns. 45

4.1 Efficient Frontier For the Portfolio of Two Assets. Courtesy Of Mathworks

[118]. 52

4.2 Scatter Plot of the Different Types of Correlation [119]. 55

4.3 Overview of Self-Adaptive System Implementation 64

4.4 Optimum Weight of Allocation for Each of the Traded Web Services in

Cloud Market in Condition 1. 72

4.5 Box Plot Depicting Throughput in Terms of Mean, Median And Risk

of Throughput Fluctuation of Price-Based Auction, Risk-Based Auction,

Classical Design Diversity And Portfolio-Based Allocation. 73

4.6 Results of the Web Service Allocation Process for Flight.com in the Current

Cloud Market. 74

4.7 The Currently Allocated Portfolio and the New Optimum Portfolios in

Market Conditions 2 and 3. 76

4.8 Box plot Depicting Throughput in terms of Mean, Median and Risk of

throughput fluctuation of the Currently Allocated portfolio and the New

Optimal Portfolio in Market Condition 2. 77

4.9 Box Plot Depicting Throughput in Terms of Mean, Median and Risk of

Throughput Fluctuation of The Currently Allocated Portfolio and New

Optimal Portfolio in Market Condition 3. 78

4.10 Changes in the Allocation of the Optimum Portfolio as the Correlation Be-

tween FlightBooking 1 and 3 Change from a Positive to Negative Correlation. 79

4.11 Change in the Throughput Mean and Risk of Throughput Fluctuation

for Portfolio-Based Allocation and Classical Design Diversity Allocation as

the Correlation Between Flightbooking 1 and 3 Change from a Positive to

Negative Correlation. 81

4.12 Change in the Risk of Throughput Fluctuation and the Execution Time of

the Portfolio Selection as the Number of Candidate Services Increases from

3 to 400. 83

5.1 Fluctuation Rate of CSC for the Four Considered Algorithms. 100

5.2 Fluctuation rate of CSC in Positive, Weak and Negative correlation. 103

5.3 Change in Fluctuation Rates of CSC During 100 Adaptation Cycles of Four

Different Algorithms in High, Average and Low Dynamic Market Setting. . 107

5.4 Average Fluctuation Rate of CSC And Number of Adaptations of Each of

the Algorithms in High, Average and Low Dynamic Market Settings for

100 Adaptation Cycle. 108

5.5 Execution time of web services in the market represented by mean and

standard deviation (fluctuation rate) over 30 independent runs. The red

plus sign represents the mean, and the black edge represents the standard

deviation(fluctuation rate). 110

5.6 Execution time of services composition selected by correlated portfolio,

random geographical diversity (random geographical composition) and un-

correlated portfolio diversity. Execution time is represented by mean and

standard deviation (fluctuation rate) over 30 independent runs. The red

plus sign represents the mean, and the black edge represents the standard

deviation (fluctuation rate). 112

6.1 Portion of the Goal Model for Portfolio Based Composition. 117

6.2 Basic Steps of the Scalability Goal-Obstacle Analysis [35]. 121

6.3 The Obstacles Related to Goal Achieve [Services Composition is Selected

Quickly] . 123

6.4 The Execution Time of The Portfolio Based Composition as Both of The

Number of Candidate Services and Number of QoS Increases. 134

6.5 The Execution Time of the Portfolio Based Composition as Both of the

Number of Candidate Services and Number of concurrent application re-

quests Increases . 135

6.6 The Execution Time of the Portfolio-Based Composition as Both of The

Number Of Candidate Services And Workflow Size (Number Of Abstract

Services In The Composition) Increases. 135

A1 Refinement of goal Maintain[updated information about concrete services

price and QoS in the market]. As the cloud is dynamic environment, the

framework must track changes of all services registered in the market. This

includes attempting to maintain an updated price and QoS of each service,

recording historical performance of QoS and maintaining an updated eval-

uation risk of fluctuation and correlation between QoS for the services. In

case of change in one of the services used in a service composition or an

SLA contract expires, a recomposition of services will be triggered. 157

A2 Refinement of goal Achieve[Services selected if concrete services that meet

QoS and budget exist]: Satisfying this goal requires identifying a group

of compatible candidate services, assuming that any services that satisfy

the constraints is selected as candidate and that these services do indeed

implement the interface they advertise. When all services are found, the

are reported to the Buyer agent by the MarketRegulatoer , before they

are considered in the diversification process. the diversification process,

the Buyer agent explore all the possible services composition to ensure the

optimality of the selected CSC. 158

A3 Refinement of goal Achieve[Effective diversification of services composition

]: In order to diversify the selection of services composition, the buyer

agent need to compliment this process with information regarding the buyer

preference and QoS constraint. Then, buyer preference and constraint are

used to search market registry to find a compatible candidate services.

When compatible candidate services cannot be found, a warning is issued

to notify the buyer. However, if a group of compatible candidate services

exist in the market, The buyer agent will use portfolio theory to effectively

selected a set of diversified set of services. 159

LIST OF TABLES

3.1 An Overview Of the Covered Design Diversity Papers 41

3.2 A Brief Description of the Diversity Properties in Natural Diversity 44

4.1 Correspondence of the Portfolio Selection Problem to both Financial Stock

Selection and the Scaling Up Web Services Selection Problem. 58

4.2 Variables Description . 62

4.3 Algorithm of Self-Adaptive Portfolio-Based Optimisation for the Scaling

Up Scenario . 67

4.4 Current Flightbooking Web Service Offers Available in the Cloud Market

at Condition 1. 70

4.5 The Correlation Matrix Of Throughput Between The Current Flightbook-

ing Offers Available in The Cloud Market at Condition 1. 70

4.6 Risk of Throughput Fluctuation for Flightbooking Web Service Offers Avail-

able in the Cloud Market on Conditions 1, 2 and 3. 75

5.1 Correspondence of the Portfolio Selection Problem to Both Financial Stock

Selection and the CSC Problem. 89

5.2 Variables Description . 93

5.3 Self-Adaptive Portfolio-Based CSC Optimization Algorithm. 96

5.4 The Default Simulation Parameters . 99

5.5 Simulation Correlation Settings . 101

5.6 Simulation Market Settings . 104

5.7 The Performance Correlation Matrix of Services in The Cloudsim Market. 111

6.1 Metrics and Unbounded Variables for each of the Portfolio Based Compo-

sition Goals . 131

6.2 Assessment of Likelihood and Criticality of Scalability Obstacles 132

6.3 Scalability Range For Each Variable . 134

B1 Number of Users of Each Service in the CloudSim Market in Each of the

30 Runs. 161

B2 Response Time In Seconds For Each Service In The Cloudsim Market in

Each of the 30 Runs. 162

CHAPTER 1

INTRODUCTION

Enterprises are always searching for efficient and effective approaches for engineering

software systems that maximize their profits while reducing their operational cost. They

are looking for architectures that allow them to scale their operations without costing

them a fortune on capital expenditure.

Cloud computing has emerged as a promising computing model for providing an af-

fordable on-demand access to shared amount of computing power, storage and bandwidth.

An important selling point of cloud computing is adopting the pay-as-you-go model based

on the access and use of shared resources. As a result, cloud computing has introduced a

new way to deliver IT services and architect software systems, bringing the convenient of

traditional public utilities, such as electricity and water for computer users.

Another selling point relates to the potential scalability that the cloud can support

when building cloud-based architectures. This is attributed to the elasticity primitives

and on-demand access to the pool of shared resources benefiting from the economies of

scale. In particular, cloud-based architectures can scale up, to accommodate growing

load, by simply providing more cloud-based resources. On the other hand, when demand

decreases, the cloud-based application can scale down by releasing the unutilised cloud-

based resources. The distinctive advantages of cloud computing such as on-demand access,

potential scalability and cost efficiency have encouraged service providers and software

system architects to adopt the cloud computing model and to benefit from the types of

1

services offered by the cloud. Among the services provided by the cloud, software system

architect can gain, from Software as a Service (SaaS), Platform as a Service (PaaS) and

Infrastructure as a Service (IaaS) when composing cloud-based applications [1].

• Software-as-a-Service (SaaS): In this model, SaaS providers provision services on

cloud infrastructure. The architect can compose a number of these services into an

application by using a set of interfaces and well-defined APIs. The architect does

not have any control over the underlying cloud infrastructure, such as processing

power, virtual machines or storage. Payment for this model is often calculated on

the basis of usage and subscription fee. Typical examples of SaaS providers are the

Salesforce AppCloud and Amazon web services.

• Platform-as-a-Service (PaaS): PaaS providers offer the architect a combination of

middleware and deployment environment that facilitate the building and deploy-

ment of a cloud-based application. As a result, the complexity of managing the

underlying middleware and hardware is transparent to the application developer.

A representative example of PaaS is the Microsoft’s Azure, which provides a .NET

environment to application developers.

• Infrastructure-as-a-Service (IaaS): IaaS is recognized as the most basic form of ser-

vice provided in the cloud model. IaaS providers offer computing resources such

as virtual machines, virtual storage and networking. Unlike previous cloud services

models, the architect in the IaaS model can benefit from various types of systems

related services, such as middleware services. While IaaS provider is responsible

for maintaining the hardware infrastructure, the atchitect can configure and main-

tain the software environment. Typical examples of IaaS providers include Google

Compute Engine and Amazon Elastic Compute Cloud (EC2).

The cloud model has provided the architect with the flexibility to build cloud-based

applications benefiting from SaaS offered by multiple providers. Although SaaS provision

is governed and its use is mandated by Service Level Agreement (SLA), yet providers

2

can not always guarantee the delivered Quality of Service (QoS) of the SaaS. This is

attributed to dynamic, shared and on-demand nature of the cloud, where the demand

on services and its underlying resources tend to fluctuate. By QoS, we refer to non-

functional requirements such as availability, performance, security and so forth. These

QoS are fundamental to users satisfaction and the working of an architecture [2].

We posit that performance is one of the critical dimensions for the satisfaction of

QoS. It criticality stems from the fact that offering SaaS services through a cloud-based

market comes with underlying risks that relates to performance fluctuation. This is due

to the undependable service provision of the cloud service provider, hardware malfunc-

tions, unpredicted fluctuations in demand for the traded services and shared resource,

etc. All these factors may increase the uncertainty and risks associated with performance

fluctuations benefiting from the cloud-based market.

By envisaging Figure 1.1 as a motivating example, one can see that performance

fluctuation can vary from services offered by one provider to another. Although some

providers tend to provide a relatively stable performance(e.g. the case of Dimension

Data South Africa), yet others are vulnerable to highly fluctuating performance (e.g.

the case of Indonesian Cloud). Existing service selection solutions focus on ensuring

QoS properties of services, such as cost, privacy and security. By contrast, the risk of

performance fluctuation, arising from the uncertainty in the cloud environment, is largely

ignored. It is necessary to consider how to reduce the performance fluctuation when

building application using SaaS from the cloud environment and to make fluctuation

explicit concern when architecting cloud-based solutions.

3

Figure 1.1: The Historical Record of Performance for Two Cloud Providers Dimension
Data-South Africa and Indonesian Cloud From the 18/5/2014 to 16 /6/2014 [3].

1.1 Problem Definition

As we discuss earlier, cloud computing promises the delivery of scalable, affordable and

on-demand resources [4], which encourages web service vendors to supply their services

through a cloud market [5]. The popularity of the cloud and its distinctive advantages

make cloud-based web services a plausible and attractive option for architecting cloud-

based applications. Conversely, performance fluctuation is common in the cloud environ-

ment due to changes in supply and demand of shared computational infrastructure and

resources [6].

Several advances in the web services field have facilitated the automated discovery,

browsing and integration of web services. Among such advances are the introduction of

languages such as Web Services Description Language (WSDL), Simple Object Access

Protocol (SOAP), the Universal Description, Discovery, and Integration (UDDI) [7] and

ones that focus on the integration and binding of service compositions, called Business

4

Process Execution Language for Web Service (BPEL4WS). Despite all these advances in

the field of web services, the selection of an optimal set of services to build cloud-based

applications is still a highly complex task for the following four reasons.

Firstly, SaaS services hosted on the cloud are vulnerable to performance fluctuations

because of either limited shared resources or changes in user demands. In a performance

analysis study that covered Amazon EC2 cloud, Dejon et al. [8] observed severe perfor-

mance drops, which caused the response time to vary between 200 ms and 900 ms, with

a mean of roughly 500 ms and a standard deviation of about 200 ms. Candidate cloud-

based applications are expected to be vulnerable to such instability. For that reason,

we need to consider how to evaluate and improve the performance stability by reducing

the performance fluctuation of the cloud-based application through the selection of an

optimal set of candidate services.

Secondly, there are an increasing number of available candidate services offering similar

functionalities with different QoS. It is hard to select an optimal service selection from a

large pool of candidate services that satisfies the user’s needs.

Thirdly, as the cloud is a dynamic environment, where services are added and moved

from the market at run time, self-adaptivity becomes a key requirement when architect-

ing a QoS-aware solution that benefits from the cloud market. Among the concerns,

self-adaptivity shall be concerned with selection and consequently composition of these

services in response to changes in the dynamic cloud environment.

Fourthly, optimizing QoS in a dynamic services composition is a NP-hard problem [9].

A significant challenge is to understand how services selection composition approaches

can scale with respect to a number of different scaling dimensions, such as workflow size,

the number of QoS constraints, the number of application requests and so forth.

The literature offers a large number of approaches for web service selection and com-

position that operate on the cloud. Most of these approaches focus on finding an optimal

set of services based on constraints on the QoS of the candidates [9], [10], [11], [12], [13]

, [14] [15] or on the reputation based on user feedback, such as [16], [17], [18] and [19].

5

However, they have not explicitly considered the performance stability of the cloud-based

application in their models.

We posit that the principles of design diversity can provide a sensible solution to deal

with performance instability when selecting and consequently composing architectures

that relies on cloud-based services. Diverting from the cloud, the software engineer-

ing literature provides plenty of examples of how the principles of design diversity have

attempted to improve the software reliability and dependability. In particular, design

diversity techniques have been motivated and used as defence against uncertainty by

using different variants of a program that provide similar functionalities. When a prob-

lem occurs to one of the variants, there is a chance that it will not affect the others.

Other variants can continue to deliver the required functionalities entailed by the system

specification. Classical approaches implement design diversity techniques such as [20],

[21] and geographical diversity, such as [22] and [23]. However, none of these techniques

have explicitly linked the selection of service composition to performance fluctuation and

performance correlations between different candidate services offered in the cloud market.

This thesis objective is to design a stability-aware services selection and composition

approach to adaptively reduce the performance fluctuation of a cloud-based application

using the concept of design diversity. The challenge is mainly in two-folds: (1) find a

mechanism to self-adaptively select a set of services that help to reduce the performance

fluctuation of a cloud-based application and (2) find an efficient diversified solution while

considering the performance fluctuation and the correlation between candidate services

of a composition. To address these challenges, we also investigate whether composing

services with a low-performance correlation can result in better performance stability of

the cloud based application. In the following sections, we will introduce two application

scenarios, which will help exemplify the problem in more details.

6

1.1.1 Service Selection In Scaling Up Scenario

As an illustrative example, let us consider a budget flight booking cloud-based application,

Flight.com, which provides an online booking web service. We assume that all the required

Flight.com functionalities can be satisfied by selecting single stand-alone cloud service

named FlightBooking. Different cloud providers offer variants of the FlightBooking service

in the cloud market. The variants tend to provide the same core functionalities, but they

differ in price and the way they deal with QoS. In high seasons, Flight.com has decided to

scale up its services to support an anticipated load in the number of users through selecting

and subsequently allocating additional 100 instances of the FlightBooking services through

a cloud-based market.

By using traditional auction-based methods as in (e.g., [24], [25]), the 100 instances of

web services could be allocated from the sellers with the lowest price without giving much

consideration to the risk of performance fluctuation. In contrast, our aim is to improve

its performance stability application by diversifying the selection of 100 instances of the

FlightBooking web services from multiple cloud sellers. The objective is to self-adaptively

reduce risks associated with the fluctuation performance (measured by the throughput of

the selected services) in the cloud-based application while maintaining a number of QoS

constraints.

1.1.2 Cloud Services Composition Scenario

In the previous scenario, we considered a sample application that requires a single service

to satisfy all of its functional requirements. However, here we address more complex

cloud-based application that requires the integration of different web services to create an

added value composition of services that satisfies the functional and QoS requirements.

We refer to the process of selecting and allocating a number of interconnected cloud-based

services as Cloud Services Composition(CSC).

Let us consider the following example, Mytrip.com, which is a CSC application that

7

provides an online service for booking travel packages. In order to provide the travel pack-

ages, Mytrip.com constructs CSC with three cloud services that include Flight Booking,

Car Booking and Hotel Booking services. We assume that each of the abstract web ser-

vices can have multiple candidate web service instances, which can be leased from various

clouds. As in the previous scenario, we assumed that the variants tend to provide the

same core functionalities, but they differ in the way they deal with QoS (response time,

security, and price).

A representation of a CSC problem is shown in Fig. 1.2. The aim is to design cloud

services composition algorithm that improves the stability of CSC performance (measured

by the response time of the selected CSC) while maintaining a number of QoS constraints.

The self-adaptive mechanism will help the CSC to react to changes in the market and

sustain the optimality of the CSC in a runtime environment. As QoS dynamic services

composition is known to be a NP-hard problem [9], scalability is a paramount importance

for the efficiency and effectiveness of the composition solution. For this reason, we support

the approach with systematic scalability analysis method that can better understand how

the composition technique react to changes in a variety of scalability dimensions for the

CSC.

8

Figure 1.2: A Representation of the Cloud Service Composition (CSC) Problem.

1.2 Proposed Solution

This thesis views the cloud as a marketplace for trading instances of web services, which

cloud-based applications can explore, trade and use as substitutable and composable

entities in the architecture of a cloud-based service applications. That is, for a given

abstract service S in a cloud-based service application, there exist multiple candidate

services, Si......Sn in the market offering comparable functionality, but differing in their

price and QoS provisions. This market-oriented perspective has been widely adopted by

researchers and also constituted one of the enablers for the dynamic service selection and

composition vision and automatic service operations. The perspective adheres to widely

accepted practices as documented in the literature (e.g. [26], [27] [28] and [29]).

We view the selection of web service instances to architect an application from a cloud-

based market as an optimisation problem, where the goal is to reduce probable risks of

performance fluctuation while maintaining a set of QoS requirements. We look at such

optimisation from the buyers (i.e. a cloud-based service application) perspective.

From a novel perspective, our stability-aware services composition advocates for the

9

use of design diversity principles to reduce the performance fluctuation of cloud-based

application. The idea is that by diversifying candidate services that share lowest possible

correlation between their performances, we can improve performance stability and reduce

the chance of performance fluctuation. We argue that a cloud-based application can utilize

the Modem Portfolio Theory [30] to build a diversified portfolio of multiple instances of

web services. The logic of the portfolio theory promotes the process of diversification,

known as ’not putting all of your eggs in one basket’, as a way to reduce the risk of the

portfolio [31]. In the context of web services selection, diversification can be achieved by

selecting web services from multiple providers that share a low correlation between their

performances. In the case of low correlation, if the underlying factor for a drop on the

services performance affects one provider, there is a chance that it will not occur in the

other providers.

This is because cloud providers may vary in terms of the software, hardware, operating

systems, virtualization mechanisms and physical location used among the other environ-

mental factors. Assuming that the service provision tends to be functionally identical

across candidate providers, the QoS characteristics tend to be sensitive to the underlying

resources deployed to support the running of these instances. Henceforth, the strategy

for considering more than one provider leans towards diversity. Unlike the reviewed clas-

sical design diversity, our portfolio-based approach links the diversification of candidate

services to performance fluctuation and correlation between different candidate services.

To the best of our knowledge, we are not aware of any service composition approach that

explicates diversity in cloud-based application by the selection of sets of candidate cloud

services with the aim of reducing the performance fluctuation.

In summary, the thesis attempts to answer the following research questions:

• RQ1: Can the concept of design diversity be applicable to the case of cloud services

selection and composition to reduce risk of performance fluctuation? How well can

it perform compared to well-established services selection methods?

• RQ2: How can the approach be extended to self-adaptive mechanism, which can

10

dynamically respond to changes in the market?

• RQ3: In the case of CSC, what are the scaling dimensions (e.g. number of web

services, number of objectives, candidate solutions, frequency and volatility of change

etc.) that we need to render a pragmatic solution ?

1.3 Contributions of This Thesis

This thesis makes a number of novel contributions towards the objective of a stability-

aware services selection and composition technique for the cloud environment. In partic-

ular, the thesis investigates how leveraging on the principles of design diversity, portfolio

thinking and self-adaptivity can lead to a pragmatic technique that can serve the problem

and stabilise performance in the cloud. The major contributions are as the following:

• A literature review that covers the state of the art of QoS-aware service

composition: We review existing work on QoS-aware services composition. The

objective of the review is to draw from the state of the art approaches, new insights

that can assist the stability-aware selection of cloud-based services with the aim of

reducing performance fluctuations. The review helped to identify a list of major

challenges imposed by cloud environment on QoS-aware service composition. These

challenges lead to the design of our novel portfolio inspired mechanism.

• Review the existing design diversity solution: We present a review that ex-

plores how design diversity is adopted in different solutions to improve the depend-

ability and reliability of software systems. The aim of the review is to identify

the advantages and limitations of current design diversity solutions and to moti-

vate the need for a new approach to implementing diversity in service selection and

composition.

• A novel portfolio-based service selection algorithm: We present a novel

stability-aware service selection and composition algorithm that can be used to

11

build cloud-based applications. The approach utilises the Modern Portfolio Theory

to allow cloud-based applications to minimize the performance fluctuation while

maintaining a set of required QoS constraints. The thesis uses two scenarios of

application to illustrate the applicability and the effectiveness of the portfolio-based

algorithm in improving performance stability.

• Systematic Elaboration of Scalability Requirements for Portfolio-based

Service Composition: We adapt systemic methodology to conduct a scalability

analysis for our approach. More specifically, this systemic methodology helps to

identify the scalability dimensions of QoS-aware service composition that are more

likely to affect the scalability of our approach. The used method has helped to reveal

four scalability dimensions related to our scalability evaluation. These dimensions

are the number of candidate services, the size of application workflow, the number

of concurrent requests and the number of QoS in the application.

• Conducting A Systematic Scalability Analysis: By using controlled exper-

iments, we systematically perform a scalability evaluation on the portfolio-based

composition where we evaluate the sensitivity of time needed to find a solution

to increases of the four scalability dimensions. This form of scalability evaluation

can benefit other QoS-aware service composition approaches, which which require

scalability analysis.

1.4 The Thesis Storyline

A survey of the QoS-aware service composition solution indicates that current approaches

focus explicitly on QoS dimensions such as performance, cost, and security and only im-

plicitly, if at all, on the performance fluctuation. Despite their concern with performance,

these methods do not address the performance stability. Then, we looked at classical

approaches that adopt the concept of design diversity to improve the reliability of ap-

12

plication and motivate the need to a diversification technique that address the issue of

correlated failures.

To bridge the gap, this thesis proposes an economics-driven approach for evaluating

and minimising the performance fluctuation of a cloud-based application. It is assumed

that architect of the application (i.e. a buyer) is a risk-averse investor that aims to select

set of services that minimise the application performance fluctuation. The thesis then

claims that using design diversity can help in reducing such fluctuation. In particular, the

thesis argues that Modern Portfolio Theory ([32], [33]) is suited for assisting in the eval-

uation and minimisation performance fluctuation of cloud-based application. However,

this raises the question: Why Modern Portfolio Theory? Portfolio theory was developed

to deal with uncertainties revolving around investments and future returns in the financial

markets. The theory presents a framework to form a stable portfolio of investment from

set stocks that suffer price fluctuation [30]. This perspective is appealing to the problem

of building a stable cloud-based application using a set of cloud services that suffer from

performance fluctuation.

This thesis presents a portfolio-based services selection model that helps in evaluat-

ing and minimising the performance fluctuation of an application. Briefly, the model

draws on a simple analogy with Modem Portfolio Theory, where services in the market

present the investable asset and the cloud-based application as investor who owns the

portfolio of services. The novelty of our portfolio-based model emanates from the ability

of well-diversified portfolio by selecting an optimal set of services that share a minimum

correlation between their performances to achieve more stable performance. The thesis

describes how we have derived the portfolio-based services selection model: the analogy

made, its formulation, the assumptions and its effectiveness by report on two scenarios of

application for the model: services selection in scaling up scenario and a cloud services

composition scenario.

The thesis complements the model with a self-adaptive mechanism that utilised the

Monitor, Analyse, Plan and Execute (MAPE) control loop [34] to react to changes in

13

runtime environment. The proposed mechanism makes an explicit trade-off between the

cost and benefit of performing changes to the cloud-based application.

As scalability is of paramount importance for efficient dynamic and adaptive selection

and composition, the thesis adapts the systematic method of [35] to identify the various

scalability dimensions that can affect the working of the approach. We report on set of

control experiments that evaluate the sensitivity of the approach to the identified scaling

dimensions.

The thesis uses a set of control experiment to empirically evaluate the portfolio-based

model and explore its effectiveness in addressing two scenario of applications. In the first

scenario, we apply the portfolio-based model for building a simple cloud-based application

for a scaling up scenario by selecting a number of identical services. We demonstrated the

effectiveness of the self-adaptive portfolio-based selection for building and maintaining an

optimal cloud-based application with minimum performance fluctuation.

The second scenario considers a more complex problem, where the CSC application

requires the cooperation of multiple interconnected cloud services to satisfy their require-

ments. A set of simulated experiments were used to test the approach effectiveness in

improving the performance stability of the CSC, analyse the performance of the ap-

proach under multiple correlation settings, evaluate the effectiveness of the self-adaptive

mechanism in dynamic market; and perform the scalability analysis that covers multiple

dimensions of the CSC problem.

In addition to the simulated experiments, we have implemented a prototype where

the whole technique was realised in CloudSim environment [36]. The prototype shows

consistent result with the findings of the simulated experiments, where the portfolio-based

CSC outperforms the other composition algorithms in terms of the quality of selection

(minimum performance fluctuation).

The thesis concludes by highlighting some open questions that could stimulate future

research in stability-aware services selection and compositions.

14

1.5 Structure of The Thesis

The rest of the thesis is structured as following:

In Chapter 2: we start by presenting an overview that covers some of the basic

concepts related to web service and web services composition. After that, we present a

detailed survey that covers the current QoS-aware service composition approaches. The

objective of the survey is mapping out the main activities used to support QoS-aware

service composition in a dynamic environment and identify the gaps in current approaches.

From the survey, we discovered that the reviewed approaches do not address the issue of

performance fluctuation in cloud computing environment.

In Chapter 3: we present an overview that covers the concept of design diversity,

followed by a review that explores current approaches of implementing design diversity.

The review presents a number of different methods used to implement design diversity

as well as presenting the requirements, challenges, benefits and trade-off of implementing

design diversity.

In Chapter 4: we use a simple scenario to demonstrate the applicability of the

portfolio-based approach. Particularly, we describe how the portfolio-based approach

can be used to build a cloud-based application in scaling up a scenario with the aim of

reducing the risk of performance fluctuation. First, we present an overview of the theory

and some of its related concepts. Second, we present the formulation, analogy and the

assumptions associated with the self-adaptive portfolio-based services selection solution.

Last, we present a set of controlled experiments used to test the approach effectiveness in

minimizing the risk of performance fluctuation.

In chapter 5: we illustrate the efficiency of our portfolio-based approach to tackle

complex scenario which is CSC. First, we present adaptive CSC approach that leverages

the principle of modem portfolio theory to construct a diversified CSC. Second, we present

a set of controlled experiments used to test the approach effectiveness and self-adaptivity

in minimizing the risk of performance fluctuation. Finally, prototype of the system is

presented.

15

In Chapter 6: building on the work of the systematic elaboration of scalability

requirements [35], we systematically identify the scalability requirements for the complex

scenario of CSC. We start by presenting a background that covers part of methods used

in our scalability analysis such as Goal-Oriented Modelling and Goals Obstacle Analysis.

Secondly, we present the goal modelling and scalability requirements of the CSC problem.

Finally, a set of experiment are presented to evaluate the scalability of the portfolio-based

composition.

In chapter 7: we conclude the thesis with a discussion of the main findings and

concluding thoughts about directions that this research can take, in the future.

1.6 Publications

Work presented in this thesis has been to a degree or completely derived from the following

list of papers published during the course of the Ph.D. candidature. This thesis must be

considered as the definitive reference of details and ideas, presented in these publications.

• Conference papers

1. F. Alrebeish and R. Bahsoon(2015). Stabilising Performance of Cloud Ser-

vices Composition Using Portfolio Theory. Full Paper in the Research Track.

The 22nd IEEE International Conference on Web Services (ICWS) June 27 - July

2, 2015, New York, USA (Selection rate 18%).

2. F. Alrebeish and R. Bahsoon(2013). Risk-Aware Web Service Allocation in

the Cloud Using Portfolio Theory. Accepted as a full paper. The 10th IEEE

International Conference on Services Computing (SCC 2013), In conjunction with

IEEE Cloud 2013, ICWS 2013, and Services San Francisco, CA, USA.

3. F. Alrebeish and R. Bahsoon(2013). Using Portfolio Theory to Diversify the

Allocation of Web Services in the Cloud. Genetic and Evolutionary Compu-

tation Conference (GECCO 2013), Amsterdam, the Netherlands. ACM Press.

16

• Journals

1. F. Alrebeish and R. Bahsoon(2015). Implementing Design Diversity Using

Portfolio Thinking to Dynamically and Adaptively Manage the Alloca-

tion of Web Services in the Cloud (Accepted). IEEE Transactions on Cloud

Computing, vol.3, no.3, pp. 318-331.

2. F. Alrebeish and R. Bahsoon(2015). Portfolio-based Self-adaptive Mechanism

for Stabilizing Performance of Cloud Service Composition (Reviewing cy-

cle). IEEE Transactions on Service Computing.

17

CHAPTER 2

QOS-AWARE SERVICE COMPOSITION: STATE
OF THE ART

One of the critical dimensions which can not be undermined once we compose services

is performance. Though there has been plenty of research in QoS-aware composition,

these methods treat performance as an add-on dimension and do not explicitly handle its

fluctuation overtime. The goal of our research is to present a QoS-aware service composi-

tion approach that achieves performance stability in cloud computing environments. The

first step towards this goal consist of reviewing the state of the art of QoS-aware service

composition.

The objective of the review is to draw from the state of the art of QoS-aware ser-

vice composition a new insights that can assist the problem of stability-aware dynamic

selection for cloud-based applications. In this survey, we reviewed the QoS-aware service

composition approaches in the context of the traditional software environment, in gen-

eral, while paying special interest on QoS-aware service composition approaches in the

dynamic cloud environment. In dynamic environment, service composition algorithm can

support QoS awareness by providing a set of key activities, such as QoS modelling, service

composition and QoS-driven adaptation.

In this chapter, we start by presenting a background information that covers some

of the basic concepts relating to web service and web services composition. Then, we

will present a review of existing work on QoS-aware services composition. The aim of

18

the review is to identify and present the main activities that support QoS-aware service

composition in dynamic environment, such as QoS modelling and description, the scope

of QoS constraints, problem modelling, selection strategies and techniques , and support

for adaptation. Finally, we will conclude by presenting a list of challenges posed by cloud

computing environment on the QoS-aware cloud service composition.

2.1 Basic Concepts and Related Standards to Web

Services and Web Services Composition

2.1.1 Web Services

This section will present an overview of concepts related to web services. First, we start

by defining what do we mean by web services and then we present the Web Services Model

followed by a list of XML-Based Standards that are used for describing, discovering, and

invoking web services. Finally, we list the benefits of presenting software applications as

web services in comparison to the traditional software application.

As a first step towards defining web service, we start by presenting a general definition

of the terms service. Then, this general definition is specialized to account for the case

of web service. According to Gadrey [37] a service is defined as follow:”A service is

a set of activities that are performed and intended to bring about a change of state to

either an entity that is owned or used by a consumer or to the consumer itself. The set

of activities are performed by a provider or jointly by the provider and consumer. The

outcome or resulting change of state is based upon a prior agreement between the consumer

and provider, which aims at the co-creation of value”.

This definition emphasizes two key features of services. First, the intention of changing

the state of an entity and secondly, it explicitly requires a prior agreement on terms of the

delivered service. It is the responsibility of the services consumer to specify the appropriate

terms of services to avoid overprovision. The provider mainly contributes by performing

19

the activities required to satisfy the services agreement. This general definition covers

any type of services from building a house, to leasing web services from cloud provider

such as Amazon.

With the rise of cloud computing and rapid developments in web technologies, the

environment of service provision and delivery has changed fundamentally. In this context,

a new kind of services has emerged which is defined as web service. The main advantage

of web services is that both of the inputs and outputs of the services are delivered by

means of a network like mobile network or the Internet.

According to the World Wide Web Consortium (W3C) [38], a web service is ”a software

system designed to support interoperable machine-to-machine interaction over a network.

The web service has an interface described in a machine-processable format (specifically

WSDL). Other systems should be able to interact with the Web service in a prescribed

manner using language such as SOAP-messages” . These messages are transmitted us-

ing HTTP or other web standards. Another definition of web service was presented by

Berners-Lee et al [39] where he defined them as ”a software service, which can be accessed

using a uniform resource identifier (URI), exposing a public interface based on Internet

standards”.

Both of these definitions stress two features of web service. First, the existence of

well-defined interface is required to disclose the service to the public. Second, a web

service should use a special web protocol (such as HTTP) to facilitate, communicate,

and exchange data between the service provider and consumer. Both of these features

are considered as key enablers of automated service selection and composition. A clear

demonstration of web services interaction is the web services model presented in Figure

2.1 [40]. The web services model defines three primary activities for interacting with web

services. These activities are publish, find and bind web services.

20

Figure 2.1: Web Service Model

The responsibilities of performing the activities presented in Web Service Model are

assigned to three main agents: the service provider, the service broker and the services

consumer [40].

• The service provider is an agent responsible for providing a specified software ap-

plication as service. The service provider is also responsible for publishing and

updating their services as well as their interface so that they are accessible on the

Internet. From a business point of view, it is the owner of the service. From an

architectural point of view, it is the platform hosting the implementation of the

services.

• The service consumer is the agent that requires a certain function that can be

fulfilled by a service published by a provider on the Internet. From a business point

of view, this agent represents the business that needs certain services to be fulfilled.

From an architectural point of view, this is the application that looks for service

that meets its requirement. A consumer agent can be a human user accessing the

service through a mobile phone or desktop; it can be a cloud-based application, or

21

it can be another web services. The service consumer finds the required services

by searching a service registry. Once the service consumer finds the appropriate

service, then he can use the URI to bind to services hosted by a service provider.

• The service broker is the agent responsible for providing a searchable registry of

service descriptions where service providers publish their services and service con-

sumers find services and obtain their binding information.

Several advances in the field of web services and the introduction of multiple web ser-

vice XML-based standards have facilitated the implementation of the web service model.

Among these advances is the introduction of XML-based languages such as Web Ser-

vices Description Language (WSDL), Simple Object Access Protocol (SOAP) [40], the

Universal Description, Discovery, and Integration (UDDI) [41] and the Business Process

Execution Language for Web Service (BPEL4WS) [42].

The WSDL supports web services discovery activity by specifying properties of a

web service, such as what it does, where it is located and how it is invoked. The SOAP

facilitates the exchange of data with the services by specifying unified standard for sending

data as part of messages and invoking remote procedure calls over the Internet [40], while

the UDDI facilitates the activity related to publishing information about services in the

registry. The BPEL4WS web service standard enables the integration and binding of

service compositions [42].

In addition to these four core standards, there are some complimentary standards

that provide additional support such as WS-Security, WS-Trust, WS-coordination and

WS-policy [43]. All of these standards represent the minimum structure required for

implementing the web service model and they are referred to as web services technology

stack [43].

Currently, web services topologies are adopted by many organisations to make their

traditional software applications available to the public as web services for different needs.

These web services can be implemented based on various software modules [44]. For

instance, a web service can be implemented as self-contained service, such as a money

22

withdraw service or deposit service; or it can be implemented as a stand-alone application

such as life insurance application or weather forecast application ; or as a resource enabler

service that provides access to resources such as data storage, virtual machine or hardware

platform.

The main benefits of implementing software as a web service in comparison to tradi-

tional services are as follows [40]:

• Easy and fast deployment. Developers can reduce the time and effort needed

for developing a complex system by reusing and orchestrating some low-level web

services.

• Interoperability. By using the standard interface definition language and protocol,

any web service can interact and collaborate with any other web service which means

that web services are truly language and platform independent. The interoperability

of web services will enable the application developer to integrate their services with

services implemented using different languages and allowing them to communicate

with legacy applications.

• Just-in-time integration. Traditional software systems tend to be sensitive to

change as a change in the implementation or output of a subsystem will often cause

the static coupling of the subsystems to break down. Web service based systems

promote the just-in-time integration of new service and applications.

• Reduced complexity by encapsulation. In the web service model, what is

important is the behaviour that services provide not how they are implemented.

This reduces the complexity of the implementation, as service consumers are concern

with what the services do rather than how they are implemented.

23

2.1.2 Web Service Composition

One of the distinctive features of web service is the ability to integrate a number of web

services to create an added value composition of services that satisfies the user require-

ments. The process of selecting and allocating a composition of service is called Web

Service Composition [44]. For example, a website that provides holiday packages can be

built by aggregating a flight booking services, car booking services, hotel booking services

and card payment services.

Several methods have been proposed to facilitate and automate the task of web services

compositions. These composition methods are categorised by Milanovic et al. [45] to six

categories as follows: Semantic Web OWL-S models [46], Web Components approaches

[47], Algebraic Process Composition [48], Model Checking and Finite-State Machines,

Petri Nets approaches [49] and workflow based approaches [50]. The most popular is the

workflow-based approach, and it has been used as a standard approach to implement

services composition in business and scientific communities.

In workflow based composition, a workflow is used to describe the patterns of executing

a collection of web services. The workflow helps to do the following:

1. Specify how the web services are combined to achieve the required functionality of

the composition.

2. Define the composition control flow that specify the order for executing the web

services and the control point where some of the activities may or may not be

performed.

3. Define the composition data flow that specifies the exchange of data between the

different services of the composition.

Many web service languages have been proposed to facilitate the integration of work-

flow based web services composition, such as the Web Services Business Process Execution

Language (WS-BPEL) [51], Simple Conceptual Unified Flow Language (SCUFL) [52] and

the XML Process Definition Language (XPDL) [53]. Using these workflow languages with

24

other web services standards presented in the web services technology stack will enable

a web application to automate the tasks of discovering, selecting and integrating web

services to satisfy the user functional requirement [43].

2.2 QoS-Aware Service Composition

Given the potential existence of multiple web services that offer similar functionality

in the cloud market. An application requirement can be fulfilled by one or more com-

posite services, which offer similar functionalities but come with different QoS. In this

context,the goal of QoS-aware service composition is to select and allocate a web service

composition that: 1) achieves the functional requirements of the application, 2) satisfies

the QoS constraint imposed on the composition, and 3) maximizes the overall QoS of the

composition.

In this section, we will present an overview of the state of the art of QoS-aware web ser-

vices composition. This overview structures the state of the art of QoS service composition

into five areas: 1) QoS modelling and description, 2) the scope of QoS Constraints(global

vs local constraint), 3) problem modelling, 4) selection strategy and technique for selecting

the composition and 5) supporting an adaptive QoS-aware services composition.

2.2.1 QoS Modelling and Description

Our analysis of QoS-aware web services composition will start with QoS modelling and

description which is an enabler for the selection process. There is an absence of unified

definitions and standard models for QoS. With the absence of unified model, QoS-aware

web services composition methods have used various models for specifying the QoS of the

composition.

Generally, these QoS models can be classified based on the covered QoS into two main

categories: Specific and Generic models. Specific QoS models tend to define a limited

number of the commonly used QoS properties, such as cost, performance, security and

25

reliability. The ASOB framework [54], HireSome-II model [55], BNQM [56] and the QoS

model presented in [57], are examples of a Specific QoS models.

On the other hand, Generic QoS models are more comprehensive in the sense that

they tend to define a larger number of QoS properties. AMIGO [58] and the QoS model

proposed by Rosenberg [59] are examples of a generic QoS models. In AMIGO [58], the

QoS model categorized the QoS properties into five distinctive categories: reliability, cost,

transaction, security, and performance, where each one of these categories contains one

or more QoS.

Regarding the cloud environment, Generic QoS models are more appropriate choices

to address QoS-aware services selection and composition as they cover a larger number of

properties that may be required by both the service providers and consumers.

Another way of classifying the QoS models is based on the scope of the QoS model. On

that base, the QoS models can be divided into Services focused QoS models and End-to-

End QoS models. In Services focused QoS models, the scope of the QoS model is limited

as it focuses on QoS properties that affect the application only such as availability, price

and response time. A representative example of the services focused QoS models is the

framework presented by Christos et al. [60].

On the other hand, End-to-End QoS models have a wider scope as they cover all the

factors that influence the QoS delivery to the user. These factors include QoS properties

that affect the application, network and the provider infrastructure, which host the ap-

plication. A typical example of End-to-End QoS Models are the framework proposed by

Yang et al [61]. In his framework, Yang modelled both service QoS properties, such as

performance, availability, cost as well as network QoS properties such as devices availabil-

ity and reliability. Another interesting End-to-End QoS model was presented by Chang

et al [62]. In this model, QoS were divided into three categories: 1) QoS for service; 2)

QoS of content delivery such as correctness of delivered information; and 3) QoS of the

hardware that cover aspects such as processing power, memory and power consumption.

In a cloud environment, both of the network used to connect end users to services and

26

the hardware used to host the application services may considerably affect QoS of com-

position services. This is because a busy network can affect the response time of services

and heavily shared hardware resource can reduce the service throughput. Therefore, con-

sidering QoS on an end-to-end basis is required when dealing with web service selection

and composition in a cloud environment.

Finally, QoS models can be further divided based on the level of the specification

they provide to BlackBox and WhiteBox models. In BlackBox QoS models, values of

QoS are associated with services which represent a black box entity without having any

prior knowledge about the operations or the structure of these services (i.e. framework

presented by Christos et al [60]). In WhiteBox QoS models, QoS values are associated

with more refined elements of services. Specifically, QoS values are associated with oper-

ations and tasks that represent the functional behaviour of the services. An example of

WhiteBox QoS models is the PERSE framework [63] where services are represented as a

set of operations linked by different types of control structures, such as loop, parallel and

sequences and the QoS values are associated with these operations.

Another example of WhiteBox model is the work by Rosenberg [59] in which he defined

a three layer QoS model for service composition. The first layer focuses on QoS proprieties

of individual services in the composition. The second layer focuses on the peer-to-peer

QoS between the services within the composition such as Services level agreement. The

third layer provides global view of QoS for the service composition where the QoS of all the

services in the composition is aggregated to calculate the global QoS for the composition.

Regarding the cloud environment, adopting a WhiteBox approach can enrich the QoS

model. However, the WhiteBox modelling is considered to be a complex approach as it

requires additional specification of services structure and behaviour. This is not possible in

some cases as some service providers are not willing to share these information. Therefore,

considering BlackBox model is deemed to be a suitable choice for web service selection

and composition in a cloud environment.

27

2.2.2 The Scope of QoS Constraints

One of the goals of QoS-aware web services composition is to select a set of candidate

services that satisfy a set of QoS constraints. There are two types of QoS constraints

used in the literature of web services composition: Global and Local QoS constraints.

The Global QoS constraints are constraints that are imposed in the whole web services

composition, whereas the local QoS constraints have a limited scope that covers only

individual services in the composition.

The type of QoS constraints have a significant impact on the level of complexity of

the QoS web services composition problem. While QoS web services composition under

local constraints creates a problem with linear complexity [61], QoS-aware web services

composition under global constraints is a NP-hard problem [64].

Most of the algorithms proposed in the literature of QoS-aware service and composi-

tion(e.g., HireSome-II [55], PERSE [63] , SanGA [65], Clobmas [66]) model the problem

using global QoS constraints which is challenging task when compared to selection under

local constraint. For that reason, this thesis will consider the selection of services under

global constraints.

2.2.3 QoS-Aware Web Service Composition Models

The modelling of QoS-aware web services composition aims to enable a formal specification

of the problem which is the first step on that path of finding an appropriate composition.

In the literature of QoS-aware web services composition, three models have been used to

specify the problem: Mixed Integer Linear Program (MILP)(i.e. Ardagna et al [67] and

Alrifai et al [68]), Multi-dimension Multi-choice Knapsack Problem (MMKP) (i.e. Jaeger

et al [69] and Yu et al [70]) and Multi-Constraint Optimal Path (MCOP) (i.e. Yu et al

[70]).

• MultiConstraint Optimal Path (MCOP). In this model, web services composition

is presented as a directed graph of nodes and links. The goal of MCOP is finding

28

an optimal path that starts from the root node to the end node that maximise the

attributes while maintaining multiple constraints, such as limited cost. QoS-aware

web services composition problem can be modelled as MCOP by creating a graph

where service candidates are formulated as nodes and the workflow between them

as links. The goal of QoS-aware web services composition is finding an optimal

path of service candidates that have highest QoS values while maintaining the QoS

constraints.

• Multi-dimension Multi-choice Knapsack Problem (MMKP). This model assumes

that there is a set of items, and there are a number of alternative resources. Each

item will require a certain amount of each resource and it generates a value that

depends on the selected resources. The goal of MMKP is to select an optimal subset

of items to put into a knapsack with limited resource capacity that maximizes the

sum of the values of the included items, while the size of all selected resources is

less than or equal to the knapsack capacity. QoS-aware web services composition

problem can be formulated as MMKP by mapping composition to knapsack where

the QoS constraints represent knapsack capacity; candidate services represent items

and QoS represents the values of the items.

• Mixed Integer Linear Program (MILP). The goal of MILP is to select an optimum

solution that maximizes or minimizes an objective function that aggregates a number

of variables. At the same time, the solution needs to comply with a set of constraints

represented by linear equations. QoS-aware web services composition problem can

be presented as a mixed integer linear program by defining the aggregated QoS of

the service composition as the objective function and QoS constraints as the linear

constraints in the model.

Due to the poor scalability of the Mixed Integer Linear Program methods [71], MILP

becomes an unsuitable choice for modelling QoS-aware services composition in large scale

and dynamic environment such as the cloud. Both Multi-Constraint Optimal Path and

29

Multi-dimension Multi-choice Knapsack Problem represent a practical method for mod-

elling QoS-aware composition in large scale environment [70]. However, due to the addi-

tional effort required for modelling the service composition as a directed graph in MCOP.

This thesis will use an MMKP to model a QoS-aware composition in the cloud.

2.2.4 Selection Strategy to Allocate the Composition

QoS-aware service composition approaches can adopt different strategies for exploring the

search space. As all algorithms are aiming to find a combination of items, QoS- Aware

service composition algorithms can be categorized into two general strategies: brute force

algorithms and heuristic algorithms.

The aim of brute force algorithms is to find an optimal services composition by explor-

ing all the candidate services in the registry to ensure optimality. The service composition

algorithms presented by Mokhtar et al. [58], Yu et al. [70] and Zeng et al. [72] are cat-

egorized as brute force algorithms as they ensure optimality by considering all possible

compositions. However, that optimality comes with a high computational cost.

To overcome the high computational cost, some composition solution adopt lightweight

heuristic algorithms that seek near-optimal composition (e.g [73], [74] and [65]). These

heuristic algorithms do not perform an exhaustive search that explores all the possible

compositions; However, they seek near optimal solution by using different heuristics. The

main goal of using these heuristic is to provide a systematic way to explore a subset of the

search space that is more likely to lead to finding a satisfying solution. Thus, enabling to

reduce the computational time needed for running these algorithms.

In the literature of web service composition, different heuristics have been adopted by

the selection algorithms. These heuristic-based selection algorithms can be categorized

into Greedy and Discarding subsets algorithms [69]. In the Greedy algorithms, for each

abstract service in the workflow, one candidate service that has the highest QoS score is

selected and the rest of candidates are ignored.

Elhabbash et al. [75] presented a greedy algorithm for web service composition in

30

a volunteer environment. The authors used the value QoS utility for each candidate

as a heuristic to reduce the search space and provide a near optimal solution in a timely

manner. Another Greedy algorithm for web service composition is presented by Zeng et al.

[72]. In their local algorithm, they employed Simple Additive Weighting (SAW) technique

as heuristic to identify the optimal candidate in terms of QoS for each abstract service.

Another interesting work is the Greedy algorithm introduced by Yang et al. [61]. The

authors use a QoS based aggregation function to identify the optimal candidate for each

abstract service in the workflow. The main limitation of adopting a Greedy algorithm, is

its inability to guarantee the globe QoS constraint [69].

To cope with this limitation, other set of heuristic-based algorithms that maintain

global constraints have been proposed, such as Discarding subsets algorithms [69]. In

Discarding subsets algorithms, selection is performed over several phases. In each phase,

a subset of candidates are nominated to move on to the next phase and the rest are

discarded. In the Discarding subsets algorithms adopted, Alrifai et al. [76] uses QoS based

clustering of the candidate services as heuristic to nominate the dominating services that

are more like to lead to a near optimal solution. Similar work was presented by Mabrouk

et al. [77]. The authors use k-means clustering of the candidate services to nominate the

services that are going to move to the next phase.

Other solutions rely on bio-inspired algorithms, such as Particle Swarm Optimization

(PSO), Bee Colony Optimisation (BCO) and Ant Colony Optimization (ACO) to select a

suitable subset of candidates services. The bio-inspired algorithm developed by Wu et al.

[73] applied the principles of ant colony optimization to find a near optimal composition.

The latter modelled the problem of web services composition as a constrained directed

acyclic graph with a start point and a target point. The author used the starting point of

the problem as a nest of the ants and the target point as the food source. A QoS based

phenomenon are employed as heuristic to guide the ant in selecting the most attractive

candidates for each abstract services in the graph.

The selection algorithm presented by Lartigaua et al. [78] use Artificial Bee Colony

31

(ABC) optimisation where QoS and physical location are used as heuristic to select opti-

mal candidate services for each abstract service in the composition. An example selection

algorithm that relies on Particle Swarm Optimization (PSO) is depicted by Wang et al.

[79].

Overall, the adopted selection strategy and technique varies from one composition

algorithm to another. The choice of the selection strategy and technique depends on the

type of constraints imposed in the selection (i.e. Global vs Local constraint) and the user

preference in terms of receiving spontaneous result or optimal solutions.

2.2.5 QoS-Driven Service Composition Adaptation

Self-adaptation is a key requirement that needs to be considered when developing QoS-

aware service composition approaches. It enables the QoS-aware service composition

to react to the changes in the dynamic cloud environment and maintain a satisfying

solution. Several factors can trigger the need for adaptation of web services composition.

Bucchiarone et al. [80] categorised those factors to changes in: the functionality of the

services, QoS of the services, the business context, the computational context, and user

preferences. However, the focus of this section will concentrate on adaptation trigger by

QoS changes which is known as QoS-driven services composition adaptation.

The goal of self-adaptive QoS-aware services composition is to adaptively change the

service composition in order to maintain QoS constraint and/or optimise the global QoS of

the composition [66]. To achieve self-adaptation, several solutions have been proposed for

QoS-aware web services composition algorithms. Several surveys have covered software

adaptations in generals [81], [82] and [80]. The authors presented detailed taxonomy and

criteria for comparing and classifying adaptive software solutions in general. In the light of

these surveys, we will adopt the following criteria to assess and classify the proposed QoS-

driven composition adaptation solutions: Adaptation model and Adaptation approach [81]

and [82].

Adaptation Models are concerned with how adaptation problem is formulated. We

32

were able to identify three models: 1) mathematical based 2) graph based and 3) policy

based models. Zeng et al. [72] relied on a mathematical-based model to self-adaptively

manage QoS composition in a dynamic environment. The self-adaptive algorithm reacts

to the changes of QoS that occur during the execution of a composite service, by revising

the selected

Yan et al. [83] employed a graph model to enable adaptation. This model symbolizes

the services as a tuple(in, out) where in is the service input data and out is the service

output. For instance, if an input of a service matches the output of another service, thus

these two services can be merged into a composition. When one of the services of the

composition did not meet the requirements, a greedy search process will be activated to

find an alternative composition on the graph model that satisfies the users needs. MASC

middleware [84] is using a policy based self-adaptive mechanism. The model relies on

Event-Condition-Action (ECA) rules to detect and trigger adaptation that maintains a

satisfying composition.

The main advantage of policy based models in comparison with other models is that

policies are represented with higher-level abstractions. As a result, the software developer

can easily specify them. For that reason, a Policy-Based Model will be used to model

self-adaptively our QoS-aware web services composition.

The Adaptation Approach deals with how and when the adaptation decision can be

planned and constructed. Related to this, we categorise Adaptation Approach into: (1)

Static,and (2) Dynamic Adaptation Approach. In Static Adaptation approach (e.g.work

of Mokhtar [63]), future needs of adaptation are anticipated, and the adaptation plan is

hard-coded in advance, detailing the required changes of the service compositions. These

hard-coded plans are activated when a need for adaptation is triggered. Static adaptation

approaches allow a fast reaction to change in the environment. However, these static

plans do not consider the recent changes in the environment at the time of adaptation

(e.g. changes in QoS or the addition of new services to the cloud market after adoption

plan is hard-coded).

33

In dynamic approach (e.g. work Nallur [66], Elhabbash [75]) the adaptation planning

is taking place dynamically at run time just after adaptation is triggered. For that reason,

dynamic approach considers the current state of the environment where QoS-aware service

compositions operate. However, the delay in dynamic adaptation may be significant

when compared to static approach as adaptation plans are created at runtime. Despite

their computational cost, we consider using a dynamic approach as a suitable choice for

implementing the self-adapting mechanism in the high dynamic cloud environment as

they reflect the current state of the market.

2.3 Discussion and Summary

In this chapter, we have presented a survey that covers a number of existing methods

for QoS-aware service composition in both traditional software environment and cloud

environment. Based on the review, we can argue that QoS-aware service composition ad-

dressing cloud environment are closely related in general to QoS-aware service composition

in traditional software environments. As shown in our survey, QoS-aware service compo-

sition in both environments use the same taxonomy, models and adopt similar strategies

to solve the services selection problem. However, we deem that these composition solution

are not sufficient to cope with QoS awareness challenges in cloud environments.

Although the fundamentals of selecting services in the cloud and the traditional envi-

ronments could appear to be similar, but there are some differences: Cloud-based markets

tend to be dynamic and volatile, in situations where cloud providers continuously update

their provision of services, QoS, and price. In such model, competition is respected, in

situations where cloud providers continuously compete for providing better services, QoS,

and price.

For this reason, research efforts should be devoted to designing a novel QoS-aware

service composition method that takes into account the challenges presented by the cloud

environment. To the best of our knowledge, we are not aware of algorithms that dealt

34

with major challenges imposed by the cloud environments on stability-aware service com-

position that aim to reduce performance fluctuation. During the review, we identified the

major challenges imposed by cloud environment on stability-aware service composition.

These challenges can be classify into five main areas: QoS modelling and description,

supporting an adaptive QoS-aware services composition, problem modelling, selection

strategy and the scope of QoS constraints.

• QoS modelling and description: In cloud environment, using End-to-End generic

QoS models are more appropriate choices to address QoS-aware services selection

and composition as they cover a larger number of properties that may be required

by both the service providers and consumers. Moreover, most of the existing service

composition algorithms focus on finding an optimal composition of services among

a set of candidate services based on promised performance published by services

providers. Conversely, in a dynamic environment the actual performance delivered

by services may fluctuate because of the changes that may occur in the cloud envi-

ronment (e.g. limited resources, peak in demand). To cope with this issue, service

composition algorithm should additionally:

1. Evaluate performance stability for each service. This requires a continuous

monitoring of the performance of all the candidate services, which is hard to

achieve considering the large number of services that exist in the cloud market.

2. The service composition algorithm should consider reducing performance fluc-

tuation of the selected services.

We appeal to the concept of design diversity as a solution to address the problem

of improving the performance stability of services composition. In particular, we

see that diversifying the selection of services by using different providers to avoid

a single point of failure is beneficial. The concept of design diversity and a brief

review of the state of the art of diverse software systems are discussed in chapter 3.

35

• Support for self- adaptivity : Cloud-based market are highly dynamic where new

services may be added to the market at any time, the QoS of existing service may

change, or the service may become unavailable at any time. Therefore, the QoS-

aware service composition should dynamically adapt to changes in the market. One

approach towards self-adaptivity consists of replacing services that deliver unsatis-

factory QoS with alternative services that deliver better QoS. We think that using

and adaptive policy based solution is more appropriate for cloud environment. The

main advantage of policy based models in comparison with other models is that

policies are represented with higher-level abstractions. As a result, the software

developer can easily specify them.

Compared to existing self-adaptive solutions (e.g. Nallur [66] and Zeng et al. [72])

where service forming the composition are replaced in alternative service resulting

with better QoS, this thesis goes beyond the state of the art of self-adaptive solution

:

1. Considering performance fluctuation as a major driver for adaptation.

2. Considering a cost-efficient adaptation as our adaptive algorithm makes an

explicit trade-off between the cost of replacing the services and benefits gain

by the changing them.

• Problem modelling: In the literature of QoS-aware web services composition, three

models have been used to specify the problem: Mixed Integer Linear Program

(MILP), Multi-dimension Multi-choice Knapsack Problem (MMKP) and Multi-Constraint

Optimal Path (MCOP). Due to the poor scalability of MILP methods it becomes an

unsuitable choice for modelling QoS-aware services composition in large scale and

dynamic environment such as the cloud. Both MCOP and MMKP methods present

a practical mean for modelling QoS-aware composition in large scale environment.

However, due to the additional effort required for modelling the service composition

as a directed graph in MCOP. This thesis will use an MMKP to model a QoS-aware

36

composition in the cloud.

• Selection strategy and the scope of QoS constraints: The selection strategy used in

the literature QoS- Aware service composition can be categorized into two general

strategies: brute force algorithm and heuristic algorithms. However, in this thesis we

are seeking optimal selection and because of that we will use a brute force algorithm.

Regarding the scope of the QoS constraints, most of the algorithms proposed in the

literature of QoS-aware service and composition model the problem using global

QoS constraints which is challenging task when compared to selection under local

constraint. For that reason, this thesis will consider the selection of services under

global constraints.

Combining a brute force algorithm with a global QoS constraints will make op-

timising for QoS a NP-hard problem. An important issue is how the QoS-aware

services composition approaches scale with regard to different scaling dimensions

(Number of QoS, Number of candidate, and Number of users). One would expect

that problem of scalability in dynamic service composition to be fully addressed in

a consistent way in the literature. However, the proposed solutions in the literature

have used a limited and inconsistent range of scaling dimensions, which make it

very difficult to evaluate the claim of scalability. To overcome this problem, we will

use Scalability Goal-Obstacle analysis to identify the scaling dimensions that are

relevant to the scalability of our QoS-aware web services composition. The details

of this scalability analysis and it findings are presented in Chapter 6.

37

CHAPTER 3

DESIGN DIVERSITY: BACKGROUND ON
SOFTWARE DIVERSITY

In the previous chapter, we presented a survey that covered the state of the art of the QoS-

aware service composition. We also discussed performance fluctuation as one challenge

imposed by cloud computing environment. In addition, we motivated the need for a

stability-aware service composition method that appeals to the concept of design diversity

to address the problem of performance fluctuation.

The aim of this chapter is to present a brief overview of the concept of design diversity.

We present a review that explores how design diversity is adopted in different solutions

to improve the dependability and reliability of software systems. We look at different

methods used to implement design diversity, as well as review the requirements, challenges,

benefits and trade-offs of implementing design diversity.

3.1 Overview of Design Diversity Concept

In nature, the coexistence of many species is often referred to as diversity. While in

society diversity often refers to gathering a group of people from different backgrounds

and cultures. In both domains, diversity is considered as a source for stability and resilient

[85]. In software we take another perspective, we want to achieve properties such as

stability and resilient by trying to engineer software diversity [86]. The question here is

38

how to engineer and implement such diversity.

Design diversity can be implemented by creating two or more independent versions

of the same service, where all of the independent versions tend to meet the specification.

However, each independent version has its unique design decisions and is implemented in

a distinctive way [87]. In this case, if a fault occurs in one of the versions, there is a great

chance that the other versions will continue to be intact. Different research groups have

studied design diversity. Prominent examples are the Centre for Software Reliability at

City University and Dependable-Computing and Fault Tolerance Laboratory at University

of California Los Anglos (UCLA).

Diversity in design is a mature topic [88] and it has been used as a strategy to increase

the reliability and dependability of software systems, such as in [89] and [90]. During

the nineties, techniques adopted for implementing design diversity were widely criticized

for their high cost as each independent version of the software has to be developed from

scratch, which can double the implementation cost [91]. As a result, the applications

of these techniques were limited to the critical systems (e.g. airplane [92], trains [93])

where failure can lead to financial disasters or losses in human lives. However, in the

context of services hosted on cloud market, there are many services that provide the same

functionality using different implementations and hardware, thus making diversity-based

techniques more practical and cost efficient [94].

3.2 Questions

Researchers and engineers have developed a huge body of work on designing and im-

plementing diverse systems. However, it is not clear how the research results have con-

tributed to improvements of designing diversity in a cloud-based application. Meanwhile,

there have been several research efforts on dynamic QoS- aware selection and composi-

tion (discussed in Chapter 2). However, these solutions do not implement the concept of

design diversity.

39

In this review, we will study and summarize some of the existing research efforts re-

lated to designing diverse systems and shed light on the claimed benefits, trade-off and

limitations of applying design diversity. In particular, we aim to answer the following

questions: what are the different techniques and methods that have been used to imple-

ment design diversity?, what are the claimed benefits and trade-offs of applying design

diversity?, what are the reported concerns and limitations that need to be considered

when implementing design diversity solutions? and what are the requirements and chal-

lenges of implementing diverse systems using inspiration from nature?. An overview of

papers included in this review are presented in table 3.1.

40

Table 3.1: An Overview Of the Covered Design Diversity Papers

41

3.3 Techniques and Methods for Implementing Soft-

ware Diversity

In this section, we will present an overview of the different techniques for implementing

software diversity. Software diversity techniques can be divided into two main categories

[86]: Created Diversity and Managed Natural Diversity. In created diversity: we look at

approaches that try to implement diversity by creation. This, for example, can be through

the creation of duplicated versions of the same system. On the other hand, in natural

diversity the environment provides ready means for diversification, where research effort is

heavily concerned with how to exploit the primitives for diversification and consequently

manage them.

3.3.1 Created Diversity

In Created Diversity, software diversity is engineered at design phase to cope with probable

accidental faults. There are three main techniques to implement Created diversity:

1. N-version programming: First introduced by Avizienis et al. [87] in 1977. In this

design diversity technique, three or more versions of a program are independently

developed. Those programs share the same functionality. Then all of the indepen-

dent versions are executed in parallel. A majority voting logic is used to compare

the results produced by all of the versions and to report one of the results that is

presumed correct. This technique has been applied to improve fault tolerance in

number of domains, such as software development [95] and system security [96].

2. Recovery block: This technique was first introduced by Horning et al [97], where

only one active version of the program is executed at a time. When a failure of

the active version is detected by an acceptance test, the program will recover the

failure via roll-back and retry to run program using a different version. The main

differences in the recovery block technique from N-version programming are the

number of active versions running at the same time and the use of acceptance test

42

instead of relying on majority voting to get the correct result. The recovery block

technique has been applied to improve a software fault tolerance in the cloud [98].

3. N-self checking programming: First introduced by Laprie et al. [99]. A self-checking

component is a version of the program with an acceptance test or a pair of versions

of the program with an associated comparison test to detect mismatched results.

Both of the versions and their acceptance tests are developed independently from

common requirements. Fault tolerance is achieved by executing more than one self-

checking component in parallel. N-self checking technique has been used in [100] to

improve reliability in volunteer computing system.

3.3.2 Managed Natural Diversity

By natural diversity, we refer to the existence of different services that share the same

functionality. In this case, diversity can be easily achieved by selecting a set of these

out of the off-the-shelf software. Natural software diversity exists in several computing

environments such as the grid and cloud computing. The cloud computing comes with

built-in primitives and underlying resources, which can help with designing of diverse

systems. These may be part of one or more layers within the cloud ecosystems. For

example, in Software as a Service (SaaS), it may be possible to design for diversity through

selecting multiple instances from multiple providers. The idea is that by diversifying the

allocation, we can improve dependability and reduce the probable risks.

This is due to the fact that risks tend to vary with cloud providers. The dependability

and reliability of the solutions tend to be sensitive to the underlying resources used as

well as their locations. This is because cloud providers may vary in terms of the software,

hardware, operating systems, virtualization mechanisms and physical locations. Assuming

that the service provision tends to be functionally identical across candidate providers, the

non-functional characteristics tend to be sensitive to the underlying resources deployed

to support the running of these instances. Henceforth, the strategy for considering more

43

than one provider leans towards diversity.

Section 3.6 provides coverage of indicative existing work on diversity in environments,

such as the cloud, the grid and volunteer computing. In such naturally diverse environ-

ments, three general properties can be exploited to enhance the level of diversity among

the selected services: Geographical diversity, Ecological diversity and Modal diversity

[101]. Table 3.2 presents a brief description of the diversity properties as well as a simple

example of how diversity is implemented.

Table 3.2: A Brief Description of the Diversity Properties in Natural Diversity

3.4 Claimed Benefits and Trade-Offs of Applying De-

sign Diversity

To identify the claimed benefits and trade-offs of using design diversity, we used data

extracted from Table 3.1. Overall, we found that all of the claimed benefits were related

to QoS. The most claimed QoS are reliability (60%), security (30%), performance (10%)

44

and cost saving (5%). On the other hand, we found that the reported trades offs of

using design diversity were cost (50%) and performance (10%). Figure 3.1 summarizes

the claimed benefits versus trade-offs of using design diversity.

Figure 3.1: Claims Versus Trade-offs of Design Diversity. Bars Show the Total Number
of Reported Concerns.

3.5 Concerns and Limitations Needed to be Taken

into Account when Implementing Design Diver-

sity Solution

The use of design diversity techniques have been advocated by [87], [95] and [96] as a

mean of achieving fault tolerance in software systems. A common key assumption is that

by using multiple versions of independently developed software, we will have uncorrelated

failures. However, the work of Knight [102] and Eckhardt [103] indicated that software

failures may be correlated in the independently developed software systems. Another

concern shared by the majority of reviewed papers is the high cost of developing diverse

systems. However, implementing a cost-efficient diversity system in the cloud market is

feasible due to the low cost of reusing services offered by different providers.

45

3.6 Requirements and Challenges of Implementing

Diverse Systems Using Natural Diversity

Software diversity, naturally emerges in software markets as the services running in het-

erogeneous systems such as the cloud, grid and volunteer computing. Recently, several

researchers have proposed methods to increase the reliability and security by implement-

ing design diversity techniques in order to exploit the natural software diversity.

Anderson and Reed [100] proposed using diversity as fault tolerance technique to

improve reliability in grid environment. The paper presents an adaptive approach that

consists of two main steps. The first step is the estimation of error rates for each host.

Then in the case of high levels of error rate, a random replication will be performed to

reduce the incidence of errors.

Abu-Libdeh et al [104] have presented a middleware to stripe user data across multiple

cloud providers to reduce the cost of switching between the providers, and to better

tolerate provider outages or failures. However, they have not addressed how to evaluate

the dependability between different providers before distributing the data among them.

Similarly, Bessan at al [105] have presented DEPSKY, a system that improves the

availability, and integrity of data stored in the cloud through the encryption and replica-

tion of the data on diverse clouds that form a cloud-of-clouds. The system will perform

a full replication of the data which increases the cost of the system. Furthermore, they

have not discussed how to evaluate the different providers before distributing the data

among them.

Bonvin et al [106] have introduced a cost-efficient approach for dynamic and geograph-

ically diverse replication of web service composition in a cloud computing infrastructure

that offers service availability guarantees. Their approach is similar to the two steps

mentioned in [100]. The first step is to evaluate the availability of the web service and

when it goes below a certain level, a replica will be activated. In the second step, the

algorithm selects the provider of the new replication based on net benefit-based policy,

the geographically closest and least loaded, different replications are allocated to different

46

physical locations.

The solution by Zheng et al. [107] try to improve the fault tolerance of web service by

using a user-collaborated QoS model. The solution by Anatoliy et al [108] has proposed

a method of improving the dependability of web service composition by updating some

of the services from an online market. They used the probability of failure on demand

as a mean to systematically measure the dependability of both the services and the web

services composition. A similar solution for improving the dependability of web service

composition has been presented by Mansour et al [109] where they employed hybrid the

reliability model to evaluate the dependability of the services in the composition.

3.7 Recommendations

Based on the reviewed diverse systems, we offer the following recommendations for im-

plementing diverse resilient systems in a dynamic environment, such as the cloud with

explicit focus on stabilising performance in the service-oriented composition.

1. To have Adaptive component for managing diversity such as in [100] and [106] for

accommodating changes in the dynamic environment.

2. To consider the correlation between the performance of the selected services . All

of the reviewed diverse solutions [100], [104], [105], [108] , [109] and [106] have

failed to evaluate the correlation between the diverse solutions. While [104], [105]

have not addressed the issue, [100] allocated the replication randomly. Solutions

presented in [108] and [109] have considered the dependability of the services in the

composition. However, they have not considered correlation between the services.

The work presented by [106] has used net benefit based policy that allocates the

new replication at the geographically closest and least loaded resource. This policy

has also ignored the correlation of failures between the different locations.

47

3.8 Summary

In this chapter, we highlighted the concept of design diversity followed by a review of

the current design diversity solutions. In this context, we discovered that ignoring the

possibility of correlated failure of the selected services can lead to a poor diversification of

system. We also recommended that an effective diversification decision should be linked

to the correlation between the candidate services of the applications. In the next chapter,

we introduce an economics-driven web services selection approach to implement design

diversity in scaling up scenario using the Modern Portfolio Theory.

48

CHAPTER 4

PORTFOLIO BASED WEB SERVICES
SELECTION: IMPROVING PERFORMANCE

STABILITY IN SCALING UP SCENARIO

This chapter describes our portfolio-based approach for selecting cloud-based services in

a scaling up scenario with the aim of reducing the risk of performance fluctuation of the

cloud-based application. First, we will provide a background on the Modern Portfolio

Theory that is necessary to understand our approach. Then, we will introduce the logic

behind the theory and how effective diversification can be implemented. After that, we

present the concept of effective diversification in the context of web services selection

followed by the presentation of the assumptions of our model. Then, we formulate the

portfolio-based services selection model. We finally present an evaluation to illustrate the

applicability of the approach for services selection in scaling up scenario.

In the evaluation, a set of controlled experiments are conducted to (1) test the ap-

proach effectiveness in minimizing the risk of performance fluctuation; (2) simulate the

dynamic and adaptive behaviour of the approach in responding to changes in the market

conditions and risks of performance fluctuation; (3) evaluate the sensitivity of the alloca-

tion decisions to risk of performance fluctuation and its correlation with performance of

the other candidates and (4) evaluate the scalability of the approach and its ramifications

on risk reduction under extreme scenarios.

49

4.1 Introduction

We pursue an economics-driven web service selection approach that implements design

diversity. We adapt a novel model that exploits Modern Portfolio Theory [30] , [33]

to improve performance stability of the selected services. The model builds on Harry

Markowitz [33], Modern Portfolio Theory for reducing the risk of software performance

fluctuation. Portfolio theory has found its way in numerous applications. Among them

is the optimisation in the selection of software projects [110], the electricity generation

planning [111], and a cost-aware virtual machine management in cloud computing from

the provider perspective [112].

We argue that portfolio thinking can be used to implement diversity when selecting

web services from cloud-based markets. Unlike the reviewed design diversity solutions

that share the assumption of uncorrelated failures, the portfolio-based design diversity is

correlation-sensitive; it explicitly links the selection of services to performance fluctuation

and accounts for correlation. The following section will present a brief background.

4.2 Modern Portfolio Theory: Brief Background

Central to the modern portfolio theory is the concept of investment risk. Markowitz [30]

states that investment risk is a silent feature of investment, which measures the uncertainty

of future return. Investment risk can emerge as a result of market, industry or company

risks [113]. All these risks lead to uncertainty about future returns. What measures the

level of uncertainty of the future return is how fluctuating is the asset return. The higher

the fluctuation of asset return, the higher the uncertainty about their expected return.

The standard deviation of historical asset return is used to estimate the risk of each asset.

50

4.2.1 What Problems Do Modern Portfolio Theory Address?

Critics recognise the limitations of qualitative methods to predict and manage the risk

of investment. In these qualitative methods, the selection on investment assets is made

based on personal experience with company and industry analysis. Mandelbrot et al [114]

maintain that it is hard to provider an accurate prediction the effect of events on stock

prices by using such personal experience.

Markowitz [30] acknowledged the poor accuracy of the traditional qualitative methods

in predicting and evaluating financial risk and suggested the modern portfolio theory as a

quantitative method to predict and reduce the investment risk by allocating investments

among diversified group of assets. It is a mature theory as several researchers have

investigated the theory frameworks e.g. [115], [116] and [117]. The logic of the portfolio

theory promotes diversification, which goes by the saying ’Do not put all your eggs in one

basket’ , is an effective way to reduce the risk of the portfolio [31].

The Modern portfolio theory has three major advantages. First, it provides an esti-

mation of the investment risks based on quantitative analysis of asset prices. Second, it

presents a systematic way to implement an effective diversification of the selected assets in

the portfolio. Third, unlike the reviewed classical design diversity approaches, the mod-

ern portfolio theory links the diversification of assets to both risk and correlation between

different assets.

4.2.2 Modern Portfolio Theory

The foundation of Modern Portfolio Theory [30] was developed by the Nobel Prize winner

Markowitz in 1950. The aim of Modern Portfolio Theory is to develop a formal procedure

that support the decision-making process of allocating capital to a portfolio of multiple

investment assets. The portfolio in this theory is a weighted composition of the assets.

The weight represents how much an investor should allocate from the capital to those

51

assets.

The Modern Portfolio Theory helps the investor to decide how much of the available

capital (s)he should invest in each of the available assets in order to maximise the expected

return and minimise the investment risk of the portfolio. This can be achieved by calcu-

lating the expected return and risk for every possible portfolio that can be constructed

from the available assets. The expected return and risk will evaluate the efficiency of

every portfolio. Several possible portfolios are present in a plot chart that has the vertical

axis as the expected return and the horizontal axis as the risk (see Fig. 4.1).

Fig. 4.1 shows that the uppermost point that form the curve presents the efficient

frontier. The efficient frontier represents portfolios that achieve the maximum expected

return for a certain level of risk. For the risk adverse investor, the optimal choice will be

a portfolio with the lowest level of risk on the efficient frontier.

Figure 4.1: Efficient Frontier For the Portfolio of Two Assets. Courtesy Of Mathworks
[118].

The expected return of portfolio Ep that of m assets can be calculated as in Equation

4.1 with one constraint, presented in Equation 4.2, where wi denotes the weight of the

capital invested in asset i, and Eai represents the expected return on investing in asset i.

52

To evaluate the risk of a portfolio of investments, it is necessary to measure the risk of

each asset in the portfolio. This can be statically calculated based on the historical return

of the asset. Under the modern portfolio theory, the risk of the portfolio Rp is affected by

three factors: the weight of the capital invested in each asset wi, the risk associated with

each asset Rai, and pij, which is the correlation between assets. The risk of the portfolio

Rp is calculated as in Equation 4.3

4.2.3 Effective Diversification

Modern Portfolio Theory utilises the concept of diversification to reduce the risk of in-

vestment. Markowitz [30] states that it is possible to reduce the portfolio fluctuation by

selecting a set of diversified assets. The key to achieving effective diversification is to

understand how assets returns behave when combined in a single portfolio [113].

Markowitz viewed correlation as a tool to understand how combined assets behave.

Correlation among returns of different assets represents a silent feature of investment.

Similar to other financial quantities, asset returns tend to move up and down in the same

or in the opposite direction. For that reason, when forming a portfolio, it is important to

53

take into consideration how different assets returns interact together [113]. The correlation

measures the direction and the strength of the relationship between two assets returns.

The correlation can be statistically evaluated based on historical assets return. Equa-

tion 4.4 can be used to calculate the correlation between the returns of assets i and j,

where Rai is the fluctuation risk of the expected return of asset i, Raj is the fluctuation

risk of the expected return j, pij represents the correlation between the return of asset i

and the return of asset j, Eai is the expected return of asset i, Eaj is the expected return

of asset j and cov(Eai ,Eaj) represents the covariance between assets i and asset j.

The correlation is represented as a number between +1 and -1, where +1 denotes a

strong relationship with a similar direction, -1 represents a strong relationship with an

opposite direction and 0 correlations indicates that there is no relation between the two

assets.

The strength of the correlation is indicated by a number that varies from 0 to 1, where

1 represents a strong relationship. As the number moves closer to 0, it indicates a weaker

relation. The direction of the relationship is denoted by a sign, where (+) indicates that

the assets move in the same direction and (-) indicates that the assets move in the opposite

direction [30]. Fig. 4.2 shows scatter plots of different types of correlations.

54

Figure 4.2: Scatter Plot of the Different Types of Correlation [119].

In the case of a strong positive correlation +1, the returns of the two assets move

together in the same direction. If the return of first asset increases, the other asset will

increase by a similar percentage. If a portfolio is formed of positively correlated assets,

the portfolio risk will not be minimised as the assets will follow the same behaviour and

these assets will not present any diversification of the portfolio.

In the case of a strong negative correlation -1, the returns of the two assets move in

the opposite direction. If the return of the first asset increases, the return of the other

asset will decrease by a similar percentage. Consequently, a portfolio that is formed from

negatively correlated assets is a well-diversified portfolio. The portfolio risk will decrease

as the asset will behave differently [32]. To find a minimum risk portfolio, the investor

needs to combine a group of risky assets that have a minimum correlation between them

[30].

To sum up, the risk reduction of a portfolio depends on the correlation between the

assets. The lower the correlation between the assets (avoiding a positive correlation), the

greater the risk reduction achieved by diversification

55

4.3 Effective Diversification in the Context of Web

Service Selection: Analogy and Mapping

A cloud marketplace will facilitate the process of buying and selling instances of web ser-

vices, which are offered with different prices and QoS. When selecting and subsequently

executing web services to perform a specific task, the performance stability plays a detri-

mental factor to achieve user satisfaction [2]. However, as the cloud is a multi-tenant

environment with shared resources and fluctuating demands, it is easy to see how a web

service hosted on the cloud can be vulnerable to performance fluctuation.

Similar cases of volatility occur in the financial markets. Stocks in the financial market

are vulnerable to price fluctuation caused by a change in supply and demand. Financial

investors view this fluctuation as a measurement of investment risk [113]. Modern Port-

folio Theory is used in the financial markets with the aim to reduce investment risk by

forming a diversified portfolio that has low fluctuation.

The main actors in the cloud-based market are agents acting on behalf of the buyer

(cloud-based application) and sellers (cloud service providers):

1. Seller: A cloud provider is offering SaaS Si in the market for the price .

2. Buyer: Is exploring the market to select and allocate multiple concrete instances

of abstract services that satisfy its required level of QoS and are bounded by a price

limit that cannot be exceeded.

3. Market regulator: An independent agent who is responsible for monitoring trad-

ing and QoS for services exchanged in the market.

We now define some of terms used in the thesis.

• AbstractService: The functional specification of a task. A Cloud-based applica-

tion may require multiple abstract services to implement all of its functional speci-

fication.

56

• CandidateServices: A SaaS implementation of abstract services that satisfy all

the QoS constraints required by the buyer.

• Workflow: The description of the set Abstract Services and how they are composed

to build an application.

In the context of cloud-based market, we argue that buyers of web services can im-

plement design diversity by using portfolio theory to select web services from multiple

sellers in a cloud-based market. A prerequisite for our diversification approach is that an

abstract service has to be short-listed as a candidate for diversification and it has compat-

ible candidate services in the marketplace. Such perspective is novel and has the potential

to reduce risks of performance fluctuation and improve compliance. Table 4.1 illustrates

the correspondence of the portfolio selection problem to both the financial stocks and the

scaling up web services selection problem.

Previous research has used auction-based methods to allocate all the instances of web

service from a single provider or multiple providers that have the lowest price and opti-

mal QoS dynamically [24]. In contrast, our approach attempts to secure the instances

by constructing a diversified portfolio of multiple instances of web services from multiple

providers in the cloud-based market. The objective is to minimise the risk of performance

fluctuation through diversification. Portfolio theory has found its way in numerous appli-

cations (e.g. [110], [120] [121]). However, it has not been used to improve the performance

stability of cloud-based application.

57

Table 4.1: Correspondence of the Portfolio Selection Problem to both Financial Stock
Selection and the Scaling Up Web Services Selection Problem.

4.4 Assumptions of our Portfolio-based Web Service

Selection in Scaling Up Scenario

One can see that the cloud marketplace has similarities to the financial market. On the

other hand, when portfolio theory is used to support the web service selection process in

scaling up scenario, a few assumptions need to be taken into account:

• The cloud-based application is a risk averse and target to select a set of services

that help to reduce throughput fluctuation given a set of QoS constraints.

• The expected return Ei of investing in web service Si is equal to the expected

58

throughput of web service Si, which is measured as the mean throughput during

specific period of time.

• The weight of investment wi for each candidate service Si present to the number of

instances needed to be allocated from that candidate service.

• The market regulator, independent agent that is part of the market infrastructure,

will provide an evaluation of the risk of throughput fluctuation Ri and the mean

throughput of web service Ei for each web service Si based on the historical record

of delivered performance.

• We rely on recent and relevant historical records of throughput of web service Si

to predict the likely future risk of throughput fluctuation. The Risk of throughput

fluctuation Ri is quantified as the standard deviation of throughput; it measures the

amount by which the delivered throughput of web service Si vary from the mean

throughput of web service Ei. The higher the risk of throughput fluctuation Ri The

less reliable and less stable is the throughput of service Si.

• We assume that the market regulator will complement the allocation decisions by

calculating the extent to which the candidate services are statistically correlated.

One of the statistical models of [122] can be used to calculate the correlation pij

based on historical records of throughput of services Si and Sj. The correlation pij

describes the direction and strength of the relationship between web service Si and

web service Sj in terms of their delivered throughput. The correlation is represented

as a number between +1 and -1. In the case of positive correlation pij, if a drop

in throughput takes place on web service Si, there is great chance that it will also

happen on web service Sj. A typical scenario for a positive correlation can take

place when services Si and Sj are hosted in the same data centre and/or share a

common infrastructure. For example, peaks on demand on the data centre could

trigger drop on throughput of both web services at the same time. However, in

the case of negative correlation pij, if the drop in throughput takes place on web

59

service Si, there is a great chance that it will not occur in web service Sj. A typical

scenario for a negative correlation can take place when the services Si and Sj are

hosted in different data centres located in two different time zones such as Japan

and the U.S., where a peak at one of the locations could be reflected as a non-peak

at the other location. If a drop in throughput is triggered by peaks on demand at

the data centre located in the U.S.,the data centre located in Japan will probably

have an off-peak demand and will have high throughput at that time.

4.5 Model For Portfolio-Based Web Service Selection

in Scaling Up Scenario

Taking into account the assumptions presented in the previous section, we can apply the

portfolio theory where a cloud-based application is an investor buying web services from

the cloud marketplace. The cloud-based application needs to build a diversified portfolio

of multiple instances of web services. The multiple web services offered in the market

represent the asset. Each web service Si will have its own risk of throughput fluctuation

Ri, mean throughput Ei, price Ci and correlations pij with the other web service in the

market.

Based on these values, we can then decide how many instances of a given web service

need to be allocated in constructing a portfolio of services with the aim of minimising the

risk of the portfolio Rp subject to a set of QoS constraints. For simplicity of exposition,

we consider the cost, throughput and security as the three dimensions of QoS used to

demonstrate our approach; nevertheless, the model is extensible to accommodate other

QoS dimensions in the analysis:

1. Cost of a web service Ci represents the amount of money paid to allocate web service

Si.

2. Throughput of a web service Ei measures the number of users requests that web

service Si can support during unit of time.

60

3. Security of web service Sei represents the level of security provided by the web

service.

We assume that the prices and the security level are fixed for each service. On the

other hand, throughput of a web service hosted in the cloud tends to fluctuate [8]. In

this context, the throughput of each service Si will be modelled by mean throughput Ei

, fluctuation rate of throughput Ri. The objective is to select a set of web services that

minimises Rp, where Rp is the fluctuation rate of throughput of the selected services in the

portfolio, represented by equation 4.5. The minimization should also satisfy the following

constraints on the selected portfolio of services:

1. The portfolio mean throughput should not be less than minimum throughput level

Emin.

2. The price of the selected services should be less or equal to max price Cmax.

3. Each service in the portfolio should exceed the minimum security level SeMin.

4. Number of selected services should be equal to the number of required services which

is 100 in this scenario.

These constraints are represented by equations 4.6, 4.7, 4.8 and 4.9. Table 4.2 shows

a brief description of the variables.

61

Table 4.2: Variables Description

62

In order to construct the low-risk portfolio Rp, we need to determine how many in-

stances should be selected from each web service Si. To find the weights of the portfolio,

we have used quadprog, a well-known solver for optimization problems; it is part of the

MATLAB optimization package. The goal of this optimisation process is to find the op-

timum number of web services instances from a specific provider to construct portfolio

with minimum risk of throughput fluctuation. The process of mapping our problem to

quadprog is done by using equation 4.5 as a fitness function and equations 4.6, 4.7, 4.8

and 4.9 as constraints. The result will be a vector containing the recommended number

of services in the portfolio.

4.6 Self-Adaptation Mechanism for Portfolio-Based

Web Service Selection in Scaling Up Scenario

In this section, we will present a self-adaptive strategy for realising and implementing the

portfolio-based approach in highly dynamic market settings, where multiple sellers and

buyers can continuously trade web services with dynamic prices and QoS. The system will

be self-adaptive to changes that may happen in the market. The system has to construct

an optimum portfolio of web services and modify it in response to the perception of the

market in a timely manner.

According to De Lemos et al. [34], adaptation control can be achieved by a sequence

of four components: Monitoring, Analysing, Planning and Executing (MAPE). These

components, when put together, form the building blocks for feedback control systems as

explained in control theory. Because scalability is a key concern for our system, we will

use a decentralised pattern, where each buyer agent will have its local M, A, P and E

components and will interact with other peer agents directly, as represented in Fig. 4.3.

63

Figure 4.3: Overview of Self-Adaptive System Implementation

In order to achieve a global consistent view of the market status, we use a Knowledge-

Base which is going to be implemented in a publish/subscribe architectural style. The

KnowledgeBase coordinates knowledge of traded web services in relation to QoS, price

and risks. Such architecture has the potential of scalability, where the KnowledgeBase

will eliminate the overheads of potential interaction between the buyers and the sellers

in each trading cycle. The monitoring of QoS in real time are beyond the scope of this

thesis. The works of Keller [123] , Michlmayr [124] and Zhang et al. [125] are prominent

examples of online QoS monitoring.

In a decentralised architecture, the KnowledgeBase will be used as a reference point by

the buyer agents. For each abstract web service offered in the market, the KnowledgeBase

will provide the following information:

• A list of the different offers in the market with the prices, QoS and number of

available services.

• Historical data related to the throughput and its fluctuation rate for each web

service.

There are two important questions in realising the adaptation mechanism: What are the

64

dynamics, which trigger observations? and, what does trigger the adaptation?

The Monitoring and Analysis

In this phase, we attempt to answer what triggers observation in our system. Therefore,

we will use an event-based observation, which will help our system to gain a lightweight

interaction between the agents and market KnowledgeBase. First, the buyers agent sub-

scribes to the abstract web service which he is interested in (e.g. FlightBooking web

services or PhotoStorage web services). Subsequently, a change in the prices or risk of

these abstract web services will trigger an observation and activate the control loop.

In the monitoring component, the buyers agent retrieves all the key information about

the web services from the market KnowledgeBase. Subsequently, the buyer analyses the

information to get the services that matches his preference by using Equations 4.6, 4.7

and 4.8. This will make the agent ready to start the planning and execution phases.

The Planning And Execution

Here we attempt to determine the answer to the second question regarding what triggers

adaptation in our system. The first step is to evaluate the currently allocated portfolio

risk Rpcurrent and the optimum potential portfolio risk Rpoptimum that we could allocate

based on the new market state by using Equation 4.5.

Ic presents the level of improvement that the system could gain by allocating the new

optimum portfolio Rpoptimum . In other words, Ic represents the potential improvement in

risk between the current portfolio risk Rpcurrent and the new optimum portfolio Rpoptimum,

Ic is calculated as in Equation 4.10. A positive number represents an improvement in the

portfolio risk.

Furthermore, with the reallocation of web services there will be an extra cost in the

form of penalties for breaking the contract. Therefore, the cost of the adaptation process

65

will be the cost of allocating the new web services plus the cost of penalties for breaking

any contract. A buyer will set Im, which represents the minimum accepted improvement

level in the new portfolio, to trigger the adaptation and replace the current portfolio with

a new optimum one. This will make the adaptation of the new optimum portfolio subject

to the satisfaction of two conditions:

• The cost of constructing the new optimum portfolio plus the penalties is less than

the price limit Cmax .

• The level of improvement Ic in the new optimum portfolio is greater than or equal

to the minimum level of accepted improvement Im .

A cloud-based application is expected to perform adaptations when there is a change in the

market prices or risks. The basic steps of our self-adaptive portfolio-based optimisation

are listed in table 4.3.

66

Table 4.3: Algorithm of Self-Adaptive Portfolio-Based Optimisation for the Scaling Up
Scenario

67

The algorithm in the first adaptation cycle asks the buyer to set the minimum accepted

QoS , the required number of web services and the maximum price that s/he is willing

to pay for the web service in line(1-5). Then, the algorithm identifies the web services Si

which offer the functionalities required by the user and satisfy the QoS and cost constraints

in line (6-11). After that, the buyer agent will access the KnowledgeBase, to retrieve

throughput historical record and calculate throughput fluctuation risk Ri and correlation

matrix p associated with each candidate web service in line (12-16).

The quadprog function, provided by the MatLab optimization toolbox, will return a

vector that contains the weights of each web service in a new optimum portfolio. After

that, we calculate the risk of the new optimum portfolio and the currently allocated

portfolio in line (17-19). Finally, we calculate the level of improvement in risk Ic and if

it exceeds the minimum accepted improvement level Im, an adaptation will be triggered

to allocate new set of web services based on the recommended weights from the new

optimum portfolio in line (20-24).

4.7 Evaluation

We demonstrate how a cloud-based application can reduce the throughput fluctuation

risks associated with web service allocation through simulating a hypothetical cloud mar-

ket. We compared the risk reduction achieved by portfolio-based selection with the fol-

lowing non-diverse auction-based mechanisms of [24] , where auctioning is based on risk

or price algorithm and classical design diversity algorithm [100] :

1. Risk-Based Auction: that allocates all the required services from a single cloud

provider that have lowest risk of throughput fluctuation.

2. Price-Based Auction: that allocates all the required services from a single cloud

provider that have the lowest price.

3. Classical Design Diversity : that implements diversity by evenly distributing the ser-

68

vices among multiple providers without considering the risk or correlation between

the providers.

The evaluation is designed to test how our portfolio-based selection can be applied to

a scaling up scenario, for experiments 1-3, we have considered a scenario involving three

candidate services for simplicity of exposition; nevertheless, the argument and the tech-

nique can be applied to more than three services. Furthermore, the number of considered

providers tends to be limited to a few, as dealing with different providers may come with

costs and overheads. Experiment 4 is aimed at stress-testing the mechanism for scala-

bility. We have used 400 candidate services. The choice of 400 is aimed to test/stress

for scale and exhibit an extreme scenario. A systematic literature review had revealed

that the current approaches typically use 20 candidate services in dynamic selection and

composition problem [126]; henceforth, 400 goes far beyond the classics.

The following is a description of the rationale for the choice of each experiment:

1. The first experiment is designed to evaluate the effectiveness of the portfolio-based

allocation in reducing the risk of throughput fluctuation in comparison to price-

based auction, risk-based auction and classical design diversity.

2. The second experiment evaluates the self-adaptive behaviour of the portfolio-based

allocation by changing the risk of throughput fluctuation in the cloud market.

3. The third experiment is designed to assess the sensitivity of the approach to changes

in correlation between providers in the optimal portfolio selection. We compare the

approach to the classical design diversity approach.

4. The fourth experiment is designed to test the scalability of the approach. It attempts

to determine how the risk of throughput fluctuation and execution time of the

portfolio selection tend to be affected by increasing the number of candidate services

in the portfolio.

69

4.7.1 The Effectiveness of the Portfolio-Based Allocation

Recall the case of the flight booking website, Flight.com, which provides the online book-

ing web service FlightBooking. As mentioned previously, the variants of the web service

instances from various providers tend to provide the same core functionalities, but they

differ in price and the way they address QoS.

In high seasons, Flight.com has decided to scale up its services to support an an-

ticipated load in the number of users through selecting and subsequently allocating 100

instances. Let us assume that the minimum accepted value of QoS is as follows: 68 for

throughput and 80 for security. Moreover, let us assume that the maximum price that

they are willing to pay is $32 for each instance.

Table 4.4 shows a snapshot of the current FlightBooking web service offers that are

available in the simulated cloud-based market which satisfy the QoS and price constraints

as well as the risk of throughput fluctuation associated with each web service. Table 4.5

shows the correlation of throughput between the current FlightBooking web services. The

QoS represents a normalised QoS values inspired from the work of Zeng et al. [72] and

the fluctuation rate are driven from the work of Dejon et al. [8].

Table 4.4: Current Flightbooking Web Service Offers Available in the Cloud Market at
Condition 1.

Table 4.5: The Correlation Matrix Of Throughput Between The Current Flightbooking
Offers Available in The Cloud Market at Condition 1.

70

For this experiment, the simulation methodology consists of two steps:

1. Performing web services allocation to the simulated market state using:

• Portfolio-based allocation.

• Classical design diversity allocation.

• Price-based allocation (minimum price).

• Risk-based allocation (minimum risk).

2. Allocating the web services in the simulated market and calculating the risk of

throughput fluctuation. The results shown are the averaging of 30 repetitions.

Web Service Allocation Using The Portfolio-Based Method

When we use portfolio-based optimisation to allocate instances of web services, the first

step is to find the number of instances that we should allocate from each of the candidate

services in order to achieve the minimum portfolio risk. We can find the numbers by

applying portfolio optimisation, where the goal is to minimise the fluctuation risk in

Equation 4.5 while Equations 4.6, 4.7, 4.8 and 4.9 are constraints. The optimum weights

of the optimisation process are depicted in figure .4.4.

These weights imply that we will be able to construct the minimum risk portfolio of

a web service by allocating 70 service instances from FlightBooking2 at the cost of $32

for each service and 30 services from FlightBooking3 at the cost of $31 for each service.

This makes the total cost of constructing this portfolio to total $3170. After allocating

the web service as in the optimum portfolio and running the simulation 30 times, a box

plot shows the percentage of throughput fluctuation of the portfolio-based methods in

figure 4.5. The average throughput for the portfolio was 70.6 with a risk of throughput

fluctuation of 5.14%.

71

Figure 4.4: Optimum Weight of Allocation for Each of the Traded Web Services in Cloud
Market in Condition 1.

Web Service Allocation Using The Price-Based Method

When Flight.com used a price-based auction method to select the web service with the

lowest price, the result was the allocation of 100 web service instances from FlightBooking

1 with a cost of $3000 and the average throughput was 70 with a risk of throughput

fluctuation of 14%.

Web service Allocation Using the Risk-Based Method

Conversely, when Flight.com used the risk-based auction method to select the web ser-

vice with lowest risk, the result was the allocation of 100 web service instances from

FlightBooking 2 at the cost of $3200, and the average throughput was 69 with a risk of

throughput fluctuation of 7%.

Web Service Allocation Using The Classical Design Diversity Method

When Flight.com used the classical design diversity method in order to evenly distribute

the allocation among candidate web services, the allocation was as follows: 33 web services

from FlightBooking1 and another 33 web services from FlightBooking 3. The remaining

72

web services (i.e. 34)was allocated from FlightBooking 2. The total cost of allocation was

$3101. Based on the simulation result, the average throughput was 70.33 with a risk of

throughput fluctuation of 6.7%.

The risk of throughput fluctuation, average throughput and cost for the web service

allocation process for the Flight.com example using the price-based auction, risk-based

auction, classical design diversity and our portfolio-based allocation are shown in Fig. 4.6.

We can see from the results of the allocation process in Fig. 4.6. that the portfolio-

based approach has achieved the minimum risk of throughput fluctuation because it

utilises the portfolio concept to diversify the allocation of web services among two providers

instead of relying on one provider to allocate all the needed instances of web services as

in the auction-based mechanism.

Figure 4.5: Box Plot Depicting Throughput in Terms of Mean, Median And Risk of
Throughput Fluctuation of Price-Based Auction, Risk-Based Auction, Classical Design
Diversity And Portfolio-Based Allocation.

73

Figure 4.6: Results of the Web Service Allocation Process for Flight.com in the Current
Cloud Market.

Moreover, using a portfolio to diversify the instance allocation has outperformed the

classical diversity mechanism as the diversification of resources in the portfolio-based

optimisation is directly linked to the risk and correlation between the providers. Portfolio

theory maintains that effective diversification can be achieved by seeking a low correlation

between the web services providers.

The portfolio-based selection diversified the allocation of web services among the two

low correlation providers (FlightBooking 2 and FlightBooking 3) and did not consider the

third provider (FlightBooking 1) that shared a higher correlation with the other providers

(0 with FlightBooking 3 and +.4 with FlightBooking 2). The portfolio-based allocation

deals with the cost and level of aggregated QoS as constraints that need to be satisfied.

However, it does not seek the optimality on either of them. In terms of cost, the portfolio-

based allocation is not the cheapest option. However, the risk reduction would justify the

additional cost from the point of view of a risk-averse buyer.

74

4.7.2 The Effectiveness of the Self-Adaptive Portfolio-Based Al-
location

In this experiment, we evaluate the effectiveness of the self-adaptive behaviour where the

approach should systematically evaluate the risks of the current portfolio and compare it

to the optimal traded portfolio at a given time. It should then dynamically decide on a

new portfolio and adapt the application accordingly, as detailed in table 4.3 (see Section

4.6).

We assume that currently the allocated portfolio is as the one displayed in Fig 4.4 . To

test our self-adaptive approach, we assume that we have two new market conditions where

cost and QoS of web services remain unchanged, as in Table 4.4, and their correlation, as

in Table 4.5. However, the risk of throughput fluctuation is changing, as shown in Table

4.6.

Table 4.6: Risk of Throughput Fluctuation for Flightbooking Web Service Offers Available
in the Cloud Market on Conditions 1, 2 and 3.

For each new market condition, we will evaluate how a change in the risk of throughput

fluctuation at a new market condition can affect the previously allocated portfolio in

market condition 1. This experiment assumes that Flight.com requires 4% improvement

in the risk of throughput fluctuation to adopt a new optimum portfolio. This implies

that we will not change the currently allocated portfolio unless the new portfolio presents

more that 4% as risk reduction.

75

Change in Risk of Throughput Fluctuation in the Cloud Market from the
Current Condition (Condition 1) to Condition 2.

First, we re-run the portfolio-based optimisation to find the new optimum portfolio

weights according to market condition 2. Fig. 4.7 shows the weights of the currently

allocated portfolio (allocated according to condition 1) and the optimum portfolio (allo-

cated according to condition 2 and condition 3).

Moreover, Fig. 4.8 shows a box plot representation for the percentage of throughput

fluctuation of the currently allocated portfolio and new optimal portfolio in market con-

dition 2. In market condition 2, the risk of the currently allocated portfolio is 8%, and

the new optimum portfolio risk is 6.7%. We can gain 1.3% improvement as risk reduction

if we switch from the currently allocated portfolio and adopt the new optimum.

However, Flight.com requires a minimum 4% improvement in risk to relocate the

portfolio. As a result, the change from the current market condition (condition 1) to

condition 2 will not cause any changes in the currently allocated portfolio.

Figure 4.7: The Currently Allocated Portfolio and the New Optimum Portfolios in Market
Conditions 2 and 3.

76

Figure 4.8: Box plot Depicting Throughput in terms of Mean, Median and Risk of
throughput fluctuation of the Currently Allocated portfolio and the New Optimal Port-
folio in Market Condition 2.

Change in Risk of Throughput Fluctuation in The Cloud Market From The
Current Condition (Condition 1) To Condition 3.

We will re-run the portfolio-based optimisation to find the new optimum portfolio weights

according to market condition 3. In Fig. 4.7, we can see both the distribution of the cur-

rently allocated portfolio and the new optimum portfolio (allocated according to condition

3). Moreover, in Fig. 4.9 we can see a box plot presenting the risk of throughput fluctua-

tion of the currently allocated portfolio and the new optimal portfolio in market condition

3.

77

Figure 4.9: Box Plot Depicting Throughput in Terms of Mean, Median and Risk of
Throughput Fluctuation of The Currently Allocated Portfolio and New Optimal Portfolio
in Market Condition 3.

In market condition 3, the risk of the currently allocated portfolio is 9.37%, and the

new optimum portfolio risk is 5.2%. We can gain a 4.17% improvement in risk if we

adopt the new optimum, which satisfies the adaptation requirement. As a result, the

change from the current market condition to condition 3 will trigger the adoption of the

new optimal portfolio by allocating 70 services from FlightBooking 1, 8 services from

FlightBooking 2 and 22 services from FlightBooking 3.

4.7.3 Correlation Sensitivity in Portfolio-Based Allocation and
Classical Design Diversity Allocation

In this experiment, we will evaluate the effect of change in the correlation between

providers on the selection process using portfolio-based allocation and classical design

diversity allocation. To do this, we run 90 simulations with the configuration, as in Table

4.4, except that correlation will change between FlightBooking 3 and FlightBooking 1.

The correlation will vary in each experiment by moving from +0.90 to -0.88, stepping

0.02 at each simulation.

In portfolio-based allocation, as we moved toward negative correlation, the allocation

78

of resources changes. More and more resources were allocated to FlightBooking 1 and 3,

as shown in Fig. 4.10, as the low correlation makes them an attractive option to improve

the diversification of the portfolio. As the allocation changes, the risk of throughput

fluctuation and mean changes; the results are displayed in Fig. 4.11.

Unlike the portfolio-based approach, a change in correlation will not cause any change

in the classical design diversity allocation, which is not a correlation sensitive method. In

classical design diversity, the allocation will be distributed evenly among candidate web

services; the result will be allocating 33 web services from FlightBooking 1 and another

33 web services from FlightBooking 3. The remaining web services (i.e. 34) have been

allocated from FlightBooking 2. The throughput mean for this allocation will not be

affected by the correlation change and will remain at 70.33, as shown in Fig. 4.11(a).

However, as the correlation changes, the risk of throughput fluctuation changes (see Fig.

4.11(b)).

Figure 4.10: Changes in the Allocation of the Optimum Portfolio as the Correlation
Between FlightBooking 1 and 3 Change from a Positive to Negative Correlation.

In the case of portfolio-based allocation, when we analyse the results displayed in

79

Figs. 4.10 and 4.11 and when the correlation between FlightBooking 1 and FlightBook-

ing 3 was highly positive(+1 to +.5), all of the services were allocated to one provider,

which is Flightbooking 2 as it has a 7% risk of throughput fluctuation, while providers

FlightBooking 1 and FlightBooking 3 have higher risk (12% and 14%, respectively). When

the correlation between FlightBooking 1 and FlightBooking 3 decreases below +.5, the

portfolio-based optimisation recommends allocating more and more resources from Flight-

Booking 1 and FlightBooking 3.

As we move toward a negative correlation, we managed to reduce the risk of throughput

fluctuation of the portfolio below 7% until it reaches 0% risk of throughput fluctuation

when the correlation between FlightBooking 1 and FlightBooking 3 reach -0.60. After

this point, the improvement in the portfolio is limited to the throughput mean, as seen

in Fig. 4.11.

In the case of classical design diversity, there were no changes in terms of the allocation,

but the risk of throughput fluctuation is reduced as the correlation between FlightBooking

1 and 3 changed from a positive to negative correlation. In the beginning, the risk was

around 11% and subsequently started to decrease until it reached 0% when the correlation

between FlightBooking 1 and FlightBooking 3 reach -0.66.

80

Figure 4.11: Change in the Throughput Mean and Risk of Throughput Fluctuation for
Portfolio-Based Allocation and Classical Design Diversity Allocation as the Correlation
Between Flightbooking 1 and 3 Change from a Positive to Negative Correlation.

81

We can see in Fig. 4.11 (a) that the portfolio-based approach has outperformed

the classical design diversity in terms of risk reduction because it reacts to changes in

correlation by reallocating the resources. As the priority in the portfolio-based approach

is for risk reduction, the classical design diversity had a small lead in terms of the achieved

throughput mean. However, when the risks reached 0%, the focus of our approach was

shifted towards the throughput mean improvement, and it outperformed the classical

design diversity in terms of throughput mean when the correlation was -0.76.

The logic behind risk reduction in both of the allocation methods is related to cor-

relation change. A positive correlation represents a strong relationship between different

providers with a similar direction. If a drop in throughput affects one provider, there is

a great chance that it will happen to the other. On the other hand, a negative correla-

tion indicates a strong relationship with an opposite direction. In the case of negatively

correlated providers, if a drop in throughput occurs in one provider, there is great chance

that it will not happen to the other. As a result, a negatively correlated portfolio will

outperform a positively correlated portfolio in terms of risk. In conclusion, we found that

a well-diversified portfolio should have a negative correlation between the throughputs of

the different providers.

4.7.4 The Scalability and the Effect of Increasing the Number of
Web Candidate Services on the Risk of throughput Fluc-
tuation of the Portfolio-Based Allocation

In this experiment, we evaluate the scalability of the approach and the effect of increasing

the number of candidate services on the risk of throughput fluctuation and execution

time of portfolio-based allocation. We assume that the overhead of dealing with different

providers is minimal, and it is possible to distribute our allocation over 400 candidate

services from different providers.

We will run 397 simulations starting with three candidate services in the first simula-

tion. Then, we will be adding additional providers at each run to finish with 400 candidate

82

services in the last simulation. All of the providers satisfy the cost and QoS constraints

and have the same 10% risk of throughput fluctuation. The correlation between the dif-

ferent providers is equal to 0 (independent providers) in this experiment. The result of

the experiment is displayed in Fig. 4.12.

Figure 4.12: Change in the Risk of Throughput Fluctuation and the Execution Time of
the Portfolio Selection as the Number of Candidate Services Increases from 3 to 400.

In this experiment, we have demonstrated the scalability of our approach by stress

testing our approach by using 400 candidate services, which exceeds the 20 candidate

services that is typically used in the literature of dynamic resource allocation [126]. Fig

4.12 shows that the execution time of the portfolio selection was less than 0.5 seconds

when the number of providers was 200. However, when the number of providers was 400,

the execution time of the portfolio selection jumped to 2.5 seconds.

Moreover, the result shows that the risk decreases as the number of different candidate

services in the portfolio increases. The logic behind this is as we increase the number of

providers, the portfolio becomes more diversified. If a drop in throughput occurs in one of

the candidate services, there is a great chance that it will not have any effect on the other

83

resources as they are allocated to different independent providers. So, as the number of

providers increases, the portfolio becomes more diversified and will have a lower risk.

Furthermore, we assumed in this experiment that the cost of dealing with a large

number of providers is minimal. However, in real life there is a trade-off that needs to be

considered between the overhead and the increasing maintenance and operations costs of

dealing with a large number of providers against the likely benefits that we could gain in

risk reduction. Our experiments, for example, have shown that as the number of providers

increase, the risk tend to decrease through diversification. The improvement, however,

comes with overheads, which can be case specific and can be weighed against the benefits.

Indeed, trade-offs are the norm in cloud-based architectures, where trade-offs between

maintenance costs and risks reductions are among the many others that architect should

consider in the diversification decisions. However, we envision that the solution can

leverage on cloud federation models benefiting from a federation managers to inform these

trade-offs and to absorb much of the cost through memberships with shared standards,

operation and maintenance schemes.

4.8 Summary

In this chapter, we have introduced a novel, dynamic and adaptive design diversity ap-

proach for web services selection in scaling up scenario using portfolio thinking. We have

viewed the cloud as a marketplace for trading instances of web services, which cloud-

based applications can explore, trade and use as substitutable and composable entities.

In particular, we have used a portfolio-based optimisation to improve the throughput

fluctuation rate by diversifying the selection and consequently the allocation of traded

instances of web services from multiple providers. Unlike the reviewed classical design

diversity solutions that share the assumption of uncorrelated failures, our portfolio-based

design diversity is correlation-sensitive; it explicitly links the distribution of resources to

risks and accounts for correlation between different providers.

84

We have reported on four experiments to: (1) test for the approach effectiveness in

minimizing the risk of throughput fluctuation; (2) simulate the dynamic and adaptive

behaviour of the approach in responding to changes in the market conditions and risk; (3)

evaluate the sensitivity of the allocation decisions to risk and its correlation with other

candidates and (4) evaluate the scalability of the approach and its ramifications on risk re-

duction under extreme scenarios. Our approach presents an efficient and effective solution

for adaptively investing in diversity while reducing the risk of throughput fluctuation, as

demonstrated in our evaluation. To the best of our knowledge, neither portfolio-based de-

sign diversity nor dynamic adaptive systems have addressed the problem that we explore

in this chapter. The combination of portfolio thinking with web instance diversification

is a promising approach for dynamically and adaptively improving QoS and reducing risk

of throughput fluctuation.

This chapter has considered a simple scenario where an application is satisfied by a

single type of cloud services. However, we have not discussed a more complex scenario

where the application requires the cooperation of multiple interconnected cloud services

to satisfy their requirement. Dealing with such complex scenario will be addressed in

chapter 5.

85

CHAPTER 5

PORTFOLIO-BASED CLOUD SERVICES
COMPOSITION : IMPROVING PERFORMANCE

STABILITY IN A CLOUD SERVICE
COMPOSITION

5.1 Introduction

As we discussed earlier, the increasing number of services available in the cloud market

make them plausible and attractive for building Cloud Service Compositions (CSC). How-

ever, performance fluctuation is common in the cloud environment due to the changes in

the supply and the demand of the shared computational infrastructure and resources.

Candidate compositions are vulnerable to such instability.

In chapter 4, we have considered a simple scenario where an application is satisfied by

a single type of cloud services. However, we have not discussed a more complex scenario

where the application requires the cooperation of multiple interconnected cloud services to

satisfy their requirement. we refer to this complex scenario as Cloud service composition

CSC. In this chapter, we propose a novel approach to improve performance stability by

leveraging on the principles of design diversity in the complex scenarios that target the

problem of CSC.

We present a self-adaptive approach that leverages the principle of Modern Portfolio

Theory to construct a diversified composition of candidate services. The self-adaptive

86

approach makes an explicit trade-off between the cost and benefit of performing changes

to the CSC. We use a hypothetical simulation and a prototype of the system to illus-

trate the applicability of the approach. Controlled experiments are used to (1) test the

approach effectiveness in improving the performance stability of the CSC; (2) analyse

the performance of the approach under multiple correlation settings and (3) evaluate the

effectiveness of the self-adaptive mechanism in dynamic market.

5.2 Effective Diversification in the Context of Cloud

Service Composition

A web services composition is typically concerned with selecting combination of function-

alities provided by outsourced services usually denoted as candidate services to satisfy

users requests. The selected set of services is often referred to as a composite service.

With the increasing popularity of cloud computing, it is expected to find several com-

posite services that are able to provide the same functionality requested by the user. In

addition, web services that are hosted on the cloud are vulnerable to performance fluc-

tuations due to changes in demand of the shared resources. As a consequence, candidate

CSC becomes vulnerable to such performance fluctuation.

In this section, we present a portfolio-based composition algorithm that aims to reduce

performance fluctuation of the CSC. Table 5.1 illustrates the correspondence of portfolio

selection problem to both the financial stocks and the CSC selection problem.

Previous research focused on selecting an optimal composition of services among a set

of compatible candidates based on constraints on the Quality of Service (QoS) i.e. [55],

[74] , [9], [10] [78] and [14]. However, they have not explicitly considered the fluctuation

of performance in their models. Contrary to the existing methods, the objective of our

approach is to minimise the performance fluctuation through diversity. It attempts to

secure an optimal CSC by constructing a diversified portfolio of candidate services.

In the context of CSC, diversification can be achieved by selecting candidate cloud

87

services that share a minimum level of correlation among their performances. In the case

of negative correlation, if high demand would affect one candidate service, there is a great

chance that it will not affect the performance of the other candidate services in the CSC.

We intend to show, that by composing services with low-performance correlation, can

result in better performance stability of the composition.

88

Table 5.1: Correspondence of the Portfolio Selection Problem to Both Financial Stock
Selection and the CSC Problem.

89

5.3 Assumption for the Cloud Service Composition

A Cloud services composition problem has similarities with constructing portfolio of mul-

tiple investment assets as it is shown by table 5.1. However, when portfolio theory is used

to support the CSC, few assumptions are need to be taken into account:

• The cloud-based application is a risk averse and target to select a set of candidate

services that help to reduce response time fluctuation of the CSC given a set of QoS

constraints.

• The expected return Ei of investing in a candidate service CSi is equal to the mean

response time. The mean response time for each candidate service can be calculated

based on the historical records.

• The response time fluctuation rate FRi of candidate web service CSi is calculated

as the standard deviation of response time. The standard deviation of response time

can be calculated based on historical records of that candidate service.

• The weight of investment wi for each candidate web service CSi is equal to the

mean response time of the candidate service divided by the mean response time of

the CSC.

• For two candidate services CSi and CSj, Pij is the performance correlation of these

services and can be calculated using one of the statistical models (e.g. [122]) based

on historical response time of CSi and CSj.

5.4 Model for Portfolio-Based Cloud Service Com-

position

Taking into account the above assumptions, we can apply the portfolio theory, where a

CSC is an investor, searching to invest in a set of candidate services compatible with

abstract services in the workflow. The goal of the CSC is to select an optimal set of

90

candidate services that help to achieve stable performance (measured in response time

of the CSC). The candidate web services offered in the cloud represent assets. Previ-

ous literature has considered 1 to 9 QoS parameters as optimisation constraints for the

web services composition problem, where three being the norm [126]. For simplicity of

exposition, we look at responses time, price and security as three dimensions of QoS to

demonstrate our approach.

1. Response Time(RTi): measures the delay in seconds between the moment the web

service is requested till the moment a reply is received.

2. Security(Sei): represents the level of security of the candidate services. It varies

from 1 to 5, where 1 indicates weak security and 5 indicates high security level.

3. Price(Ci): is the amount of money that has to be paid to lease the candidate services

CSi.

We assume that prices and security level are fixed for each candidate services. On

the other hand, response time of web services hosted in the cloud tends to fluctuate [8].

Each candidate service CSi response time will be modelled by mean response time RTi,

fluctuation rate of response time FRi and correlations Pij with the other candidate ser-

vices. Based on these values, we can decide which candidate services are to be selected

to construct a portfolio of service composition. The objective is a set of candidate ser-

vices that minimizes FRp , where FRp is the fluctuation rate of response time of CSC,

shown in equation 5.1. The minimization should also satisfy constraints on the selected

composition:

1. The composition mean responses time should not exceed RTmax.

2. Total price of all the selected services should be less than or equal to max Price

Cmax.

3. Each candidate service in the composition should exceed the minimum security level

Semin.

91

These constraints are represented by equations 5.2, 5.3 and 5.4. Table 5.2 presents a

brief description of the variables.

92

Table 5.2: Variables Description

5.5 Self-Adaptation Mechanism for Portfolio-Based

Cloud Services Composition

Self-adaptation is a key requirement that needs to be considered when developing CSC

approaches. It enables the CSC to react to the changes in the dynamic cloud environment

and maintains a satisfying solution. Several factors can trigger the need for adaptation of

web services composition.

In this section, we present a decentralized self-adaptive strategy for realising and

implementing the portfolio-based CSC in highly dynamic market settings. First, the self-

adaptive mechanism evaluates the currently allocated portfolio fluctuation rate FRCSCcurrent.

After that, it will evaluate the fluctuation rate FRCSCoptimum of the optimum portfolio

fluctuation rate that we could allocate based on the new market state. Ic represents the

level of improvement that the system can gain by allocating the new optimum CSC. In

93

other words, Ic resembles the potential improvement in fluctuation rate, if we replace the

current CSC with a new optimum CSC. Ic is calculated according to equation 5.5. A

positive number will indicate an improvement in the fluctuation rate of CSC.

A buyer will set Im, which denotes the minimum accepted improvement level in the

new CSC, to trigger the adaptation and replace the current portfolio with a new optimum.

This will make the adaptation of the new optimum CSC subject to the satisfaction of the

following condition. The level of improvement Ic in the new optimum CSC is greater than

the minimum level of accepted improvement Im.

A cloud-based application is expected to perform adaptations when there is a change in

the market prices, QoS or fluctuation rates. The basic steps of our self-adaptive portfolio-

based CSC are listed as in the algorithm presented in table 5.3.

The algorithm in the first adaptation cycle asks the buyer to set the minimum accepted

level of security, Semin , the maximum response time that (s)he can tolerate RTmax and

the maximum price that (s)he is willing to pay, Cmax (see line 1-4). Then the algorithm

identifies the set of service compositions, CSCcandidate, which offer the functionalities

required by the user and satisfy the global QoS constraints presented by equation 5.2, 5.3

and 5.4 (see line 5-10).

After that, the buyer agent will access the KnowledgeBase, which is maintained by the

market regulator, to retrieve fluctuation rate, FRi , QoS values and correlation matrix P

associated with each service in candidate compositions. For each candidate composition,

the buyer agent will calculate investment weight for each candidate services and the

composition fluctuation rate FRp using equation 5.1 (see line 12-15).

Next, the CSC that provides the minimum fluctuation rate will be selected as optimum

FRCSCoptimum in the market. The algorithm then calculates the fluctuation rate of the

94

currently allocated CSC (see line 16-17). Finally, the algorithm calculates the level of

improvements in fluctuation rate Ic using equations 5.5 and if Ic exceeds the minimum

accepted improvement level Im, an adaptation will be triggered to allocate new set of web

services as recommend by the new optimum CSC (see line 18-22).

95

Table 5.3: Self-Adaptive Portfolio-Based CSC Optimization Algorithm.

96

5.6 Evaluation

We demonstrated how portfolio-based composition can improve the stability of the CSC

response time by simulating a hypothetical cloud market. We compared the performance

stability achieved by portfolio-based composition with the following algorithms:

1. Non-diverse composition that uses auction-based mechanism as in [126] and [36] to

allocate all the required candidate services from a single cloud provider that have

the lowest fluctuation rate of throughput.

2. Random Geographical diverse composition inspired by [22] and [23] where diver-

sity is neither linked to stability (fluctuation rate) nor correlation between candi-

date services. Instead, diversity is implemented by selecting random composition

of candidate services from multiple cloud providers located in different geographical

locations.

3. Non-correlated portfolio-based composition proposed in [127] where diversity is

linked to the stability (fluctuation rate) of candidate services from multiple cloud

providers. However, it does not consider the correlation between the candidate

services.

In addition to simulation, we have implemented a prototype where the whole tech-

nique is integrated with CloudSim [128] computing environment. CloudSim supports both

system and behaviour modelling of Cloud computing components such as data centres,

physical machines, virtual machines and CloudLet web services. In the prototype, we

extended generic implementation of CloudSim to implement the portfolio-based CSC. We

evaluate the performance stability of a CSC application built by portfolio-based com-

position and compare it with CSC application built by Random Geographical diverse

composition and Non-Correlated portfolio-based composition.

97

5.6.1 Simulation Settings

Mytrip.com, which is a CSC application that provides an on-line service for booking travel

packages, is used here as an example. We have considered a typical scenario involving

services composition of three AbstractService: FlightBooking, CarBooking and Hotel-

Booking services. Each AbstractServices will have four candidate services for simplicity

of demonstration; nevertheless, the argument and technique can be applied to more than

four candidate services. Furthermore, we have used up to 50 candidate services to stress

test the mechanism for scaling. The choice of 50 to test scale is justified as a system-

atic literature review of dynamic services composition has shown that the literature has

typically used 20 candidate services [126]. To simulate a realistic performance stability

setting of the cloud, we need the following data for each candidate service: 1) mean re-

sponse time 2) degree of stability measured by fluctuation rate of response time of the

candidate services, and 3) response time correlation between candidate services. We have

assumed that the mean response time will vary between 10 and 18 seconds.

In terms of stability, an analysis of Amazon EC2 performance [8] shows that the fluc-

tuation rate of some Amazon EC2 instances reached 71%. For that, we assume that the

candidate service fluctuation rate of response time vary between 30% and 71%. Moreover,

the number of the considered QoS constraints is set to 3 (cost, response time and security

level). Cost and security level of the candidate services are randomly created. In addi-

tion, correlation will vary between 1 and -1. Each simulation reported, unless otherwise

specified, was run with the following default parameters as shown in table 5.4.

In this evaluation, four main sets of experiments were conducted with the following

descriptions as rationale for our choice:

1. The first set of experiments are designed to evaluate the effectiveness of the portfolio-

based composition in improving the response time stability of CSC in compari-

son to Non-diverse, Random Geographical diverse composition and Non-correlated

portfolio-based composition.

98

Table 5.4: The Default Simulation Parameters

2. The second set of experiments evaluates the effectiveness of the algorithms under

three correlation settings for the environment positive, negative and weak correla-

tions.

3. The third set of experiments is designed to evaluate the effectiveness and the stability

of the proposed self-adaptive mechanism under different market setting.

5.6.2 The Effectiveness of the Portfolio-Based Composition

The goal of this experiment is to evaluate the performance stability of a CSC application

built by portfolio-based composition and compare it with CSC application built by Non-

diverse, Random Geographical diverse composition and Non-Correlated portfolio-based

composition. The performance stability of the composition is measured by the fluctuation

rate of the response time.

To ensure a fair comparison between the different composition algorithms, we ran

nine cases with the same parameters as in table 5.4. Each case is different, as it will

have different setting for fluctuation rate, mean and correlation of response time. Fig. 5.1

depicts for each of the nine cases, the fluctuation rate of response time of web composition

selected by the Non-diverse, Geographical diverse and composition , Non-correlated and

correlated portfolio composition algorithms. From the results in Fig. 5.1, it is clear that

99

Non-diverse composition has the worst results (highest fluctuation rate) in six out of the

nine cases, because it does not implement design diversity but selects all the required

candidate services from a single cloud provider. That means a high positive correlation

between the candidate services as high demand on that cloud provider will affect all

candidate services of the composition at the same time.

Figure 5.1: Fluctuation Rate of CSC for the Four Considered Algorithms.

Random Geographical diverse composition gives the second worst results (second high-

est fluctuation rate). This is because the diversity is randomly created and not linked to

neither the fluctuation rate of the candidate services nor the correlation between them.

Non-correlated portfolio emerged as the second best algorithm in seven of the cases stud-

ied.

The Non-correlated portfolio composition considers fluctuation rate of candidate ser-

vices. However, it ignores performance correlation between them. The portfolio-based

composition has achieved the best results in all of the nine cases (lowest level of fluctua-

tion rate) because it utilizes the portfolio concept to diversify the selection of candidate

services. The diversification is directly linked to both of the fluctuation rate and correla-

100

tion between the candidate services in the composition.

5.6.3 Effectiveness of the Composition Algorithms Under Posi-
tive, Negative and Weak Correlations

The goal of this experiment is to investigate the effect of the different correlation settings

on the quality of the solution for each of the four algorithms. As was in experiment 1,

we ran 9 cases with the same parameter setting of Table 5.4 except for the correlation

setting. Instead, we have used three settings for correlation such as Weak, Positive and

Negative correlation as shown in Table 5.5.

Table 5.5: Simulation Correlation Settings

The result in Fig.5.2 shows that the ranking of the composition of each of the four

algorithms remains as in previous experiment. The lowest fluctuation rate was achieved

by the portfolio-based composition followed by non-correlated portfolio with the Random

Geographical diversity. The non-diverse composition was ranked as the forth. In terms of

the effectiveness of the diversification process, we can see from the results that the quality

of the diversification can be affected by the level of correlation between the candidate ser-

vices. A positive correlation indicates a high dependency between the candidate services

and weak correlation indicates a performance independence of the candidate services.

We can measure the effect of diversification by the difference in fluctuation rate be-

tween the Non-diverse composition and the portfolio-based composition. In case (A),

where we have nine cases with positive correlation setting, the average difference fluc-

tuation rate between the Non-diverse composition and the portfolio-based composition

was 6.3%. The difference in fluctuation rate increased to 12.5% for weak correlation and

101

peaked for positive correlation reaching 22.9%.

From the results, we can conclude that the quality of portfolio-based composition

is closely related to the correlation between different candidate services. The lower the

correlation between the candidate services (avoiding a positive correlation), the greater

the fluctuation rate reductions achieved by diversification.

102

Figure 5.2: Fluctuation rate of CSC in Positive, Weak and Negative correlation.

103

5.6.4 The Effectiveness and the Stability of the Self-Adaptive
Mechanism

In this experiment, we will evaluate the efficiency of the self-adaptive behaviour where

the approach should systematically evaluate the fluctuation rate of the allocated CSC and

compares it to the optimal traded CSC at the current market condition. It should then

dynamically make trade-offs decisions between the benefits of adopting a new optimal

CSC, where benefits correspond to the fluctuation reduction versus the cost of frequently

changing the services in the adaptation process, as detailed Section 5.5. To test the self-

adaptive mechanism, we assume that the QoS and fluctuation rates of web services in the

cloud market change over time. In the experiment, we model different dynamics of change

by simulating three market settings as in table 5.6. The rest of the simulation parameter

are the same as the values presented in table 5.4.

Table 5.6: Simulation Market Settings

For each market setting, we ran 100 adaptation cycles, where each cycle will cause a

change in QoS of the services. After each adaptation cycle, we evaluate how a change in

the market condition affects the optimality of previously allocated CSC. As demonstrated

by algorithm depicted in table 5.3, the adaptation decision is based on Im, which is

the minimum required improvement level in fluctuation rate to trigger an adaptation to

allocate the new optimum CSC. Using different values for Im can affect both of the quality

and frequency of adaptation.

To evaluate the quality and the stability of the self-adaptive mechanism, we com-

pare the performance of four algorithms in term of optimality and number of adaptation

required to achieve that level of optimality. The four algorithms are as follow:

104

1. Non-adaptive method. This algorithm will not make any changes to the previously

selected CSC.

2. Unconditional adaptation algorithm. This algorithm will trigger an adaptation

whenever a new optimum CSC emerges in the market. That is because it does

not specify any minimum required improvement (Im = 0%).

3. A 5% conditional adaptation algorithm. This algorithm will trigger an adaptation in

case a new optimum CSC presents an improvement level greater than 5% (Im=5%).

4. A 10% conditional adaptation algorithm. This algorithm will trigger an adaptation

in case a new optimum CSC present an improvement level greater than 10% (Im

=10%).

The change of fluctuation rate of CSC for each of unconditional adaptive, conditional

adaptive and non-adaptive algorithms during the 100 adaptation cycle is displayed in Fig.

5.3. Moreover, Fig. 5.4 shows the average fluctuation rate of CSC and the number of

adaptations performed by each algorithm. One observation from the results in Fig. 5.4 is

that the adaptive algorithms, in general, have outperformed the non-adaptive algorithm

because they react to changes in the market by selecting new optimum services for the

CSC.

In comparison to the non-adaptive algorithm, the use of unconditional adaptation al-

gorithm has contributed to reductions in fluctuation rate of CSC by 24.6% and 16.6% in

high and average dynamic market settings, respectively. However, the number dramati-

cally drops to 2.6% in the market in low dynamics setting. We can say that the benefits

of using self-adaptive scheme decrease as we move from high dynamic market to a low

dynamic market.

In terms of quality of the adaptive algorithms, we can see in Fig. 5.4 (a) that the

unconditional adaptation algorithm have achieved the lowest level of fluctuation rate

in comparison to the 5% and the 10% conditional algorithms. On the contrary, the

performance superiority of unconditional adaptation algorithm comes with a high cost

105

as shown in Fig. 5.4 (b). The figure shows that the unconditional adaptation algorithm

requires a high number of adaptations reaching 80, 56 and 33 for the high, average and

low dynamic market, respectively. This is because the unconditional adaptation algorithm

will continuously change the selection of the services regardless of the level of improvement

gained by that change.

On the other hand, the 5% conditional algorithm requires only 41, 16 and 3 adapta-

tions for the high, average and low dynamic market, respectively. Furthermore, the 10%

conditional algorithm requires even a lower number of adaptations which was 13, 5 and

2 for the high, average and low dynamic market, respectively. One can see in Fig. 5.4

(a) that the quality gap between unconditional adaptation and the 5%, 10% conditional

adaptation was less than 6% and 3%, respectively.

So, despite the high cost associated with the unconditional adaptation, the quality

gap between the unconditional and conditional adaptation algorithms is relatively small.

Keeping that in mind, one can argue that using conditional adaptation is more effective

as they make an explicit trade-off between the cost and benefit of performing change to

CSC.

To sum up, the conditional adaptation algorithm can be customized to cater for dif-

ferent users preferences by using different values for an improvement level Im. Choosing a

large value for Im will help to limit the number of adaptations, whereas choosing a smaller

number will aid in reducing the fluctuation of the selected CSC.

106

Figure 5.3: Change in Fluctuation Rates of CSC During 100 Adaptation Cycles of Four
Different Algorithms in High, Average and Low Dynamic Market Setting.

107

Figure 5.4: Average Fluctuation Rate of CSC And Number of Adaptations of Each of
the Algorithms in High, Average and Low Dynamic Market Settings for 100 Adaptation
Cycle.

108

5.6.5 A Prototype Using CloudSim Environment

In the previous experiments, we considered only a simulation of a hypothetical cloud-

based market where QoS values are drawn from a normal distribution. To get more

realistic settings, we have implemented a prototype where the whole portfolio based CSC

is integrated with CloudSim environment [128]. CloudSim is a well known framework that

has been used by researchers and practitioners for evaluating their cloud based solution

(e.g. [129], [130], [131], [132] and [133]). The details of our experiment are described in

the following sections.

CloudSim Environment

CloudSim positions itself as a framework for modelling the behaviour of both cloud appli-

cations and infrastructures. It achieves that by providing a fine-grain modelling of both

the hardware and software of the cloud environment. Among the modelled hardware en-

tities are: data centres, physical machines and networks, whereas the modelled software

entities include: virtual machines, brokers and Cloudlets (cloud web services). When a

Cloudlet is submitted by a user, the broker receives the Cloudlet and sends it to a virtual

machine, which is hosted on the physical machines at one of the data centres. Upon the

completion of each Cloudlet, the broker records the results and the execution time. In

this case, the response time of services is not just a random number but is determined by

multiple factors such as: the number of concurrent users, the size of the application, the

processing power of the virtual machines and the physical machines.

The Effectiveness of The Portfolio-Based Composition Using Cloudsim Pro-
totype.

We consider a scenario where CSC requires the integration of three abstract services

(WS1,WS2,WS3). The cloud market offers nine candidate services (three candidates for

each abstract service) hosted over nine different data centres.

Each data centre hosts approximately 30 physical machines. Each machine has 10TB

109

of storage and six-core CPU runs 60000 MIPS (Million Instruction per Second). The

virtual machines hosting the services are based on an Amazon’s small instance T2.small

(2GB of memory, 1 virtual core CPU). For each candidate service, we simulate a fluctu-

ating number of users that varies from 2000 to 18000 users and run the experiment for 30

times.

Running such a large scale experiment in real cloud environment makes the repro-

duction of results an extremely difficult and expensive because we need to buy or rent

hundreds of physical machines. A suitable alternative is the use of simulation-based ap-

proach to run the experiment. For that, we utilize CloudSim which gives us the ability

to evaluate our system prior to software development in an environment and gives us the

ability to reproduce the results.

The exact number of users for each service and the response time for each service

in the 30 runs are presented in appendix B. The summary of the response time of each

service is presented as in Fig. 5.5 and the correlation between the services is presented in

table 5.7.

Figure 5.5: Execution time of web services in the market represented by mean and stan-
dard deviation (fluctuation rate) over 30 independent runs. The red plus sign represents
the mean, and the black edge represents the standard deviation(fluctuation rate).

110

Table 5.7: The Performance Correlation Matrix of Services in The Cloudsim Market.

We compared the portfolio-based composition with Random Geographical diverse com-

position inspired by [106] and Non-correlated portfolio-based composition proposed in

[127] where diversity is linked to the stability (fluctuation rate) of the candidate services

from multiple cloud providers. The portfolio-based allocation approach formed a com-

position using services (WS1−3,WS2−3,WS3−3). This composition have average response

time of 30.5 seconds and a 23% risk of response fluctuation. This is because the services

forming the composition share a low correlation between their performances.

The uncorrelated portfolio-based composition formed a composition using services

(WS1−2,WS2−3 ,WS3−2) which have average response time of 39 seconds and 38% risk of

response time fluctuation. On the other hand, Random Geographical diverse composition

have selected (WS1−2 , WS2−2 , WS3−2) which have average response time of 35 seconds

with 56% risk of response fluctuation. These results are displayed in Fig. 5.6. We can say

that the prototype shows consistent results with the findings of the simulated experiments

where the portfolio-based CSC outperforms the other composition algorithms in terms of

the quality of selection (lowest fluctuation rate).

111

Figure 5.6: Execution time of services composition selected by correlated portfolio, ran-
dom geographical diversity (random geographical composition) and uncorrelated portfo-
lio diversity. Execution time is represented by mean and standard deviation (fluctuation
rate) over 30 independent runs. The red plus sign represents the mean, and the black
edge represents the standard deviation (fluctuation rate).

5.7 Conclusion

In this chapter, we have presented a novel self-adaptive approach to assist a CSC in the

process of selecting set of well-diversified candidate services that helps in providing more

stable performance. In particular, we have used a portfolio-based optimisation technique

to improve performance stability by diversifying the selection of candidate services that

share low correlation between them. Unlike the reviewed classical design diversity solu-

tions that share the assumption of uncorrelated failures, our portfolio-based design diver-

sity is correlation-sensitive; it explicitly links the distribution of resources to performance

fluctuation and accounts for correlation.

The evaluation shows that in comparison to the Non-diverse, Geographical diverse and

Non-correlated composition algorithms, our portfolio-based approach achieves minimum

performance fluctuation for CSC. Moreover, it shows that using conditional adaptation

112

algorithm is more effective as they make an explicit trade-off between the cost and benefit

of performing changes to CSC.

However, in this chapter we did not cover scalability analysis services composition

which is known to be a NP-hard problem [9]. An important challenge is how our services

composition approaches scale with respect to changes in the market and the environment.

Scalability is also concerned with how the mechanism caters for changes that relate to

the number of candidate services, workflow size, number of QoS under consideration,

constraints among the others.

To address this challenge, in the next chapter we will use an approach to make the

scalability dimensions for the CSC problem explicit and transparent to the mechanism:

we perform a systematic elaboration of scalability requirements through goal-obstacle

analysis [35] to identify the necessary dimensions, which can influence the behaviour of the

mechanism. Then, we present scalability evaluation for our portfolio-based composition

algorithm.

113

CHAPTER 6

SYSTEMATIC ELABORATION OF SCALABILITY
REQUIREMENTS USING SCALABILITY

GOAL-OBSTACLE ANALYSIS: THE CLOUD
SERVICES COMPOSITION

6.1 Introduction

In the last chapter, we demonstrate the effectiveness and self adaptivity of our portfolio

based CSC. However, the scalability of the algorithm was not evaluated. This is important

considering the large scale and the dynamic nature of the cloud-based market, which can

lead to exponential increase in the problem search space. One would expect a variety of

dimensions to be considered in evaluating the scaling of dynamic web services composition,

such as the workflow size, number of QoS constraints, number of recomposition requests

and so forth.

This will make the identification of the system design goals, and the functional and

non-functional requirements that are relevant to the scalability analysis of software a

complicated process. To overcome the complexity of scalability analysis, Duboc et al.

[35] proposed a systematic approach for elaborating the scalability requirements, which

extends KAOS goal-oriented model [134].

In this chapter, we present a background section that gives an overview of the nec-

essary concepts to understand the scalability analysis. These concepts include KAOS

114

goal-oriented modelling and goal obstacle analysis. Then, we show the basic steps of the

scalability goal obstacle analysis which includes the identification, assessment and revolv-

ing of scalability obstacle. We then present the goal modelling and the scalability goals

of the portfolio-based composition. Finally, the evaluation presents a set of experiments

that are designed to evaluate the scalability of the portfolio-based composition. It reports

on the sensitivity of time needed to find an optimal CSC composition scale in relation to

multiple dimensions of the CSC problem.

6.2 Background

6.2.1 A Brief Introduction to KAOS Goal-Oriented Modelling

One of the most influential measurements of software system success is the degree to

which it complies with its purpose. For that reason, identifying the purpose of software

should be one of the main activities of the software development life cycle. There is a

consensus on the fact that incomplete, vague, or inconsistent requirements can have a

negative effect on both QoS and user satisfaction level [135].

Traditional requirements engineering approaches, such as structured analysis [136]

and object-oriented modelling [137] failed to: (1) cope with the increasing complexity of

the new systems and (2) consider the non-functional requirements. To overcome these

limitations, KAOS which stands for Keep All Objectives Satisfied have been presented

as a framework for implementing Goal-Oriented Requirements Engineering [138]. KAOS

views software systems as a composition that consists of the software and its hosting

environment as a collection of agents aiming to achieve different system goals as objectives

[134].

In KAOS, agents are active components that may represent humans, hardware devices

or software that are able to monitor and modify the system in order to satisfy the set

of goals [35]. Goals may range from high level goals that require the cooperation of

115

multiple agents (such as Achieve[Services composition is composed of selected concrete

services that share minimum correlation between their performance] to low-level goals that

require fewer agents to achieve such as Achieve[buyer informed if a concrete service for

a given QoS and budget constraints does not exist] . Goals also involve different types of

requirements: (1) functional requirements, such as task the system required to do, and

(2) non-functional requirements, such as performance, security, scalability, and so forth

[134].

The goal model depicts all the system goals, how they contribute to each other and

who is responsible for achieving them. It represents the goals in a hierarchical graph with

AND/OR refinement links. Both of the AND/OR refinement links are used to relate a

parent goal with a set of sub-goals. In the case of AND refinement link, the satisfaction

of the parent goal requires the satisfaction of all the offspring goals linked to it. On the

other hand, OR refinement indicates that an offspring goal represents an alternative way

to satisfy the parent goal [139].

Elaborating system’s goals can be performed using top-down fashion by asking HOW

questions to decompose goals into new sub-goals. In addition, a bottom-up fashion can

be used for elaborating system’s goals by asking WHY questions to find new parent

goals. The elaboration of the goals stops when each sub-goal in the system is assigned

to a single agent which means that this agent has the ability to monitor and control the

variables associated with the goal [35]. In KAOS, right leaning parallelograms are used

to represent system goals, whereas left leaning parallelograms are obstacles. Hexagon are

used to represent agent and arrows connected by a circle are used to represent the AND

refinements link [140].

Figure 6.1 shows a portion of the elaborated goal modelling for portfolio-based ser-

vice composition. The goal Achieve[Dynamic composition of services with minimum QoS

performance fluctuation] is the main goal of portfolio based web service composition. In

order to achieve this goal, the system must (a) keep information about open requests for

cloud services compositions and buyer preferences which is the responsibility of the buyer

116

agent, (b) compose applications by selecting set of diversified services for the abstract

services in the application workflow, and (c) maintain an updated information about con-

crete services in the market. In Fig. 6.1, this relation is represented in the model by

using an AND, refining the top goal into three sub goals, (a) Maintain[Information about

services composition request and buyer preference], (b) Achieve [effective diversification

of service composition] and (c) Maintain[an updated information about concrete services

price and QoS in the market], respectively. The first goal is a leaf goal, assigned to the

Buyer agent.

Figure 6.1: Portion of the Goal Model for Portfolio Based Composition.

117

6.2.2 Overview Of Goal Obstacle Analysis

Goals, requirements and assumptions of the firstly produced KAOS goal model are often

too ideal [139]. The reason for that is failing to consider extreme scenarios and exceptional

conditions in the domain (such as having a large number of concurrent requests or a

network failure). These exceptional conditions can present a violation to some of the

system goals. To avoid such violations, the KAOS framework includes a goal-obstacle

analysis that takes a pessimistic view of goal model [35].

The objective of the goal-obstacle analysis is checking the model looking for exceptional

conditions and scenarios that prevent the goal from being satisfied. In the model, these

exceptional conditions and scenarios are referred to as obstacles [134]. Starting from an

elaborated KAOS model, goal-obstacle analysis consists of three main activities:

1. Identifying all obstacles that can hinder the realisation of system goals.

2. The assessment of the likelihood and criticality of identified obstacles on top-level

goals.

3. Resolving the most important obstacles by modifying goals and assumptions of the

model.

Duboc et al [35] defined scalability as the ability of a system to achieve an accept-

able level of satisfaction for each of its quality goals when the system variable vary over

expected operational ranges. Based on this definition, we need to identify the following

elements in order to evaluate the scalability of a system:

1. Quality goals correspond to goals and their objective function.

2. Expected operational variations of variables in the application domain and these

are referred to as scaling assumption.

3. Acceptable level of satisfaction for each of the system quality goals and these are

referred to as scalability goal.

118

To define these elements Duboc et al. [35] introduced a methodology which extends the

conventional KAOS framework with two new concepts: scaling assumption and scalability

goal.

6.2.3 Scalability Assumption

The scaling assumption is defined as a domain assumption specifying the expected vari-

ation of certain variables in the application domain in specific deployment environment.

In our scalability analysis, the application domain is web services composition and we

have the cloud as the deployment environment. The scaling assumptions should define as

follows:

1. One or more variables in the application domain that are expected to vary in ranges

of values.

2. The expected range of values for variables in the application domain in a specific

deployment environment.

For example, one of the variables that affect the scalability of the portfolio-based

composition is the number of candidate services per abstract service. A scaling assumption

associated with that variable could be the expected number of candidate services per

abstract service, which can be described as:

Assumption Expected number of candidate services per abstract service.

Category Scaling assumption.

Definition The number of candidate services per abstract service is expected to vary

between 3 and 50 candidate services.

The ranges of values used in scaling assumptions must be identified and negotiated

with system stakeholder. The ranges may be obtained by analysing the existing system

[35]. Each identified scalability assumption presents constraints on the ranges of values for

each system variables. The absence of a scaling assumption for system variables indicates

that there is no assumed constraint on its possible values and it could be infinite.

119

To illustrate this, if we consider the goal: Achieve [Services composition is selected

quickly], the absence of a scalability assumption that limits the range of values of candi-

date services per abstract service means that no agent can satisfy the goal unless he has

unlimited capacity. However, that is not feasible as all the agents have limited capacity.

6.2.4 Scalability Goal

A scalability goal is a system goal that requires as part of its definition expected level of

satisfaction specified by the stakeholders and makes an explicit reference to one or more

scaling assumptions [35]. As an example, if we consider the system goal Achieve [Services

composition is selected quickly] as well as the scalability assumption, Expected number

of candidate services per abstract service. We can manage to elaborate a new sub-goal;

which is Achieve [Services composition is constructed quickly under expected number of

candidate services per abstract service]. The new sub-goal is a scalability goal because it

makes an explicit reference to a scaling assumption, and it can be described as:

Goal Achieve [Services composition is selected quickly under expected number of candidate

services per abstract service]

Category Performance goal, Scalability goal.

Definition A service composition defined as a workflow of a set of abstract services

should be composed of a set of candidate services where the constructed composition

should maintain the budget and the QoS constraints specified by the Buyer. The time

taken to find appropriate services should not exceed 5 minutes (the stakeholder specifies

time limit), as long as the number of candidate services does not exceed the bounds stated

in the scaling assumption Expected number of candidate services per abstract service. This

goal can now feasibly be satisfied by a Buyer agent with sufficient capacities and no

longer requires an unlimited capacity as in its parent goal Achieve [Services composition

is selected quickly] .

120

6.3 Scalability Goal-Obstacle Analysis

The KAOS goal model fails to explicitly consider the scalability of the system defined

in terms of goal load and agent capacity. For that reason, the scalability goal-obstacle

analysis [35] extends the KAOS model with concepts of scaling assumptions and scalability

goals. The basic steps of the scalability goal-obstacle analysis are illustrated in figure 6.2.

Figure 6.2: Basic Steps of the Scalability Goal-Obstacle Analysis [35].

121

The main objective of the approach is to help in identifying the relevant scalability

goals for a software system. Such analysis requires a proper understanding of the system

goals and the system variables that will influence these goals. To gain such understating,

the approach begins with a KAOS goal model in order to identify the system goals.

After that, it presents a set of well-defined steps to derive the variables and functions

to be used in the scalability analysis from the KAOS goal-oriented model. These steps

include iteratively identifying, assessing and resolving scalability obstacles followed by

updating the goal model with scaling assumptions and scalability goals. Thereafter, a set

of scalability goals are selected for analysis. The scalability evaluation is conducted at the

end, and the answer to the scalability question is stated. In the following sections, we will

present more details about the activities related to identifying, assessing and resolving

scalability obstacles.

6.3.1 Identifying Scalability Obstacles

Scalability obstacle is a condition that prevents an agent from achieving the required level

of satisfaction of a system goal. This is because the load imposed by the goal exceeds the

capacity of the agents. To identify all the scalability obstacles related to a goal: we need

to identify the goal load and specify the agent capacity. We define scalability obstacle in

the form of Goal Load Exceeds Agent Capacity.

For example, consider again the goal Achieve [Services composition is selected quickly]

assigned to the Buyer agent. The obstacle analysis for that goal has identified two types

of obstacles that can prevent the Buyer agent from satisfying the goal: 1) functional

obstacles and 2) scalability obstacles. Figure 6.3 shows the obstacles related to goal

Achieve [Services composition is selected quickly].

Functional obstacles related to the goal are No candidate services meet QoS and budget

requirements and Market infrastructure not accessible. To identify the scalability obstacles

for a goal, it is necessary to define what the agent capacity is and what are the goal loads.

The agent capacity is the Buyer agent’s ability to compose services defined on term of

122

seconds. The goal loads in this case are:

1. Workflow size.

2. Number of candidate services per abstract services in the workflow.

3. Number of services available in the market.

4. Number of QoS considered in the selection.

5. Number of concurrent service composition request.

A scalability obstacle in this case will be the condition when one of these goals loads

exceeds the buyer agent ability to select services within imposed time limit.

Figure 6.3: The Obstacles Related to Goal Achieve [Services Composition is Selected
Quickly]

123

6.3.2 Assessing Scalability Obstacles

After identifying potential scalability obstacles, it is necessary to assess the criticality

and likelihood of each one. The criticality of scalability obstacles indicates their effect on

satisfaction of top level goals. The likelihood defines the probability of each scalability

obstacle to take place in the application domain. A technique to support the assessment

of scalability obstacles is inspired by standard qualitative risk analysis matrix. In this

matrix, the likelihood of scalability obstacle can be estimated on a scale from low to

high and similar scale to estimate criticality [141]. The risk of scalability obstacle is the

product of its likelihood and its criticality. The obstacle assessment aims to separate

the scalability obstacles that impose a high risk on the system needed from the low risk

scalability obstacles, which can be safely be ignored.

If we take for example scalability obstacles Unbounded number of candidate services

and Unbounded number of available services related to goal Achieve [Services composition

is selected quickly] presented in figure 6.3. While both of the obstacles have the same

likelihood of high possibility to take place in a cloud-based market, their criticality on

services selection differ. The obstacle Unbounded number of available services has a low

criticality on the selection, because most of the available services will be excluded from

search space as they do not match functional or QoS constraints. On the other hand, the

Unbounded number of candidate services will have catastrophic effect on the size of search

space as all candidate services are considered as an option for composition. Considering

both of the likelihood and criticality of the two scalability obstacles, we can say that

obstacle Unbounded number of candidate services impose high risk on the system and that

there is an urgent need to resolve it, while the risk associated with scalability obstacle

Unbounded number of available services is relatively low and can be safely ignored.

124

6.3.3 Resolving Scalability Obstacles

As we discuss earlier, only high risk scalability obstacles are considered serious enough and

must be resolved. Duboc [139] has presented a number of specialized resolution tactics to

overcome scalability obstacles. This section presents a brief description that covers two

of these tactics: goal weakening and goal substitution.

Goal Weakening

Sometimes the goal definition can be strong and its achievement may introduce a scalabil-

ity obstacle to the system. In this case, we can resolve the obstacle by changing the goal

definition to a more liberal one with the aim of eliminating the obstacle. The following

goal weakening strategy can be adopted to help in resolving scalability obstacles:

1. Weaken goal definition by introducing scaling assumption: this goal weakening

strategy can be implemented by limiting goal satisfaction to an assumption that

specifies a range of expected load that does not exceed the agent capacity.

2. Weaken goal objective function: this goal weakening strategy can be implemented

by weakening the goals objective function, in such a way that it does not exceed the

agent capacity.

For instance, applying the strategy weaken goal definition introduces scaling assump-

tion to the goal Achieve [Services composition is selected quickly]. This can be realised by

introducing a scalability assumption, Expected number of candidate services per abstract

service. This will create a weaker new goal Achieve [Services composition is selected

quickly under expected number of candidate services per abstract service] that is easier

to satisfy than the original goal. An alternative way to resolve the obstacle is to apply

the weaken goal objective function to the goal Achieve [Services composition is selected

quickly]. This can be achieved by relaxing the time limit imposed by the stakeholder from

5 to 7 minutes.

125

Goal Substitution

Obstacle prevention can be implemented by replacing an obstructed goal with an alter-

native goal that aims to eliminate the obstacle completely. For example, if a goal Achieve

[an optimal services composition is selected within 5 minutes] was obstructed by the time

limit because it requires full exploration of the search space. We can overcome this ob-

stacle by introducing alternative goal as Achieve [a sub-optimal services composition is

selected within 5 minutes]. The new goal is more likely to require less time to satisfy as

a sub-optimal selection does not require full exploration of the search space.

6.4 Scalability Goal-Obstacle Analysis for Portfolio-

Based Service Composition

In this section, we demonstrate how goal modelling can be used to: (1) elaborate the

scalability requirements for the portfolio based services composition and; (2) identify

the dimensions relevant to the scalability analysis. A Cloud services composition should

be specified as a workflow of abstract services where each abstract service describes the

functional specification of a certain task. Cloud market is expected to offer multiple

candidate services that satisfy the functional requirement but come with different QoS

and fluctuation rate. In this context, we view the selection of cloud services composition

from a cloud-based market as an optimisation problem, aiming to reduce possible risks of

performance fluctuation.

The mechanism modifies the composition in response to changes in the market. For

a given adaptation cycle, the adaptation decisions are informed by the extent to which

diversification can reduce risk of performance fluctuation subject to QoS and cost con-

straints. In the following sections, we present the goal modelling and main agents of

system. Then, we present the main obstacles that can affect the scalability of the system

and the scalability goals of the portfolio-based composition.

126

6.4.1 Goal Modelling of Portfolio Based Composition

The portfolio-based services composition has 15 goals and the scalability goal-obstacle

analysis revealed 8 potential scalability obstacles, which led to the identification of 7

scaling dimensions. In the following subsection, we discuss the agents and their main goals,

findings of scalability goal-obstacle analyses, and their resulting metrics and dimensions.

The elaborated goal model and a brief explanation of its parts can be seen in Appendix

A.

6.4.2 Agents and Goals in the KAOS Goal Model

The KAOS goal model for portfolio-based composition defines the following agents:

Buyer:

This agent is acting on behalf of the application stakeholder. It is responsible for selecting

a well-diversified set of candidate service that satisfy the requirements of the stakeholder

and achieve optimal performance stability. First, services are screened for compatibility

before they are shortlisted as candidates. When candidate services exist in the market,

this agent implements portfolio theory to select a set of compatible services that have low

correlation between their performance. Otherwise, if no candidate service exists, it notifies

the buyer. When there is a change in the QoS of the candidate services or an SLA contract

expires, this agent is responsible for recomposing the services composition. This agent is

responsible for the goals Achieve [Services composition is composed from selected concrete

services that share minimum correlation between their performance], Maintain[informa-

tion about services composition request and buyer preference], Achieve[Service composition

is recomposed if there is change in the condition of one of the services or SLA contract

expires] and Achieve[Optimality of the composition by exploring all the possible solutions].

(see Figures 6.1 A.2 and A.3 in Appendix A).

Seller:

This agent is acting on behalf of the services providers. (s)he is responsible for publishing

127

a new concrete service on the market services registry, informing its functionality and

price. (S)he should also inform about any change in the functionality and price of an

existing service. This agent is responsible for the goals Achieve [New services and change

in existing price or functionality is reported]. (See Figures A.1 in Appendix A).

MarketRegulator:

This agent is an independent software agent that has a number of responsibilities. It

stores services information in the market registry. Moreover, it returns a set of candidate

services given a buyer QoS and budget requirement. In addition, it is responsible for

maintaining the historical records of the QoS and the fluctuation rate of each service

in the market. Finally, it is responsible for informing the buyer about the correlation

between different services in the market, the buyer use correlation to form a well-diversified

composition of services. This agent is responsible for the goals Maintain [Updated concrete

services risk of fluctuation and correlation between performance], Achieve[Historical record

of QoS is recorded], Achieve[an updated information regarding concrete services available]

and Achieve [New services and change in existing price or functionality is recorded] (see

Figures A.1, A.2, and A.3 in Appendix A).

6.4.3 Scalability Goal-Obstacle Analysis of Portfolio-Based Ser-
vices Composition

In this section, we present the first stage of the scalability obstacle analysis, which is

identifying application domain characteristic related to system goals. Then, we will define

a variety of scalability dimensions and metrics that need to be taken into account when

evaluating the scalability of the system.

Goal oriented analysis of the portfolio-based services composition has identified 15

goals of portfolio-based service composition. Two of these goals and their scalability ob-

stacles are illustrated below; The same rationale can be applied to the rest of the 15 goals

and are presented in table 6.1.

128

Maintain[Updated evaluation of concrete services risk of performance fluctuation and

correlation between services]

This goal states that the MarketRegulator is responsible for evaluating the risk of perfor-

mance fluctuation for each service and the performance correlation for each service in the

market. This goal is satisfied if all the required information is evaluated and stored within

a reasonable time and without exhausting the Market Regulator processing capacity or

the available storage space. The goal load is determined by the number of services in the

market, the number of considered QoS, the number of changes in QoS and the length of

the historical record of each QoS. The Market Regulator agent has a finite capacity and

cannot handle an unlimited number of services, QoS or unlimited length of the historical

records. The scalability goal load exceeds Market Regulator agent capacity, which can

be further refined into unlimited number of services, unlimited number of QoS, and un-

limited length of the historical records. These obstacles are resolved by introducing the

scaling assumptions, Expected number of services, Expected number of QoS , and limited

length of the historical record. These scaling assumptions limit range of value replacing

the original goal by the scalability goal Maintain[Updated evaluation of concrete services

risk of performance fluctuation and correlation for expected number of services requests

,QoS and limited length of the historical record].

Achieve[Effective diversification of services composition]

This goal states that once the group of the compatible services exist in the market, the

Buyer agent is responsible for effectively diversifying the selection of a services composi-

tion that has a low risk of performance fluctuation. This goal is satisfied when the buyer

agent finds an optimal set of candidate services within acceptable time. The load this

goal imposes on the Buyer agent is determined by the number of concurrent application

requests and number of QoS constraints. As the buyer agent has a limited capacity, (s)he

cannot handle an unlimited number of concurrent application requests or unlimited num-

ber of constraints for QoS. The scenario where the scalability obstacle goal load exceeds

129

Buyer agent capacity can be resolved by introducing the scaling assumptions of Expected

number of concurrent application requests and Expected number of QoS constraints, and

replacing the original goal by the scalability goal Achieve[Effective diversification of ser-

vices composition under expected number of concurrent application requests and num. of

constraints for QoS].

As a result of the goal-obstacle analysis, four metrics and nine application domain

characteristics may be considered relevant to the scalability analysis of portfolio-based

services composition. These are:

Metrics: performance fluctuation, execution time, communication bandwidth usage

and disk storage space.

Application domain characteristics: number of the concrete services in the mar-

ket, number of concurrent application requests, number of expired SLA contract at a given

time, workflow size, the length of the historical records for QoS, number of QoS in appli-

cation, number of changes in QoS or price of services, number of candidate services per

abstract service and the number of not matched concrete service.

After identifying all goals of portfolio-based composition, we define the scalability

obstacles of the system that may prevent some of the goals from being satisfied. A list

of these scalability obstacles and an assessment of their likelihood and criticality on the

system scalability are highlighted in Table 6.2.

130

Table 6.1: Metrics and Unbounded Variables for each of the Portfolio Based Composition
Goals

131

Table 6.2: Assessment of Likelihood and Criticality of Scalability Obstacles

132

6.5 Scalability Goals

From these obstacles presented in table 6.2, we consider only the obstacles that have high

likelihood and high criticality on the system as scalability goals. As a result, the system

has four scalability goals:

1. As the number of candidate services per abstract service increases, the algorithm

should exhibit a linear growth in execution time.

2. As the number of abstract services in the workflow increases, the algorithm should

exhibit a linear growth in execution time.

3. As the number of QoS attributes increases, the algorithm should exhibit a linear

growth in execution time.

4. As the number of concurrent application requests increases, the algorithm should

exhibit a linear growth in execution time.

6.6 Scalability Evaluation

We now perform a scalability evaluation to the portfolio-based composition where we

evaluate the sensitivity of the time needed to find a solution, which increased in the

previously identified four scalability goals.

These scalability goals do not prescribe any specific measurable quantity. Thus, it

is difficult to know whether portfolio-based composition scales well, or not. In order

to assign specific range of numbers for each variable, we present scaling ranges. These

ranges go beyond the findings of the systematic literature review of [126] for dynamic

services composition (see Table 6.3). To analyze the scalability of the system, we ran

three experiments. The experimental setting follows that of Table 5.4 except that in each

experiment we gradually increased the load in two dimensions as follows:

133

Table 6.3: Scalability Range For Each Variable

1. The first experiment evaluates the effect of increasing both the number of candidate

services and the number of QoS on the execution time. The results are presented

in Fig. 6.4.

2. The second experiment evaluates the effect of increasing both the number of candi-

date services and the number of concrete application requests on the execution time

and the results are depicted in Fig. 6.5.

3. The third experiment evaluates the effect of increasing both the number of candidate

services and the number of abstract services in the workflow on the execution time

and the results are shown in Fig. 6.6.

Figure 6.4: The Execution Time of The Portfolio Based Composition as Both of The
Number of Candidate Services and Number of QoS Increases.

134

Figure 6.5: The Execution Time of the Portfolio Based Composition as Both of the
Number of Candidate Services and Number of concurrent application requests Increases

Figure 6.6: The Execution Time of the Portfolio-Based Composition as Both of The
Number Of Candidate Services And Workflow Size (Number Of Abstract Services In The
Composition) Increases.

135

From the results displayed in Fig.6.4 and Fig.6.5, it is essential to note that the

portfolio-based composition algorithm exhibits a linear growth of execution time when we

increase the number of candidate services, the number of QoS or the number of concurrent

applications request. However, Fig.6.6 shows that the algorithm exhibits an exponential

growth in execution time when we increase both the number of candidate services and

the size of the workflow of the application. This indicates that the performance of the

portfolio-based composition algorithm is highly sensitive to the increase in the workflow

size. As a result, it takes longer time to find the solutions for applications with large

workflow size.

6.7 Conclusion

Prior to applying goal-oriented analysis, we reported a scalability analysis of portfolio-

based composition which considered execution time against one scalability goal which the

number of candidate service [142]. As an immediate result of the goal-oriented analysis

of portfolio-based composition, we identified three new scalability goals that are relevant

to the scalability of portfolio-based composition.

The systematic analysis has provided more objective means for identifying scalability

goals of interest. One advantage of using such disciplined analysis is that these dimensions

could be easily missed in case ad hoc practice is used. The scalability evaluation revealed

that the our approach could cope with the increasing numbers of candidate services, QoS

attributes and concurrent application requests. However, it could not handle scaling of

the abstract services in the workflow. More precisely, the scalability obstacle happened

when both the abstract services in the workflow and the number of candidate services

scale concomitantly. This issue had not been identified in the previous scalability analysis

of the portfolio-based composition discussed in [142].

136

CHAPTER 7

CONCLUSION AND FUTURE WORK

This thesis is a result of our quest to find a stability-aware service selection and composi-

tion approach, which would enable a cloud-based application to improve it’s performance

stability. The thesis has introduced the following research questions:

• RQ1: Can the concept of design diversity be applicable to the case of cloud services

selection and composition to reduce risk of performance fluctuation? How well can

it perform compared to well-established services selection methods?

• RQ2: How can the approach be extended to self-adaptive mechanism, which can

dynamically respond to changes in the market?

• RQ3: In the case of CSC, what are the scaling dimensions (e.g. number of web

services, number of objectives, candidate solutions, frequency and volatility of change

etc.) that we need to render a pragmatic solution ?

We started our quest for stability-aware services selection approach by reviewing the

state of the art of QoS-aware service composition solution. We concluded that there were

no solutions that address the problem of reducing performance fluctuation in cloud-based

applications. We looked at various approaches that adopt the concept of design diversity

to better stabilise cloud-based applications. We had also observed that these approaches

have failed to address issues related to correlated failure.

137

To bridge the gap, we proposed a novel service selection approach, which implements

design diversity principles to minimise performance instability in the cloud-based appli-

cations. The novelty of our approach emanates from combining the principles of design

diversity with Modern Portfolio Theory [30] to select an optimal set of candidate services

that share a minimum correlation between their performances to achieve more stable

performance. Unlike the reviewed classical design diversity, our portfolio-based approach

links the diversification of candidate services to performance fluctuations and correlation

between different candidate services in the cloud-based application. To the best of our

knowledge, we are not aware of any service selection approach that explicates diversity

when architing applications through the selection of candidate cloud services with the aim

of reducing the performance fluctuation.

We tackled the problem of self-adaptation by introducing a self-adaptive mechanism

that utilised the MAPE control loop [34] to react to changes in the market and maintain

the optimality of the cloud-based application in a runtime environment. The proposed

self-adaptive approach makes an explicit trade-off between the cost, risks and benefits of

performing changes to the cloud-based application. Moreover, we tailored the method of

[35] to our case and performed a systematic elaboration of scalability requirements through

goal-obstacle analysis to identify the four scalability dimensions, which can influence the

behaviour of the portfolio-based algorithm in the case of CSC. Finally, we demonstrated

the superiority of the portfolio-based approach by comparing it’s performance to that of

a number of existing approaches using different scenario of application and correlation

settings.

7.1 Contributions of This Thesis

In proposing our stability-aware service selection approach, we borrowed ideas from eco-

nomics, design diversity, goal oriented requirement engineering, and self-adaptive systems.

We took these ideas and integrated them into a self-adaptive stability-aware service se-

138

lection approach. That journey of reviewing ideas, filtering them for suitability and

integrating them into one solution has yielded a few contributions to the field of software

engineering. We list them below:

• A literature review that cover the state of the art of QoS-aware service

composition: We review the existing work on QoS-aware services composition.

The objective of the review is to draw from the state of the art solutions, new

insights that can assist the problem of stability-aware dynamic selection for cloud-

based applications. The review have helped to identify the main activities that

support QoS-aware service composition in a dynamic environment. Moreover, it

helped to identify three main challenges imposed by cloud environment on QoS-

aware service composition. These challenges are performance fluctuation, scalability

of the approach and its support for self-adaptivity.

• Review existing design diversity solution: The review was an important step

towards understanding the research landscape and identifies the gaps of the current

design diversity solutions. From the review, we discovered that ignoring the possi-

bility of correlated failure can lead to an ill section of the diversified system. We also

recommended that the diversification decision should be linked to the correlation

between the candidate services of the applications.

• A novel portfolio-based service selection algorithm: We presented a self-

adaptive multi-agent system that utilized the Modern Portfolio Theory to enable the

diversification of the services selection in order to improve the performance stability

of the cloud-based application. We illustrated the applicability and effectiveness

of our proposed portfolio inspired method using two scenarios of application: a

scaling up scenario and a cloud services composition that represents a more complex

scenario of application.

• Systematic elaboration of scalability requirements for Portfolio-based

composition: Building upon the work of Duboc et al. [35], we systematically anal-

139

ysed the scalability requirements of our portfolio-based composition. The scalability

analysis helped us to identify four scalability dimensions on which the portfolio-

based compositions should evaluated to verify it’s scalability.

• Conducting a systematic scalability analysis: We tested the scalability of

the portfolio-based services composition on all the dimensions that were identified

through the scalability goal obstacle analysis. We showed how to evaluate a service

composition algorithm in a systematic way. Systematic analysis has provided more

objective means for identifying relevant scalability goals that can be easily missed

if an ad hoc method had been used.

7.2 Concluding Remarks

We now summarise the results of the research carried out during the different stages of

our Ph.D. The major conclusions that we can draw from this research are the following:

1. There is a pressing need imposed on service selection methods that targets cloud

environment to systematically evaluate and improve the performance stability of

the applications.

2. The design diversity concept can be used to improve the performance stability in

the cloud environment.

3. The portfolio inspired method proposed in this thesis to implement diversity per-

forms better than the classical design diversity methods and traditional services

selection.

4. When designing a self-adaptive mechanism in the cloud environment, a trade-off

needs to be explicitly considered between the benefits gained by the change and the

architectural stability of the cloud-based application.

140

5. Among the four scalability dimensions covered in our evaluation, the mechanism is

most sensitive to size workflow. In other words, a rise in the number of abstract

services of the workflow would potentially raise the time required to encounter a set

of optimal solutions.

6. The sensitivity of the algorithm on the evaluated scalability dimension (in increasing

order) is as follows:

(a) Number of QoS dimension.

(b) Number of concurrent application request.

(c) Number of candidate service.

(d) The size of the workflow.

7.3 Future work

This thesis is a description of a path in the direction of self-adaptive and stability-aware

services selection approach. This path does not terminate at this thesis, as we can see

several directions that this research can take in the future:

7.3.1 A Fast Heuristic Portfolio-based Services Composition Al-
gorithm that Seeks Near Optimal Solution

This thesis had investigated performance stability of the cloud-based application and the

use portfolio theory to find an optimal solution, while maintaining a set of QoS constraints.

However, as discussed in chapter 2, ensuring optimality comes with a high computational

cost, since finding the optimal composition represents an NP-hard problem [9]. This is

because ensuring optimality requires exploring all the possible compositions of the cloud

market. This was confirmed in our scalability evaluation where we found that performance

of the portfolio-based algorithm is highly sensitive to increase in workflow size. As a result,

it takes longer time to find the solutions for applications with large workflow size.

141

A future direction of research can be directed towards designing a lightweight heuristic

algorithm that seeks near-optimal composition (e.g. [143], [144], [145] and [146]) in order

to avoid the high computational cost required for finding an optimal solution. These

heuristic algorithms do not perform an exhaustive search that explores all the possible

compositions, but they seek near optimal solution. The main goal of using these heuristic

algorithms is to provide a lightweight mechanism to explore a subset of the search space

that is more likely to lead to finding a satisfying solution. The mechanism will reduce the

computational time needed for running these algorithms but sacrificing the optimality of

the solution as a trade off.

7.3.2 Multi-Objective Cloud Services Composition Algorithm

The core focus of this thesis was directed towards improving the performance stability. As

a result, the proposed approach focused on one objective for the web service composition,

which is achieving minimum risk of performance fluctuation. Other QoS goals, such as

security and cost were considered as constraints.

However, some service buyers are willing to take small risks of performance fluctuation

in order to optimise other QoS such as the security and cost of the cloud-based application.

A future direction of research can go toward undertaking an investigation of extending

the current portfolio-based composition to consider a scenario of multi-objective Cloud

Services Composition. The challenge in this case is to find an optimisation method that

dynamically makes trade-off between the multiple conflicting QoS objectives in order to

achieve high utility for cloud-based application.

7.3.3 Realistic Implementation on The Cloud

Many vendors have entered the cloud market offering a range os SAAS services. However,

deploying application to a cloud and managing them needs to be done using unique API

for each vendor. This ’lock in’ is seen as a major hurdle when building cloud based

142

application that integrate services from multiple vendors.

This thesis has focused on the fundamentals, future work will look industrial applica-

tion. Further extensions to the model/approach to reflect domain-specific requirements

and tradeoffs. How domainspecific requirements of providers and cloud markets can in-

form the design of middleware than extend on our work. We foresee the creation of a

middleware that enable interoperability across multiple cloud vendors,and the evaluate

it’s performance using real word applications.

143

LIST OF REFERENCES

144

145

146

147

148

149

150

151

152

153

154

155

APPENDIX

A- KAOS GOAL ORIENTED MODEL

156

Figure A1: Refinement of goal Maintain[updated information about concrete services
price and QoS in the market]. As the cloud is dynamic environment, the framework must
track changes of all services registered in the market. This includes attempting to maintain
an updated price and QoS of each service, recording historical performance of QoS and
maintaining an updated evaluation risk of fluctuation and correlation between QoS for
the services. In case of change in one of the services used in a service composition or an
SLA contract expires, a recomposition of services will be triggered.

157

Figure A2: Refinement of goal Achieve[Services selected if concrete services that meet
QoS and budget exist]: Satisfying this goal requires identifying a group of compatible
candidate services, assuming that any services that satisfy the constraints is selected
as candidate and that these services do indeed implement the interface they advertise.
When all services are found, the are reported to the Buyer agent by the MarketRegulatoer
, before they are considered in the diversification process. the diversification process, the
Buyer agent explore all the possible services composition to ensure the optimality of the
selected CSC.

158

Figure A3: Refinement of goal Achieve[Effective diversification of services composition]:
In order to diversify the selection of services composition, the buyer agent need to com-
pliment this process with information regarding the buyer preference and QoS constraint.
Then, buyer preference and constraint are used to search market registry to find a compat-
ible candidate services. When compatible candidate services cannot be found, a warning
is issued to notify the buyer. However, if a group of compatible candidate services exist
in the market, The buyer agent will use portfolio theory to effectively selected a set of
diversified set of services.

159

APPENDIX

B- CLOUDSIM PROTOTYPE DATA

160

Table B1: Number of Users of Each Service in the CloudSim Market in Each of the 30
Runs.

161

Table B2: Response Time In Seconds For Each Service In The Cloudsim Market in Each
of the 30 Runs.

162

