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Abstract

Software design is a significant stage in software development life cycle as it creates a

blueprint for the implementation of the software. Design-errors lead to costly and insufficient

implementation. Hence, it is crucial to provide solutions to discover the design error in early

stage of the system development and solve them. Inspired by various engineering disciplines,

the software community proposed the concept of modelling in order to reduce these costly er-

rors. Modelling provides a platform to create an abstract representation of the software systems

concluding to the birth of various modelling languages such as Unified Modelling Language

(UML), Automata, and Petri Net. Due to the modelling raises the level of abstraction through-

out the analysis and design process, it enables the system discovers to efficiently identify errors.

Since modern systems become more complex, models are often produced part-by-part to

help reduce the complexity of the design. This often results in partial specifications captured in

models focusing on a subset of the system. To produce an overall model of the system, such

partial models must be composed together. Model composition is the process of combining

partial models to create a single coherent model. Due to manual model composition is error-

prone, time-consuming and tedious, it must be replaced by automated model compositions.

Given a set of scenarios, it is crucial to check whether these scenarios are consistent and can

be combined for a better understanding of the overall behaviour. This thesis presents a novel

approach for an automatic composition technique for creating behaviour models, such as a

sequence diagram, from partial specifications captured in multiple sequence diagrams with the

help of constraint solvers such as Alloy and Z3-SMT.

This thesis addresses the model composition problem by introducing a formal technique for

composing behavioural models at the metamodel level through Exact Metamodel Restriction

(EMR). In our approach, a sequence diagram can be completely captured by a set of logical

constraints at the metamodel level. When composing sequence diagrams, we take the union of

the sets of logical constraints for each diagram and additional constraints (composition glue),



which specifies how the models should be glued together to produce the intended composition.

At the metamodel level, this gives us the exact instance of the metamodel for the composition.

Furthermore, we present a formal semantics for composition using Labelled Event Structures

(LES), which guide our model transformation to generate the logical constraints. These, in

turn, can be used by constraint solvers to obtain solutions. In addition, we present a comparative

study between Alloy and Z3-SMT in the composition of the sequence diagrams from scalability

points of view. This study evaluate the performance of both constraint solvers and shows that

Alloy is not as scalable as Z3, and for larger sequence diagrams Z3 is a preferred choice.
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CHAPTER 1

INTRODUCTION

Software engineering is a discipline that provides practical solutions, based on scientific knowl-

edge. It can aid the development of computer software using various methods, languages, tools

and procedures. The main goal of software engineering is the cost-effective production of high-

quality software systems [137]. The qualities of a software system in this respect include at-

tributes such as efficiency, reliability and maintainability.

Software design is a significant stage in any software developments life cycle, as it inter-

prets the system’s requirements and specifications given by various stakeholders into a set of

blueprints for the implementation of the software. It is crucial to provide solutions for revealing

design errors at an early stage of system development and to resolve them. This is because

design errors lead to costly implementation failure, potentially wasting extensive valuable re-

sources, such as time and the cost of fixing the development [83].

Currently, the developments and lifestyle of the modern world increasingly depend on com-

puter software. This pervasiveness has led to the development of more complex systems to

handle a wide variety of situations and standard techniques for system development and engi-

neering. However, the expansion of these systems makes the implementation and maintenance

of such software increasingly complex. Thus, the process of designing complex software is

iterative and it is easy to accidentally overlook design errors. Indeed, the potential for design

errors increases with the ever-expanding complexity of software systems. This is due to the

limitations of the human mind in managing this complexity [131].
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In order to provide a solution for issues surrounding software complexity, the software engi-

neering community has proposed the concept of modelling, which is inspired by mathematical

and engineering disciplines. Modelling is the process of generating an abstract representation

of a software system, which can be presented in a simple and easily understood format, based

on specific modelling languages. A model is normally presented in a graphical or mathematical

format, leading to the birth of various modelling languages.

Unified Modelling Language (UML) [116] is one of the commonest modelling languages

used to specify various static and dynamic aspects of systems. UML is often referred to as the

industry’s ’de facto’ language in the modelling of object-oriented systems [141]. It offers rich

diagrammatic notations, ideal for supporting the modelling of different views of a system.

UML diagrams can be classified into two main categories: structural and behavioural mod-

els. Structural models often focus on particular structural aspects, such as relationships between

packages, showing instance specifications or relationships between classes. On the other hand,

behavioural models usually emphasise typical scenarios to describe their desired functionality.

For example, a class diagram (a structural diagram) is used to model different classes in a sys-

tem, as well as their attributes and operations and how these classes relate to each another. On

the other hand, a sequence diagram (a behavioural diagram) is used to model dynamic inter-

actions, in terms of messages passed between objects in a system. Models in UML are in fact

instances of metamodels. A metamodel includes system elements, their relationships and a set

of rules, to which every model must conform, in order to be considered as a well-defined model.

Metamodels are themselves models, from which models of systems are instantiated [32, 92].

The advantages of software design languages include early assessment of correctness, the

requirement for completeness and technical feasibility; all of which help developers avoid the

failure of a software project. For example, UML models help developers assess technical feasi-

bility by considering the technical requirements of a proposed project. These technical require-

ments are then compared to the technical capability of the organisation concerned. UML models

also help developers ensure that a system will produce data that is valid, against the values ex-

pected (correctness), as well as ensuring that no data is lost in the system design (completeness)
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[33].

Despite the advantages of software modelling in UML, however, there are some issues

which work against the above-mentioned benefits. Among these is the challenge of model

composition, which is the main focus of this thesis.

1.1 Model Composition

As previously established, the process of developing modern systems is gradually becoming

more complex. Due to the increase in complexity of such software development processes,

multiple models are often used to express various scenarios and viewpoints. This often results

in partial specifications captured in models which focus on a subset of a system. However, there

are enormous advantages to be gained from system design undertaken with multiple models.

One of these is the reduced complexity of designs, whereby designers can focus on specific

parts of a system, instead of having to work on a single complex model for an entire system.

Furthermore, with the use of multiple models, each model can focus on the needs of a specific

stakeholder, in order to gain a better understanding of the software system from that point of

view. On the other hand, the advantages of object-oriented design models not only translate

easily into object-oriented languages, but also enable system designers to discover errors more

easily.

Nevertheless, despite the advantages of separating system design during development, it

may be necessary to integrate these models into one, in order to describe the system overview.

The process of integrating different models is called ’Model composition’. Model composition

is the process of combining partial models to create a single coherent model, so as to obtain a

global representation of a system under construction and to reason over the system as a whole,

for the purpose of verification, validation and checking for consistency [34]. Given a set of

scenarios, it is crucial to verify that they are consistent and can be combined for a better under-

standing of overall behaviour.
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1.2 Problem Statement

Model composition is a significant step in the development process, which supports software

engineers in checking the consistency and understanding overall behaviour. However, UML

does not provide support for model composition in its language framework [6]. Instead, various

methods of model composition have been introduced in recent years [10, 11, 20, 56, 67, 70, 73,

90, 113, 129, 135, 152, 157]. These methods propose frameworks for composing structural and

behavioural models.

For example [56, 67, 129, 135] proposes approaches for composing class diagrams, each

of which represents a different way of matching classes, such as by the name of the class [56,

67, 129, 135] or by a signature [56]. On the other hand, [10, 11, 20, 70, 90, 113, 152] present

approaches for composing behavioural models, i.e. sequence diagrams [10, 11, 20, 70, 90] and

state machine diagrams [113, 152]. In fact, the automated composition of structural models

has already been studied [135, 159]. However, the composition of behavioural models is more

complex and requires more research to bridge gaps in the automation of their composition [112].

The problems with current techniques can be characterised as follows: 1) Composing sys-

tems manually, 2) Only considering the concrete aspect of the models, regardless of the seman-

tic aspects, and 3) Introducing algorithms to produce a composite model from smaller models,

originating from partial specifications.

Manual model composition can be done for small models. However, with a large com-

plex model, it is error-prone, time-consuming and tedious [138]. On the other hand, existing

approaches treat models as graphical artefacts (concrete aspects), while largely ignoring their

semantics and this becomes inadequate for later stages, especially in the process of checking for

consistency, which require the model’s semantics. Additionally, the existing composition algo-

rithms designed for composing small behavioural models lack the ability to compose complex

behaviour, such as parallel or alternative behaviour [7]. The present thesis addresses the above

issue in an investigation of the characteristics of behavioural models and through the proposal

of an approach to the composition of a behavioural models.
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1.3 Proposed Solution

The hypothesis of this research is that constraint solvers, such as SAT and SMT solvers can be

used to automatically compose behaviour models. Consequently, this thesis proposes a novel

framework for object-oriented modelling composition that composes UML behaviour models

automatically, using constraint solvers. Although this approach is applicable to the composition

of UML behavioural models, such as Message Sequence Charts (MSC), communication dia-

grams and sequence diagrams, this thesis focuses specifically on the automated composition of

sequence diagrams; one of UML’s most popular behavioural models [116]. Sequence diagrams

can be used to model complex software systems, as they provide a sequential listing of events

and are also able to model parallelism and conflict. Sequence diagrams model system behaviour

through interaction or communication between the various objects of a software system.

In this thesis, a sequence diagrams can be completely described by a set of logical con-

straints on the metamodel. In general, metamodels represent the model elements and their

relationships. Logical statements written in the context of metamodels play a key role in ex-

pressing the well-definedness of model elements, defining model equality, and so on. As the

metamodel represents all compliant models, adding extra logical constraints can restrict the list

of models compliant to a metamodel. Furthermore, it is possible to start from a given sequence

diagram, M , adding exert logical constraint, L={ L1, ...,Lk }, to its metamodel, MM , so that

the combination of MM with additional logical constraints, L, can uniquely determine the

original sequence diagram, M . We refer to the process of identifying such logical constraints

as Exact Metamodel Restriction (EMR).

Logical constraints generated through EMR represent both static (abstract syntax) and se-

mantic (traces of execution) aspects of a sequence diagram. The abstract syntax of a sequence

diagram is defined by its metamodel. However, the dynamic interpretation is not given in the

metamodel of sequence diagram and must be defined separately. Thus, the dynamic interpreta-

tion of the sequence diagram used in EMR employs Labelled Event Structures (LES) [138].

Several possible semantics for sequence diagrams have been defined (see [106] for an
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overview). Labelled Event Structures (LESs) are particularly suitable for describing the traces

of execution in sequence diagrams, which are able to capture the available notions, such as se-

quential, parallel and iterative behaviour. For each of the notions, one of the relations available

over events is used: causality, conflict and concurrent relationship.

EMR can be used in the automated instantiation of models via constraint solvers. Currently,

Alloy [118] and the Z3-SMT solver [42] are widely used for modelling and analysing UML

models, because both are supported by automatic tools that are capable of checking a sufficient

number of constraints to detect conflict and inconsistency. Alloy is a declarative textual mod-

elling language based on first-order relational logic. It is supported by the Alloy analyser tool,

which is an automated constraint solver that transforms Alloy code into Boolean expressions,

thus providing analysis through embedded SAT solvers. On the other hand, Z3 is a state-of-

the-art SMT solver targeted at solving problems arising in software verification and software

analysis. For example, starting from any UML sequence diagram and using a constraint solver,

such as the Alloy model finder for the sequence diagram metamodel and a correct set of con-

straints, Alloy can be used to automatically recreate the original sequence diagram.

Given any two models, M1 and M2 representing two partial specifications (e.g. two se-

quence diagrams) - through EMR, two sets of constraints, L1 and L2 are produced on the meta-

models which uniquely identify them. To compose these models (M1, M2), a composition glue

is required. This glue consists of a set of syntactically logical constraints, describing how the

model elements should be matched. The composition glue matches the name and type of model

elements. If the glue is satisfied and the union of all constraints in the two sets returns true

(conflict free), the solver will display a solution representing the results of the sequence dia-

grams composition. Otherwise, it will return unsat and automatically indicate the conflicting

statements using SAT Core [140], so that the constraints can be redesigned.

In addition, this approach offers another kind of glue, called behavioural composition glue,

which provides the designer with a novel way of influencing the composition obtained. This is

achieved by specifying behaviour that should never occur, or sequences of events that should

occur in a given order. In other words, it allows the designer to prioritise specified behaviour.
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The hypothesis for this approach has been evaluated using example scenarios. These examples

range from full scale case studies to small scenarios taken from the research literature.

1.4 Thesis Overview

Figure 1.1: Overview of the approach

The main objective of this research is the use of Alloy to automatically compose sequence

diagrams. This technique involves three main steps. First, multiple sequence diagrams are au-

tomatically transformed into Alloy models. For each sequence diagram, a unique Alloy model

is produced. If this is solved, it will have as many solutions as there are possible traces of

execution in the original sequence diagram. These traces correspond to those obtained in the

underlying semantics of the sequence diagrams used, namely LES.

Second, the Alloy models are composed to produce a single Alloy model. This will contain

elements from the individual Alloy models of each sequence diagram, in addition to syntacti-

cally logical constraints that specify how the elements are matched and the diagrams should be

composed.

In the third step, we use the composed model obtained, that is the conjunction of the overall
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logical constraints, to formally check if the sequence diagrams can be composed and obtain

the composition of the diagrams automatically, as Figure 1.1 shows. These steps are fully au-

tomated in the present SD2Alloy tool, implemented using Model Driven Architecture (MDA)

techniques [92]. Following composition, a behaviour glue can be added to specify the com-

posed behavioural model. However, during the evaluation of the SD2Alloy tool, a performance

shortcoming was found in Alloy, when composing more complex sequence diagrams, which can

take hours to yield a result. To counteract this weakness, an alternative method of composition

using Z3-SMT solver was proposed here, which is a state-of-the-art constraint solver.

In this technique, a number of transformation rules were defined to map the elements of the

sequence diagrams and LES metamodels to Z3 metamodels. Using this method, every sequence

diagram and its reduced version of the LES model (referred to as LES’) are automatically trans-

formed into Z3, which is an instance of a Z3 metamodel. In the LES’ model, any events that

have not been directly affected by the model behaviour, such as the beginning and end of an

CombinedFragment or the initial event of the lifeline to reduce the size of the model, were

eliminated. This transformation produced a unique Z3 model, with one solution if solved. This

solution was an isomorphic LES’ model.

Finally, sets of logical constraints were added, representing the composition glue, matching

the common elements of the input models. Similar to Alloy, Z3 was used in this work to

formally check if the sequence diagrams can be composed and obtain the composition of the

diagrams automatically. Next, a comparative study was conducted between the two methods

from the point of view of performance, thus demonstrating that Z3 can resolve the shortcomings

of Alloy.

1.5 Contributions of the Thesis

The main contributions of this thesis can be summarised as follows.

• Introducing semantics for sequence diagram composition, using LES.

• A sequence diagram composition framework using Alloy was developed and investigated
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focusing on the following points:

1. A subset of the sequence diagram metamodel, expressive enough to model basic

components of the sequence diagram, such as lifelines, messages, event occurrence,

CombinedFragment and interactionOperands.

2. The transformation rules from the sequence diagram metamodel elements into the

Alloy metamodel elements were defined.

3. Two kinds of composition glue were defined: Syntactic glue that matches the ele-

ments properties, i.e., name, type and the behaviour glue controlling the behaviour

of the composed models.

• The transformation and composition described in this thesis were implemented in a tool

called SD2Alloy, which facilitates the fully automated transformation and composition

of UML sequence diagrams. SD2Alloy inherits analytical capabilities of Alloy Analyzer

(i.e. it provides support for simulation and the ability to debug the conflict between logical

constraints).

• A sequence diagram composition framework using Z3 was developed taking into account

the following points:

1. Transformation rules from the sequence diagrams and LES metamodel elements to

Z3 metamodel elements were defined.

2. Composition glue were defined to compose sequence diagrams.

3. A case study was used to evaluate and demonstrate the feasibility of the approach

presented.

• A comparison study between Alloy Z3 from the point of view of performance was pre-

sented.
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1.6 Publications

Different aspects of this work have been published during the course of the PhD candidature,

resulting in a number of research papers. This thesis should be considered as the definitive

reference for the details and ideas presented in the following publications.

• Conference papers

1. Mohammed Alwanain, Behzad Bordbar, and Juliana Bowles. ’Automated compo-

sition of sequence diagrams via Alloy’. 2nd International Conference on Model-

Driven Engineering and Software Development (MODELSWARD), 2014. IEEE.

2. Juliana Bowles, Behzad Bordbar, and Mohammed Alwanain. ’A Logical Approach

for Behavioural Composition of Scenario-Based Models’. The 17th International

Conference on Formal Engineering Methods (ICFEM 2015). Springer.

3. Juliana Bowles, Behzad Bordbar, and Mohammed Alwanain. ’Weaving True-Concurrent

Aspects using Constraint Solvers’. 16th International Conference on Application

of Concurrency to System Design 2016(ACSD). IEEE.

• Book Chapter

Juliana Bowles, Mohammed Alwanain, Behzad Bordbar, and Yi Chen. ’Matching and

Merging Scenarios Automatically with Alloy’. In Model-Driven Engineering and Soft-

ware Development (pp. 100-116). Springer International Publishing.
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1.7 Structure of the Thesis

This thesis is comprised of seven chapters including this introduction.

Chapter 2 begins with an overview of some of the basic concepts related to UML mod-

elling, e.g. the interaction semantics, model composition and technologies used to support

composition, especially constraint solvers, such as Alloy and Z3. This is followed by a review

that explores current approaches for model composition. The review presents a number of dif-

ferent frameworks used to compose models, as well as the challenges, benefits and trade-offs

which must be considered when composing a model. From this background, current approaches

using manual composition or algorithms are revealed. Most of these methods involve the in-

troduction of algorithms to produce a composite model from smaller models, originating from

partial specifications. The objective of this background is to map out the main activities used

to support the composition of dynamic models and identify the gaps in current approaches. It

is also revealed by the respective background that the approaches reviewed fail to fully address

issues surrounding the automated composition of dynamic models.

In Chapter 3, the methodology used for model composition is demonstrated, especially the

technique referred to here as Exact Metamodel Restrictions (EMR), which describes mapping

between the dynamic models into the logical constraints. This is followed by composition

semantics, which lead the composition to produce the expected results. In addition, the syntactic

and behaviour glue used for model composition is described.

In Chapter 4, sequence diagram composition via Alloy is illustrated. This involves a set of

transformation rules that map the sequence diagram elements to Alloy. Logical statements of

Alloy are produced through EMR. In addition, this chapter demonstrates the process of com-

posing sequence diagrams via Alloy. This involves the generation of logical statements that

represent syntactic and behaviour glue.

In Chapter 5, an alternative composition approach using Z3 is presented. The aim of this

approach is to resolve the performance issues suffered by Alloy and the use of advantages of Z3

to represent the entire model in one solution. This chapter describes the composition performed
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at the level of both the sequence diagram and LES. Moreover, it consists of three main sections.

The first demonstrates the mapping between the sequence diagram and LES to Z3; the second

demonstrates the composition mechanism and the third evaluates the approach using a case

study.

Chapter 6 presents a comparison study between Alloy and Z3, from the perspective of

performance.

Chapter 7 then concludes the thesis and points to possible future research avenues.
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CHAPTER 2

BACKGROUND MATERIAL AND RELATED
WORK

2.1 Overview

This chapter presents an overview of the relevant work and preliminary information for the

languages and technologies used throughout this thesis, including Unified Modelling Lan-

guage (UML), Labelled Event Structure (LES), Alloy, Z3-SMT, and Model Driven Architecture

(MDA).

2.2 Models and Metamodels

The primary aim of this thesis is model composition. However, it is first necessary to define the

terms, ’system model’ and ’metamodel’. The Object Management Group (OMG) defines the

term, ’model’ as follows:

”A model is a representation of a part of the function, structure and/or behavior
of a system. A model is a specification that is said to be formal when it is based
on a language that has a well-defined form (”syntax”), meaning (”semantics”), and
possibly rules of analysis, inference, or proof for its constructs. The syntax may
be graphical or textual. The semantics might be defined, more or less formally,
in terms of things observed in the world being described (e.g., message sends and
replies, object states and state changes, etc.), or by translating higher-level language
constructs into other constructs that have a well-defined meaning.” [92]
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The construction of models requires a modelling language capable of defining both struc-

ture and semantics. These aspects are defined by a representation known as a metamodel, i.e.

a model at a higher level of abstraction that defines the modelling language of a specific mode

[32]. The relationship between a model and its metamodel is as follows: a model only contains

concepts from the metamodel and satisfies the constraints of that metamodel, while a meta-

model can be understood as a collection of models. Furthermore, a metamodel is generally

a structural model presented as a UML class diagram; frequently with additional constraints

being given in OCL, i.e. UML’s constraint language. A metamodel includes system elements,

their relationships and a set of rules to which every model must conform in order to be consid-

ered well-defined. Every element in the model is an instance of a metamodel element and every

element in the metamodel categorises the model elements (Figure 2.1). For example, let us sup-

pose a modelling language, L has a metamodel, ML. ML is therefore a model that describes the

constructs of the language, L and every model written in L must be instance of the metamodel

ML.

Figure 2.1: The OMG four-layer hierarchy [65]

However, since a metamodel is yet another model, it also has its own metamodel, which
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is moreover required to conform. This is called the meta-meta-model (MOF) [115]. MOFs

are reflexive (i.e. they define their own elements, structure and semantics), in order to avoid

multiplying the levels of abstraction. To clarify the relationship between the model, metamodel

and meta-meta-model, Figure 2.2 demonstrates an example adopted from [75]. In Figure 2.2, at

model level (M1), the model Person conforms to a metamodel defined at metamodel level (M2).

This means (the conformance here) that the model defined in the lower level is an instance of

the model defined in the level above. Consequently, the Person model defined at model level

(M1) is an instance of its metamodel defined at level (M2). For example, ’Person’ is an instance

of Class, and ’age’ is an instance of Attribute.

Figure 2.2: An example of model and its metamodel [75]

In the following section, one of the commonest modelling languages is described, namely

UML.
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2.3 Unified Modelling Language

Unified Modelling Language (UML) [116] is a modelling language defined by the Object Man-

agement Group (OMG) [117] and is widely accepted as the ”de facto” standard for software

modelling. UML offers various diagrammatic notations to aid in the modelling of different

views of a system. The majority of recently created large systems have been designed using

UML. According to Pender [128], approximately 70 % of object-oriented software projects

have been designed using UML. Moreover, Miles et al. [107] state six major advantages of

using UML:

1. It is a well-defined language: All elements used in UML have a strongly defined meaning

explained in [116], which offers clear guidance to illustrate how UML can be used to

model different parts of systems.

2. Concise: The notations used in the language are simple and easy.

3. Comprehensive: UML describes different aspects of a system: static (structure) and dy-

namic (behaviour). This is due to UML being built as a collection of languages.

4. Scalable: UML is implemented to be strong enough to model large complex systems. It

is also flexible to model smaller-scaled systems.

5. Built on lesson-learned: UML is developed on the best practices in previous systems’

modelling methods. It is also constantly improving.

6. UML is developed by open standards with active contributions from vendors and aca-

demics all over the world. These standards ensure that UML promotes interoperability

and discourages a vendor monopoly.

UML consists of two groups of diagrams: structural diagrams and behavioural diagrams.

Structural diagrams focus on the architectural construct of the system, such as the display of re-

lationships between classes or instance specifications. On the other hand, behavioural diagrams

usually emphasise typical scenarios to describe the desired functionality of the system [94].
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Figure 2.3: The classification of UML diagrams

Figure 2.3 classifies six structural diagrams and seven behavioural diagrams, four of which

are further classified as interaction diagrams. Table 2.1 lists and describes the different types of

UML diagrams. Table 2.1: UML diagrams

UML diagram Description

Class Diagram (page

21 of [116])

A class diagram is one of the UML static diagrams that depict

the structure of the system. The representation of the system

involves classes and the relationships between them. Classes in

this diagram are represented as a box shape with three fields. The

upper field contains the class name, while the middle field holds

class attributes. Finally, the bottom field consists of the methods

that are associated with the class.
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Object Diagram (page

21 of [116])

An object diagram is a graph of instance, which consists of ob-

jects and data values. It is an instance of a class diagram, which

is used to represent a complete or partial view of a system mod-

elled at a specific time. Object diagrams are used to show exam-

ples of the data’s structure.

Component Diagram

(page 145 of [116])

A component diagram aims to depict the relation between sys-

tem components. These diagrams are used to illustrate the struc-

ture of arbitrarily complex systems.

Composite Structure

Diagram (page 167 of

[116])

One of the static diagrams is a Composite Structure Diagram. It

shows both the collaboration between the classes, including the

internal structure of classes. This diagram might include a de-

scription of the parts (roles) of various instances, the ports, that

is, points of connections between the classes and the connectors

that are used to bind the entities together.

Deployment Diagram

(page 199 of [116])

A deployment diagram is also a static diagram used for mod-

elling the physical deployment of artefacts. In UML, artefacts

can be a model file, a source file, a table, or even a Word docu-

ment, among others. For instance, to describe a particular web-

site, a deployment diagram can illustrate the necessary hardware

and software components and also how the different pieces are

connected.
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Package Diagram

(page 21 of [116])

Finally, a package diagram illustrates the dependencies between

packages in a system model. It is normally used to show the ar-

chitecture of a system using layers and communication between

them.

Use Case Diagram

(page 597 of [116])

A use case diagram is one of the behavioural diagrams that rep-

resent the overview of functionality in a system. A use case dia-

gram consists of actors and the dependencies between use cases.

A use case diagram is often applied to capture the requirements

of a system.

Activity Diagram

(page 303 of [116])

An activity diagram is aimed at representing the workflow of

system activities. It models a different kind of behaviour, such

as choice and parallel behaviour.

Sequence Diagram

(page 473 of [116])

A sequence diagram is a type of interaction diagram used to de-

pict the communication between various object instances in a

system. Sequence diagrams are capable of modelling different

kinds of behaviour, such as a sequence of events in a system,

parallelism, loops and alternatives (choice).

State Machine Dia-

gram (page 535 of

[116])

A state machine diagram is an extension of state charts [76].

There are two kinds of state machines: behavioural and protocol.

Behavioural state machines are used to specify the behaviour of

various model elements, while a protocol state machine is used

to express usage protocols.
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Communication Dia-

gram (page 473 of

[116])

A communication diagram is a type of interaction diagram that

is simplified from the collaboration diagram found in previous

versions of UML. It is commonly regarded as a combination of

class diagrams, sequence diagrams and ’use case’ diagrams, as

it is capable of modelling both static structures and dynamic be-

haviours.

Interaction Overview

Diagram (page 473 of

[116])

An interaction overview diagram is similar to an activity dia-

gram in terms of modelling the control flow in a system using

types of interaction diagram (communication diagrams, inter-

action overview diagrams, sequence diagrams and timing dia-

grams).

Timing Diagram

(page 473 of [116])

A timing diagram is a type of behavioural diagram that focuses

on timing properties. The horizontal axis of the timing diagram

represents time, increasing from left to right, whereas the vertical

axis represents the object instances.

Table 2.1 describes the various types of UML diagrams. However, with reference to the

highlighted element in Figure 2.3, the next section provides a more detailed view of a specific

diagram type that will be used throughout this thesis: sequence diagrams.

2.3.1 Sequence Diagrams

The sequence diagram is an interaction diagram adopted from the Message Sequence Chart

(MSC) [106]. Sequence diagrams are described in UMLs superstructure specification [116]

using both a concrete and abstract syntax. The concrete syntax consists of the graphical notation

for a sequence diagram, whereas the abstract syntax is given by a metamodel, which defines all

the elements of a sequence diagram model and their possible relationships. An instance of the
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metamodel corresponds to a concrete sequence diagram.

2.3.1.1 Concrete Syntax

An interaction captured by a sequence diagram involves a group of objects, which exchange

messages between each other to achieve a particular goal. Each object has a vertical dashed line

called a lifeline showing the existence of the object at a particular time.

Figure 2.4: Example of a sequence diagram

A message is a communication between two objects shown as an arrow connecting the

respective lifelines: that is, the underlying send and receive events of the message. An in-

teraction between several objects consists of one or more messages but may be given further

structure through so-called CombinedFragment (Figure 2.4). There are several kinds of Com-

binedFragments including seq (sequential behaviour), alt (alternative behaviour), par (paral-

lel behaviour), neg (forbidden behaviour), assert (mandatory behaviour), loop (iterative be-

haviour), and so on [116]. Depending on the operator used, a CombinedFragment consists

of one or more InteractionOperands. In the case of the alt CombinedFragment, each Interac-

tionOperand describes a choice of behaviour. Only one of the alternative InteractionOperands

is executed if the guard expression (if present) evaluates it as ’true’. If more than one Inter-

actionOperand has a guard that is evaluated as true, one of the InteractionOperands is selected

nondeterministically for execution. In the case of the par CombinedFragment, there is a parallel
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merge between the behaviours of the InteractionOperands. The event occurrences of the differ-

ent InteractionOperands can be interleaved in any way as long as the ordering imposed by each

InteractionOperand as such is preserved. Finally, interaction fragments can be nested produc-

ing expressive and complex scenarios of execution. Consider the following sequence diagrams,

which show a slightly adapted example from [70]. Figure. 2.5 (left) reveals an interaction

with two consecutive CombinedFragments (a parallel followed by an alternative Combined-

Fragment), while Figure 2.5 (right) shows a different interaction involving the same instances

and a few additional messages. In both diagrams, all messages are sent asynchronously between

objects a and b (only new messages are sent by b to a ).

l9

alt

l0

l1

l2

l3

l4

l5

l6

l7

l8

par

sd 1
a:A b:B

m1

i

m2

j

m3

l4

sd 2
a:A b:B

m5

l0

l6

l7

l8

m1

l2
new

l3

l1

m2

l5
m4alt

Figure 2.5: Two sequence diagrams with fragments involving the same object instances

Points along the lifeline are called locations (terminology borrowed from LSCs [77]) and

denote the occurrence of events. The order of locations along a lifeline is significant, denoting,

in general, the order in which the corresponding events occur. The importance of locations

is described in section 2.3.2.1. In particular, the distinction between the syntactic notions of

a location on a sequence diagram from its semantic counterpart of an event will be clarified.

In Figure 2.5 (left), messages m1 and i are sent/received in parallel followed by message j

or message m2 (alternative) and further followed by message m3 (irrespective of the previous

alternative chosen). In Figure 2.5 (right), three messages are sent/received before reaching an

alternative CombinedFragment and choosing between messages m4 or m5. These diagrams
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will be used throughout this thesis as a running example to demonstrate the transformation and

composition of sequence diagrams automatically via constraint solvers.

2.3.1.2 Abstract Syntax

A metamodel can be understood as a model of a collection of models. A metamodel is usually

a structural model given as a UML class diagram often with additional constraints given in

UML’s constraint language OCL. Metamodels can be built for both static and dynamic models

but focus only on the structural aspects of the model. The metamodel of a sequence diagram,

also known as an interaction, shows the structure of such a diagram in terms of the model

elements present and their relationships. A dynamic interpretation is not given in the metamodel

and instead must be defined separately, using the semantic methods available, such as LES

[138], Labelled Transition System (LTS) [15, 147], Petri Nets [110] and so on. The UML

superstructure specification [116] defines the interaction’s metamodel a package which shows

different elements and their relationships separately, using multiple diagrams. To make the

presentation simpler, a subset of the metamodel for interactions has been used (Figure 2.6). The

main notions required for the present thesis have hereby been captured.

InteractionConstraint

InteractionOperand

interactionOperator:InteractionOperatorKind

CombinedFragment

GeneralOrdering

Message
+events

{ordered}

+covered
* 1

+sendEvent

* *

*

+guard

*

+enclosingOperand

0..1

1

+operand1..*

0..1

0..1

*

0..1

*

+next 1
*

*

+covered

+coveredBy
+fragment

0..1
+enclosingInteraction

0..10..1
0..1 0..1

+receiveEvent

11

InteractionFragment

OccurrenceSpecification Lifeline

Interaction

MessageEnd

NamedElement

name: String

Figure 2.6: The Interactions Metamodel[116]

An Interaction contains zero or more Lifelines, Messages and InteractionFrag

23



ments. A Message usually has a sendEvent MessageEnd and a receiveEvent Mes-

sageEnd associated with it. In this thesis, we assume that a MessageEnd (an abstract class) is al-

ways a special kind of OccurrenceSpecification called MessageOccurrenceSpecifi

cation (not shown). It is possible for a Message to have been found (or similarly, lost), in

which case it does not have a sendEvent or a receiveEvent . Moreover, a lost message can

be described as a message where the sendEvent is known, but there is no receiveEvent. It

is interpreted as if the message never reached its destination. A found Message is a message

where the receiveEvent is known, but there is no sendEvent. It is interpreted as if the

origin of the message is outside the scope of the description.

Lifeline has attributes for the name and class associated with the object that is de-

noted by the lifeline. An InteractionFragment is an abstract class, which is further

specialised into an OccurrenceSpecification, an Interaction, aCombinedFragment

or an InteractionOperand. The locations mentioned in the LES section correspond to

OccurrenceSpecifications. These are the ordered events that cover a Lifeline. A

GeneralOrdering represents a binary relation between two OccurrenceSpecifications.

The metamodel contains relations before and after, but in this thesis, both relations are mod-

elled as a relation next. A CombinedFragment has an attribute InteractionOperator of

enumeration type InteractionOperatorKind (par, alt, seq, loop, assert, and

so on), and contains one or more interactionOperands. An InteractionOperand may

have a guard, which is an InteractionConstraint. An InteractionOp erand encloses

either a set of events (OccurrenceSpecifications), an Interaction or another Combined

Fragment, indicating nesting of fragments. An instance of the metamodel represents a concrete

interaction or sequence diagram. The interaction from Figure 2.5-sd1 can be captured us-

ing the abstract syntax as an instance of the metamodel, as partially depicted in Figure 2.7-sd1.
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Figure 2.7: Extract of the abstract syntax of sd1

A full abstract syntax of sd1 (Figure 2.5-sd1) is very large. Therefore, only part of it is

shown in Figure 2.7, which illustrates how the abstract syntax of the sequence diagram is mod-

elled. This model shows that the Interaction is a container for all other elements. The mes-

sages sd1 i, sd1 m1 are linked to their send MessageOccurrenceSpecifications. Both

MessageOccurrenceSpecifications are covered by lifeline L1. The lifeline L1 are con-

nected to the CombinedFragment called sd1 cf1 with InteractionOperator=par whereas

the CombinedFragment contains two interactionOperands sd1 cf1 op1 and sd1 cf1 op2with

no guards were considered. Both interactionOperands contained one message; more specifi-

cally, sd1 cf1 op1 contains message sd1 i, and sd1 cf1 op2 contains message sd1 m1.

2.3.2 Interaction Semantics

According to Micskei and Waeselynck [106], the sequence diagram semantics described in

the UML superstructure provide only a basic idea of how the models work. However, these
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semantics are ambiguous and incomplete; therefore, formal semantics need to be used to be

able to understand how sequence diagrams are interpreted in practice.

Formal semantics theory support makes it possible to verify system designs. A complete

definition of a formal modelling language would consist of a description of its well-defined syn-

tax and semantics that enhance the readability and the expressiveness of the language. There is

an increasing acceptance that formal methods form an essential part of the design of any reliable

complex software system [106]. This is due to formal methods having the potential to illustrate

ambiguities and design faults in order to avoid associated system failures. In particular, the

formal model of a system can be used to prove system properties, such as performance, reach-

ability, consistency and correctness mathematically. Moreover, formal models and methods

make software designs more tangible by allowing rigorous validation and verification. Valida-

tion provides assurance that the design specifies the right system, whereas verification ensures

that the end system satisfies the specifications [105]. Currently, many semantics are proposed

for UML sequence diagrams. In this section, 10 approaches have been selected, listed in Ta-

ble 2.2. In fact, there are more than 10 approaches proposing semantics for UML sequence

diagrams but it would be impossible to include all of them. The 10 approaches selected are

common semantics of the sequence diagrams that have influenced most of the others.

Störrle [144, 145] was one of the first to propose sequence diagram semantics in this area.

His first approach [145] proposed semantics for plain sequence diagrams without Combined-

Fragments and later extended to cover semantics of most CombinedFragment operators, such

as Alt, par, opt and so on. However, Micskei and Waeselynck [106] argue that there are some

issues surrounding these. One of them is that the semantics focus more on CombinedFrag-

ments, whereas some of the ordering problems of basic interactions are not addressed. A simi-

lar approach is defined by Cengarle and Knapp [26, 27]. These semantics mainly focus on the

interpretations of positive and negative traces in the sequence diagrams.

Harel and Maoz [78] argue that the operators assert and neg are insufficient for specifying

forbidden behaviours. Thus, they propose a Modal Sequence Diagrams (MSD), this being an

extension to sequence diagram, which adapts Live Sequence Charts (LSC) to the notation of
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Table 2.2: Selected semantics

Name Reference

Küster-Filipe [54]

Knapp & Wuttke [93]

Cavarra & Filipe [24, 25]

Störrle [144, 145]

Harel & Maoz [78]

Fernandes et al. [53]

Hammal [74]

Eichner et al. [49]

STAIRS
[79, 80, 102,
136]

Cengarle & Knapp [26, 27]

UML. LSC extends MSC by allowing the elements of a Sequence Diagram to be specified as

either mandatory (hot), or possible (cold) scenarios. Due to the sequence diagram not having

a clear definition of the modalities of the diagrams, they used the model, LSC to Sequence

Diagrams. However, there are some issues with these semantics. For example, the transition of

the automaton is labelled only with the message name, but does not include information in the

lifelines the message is sent or received from.

Furthermore, Steps to Analyze Interactions with Refinement Semantics (STAIRS) [79, 80,

102, 136] represent trace-based semantics for sequence diagrams. These semantics focus on

a precise definition of refinement for Interactions. This approach is very similar to the one

presented Störrle in [145].

Cavarra and Filipe [24, 25] also introduce semantics for sequence diagrams inspired by LSC.

These semantics, using OCL, express ’liveness’ properties in sequence diagrams, based on the

results of LSC. This approach resembles the semantics proposed by Harel and Maoz [78], in

27



terms of specifying the mandatory and possible scenarios which referred to in this approach as

’may’ and ’must’ behaviour.

Further semantics are also presented by Knapp and Wuttke [93]. These authors used Inter-

action automata to represent traces of executions. Furthermore, they define some restrictions to

how the problems of sequence diagrams can be overcome, such as replacing neg with a binary

logic variant not is restricted to basic interactions. Moreover, these semantics do not clearly

represent an interpretation of alternative CombinedFragment.

Fernandes et al. [53], propose a translation that produces coloured Petri Nets from UML

use cases and sequence diagrams. This approach considers the behaviour of weak sequence

diagrams, in addition to CombinedFragment operators (par, alt, opt, loop). Similarly, Eichner

et al. [49] propose semantics for sequence diagrams based on coloured, high level Petri Nets.

These semantics focus on basic constructs of the sequence diagrams, such as the start of a

lifeline or sending and receiving a message.

Hammal [74] defines formal semantics for sequence diagrams, using a branching time struc-

ture rather than traces. This model (a lattice-like graph) represents traces of all sequence dia-

grams components, together with possible execution and can be directly unfolded into a transi-

tion system that captures the intended behaviour. It also proposes a method of extracting time

properties from sequence diagrams and adding them into the graph for performance analysis.

Finally Küster-Filipe [54] present true-concurrent semantics, based on Labelled Event Struc-

tures (LESs). LESs are highly suitable for describing how traces of execution in sequence

diagrams are able to capture the available notions, such as sequential, parallel and iterative

behaviour. Moreover, the LES model takes into account the possible nesting of CombinedFrag-

ments and gives a very clear definition of the predecessors of each event. In the present thesis,

the semantics of sequence diagrams are undertaken via an LES. An LES is chosen due to its

simplicity for modelling traces of execution. Moreover, it supports the important operators of

the sequence diagram forming the focus of this thesis. This LES are explained in greater depth

in the following section.
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2.3.2.1 Labelled Event Structures (LES)

Several possible semantics for sequence diagrams have been defined, as mentioned in the pre-

vious section. In the present thesis, the semantics defined in [54] are used, which introduces a

very simple and intuitive behavioural model to capture interactions and contains the only true

concurrent semantics available for sequence diagrams.

Prime event structures [138], or ’event structures’ for short, describe distributed computations

as event occurrences together with binary relations for expressing causal dependency (called

causality) and nondeterminism (termed conflict). The causality relation implies (partial) order

among event occurrences, while the conflict relation expresses how the occurrence of certain

events excludes the occurrence of others. From the two relations defined for a set of events, a

further relation is derived: the concurrency relation co. Two events are considered concurrent

if and only if they are completely unrelated (i.e. neither related by causality nor by conflict).

Please note that the following definitions (1, 2, 3 and 4) have been borrowed from the semantic

presented in [54].

Definition 1. An event structure is a triple E = (Ev,→∗,#) where Ev is a set of events and

→∗,# ⊆ Ev × Ev are binary relations called causality and conflict, respectively. Causality

→∗ is a partial order. Conflict # is symmetric and irreflexive, and propagates over causality,

i.e., e#e
′ →∗ e′′ ⇒ e#e

′′
for all e, e

′
, e

′′ ∈ Ev. Two events e, e
′ ∈ Ev are concurrent, e co e′

iff ¬(e→∗ e′ ∨ e′ →∗ e ∨ e#e′).

Definition 2. An event structure E = (Ev,→∗,#) is a discrete event structure iff for every

e ∈ Ev, local configuration of e, ↓ e = {en|en →∗ e} is finite.

An event structure is said to be discrete if the set of previous occurrences of an event is finite,

i.e., there are always only a limited number of causally related predecessors to an event, known

as the local configuration of the event (written ↓ e). A further motivation for this constraint is

given by the fact that every execution has a starting point or configuration.

Immediate causality refers to events such as e1, e2 ∈ Ev that are causal and have no other

events occurring between them: if e1 →∗ e2 has an immediate causality relationship, then e1
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is the immediate predecessor of e2, and e2 is the immediate successor of e1. Alternatively, this

relation could also be written as e1 → e2.

2.3.2.2 Translating UML Sequence Diagrams into Labelled Event Structures

This section illustrates the translation of sequence diagrams into an LES, defined in [54].

Definition 3. A sequence diagram can be represented as a tuple SD = (I, Loc, Locini,Mes, E),

where:

• I is a set of instance identifiers corresponding to the lifeline in the diagram.

• Loc is the set of locations.

• Locini is the set of initial locations such that Locini ⊆ Loc.

• Mes is a set of message labels.

• E is a set of events where the triple (ei,m, ej) represents a message m sent from event ei

to ej .

Definition 4. Let E = (Ev,→∗,#) be an event structure and L be an arbitrary set. A labelling

function for E is a total function µ : Ev → L for mapping each event into an element of the set

L.

The labelling function is necessary to establish a connection between the semantic model

(event structure) and the syntactic model (here a sequence diagram). The labelling function

used in this case is a partial function. Intuitively, each location marked along a lifeline of an

object in a sequence diagram corresponds to at least one (and possibly more) event(s) in the

LES.

The set of labels used could be the set of locations in a sequence diagram, but usually involves

more concrete information on what the location represents: the initialisation of an object, send-

ing/receiving a message, beginning/ending an interaction fragment, etc.
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Figure 2.8: Event structure for object a of sd1

Consider the example in Figure 2.8. This figure illustrates the mapping between the se-

quence diagram and LES. The LES model shown in Figure 2.8 (right) has a direct correspon-

dence to the locations of lifeline, a. Locations l0 to l7 correspond to events e0 to e7. Location

l8 is associated with events e81 and e82. The graphical representation of the event structure Ea

shows immediate causality between events (e.g. e0→ e1) and direct conflict (e.g. e6#e7). The

general causality relation can be inferred (e.g. e0 →∗ e6). By conflict propagation, e6#e82 is

also implicated. Unrelated events are concurrent, such as events e2 co e3 where e2 corresponds

to sending i and e3 to sending m1. Intuitively, events e1 and e5 denote the beginning of the

parallel and alternative fragments, respectively. Events e81 and e82 both correspond to location

l8 and indicate the end of the alternative fragment. These events must be in conflict because

they represent different ways to reach the location. Note that there cannot be one end event in

this case because conflict propagates over causality and would lead to an event in conflict with

itself and hence an invalid event structure (conflict is irreflexive and propagates over causality).

In order to represent the LES of the complete sequence diagram, the semantics of LES were

extended. Let I denote the set of objects involved in the interaction described by sequence

diagram SD and Mes the set of asynchronous messages exchanged. Let the set of labels L be

given by L = {(m, s), (m, r)|m ∈ Mes}. An event with the label (m, s) corresponds to the

sending of message m, whereas an event with the label (m, r) indicates the receipt of message

m.
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Definition 5. A model MSD = (E, µ) for a sequence diagram SD is obtained by composition

of the models Ma = (Ea, µa) of each lifeline instance a ∈ I . In MSD, the set of events is given

by Ev =
⋃

a∈I Eva, and event labels are as before, that is, µ(e) = µa(e) for e ∈ Eva. Let m

be a message sent between lifeline a and lifeline b, and let E1 ⊆ Eva with µa(e1) = (m, s) for

all e1 ∈ E1, and E2 ⊆ Evb with µb(e2) = (m, r) for all e2 ∈ E2. Then necessarily |E1| = |E2|

and for each e1 ∈ E1 there is a unique e2 ∈ E2 for each e1 such that e1 → e2 and local conflict

#a propagates over→ to obtain conflict # in M .

(j,s) #
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g2 g3

g4

g5

g6 g7

g81 g82

g91 g92
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Figure 2.9: Model for sequence diagram sd1.

The overall event structure model for the diagram from Figure 2.5 is given in Figure 2.9.

Conflict propagation is not shown explicitly but is as expected and propagates over the new

causality relations gained from communication. For example, since e7 → g7 by conflict propa-

gation we also have e6#g7.

Definition 6. LetMSD = (E, µ) be a model for sequence diagram SD whereE = (Ev,→∗,#)

is an event structure. A subset of events C ⊆ Ev is a configuration in E iff it is both 1) conflict

free: for all e, e′ ∈ C,¬(e#e′) and 2) downwards closed: for any e ∈ C and e′ ∈ Ev, if

e′ →∗ e then e′ ∈ C. A maximal configuration denotes a trace.

For example, the following is a trace for Figure 2.9: C = {e0, e1, e2, e3, e4, e5, e7, e82, e92, g0,
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g1, g2, g3, g4, g5, g7, g82, g92} which denotes the occurrence of m2 and not j. More details on the

semantics of sequence diagrams using LES can be found in [54].

2.4 Model Composition

Modern systems play a significant role in many aspects of human life, such as in health, eco-

nomics, finance, education, communications and transportation. However, designing and im-

plementing such systems is a very complex process, requiring engineers to make use of mul-

tiple models for expressing various scenarios and viewpoints. However, this separation helps

to simplify the process of designing, managing and improving these systems. Nevertheless,

this separation also requires an integration or recomposition step, in order to obtain a global

representation of a system under construction and to reason about the system as a whole for the

purpose of verification, validation and consistency [34]. For these reasons, model composition

has become a significant and challenging step in the process of modern system development.

As stated earlier, manual composition can be carried out for a small system, but it is very

difficult with larger tasks, because it is error-prone and time-consuming. As a result, automated

model composition is vital to help designers recombine models into consistent views of systems

under design/development. In recent years, automated model integration has received consider-

able attention [11, 20, 22, 57, 73, 91, 100, 133, 133, 135, 151, 154, 157, 159]. Current studies

show that there are three operators used for model integration (merge, weave and composition),

which are often mixed up in the literature [29, 34].

Model merge usually refers to building a global view of a set of overlapping models that

consist of the same or related elements. The same elements indicate that the overlapping ele-

ments in the input models have the same structure and semantics. On the other hand, the related

elements mean that the set of elements have a similar strategy but might be different in their

structure or semantics. The overlapping elements are used in model merging techniques as a

join point to combine the input models by unifying these overlaps [112].

In addition to the above, the model weaving used in Aspect-Oriented Modelling (AOM)
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[57] to compose a set of cross cutting concern (i.e. aspects) into the base model. Moreover,

AOM provides mechanisms for separating crosscutting concerns in design models, and an in-

tended change can be captured as an aspect. The original model is the base model, whereas

the (possibly new) functionality that is required in several places is the aspect. Aspects are

also particularly useful for dealing with non-functional properties and dependability concerns

(including security, reliability, availability, safety and so on), which usually impact the system

as a whole [133]. It is important to understand what an aspect will do and where and when it

will affect the base model. Many AOM techniques use the term advice for the action an aspect

will take and pointcut to specify more general rules of where to apply an advice. To analyse

the effect of an aspect on a base model, the integrated system model must also be considered.

This can be obtained by weaving the base and advice models in accordance to a pointcut.

Finally, model composition focuses on all activities that enable the building of a system

from the union of several independent and dependent software artefacts. The term composition

comprises the usual terms of merging, weaving and union, as well as any activity whose intent

is to create software from reusable parts of other systems [34]. Furthermore, model composi-

tion is the process of manipulating model elements from at least two source models, in order

to produce a unified representation that may be serialised or only made available at run-time.

In this thesis, the term ’composition’ will be used as a default term for model integration, as

it comprises all operators. However, a specific term will sometimes be used for a special case.

For example, the term ’weaving’ will refer to the composition of aspects.

Generally, in order to compose the software models, two fundamental conditions must be satis-

fied:

• Matching elements must indicate correspondence between equivalent elements of the

source. The purpose of matching is to uncover how two models correspond to each other.

Moreover, the process of matching defines matching criteria that identify common ele-

ments of the input models. The matching criteria are based on identifying properties of

the source model elements and comparing them, such as matching the element names.

• The composing of equivalent elements identified earlier to produce a composed version
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of the models.

These conditions are essential in the model composition process, which must be considered

in all composition approaches, in order to be able to generate a single coherent model that

will represent a global view of the system. Model composition techniques can be divided into

two aspects: composition techniques for static models and composition techniques for dynamic

models.

2.4.1 Static Model Composition

The problem of static models composition has been studied in many domains, such as the

databases entity diagram [132], class diagram composition [13, 56, 67, 98, 129, 135, 158, 159],

and various other system varieties. In static composition, a common matching criterion be-

tween the model elements is based on their names. For example, if two classes have the same

name, they can be composed together. This means that matched classes are combined into one

and their properties represented by model elements, such as attributes, that match only once

will appear in the merged model. Finally, properties that do not have any correspondence in

the other model will be added to the composed model. The above procedure is applied in most

static composition approaches.

Zhang et al. [159] and Rubin et al. [135] have used Alloy for the composition of class

diagrams. Firstly, they transformed the class diagrams into Alloy language and then composed

them using certain logical constraints that defined how the classes should be composed together.

The composition performed in this approach was based on matching the names of elements.

Although the transformation was carried out with clarity, the composition process is not clear

and seems to have been performed for a specific instead of a generic case. The above approaches

do not, however, have a supporting tool to automate the transformation.

Morin et al. [129] propose a tool called SmartAdapters. This approach represents a model

weaver that supports variability. It has been designed to provide capabilities for functional

concerns to be reused in the context of variability. According to Clavreul [34], SmartAdapters

involve a homogeneous and asymmetric approach to weaving reusable concerns (i.e. aspects)
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into one or more base models. Each aspect is related to an adapter that declares a composition

protocol. A composition protocol is a set of atomic operations and a set of target model elements

that specify how an aspect should be woven with other aspects.

Another common tool for weaving is XWeave [67]. This is a tool for weaving (class dia-

grams) models encapsulated as crosscutting concerns into base models. Similar to other com-

position tools, XWeave takes a base model and one or more aspect models and weaves them

together in a user controllable way. However, this tool cannot remove, change or override ex-

isting base model elements using aspects.

All of the above approaches have been used in composition techniques based on name-

matching. However, France et al. [56] raise some problems that might occur with name-based

matching. They argue that the composing models using a name-based matching are inadequate

and may give rise to conflicts. For example, it could be the case that two classes with the same

name might not represent the same concept, or may have conflicting properties. Thus, the use of

name-based matching in the composition of static models could help reduce the occurrence of

some naming conflicts, but will not be able to prevent them all. In their approach [56], France

et al. suggest a signature-based composition technique that uses signatures instead of names

to determine matching model elements. A signature consists of a set of information properties

(attributes and association end) that provide enough information to detect any conflicts between

models. The above researchers developed a tool called Kompose using Kemata [55] to support

the composition technique. However, their work does not offer an explicit definition of the glue

between the models. In other words, this approach does not explain how input models can be

glued together (pointcut). A similar idea was presented by Pottinger and Bernstein [132], who

proposed an algorithm designed to solve the problem of possible conflict in databases.

2.4.2 Dynamic Model Composition

The modelling of system behaviour can support developers in identifying behaviour flaws early

on in the development process and significantly assist in meeting requirements and in design

processes. Behaviour models focus on the semantic aspects of a system, rather than its static
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aspects. Sequence diagrams, state machines and other behaviour diagrams are convenient for

modelling system behaviour. However, one of the significant limitations of behaviour modelling

is the complexity of building the models in the first place [148]. Therefore, to reduce this

complexity, developers design them in steps. This process often results in partial specifications

being captured in models, focusing on a subset of the system behaviour. To produce a model

of the whole system, such partial models must be composed together, because this will help

developers understand the overall behaviour of the system. Behaviour model composition has

several advantages, such as reducing the complexity of the system by eliminating redundancies

and discovering any gaps that could affect the system’s security [6]. Another advantage is

delivering an executable model early in the ’requirements’ process, which will enable a wide

range of validation analyses, such as simulations and consistency-checking techniques [148].

A behaviour model that results from the composition of partial specifications should illus-

trate all possible behaviours that do not violate the properties. This model represents all the

behaviours that the system will provide once implemented. In other words, the final system

cannot enact more behaviour than what is described by the composed model. Dynamic com-

position is an active area of research in various behaviour modelling, such as UML dynamic

models [6, 10, 11, 20, 22, 57, 91, 100, 113, 133, 151, 154, 159], Petri Net [28, 43, 45, 51, 71,

72, 127, 149, 160, 160], and Business Process Modelling (BPM) [62, 66, 84, 96, 97].

In terms of dynamic models of UML, several studies have focused on state machines composi-

tion [10, 39, 113, 152]. Nejati et al. [113] presented an approach for merging state machines

that exploits syntactical as well as semantical information provided by the models to compare

variants and perform consistency checks. The correctness of the result in this work is based on

the definition and the algorithms that are created. However, while this approach seems suitable

for simple models, it is not clear how to apply it to models with complex operators, such as

choice or parallel behaviour.

Whittle and Jayaraman [152] also studied the composition of hierarchical state machines

from UML 2.0 interaction overview diagrams, which contain activity diagrams constructed to

specify complex behaviour. The generated hierarchical state machines are used to simulate
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scenarios and improve readability.

Another common approach in industry, especially in the domain of telecommunications and

avionics, is the Motorola WEAVR; a tool that considers the systems actions as state machines

[39]. State machines are used to model the advice, pointcut and base models, and they use an

’around’ operator in aspect-modelling to weave advice into the base model. According to [10],

the Motorola WEAVR is the first commercially available aspect-modelling tool that focuses

only on state machines.

The challenges of model composition have also been studied using Petri Net, which is re-

ferred to as synthesis. Petri Net is a formal modelling language often used to model control

flow in a system. It is capable of modelling complex behavioural properties, such as conflicts

(choice) and concurrencies (parallelism) [110]. Many synthesis algorithms and techniques have

been used for different types of synthesis, such as top-down [149], bottom-up [43], hybrid [160],

the knitting technique [28, 161], reduction [51, 71] and rough set [127].

The composition also has been studied in the Business Process Model (BPM)[30]. BPM

is defined as a mechanism for describing and communicating with the current or intended fu-

ture state of a business process[134]. BPM is capable of modelling complex behaviour of the

systems. Various studies have investigated the composition of the BPM [62, 66, 84, 96, 97].

The composition study in the present research focuses on sequence diagrams. The following

section will investigate several studies on sequence diagram composition.

2.4.2.1 Composition in Sequence Diagrams

As mentioned above sequence diagram composition has already been studied by some re-

searchers. For example, Widl et al. [154] present an approach to sequence diagram composition

using their corresponding state machines. The composition in this approach was performed for-

mally, using a SAT solver called Picosat [18]. This method also presents a prototype tool, which

automatically generates SAT encoding and represents the diagrams. However, this approach

does not support the composition of sequence diagrams with CombinedFragment operators.

On the other hand, Liang et al. [100] present a method for integrating sequence diagrams,
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based on the formalisation of the sequence diagram into particular kinds of typed graphs, called

SD-graphs. The idea presented in their publication is designed for a sequence diagram con-

sisting of lifelines and messages. However, this approach is similar to that of Widl et al.[154],

which does not support the composition of sequence diagrams with complex behaviours, such

as parallelisms and alternatives.

Bowles [20] also presents an approach to sequence diagram composition. Here, the author

maps sequence diagrams into an LES and composes LES models by injecting new behaviour

into a model through a category-theory based construction. This approach illustrates its ability

to compose sequence diagrams containing, for example, alternative and parallel Combined-

Fragments, However, the processes of transformation and composition have been performed

manually.

Klein et al. [91] ppropose algorithms to weave Message Sequence Charts (MSC) by taking

into account the semantics of these MSCs. The composition is specified at modelling level

using time automata. According to Clavreul [34], this approach is not designed to be generic,

due to the definition of pointcut and advice and the proposed algorithms are also specific to the

MSC structure. Furthermore, this approach does not have a tool to automatically conduct the

weaving and evaluation of the efficacy of the algorithms.

Another approach by Klein et al. [90] defines semantics-based sequence diagram aspects. In

this approach, the above authors propose four match strategies: strict part, general part, safe part

and enclosed part. These interpretations describe the degree of strictness when trying to detect

a set of model elements that are related to each other. The two strictest match strategies (strict

part, enclosed part) show that they cannot be inserted between the matched pointcut events on

a lifeline for any event which is not included in the pointcut. The second two match strategies

(general part, safe part) are less strict, since they allow any event between the matched pointcut

messages to be included in the woven model. A similar approach was proposed by Grnmo et al.

[70]. This method presents a semantics-based technique for weaving behavioural aspects into

sequence diagrams. These authors define lifeline-based weaving upon trace-based equivalence

classes. In other words, their semantics performed aspects of matching and weaving at the level
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of the lifelines and their matched events. Grnmo et al. also define the semantics of weaving

models with unbounded loops. In subsequent work, Grnmo et al. [69] proposed a conformance

issue for aspects and ensured that the woven outcome was always the same, regardless of the

order in which the aspects were applied. Moreover, they offered semantics-based matching,

which is a process that looks for matches in the semantics of the two diagrams.

Whittle and Jayaraman [10] however, introduced a tool called MATA. This tool uses graph

trans- formations to specify and weave aspects based on sequence diagrams. This approach

focuses on the structures of a sequence diagram in the weaving process, but puts less empha-

sis on the semantics of the composition. The advantage of weaving the structure of a sequence

diagram is to preserve the original structure of the models. Nevertheless, weaving is not guaran-

teed [69]. In addition, Whittle et al. [151] presented a composition technique that creates model

elements of sequence diagrams, even if these elements have different names when matching

their rules. However, this approach still does not address any of the conflicts that might occur

during composition.

Reddy et al. [133] propose the direct composition of sequence diagrams. Their approach

uses UML sequence diagram templates for describing the behaviour of aspects designed and

also tags for behaviour composition. In their work, an aspect may include position fragments

(e.g. begin, end) to designate the location to be added in the sequence diagram.

In addition to the above, aspects can sometimes be used to model non-functional concerns,

such as dependability requirements, which usually cut across several parts of a system. Re-

garding the use of AOM for security, [156] presents a method of analysing the performance

effects of security properties specified as aspects. Moreover, Whittle et al. [153] used sequence

diagrams to model and execute misuse case scenarios (both desired and attack scenarios) for

secure system development. Mitigation scenarios were then designed as aspect scenarios and

woven into the core behaviour, in order to prevent the execution of the attack scenarios.

The composition technique is also used in multi-view modelling [89]. Multi-view is a

methodology that allows a developer to describe a software system from multiple points of

view, such as structural and behavioural, using different modelling notations. The composi-
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tion of multi-view modelling is a significant process as it creates overall views for debugging,

simulation or code generation purposes and also performs consistency checks during the com-

position. Kienzle et al. [88, 89] presented an approach called Reusable Aspect Models (RAM)

for modelling and weaving an Aspect-Oriented multi-view. Their approach integrates a class di-

agram (static view), sequence diagram and state diagram (dynamic view). However, the match-

ing and weaving processes are performed at the structure level of the sequence diagram. The

authors plan to extend the approach by adding another type of view that describes the traces

of execution of the behaviour models. Finally, Bowles and Bordbar [22] present a composi-

tion method that maps a design consisting of multiple views modelled (combination of class

diagrams, sequence diagrams and OCL) into LES used for detecting and analysing inconsisten-

cies. The composition process is performed at the level of the LES. However, this approach does

not show the parallelisms that may occur after the composition; the processes of transformation

and composition have been performed manually.

Since the composition of this thesis focuses on sequence diagrams in particular, Table 2.3

shows some of the existing composition approaches.

As illustrated in this section, most existing approaches have been performed manually or

use algorithms to compose simple sequence diagrams. However, the idea of the composition in

this thesis is to automate the composition of sequence diagrams using constraint solvers. The

following section provides some background on the constraint solvers used here.

2.5 Constraint Solvers

Constraint solvers, such as SAT/SMT solvers are very common in the area of formal verification

and many approaches have been developed on utilising SAT/SMT solvers to verify models or

programs [12, 36, 63, 101]. Among them, Alloy is one of the most popular in the research on

SAT solvers [82]. Alloy, a model finder, is a well-designed tool that can be used for finding

instances of a model in a finite search scope [75, 81, 82]. Unlike other model-finding tools, Al-

loy uses first-order relational logic to describe a model. Nowadays, Alloy receives considerable
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Table 2.3: Selected approaches to composing sequence diagrams

Approach Notation
Support
Combined-
Fragment

Tool support

Source Target

Reddy et al. [133] SD SD Yes Yes

Whittle et al. [10] SD
State
machine

Yes Yes (MATA)

Ameedeen et al. [7] SD PN Yes Yes (SD2PN)

Widl et al. [154] SD
State
machine

No Yes

Liang et al. [100] SD
Typed
graphs
SD-graphs

No Yes

Bowles [20] SD LES Yes No

Klein et al. [91] MSC Automata No No

Klein et al. [90] SD SD No Yes

Grnmo et al. [70] SD SD Yes Yes

attention in model analysis and composition [8, 9, 58, 95, 104, 139]. For example, Anastasakis

et al. [8] propose a common approach called UML2Alloy, which focuses on the transformation

between UML class diagrams and the Alloy language. In their approach, they present a list

of rules which can map a UML class diagram and OCL constraints to the Alloy language. In

addition, Rubin et al. [135] and Zhang et al. [159] propose composition approaches that use

Alloy for class diagrams. Due to the popularity of Alloy for analysing UML models, it is the

natural choice for representing and composing behaviour models, such as sequence diagrams.

The following section will therefore explain Alloy in greater depth.

2.5.1 Alloy

Alloy is a modelling language based on first-order relational logic, which was developed by a

software design group at the Massachusetts Institute of Technology (MIT) [118]. It is com-

monly used for modelling object-oriented systems. Alloy is roughly a subset of the notation
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of Z [142]. Data domains in an Alloy model are defined using signatures (keyword: sig) and

are represented as sets. A signature may extend another signature, in which case the domain

defined by the first is a subset of the domain of the extended signature. A signature that is de-

clared independently of any other is called a top-level signature. Extensions of a signature are

mutually disjoint, as are top-level signatures. A signature can also be abstract, in which case

its domain only contains elements that belong to its extending signatures. In addition, signa-

tures may also contain fields, which are captured by relations. Axioms in Alloy are called facts,

which can be given a name. These must hold at any time. Predicate is a constraint that only

holds when invocated, which always has a name. Alloy formulae often use the atomic predicate

in (inclusion), standard connectives from first-order logic, and for the quantifiers all (universal)

and some (existential).

Figure 2.10 depicts a simplified metamodel of Alloy. This thesis only considered some of

the Alloy language features, which are explained fully by Jackson in [81].

Figure 2.10: A subset of an Alloy metamodel [9]

Alloy uses a tool called Alloy Analyzer, a fully automated constraint-solver tool developed

for analysing models written in the Alloy language. The analyser offers multiple functionali-

ties: simulation using (run command) and assertion using (assert and check commands). The

purpose of the simulation is to produce a random instance, which represents the running of

the model and thereby confirms the specification. An assertion is a constraint that needs to

be satisfied and should follow from the model facts. The Alloy Analyzer works by translating
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Alloy formulas into Boolean expressions with the help of the KodKod [146] model finder. The

Boolean expression is then automatically analysed using SAT solvers (i.e. SAT4J [17], ZCha

[103] and MiniSAT [48]), and the solution is then displayed to the user as a graph (instance).

The Alloy Analyzer is designed to perform finite scope checks, even on infinite models. A

scope is a positive integer number, which specifies the number of instances of each model ele-

ment in an instance of the system that is being analysed by the solver. Consequently, the user

can specify the model elements scope to limit the domain. The default number of Alloy scopes

is three atoms of every model element, unless the user changes the scope. For more details on

the notion of scope, please refer to [[81], Sect. 5].

Alloy offers another valuable feature, which is to support the user in debugging conflicts

between logical statements of models. This feature is also known as an UnSAT Core [81].

Therefore, if the Alloy Analyzer cannot find an instance conforming to the model, UnSAT Core

highlights the conflicting statements that make the model unsat.

Figure 2.11: A sample of an Alloy model

Figure 2.11 shows a small Alloy model adopted from [61], which presents the common
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features of Alloy. An abstract signature (line 1) declares a domain called Person. This means

that the abstract signature Person only contains elements that belong to its extensions. Lines 2

and 3 show the fields of the abstract signature Person (children and siblings). The set keyword

in the fields corresponds to an association with a set of children and siblings, which means

that there can be either zero or any number of Persons related to Person through the relations

children and siblings. The signature in line 4 declares a signature called Man. This signature

is extended from the abstract signature Person, which means a subset of the Person set. The

keyword one in the Man declaration indicates that there is exactly one instance of the signature

(unique set). Lines 5 and 6 are similar to the signatures declaration that has already been

explained. A function and fact in lines 8 and 9 define the constraints of the parents relation.

The constraints declare that no Person can be his or her own ancestor. Line 10 shows an empty

run command, which will produce a random instance of the model and simulates the model.

The Alloy Analyzer in this example will produce an instance of the model (solution), using

three atoms at most for each of the signatures declared in the model due to the default scope

of 3, as previously mentioned. Thus, the instance of this example will use a scope of three just

for the Married signature, since the Man and Woman signatures are defined as singletons (one

keyword). An assertion in line 11 defines that no person has parents that are also children at the

same time. Finally, a check command in line 13 asks the analyser to confirm the assertion for a

scope of three.

2.5.2 SAT Solver

The SAT solver was mentioned in the Alloy section; it is the backbone of the Alloy Analyzer,

which solves the Boolean expressions produced by Alloy Analyzer and returns a solution. This

section will give a brief background about the SAT problem. A Boolean satisfiability problem

(SAT) is a decision problem. Given theory T , which contains a set of propositional Boolean

logical formulas {S1, S2,...,Sn}, the aim of the SAT solver is to find an assignment of variables

that satisfies every propositional formula [75]. If the assignment exists, a solution is found.

A computational procedure, which could decide if the set of boolean formulas is satisfied/un-
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satisfied is called a decision procedure. However, the computation of such an procedure is not

easy. The SAT problem has been proven to be the first known nondeterministic polynomial time

complete (NP-Complete) problem [35].

Figure 2.12: A simple example of propositional logic formula in CNF

Figure 2.12 illustrates a simple example of an SAT problem, which is created in conjunctive

normal form (CNF) [130]. The variables x1, x2, x3 and x4 in this formula are called literals,

and each sub-formula(x1 ∨ ¬x2 ∨ ¬x3) is called a clause. To solve boolean satisfiability prob-

lems, many SAT solvers have been implemented to automatically solve Boolean satisfiability

problems [17, 48, 64, 103]. These solvers were developed to answer a large number of Boolean

formulas and determine their satisfiability. If the formulas are satisfied (sat), an assignment of

each variable is returned. Otherwise, the SAT solver returns unsat. Modern SAT solvers are

extremely efficient and designed to solve up to one million clauses in a very short time (within

few seconds) using the Davis-Putnam-Logemann-Loveland (DPLL) algorithm [40]. According

to Hao [75], the DPLL algorithm is bounded by exponential time (EXP), which means that in

the worst case it is very slow. However, in most cases, the algorithm is fast and returns the

solution within a few seconds.

Solving the formula in Figure 2.12 is very straightforward. One of the possible assignment

for this formula is x1 = true, x2 = false, x3 = true and x4 = true. SAT solvers are pow-

erful tools that can be used to solve a difficult problem by translating that problem into SAT

encoding. However, the difficulty is that such a translation is difficult since a vast number of

propositional logic formulas are needed to express the problem. Encoding using plain Boolean

has some limitations, including that it does not directly allow integer encoding. Therefore,

SMT was proposed to provide theories to express such problems without losing completeness

and automation [75].

46



2.5.3 SMT Solver

The Satisfiability Modulo Theories (SMT) problem is also a decision problem, just like the

Boolean SAT problem. The expression of an SMT problem can be performed through a combi-

nation of many theories provided by SMT solvers. For instance, SMT solvers can combine an

integer theory and a quantified Boolean theory to specify a problem [16]. Due to this support

from different theories, the translation of a problem to SMT could be easy compared to trans-

lating it into a SAT problem. The main difference between SAT and SMT solvers is that SMT

solvers accept systems in an arbitrary format, while SAT solvers are limited to Boolean equa-

tions in CNF form. This means that SMT solvers are supported by rich background theories,

such as linear integer arithmetic theory, which is defined in the Satisfiability Modulo Theories

Library (SMT-Lib)[16], while SAT solvers only use propositional logic. A typical example is

solving a linear integer arithmetic equation, where the input is a set of equations written in

human readable format and the output is the assignment for each variable in the equations[75].

SMT problems are a very active area of research, which has received considerable attention.

Many SMT solvers are being developed [19, 42, 44, 47]. Z3 is state-of-the-art SMT solver that

has been used in this thesis and was developed by Microsoft Research. It is a high-performance

solver targeted at solving problems arising in software verification and software analysis [42].

Like any other SMT solver, Z3 supports many types of declarations, such as Integer, Real and

Boolean, as well as allowing users to declare new sorts (types).

Functions:

Functions in Z3 are the basic building blocks of SMT formulas. Unlike programming lan-

guages, where functions have side-effects, can throw exceptions, or never return, functions in

classical first-order logic have no side-effects and are total [42].

Constants are functions that take no arguments, and Const(a,A) is written to declare a

constant a of type A.

Figure 2.13 shows a partial metamodel for Z3, which was defined in order to facilitate the

transformation of the model in this study. Functions can represent a variable or mathematical
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Figure 2.13: A Subset of Z3 metamodel

function. Moreover, a function can have one or more types restricted to primitive types (Integer,

Name and Boolean) and additionally the type Set. The Name type allows uninterpreted func-

tions to be used.

Boolean Logic:

Z3 supports Boolean operators, such as And,Or,Not, Implies (logical implication), and

equality == (used for bi-implication) among others. Universal (ForAll) and existential (Exists)

quantifiers are also supported by Z3. In Z3, it is possible to create a general purpose solver us-

ing Solver() and associate it with a particular variable by declaring s = Solver(). Later,

constraints may be added to the solvers through the method add(). All the constraints associ-

ated with a solver can be checked (solved) by calling the method check(). The result of the

procedure is similar to that of a SAT-Solver: either sat (satisfiable, a solution was found), or

unsat (unsatisfiable, no solution exists). Finally, if the formulae are satisfied, a method model()

can be called to retrieve a textual representation of the solution. In this work, Z3 models were

written in Python using Python API for simplicity of interpretation and to parse the solution

into a graph.

In Figure 2.14, constants x and y are declared as an integer variable in Z3, named x, y. Z3,
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Figure 2.14: A simple Z3 model

like Python, uses ’=’ for assignment and Line 4 shows the Z3 constraint (x+ 2∗y == 7). This

constraint was checked with the Z3 solver using the command s.check(). After this checking,

Z3 shows one of the possible solutions using the command s.model: that is, x = 7, y = 0. The

next section presents current approaches use constraint solvers for model composition.

2.6 Model Composition via Constraint Solvers

In recent times, constraint solvers have been widely used for the fully automated composition

of static and dynamic UML models. Rubin et al. [135] used Alloy to compose class diagrams

based on the syntactic properties of metamodels. As mentioned earlier, they converted the

class diagrams and the metamodels into Alloy and composed them based on a set of logical

constraints. The matching in this approach is named-based matching. Although the composition

model is a union of two input models, the instance of the composed model displays all the

elements of the input models, including the matched elements, as well as which one of them

should occur. In addition, the composition glue is not generic but seems to be designed for a

specific case instead. In fact, this approach is acceptable for small examples, but in complex

examples, the duplicated elements will make it difficult to validate the analysis of the final

composition.

Zhang et al. [159] presented a weaving-based model composition framework (WMCF). This

work is based on the work of Rubin et al. [135], but the authors added the weaving process and

evaluated the approach by composing a simple example. Although these approaches use Alloy
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to compose UML static models, they are not focused on the composition of UML behaviour

models, such as sequence diagrams in Alloy.

Alloy was also used by Mostefaoui and Vachon [109] to analyse and weave behavioural

interactions of aspect-oriented models. A base model is transformed into Alloy as well as into

pointcut specifications and advice. In this work, multiple aspects are composed into a single

Alloy entity and then woven with the base behaviour using the operators before, after, or both

before and after. However, this work did not consider the operator around in the weaving.

For example, if one or more advice elements might have matched one or more elements in the

base model. A similar approach was proposed by Nakajima and Tamai [111], who used Alloy

to automatically weave aspect-oriented models. However, they did not address the rules for

transforming origin models into Alloy.

In addition, Widl et al. [154] presented an approach for composing a sequence diagram

via the Picosat solver. This approach implemented a tool, which automatically translates the

diagram into Picosat encoding. The solver then processes the composition and returns the

results, which are subsequently interpreted by the tool for analyses. However, this approach

does not support sequence diagrams with CombinedFragment.

The current thesis proposes a fully automated composition technique using both Alloy and

Z3- SMT constraint solvers. This approach has the ability to compose complex behaviour

models, such as sequence diagram containing CombinedFragments like alt and par. The com-

position considers both aspects of the model, i.e. the abstract syntax (static representation) and

traces of execution (semantics), when the models are composed to produce a correct solution.

The following chapters will explain the idea of the composition in greater depth.

2.7 Model Driven Architecture (MDA)

Model driven development (MDD) techniques aim to enhance the role of modelling in software

development [143]. These techniques allow the developer to model the required functionality

and the overall architecture of the system instead of calling on developers to spell out every
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detail of the systems implementation using a programming language. Hence, MDD results in

reduced development cycles and a lower cost of software production.

To ensure that the methods designed can be adopted by the software industry, it is crucial

to follow standards set by the model driven architecture (MDA) framework [92]. MDA is

a framework for software development that was proposed by the OMG. It provides a set of

guidelines for the structuring of models and their specifications. It also defines a standard for

application design and implementation.

Central to MDA is the notion of metamodels [65]. A metamodel defines all elements that

are available for a designer to use when modelling with a language. In MDA, a model trans-

formation is defined by mapping the meta-elements; the constructs of the source metamodel

(e.g. sequence diagrams) are mapped onto constructs in the target metamodel (e.g. Alloy), as

shown in Figure 2.15. Subsequently, every model arising from the source metamodel can be

automatically transformed to an instance of the destination metamodel with the help of a model

transformation framework. The source and target metamodels are specified using a common

language called meta object facility (MOF) [115], while the models are instances of metamod-

els.

Figure 2.15: MDA outline

Figure 2.15 illustrates an outline of the MDA and the process of model transformation. To

transform any instance of the source metamodel, the model transformation framework executes

the rules for creating an instance of the destination metamodel, in addition to defining how

various elements of one metamodel are mapped into the elements of another. The process of
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model transformation is carried out automatically via the tools and is commonly known as

the model transformation framework. A typical model transformation framework requires the

following inputs: the source and target metamodel and the number of transformation rules.

Currently, there are many tools to support model transformation and these have been devel-

oped in both academia and industry, such as Kermeta [122], Arcstyler [119], OptimalJ [123],

Xactium [2, 31] and ATLAS [85–87]. Despite the fact that these tools allow the specification

and implementation of a model transformation and therefore provide a rich set of functionali-

ties, such tools are inherently complex. In particular, for scholars in academia or research lab-

oratories, who are only interested in experimentation and the creation of prototypes, the steep

learning curve is a significant hurdle. Thus, this thesis makes use of Simple Transformer (SiTra)

[3, 125], which offers a minimal framework for the execution of transformations to implement

the transformation rules.

2.8 Simple Transformer (SiTra)

SiTra is a simple Java library implemented at Birmingham University by Akehurst et al. [3].

It is developed to support programming approaches to write transformations that intend to use

Java for writing transformations. SiTra contains two main interfaces: the rule and transformer

interfaces. The rule interface should be implemented for each transformation rule, whereas the

transformer interface provides a framework for the methods that carry out transformations.

In SiTra, the developer is required to define the transformation rules by implementing the

rule interface. The rule interface contains three methods: check(), build() and setProperties().

If the rule is valid for the source element in question, the method check() returns as true, and

then the method build() is executed.

The method build() generates the target model element. Finally, setProperties() is used to

set the attributes and links of the new created target element. SiTra has been applied to model

transformation in many application domains [4, 5, 9, 21, 23, 60]. For more details, please refer

to [3, 125].

52



Traceability is a significant feature in model transformations, which have received consid-

erable attention recently [52, 126, 139]. This feature is specifically used during the process of

model transformation to keep track of which elements of the source model have been trans-

formed into which elements of the destination model, and visa versa. For instance, after the

source model has executed the model transformation, only the necessary elements of the target

model can be updated by traceability links without having to execute the whole transformation

again. For more details of traceability with SiTra, please refer to [3].

2.9 Chapter Summary

This chapter provides preliminary studies on UML in general and for sequence diagrams specif-

ically. Following this, it provides background on LES; a type of formal modelling used to rep-

resent the semantics of sequence diagrams. Model composition has been studied with regard to

different system aspects, such as static and dynamic composition. This is illustrated in section

2.3. However, most existing approaches have been performed manually or use algorithms. The

work in the present study is close to the approaches proposed in section 2.5. However, these

days, most strategies use constraint solvers to compose static models or a simple behaviour

model. Therefore, this thesis presents a fully automated composition technique for creating a

sequence diagram from partial specifications captured in multiple sequence diagrams, with the

help of constraint solvers. In subsequent chapters, the methods for composing this model will

be discussed in greater depth.
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CHAPTER 3

EXACT METAMODEL RESTRICTION (EMR)

3.1 Overview

As noted in section 2.8, this work forms a discussion of a composition technique for behaviour

models using constraint solvers. The aim of this research is to propose a fully automated com-

position technique for sequence diagrams and detect any inconsistencies arising during com-

position. The approach is as follows: firstly, Chapter 3 presents a model composition at the

metamodel level, through the Exact Metamodel Restriction (EMR), outlining the methodology

employed for the transformation and composition of sequence diagrams. In addition, there is a

definition of formal composition semantics to guide the composition process. Secondly, Chap-

ter 4 outlines transformation rules and the composition of sequence diagrams via Alloy. Thirdly,

Chapter 5 discusses the second automatic composition of sequence diagrams via Z3-SMT. Fi-

nally, Chapter 6 compares the Alloy and Z3-SMT approaches presented.

The current chapter focusses on a technique for model composition at the metamodel level

through EMR. A software model completely described by a set of logical constraints at the

metamodel level. These models are composed through the union of logical constraints for

each model, as well as constraints describing the composition glue. At the metamodel level,

this gives the exact instance of the metamodel for the composition. In addition, there is a

presentation of the formal semantics for composition, which guides the composition process.
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This current chapter consists of the following sections: section 3.2 and sections 3.3 discuss the

mechanism of EMR and the use of EMR for static models; section 3.4 outlines the compositions

of static models via EMR; section 3.5 demonstrates the challenges in dynamic models; section

3.5.1 reveals the ways in which a sequence diagram can be described via EMR as an example

of dynamic model; Section 3.5.2 illustrates the composition of sequence diagrams; Finally, in

section 3.5.3 the composition is treated with LES.

3.2 Exact Metamodel Restrictions

As mentioned in section 2.2, metamodels represent all the involved model elements of a domain,

including their relationship. Logical statements written in the context of metamodels play key

roles, e.g. expressing well-definedness for the elements, the concept of equality between mod-

els’ parts and so on. As the metamodel represents all compliant models, adding extra logical

constraints can restrict the list of models compliant to a metamodel. Furthermore, it is possible

to start from a given model, M , and exert enough logical constraint, L={ L1, ...,Lk } on its

metamodel, MM , such that the combination of MM with additional logical constraints, L, can

uniquely determine the original model, M . Thus, the pair (MM,L) uniquely determines, M .

The process of identifying logical constraints L, is referred to as Exact Metamodel Restric-

tions EMR, which can be used in an automated instantiation of the model via constraint solvers.

For example, the use of the Alloy model finder for a given metamodel MM , along with a cor-

rect set of constraints, enables Alloy to be used to automatically recreate the model (see Figure

3.1).

The concept can be simplified as follows: assume that John is a student, and thus an instance

of students metamodel. The metamodel contains many instances (i.e. students), such as Steve,

Sarah, David, etc. However, these instances have different properties, i.e. date of birth, age,

nationality, subject, gender and so on. In order to determine the student John from the other stu-

dents, it is necessary to add additional logical constraints that contain a number of specifications

capable of defining the target student, in order to restrict the list of other students. These log-
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Figure 3.1: EMR mechanisms

ical constraints contain a list of student properties, including: Student.F irstName = John

&Student.FatherName = Tom & Student.LastName = Smith & Student.Age = 20

& Student.Nationality = British & Student.Gender = Man, & Student.Address = 60

Crown Street. Specifying these properties of the student John, the solution of solving such

logical constraints via constraint solver, produce only one solution, (i.e. the student John), that

satisfies the logical constraints. In fact, the EMR technique is designed to be applicable to the

automated instantiation of static and behaviour models. The following sections illustrate this

technique in detail.

3.3 Application of EMR to Static Models

Software models can be categorised into two types: static models and dynamic models. As

noted in Chapter 2, section 2.2, static models frequently focus on the structural aspects of the
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system, i.e. relationships between packages, and demonstrating instance specifications (or re-

lationships) between classes. The current section focuses on the representation of static models

via EMR.

The EMR technique can be employed for a variety of static models, including the class di-

agram, object diagrams and the Entity Relation Diagram (ERD). In EMR, the diagram can be

fully described by a set of logical constraints written in the context of the metamodel. This is

illustrated in the example in Figures (3.2 and 3.3), adopted from [67]. The example depicts a

home-automated system called ’Smart Home’. There are wide range of electronic and electri-

cal devices to be found in the majority of homes, including lights, air conditioning systems,

smoke detectors and televisions. Smart Home connects these devices and enables the home

owner to monitor and control them using a software application. The home network also allows

devices to coordinate their behaviour in order to fulfil complex tasks without human interven-

tion. Meanwhile, sensors consist of devices capable of measuring the physical values of their

environment, making them available to Smart Home.

Controllers activate devices which have a state that can be monitored and changed. All home

devices are part of the Smart Home network, with their status being changed, either manually

by residents, or from the Smart Home application.

Figure 3.2: Smart Home MetaModel
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Figure 3.2 demonstrates a simplified metamodel of Smart Home. A house contains a number

of floors, each of which contains rooms. Each room contains sensors, and devices are also

installed, each controlled by a controller. Figure 3.3 demonstrates an instance of the Smart

Home metamodel, i.e. a concrete home automation system. The example house has only one

floor, which contains only one bedroom, with one light sensor and two lights, each controlled

by a light controller.

Figure 3.3: Smart Home Model

The metamodel in Figure 3.2 has many instances. Some houses contain two, or more, floors,

and one or more bedrooms, etc. To restrict these instances, a set of logical constraints have

been written on the Smart Home metamodel (Figure 3.2), which uniquely identifies the house

model in Figure 3.3. The logical statements define each element by means of a diagram and its

associations. The constraints also preserve the association multiplicity types (i.e. one-to-one

relationships and one-to-many relationships), as demonstrated by the following code.
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1 abstract sig House{floor: some Floor}

2 abstract sig Floor {Bedroom: some Room}

3 abstract sig Room {sen: set Sensors, Light: some Devices}

4 abstract sig Devices{ ControlledBy : one Controller}

5 abstract sig Sensors{}

6 abstract sig Controller{}

7 sig simpleHouse extends House{}

8 sig FirstFloor extends Floor{}

9 sig Bedroom extends Room{}

10 sig LightDevice extends Devices{}

11 sig LightSensor extends Sensors {}

12 one sig LightController extends Controller{}

13 fact { simpleHouse.floor in FirstFloor}

14 fact { Floor.Bedroom in Bedroom}

15 fact { Bedroom.sen in LightSensor}

16 fact { Bedroom.Light in LightDevice}

17 fact { LightDevice.ControlledBy in LightController}

18 run{} for 3 but exactly 1 House, exactly 1 FirstFloor , exactly 2 LightDevice, exactly 1

Sensors, exactly 1 Bedroom

The code above is written in Alloy language. The Abstract signatures above (lines 1-6)

define the metamodel elements (House, Floor, Bedroom, etc.). The associations between these

elements are defined as a relationships (floor, bedroom, etc.). It should be noted that the reason

of writing names in the relation is because Alloy relations must hold names. The keywords

(e.g. some, set, one) demonstrate the representation of association multiplicity, as explained

in section 2.8.1. For example, the association between House and Floor is one to many, and is

defined in Alloy as some keyword. In Alloy, somemeans a cardinality of one or more instances

of Floor. Lines 7-12 declare the model elements in which the sets of facts (lines 13-17) link the

model element.

The run command in line 18 restricts the instances of the model enforcing constraints on the

solver to produce only one solution, which contains only one house, one floor, one bedroom,

two LightDevices and exactly 1 Sensor. It should be noted that there is no need to specify the

controller, due to its definition as a unique set (i.e. one keyword before the signature). This

restriction removes the further instances unrelated to the model, and which simply produce the
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solution, uniquely identifying the model in Figure 3.4 (see below).

Figure 3.4: Alloy instance

3.4 Composition of Static Models

The composition of models is a process of combining two, or more, to create a single coherent

model based on composition glue. The composition glue in this approach consists of a number

of logical constraints. These specify which elements need to be composed, along with where

the elements should be inserted, and the ways in which the composition process works to obtain

the expected result.

The composition process in this technique is primarily aimed at generating a new model,

consisting of all logical constraints associated with the original models in need of composi-

tion, along with additional constraints that describe the composition glue, as shown in Figure

3.5. The constraint solver then solves the new model and produces all possible solutions if all

logical constraints of the input models are satisfied. Figure 3.5 depicts the mechanism of the

composition, withM1 andM2 representing two input diagrams. Through EMR, two sets of con-
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straints are produced, i.e. L1 andL2, in the metamodel ofM1 andM2, each of which is uniquely

identified with the original model. In order to compose the two models, a new model (L3) is

generated, consisting of L1 and L2 and the glue Lg. The glue (Lg) matches the properties of

the common elements of the two models, i.e. the elements names (name-based matching), and

composes them. Moreover, the properties represented by model elements, such as attributes,

are also matched and matched attributes will appear in the merged model only once. Finally,

properties without any correspondence in the other model will be added to the composed model.

Figure 3.5: Model composition

The sets of constraints, L1, L2 and Lg, then can be composed automatically, using a con-

straint solver (i.e. such as Alloy, Z3), producing a solution containing all elements of the input

models, as well as preserving the associations between the elements. Further illustration about

the generation of the composition glue will be presented in Chapters 4 and 6.

3.5 The Challenges of Behavioural Models

In the systems design, dynamic models focus on the behaviour of the system, which consists

of observable information, exchanged between components within a system. Dynamic models
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are frequently employed in software design to achieve a common understanding of the overall

interactions within the system. Behaviour models frequently consist of two types: (1) abstract

syntax and (2) dynamic representation (semantics). Abstract syntax is given by a metamodel,

that defines all elements of a behaviour model and its possible relationships, which, in turn,

describe the structural information underlying a design model. The dynamic representation

(semantics) describes the behaviour of the system. The central concept of semantics is a trace

of execution. ”A trace of execution is a sequence of event occurrences ordered by time that

corresponds to a system run” [116]. Thus, it describes information concerning a list of message

exchanges corresponding to a system run.

Figure 3.6: Behaviour Models

The semantics of behaviour models are not given in the metamodel, and must be defined

separately. Currently, there is increasing acceptance that formal methods form an essential as-

pect of the design of any reliable complex software system [105]. This is due to formal methods

having the potential to illustrate ambiguities and design faults, and thus avoid associated system

failures. A number of possible semantics have been defined to describe the semantics of be-

haviour models, including: Labelled Event Structure (LES); Petri Net, Automata; and Labelled

Transition System (LTS). In this current thesis, the dynamic interpretation of interactions, and

their composition, is performed employing a Labelled Event Structure (LES), which, due to

its simplicity, is suitable for describing semantics (i.e. traces of execution), and is capable of
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directly capturing the available notions, e.g. sequential, parallel and iterative behaviour.

The representation of behaviour models is a challenging process, as it must take into account

both the abstract syntax (static representation) and traces of execution (dynamic representation).

Therefore, EMR needs to be enhanced by adding semantics, in order to obtain a solution con-

taining the traces of the execution of the model. This is obtained by adding sets of logical

constraints that capture traces of the execution of the model, i.e. if the traces represent sequen-

tial order, then the transformation adds a set of axioms that force the order of the events to be

sequential. On the other hand, if the order is parallel, or a choice, then the constraint solver may

produce more than one solution, each of which contains a trace in a different event order for the

case of the parallel, or each solution contains a different choice of events for the case of choice.

Therefore, the constraint solver generates all possible instances represented in the running of

the original model. Although the EMR technique is compatible with different behaviour mod-

els containing traces of execution, the scope of this research focuses on the representation and

composition of sequence diagrams.

3.5.1 Sequence Diagrams via EMR

As mentioned in previous sections, the research scope of this thesis is focused on sequence

diagrams. Sequence diagrams are described in UML’s superstructure specification [116], both

through a concrete, and an abstract, syntax. As noted previously, the semantics of the sequence

diagram are performed via LES. Due to the abstract syntax describing the structural information

underlying a design model, the logical constraints by which it is represented can be generated

employing the technique discussed in the static model via EMR. However, as noted in the pre-

vious section, the semantics differ, as they need to incorporate additional dynamic information,

obtained from the LES interpretation to represent the behaviour of the model. Therefore, the

logical constraints obtained by the Exact Metamodel Restrictions (EMR) have been extended

to consider the dynamic (i.e. LES-based) interpretation.

The extended constraints define the sets of events in traces of execution of the model. Ad-

ditionally, a number of axioms are written, enforcing the solver to generate a solution capturing

63



the behaviour of traces, including the sequential, alternative, and parallel order. The combi-

nation of the logical constraints that represent the abstract syntax, and the traces of execution,

uniquely identify the original sequence diagram. This means that, starting from any UML

sequence diagram and using a constraint solver for the sequence diagram metamodel and cor-

rect set of constraints, the constraint solver can be used to automatically recreate the original

sequence diagram, i.e. when the constraint solver solves logical constraints; it generates the

exact solution corresponding to the intended sequence diagram. Chapters 4 and 5 will illustrate

in greater depth the process of generating the logical constraints of the sequence diagram via

EMR.

3.5.2 Composition of Sequence Diagrams

Section 3.4 formed a discussion of the composition of static models. This section places addi-

tional focus on the composition of sequence diagrams. The composition of sequence diagrams

focuses on composing the elements of the models (e.g. messages, lifelines, CombinedFrag-

ments, etc.) and the traces of execution (i.e. events and their relations). To do so, the composi-

tion of sequence diagrams might require some more options for the composition in addition to

the syntactic matching, which gives the designer a way to influence the obtained composition

by specifying behaviour that should never occur or sequences of events that must occur in a

given order. In other words, it allows the designer to prioritise on specified behaviour. These

options are called behavioural composition glue. Therefore, the interpretation of glue here is

nonetheless more generic and not only a syntactic matching between component elements. The

behavioural glue gives us a new set of constraints Lg which specifies how the models should

be glued together to produce the intended composition. The guidance of such composition ex-

plained formally in the following section while the generation of the logical constraints will be

demonstrate in the following chapter.
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3.5.3 Composition Semantics

This section illustrates the composition semantics that have been used in this approach. In sec-

tion 3.4, we explained the static composition. Static composition requires only the composition

criteria, such as matching and composing elements with the same name. However, behaviour

composition is different from static composition, which requires semantics to guide how the

trace of execution of different models may be matched. This semantics describe formally the

composition semantics and the composition glue in the context of LES.

In this semantics, we restrict ourselves to the composition of two diagrams. The case for

the composition of a finite number of diagrams can be generalised from here. In the sequel, let

SD1 and SD2 be two sequence diagrams, with sets of instances and messages given by I1, I2,

Mes1 and Mes2 respectively.

When composing diagrams SD1 and SD2 we consider interleaving and shared behaviour.

In the case of interleaving, the diagrams evolve completely autonomously of one another.

That is, the interleaving of diagrams SD1 and SD2 is written SD1 ‖ SD2 and equivalent to

par(SD1, SD2). In other words, the composition is behaviourally equivalent to a diagram with

a par fragment and two operands where each operand contains the behaviour described in SD1

and SD2 respectively.

The model for SD1 ‖ SD2, MSD1‖SD2 = (E, µ), is an event structure where Ev = Ev1 ∪

Ev2, all relations are preserved, and µ(e) is defined for all e iff µi(e) is defined for some

i ∈ {1, 2} in which case µ(e) = µi(e). For shared instances o ∈ I1 ∩ I2 we further match

the initial events for o in Ev1 and Ev2. Recall that an initial event for an object is an event for

which ↓ e = {e} which means that the local configuration only contains itself. We use ↓ Evo

to indicate the singleton containing the initial event of instance o.

The composition of diagrams with shared behaviour is written SD1 ‖G SD2 where G indi-

cates the composition glue.

We define the composition of two models formally in two stages. First we define the model

obtained by syntactic matching of objects and messages of both models. We then take the
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glue constraints and apply a restriction on the matched composed model that satisfies the glue

constraints.

Let ∆ ⊆ L1×L2∪I1×I2 be a binary relation over labels or instances satisfying if (l, l′) ∈ ∆

and (l, l′′) ∈ ∆ then l′ = l′′; and if (l′, l) ∈ ∆ and (l′′, l) ∈ ∆ then l′ = l′′. We call ∆ a matching

over labels and instances. Let Ev1 (and similarly Ev2) correspond to the set of events in Ev1

with a label not matched in ∆.

Definition 7. LetM1 = (E1, µ1) andM2 = (E2, µ2) be models for sequence diagrams SD1 and

SD2, and ∆ be a matching over labels and instances. SD1 ‖∆ SD2 is a matched composition

model for ∆ given by M∆ = (E, µ) such that events in M∆ are given by

Ev = Ev1 ∪ Ev2 ∪

{(e1, e2)|(L(e1), L(e2)) ∈ ∆}∪
{(e1, e2)|(e1 ∈↓ Evi1 , e2 ∈↓ Evi2 and (i1, i2) ∈ ∆)}

The labels are unchanged, that is, µ(e) = µi(e) for e ∈ Evi with i ∈ {1, 2} and µ(e1, e2) =

µ1(e1) = µ2(e2). Event relations in M∆ are derived from the relations in M1 andM2 as follows

(e1, e2) →∗ e iff (e1 →∗1 e or e2 →∗2 e); ei → e′i iff ei →∗i e′i; and (e1, e2) →∗ (e′1, e
′
2) iff

(e1 →∗1 e′1 and e2 →∗2 e′2). Similarly for the conflict relation with additional conflict derived

from propagation over causality.

According to the above definition, the event pairs (e1, e2) inEv correspond to events matched

by ∆ or denoting initial events for shared objects. Relations and labels are preserved in the com-

position as expected.

If the model obtained above is a valid labelled event structure then a composition for SD1

and SD2 according to ∆ exists. Otherwise the models are not composable.

Proposition 1. Let M1 = (E1, µ1) and M2 = (E2, µ2) be models for sequence diagrams

SD1 and SD2, and ∆ be a matching over instances and labels. The diagrams are composable

according to ∆ iff the matched composition modelM∆ = (E, µ) is a well defined labelled event

structure.
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A case that illustrates a non composable model is one where the same two messages (say

m1 and m2) are sent in the reverse order in two diagrams. The model obtained by matching

the respective send/receive events in both diagrams would lead to an invalid labelled event

structure as the model would contain a cycle which is not allowed. We illustrate the idea of

shared behaviour further with the example from Figure 2.5 to obtain the composition of sd1

and sd2 .

We consider the matching of messages and lifelines with the same name, i.e., messages m1

and m2, and lifelines for object a and object b. There is a matched composition model M∆ for

sd1 and sd2 as shown in Fig. 3.7.
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Figure 3.7: Matched composition model

It shows the matched initial events (e.g., (e0, f0)) and events matched by ∆ (e.g., (e3, f1) for

label (m1, s)). Event relations are derived from the original relations and any conflict that arises

from propagation over the extended causality relation. In this case, e6#(e7, f3) since e6#e7 and

consequently also e6#f4, and so on.

We want to allow a designer to add further constraints on the expected composition by for

example specifying behaviour that should never occur (forbidden events) or sequences of events

that must occur in a given order, and so on. This can be seen as a way to give priority to certain

specified interactions, and eliminates some of the possible traces in the composed model.

In the following, let M1 = (E1, µ1) and M2 = (E2, µ2) be composable models over ∆ for
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sequence diagrams SD1 and SD2 with ∆ a matching over labels and instances. Let M∆ =

(E, µ) be the matched composed model obtained, and Γ be the set of maximal configurations

(traces) in M∆.

Definition 8. A behavioural glue for M∆ = (E, µ) is given by G = (Evg,→∗g,#g, Fvg) where

Evg, Fvg ⊆ Ev are subsets of events that occur in E, and →∗g,#g ⊆ Evg × Evg are binary

relations (causality and conflict) defined over the events in Evg. Events in Fv are forbidden

events.

A behavioural glue G as defined above may contain relations over events which disagree

with the relations in M∆. However, we can always obtain an equivalent glue G′ that preserves

the relations in M∆ = (E, µ) by considering all the events that violate the original relations as

forbidden events.

Definition 9. A composed model SD1 ‖G SD2 for relation preserving glue G is given by MG =

(EG, µG) such that it corresponds to M∆ by removing all traces t ∈ Γ such that Fv ∩ t 6= ∅.

Consider the two cases of behavioural glue as shown in Fig. 3.8.

neg

a:A b:B
sd G1

j

G2
a:A b:B

m3

m2

sd

Figure 3.8: Examples of behavioural glue

The behavioural glue G1 imposes that the occurrence of message j is forbidden in the

composed model. Glue G2 imposes that for m3 to occur, m2 must have happened before.

For G1 we haveG1 = (∅, ∅, ∅, {e6, g6}) where the events associated to message j are forbidden.

This means that the composed model for sd1 and sd2 wrt G1 removes all traces which contain

events e6 and g6 from the matched composition model shown in Fig. 3.7. Since the events in ↓ e5

(and similarly ↓ g5) belong to another valid trace they are not removed. We obtain a composed

model which is identical to the matched composition model but where the highlighted relations

and events have been removed (i.e., events e6, e81, e91, g6, g81, g91 and relations).
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For G2we consider an equivalent glue which preserves the relations, namelyG2 = (Evg2,→∗g2

, ∅, Fvg2) where Evg2 = {(e7, f3), (g7, h3), e92, g92}, Fvg2 = {e91, g91} and the causality rela-

tion is such that→∗g2= {((e7, f3), e92), ((g7, h3), g92)}. In this case we need to remove all traces

which contain e91 and g91 from the matched composition model shown in Figure 3.7. The com-

posed model for sd1 and sd2 wrt G2 coincides with the composed model wrt G1 described

earlier. This follows because the traces affected by the forbidden events are the same.

3.6 Chapter Summary

This chapter has outlined a technique for the representation and composing of static and be-

havioural models at metamodel level, known as EMR. The outline of the method involves the

creation of logical constraints that uniquely identify the model. To combine the models, log-

ical constraints that glue the two models were produced. Some of these logical constraints

declare matching elements, while others are used to enforce behaviour involved in the com-

position, e.g. specifying behaviour that should never occur, or sequences of events that must

occur in a given order. This makes it possible for a designer to give priority to certain speci-

fied interactions, which is considered in the solution by eliminating unwanted traces from an

initial matched model obtained. In order to ensure the correctness of the composition process,

the semantics of the composition have been formalised with the assistance of LES. Chapter

4 demonstrates the first implementation of EMR to generate logical constraints that uniquely

identify sequence diagrams and compose them via Alloy.
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CHAPTER 4

COMPOSITION OF SEQUENCE DIAGRAMS VIA
ALLOY

4.1 Overview

This chapter uses the EMR technique discussed in Chapter 3 to transform and compose se-

quence diagrams via Alloy. The chapter consists of two main sections; in section 4.2, the

transformation rules are presented, which transform the UML sequence diagram elements into

Alloy. These rules create sets of logical constraints through EMR, which uniquely characterise

each diagram by restricting the metamodels.

In section 4.3, the static and behavioural glue for combining the models are described. These

types of glue feature constraints indicating how elements from the input models can be matched.

The transformation and composition process between sequence diagrams and Alloy is chal-

lenging, as creating logical constraints for large sequence diagrams is time-consuming and

prone to human error. As a result, this work utilises a Model-Driven Architecture (MDA)

approach to automating the transformation between the sequence diagram and Alloy.

4.2 Transformation of Sequence Diagrams to Alloy

As indicated in the overview, this approach is automated; making use of MDA techniques to

transform sequence diagrams into Alloy. The model transformation process is hereby described
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in three stages:

• Mapping the metamodels of the source to target models.

• Establishing transformation rules to map the elements of the sequence diagrams and Al-

loy.

• Implementing the transformation rules (which will be discussed in Appendix A).

In order to use an MDA methodology to automate the transformation between the sequence

diagrams and Alloy, metamodels for the source and target models need to be constructed, spec-

ifying the elements of the sequence diagrams that will be mapped to Alloy. The metamodels of

the sequence diagram and Alloy are presented in section 2.3.1.2, Figure 2.6 and section 2.5.1,

Figure 2.10. In this approach, the complete features of the Alloy language are not considered,

but instead only those features that are used in the present transformation are depicted. In the

next section, the respective transformation rules for mapping the elements of the sequence dia-

gram metamodel to the elements of the Alloy metamodel are described in greater depth.

4.2.1 Transformation Rules

This section describes the model transformation process, whereby any sequence diagram mod-

els conforming to the sequence diagram metamodel in Figure 2.6 are transformed into Alloy.

This requires a set of seven transformation rules to be defined for mapping the elements of the

sequence diagrams into Alloy features. These transformation rules are written in Java. Figure

4.1 presents an overview of the correspondence between the elements in the sequence diagrams

and Alloy.
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Figure 4.1: Overview of the thesis approach

Figure 4.1 gives an overview of the transformation rules to be presented in this section.

Each element of the sequence diagrams maps to its correspondent in Alloy. In total, this chapter

proposes seven transformation rules and these represent the main rules that consider both the

structure and dynamic interpretation of a sequence diagram when producing an Alloy model 1.

The model is obtained via EMR; that is, by considering the abstract syntax of a diagram

and the constraints obtained from the dynamic (LES-based) interpretation, the exact solution in

Alloy, corresponding to the intended sequence diagram, is generated. Moreover, our approach

1In Alloy, the associations are not defined separately, but within the rules.
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is such that if an Alloy model can be solved, it generates all possible solutions each of which

corresponds to a run of the original sequence diagram and in accordance to the formal semantics.

The syntax and semantics of Alloy are apparent in the following rules and code snippets, but

certain key notions will first be introduced.

Data domains for sequence diagrams are defined using signatures, given by the keyword sig

and represented as sets. Just as in object-oriented languages, a signature may extend another

signature, in which case the domain defined by the first is a subset of the domain of the extended

signature. A signature that is declared independently of any other is called a ’top-level signa-

ture’. Extensions of a signature are mutually disjoint, as are top-level signatures. A signature

can also be abstract, in which case its domain will only contain elements belonging to its ex-

tending signatures. As shown in Figure 4.1, for each element in the metamodel of the sequence

diagram, an abstract signature is generated and for each element at model level, a singleton

signature is also generated.

In Alloy, signatures may contain fields, which are captured by relations. Each relation must

be given a name. Axioms in Alloy are called facts and can also be given a name. Fields and

facts will be used in this approach to capture the association between the elements, as depicted

in Figure 4.1. Moreover, fields are used to define the association name, e.g. next, cover, etc.,

whereas facts are used to enforce the restrictions of the association.

Next, the transformation rules are described to demonstrate challenging aspects of the trans-

formation. In the transformation rules, the mapping between the elements of the metamodel and

model element is illustrated. In addition, we illustrate the transformation of the sequence dia-

gram, sd1 in Figure 2.5.

4.2.2 Rule 1- Transforming Lifelines

As previously established, for each element in the metamodel, the transformation generates

an abstract signature. Therefore, the transformation maps a lifeline element in the metamodel

of the sequence diagram into an abstract signature in Alloy. This abstract signature, called a

lifeline, as shown in Figure 4.2.
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Figure 4.2: Lifelines transformation rule

This means that the abstract signature lifeline has no elements, except those that belong to

its extension. Moreover, for each concrete lifeline in a sequence diagram, a one-line declaration

is obtained, seen in Figure 4.2 (line 2). The multiplicity keyword one in the declaration indicates

that there is precisely one instance of the signature. This means that the solver will only produce

one instance for each lifeline signature, which will uniquely identify the original lifeline in the

sequence diagram.

A lifeline in the sequence diagram has a name and belongs to a class. Thus, each lifeline

signature in Alloy has two fields: name and class, which define the name and class of the life-

line. For example, the lifelines in sd1 (Figure 2.5), as described in section 2.1.1, consist of two

lifelines and will be transformed into the following Alloy code:
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abstract sig Lifeline {}

one sig sd1_a extends Lifeline{name: one a, class: one A}

one sig sd1_b extends Lifeline{name: one b, class: one B}

Remark: The name of the signature at model level in all transformation rules consists of

two parts, as shown in Figure 4.3.

Figure 4.3: Naming in an Alloy signature

The first part of the signature name indicates the name of the sequence diagram the element

belongs to, e.g. sd1 a, whereas the second part indicates the actual name of the element in the

sequence diagram, e.g. sd1 a. The reason for adding the name of a sequence diagram is that

in Alloy, two signatures cannot exist with the same name. However, the name may be repeated

across different sequence diagrams. Therefore, problems can be avoided by adding information

about which diagram it belongs to, as shown in Figure 4.3.

4.2.3 Rule 2- Transforming Events

Event in this approach represents the class OccurrenceSpecification in the metamodel. Occur-

renceSpecification in turn refers to a moment in time (an event) at the beginning or end of a

message [116]. Each event in the sequence diagram appears on precisely one lifeline, whereas

a lifeline can have one or more events (as shown in the metamodel in Figure 2.6). Moreover,

the events on each lifeline must be ordered from top to bottom.
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Figure 4.4: Events transformation rule

The rule, as shown above in Figure 4.4, creates the domain ’Event’ at metamodel level. In

addition, the abstract signature has two fields: cover and next. The field, cover corresponds to a

relationship with the lifeline it belongs to. The metamodel shows that the OccurrenceSpecifica-

tion (event) can appear on precisely one lifeline. Hence, this association multiplicity has been

written in Alloy as the keyword, one at the beginning of the field, which means the events can

be linked to just one lifeline(line 3).

Further to the above, the field, next (line 3) corresponds to a relationship with a set of

events. The keyword, set in a field states that a single event can link to zero or more events in

the diagram. However, this relation is restricted by the fact at metamodel level (see Figure 4.4,

line 4). The fact states that the event can have at most one next linked to it in the same lifeline,

specifying the multiplicity restrictions between the GeneralOrder and OccurrenceSpecification

in the metamodel. This corresponds exactly to the definition of the OccurrenceSpecification and
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its association multiplicity with a lifeline in the UML specification [116]. The GeneralOrder is

explained in more detail below in rule 7.

Next, similar to the other element at model level, a one-line declaration is obtained for each

event from amongst the sequence diagram events in line 5 (see Figure 4.4). Finally, a fact

EventToLifeline in line 6, is generated to associate the model events to the lifelines.

For example, sd1 (Figure 2.5) consists of 10 events and is transformed into the following

Alloy code:

one sig sd1_e2 extends Event {}

one sig sd1_e3 extends Event {}

lone sig sd1_e6 extends Event {}

lone sig sd1_e7 extends Event {}

one sig sd1_e9 extends Event {}

one sig sd1_g2 extends Event {}

one sig sd1_g3 extends Event {}

lone sig sd1_g6 extends Event {}

lone sig sd1_g7 extends Event {}

one sig sd1_g9 extends Event {}

The above code declares the sd1 events mapped from the LES in Figure 2.9. Notice that

this minimises of what was shown in the previous section, with LES. In our semantics, there are

events to indicate the beginning and end of an interaction fragment, as well as communication

events. In Alloy, we omitted the fragment events to reduce the size of the model. Thus, the

events declared above correspond to the messages send and receive.

For consistency, the same event names are used here as are used in the semantic model for

the same diagram (see Figure 2.9). Incidentally, it is not necessary to duplicate events ’e9’ or

’g9’, because Alloy will produce two solutions to represent two possible alternative executions.

The following fact, EventToLifeline connects the model events to the lifelines.

fact EventToLifeline {

e2.cover = sd1_a and g2.cover = sd1_b and e3.cover = sd1_a and g3.cover = sd1_b and e6.

cover = sd1_a and g6.cover = sd1_b and e7.cover = sd1_a and g7.cover = sd1_b and e9.

cover = sd1_a and g9.cover = sd1_b }

77



4.2.4 Rule 3- Transforming Messages

As previously established, a message represents a communication object shown as an arrow that

connects the respective lifelines [116]. In the metamodel, a Message has two MessageEnds,

namely a SendEvent and a ReceiveEvent, which cover a Lifeline. A ReceiveEvent must always

be preceded by a SendEvent.

Figure 4.5: The messages transformation rule

As Figure 4.5 shows, the transformation rule maps the message element in the metamodel

to an abstract signature and fact. The abstract signature declares the message domain, as shown

in line 6. This signature has two fields, ’send’ and ’receive’; both corresponding to one event

1. The facts on lines 7-8 describe two constraints over the elements in the domain, as captured

in the rule. The first fact (line 7), called MessageEventsOrder, states that for any message,

1In this approach, it is assumed that the message always has ’send’ and ’receive’ events
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m, m.receive must belong to the set: m.send.next. This means that m.receive must always be

preceded by m.send. The second fact (line 8) states that all events considered are either ’send’ or

’receive’ events. The constraints (lines 7, 8) must be satisfied in all sequence diagram messages,

in order to ensure the correctness of the transformation. In other words, these constraints are

designed to make sure that the Alloy model always produces a correct message, based on the

definition of the sequence diagram messages in [116].

Line 9 declares the concrete message. As shown, the message contains a field name, which

defines the actual message name in the diagram. Finally, the fact in line 10 connects the message

with its send/receive events. The following snippet of code defines the sd1 messages:

one sig sd1_i extends Message { name :one i}

one sig sd1_m1 extends Message { name :one m1}

lone sig sd1_m2 extends Message { name : one m2}

lone sig sd1_j extends Message { name : one j}

one sig sd1_m3 extends Message { name :one m3}

Some of the messages in the Alloy code above are declared as lone; a multiplicity keyword

in Alloy meaning 0 or 1, while others are declared as one, meaning exactly one. This relates

to the fact that messages within an alternative CombinedFragment are not guaranteed to occur.

This will be explained in more detail later, in an alternative CombinedFragment rule. In order

to associate messages and events, a fact is added to specify this as the code below shows.

fact { sd1_i.send =e2 and sd1_i.receive =g2 and

sd1_m1.send =e3 and sd1_m1.receive =g3 and

sd1_j.send =e6 and sd1_j.receive =g6 and

sd1_m2.send =e7 and sd1_m2.receive =g7 and

sd1_m3.send =e9 and sd1_m3.receive =g9}

4.2.5 Rule 4- Transforming CombinedFragment

According to the UML specifications [116], a CombinedFragment has an InteractionOperator,

given by type, and one or more InteractionOperands. An InteractionOperand covers a set of

Events, CombinedFragments, or both.
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Figure 4.6: The CombinedFragment transformation rule

Lines 11-12 in Figure 4.6 define the metamodel elements, which map the CombinedFrag-

ments and InteractionOperands to abstract signatures. The abstract signatures for Combined-

Fragments consist of two fields: operand and type. The operand field shows that the Com-

binedFragment contains one or more InteractionOperand, whereas the type field specifies the

InteractionOperator, such as par or alt. The abstract signatures for the InteractionOperand

contain a field called cover, which shows that the InteractionOperand covers a set of events,

CombinedFragments, or both. In addition, three facts impose further constraints on the ele-

ments of these domains; the fact on line 13 states that every event belongs to at most, one

InteractionOperand and the fact in line 14 states that every CombinedFragment belongs to, at

most, one InteractionOperand, indicating fragment nesting. The fact in line 15 then states that

all InteractionOperands are operands to at most, one CombinedFragment. Lines 16-17 define

the CombinedFragments and their InteractionOperands at modelling level. The fact in line 18 is
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used to specify the type of CombinedFragment operator. The OperandToCF fact connects each

InteractionOperand to its CombinedFragment, while the fact, EventToCF connects the events

belonging to the CombinedFragment to the corresponding InteractionOperands. Thus, the con-

straints defined above uniquely identify the CombinedFragment of the sequence diagram.

4.2.6 Rule 5- Transforming Alternative CombinedFragment

As stated in the Background Chapter, section 2.2.1, the CombinedFragment, alt consists of two

or more InteractionOperands. Each InteractionOperand describes a choice of behaviour. Only

one of the alternative InteractionOperand is executed if the guard expression (where present) is

evaluated as ’true’.

// alt : exactly one operand will be executed

fact Alt - Execution {all cf: CombinedFragment | (cf. TYPE = cf_TYPE_ALT ) => # cf.

operand = 1}

In order to preserve the semantics of alternative CombinedFragments, the above fact states that

exactly one InteractionOperand is executed. Note that # in fact, AltExecution corresponds to

the Alloy’s cardinality operator. A consequence of this fact is that every time we run the code

a different set of events (associated with a particular InteractionOperand) may be executed, but

every time we only execute one InteractionOperand of an alternative CombinedFragment.

The Alloy code lines presented below describe an alternative CombinedFragment with two

InteractionOperands and no guards, as is the case for the second CombinedFragment from sd1,

shown in Figure 2.5.

one sig sd1_CF2 extends CombinedFragment {}

lone sig sd1_CF2_Op1 extends InteractionOperand {}

lone sig sd1_CF2_Op2 extends InteractionOperand {}

fact {all cf: sd1_CF2 | cf. TYPE = CF_TYPE_ALT }

The first three lines in the Alloy code above define the CombinedFragment and its Interac-

tionOperands. The lone keyword may be noted at the beginning of the InteractionOperand sig-

natures; this is necessary, as only one InteractionOperand will be able to execute in accordance
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with the Alt-Execution fact. The fact in the last line specifies the type of CombinedFragment as

an alternative. The following snippet of code shows two facts connecting the CombinedFrag-

ment with its InteractionOperands and the InteractionOperands with their events (declared in

rule 2).

fact OperandToCF {

sd1_CF2_Op1 in sd1_CF2.operand

sd1_CF2_Op2 in sd1_CF2.operand }

fact EventToCF {

e6 in sd1_CF2_Op1 . cover and g6 in sd1_CF2_Op1 . cover

and e7 in sd1_CF2_Op2 . cover and g7 in sd1_CF2_Op2 . cover }

The fact OperandToCF connects each InteractionOperand of the second CombinedFrag-

ment of sd1 to its CombinedFragment, while the fact EventToCF connects the events declared in

lines 15-17 which belong to this CombinedFragment to the corresponding InteractionOperands.

4.2.7 Rule 6- Transforming Parallel CombinedFragment

In Alloy, the representation of a parallel CombinedFragment is similar to that of an alternative

CombinedFragment, but without the fact, AltExecution. The parallel CombinedFragment with

two InteractionOperands is described by the snippets of Alloy code presented below, as is the

case for the first CombinedFragment from sd1, shown in Figure 2.5.

one sig sd1_CF1 extends Combinedfragment{}

one sig sd1_CF1_Op1 extends Operand{}

one sig sd1_CF1_Op2 extends Operand{}

fact {all cf: sd1_CF2 | cf. TYPE = CF_TYPE_PAR }

fact{

sd1_CF1_Op1 in CF.operand

sd1_CF1_Op2 in CF.operand}

fact EventToOp{

sd1_e2 in sd1_CF1_Op1.cover and sd1_g2 in sd1_CF1_Op1.cover

sd1_e3 in sd1_CF1_Op2.cover and sd1_g3 in sd1_CF1_Op2.cover}

The transformation of a parallel CombinedFragment declares the InteractionOperands as

one (the keyword one at the beginning of the signature), since all InteractionOperands must
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occur at all times. The Alloy model containing a parallel CombinedFragment must show a

parallel execution of sd1 CF1 Op1 and sd1 CF1 Op2; in other words, the events covered by

each InteractionOperand are not explicitly related by next and can thus occur in an arbitrary

order. This is in accordance with the LES semantics presented earlier in Chapter 2, section

2.2.2. It implies a concurrency relationship between events in different InteractionOperands,

whilst the events within an InteractionOperand remain ordered in the usual way by the next

relation.

Finally, a rule is added to capture the notion of GeneralOrdering from the interaction meta-

model, whereby a binary relationship is captured between two OccurrenceSpecifications events.

4.2.8 Rule 7- Transforming GeneralOrder

GeneralOrdering represents a binary relationship between two events. This is specified in Alloy

by the logical constraint called GeneralOrder, which specifies the order in which all messages

and their underlying events occur along the lifelines of the corresponding object instances. The

transitive closure of the general ordering is irreflexive.
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Figure 4.7: GeneralOrder in Alloy

In the case of a basic sequence diagram without CombinedFragments, this implies a total

ordering along the events of the lifeline. It is specified in Alloy by another logical constraint

called GeneralOrder (see Figure 4.7). This fact specifies the order of all events occur along

the lifelines. In the fact (Figure 4.7-line 21), we make use of the unary operator ∧c to denote

the transitive closure of c. The following code depicts the order of the elements in the sd1

Figure. 2.5.

fact GeneralOrder {

all l: sd1_a + sd1_b , ev1:sd1_CF1.operand.cover ,

ev2:sd1_ CF2.operand.cover | ev1.cover = l

and ev2.cover = l => ev2 in ev1.ˆ next

and

all l: sd1_a , ev1:sd1_CF2.operand.cover ,

ev2:e9 | ev1.cover = l => ev2 in ev1.ˆ next

and
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all l: sd1_b , ev1:sd1_cf2.operand.cover ,

ev2:g9 | ev1.cover = l => ev2 in ev1.ˆ next}

The fact in the Alloy code above states that all events ev1 and ev2 such that ev1 belongs to

the first CombinedFragment and ev2 belongs to the second CombinedFragment, if they cover

the same lifeline then ev2 belongs to the transitive closure of ev1.next, that is, it necessarily

occurs after ev1. Note that ev1 6= ev2 since they are elements from different extensions of

CombinedFragment and necessarily disjoint in Alloy. The above code shows that the occurrence

of an event e9 or g9 must be preceded by the occurrence of events covered by the second

CombinedFragment. In other words, the sending/receiving of message m3 can only occur if the

CombinedFragments have executed beforehand.

4.3 Composition of Sequence Diagrams in Alloy

Model composition requires a composition glue to combine the partial models, as mentioned in

Chapter 3. Using this approach, two kinds of composition will be demonstrated here: syntactic

glue and behavioural glue. The mechanism of each will be explained in greater depth in the

following subsections.

4.3.1 Syntactic Glue

In Alloy, the composition conditions mentioned in Chapter 2, section 2.3 could be encoded by

adding facts, which must be satisfied to match and compose the overlapping elements. The goal

of the syntactic glue is to match the syntactic properties, such as the name and type (if present)

of the overlapping elements in the input diagrams and then to compose them.
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Figure 4.8: Composition mechanism in Alloy

The procedure for composition in Alloy (Figure 4.8) can be explained as follows. First,

a new Alloy model, A3, is generated, representing the result of merging the original models.

Second, all elements of A1 are copied to A3. Third, all elements of A2 are copied, except for

duplicate elements, such as abstract signatures that are shared in the two models. Moreover,

the abstract signatures represent the elements of the metamodel, such as the lifeline, message

or event already defined in any sequence diagram. Therefore, Alloy does not permit the dupli-

cation of any abstract signatures that are already defined. Thus, only abstract signatures of the

second Alloy model, A2, which are not included in the A1 model, may be copied, such as the

abstract signature of CombinedFragments and InteractionOperands, if the A2 model contains

CombinedFragments.

Fourth, all element signatures of A2 that correspond to A1 elements must be changed from

one to lone, in order to be composed. Changing the signature to lone enables the atom, which

represents the signature in the Alloy solution (instance) to be removed, by changing the car-

dinality of the signature to ’0’. The elements of A2 that do not have any correspondence will

remain as one, in order to occur in the final composed instance. The following subsection will

explain in greater depth the mechanism of composition for the main sequence diagram elements,

such as lifelines, messages and CombinedFragments.
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4.3.1.1 Composition of Lifelines:

For any two lifelines declared as matching in the glue, a matching fact is generated. This fact

will match properties, such as the lifeline names and classes (types). For example, if there are

two Alloy models, A1 and A2, representing two sequence diagrams each with two lifelines and

these lifelines have the same name and class, in order for them to be composed, the following

fact must be specified.

fact lifelineEquality {

all L1_1: sd1_L1, L2_1: sd2_L1 |(L1_1.name = L2_1.name && L1_1.class = L2_1.class) =># L2_1

=0}

all L2_1: sd1_L2, L2_2: sd2_L2 |(L2_1.name = L2_2.name && L2_1.class = L2_2.class) =># L2_2

=0}

The fact, lifelineEquality defines that if the names and classes of the lifelines are matching,

then the lifelines will be composed into sd1 L1, sd1 L2, while sd2 L1, sd2 L2 of Alloy

model A2 will be removed. To illustrate this further, the mechanism of the facts lifelineEqual-

ity is first to match the lifeline names and classes, such that (L1 1.name=L2 1.name) and

(L1 1.class = L2 2.class), If one property does not match, the Unsat Core will high-

light the unmatched properties. Otherwise, the lifelines will be matched. Secondly, the atoms

of the lifelines signatures, i.e. (sd2 L1, sd2 L2) of model A2 will be removed in the A3

solution by changing the signature cardinality to ’0’, i.e.(#L2 1 =0 and #L2 2=0). Finally,

all events linked to sd2 L1 and sd2 L2, which are removed, will be linked to sd1 L1 and

sd1 L2 as the following fact shows. This is due to sd2 L1 and sd2 L2 will not occur in the

A3 solution (instance). Therefore, the events must be linked to the composed lifeline, as shown

in Figure 4.9.

fact EventToLifeline {

sd2_e1.cover = sd1_L1 and sd2_g1.cover = sd1_L2

.....}
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Figure 4.9: Lifeline compositions

For example, consider the diagrams, sd1 and sd2 (see Figure 2.5), each with two lifelines

that have the same name and class. In order to compose these lifelines, the following fact must

be specified:

fact lifelineEquality {

all L1: sd1_a , L2: sd2_a |

(L1.name=L2.name && L1.class=L2.class) =># L2 =0

all L3: sd1_b , L4: sd2_b |

(L3.name=L4.name && L3.class=L4.class) =># L4 =0}

fact EventToLifeline {

sd2_e2. cover = sd1_a and sd2_g2. cover = sd1_b and sd2_e3. cover = sd1_a and sd2_g3.

cover = sd1_b and sd2_e6. cover = sd1_a and sd2_g6. cover = sd1_b and sd2_e7. cover =

sd1_a and sd2_g7. cover = sd1_b and sd2_e9. cover = sd1_a and sd2_g9. cover = sd1_b }

4.3.1.2 Composition of Messages:

The same composition procedure is applied for messages; all message signatures of A2 that cor-

respond to A1 messages must be changed from one to lone, in order to be composed. However,

the A2 messages, which do not have any correspondence, will remain as one. Thus, for any
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two common messages with the same name and ’send’ and ’receive’ from the same lifelines -

meaning that the lifelines the messages send and receive from have the same name and class - a

matching fact is generated. The fact will match the message name and lifelines these messages

send and receive from. For example, consider two Alloy models A1 and A2, representing two

sequence diagrams in Figure 4.10.

Figure 4.10: A composition example

Messages M3 in each diagram are matched, due to these messages having the same name

and their send and receive lifelines are matched. In order to compose messages with the same

name from each of the models, the following fact must be specified:
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fact {all m1: sd1_M2, m2: sd2_M2|(m1.name = m2.name && m1.send = m2.send && m1.receive =

m2.receive)=> #m2 =0 && #m2.send =0 && #m2.receive =0}

Once the above fact returns true, then it will be composed into one; namely sd1 M2, while

sd2 M2 and its ’send’ and ’receive’ events will be removed; similar to what was explained for

the lifeline composition. Finally, in relation to composing messages, the composed message

events, ’send’ and ’receive’, as they are removed, are replaced with their equivalent message

events to apply the behavioural environment of both models to this message (see Figure 4.11).

Thus, all messages events linked to ’send’ and ’receive’ events of sd2 M2 via the next relation

will be linked to ’send’ and ’receive’ events, sd1 M2. This means that the events occurring

before and after the ’send’ and ’receive’ events of sd1 M2 will become before and after send

and receive events, sd1 M2, due to sd2 M2 being removed (Figure 4.11).

Figure 4.11: Messages compositions

4.3.1.3 Composition of a CombinedFragment:

In some cases, the sequence diagram is consists of one or more CombinedFragments. The

composition of the sequence diagrams with a CombinedFragment is more complex, because it

90



presents complex behaviour, which requires extra logical constraints. In fact, there are many

cases of composing sequence diagrams with one or more CombinedFragments. However, in

this section, two such cases are described, whereas the other scenarios can be composed using

the same techniques presented in this section.

Figure 4.12: A composition example of sequence diagrams with CombinedFragments

The cases shown in Figure 4.12 consist of two sequence diagrams, each containing two

lifelines and two messages. The sequence diagram, Sd1 as shown, contains an alternative Com-

binedFragment. Messages M2 in both diagrams are matched. However, M2 in Sd1 is allocated

in the CombinedFragment (Figure 4.12). In order to compose this case, two steps are required.

First, the messages and lifelines of the two diagrams need to be matched and composed, which

can be done using the composition procedure explained in the previous sections. Secondly, if
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the CombinedFragment is an ’alt’ type, as is the case illustrated in the example, then the occur-

rence of the list of sd2 messages, subsequent to the removed message, i.e.M3, must be linked

with the occurrence of the message M2 of sd1, which replaces M2 of sd2. Hence, the M3

message that now follows the M2 of sd1 will not occur unless the M2 message occurs. This

process can be carried out by making the cardinality of theM3 send and receive messages equal

to the cardinality of the M2 send and receive,which allocated in the ’alt’ CombinedFragment.

This is illustrated in the fact below:

fact {# sd1_M2.send =# sd2_M3.send and # sd1_M2. receive =# sd2_M2. receive}

However, for the case of ’par’, there is no occurrence link, as the events belonging to par

CombinedFragment will occur in all solutions, but in a different order. Thus, only the messages

and lifelines are composed if the type of CombinedFragment is par in Figure 4.12-A.

For example, consider the diagrams, sd1 and sd2 (see Figure 2.5); the messagesM1 andM2

are matched in both diagrams. When these are composed, as shown in the ’Message composi-

tion’ section, the occurrence of the messages follows M2 of Sd2, such that M4 and M5 must

be linked with M2 as it is allocated in ’alt’ CombinedFragment. However, the messages follow

M1 such as new will not change its occurrence as it is allocated in ’par’ CombinedFragment.

This is illustrated in the fact below:

fact {

#sd1_M2.send = #sd2_M4.send and #sd1_M2.receive = #sd2_M4.receive

#sd1_M2.send = #sd2_M5.send and #sd1_M2.receive = #sd2_M5.receive}

There are other scenarios where both diagrams consist of two CombinedFragments. This

case is shown in Figure 4.13, where two messages are matched from sd1, ’M1’ and ’M5’, and

two with ’M1’ and ’M5’ of sd2. However, if the messages are composed, the solver will return

’unsat’, due to the restriction of the metamodel, as shown in Figure 4.14.

The metamodel restriction will necessitate the composition of the InteractionOperands cov-

ering the message events and the CombinedFragment the InteractionOperand belongs to. This

issue can be resolved by generating the fact which composes two CombinedFragments. The
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Figure 4.13: Sequence diagrams with matching CombinedFragments

Figure 4.14: A CombinedFragment and InteractionOperand in the sequence diagram meta-
model

matching condition in this case checks the operator types of CombinedFragments. If the op-

erator types are the same (i.e. if both are alt), then the CombinedFragments will be able to

compose, as the following code shows:

fact Combinedfragment { all CF1: sd1_Cf1 , CF1: sd2_Cf2 | (CF1.kind = CF2.kind ) =># CF2 =0

and #sd2_CF2_Op1=0 and #sd2_CF2_Op2=0}

However, the limitation of the approach is revealed if the operators are different (i.e. if one

is an ’alt’ and the other is a ’par’ type), Alloy Analyzer will return ’unsat’. This is due to

the inconsistent behaviour of the composed model (the operator types being different). Finally,

the CombinedFragment of the sd2 consists of more than the composed InteractionOperands,
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namely the InteractionOperand contains messages M6 with no match, as shown in Figure 4.13.

Therefore, the InteractionOperand will be linked to the CombinedFragment of sd1.

4.3.1.4 Composition of the Running Example:

To evaluate this approach, the Alloy models were composed for sd1 and sd2 (see Figure 2.5).

Alloy solutions for the composed model (A3), referred to as instances, were analysed. The

solutions, shown in Figure 4.15, were compared with the LES model illustrated in Figure 2.9

and found to correspond to it. Figure 4.15, showing the Alloy instance consists of the messages

and their events, where the messages are highlighted in red and their events are in black type.

Moreover, the solution shows the order from top to bottom. Both instances demonstrate that

’m1’ occurs first and then ’i’ is followed by ’j’ or ’m2’ whereby the messages belong to the

CombinedFragment, ’alt’. A new message is shown in parallel with ’i’ and ’j’, but it always

comes after ’m1’. Finally, ’m3’ comes before ’m4’ in one instance and after ’m5’, in another,

as Figure 4.15 shows. This is due to messages, ’m3’, ’m4’, and ’m5’ being parallel, as shown

in Figure 2.9. However, note that whereas LES has a true concurrent semantics, traces in Al-

loy have an interleaving semantics, which means every instance shows a different order. The

complete Alloy code for the running example is presented in Appendix B.

4.3.2 Behaviour Glue

This section describes the mechanism of a composition glue known as behavioural glue. The

aim of this glue, as mentioned earlier, is to allow a designer to add further constraints to the

composed model, in order to specify behaviour that should never occur (forbidden events), or

sequences of events that must occur in a given order. This can be seen as a way of giving prior-

ity to certain specified interactions and eliminating some of the possible traces in the composed

model. The behavioural glue described in Chapter 3, section 3.6.3 can be captured as facts in

Alloy. All messages and their send and receive events belonging to a negative CombinedFrag-

ment are added to a fact called ’negativeTrace’. In the body of this fact, the cardinality of the

messages and their ’send’ and ’receive’ events are specified as ’0’. Thus, the fact, negativeTrace

94



Figure 4.15: Examples of composition traces

will remove all messages and their events from the Alloy solution. The examples of behavioural

glue introduced in Chapter 3, Figure 3.9 can be seen in the following facts:

fact negativeTrace {#sd1_j=0

all sd1_j_send:sd1_e6, sd1_j_receive:sd1_g6 |

#sd1_j_send=0 and #sd1_j_receive=0}

Sometimes, when forbidden messages are removed from a composed diagram, it becomes

clear that some messages need to be reallocated, so that they occur in the optimal order. This

means that some messages need to align their occurrences with the point following or preceding

the occurrence of a specific message in the composed model. In consideration of the example

in Figure 3.9, it is evident that the messages, m2 and j belong to an alt CombinedFragment and

95



the message, m3 will follow the CombinedFragment. As the example indicates j as a forbidden

message, J will never occur in the Alloy instance after using the fact, negativeTrace, mentioned

above (see Figure 4.16). However, as the message, m2 belongs to an alt CombinedFragment,

it might not occur in all solutions, but m3 may occur in any solutions where the m2 message

does not occur. This can be revealed as an incorrect result because the traces are affected by the

forbidden events. Thus, after removing the forbidden message, it is essential to ensure that for

m3 to occur, m2 must have previously occurred, in order to make sure that the whole solution

presents a valid result. This can be encoded in a fact called an ’occurrence’. The occurrence

fact specifies that the cardinality of the message occurring first is equal to the cardinality of the

message which subsequently occurs. Following this, it is specified that the order of the message

and the underlying ’send’ and ’receive’ events that need to occur first, be followed by the ’send’

and ’receive’ events of the second message. The examples of behavioural glue introduced in

Chapter 3, Figure 3.9 can be seen in the following facts:

fact negativeTrace {#sd1_j=0

all sd1_j_send:sd1_e6, sd1_j_receive:sd1_g6 |

#sd1_j_send=0 and #sd1_j_receive=0}

fact occurrence {

#sd1_m3.send =#sd1_m2.send and #sd1_m3.receive =# sd1_m2.receive

all sd1_m2_send:sd1_e7, sd1_m3_send:sd1_e9 |

sd1_m3_send in sd1_m2_send.ˆnext

all sd1_m2_receive:sd1_g7, sd1_m3_receive:sd1_g9 |

sd1_m3_receive in sd1_m2_receive.ˆnext}

The negativeTrace fact, above states that ’j’ does not occur and moreover, neither do the

associated events. The occurrence fact states that each time ’m3’ occurs, it must occur with

’m2’. In other words, ’m2’ must occur first. Again, occurrence is controlled by the cardinality

operator, #. In addition, the behavioural glue for the ’occurrence’ fact also defines the order

of ’m3’ and the underlying ’send’ and ’receive’ events always come after the message, ’m2’.

The result of the above behavioural glue, above was checked with Alloy and the message ’j’

does not occur in any solution obtained. Figure 4.16 shows two instances resulting from the
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composition of the diagrams, sd1 and sd2, with respect to either glue. These instances represent

the running of the traces in the semantic model, as shown in Chapter 3, Figure 3.8.

Figure 4.16: Examples of composition traces after removing message j

4.3.3 Limitations of the Approach:

In this chapter, an automated method of sequence diagram composition via Alloy has been pre-

sented. However, during the evaluation of this approach, Alloy revealed a performance issue

when composing large sequence diagrams, whereby it can take hours to produce a solution and

sometimes, the memory runs out. Consequently, only some cases of CombinedFragment com-

position have been considered in this chapter. Therefore, instead of considering more scenarios

in Alloy, which will not guarantee that Alloy can handle them, it was decided to encode and
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formalise the composition glue in Z3, as it is a state-of-the-art constraint solver. Hence, the

Z3 SMT solver undertook the composition and the composition glue was formalised to be able

to compose all possible scenarios, as shown in Chapter 5. In addition, Chapter 6 illustrates

a comparison study, confirming the correction, whereby Z3 was chosen to compose complex

sequence diagrams.

The transformation in this chapter illustrates seven transformation rules which transform

part of the elements of a sequence diagram. However, some of the sequence diagram elements,

such as an ’option’ or ’loop’ CombinedFragment are not covered in this approach. The option

defined in [116] as a CombinedFragment represents a choice of behaviour, where either the

InteractionOperand occurs, or else nothing occurs. The option is semantically equivalent to an

alternative CombinedFragment, but contains only one InteractionOperand. The transformation

of an option can be performed in the same way as the alternative CombinedFragment, but only

one InteractionOperand will be generated for it instead of two, as stated in the definition. The

occurrence option is known to be associated with a condition. This condition can be encoded

as a fact, which will occur after the fact satisfies.

The loop operator specifies that all the messages forming part of its InteractionOperand are

recurrent (looped) a specified number of times, based on the constraint attached to it; while still

preserving the order between the messages. A loop CombinedFragment consists of only one

InteractionOperand, but may contain other CombinedFragments. This CombinedFragment may

then be transformed into a CombinedFragment signature with one InteractionOperand, similar

to what is presented in the CombinedFragment rule. To model all possible iterations of the loop,

the transformation needs to define the number of singleton signatures equal to the number of

iterations, in order to represent the messages belonging to the loop. For example, if message

’m1’ belongs to a loop CombinedFragment that loops five times, then five message signatures

are defined, namely ’m1 1’, ’m1 2’, etc. The first part of the name represents the name of the

message (m1) and the second part represents the number of iterations, as Figure 4.17, below

shows.
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Figure 4.17: Finite loop in Alloy

4.4 Chapter Summary

Chapter 4 presents an automated method of sequence diagram composition via Alloy. The out-

line of the method involves the creation of logical constraints through EMR, which uniquely

identify each component sequence diagram as an instance of the metamodel. To combine the

models, logical constraints that compose the two models are produced. Some of these logical

constraints declare matching elements and some enforce behaviour involved in the composi-

tion, such as specifying behaviour that should never occur, or sequences of events that must

occur in a given order. This makes it possible for a designer to give priority to certain spec-

ified interactions, which are considered in the solution by eliminating unwanted traces from

an initial matched model obtained. The result obtained automatically with Alloy preserves the

formal interpretation of parallel composition with synchronisation glue. The model transforma-

tions presented in this chapter were implemented to automate the creation of logical constraints

from sequence diagrams. Appendix A describes the implementation of this approach, which is

developed as an eclipse plug-in called SD2Alloy.
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CHAPTER 5

COMPOSITION OF SEQUENCE DIAGRAMS VIA
Z3

5.1 Overview

In Chapter 4, a fully automated composition technique using Alloy was proposed. The approach

does not, however, scale particularly well, especially when solving a complex model, which can

take hours to produce a solution. To counteract this weakness, this chapter presents an alterna-

tive method of composition using the Z3-SMT solver. Z3 was selected as a target framework,

due to it being a high-performance SMT solver, which can resolve the shortcomings of Alloy

performance. In addition, the other advantage of using Z3 is that it is capable of displaying

the overall model in a single solution, whereas Alloy produces as many solutions as there are

possible traces in the model, with each solution representing a different trace.

In this chapter, there are two fundamental points that need to be considered when composing

models: the mechanism must be well-defined and feasible for automation, and the composition

algorithm must be efficient.

5.2 Sequence Diagrams in Z3

This section introduces the approach of transforming and composing sequence diagrams in

Z3. As mentioned earlier, one of the aims of this approach is that mechanism must be well-
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defined and feasible for automation. To address this point, the semantics of the models and their

composition in the transformation is encoded to logical constraints, leaving the constraint solver

to produce a solution for the composition, in accordance with these semantics. The second

point, namely the efficiency of the mechanism, requires some further analysis by running a

case study and various experiments, as well as making a comparison with suitable alternatives.

Naturally, the problem arises when the models to be composed increase in size and complexity,

but this is also influenced by how the transformation is implemented, the complexity of the

composition algorithm, and the programming language used. However, in this chapter, the

relevant approach is evaluated solely through a case study, i.e. a petrol station, whereas Chapter

7 presents a comparison study of the two approaches.

In Chapter 4, the approach adopted taken does not directly involve an algorithm to compose

sequence diagrams, but rather uses Alloy to produce all possible solutions for the composition,

where each solution is a possible trace of execution in the composed model. The composed

model in Alloy satisfies the conjunction of all logical constraints underlying the models to be

composed and additional matching constraints. The approach does not, however, explicitly

incorporate the semantics of scenarios in the transformation itself. However, the approach in

this chapter is more generic and covers a more complex form of composition.

As mentioned earlier in the overview, Alloy has shown some limitations in scalability. After

closer inspection, the scalability problems would appear to be due to the fact that Alloy Ana-

lyzer, which underlies Alloy, is SAT-solver based and SAT-solving time may vary enormously,

depending on factors such as the number of variables, the ordering of clauses and the average

length of the clause [46]. Consequently, the time needed for analysis in Alloy will increase

alongside its scope. Despite the fact this is more likely to be a problem inherent in Alloy and

its implementation, another state-of-the-art solver will be explored in this chapter, namely Z3-

SMT.
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Figure 5.1: Composition approach in Z3

Figure 5.1 presents an overview of the composition approach in Z3. The approach to com-

posing sequence diagrams in this instance can be described as follows: sequence diagram

models are transformed into a textual representation of their underlying semantics in LES (see

Chapter 2, section 2.2.2). Next, the LES models are reduced into LES’ and transformed into

equivalent Z3 models. The transformation is defined at metamodel level, basically obtaining

a metamodel representation of sequence diagrams and LES, and translating elements of one

metamodel into elements of the other. The transformation of LES’ essentially consists of a set

of events, relations and additional labels, which connect the LES’ model and sequence diagram.

All of these elements are defined in Z3. Thus, a unique Z3 model is produced for each LES’

model, which, if solved, will produce a solution as a graph. This graph is isomorphic with the

original LES’ model, as illustrated in Figure 5.1 (see section 6.2.4).

After the above, a set of logical constraints representing the composition glue is produced.

These constraints match the common elements of the input models. The constraint solver then

solves these logical constraints and gives a solution corresponding to the augmented model, in

accordance with the semantics of parallel composition. If the match cannot be made, Z3 will
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return ’unsat’ (unsatisfiable), which means that no solution exists.

In the present approach, all models have been converted into Z3 specifications. This chap-

ter focuses on the LES’ to Z3 transformation step, whereas the transformation from sequence

diagram to LES has been explained in Chapter 2, section 2.2.2. The mapping between a source

(LES’) and target (Z3) metamodel is defined by transformation rules, executed by a transfor-

mation engine for the source model (acting as input), in order to generate its equivalent target

model (output).

5.2.1 Eliminating LES Model Events, except Message Send/Receive

In this approach, as mentioned in the previous section, LES model events are eliminated, ex-

cept message send/receive events. Consequently, all the events that are not send or receive are

removed, such as the beginning and end of an CombinedFragment, or the initial event of the

lifeline. The aim of this is to reduce the size of the LES model and focus solely on the behaviour

of model message events that represent the actual behaviour of the sequence diagram. This is

for the sake of simplicity, when analysing transformation and composition models. For exam-

ple, the CombinedFragments of the sequence diagram affect the message events that belong to

it, regardless of the beginning and end events and the CombinedFragments. The main goal of

the beginning and end events and the CombinedFragments is merely to define the location of

the CombinedFragments in the LES model.

Figure 5.2 illustrates the reduction of the LES model for the sequence diagram, sd1 (Fig-

ure 3.7), which has been used in this thesis as a running example. As previously stated, the

reduction process removes the events and relations belonging to it - shown in red - while the

’send and receive’ events which remain are indicated in blue (see Figures 5.2-A, B). Moreover,

it is important to mention that the events removed do not affect the behaviour or mapping of

the concrete source sequence diagram. This means the dynamic interpretation of the sequence

diagram is preserved.
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Figure 5.2: LES model and its LES’

5.2.2 LES2Z3: Model Transformation

As described in section 6.2, conducting a model transformation requires metamodels for the

source and the target to be constructed to specify the elements of the source model that will

be mapped to the elements of the target model. These are the source (LES) and the target

(Z3-SMT) metamodels.

First, some of the main notations of Z3s syntax are recalled, which will be apparent in the

following rules. Z3 supports many types of declaration, e.g. Integer, Real and Boolean, as well

as allowing users to declare new sorts (types). The DeclareSort command is used to define the

element domains, such as ’lifeline’, ’event’ and ’message’. Furthermore, all the model elements

are declared as a ’Constant’, which is a function that does not accept any arguments. Const(a,A)

is written to declare a constant, ’a’ of type A.
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Functions in Z3 are the basic building blocks of SMT formulas. They have no side effects

and are total (i.e. they are defined for any element in the domain). Functions are used in this

approach to define the relationship between elements, namely causality, conflict, etc. Finally,

Z3 supports Boolean operators, such as And, Or, Not, Implies (logical implication), and equality

== (bi-implication), among others. Universal (ForAll) quantifiers are also supported by Z3. In

general, expressions in Z3 are built using set theoretical relational operators and constants.

Table 5.1 shows the mapping between the main concepts of LES (including labels) and

Z3. In particular, LES is understood here as the semantic model for sequence diagrams, as

discussed in Chapter 2, section 2.2.2. All main elements of the LES metamodel, such as events

(Ev), lifelines (I) and messages (M ) match a new type of element in Z3. This corresponds to

creating new types called Ev, I and M using DeclareSort (rules 1,3,6 in Table 5.1). Elements

of these sets (as event, a message and a lifeline) are mapped onto constants of the corresponding

sort (rules 2,4,7). The set of events in a LES used as a semantic model for sequence diagrams

defines a partition determined by the set of instances I . This is dealt with in Z3 through a

cover function. In particular, if an event e belongs to an instance i1 it cannot belong to a

different instance i2 (rules 5). A message is captured in an LES as a triple (e1,m, e2) such

that µ(e1) = (m, s) and µ(e2) = (m, r) and is captured in Z3 as a function isMsg that for a

triple (e1,m, e2) determines whether it corresponds to a valid message tuple or not. A message

always relates different events by causality (rule 8).

Furthermore, rules 9, 10 and 11 show how the binary relations between events in a LES

are captured in Z3 and in accordance with the LES Definition 1. All relations are captured as

functions in Z3 with additional constraints. The rules directly capture all the aspects of the

formal definition given. For instance rule 9 shows how to define the partial order, that is, the

relation is reflexive, antisymmetric and transitive. Rule 10 describes the conflict relation which

is irreflexive, symmetric and propagates over causality. The concurrency relation in an LES

(rule 11) represents an additional binary relationship between events. Rather than explicitly

defining events in concurrency, any two events, which are not related by causality or conflict,

are concurrent (more details on this will be given in the following rules).
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Table 5.1: How LES for SDs are captured in Z3

LES Z3

1 Set of events Ev Ev = DeclareSort (’Ev’)

2 An event e1 ∈ Ev e1 = Const (’e1’,Ev)

3 Set of instances or lifelines I I = DeclareSort (’I’)

4 An instance i1 ∈ I i1 = Const (’i1’,I)

5 Ev = ]i∈IEvi cover = Function (’cover’, Ev, I, BoolSort())

ForAll([e,i1,i2],Implies(And(cover(e,i1),(i1!=i2)),
(Not(cover(e,i2)))))

6 Set of messages M M = DeclareSort (’M’)

7 A message m ∈M m = Const (’m’,M)

8
For (e1,m, e2) µ(e1) =
(m, s)

isMsg = Function (’isMsg’, Ev, M, Ev, Bool-
Sort())

µ(e2) = (m, r) ForAll([e1,m,e2],Implies(isMsg(e1,m,e2),Next(e1,e2)))

and e1 6= e2 ForAll([e,m],(Not(isMsg(e,m,e))))

9 Causality Next=Function(’Next’,Ev,Ev,BoolSort())

→∗⊆ Ev × Ev is a p.o.:

Reflexive ForAll ([e],(Next(e, e)))

Antisymmetric
ForAll([e1,e2],Implies(And(Next(e1,e2),(e1!=e2)),
Not(Next(e2,e1))))

Transitive ForAll([e1,e2,e3],Implies(And(And(Next(e1,e2),
Next(e2,e3))),(Next(e1,e3))))

10 Conflict
Conflict = Function(’Conflict’, Ev, Ev, Bool-
Sort())

# ⊆ Ev × Ev

is irreflexive, ForAll([e],(Not(Conflict(e,e))))

symmetric, and
ForAll([e1,e2],Implies(And(Conflict(e1,e2),(e1!=e2)),
Conflict(e2,e1)))

propagates over→∗ ForAll([e1,e2,e3],Implies(And(And(Conflict(e1,e2),
Next(e2,e3))),(Conflict (e1, e3))))

11 Concurrency e1 co e2 Conc =Function(’Conc’,Ev,Ev,BoolSort())

¬(e1 →∗ e2 ∨ e2 →∗ e1 ∨
e1#e2)

ForAll([e1,e2],Conc(e1,e2)==Not(Or(Conflict(e1,e2),
Next(e1,e2),Next(e2,e1))))
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To keep it simple, only the transformation of the LES’ for sd1 is shown in Figure 5.2.

5.2.3 Transforming Lifelines

As mentioned earlier, for each element in the metamodel, the transformation generates a De-

clareSor. Thus, the transformation maps a lifeline element in the metamodel of the sequence

diagram into DeclareSor, called l, as shown in Table 5.1, rule 3. Each concrete lifeline in the

sequence diagram is mapped to a Constant (rule 4). Moreover, each lifeline object has a name

and class, declared as a Constant. The link between the elements and their names and class

can be specified using the functions referred to as Lifeline name and Lifeline class. For exam-

ple, the lifelines in sd1 (Figure 5.3), as described in section 2.1, consist of two lifelines, to be

transformed into the following Z3 code:

Figure 5.3: Lifeline declaration

Figure 5.3, above, shows the transformation of lifelines ’a’ and ’b’ in sequence diagram,

sd1 into Z3 code. Line (1) shows the definition of the lifeline elements in the metamodel, which

is called ’l’. Next, each concrete lifeline in the sequence diagram is declared as a Constant

(lines 2-3). In addition, each lifeline object name and class are declared in lines 4-9, which are
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a type of Lifeline name and Lifeline class. Lines 10-11 declare the functions, Lifeline name

and Lifeline class. These functions are then used in lines 13-16 to assign the lifelines to their

specific name and class.

Moreover, in Z3 it is possible to create a general purpose solver using Solver() , and to associate

it to a particular variable by declaring s=Solver(). Constraints can be added using the method

add.

5.2.4 Transforming Events

’Event’ is used to represents the class, OccurrenceSpecification in the metamodel. Each event

in the sequence diagram appears on precisely one lifeline, whereas a lifeline can have one or

more events (as shown in the metamodel in Figure 2.4).

17. Ev = DeclareSort(Ev)

18. cover = Function('cover', Lifeline, Ev, BoolSort())

19. s.add(ForAll([L_i, e, L_j], Implies(And (cover(L_i, e) ,(L_i != L_j)), (Not(cover(L_j, e))

))))

The Z code, above, shows the declaration of the event element in the metamodel. Further-

more, the cover function in lines 17 defines the association between the lifeline and its events.

The metamodel specifies that an OccurrenceSpecification (event) can appear on precisely one

lifeline. This restriction has been defined in Z3 as an axiom (line 19). It shows that the life-

line can connect with many events, but each event is covered by at most one lifeline: formally,

Ev = ]i∈IEvi.

Similar to a lifeline, the transformation generates a Constant for each concrete event in the

sequence diagram, as shown in Table 5.1, rule 2, whereas the function, coveris used to link the

event to the lifeline that it belongs to. For example, the sd1 (Figure 5.2) consists of 12 events

and is transformed into the following Z3 code:

20. Sd1_e2 = Const (Sd1_e2, Ev)

21. Sd1_e3 = Const (Sd1_e3, Ev)

22. Sd1_e6 = Const (Sd1_e6, Ev)

108



23. Sd1_e7 = Const (Sd1_e7, Ev)

24. Sd1_e91 = Const (Sd1_ e91, Ev)

25. Sd1_e92 = Const (Sd1_ e92, Ev)

26. Sd1_g2 = Const (Sd1_g2, Ev)

27. Sd1_g3 = Const (Sd1_g3, Ev)

28. Sd1_g6 = Const (Sd1_g6, Ev)

29. Sd1_g7 = Const (Sd1_g7, Ev)

30. Sd1_g91 = Const (Sd1_g91, Ev)

31. Sd1_g92 = Const (Sd1_g92, Ev)

The above code declares the sd1 events mapped from the LES’ in Figure 5.2-C. The follow-

ing function, cover connects the model events to the lifelines.

//connect the events to lifeline a

32. s.add(cover(Sd1_a,Sd1_e2))

33. s.add(cover(Sd1_a,Sd1_e3))

34. s.add(cover(Sd1_a,Sd1_e6))

35. s.add(cover(Sd1_a,Sd1_e7))

36. s.add(cover(Sd1_a,Sd1_e91))

37. s.add(cover(Sd1_a,Sd1_e92))

//connect the events to lifeline a

38. s.add(cover(Sd1_b,Sd1_g2))

39. s.add(cover(Sd1_b,Sd1_g2))

40. s.add(cover(Sd1_b,Sd1_g2))

41. s.add(cover(Sd1_b,Sd1_g2))

42. s.add(cover(Sd1_b,Sd1_g2))

43. s.add(cover(Sd1_b,Sd1_g92))

5.2.5 Transforming Messages

The transformation of messages creates M, a domain for messages, as shown in line 44 below.

In the metamodel, a Message has two MessageEnds, namely a SendEvent and a ReceiveEvent.

This is defined in a function isMsg in line 45, as explained earlier. The constraint in line 46

determines that a single event cannot be a ’send’ and ’receive’ in the same message, which is

formally defined in Table 5.1, rule 8. Moreover, in the metamodel of the sequence diagram,

it is stated that a ReceiveEvent must always be preceded by a SendEvent. This rule, shown in

line 47, which defines a constraint states that (ei,m, ej), (ei) = (m, s) and (ej) = (m, r), then
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ei → ej . Informally, message send events always occur before receive events. The constraint

in line 47 shows the iMNext function. This represents the immediate causality relation. More

information about this function is given later in the causality relation rule.

44. M = DeclareSort(M)

45. isMsg = Function ('isMsg', Ev, M, Ev, BoolSort())

46. s.add(ForAll([e_i,m],(Not(isMsg(e_i,m,e_i)))))

47. s.add(ForAll([e_i,m,e_j],Implies(isMsg(e_i,m,e_j),iMNext(e_i,ej))))

Similar to a lifeline, the transformation generates a Constant for each concrete message

in the sequence diagram, as shown in Figure 5.4. Moreover, each message has send/receive

events, as illustrated in the following codes which define the messages of the example, sd1:

Figure 5.4: Message declarations

//connect messages and its events

53. s.add(isMsg1(Sd1_e2,Sd1_i,Sd1_g2))

54. s.add(isMsg1(Sd1_e3,Sd1_M1,Sd1_g3))

55. s.add(isMsg1(Sd1_e6,Sd1_j,Sd1_g6))

56. s.add(isMsg1(Sd1_e7,Sd1_M2,Sd1_g7))

57. s.add(isMsg1(Sd1_e91,Sd1_M31,Sd1_g91))

58. s.add(isMsg1(Sd1_e92,Sd1_M32,Sd1_g92))

The snippet of code above shows the assigning of send/receive events to their message, using

the isMsg function. Following the above labelling declarations, the next section will illustrate
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the transformation rules for the LES relations.

5.2.6 Transforming the Causality Relation

A causality relation in LES represents a binary relationship between events. In general, it

constitutes a partial order. Causality is specified in Z3 by introducing two Boolean functions,

Next and iMNext (lines 59, 61). The function, Next represents actual causality (→∗), whilst

iMNext declares the immediate causality (→) of all the sequence diagram events. Moreover,

the constraints in lines 62-64 are aimed at obeying the metamodel restrictions of the LES. Thus,

the causality is transitive, i.e. ei →∗ ej and ej →∗ en then ei →∗ en for all ei, ej, en ∈ Ev, as

specified in line 62. Moreover, the causality is antisymmetric, which means that for two events,

ei 6= ej , such that ei →∗ ej and then necessarily, ej 6→∗ ei. This is described in line 63, while

line 64 shows that Next is reflexive.

Finally, the formula in line 65 states that all events are connected by immediate causality

(iMNext) and actual causality (Next). The assertions in lines 66 and 67 show some sd1 events

that are linked via the iMNext function, which are related through the immediate causality rela-

tion.

59. iMNext = Function('iMNext', Ev, Ev, BoolSort())

60. s.add(ForAll ([g_i],(Not(iMnext2(g_i, g_i)))))

// Actual causality

61. Next = Function('Next', Ev, Ev, BoolSort())

62. s.add(ForAll ([e_i,e_j,e_n], Implies(And(And(Next(e_i, e_j),Next(e_j, e_n))),(Next(e_i,

e_n)))))

63. s.add(ForAll ([e_i,e_j], Implies(And(Next(e_i, e_j),(e_i != e_j)),Not(Next(e_j, e_i)))))

64. s.add(ForAll ([e_i],(Next(e_i, e_i))))

//All events connected by immediate Causality(iMNext) are connected by Causality relation (

Next)

65. s.add(ForAll ([e_i,e_j], Implies (And(iMNext(e_i, e_j),(e_i != e_j)) ,Next(e_i, e_j))))

// adding immediate causality for the events

66. s.add(iMNext(Sd1_e0,Sd1_e1))

67. s.add(iMNext(Sd1_e1,Sd1_e2))

...

111



5.2.7 Transforming the Conflict Relation

A conflict relation in an LES represents a binary relationship between events. This relationship

represents the behaviour of the alternative CombinedFragment, whereas each branch represents

one interactionOperand of the CombinedFragment. In Z3, this is also specified by two new

functions, iConflict and Conflict (lines 68, 69), which fulfill the same function as Next and

iMNext in the causality relation. In addition to the direct conflict declared above, a constraint

must also be included on the propagation of conflict over causality. This is formally defined

in the LES, as follows: for events ei, ej , en if ei#ej and ej →∗ en then ei#en. Informally, it

means that ei is in conflict with ej and en follows ej then ei has to be in conflict with en, which

is specified in line 70, below. Line 71 states that the conflict function is symmetric, i.e. for two

events ei 6= ej , such that ei#ej and then, necessarily, ej#ei. Additionally, as specified in line

72, an event cannot be in conflict with itself (i.e. the relationship is irreflexive). The formula in

line 73 states that all events connected by immediate conflict (iConflict) are also connected by

conflict (Conflict). Finally, for events that are directly in conflict, constraints have to be imposed

on the solver, as specified in lines 74 and 75.

68. iConflict=Function(iConflict,Ev,Ev, BoolSort())

69. Conflict=Function(Conflict,Ev,Ev, BoolSort())

70. s.add(ForAll ([e_i,e_j,e_n], Implies(And(And(Conflict(e_i, e_j),Next(e_j, e_n))),(Conflict

(e_i, e_n)))))

71. s.add(ForAll ([e_i,e_j], Implies(And(Conflict(e_i, e_j),(e_i != e_j)),Conflict(e_j, e_i)))

)

72. s.add(ForAll ([e_i],(Not(Conflict(e_i, e_i)))))

73. s.add(ForAll ([e_i,e_j], Implies (And(iConflict(e_i, e_j),(e_i != e_j)) ,Conflict(e_i, e_j

))))

// adding direct conflict

74. s.add(iConflict(Sd1_e6,Sd1_e7))

78. s.add(iConflict(Sd1_g6,Sd1_g7))
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5.2.8 Transforming the Concurrent Relation

A concurrent relation in an LES represents a binary relation between events. This relation

represents a parallel CombinedFragment. In Z3, this is specified as a new function called Conc.

Conc=Function(Conc,Ev,Ev, BoolSort())

The following constraint determines that rather than explicitly defining events in concur-

rency, any two events that are not related by causality or conflict, are concurrent. Therefore,

there is no need to specify the events that are in a concurrent relation; the solver automatically

generates this relation. The complete Z3 code for the running example is presented in Appendix

C.

s.add(ForAll([e_i, e_j],Conc(e_i, e_j) == Not(Or(Conflict(e_i, e_j), Next(e_i, e_j),Next(e_j,

e_i)))))

Z3 represents the solution as text, whereas the sequence diagram and LES model are visual.

As a result, in order to check the validity of the solution, a parser has been implemented to

map the Z3 solution to DOT language, which can then be executed using the Graphviz tool to

produce the graph (Figure 5.5). Graphviz (Graph Visualization Software) is a package of open-

source tools developed by AT&T Labs Research for drawing graphs specified in DOT language

scripts [50].

Figure 5.5: The parsing process

The snippet of code in Figure 5.6 illustrates a snapshot of the parser code. The parsing

process can be briefly described in three steps. Firstly, the parser defines the name of the

function, which needs to be parsed. Secondly, local variables contained in the function, are

then replaced with actual names of the sequence diagram elements(Figure 5.7 -(B,C)). Thirdly,
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Figure 5.6: A snapshot of the parser code

the DOT code for the function is produced, which can be executed via the Graphviz tool to

generate a graph, as Figure 5.7 -(D,E) shows.

Figure 5.7: Example of a parsing mechanism

5.2.9 Isomorphism between a Z3 Graph and LES Model

In graph theory, the two graphs G and H graph are isomorphic if there is a bijection between

the vertex sets of G and H:

f : V (G)→ V (H)

such that any two vertices u and v of G are adjacent in G if and only if f(u) and f(v) are
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adjacent in H [37]. A bijection is a function mapping between the elements of two sets, where

each element of one set is mapped with exactly one element of the other set, and each element

of the other set is mapped with exactly one element of the first set.

There are multiple ways of proving a graph is isomorphic between the Z3 solution and LES’

model to ensure the correctness of the transformation. The first of these involves mathematically

proving the graph is isomorphic, whereas the second method involves using graph tools to

automatically check the graph is isomorphic. As our approach mainly focuses on the practical

side of model transformation, mathematical proof (the theoretical side) is outside the scope of

this research. This is due to the fact that mathematical proof requires time, deep mathematical

research and specific skills. Instead, the isomorphism between the graphs has been checked

automatically in this instance, using the second method, namely a graph tool, such as R studio

[124].

The R studio offers a package called igraph, which contains functions that map the two

input graphs and determine whether they are isomorphic. The implementation of this package

is based on the VF2 algorithm by Cordella et al.[37]. The procedure for checking isomor-

phism is as follows: firstly, the implementation in this instance automatically produced the

solution graph in the GV extension. Secondly, both the Z3 graphs and the LES’ model were

converted as a Graphml. This is due to a tool, which accepts this Graphml extension as an

input graph. The tool uploads these graphs to R and automatically compares them using the

command, ”graph.isomorphic.vf2” (graph1, graph2). The results consistently showed that the

Z3 solution and LES’ are isomorphic. Figure 5.8 presents LES model of sd1 (Figure 5.2 ) and

its isomorphic graph produced by Z3.
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Figure 5.8: LES and Z3 solution

5.3 Composition of Sequence Diagrams in Z3

After the model transformation from LES’ to Z3, the composition mechanism must be illus-

trated. Model3 (Z3 Model 3) in Figure 5.1 represents the composed model. This model consists

of all the logical constraints of Z3-model 1, representing the LES’ of sd1 and Z3-model2, repre-

senting the LES’ of sd2 and the composition glue. The composition glue consists of three main

functions that match the overlapping elements in the input, as shown below:

EventMatch(E1, E2)→ Bool

MessageMatch(M1,M2)→ Bool

LifelineMatch(L1, L2)→ Bool

The three lines above declare Boolean valued functions for the equality of model elements,

i.e. messages, events and lifelines, respectively. The following sections explain the specification

of the above functions in greater depth.
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5.3.1 Specification of the Composition Glue

This section illustrates the specifications of the composition glue used to compose Z3 models.

As mentioned earlier, the composition glue consists of three functions that have been designed

to match the main elements of LES. Each of these functions is intended to match specific ele-

ments as the following subsections explain.

5.3.1.1 Event Match

The goal of the function, EventMatch is to match overlapping events in the input models. This

function is a Boolean type function that matches two events from different models and returns

’true’ if the match satisfies the event matching axioms. Otherwise, it will return ’false’. The

function consists of a number of axioms, which specify how the models should be glued together

to produce the intended composition. These axioms will be explained later in greater depth in

section 6.3.2.

Figure 5.9: EventMatch function

The EventMatch function is designed to only accept events as input as Figure 5.9 shows.

This means it cannot match an event with another type of model element, such as a lifeline

or message. For example, let us assume there are two diagrams and these consist of certain

overlapping elements, as shown in Figure 5.10.

Figure 5.10: Simple diagrams with matched messages
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In order to match the overlapping elements, i.e. messages ’Mi’ in both diagrams, their

events must first be matched, such as MessageSend and MessageReceive. This matching can

only be conducted using the EventMatch function, thusEventMatch(ei, gi) andEventMatch(ej, gj).

5.3.1.2 Message Match

After the event match comes the MessageMatch function. This function is designed to match

the overlapping messages from different diagrams. The form of the MessageMatch is similar

to the events function, which will only accept a message type of element as input. This function

returns ’true’, if the message and its MessageSend and MessageReceive events match. As

shown in the example in Figure 5.10, once the function EventMatch return ’true’, the function

MessageMatch can be used to match the messages. In other words, the MessageMatch

function cannot be satisfied without matching the MessageSend and MessageReceive events of

messages.

5.3.1.3 Lifeline Match

The purpose of the function, LifelineMatch is to match the lifelines in the models. Once the

messages of the input models match, their lifelines will also match. This match is brought

about by the LifelineMatch function. Similar to the previous functions, the LifelineMatch

function is designed to exclusively match elements of the lifelines from the input models, as the

Figure 5.11 shows.

Figure 5.11: Lifeline Match function

As mentioned earlier, each of the above functions consists of a set of axioms that specify

how the models should be glued together to produce the intended composition. The following

section explains the axioms of each function in detail.
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5.3.2 Composition Axioms and Cartesian Product Generation

The first step in the composition process is to pair the same type of input model elements, using

a Cartesian product. Potentially, every element (of the same type) from Z3 model 1 can be

paired with its corresponding type in Z3 model 2. For example, assuming (e1, e2) are events

in sequence diagram 1, and (e3, e4) are events in sequence diagram 2, the Cartesian product of

these events is as follows: {(e1, e3), (e1, e4), (e2, e3), (e2, e4)}. However, in this approach,

the sole concern is to show the matching elements and the elements, which do not match.

Therefore, the Cartesian product pairs are pruned. This means that only matching elements are

displayed, whereas the elements, which do not match, are paired with a dash symbol (-). Thus,

if it is assumed that if ’e1’ matches ’e3’, then neither ’e1’ nor ’e3’ are not permitted to pair with

anything else. In this case, if the pair (e1, e3) exists as a matched pair, then the pairs (e1, e4)

and (e2, e3) are removed. On the other hand, events that do not match such as e2 and e4 are

paired as follows: (-, e4) and (e2, -), so that the pair (e2, e4) is also removed. Furthermore, as

can be seen, the pairs (-, e4), (e2, -) contain a dash symbol (-). This symbol has been deployed

to indicate that the element in a pair, which includes a dash, does not have any match. The result

of pruning the above mentioned Cartesian product pairs is as follows: {(e1, e3), (-, e4), (e2, -)}.

This illustrates that events (e1, e3) are matched, whereas the events (-, e4), (e2, -) do not have

any matches in the other Z3 model. Finally, this result requires a function that can be used to

display information about the elements of the composed model. Hence, we generate a function

called present.

5.3.2.1 Present Function Technique

The goal of the present function is to display matching elements, as well as elements which are

not matched in the composed model. The composed model referred to as Model 3 in Figure 5.1

consists of three kinds of present function, as follows:

EventPresent(E1
1 , E

1
2)→ Bool

MessagePresent(M1
1 ,M

1
2 )→ Bool
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LifelinePresent(L1
1, L

1
2)→ Bool

The first function, EventPresent is explicitly defined to present only the matched/unmatched

events. For example, if the function EventMatch returns ’true’ for the pair of events mentioned

earlier in this section, then EventPresent will display the events as a matched pair, i.e. Event-

Present (e1, e3). Otherwise, EventPresent pairs the events that are not matched with a dash

symbol (-), as follows:

EventPresent(e1, e3)→ true

EventPresent(−, e4)→ true

The same procedure applies to the lifelines (LifelinePresent) and messages (MessagePre-

sent). To clarify the process of the ’present’ function, let us consider the following example:

Figure 5.12: Representation of present function

The above Figure 5.12 shows two diagrams, sd1 and sd2. Sd2, consists of two messages,

Mi and Mj. The message, Mj of sd2 matches the message Mj of sd1. Consequently, the

send/receive events of both messages match and the lifelines these messages send and receive

are also matched. Once we specify the matched events using the match functions illustrated

earlier, the solver automatically produces present functions for the events, messages and lifeline,

respectively. When the present function is generated, the information in the present function is

used to display the information of the composed model elements, as the Figure 5.13 shows,

below.
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Figure 5.13: Information on present functions in the composed model

After displaying the result of the present functions, the following matching axioms are ac-

tivated. In the following, there are 12 cases, which illustrate all possible matches between the

events, messages and lifelines. Each case consists of a number of axioms with matching events,

their messages and their lifelines, as the Table 5.2 shows.
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Table 5.2: Composition cases

Cases Descriptions

Events match in a

causality relation

Case1

The axiom of Case 1 defines the matching of two

events, connecting in a causality relation, with two

other events, which are in a causality relation in a dif-

ferent model.

Case2

The axiom of Case 2 defines the matching of one

event in the first model, with an event in the second

model that is followed by an event, which does not

have any match.

Case3

Case 3 defines the matching of one event in the first

model with an event in the second model. However,

the event in the first model is followed by an event,

which does not have any match.

Case4
This Case matches two events in different models, but

the event in the first model is preceded by an event,

which does not have any match.

Case5
This Case is similar to Case 4, but the event in the

second model is preceded by an event.

Events match in

a conflict relation
Case6

The axiom of this Case defines the matching of two

events in a conflict relation, with two others in a con-

flict relation and from a different model.

Case7
The axiom of this Case defines the matching of one

event in a conflict relation, from one model with an-

other event in a different model.

Case8
This Case is similar to Case 7, but it matches one

event in a different branch of the conflict relation with

an event in a different model.
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Case 9

This Case is similar to Case 7, but it matches one

event in the second model, in a conflict relation with

an event in the first model.

Case 10
This is similar to Case 8, but the match is from the

second model.

Parallel compo-

sition

Case 11

Case 12

These axioms define a parallel composition, if there

are no matches between the events. Case 11 is de-

signed for a parallel composition of events with their

lifeline and Case 12, for events with their messages.

As Table 5.2 shows, the matched axioms are divided into three categories. The first category

illustrates the cases relating to matches between events in a causality relation, whereas the

second category shows cases relating to the matching of events in conflict relations. Finally,

the third category demonstrates cases where there are no matches between events. Case 11

axioms specify the parallels composed between events and their lifelines, while Case 12 is

written for parallel composition between events and messages. In the following, each case will

be explained in greater depth.

• Case 1:

Figure 5.14: Case 1 scenarios
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∀ei, ej ∈ E1,∀gi, gj ∈ E2|

iMNext1(ei, ej)&iMNext2(gi, gj)&EventMatch(ei, gi)&EventMatch(ej, gj) =⇒

iMNext3((ei, gi), (ej, gj))

The above axiom aims to match the case where each diagram contains two pairs of events,

one following the other: iMNext1(ei, ej), iMNext2(gi, gj), as shown in Figure 5.14-A. The

functions, iMNext1 and iMNext2 refer to the causality relations of the sequence diagrams

sd1 and sd2. These functions have been defined in section 6.2.4. The sd1 events match the sd2

events, i.e. EventMatch(ei, gi) and EventMatch(ej, gj). The composition then produces the

function, iMNext3, which represents the immediate causality relation in the composed model.

The representation of the causality relation in the composed model is defined as follows:

iMNext3((E1
1 , E

1
2), (E1

1 , E
1
2))→ Bool

The above functions consist of two pairs of events next to each other. Each pair could be

two matched events, i.e. (ei, gi), or unmatched events, i.e. (ei,−), (−, gi). For example, Figure

5.15-B illustrates the result of this function, which contains the matched pairs ((ei, gi), (ej, gj)).

This indicates that the pair (ei, gi) comes before (ej, gj). Once the events are matched, their

propagated matched axioms are automatically activated. Thus, their lifelines as well as their

messages are matched, as the following axiom illustrates.

Figure 5.15: Matching lifelines

∀ei ∈ E1, ∀gi ∈ E2, ∀li ∈ L1,∀lj ∈ L2|

EventMatch(ei, gi)&cover1(li, ei)&cover2(lj, gi) =⇒ LifelineMatch(li, lj)

The above axiom refers to the lifelines being matched. As can be seen, the axiom contains
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the functions, cover1 and cover2 referring to the cover function relation of the models repre-

senting sd1 and sd2 (see Section 6.2.3). This axiom shows that if there is one event, ei ∈ E1

covered by lifeline li matching one event, gi ∈ E2 covered by lifeline lj , then these lifelines are

matched, as Figure 5.155-B illustrates. If the lifelines are declared as a matched, the following

axiom creates the cover relation, cover3((li, lj), (ei, gi)).

∀ei ∈ E1, ∀gi ∈ E2,∀li ∈ L1,∀lj ∈ L2|

LifelineMatch(li, lj)&EventMatch(ei, gi)&cover1(li, ei)&cover2(lj, gi) =⇒

cover3((li, lj), (ei, gi))

cover3 shows the association between the lifeline and the events in the composed model

(model 3). This function is represented as follows:

cover3((L1
1, L

1
2), (E1

1 , E
1
2))→ Bool

The above functions consist of two pairs ((L1
1, L

1
2),(E1

1 , E
1
2)). The first pair (L1

1, L
1
2) repre-

sents the matched/unmatched lifelines and the second pair represents the matched/unmatched

events.

Moreover, in addition to the above axioms, syntactic matching is carried out. This match is

performed using a function called Lifeline Syntactic Matching. The goal of this function is to

compare the name and type (class) of lifeline that presented in section 6.2.2 and return it ’true’

if the lifelines match. Otherwise, the lifeline, which does not match, will be precisely specified.

In addition, the messages that these events belong to are also matched, as the following

axiom shows:

∀ei, ej ∈ E1,∀gi, gj ∈ E2,∀mi ∈M1,∀mj ∈M2|

EventMatch(ei, gi)&isMsg1(ei,mi, ej)&isMsg2(gi,mj, gj) =⇒

MessageMatch(mi,mj)&EventMatch(ej, gj)

The above axiom explains the matching of messages. If the send events of messages,mi,mj

are matched, then these messages are also matched, as well as the receive events. The same

applies for receive events. Similar to the lifeline, the following axiom creates isMsg3 relation

in the composed model, associated with the previous axiom. This function is represented as

follows:
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isMsg3((E1
1 , E

1
2), (M1

1 ,M
1
2 ), (E1

1 , E
1
2))→ Bool

The above functions consist of three pairs ((E1
1 , E

1
2), (M1

1 ,M
1
2 ), (E1

1 , E
1
2)). The first pair

represents the ’send’ events, whereas the second pair represents the match/unmatched messages.

Finally, the third pair represents the matched/unmatched ’receive’ events, as the following ax-

iom shows. The following axiom explains the case where events and messages are matched.

∀ei, ej ∈ E1,∀gi, gj ∈ E2, ∀mi ∈M1,∀mj ∈M2|

MessageMatch(mi,mj)&isMsg1(ei,mi, ej)&isMsg2(gi,mj, gj) =⇒

isMsg3((ei, gi), (mi,mj), (ej, gi))

The axiom shows that if two messages, mi,mj are matched, then they are composed and

will produce, isMsg3((ei, gi), (mi,mj), (ej, gi)). The function, isMsg3 represents the asso-

ciation between the message and its events (send/receive) in the composed model. As can be

seen, the axiom contains the function, isMsg1 and isMsg2 referring to the ’isMsg function’

relation of the models representing sd1 and sd2 (see section 6.2.3). Similar to the lifeline, the

messages are syntactically matched by comparing the names of the messages. This comparison

is carried out using a function called Messages Syntactic Matching. This function compares the

names of the messages and returns true if the messages match. The following snippet of code

shows the above axioms written in Z3.

Z3 code for case 1:

//axiom for matching events.

ForAll ([e_i,g_i,e_j,g_j], Implies(And(And(iMNext1(e_i, e_j),iMNext2(g_i,g_j)),EventMatch(e_i,

g_i), EventMatch(e_j, g_j)),iMNext3(e_i,g_i,e_j,g_j)))

//axiom for matching lifelines.

ForAll ([e_i,g_i,L_i,L_j], Imlies (And(EventMatch (e_i,g_i),cover1(L_i,e_i),cover2(L_j,g_i)),

LifelineMatch (L_i,L_j)))

//axiom for generating cover3 that connect the match/unmatched events to match/unmatched

lifeline in the composed model.

ForAll ([e_i,g_i,L_i,L_j], Implies (And(And(LifelineMatch(L_i, L_j),EventMatch(e_i,g_i)),

cover1(L_i,e_i),cover2(L_j,g_i)),cover3(L_i, L_j,e_i,g_i)))
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//axiom for matching messages.

ForAll ([e_i,e_j,g_i,g_j,M_i,M_j], Implies (And(EventMatch (e_i,g_i), isMsg1 (e_i,M_i,e_j),

isMsg2(g_i,M_j,g_j)) ,And(MessageMatch (M_i, M_j), EventMatch (e_j, g_j)))))

//axiom for generating IsMsg3 that connect the match/unmatched events to match/unmatched

message in the composed model.

ForAll ([e_i,g_i,e_j,g_j,M_i,M_j], Implies (And(And(MessageMatch (M_i, M_j)) ,isMsg1(e_i,M_i,

e_j), isMsg2(g_i,M_j,g_j)),isMsg3(e_i,g_i,M_i,M_j,e_j,g_j)))

• Case 2:

The axiom of this case shows that the sequence diagram sd2 contains two events: gi, gj ∈

E2, each following the other: iMNext2(gi, gj). Moreover, the first event, gi matches the event,

ei ∈ E1
1 . In this case, the function, iMNext3 consists of the matched pair (ei, gi) and the un-

matched pair (−, gj). The function shows that the pair (−, gj) comes after the pair (ei, gi),which

preserves the order of the original models, as illustrated in Figure 5.16-B.

Figure 5.16: Case 2 scenarios

∀ei ∈ E1
1 ,∀gi, gj ∈ E2|EventMatch(ei, gi)&iMNext2(gi, gj)&Notmatch2(gj) =⇒

iMNext3((ei, gi), (−, gj))

It must be noted that the above formula shows a function called Notmatch2. This function

is a Boolean function representing events, which are unmatched. In other words, if the events

are not assigned to the match function (EventMatch), the solver automatically assigns them

to the Notmatch function. In the composed model, there are two Notmatch functions; one for

the sd1 events, called Notmatch1 and one for the sd2 events, called Notmatch2.

127



The axioms propagated by the matched event are the same as those explained in case 1.

However, for the unmatched event, the propagated axiom is as follows:

∀gi ∈ E1
2 ,∀li ∈ L1,∀lj ∈ L2|LifelineMatch(li, lj)&Notmatch2(gi)&cover2(lj, gi) =⇒

cover3((li, lj), ((−, gi))

The above axiom is an illustration of matched lifelines, which have some events that do not

match any other events. In this case, the composed lifelines cover the events that do not match.

The following snippet of code shows the axioms of Case 2 written in Z3 1.

Z3 Code for Case 2:

//axiom for matching events.

ForAll ([e_i,g_i,g_j], Implies(And(And(EventMatch (e_i,g_i),iMNext2(g_i,g_j)),Notmatch2(g_j)),

iMNext3 (e_i,g_i,empty1,g_j))))

//axiom for generating cover3 that connect the match/unmatched events to match/unmatched

lifeline in the composed model.

ForAll ([g_j,L_i, L_j], Implies (And(LifelineMatch(L_i, L_j),cover2(L_j,g_j), Notmatch2(g_j)),

cover3(L_i, L_j,empty1,g_j))).

1In Z3 code, the word empty is used to represent the dash symbol (-)
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• Case 3:

Figure 5.17: Case 3 scenarios

The axiom of Case 3 is similar to that of Case 2, but the first diagram event is followed by

an event that does not have any match, as shown in Figure 5.17.

∀gi ∈ E1
2 ,∀ei, ej ∈ E1|EventMatch(ei, gi)&iMNext1(ei, ej)&Notmatch1(ej) =⇒

iMNext3((ei, gi), (ej,−))

Z3 Code for Case 3:

ForAll ([e_i,g_i,e_j], Implies( And(And(EventMatch (e_i,g_i) ,iMNext1(e_i,e_j)) ,Notmatch1

(e_j)),iMNext3 (e_i,g_i,e_j,empty2)))

• Case 4:

Case 4 explains the matching of two events (ej, gj) in diagrams sd1 and sd2. However, sd1 con-

tains another event, ei, which occurs before ej . This event (ei) does not match any event in sd2

(Figure 5.18-A). In this case, iMNext3 consists of the two pairs, iMNext3((ei,−), (ej, gj)),

which shows that (ei,−) comes before the pair (ej, gj), as shown in Figure 5.18-B. The propa-

gated axioms in this Case are the same as those explained in Cases 1 and 2.
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Figure 5.18: Case 4 scenarios

∀gj ∈ E1
2 ,∀ei, ej ∈ E1|EventMatch(ej, gj)&iMNext1(ei, ej)&Notmatch1(ei) =⇒

iMNext3((ei,−), (ej, gj))

Z3 Code for Case 4:

//axiom for matching events.

ForAll ([e_i,g_j,e_j], Implies(And(And(EventMatch (e_j, g_j),iMNext1(e_i,e_j)),Notmatch1(

e_i)),iMNext3 (e_i,empty2,e_j,g_j)))

• Case 5:

Figure 5.19: Case 5 scenarios

Finally, Case 5 is similar to Case 4, but here, gi ∈ E2 does not match any event in sd1.

∀ej ∈ E1
1 ,∀gi, gj ∈ E2|EventMatch(ej, gj)&iMNext2(gi, gj)&Notmatch2(gi) =⇒

iMNext3((−, gi), (ej, gj))
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Z3 Code for Case 5:

//axiom for matching events.

ForAll ([e_j,g_i,g_j], Implies(And(And(EventMatch (e_j, g_j),iMNext2(g_i,g_j)),Notmatch2(

g_i)), iMNext3 (empty1,g_i,e_j,g_j)))

• Case 6:

This Case illustrates an instance of two sequence diagrams, each of which contains two

events: ei, ej ∈ E1 and gi, gj ∈ E2 that are in conflict, as they belong to different interaction-

Operands, iConflict1(ei, ej), iConflict2(gi, gj). The sd1 events match the sd2 events, namely

EventMatch(ei, gi) and EventMatch(ej, gj). Thus, the composition produces a function;

iConflict3 representing the conflict relation in the composed model. This function consist

of two pairs, which shows that the matched pair (ei, gi) is in conflict with the matched pair

(ej, gj),illustrated in Figure 5.20-C. Note that the composition of (e,g) was performed by the

axioms in Case 1, as they are connected via a causality relation.

Figure 5.20: Case 6 scenarios
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∀ei, ej ∈ E1,∀gi, gj ∈ E2|

iConflict1(ei, ej)&iConflict2(gi, gj)&EventMatch(ei, gi)&EventMatch(ej, gj) =⇒

iConflict3((ei, gi), (ej, gj))

Z3 code for Case 6:

//axiom for matching events in conflict relation.

ForAll ([e_i,g_i,e_j,g_j], Implies(And(And(iConflict1(e_i, e_j),iConflict2(g_i,g_j)),

EventMatch (e_i, g_i), EventMatch (e_j, g_j)),iConflict3(e_i,g_i,e_j,g_j)))

• Case 7:

This Case composes the scenario where two events, gi, gj ∈ E2 contained in sd2 are in

conflict, as shown in Figure 5.21-A, B. In this case, the first event (gi) matches the event, (ei) of

sd1, whereas the event (gj) does not have any matches. Thus, the function, iConflict3 consists

of two pairs ((ei, gi), (−, gj)), which shows the pair (ei, gi) are in conflict with the pair (−, gj),

as indicated in Figure 5.21C.

Figure 5.21: Case 7 scenarios
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∀ei ∈ E1
1 ,∀gi, gj ∈ E2|EventMatch(ei, gi)&iConflict2(gi, gj)&Notmatch2(gj) =⇒

iConflict3((ei, gi), (−, gj))
Z3 Code for Case 7:

//axiom for matching events in conflict relation.

ForAll ([e_i,g_i,g_j], Implies(And(And(EventMatch (e_i,g_i),iConflict2(g_i,g_j)),Notmatch2

(g_j)), iConflict3 (e_i,g_i,empty1,g_j)))

• Case 8:

Figure 5.22: Case 8 scenarios

This Case is similar to Case 7, but here, the event (ej), which in conflict with ei does not

have any matches in the other diagram, as shown in Figure 5.22.

∀gi ∈ E1
2 ,∀ei, ej ∈ E1|EventMatch(ei, gi)&iConflict1(ei, ej)&Notmatch1(ej) =⇒

iConflict3((ei, gi), (ej,−))
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Z3 Code for Case 8:

//axiom for matching events in conflict relation.

ForAll ([e_i,g_i,e_j], Implies(And(And(EventMatch (e_i,g_i),iConflict1(e_i,e_j)),Notmatch1

(e_j)), iConflict3(e_i,g_i,e_j,empty2)))

• Case 9:

This Case considers the scenario where the second event (gj) of sd2 matches the event

(ej) of sd1, whereas the event, gi, which is in conflict with gi does not have any matches.

The resulting function, iConflict3 shows that the matched pair (ej, gj) is in conflict with the

unmatched pair (−, gi), as shown in Figure 5.23-C.

Figure 5.23: Case 9 scenarios

∀ej ∈ E1
1 ,∀gi, gj ∈ E2|EventMatch(ej, gj)&iConflict2(gi, gj)&Notmatch2(gi) =⇒

iConflict3((−, gi), (ej, gj))
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Z3 Code for Case 9:

//axiom for matching events in conflict relation.

ForAll ([e_j,g_i,g_j], Implies(And(And(EventMatch (e_j, g_j),iConflict2(g_i,g_j)),

Notmatch2(g_i)), iConflict3(empty1,g_i,e_j,g_j)))

• Case 10:

Figure 5.24: Case 10 scenarios

This Case is similar to Case 9, but here, the event (ei), which is in conflict with ej does not

have any matches, as shown in Figure 5.24.

∀gj ∈ E1
2 , ∀ei, ej ∈ E1|EventMatch(ej, gj)&iConflict1(ei, ej)&Notmatch1(ei) =⇒

iConflict3((ei,−), (ej, gj))
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Z3 Code for Case 10:

//axiom for matching events in conflict relation.

ForAll ([e_i,g_j,e_j], Implies(And(And(EventMatch (e_j, g_j),iConflict1(e_i,e_j)),

Notmatch1(e_i)), iConflict3(e_i,empty2,e_j,g_j)))

• Case 11:

The following axiom produces a parallel composition. This axiom illustrates the case where

the input models are not matched. Thus, the result shows two parallel lifelines and their events

(Figure 5.25).

Figure 5.25: Case 11 scenarios

∀ei ∈ E1
1 , ∀gi ∈ E1

2 ,∀li ∈ L1
1,∀lj ∈ L1

2|

cover1(li, ei)&cover2(lj, gi)&Notmatch1(ei)&Notmatch2(gi)&LifelineNotMatch1(li)

&LifelineNotMatch2(lj) =⇒ cover3((li,−), (ei,−))&cover3((−, lj),

(−, gi))

Note that the above formula shows a function called LifelineNotMatch in addition to

the function Notmatch explained earlier. This function is a Boolean function representing

lifelines, which are unmatched. In other words, if the lifelines are not assigned to the match

function (lifelineMatch), the solver automatically assigns them to the LifelineNotMatch

function. In the composed model, there are two LifelineNotMatch functions; one for the sd1

events, called LifelineNotMatch1 and one of the sd2 events, called LifelineNotMatch2, as
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the above formula shows.

Z3 Code for Case 11:

//axiom for parallel composition of the events and lifelines.

ForAll ([e_i,g_i,L_i, L_j], Implies (And(And(And(cover1(L_i,e_i),cover2(L_j,g_i)), Notmatch1(

e_i), Notmatch2(g_i)),LifelineNotmatch2(L_j),LifelineNotmatch1(L_i)) ,And(cover3(L_i,

empty4,e_i,empty2),cover3(empty3, L_j,empty1,g_i)))).

• Case 12:

The axiom in this Case produces a parallel composition for the messages and its send/receive

events, which illustrates that the input models do not have any matches between the messages

or their events. This axiom is associated with the axiom in Case 11.

∀ei, ej ∈ E1
1 ,∀gi, gj ∈ E1

2 , ∀mi ∈M1
1 ,∀mj ∈M1

2 |

MessageNotMatch1(mi)&MessageNotMatch2(mj)&isMsg1(ei,mi, ej)&isMsg2(gi,mj, gj)

=⇒ isMsg3((ei,−), (mi,−), (ej,−))&isMsg3((−, gi),

(−,mj), (−, gi))

As can be seen, the formula contains a function called MessageNotMatch. This function

plays the same role as the functions Notmatch and LifelineNotMatch explained in Case 11.
Z3 Code for Case 12:

//axiom for parallel composition for the messages.

ForAll([e_i,g_i,e_j,g_j,M_i,M_j],Implies(And(And(MessageNotmatch1(M_i),MessageNotmatch2(

M_j)), isMsg1(e_i,M_i,e_j),isMsg2(g_i,M_j,g_j),And(isMsg3(e_i,empty2,M_i,empty6,e_j,

empty2),isMsg3(empty1,g_i,empty5,M_j,empty1,g_j))))

To evaluate the glue, the above axioms have been applied in the running example shown in

Figure 2.5. This example shows that the messages, m1 and m2 are the same in both diagrams,

sd1 and sd2. Thus, the function, MessageMatch can be used to match the messages, such

that: MessageMatch (sd1.m1, sd2.m1) = true, and MessageMatch (sd1.m2, sd2.m2) = true.

Once the function is assigned, the propagated axioms for matching send and receive events and
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their lifelines are automatically activated, in order to compose the overlapping elements. The

complete Z3 code for the composition is presented in Appendix C.

Figure 5.26: The composition results of diagrams sd1 and sd2 (Figure 2.5)

Figure 5.26 shows the graph representing the composition result of diagrams sd1 and sd2

(Figure 2.5). The graph depicts the sequence diagrams messages, send/receive events with the

relations iMNext3, iConflict3, and isMsg. The graph shows the messages and isMsg rela-

tions highlighted in blue, whereas the iConflict3 relation is highlighted in red to simplify the

analysis. The graph in Figure 5.26 shows that the messages (Sd1 M1,Sd2 M1), which are

composed occur in parallel with sd1 i as there is no iMNext3 relation between their events.

Moreover, these messages are followed by messages Sd1 j and (sd1 M2, sd2 M2), which

are in conflict relation as they are belonging to the alt CombinedFragment. Sd2 new is shown
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in parallel with Sd1 i and Sd1 j, but it always comes after (Sd1 M1,Sd2 M1) as their

events are connected via iMNext relations. Finally, Sd1 M3, which defined as Sd M31 and

Sd M32 comes after the message Sd1 j and (sd1 M2, sd2 M2), but Sd1 M3 is parallel

with messages Sd2 M4 and Sd2 M5, which are in conflict, as they belong to the Combined-

Fragment, alt. Figure 5.27 illustrates the Z3 solution in LES.

Figure 5.27: LES model for the Z3 solution in Figure 5.26

5.3.3 Preserving Semantics

In the model composition, it is essential that the composed model cannot provide other be-

haviour than what is described in the input models. Thus, the correctness of the composed

model refers to the preservation of the semantics between the composed and input models. As

a result, every trace in the graph of the composed model, which is referred to as G3 in Figure

5.1, if it is projected to the first coordinates, will appear in one of the input modes. This means

that the graph G3, after eliminating the trace of execution (the events and the relations) that

corresponds to Z3 model 2, is isomorphic with a sub-graph of G1 that represents the Z3 model

1. The same is true for G2.

As mentioned in section 6.2.7, there are different ways of proving graph and sub-graph

isomorphism. However, proving sub-graph isomorphism mathematically, as mentioned earlier,
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is out of the scope of this thesis. Instead, we test the sub-graph isomorphism using the igraph

package that implements the VF2 algorithm [38].

To perform this check, we must first project the graph G3 trace of execution by eliminating

the traces of Figure 5.26, which correspond to sequence diagram 2. Therefore, the only traces

remaining will belong to sequence diagram 1, as Figure 5.28 shows. Secondly, these graphs

are uploaded to the R studio tool, in order to check whether the graphs are isomorphic, using

the command ”graph.subisomorphic.vf2”. In this case, the tool confirms that graphs A and

B in Figure 6.23 are sub-graph isomorphic, as Figure 5.29 shows. The same procedure was

performed for the Z3 graph that represents the LES’ of sequence diagram 2. After eliminating

traces of Figure 5.26 that correspond to the LES’ of sequence diagram 1, the tool will confirm

that the projected graph of the composed model is an isomorphic sub-graph.

Figure 5.28: Z3 graph for sequence diagram sd1 and the projected Z3 graph from the composed
model
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Figure 5.29: R studio proves the graph is sub-graph isomorphic between graphs (A) and (B) in
Figure 5.28

5.4 Example

This section shows an example of automated aspect weaving via Z3. Aspect weaving is one

of the model composition techniques and the aim of using it is to prove that this automated

approach is fixable and can be applied to different kinds of composition. The example describes

a petrol station scenario which was adapted from [68]. Let us consider the base model first as

shown in Figure 5.30.

141



l1

l2

l3

l4

l5

l6

l7

l8

l9

l10

l0

l11

l12

Figure 5.30: Petrol station base model

In this scenario, a user of a petrol station can only fill their car with petrol provided they have

a card (and know the pin code for the card). The scenario starts with the user inserting a payment

card (insertCard). The petrol station requests the pin code from the user (requestP in), which

the user then enters (pinCode). The petrol station sends a message to the bank to validate the

pin code (validate and result), and an alt fragment is used to model the two possible outcomes:

(1) the pin code is valid. In this case the user is allowed to start fuelling (startFuel) and when

the user has finished he/she stops (stop); (2) the pin code is invalid. In this case the user is

informed that the pin code entered is invalid (invalidP in). In both cases, the scenario ends by

ejecting the card (cardOut).

Now assume that we want a more refined model where we allow the user to indicate the

exact amount of fuel required in advance. This is added by modelling an advice as shown in

Figure 5.31.
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Figure 5.31: Petrol station advice model

The advice model starts with a valid pin code scenario. The idea here is that after enter-

ing the amount of fuel requested the petrol station forwards a message to the bank to validate

whether the request is acceptable (basically the user has enough balance to cover the request).

Again two options are possible. If the account balance covers this amount, it will be debited

from the bank and the petrol station will start fuelling. However, if the account balance cannot

cover the amount requested the transaction is cancelled.

To consider the advice within the original base model corresponds to weaving it into the base

model and obtain an augmented model. Strictly speaking we can have more than one base

model in a system and may want to integrate more than one advice. Without loss of generality

we can assume that we can first obtain a composed model for the base behaviour and deal with

weaving of an advice one at a time. More importantly, in order to perform the weaving itself,

we specify a pointcut which shows exactly how the elements in the base and advice models

match. The pointcut in Figure 5.32-(C) shows that the lifelines and messages validP in and

StartFuel are matched (highlighted in red).
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(a) Advice (b) Base (c) Pointcut

Figure 5.32: The pointcut mechanism

After producing the Z3 code for the advice and base by following the aforementioned trans-

formation rule (see the appendix C), we need to create a Z3 model that links these them to-

gether based on the pointcut that defines where the advice should be inserted in the base model.

This involves creating a set of constraints which identify which part of the base model must

be matched to the advice. In that sense, the matching relates model elements of the base and

advice together. The pointcut identifies joinpoints, that is, model elements which should be

matched. There is a wide range of interpretations of how pointcuts should be used to match

model elements of the base and advice. Wimmer et al. [155] survey some of these interpreta-

tions. To produce the Z3 code that glues the advice and base, any chosen interpretation selected

must be formalised. For example, Klein et al. [90] introduce and formalise four interpretations.

These four interpretations describe the degree of strictness when trying to detect a set of model

elements which relating to another. For example in Figure 5.32, if we are looking for the mes-

sage validP in followed by startFuel between two lifelines, we can be very strict and assume

that the only acceptable match for this is to have the two messages appearing consecutively in a

diagram. Alternatively, we can be less restrictive and allow a match provided every occurrence

of message validP in occurs before startFuel irrespective of the behaviour that may occur in

between the messages. Klein et al. [90] refer to the later as the general interpretation, which

our implementation follows. It is possible to replace this and follow any of the other three alter-

natives. However, for example choosing the strict interpretation will not allow weaving of the

144



models depicted in Figure 5.32.

In fact, the value of the match function can be obtained from the pointcut model which de-

scribes which elements can be matched. The pointcut shows that messages validP in and

startFuel are matched in both models. Moreover, it can be observed also that the lifelines

Bank matched as they hold the same name which can be compose together even if non of their

events are matched. The following snippet of Z3 shows the code for elements matching between

the advice and base.

s.add (MessageMatch (sd1_validPin, sd2_validPin))

s.add (MessageMatch (sd1_startFule, sd2_startFule))

s.add (LifelineMatch (Base_Bank, Advice_Bank))

Once the messages are matched, send/receive events matched and thus their lifelines matched

based on the rule of the glue. On the other hand, only lifelines Bank are composed due to none

of the events belong to them are matches.

Finally, it is possible that multiple instances of the advice messages to be found in the base.

For example consider the scenario where validPin and startFuel appear twice or more in the

base. In such cases, we would follow the Per Pointcut Match strategy introduced in [108]

which assume that a new instance of the advice element is introduced for each pointcut match.

For our example the model obtained corresponds to the diagram shown in Figure 5.33 which

weaved the advice exactly as expected in the base model. The complete Z3 code for the petrol

station example is presented in Appendix C.
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Figure 5.33: Woven sequence diagram
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5.5 Limitations of the Approach

In this chapter, an automated method of sequence diagram composition via Z3 has been pre-

sented. The transformation illustrates the number of rules which transform part of the elements

of a sequence diagram. However, this approach focuses more on the combining of some of

the sequence diagram elements, such as lifelines, events, messages, and the LES operator; the

operators representing the behaviour of the CombinedFragments, such as ’parallel’ and ’alter-

native’. Therefore, there is no need to duplicate the representation of the CombinedFragments.

As previously established, this work focuses on LES representation in Z3. However, LES does

not support all operators of sequence diagrams, such as an ’option’ or a ’loop’ CombinedFrag-

ment, which are the main interest for future research in this case. Therefore, these operators are

not covered in this approach.

As mentioned in Chapter 4, the option is semantically equivalent to an alternative Com-

binedFragment, but contains only one interactionOperand. The transformation of an option can

be performed in the same way as for an alternative CombinedFragment, using a conflict opera-

tor. The condition attached to the CombinedFragment option can be defined as an axiom that is

associated with the constant defining the CombinedFragment.

To represent the loop CombinedFragment, the LES and its equivalent Z3 model must model

all possible iterations of the loop as ’unfoldings’ (traces in the LES). As aforementioned, in con-

straint solvers, a finite number of possible iterations and hence ’unfoldings’ must be assumed.

This means modelling all possible iterations of the loop, with the transformation needing to de-

fine the number of constants equal to the number of iterations, in order to represent the messages

belonging to the loop, as the graph shows below .
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Figure 5.34: Finite loop in Z3

5.6 Chapter Summary

This chapter represents the automatic composition of sequence diagrams via Z3. The com-

position in this approach is carried out on LES and at the level of the sequence diagram, since

both aspects of the models have been incorporated into the transformation algorithm, in order

to generate a Z3 code. The transformation rules that map the elements of the sequence diagram

and its semantics into Z3 syntax are discussed in section 6.2. The composition rules in Z3

have been explained in section 6.3. Finally, section 6.4 presents the example of a petrol station,

whereby this approach was applied for the purposes of evaluating it and ensuring that there

were no shortcomings in the performance of Alloy in Z3 and moreover, that the result of the

composition was as expected. The next chapter presents a detailed comparative study of the

composition of sequence diagrams via Alloy and Z3, in terms of performance.
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CHAPTER 6

COMPARISON OF ALLOY AND Z3 FOR THE
COMPOSITION OF SEQUENCE DIAGRAMS

6.1 Overview

In this chapter, a comparative study between Alloy and Z3 constraint solvers is presented from a

performance perspective. Specifically, Alloy and Z3 are compared in terms of their composition

of sequence diagrams, in order to evaluate the two methods described in Chapters 4 and 6. In

addition, to compare the performance of Alloy and Z3, a number of sequence diagrams were

composed using the logical constraints produced from the rules presented in Chapters 4 and 6

respectively.

6.2 Performance

In this section, the aim of the evaluation is to measure the performance of Z3 and Alloy con-

straint solvers, relative to the time required to compose sequence diagrams. This study has

evaluated the composition time reported by Z3 and Alloy, as measured in this evaluation, in

addition to the number of clauses produced in both constraint solvers.

In total, 14 experiments, divided into three phases, were carried out. In the first phase, the

testing began with the use of sequence diagrams without CombinedFragments. Moreover, in the

first experiment in Phase 1, two simple sequence diagrams were composed, each consisting of
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four messages, as shown in Figure 6.1. In the following experiments, the number of messages

was increased until the composition time became very prolonged.

In the second phase, one of the Phase 1 examples was selected and the number of lifelines

increased to test how this change would affect the solvers performance.

Finally, the third phase used the same example as Phase 2 and inserted a CombinedFrag-

ment, in order to increase the complexity of the example. The nested CombinedFragments were

then increased until the model became large and complex. The aim of this was to evaluate how

this complex model would affect the speed of the solvers.

In this evaluation, the latest version of each constraint solver was used. The Z3 solver

version was 4.4.1, while the version of Alloy Analyzer used was 4.2. The machine selected

for this test had the following configuration: a MacBook Pro laptop running the Macintosh

operating system on 2.5 GHz Intel Core i5, with 8GB RAM. Finally, the Alloy code of the

experiments in this chapter was automatically generated via an SD2Alloy tool, whereas the Z3

code was generated manually.

6.2.1 Experiment Phase 1

In this phase, the approach was tested using sequence diagrams without CombinedFragments,

as mentioned earlier. This phase consisted of eight experiments, starting with four messages,

two lifelines and 12 events in each diagram, as shown in Figure 6.1.

Figure 6.1: Sequence diagrams with four messages

In this experiment, it was assumed that messages M1 and M2 were matched in both dia-

grams. This means that their events (send/receive) and their lifelines were also matched in both

diagrams.
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Table 6.1: Phase 1 experiments

Example Total Lifelines Messages Events Alloy Z3

Time
(sec)

Clauses
Time
(sec)

Clauses

1 22 2 6 12 0.31 210603 2.38 7590

2 26 2 8 16 5.91 373819 3.05 12853

3 32 2 10 20 9.02 609675 5.51 36805

4 38 2 12 24 630.12 818146 7.87 52542

5 44 2 14 28 4329.79 1344924 13.73 220154

6 50 2 16 32 Timeout 1870923 24.10 300227

7 56 2 18 36 Timeout 2505690 26.21 464612

8 62 2 20 40 Timeout 3294658 36.95 582375

Table 6.1 shows the Phase 1 experiments in detail. For example, the example 1 shows

the results of the first experiment. The total number of elements in the final model, resulting

from the composition, was 22 (the overall elements of the composed sequence diagram). The

composition time shows that Alloy (0.31 seconds) was faster than Z3 (2.38 seconds). This ex-

periment illustrates that Alloy had a shorter composition time than Z3. However, the following

experiment shows that increasing the number of sequential messages strongly affected the per-

formance of Alloy. Overall, this study shows that approximately one hour and 20 minutes is

required to compose sequence diagrams containing 14 messages. Moreover, this model, which

contains 14 messages, has 1,344,924 clauses, as shown in Table 6.1. However, increasing the

number of messages increased the number of the variables and clauses in the model, which

made the solver run out of memory when solving the model, as experiments 6-8 show in Table

6.1.

On the other hand, Z3 showed good performance throughout most of the experiment. In-

creasing the number of messages did not have a significant effect on its performance, which

was less than one minute on average, as shown in Figure 6.2-a.
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(a) Composition time in Z3 (b) Composition time in Alloy

Figure 6.2: Composition time in Z3 and Alloy

6.2.2 Experiment Phase 2

In this phase, the approach used in this study was evaluated by increasing the number of life-

lines to determine how the change would affect the solvers performance. Moreover, also in this

phase, one of the Phase 1 examples (example 5) was adopted as a test case. This already had

a performance issue, as shown in Table 6.1. The number of lifelines was then increased to the

point at which a significant change in performance was evident. In this phase, three experi-

ments were conducted, starting from three lifelines in each diagram in the first experiment. The

number of lifelines was then increased until the performance showed a dramatic change.

Table 6.2: Phase 2 experiments

Example Total Lifelines Messages Events Alloy Z3

Time
(sec)

Clauses
Time
(sec)

Clauses

9 45 3 14 28 10020.620 1609394 14.67 235980

10 46 4 14 28 10603.436 1719922 15.08 280193

11 47 5 14 28 Timeout 1837535 20.33 342690

Table 6.2 shows the results of the Phase 2 experiments. This study confirms the earlier

findings for Phase 1, namely that Alloy’s performance was strongly affected by the number of
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elements in the model. This study therefore confirms the Phase 1 results by demonstrating that

when the number of clauses in the composed model exceeds 1,800,000 clauses, Alloy Analyzer

will run out of memory, as shown in Tables 6.1 and 6.2.

Z3 still performs well and consistently in the above circumstances. In this study, increasing

the number of lifelines did not have a significant effect on Z3’s performance.

6.2.3 Experiment Phase 3

In Phase 3, the experiments tested how CombinedFragments affected the performance of Alloy

and Z3. Again, in this phase, example 5 was adopted as a test case and a CombinedFragment

was inserted. The number of nested CombinedFragments was then increased until one of the

solvers ran out of memory. Table 6.3 shows that when messages were further structured through

CombinedFragments, Alloys performance was strongly affected and the solvers speed was also

slowed down (Figure 6.3-(b)).

Table 6.3: Phase 3 experiments

Example Total Combined
Fragment Lifelines Messages Events Alloy Z3

Time
(sec)

Clauses
Time
(sec)

Clauses

12 47 1 2 14 30 11163.872 1753293 14.32 285163

13 48 2 2 14 30 Timeout 2281797 17.85 393111

14 49 3 2 14 30 Timeout 2348862 23.08 409395

This study also confirms that Alloy’s performance was affected by the number of clauses, as

mentioned earlier. Indeed, with an increasing number of CombinedFragments, the performance

of Alloy becomes very slow. In example 10, Alloy’s composition time was about three hours.

In examples 11 and 12, Alloy ran out of memory, which shows that the maximum number of

clauses Alloy can solve is 1,753,293.

Z3, on the other hand, showed steady performance and increasing the CombinedFragments

did not have a significant effect on its performance.
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(a) Composition time in Z3 (b) Composition time in Alloy

Figure 6.3: Composition time in Z3 and Alloy

6.2.4 Discussion

This chapter has described a comparison study that evaluated the constraint solvers from a per-

formance perspective. This study was divided into three phases. Each phase evaluated the

performance of the two constraint solvers when increasing a major element of the sequence

diagrams. For example, Phase 1 showed the effect of increasing the messages in the sequence

diagrams on the constraint solvers. The second phase evaluated the performance of both solvers

when increasing the number of lifelines. Finally, the third phase tested how CombinedFrag-

ments affect the performance of Alloy and Z3.

In this study, Z3 demonstrated good performance throughout most of the experiments in all

phases and increasing the number of elements did not have a significant effect on this perfor-

mance (less than one minute on average).

After closer inspection, the scalability problems in Alloy seemed to be due to the fact that

Alloy Analyzer, which underlies Alloy, is based on a SAT solver. SAT-solving time is known to

vary enormously, depending on factors such as the number of variables, the ordering of clauses

and the average length of the clause [46].

In terms of Z3, there are several reasons why it performed better than Alloy. Firstly, Z3 uses

many heuristics to eliminate quantifiers in formulae. It uses an e-graph to instantiate quantified
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(a) phase 1. (b) phase3.

Figure 6.4: Number of clauses in Z3 and Alloy for Phase 1 and 3.

variables, code trees, and eager instantiation, which makes it very effective at dealing with

quantifiers [41, 114].

The second reason is that the implementation languages are different in Z3 and Alloy. For

example, Z3 was implemented in C++, while Alloy and its SAT-solver were implemented in

Java. Another reason that might make Z3 more efficient is that SMT solvers operate at a higher

level of abstraction than SAT solvers. SMT solvers can use information about the structure and

semantics of a formula to speed up the satisfiability process, whereas a SAT-based approach

converts the model to SAT formulae using Boolean encoding [114]. Due to the increasing

size of the Boolean encoding, an exponential increase in composition time then occurs. It was

observed that the size of Z3-SMT clauses is much smaller than what is produced by Alloy,

which uses a SAT4J solver (Figure 6.4).

6.2.5 Chapter Summary

This chapter has presented a comparative study between Alloy and Z3 constraint solvers from a

performance perspective. This comparison study aimed to evaluate methods of using Alloy and

Z3 constraint solvers for composing sequence diagrams. This study showed that Z3 was much

faster than Alloy in most of the experiments. As a result, several questions that merit further

investigation have arisen. For example, further investigation is required to determine the precise
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reason for the differences in performance between the two solvers.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

This chapter concludes the work presented in this thesis. In section 8.1, the contributions made

in this thesis are summarised. Section 8.2 outlines a discussion on any future work, which could

be carried out to expand and improve this research.

7.1 Summary of Contributions

The main contribution of this thesis is the presentation of two automated methods of sequence

diagram composition, using the constraint solvers, Alloy and Z3. The outline of the Alloy

composition method involves the creation of two Alloy models. Each model created consists

of sets of logical constraints, uniquely identifying each component of their corresponding se-

quence diagram by restricting the metamodel. To combine the models, additional constraints

capturing the composition glue were produced. This glue specified which elements needed to

be composed, along with where the elements should be inserted, and the ways in which the

composition process worked to obtain the expected result.

To ensure the correctness of the composition process, the semantics of the composition were

formalised with the help of Labelled Event Structures (LES). The result obtained automatically

with a constraint solver was preserved in the formal interpretation of the present composition.

The Alloy-based automated method of composition was implemented here as an Eclipse plugin

called SD2Alloy to compose the sequence diagrams. The evolution of the SD2Alloy then re-

vealed a performance issue in Alloy, occurring in the composition of large models. In order to
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counteract it, an alternative contribution to automated sequence diagram composition using the

Z3-SMT solver was presented in this study. In addition, the other advantage of using Z3 was

that it is capable of displaying the overall model in a single solution; whereas Alloy produces

as many solutions as there are possible traces in the model, with each solution representing a

different trace. Therefore, Z3 provides engineers with a better solution for assisting in under-

standing overall behaviour.

In the above approach, a number of transformation rules were defined to map the elements

of the sequence diagrams and LES metamodels to these Z3 metamodels. Using this method,

each sequence diagram and its eliminated version of LES’ were automatically transformed into

Z3; these being instances of the Z3 metamodel. Here, this transformation produced sets of

Z3 logical constraints that uniquely identified each component of their corresponding sequence

diagram and LES’ model. Solving this Z3 model will produce only one solution, which is

isomorphic with LES’ model of the sequence diagram.

Finally, in order to compose the Z3 models representing the input sequence diagrams, the

set of logical constraints representing the composition glue was added; matching the common

elements of the input models. These logical constraints consisted of a number of axioms that

were able to match all possible scenarios that covered by this approach. Similar to Alloy, Z3

was used in this study to formally check whether the sequence diagrams could be composed and

to automatically compose the diagrams. We believe that the methodology used in this thesis

to automate the composition sequence diagrams could be generalised and applied in various

composition domains. Therefore, an aspects-oriented case study was applied and woven via the

Z3-SMT solver.

This approach should be applicable to a wide range of modelling notations used for design.

Although the composition of sequence diagrams has been the focus in this instance, other kinds

of model can also be composed, e.g. class diagrams, communication diagrams and Message

Sequence Charts (MSC). Finally, this thesis presents a comparison study between Alloy and Z3

from the point of view of performance.

Chapter 2 began with an overview of some of the basic concepts related to UML modelling,
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interaction semantics, model composition and the technologies used to support composition; in

particular, constraint solvers, such as Alloy and Z3. This was followed by a review that explores

current approaches to composition via constraint solvers. The review presented a number of

different constraint solvers used to compose models, as well as the challenges, benefits and

trade-off of needs to be considered when composing a model. From the background, it may be

gathered that current approaches use manual composition or algorithms to compose behavioural

models. Furthermore, most methods using algorithms are designed to compose simple sequence

diagrams, without the CombinedFragments that represent complex behaviour.

The objective of the background provided was to map out the main activities used, in support

of the composition of dynamic models, as well as identifying the gaps in current approaches.

From the background, it became apparent that the approaches reviewed do not fully cover the

automated composition of dynamic models. In Chapter 3, the methodology used for model

composition was demonstrated. In particular, a technique was presented in this study, called

Exact Metamodel Restrictions (EMR). This described the mapping between dynamic models

into logical constraints. This was followed by composition semantics, which guide the com-

position to produce the expected results. In addition, the syntactic and behaviour glue used for

model composition was illustrated.

In Chapter 4, sequence diagram composition via Alloy was described. This involved sets of

transformation rules that map the sequence diagram elements to Alloy. Logical statements of

Alloy were produced through EMR. In addition, this chapter demonstrated the composition of

sequence diagrams via Alloy. It involved algorithms demonstrating the process of generating

logical statements to represent the composition glue.

In Chapter 6, an alternative composition approach was revealed using Z3. The aim of this

approach was to resolve Alloy’s poor performance and use the advantage of Z3’s ability to rep-

resent the overall model in one solution. This Chapter described the process of composition;

carried out in this study on the level of both the sequence diagram and LES. Further to the

above, the Chapter consisted of three main sections. The first section demonstrated the map-

ping between the sequence diagram and LES to Z3, while the second section demonstrated the
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composition mechanism. Finally, the third section showed the evaluation of the approach, using

an aspect-oriented case study.

Chapter 7 then presented a comparison study between Alloy and Z3 from the performance

point of view. This comparison study was based on running 14 experiments, with the above

Chapter confirming that Z3 performs better than Alloy in most of the evaluation experiments;

especially for the composition of complex sequence diagrams. In this Chapter, Alloy’s perfor-

mance issues were investigated and a number of the reasons underlying such problems were

presented.

7.2 Future Work

Following the advances made in this thesis, a number of directions for future research have

arisen. Some of these extensions could help overcome a few of the limitations of this research,

whilst others could provide additional capabilities.

The sequence diagram metamodel used in this research, as presented in Figure 2.6, is a sub-

set of the UML metamodel derived from [116]. However, there are certain elements existing in

the UML metamodel for sequence diagrams that have not been included in the metamodel used

in this research; such as loop CombinedFragment. As seen in [54], LES offer suitable semantics

for sequence diagrams and the various interactive fragments defined; whereas operators, such

as seq, alt and par have a natural correspondence to relations within LES and it may be less

obvious how to capture other operators. To represent a loop fragment, the LES must model all

possible iterations of the loop as ’unfoldings’ (traces in the LES) as explained in Chapters 4

and 6. Moreover, in constraint solvers, a finite number of possible iterations must be assumed.

Thus, the representation of the loop will be revealed as a limitation of the current approach in

terms of how to present an infinite number in the constraint solver. This remains a task for

future work.

The CombinedFragment option could also be considered for future work. The option is se-

mantically equivalent to an alternative CombinedFragment, but contains only one Interaction-
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Operand. The transformation of an option can be performed in the same way as the alternative

CombinedFragment, but only one operand will be generated for it instead of two, as stated in

the definition. The occurrence is known to be associated with the condition. This condition can

be encoded as a fact in Alloy, or as function and axiom in Z3.

Other future work would consist of composing state machines via constraint solvers, such as

Z3. The transformation from state machines to Alloy has been presented in several approaches

[59, 150]. However, performing the composition via Alloy is not a suitable choice, as men-

tioned in Chapter 7, as it reveals Alloy’s performance issues. Instead, it is currently planned

to transform state machines to Z3. This transformation is based on the interpretation of state

machines in Alloys logical statement. Thus, translating these logical statements to Z3 can save

time and will guarantee that the transformations are correct and have been evaluated. In terms

of the composition, it necessarily involves studying all possible cases of state machines compo-

sition and improving the current glue to cover these cases, similar to what has been done with

sequence diagrams.

In addition, other future work would involve enhancing the sequence diagram metamodel

used in this approach to model transformation, so that it includes OCL constraints. OCL is a

text-based language that uses first-order logic statements to provide constraints of the model

elements in UML. As these are first-order logic statements, such constraints can be translated

following the work presented in [8]. However the work proposed in [8] is designed for class

diagrams. In this work, the sequence diagrams are targeted. For example, the pre- and post-

conditions and the ’if’ statement (’if then else’) in the OCL statements can be written as a fact,

where the ’if’ statement can be translated to imply the operator. More specifically, the Alloy

syntax for ’if-then-else’ expressions is:

condition =⇒ {expr1}

else {expr2}

Finally, plans are also being drawn up to improve the current composition methods, in sup-
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port of a bi-directional model transformation between sequence diagrams and Z3, where com-

position is performed in Z3 and the results are transformed back into sequence diagrams. How-

ever this could be complicated, since Z3 language is more expressive than that of the sequence

diagrams.
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APPENDIX A

SD2ALLOY: IMPLEMENTATION OF A
COMPOSITION FRAMEWORK

A.1 Overview

This chapter will introduce the implementation of the transformation rules presented in the

previous chapter. The approach will involve using a plug-in called SD2Alloy.

A.2 SD2Alloy Architecture

Figure A.1: Overview.

Figure A.1 presents an overview of the approach as explained in Chapter 4. In particular,

the transformation rules have been defined to conduct the model transformation. The transfor-

mation rules map the elements of the sequence diagram metamodel onto the Alloy metamodel,
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as Figure A.1 shows. Subsequently, these rules are executed via the Simple Transformer (SiTra)

transformation engine. This means that every model arising from the source metamodel can be

transformed automatically into an instance of the destination metamodel. Finally, the model

transformation is implemented as an Eclipse plug-in application called SD2Alloy. Figure A.2

depicts the SD2Alloy architecture. The tool includes a modified open source tool called Papyrus

[99], which allows the user to generate any number of sequence diagrams and exports these

as XMI files, so they can be parsed. SD2Alloy parses the XMI files generated by Papyrus into

Java objects, using the UML2 library [121]. SiTra is then used to transform the Java objects of

sequence diagrams and create the Alloy Java object that will produce the Alloy code. Finally,

the generated Alloy model can be analysed using Alloy Analyser.

Figure A.2: Technologies used during the development of SD2Alloy.

A.3 Integration of Papyrus

The decision to integrate a Papyrus tool into SD2Alloy was based on the fact that it is a state-

of-the-art UML open source tool with the power to support most of the sequence diagrams

components, such as the combined fragments component ( alt, par,loop, etc). Currently, several

UML tools support sequence diagram such as ArgoUML [120], Poseidon [1], UMlet [14].

However, some of these tools are not open source such as Poseidon and other does not support

all sequence diagram components such as CombinedFragments such as ArgoUML and UMlet.
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Papyrus supports several UML diagrams, e.g. the class diagram, object diagram, state ma-

chine diagram, etc. However, in the SD2Alloy tool, the only component of UML models needed

is a sequence diagram. Thus, it is necessary to integrate only the sequence diagram. As men-

tioned, Papyrus consists of a mix of different diagrams together; therefore it is difficult to sepa-

rate them. To solve this problem, all diagrams have been deactivated and only keep a sequence

diagram active.

Figure A.3: Creation of sequence diagram.

Figure A.3 illustrate the process of generating sequence diagram in SD2Alloy. As Eclipse

plug-ins (including Papyrus) can only control files inside its workspace, thus a link has been

created between the files created in Java and Eclipse IFile which aimed to read the files outside

the workspace. After that, a class called CreateModelWizard in Papyrus is used to initiate a

sequence diagram with the files created. The Editor can then edit the sequence diagram, which

is also integrated from Papyrus.

A.4 Generating an XMI for Sequence Diagrams

XML Metadata Interchange (XMI) [117] is a standard created by the Object Management

Group to allow the interchange of metadata information. XMI is commonly used to express
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UML models and as such, represents a widely accepted form of output in UML tools. UML

tools allow UML models designed within the tool to be exported as XMI files. An example of a

small snippet of XMI that represents a sequence siagram created using Papyrus is shown below.

<?xml version=” 1 . 0 ” encoding=”UTF−8”?>

<uml :Model xmi :version=” 20110701 ” xmlns :xmi=” h t t p : / / www. omg . org / spec /XMI/20110701 ” xmlns :uml=”

h t t p : / / www. e c l i p s e . o rg / uml2 / 4 . 0 . 0 /UML” xmi :id=” oOxawLQEEeOhB5bNYPu52A” name=” model ”>

<packagedElement xmi :type=” uml : I n t e r a c t i o n ” xmi :id=” oPTmQLQEEeOhB5bNYPu52A” name=”

I n t e r a c t i o n 1 ”>

/ / CombinedFragment i n XML t y p e of p a r

<fragment xmi :type=” uml : CombinedFragment ” xmi :id=” VjJxoLTfEeOWZqCjYfMtHg ” name=”

CombinedFragment1 ” covered=” r3cKkLQEEeOhB5bNYPu52A q8BEILQEEeOhB5bNYPu52A”

interactionOperator=” p a r ”>

/ / F i r s t i n t e r a c t i o n O p e r a n d i n t h e CombinedFragment1

<operand xmi :id=” VjKYsLTfEeOWZqCjYfMtHg” name=” Operand1 ” covered=” r3cKkLQEEeOhB5bNYPu52A

q8BEILQEEeOhB5bNYPu52A”>

<guard xmi :id=” VjKYsbTfEeOWZqCjYfMtHg”>

<specification xmi :type=” uml : L i t e r a l S t r i n g ” xmi :id=” VjKYsrTfEeOWZqCjYfMtHg” value=” u n d e f i n e d ”

/>

<maxint xmi :type=” uml : L i t e r a l I n t e g e r ” xmi :id=” VjK wbTfEeOWZqCjYfMtHg” value=” 1 ”/>

<minint xmi :type=” uml : L i t e r a l I n t e g e r ” xmi :id=” VjK wLTfEeOWZqCjYfMtHg”/>

</guard>

/ / The e v e n t s c o v e r e d by Operand1 which c a l l e d ( e1 , g1 )

<fragment xmi :type=” uml : M e s s a g e O c c u r r e n c e S p e c i f i c a t i o n ” xmi :id=” trZbgbQEEeOhB5bNYPu52A ” name=

” g1 ” covered=” r3cKkLQEEeOhB5bNYPu52A” message=” trYNYLQEEeOhB5bNYPu52A”/>

<fragment xmi :type=” uml : M e s s a g e O c c u r r e n c e S p e c i f i c a t i o n ” xmi :id=” trZbgLQEEeOhB5bNYPu52A” name=

” e1 ” covered=” q8BEILQEEeOhB5bNYPu52A” message=” trYNYLQEEeOhB5bNYPu52A”/>

</operand>

The XMI shown above represents just a small fragment of code that forms the entire se-

quence diagram. As can be seen in the XMI code above, the first part represents the Combined-

Fragment in the sequence diagram which called CombinedFragment1. The interactionOper-

ator of the CombinedFragment defined as ”par”. This fragment contains an interactionOperand

”Operand1”. This operand as shown covered two events (e1, g1). In fact, the code as shown

is incomprehensible to most developers and decoding the XMI to obtain the sequence diagram

information is a tedious process. However, this process could be done automatically using XMI
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parsers.

A.5 Parsing XML Data into Java Objects

Parsing is a process of syntactical analysis and interpretation of a structured text [6]. As men-

tioned previously, Papyrus presents diagrams as XML files. As such, before the transformation

to Alloy, parsing is required to interpret the XMI code generated using UML tools into Java

objects that can be manipulated by SiTra. The parsing and generation of Java objects in the

diagrams is performed using the UML2 library, as the code set out below shows.

/ / r e a d XML f i l e and r e t u r n UML O b j e c t s

p u b l i c c l a s s Xml2obj {

p u b l i c s t a t i c Model load (String filePath ) {

/ / i n i t

ResourceSet resourceSet = new ResourceSetImpl ( ) ;

org .eclipse .uml2 .uml .resources .util .UMLResourcesUtil .init (resourceSet ) ;

Model epo2Model = n u l l ;

/ / l o a d from f i l e

URI filrUri = URI .createFileURI (filePath ) ;

Resource resource = resourceSet .createResource (filrUri ) ;

resource .load ( n u l l ) ;

org .eclipse .uml2 .uml .Package package_ = (org .eclipse .uml2 .uml .Package ) resource .getContents ( ) .

get ( 0 ) ;

epo2Model = package_ .getModel ( ) ;

r e t u r n epo2Model ;

}

}

Using the above method, a UML2 library automatically parsing XML files that Papyrus gen-

erated which includes all the information of the diagram and generate Java objects that corre-

sponds to the original sequence diagram.
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A.6 SiTra for Executing the Transformation Rules

The step following the process of parsing the XML files into Java objects is where the actual

model transformation process takes place. This process is conducted using SiTra, which is a

Java library that can provide a lightweight framework for performing transformations. SiTra

has recently become a common choice for executing transformation rules, due to its usability

[61]. It is also applicable to the conducting of large and complex transformations. As explained

in Chapter 2, Section 2.8, SiTra contains two interfaces: the rule and transformer interfaces.

The rule interface should be implemented for each transformation rule, whereas the transformer

interface provides a framework for methods that carry out transformations.

The rule interface includes three main methods: check(), build() and setProperties().

check() method returns a Boolean value signifying whether this rule is applicable to the source

object. The build() method generates the target model element. Finally, setProperties() is

used to set the attributes and links for the newly created target element.

Since the rules for UML objects are similar, this section will present just one of them,

namely a sequence diagram, Lifeline. For other UML objects, the source code should be re-

ferred to. The Lifeline2Alloy rule implements the Rule interface in SiTra. As mentioned above,

the three rule interface methods require implementation (check, buildandsetProperties).

p u b l i c c l a s s Lifeline2Alloy imp lemen t s Rule{

@Override

p u b l i c b o o l e a n check (Object source ) {

i f (source i n s t a n c e o f LifelineImpl ) {

r e t u r n t r u e ;

}

e l s e r e t u r n f a l s e ;

}

The above method shows the check method that should return a boolean value. Next, the

built method returns the target object created by the information from the source element as the

code below shows. A HashMap, as presented below, is used to store all the created objects.
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p u b l i c Object build (Object source , Transformer t ) {

Lifeline lifeline = (Lifeline ) source ;

/ / add a b s t r a c t f o r l i f e l i n e

/ / a b s t r a c t s i g LIFELINE {}

ASig lifelineAbstract = getSig ( ”LIFELINE” ) ;

lifelineAbstract .set_attr (AAttr .ABSTRACT ) . ;

lifelineSig .AddField ( ”CLASS” , lifelineClass ) .AddField ( ”NAME” , lifelineName ) ;

/ / add t h e l i f e l i n e

ASig lifelineSig = getSig (lifeline .getName ) ;

lifelineSig .set_attr (AAttr .ONE ) .set_parent (lifelineAbstract ) ;

lifelineSig .AddField ( ”CLASS” , lifelineClass ) .AddField ( ”NAME” , lifelineName ) ;

}

The above method shows that for all lifelines in the sequence diagram, the transformation

generate an abstract signature which called ”LIFELINE”. Then for each lifeline, the transforma-

tion generate a keyword ”ONE” followed by the signature name. Finally, the lifeline signatures

fields will be added which consist of the lifeline name and class.

The rules then must be added into the transformer as the snippet of code illustrated below

shows. A method called transformAll can then be invoked to automatically transform the UML

diagram.

/ / L i s t a l l o f a l l c l a s s e s t h a t e x t e n d t h e r u l e i n t e r f a c e

List<Class<? e x t e n d s Rule<? , ?>>> rules = new ArrayList<Class<? e x t e n d s Rule<? , ?>>>() ;

/ / Add r u l e s t o t h e l i s t o f r u l e s

rules .add ( (Class<? e x t e n d s Rule<? , ?>>) InteractionOperand2Alloy . c l a s s ) ;

rules .add ( (Class<? e x t e n d s Rule<? , ?>>) CombinedFragment2Alloy . c l a s s ) ;

rules .add ( (Class<? e x t e n d s Rule<? , ?>>) Interaction2Alloy . c l a s s ) ;

rules .add ( (Class<? e x t e n d s Rule<? , ?>>) Lifeline2Alloy . c l a s s ) ;

rules .add ( (Class<? e x t e n d s Rule<? , ?>>) Message2Alloy . c l a s s ) ;

/ / C r e a t e t h e t r a n s f o r m e r

Transformer trans = new SimpleTransformerImpl (rules ) ;

/ / T rans fo rm t o a l l o y model

trans .transform (model .getOwnedElements ( ) ) ;
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A.7 SD2Alloy: An Eclipse Plug-in

The model transformation framework described in the previous chapters was implemented as

an Eclipse plug-in called SD2Alloy. Figures A.4 and A.5 show two snapshots of the SD2Alloy

interface. In both cases, the left panel shows a list of the current sequence diagrams used

(here, sd1.di and sd2.di, where di is the extension name given by Papyrus), as well as the

syntactic matching declarations of model elements from the different diagrams (here, sd1 −

sd2Equality.eq). Different levels of detail can be shown on different panes in the tool with

the Editor in the middle, indicating the current diagram or code being edited. For example,

in Figure A.4, the tool shows a diagram and in Figure A.5, it shows the Alloy code generated

for the same diagram. Properties of elements being edited can also be seen and changed on a

separate pane at the bottom right of the tool.

Figure A.4: A snapshot of the SD2Alloy interface.

A.8 Generating an Alloy Model from a Running Example

In order to use SD2Alloy to auto-generate Alloy from the sequence diagram, the SD2Alloy

user should first provide those diagrams for the tool that need to be composed by drawing or
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Figure A.5: Alloy code in SD2Alloy.

importing them. In this section, we will use the example in Figure 2.5, which has been drawn via

SD2Alloy. Secondly, the sequence diagram is transformed into an Alloy model, thus allowing

for powerful analysis to be conducted using the Alloy Analyser. The snippet of code below

depicts part of the Alloy code generated using SD2Alloy from the sequence diagram in the

running example. The complete Alloy code for the running example is presented in Appendix

A.

a b s t r a c t sig EVENT{NEXT :set EVENT , COVER :one LIFELINE}

a b s t r a c t sig INTERACTIONOPERAND{COVER :set EVENT+COMBINEDFRAGMENT}

a b s t r a c t sig CF_TYPE{}

a b s t r a c t sig LIFELINE{CoveredBy :set COMBINEDFRAGMENT}

a b s t r a c t sig MESSAGE{SEND :one MESSAGE_EVENT , RECEIVE :one MESSAGE_EVENT}

a b s t r a c t sig COMBINEDFRAGMENT{OPERAND :set INTERACTIONOPERAND , TYPE :one CF_TYPE}

/ / Combined Fragment Type

one sig CF_TYPE_ALT e x t e n d s CF_TYPE{}

one sig CF_TYPE_PAR e x t e n d s CF_TYPE{}

/ / Combined Fragment

one sig SD1_CombinedFragment1 e x t e n d s COMBINEDFRAGMENT{}

one sig SD1_CombinedFragment2 e x t e n d s COMBINEDFRAGMENT{}
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/ / Operand

one sig SD1_CombinedFragment1_Operand2 e x t e n d s INTERACTIONOPERAND{}

one sig SD1_CombinedFragment1_Operand1 e x t e n d s INTERACTIONOPERAND{}

lone sig SD1_CombinedFragment2_Operand2 e x t e n d s INTERACTIONOPERAND{}

lone sig SD1_CombinedFragment2_Operand1 e x t e n d s INTERACTIONOPERAND{}

A.9 Model Composition

Following the transformation of the sequence diagram, a compose process takes place. The

developer use in this stage a Constraint Editor to add equalities for merging sequence diagrams.

The editor allows the user to select the common elements of the current diagrams (figure A.6)

and add expression, representing the equality between them as figure A.7 shows.

Figure A.6: List of models elements .

After the user has specified the equality elements, the tool merges them and produces a new

Alloy model which corresponds to the union of all constraints associated to the input Alloy

models and the glue contraints. Figure A.8 shows the merged Alloy model.
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Figure A.7: Constraint Editor.

Figure A.8: composed model.

Solving this model via Alloy Analyser can produce a number of solutions (instances). These

instances illustrate all possible solutions that may result from the composition of the sequence

diagrams in Figures A.9.

Figure A.9: composed summary in Alloy.
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Figure A.9 presents a summary of the composition generated by the Alloy Analyser. It

illustrates that the model satisfies all logical constraints, with the final model consisting of

390,190 variables and 1,129,084 clauses. The composition took 80.898 seconds to produce

these results.

A.10 Chapter Summary

This chapter presents the implementation of the model composition tool, SD2Alloy. The de-

scription of the tool architecture is discussed in section 5.2. In the following sections, the

technologies used in the development, such as the Papyrus tool and Sitra are described. Finally,

section 5.7 provides a description of the SD2Alloy Eclipse plug-in.
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APPENDIX B

ALLOY MODELS OF THE EXAMPLES IN
CHAPTER 4

This section presents the complete Alloy textual code automatically generated from the SD2ALLOY

relating to the running example presented in Chapter 4. Some comments have been manually

written to explain which the code.

B.1 Alloy model for Sequence Diagram (sd1)

/**

*** Abstract signatures for the elements of the metamodel

**/

abstract sig INTERACTIONOPERAND{COVER:set EVENT+COMBINEDFRAGMENT}

abstract sig EVENT {COVER:one LIFELINE, Next:set EVENT}

abstract sig CF_TYPE{}

abstract sig LIFELINE{CoveredBy:set COMBINEDFRAGMENT}

abstract sig MESSAGE{SEND:one EVENT, RECEIVE:one EVENT}

abstract sig COMBINEDFRAGMENT{OPERAND:set INTERACTIONOPERAND, TYPE:one CF_TYPE}

/**

*** Combined Fragments Type

**/

one sig CF_TYPE_ALT extends CF_TYPE{}

one sig CF_TYPE_PAR extends CF_TYPE{}

/**

*** Combined Fragment
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**/

one sig sd1_CF1 extends COMBINEDFRAGMENT{}

one sig sd1_CF2 extends COMBINEDFRAGMENT{}

/**

*** Operand

**////CombinedFragment Operands

one sig sd1_CF1_Op2 extends INTERACTIONOPERAND{}

one sig sd1_CF1_Op1 extends INTERACTIONOPERAND{}

lone sig sd1_CF2_Op2 extends INTERACTIONOPERAND{}

lone sig sd1_CF2_Op1 extends INTERACTIONOPERAND{}

/**

*** Messages Names

**/

one sig NAME_i, NAME_j, NAME_m1, NAME_m2, NAME_m3{}

/**

*** Lifelines Names

**/

one sig a, b{}

/**

*** Lifelines Classes

**/

one sig A, B{}

/**

*** Lifelines

**/

one sig sd1_a extends LIFELINE{NAME:one a, CLASS:one A}

one sig sd1_b extends LIFELINE{NAME:one b, CLASS:one B}

/**

*** Events

**/

one sig sd1_e2 extends EVENT{}

one sig sd1_e3 extends EVENT{}

lone sig sd1_e6 extends EVENT{}

lone sig sd1_e7 extends EVENT{}

one sig sd1_e9 extends EVENT{}

one sig sd1_g2 extends EVENT{}

one sig sd1_g3 extends EVENT{}

lone sig sd1_g6 extends EVENT{}

lone sig sd1_g7 extends EVENT{}

one sig sd1_g9 extends EVENT{}
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/**

*** Messages

**/

lone sig sd1_m1 extends MESSAGE{NAME:one NAME_m1}

lone sig sd1_m2 extends MESSAGE{NAME:one NAME_m2}

one sig sd1_m3 extends MESSAGE{NAME:one NAME_m3}

lone sig sd1_j extends MESSAGE{NAME:one NAME_j}

lone sig sd1_i extends MESSAGE{NAME:one NAME_i}

/**

*** Binding: Combined Fragment Type

**/

/// This fact define the type of each CombinedFragment

fact{

all _CF: sd1_CF2 | _CF.TYPE = CF_TYPE_ALT

all _CF: sd1_CF1 | _CF.TYPE = CF_TYPE_PAR

}

/**

*** Binding: Message->Event

**/

// This fact specify the event of message (send / receive)

fact{

sd1_i.SEND = sd1_e2

sd1_i.RECEIVE = sd1_g2

sd1_m1.SEND = sd1_e3

sd1_m1.RECEIVE = sd1_g3

sd1_j.SEND = sd1_e6

sd1_j.RECEIVE = sd1_g6

sd1_m2.SEND = sd1_e7

sd1_m3.SEND = sd1_e9

sd1_m2.RECEIVE = sd1_g7

sd1_m3.RECEIVE = sd1_g9

}

/**

*** Covering: Combined Fragment->Operand

**/

// This fact connect the Operands with their Combined Fragments

fact{

sd1_CF1_Op1 in sd1_CF1.OPERAND

sd1_CF1_Op2 in sd1_CF1.OPERAND

sd1_CF2_Op2 in sd1_CF2.OPERAND

sd1_CF2_Op1 in sd1_CF2.OPERAND
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}

/**

*** Covering: Combined Fragment->Lifeline

**/

fact{

sd1_CF1 in sd1_a.CoveredBy

sd1_CF2 in sd1_a.CoveredBy

sd1_CF1 in sd1_b.CoveredBy

sd1_CF2 in sd1_b.CoveredBy

}

/**

*** Covering: Event->Lifeline

**/

// This fact connect the Events to Lifelines that covered by

fact{

all _E: sd1_e2 | _E.COVER=sd1_a

all _E: sd1_g2 | _E.COVER=sd1_b

all _E: sd1_e3 | _E.COVER=sd1_a

all _E: sd1_g3 | _E.COVER=sd1_b

all _E: sd1_e6 | _E.COVER=sd1_a

all _E: sd1_g6 | _E.COVER=sd1_b

all _E: sd1_e7 | _E.COVER=sd1_a

all _E: sd1_g7 | _E.COVER=sd1_b

all _E: sd1_e9 | _E.COVER=sd1_a

all _E: sd1_g9 | _E.COVER=sd1_b

}

/**

*** Covering: Operand->Fragment

**/

// This fact connect the Events or CombinedFragment to the operands that located inside or

connect them directly to the Interaction if they are not nested any operand

fact{

all _F: sd1_e2 | _F in sd1_CF1_Op1.*(COVER.OPERAND).COVER

all _F: sd1_g2 | _F in sd1_CF1_Op1.*(COVER.OPERAND).COVER

all _F: sd1_e3 | _F in sd1_CF1_Op2.*(COVER.OPERAND).COVER

all _F: sd1_g3 | _F in sd1_CF1_Op2.*(COVER.OPERAND).COVER

all _F: sd1_e6 | _F in sd1_CF2_Op1.*(COVER.OPERAND).COVER

all _F: sd1_e6 | _F in sd1_CF2_Op1.*(COVER.OPERAND).COVER

all _F: sd1_e7 | _F in sd1_CF2_Op2.*(COVER.OPERAND).COVER

all _F: sd1_e7 | _F in sd1_CF2_Op2.*(COVER.OPERAND).COVER

all _F: sd1_e9 | _F in Interaction.*(COVER.OPERAND).COVER

all _F: sd1_e9 | _F !in sd1_CF2.ˆ(OPERAND.COVER)
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all _F: sd1_e9 | _F !in sd1_CF1.ˆ(OPERAND.COVER)

all _F: sd1_g9 | _F !in sd1_CF1.ˆ(OPERAND.COVER)

all _F: sd1_g9 | _F !in sd1_CF2.ˆ(OPERAND.COVER)

all _F: sd1_g9 | _F in Interaction.*(COVER.OPERAND).COVER

all _F: sd1_CF1 | _F !in sd1_CF2.ˆ(OPERAND.COVER)

all _F: sd1_CF2 | _F !in sd1_CF1.ˆ(OPERAND.COVER)

all _F: sd1_CF1 | _F in Interaction.*(COVER.OPERAND).COVER

all _F: sd1_CF2 | _F in Interaction.*(COVER.OPERAND).COVER

}

/**

*** Number: Message = Operand

**/

//This fact for the messages that located inside CombinedFragment. it means that each message

must occur when its Operand appear.

fact{

#sd1_m1=#sd1_CF1_Op2

#sd1_j=#sd1_CF2_Op1

#sd1_i=#sd1_CF1_Op1

#sd1_m2=#sd1_CF2_Op2

}

/**

*** GeneralOrdering

**/

fact GeneralOrder {

// The content of CombinedFragment1(i,M1 messages) before The content of CombinedFragment2(j,

M2 messages)

all l: sd1_a + sd1_b , ev1:sd1_CF1.OPERAND.COVER, ev2:sd1_CF2.OPERAND.COVER | ev1.COVER = l

and ev2.COVER = l => ev2 in ev1.ˆ Next

//CombinedFragment2 before Message M3

all l: sd1_a , ev1:sd1_CF2.OPERAND.COVER , ev2:sd1_e9 | ev1.COVER = l => ev2 in ev1.ˆ Next

all l: sd1_b , ev1:sd1_CF2.OPERAND.COVER , ev2:sd1_g9 | ev1.COVER = l => ev2 in ev1.ˆ Next}

/**

*** SD interaction

**/

one sig Interaction extends INTERACTIONOPERAND{

LIFELINES: Interaction one -> LIFELINE,

COMBINEDFRAGMENTS: Interaction one -> COMBINEDFRAGMENT,

MESSAGES: Interaction one -> MESSAGE}

/**

*** Constraint: Lifeline

**/

// one event can have at most one Next one one lifeline
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fact{all _E1: EVENT | lone _E2: EVENT-_E1 | _E2 in _E1.Next and _E2.COVER=_E1.COVER}

fact{all _E1: EVENT | lone _E2: EVENT-_E1 | _E1 in _E2.Next and _E2.COVER=_E1.COVER}

// at most one event can have no next on the same lifeline

fact{all _L: LIFELINE | lone _E1: EVENT | _E1.COVER=_L and (_L !in _E1.Next.COVER or #_E1.Next

=0) }

/**

*** Constraint: Combined Fragment

**/

// one CF should be covered by at most one Operand

fact{all _F: EVENT | lone _OP: INTERACTIONOPERAND | _F in _OP.COVER}

fact{all _OP: INTERACTIONOPERAND | lone _F: COMBINEDFRAGMENT | _OP in _F.OPERAND}

// INTERACTIONOPERAND: the children can not cover their parent

fact{all _OP: INTERACTIONOPERAND | _OP !in _OP.ˆ(COVER.OPERAND)}

// one cf can be cover by at most one op

fact{all _CF: COMBINEDFRAGMENT | one _OP: INTERACTIONOPERAND | _CF in _OP.COVER}

// INTERACTIONOPERAND: in one OP, at most one event for each lifeline can have no Next

fact{all _L: LIFELINE, _OP: INTERACTIONOPERAND | lone _E: EVENT | _E in _OP.COVER and _E.COVER

=_L and #_E.Next=0}

// alt: exact one operand will be executed

fact{all _CF: COMBINEDFRAGMENT | (_CF.TYPE = CF_TYPE_ALT) => #_CF.OPERAND = 1}

// INTERACTIONOPERAND: one OP can not be before and after the same other OP

fact{all _OP1: INTERACTIONOPERAND, _OP2:INTERACTIONOPERAND, _E1: _OP1.COVER| ( _E1 in _OP2.*(

COVER.OPERAND).COVER.*Next and _OP1 != _OP2 and _OP1 != Interaction and _OP2 !=

Interaction) => _OP1.COVER in _OP2.*(COVER.OPERAND).COVER.*Next}

/**

*** Constraint: Message

**/

// one event can be send/receive by at most one message

fact{all _E: EVENT | one _M: MESSAGE | _E = _M.SEND or _E = _M.RECEIVE}

// only allow relation between Events either they are in same message or on same lifeline

fact{all _E1: EVENT, _M: MESSAGE, _E2: EVENT | (_E1 in _M.SEND and _E2 in _E1.Next) => (_M.

RECEIVE=_E2) or (_E1.COVER=_E2.COVER)}

fact{all _E1: EVENT, _M: MESSAGE, _E2: EVENT | (_E1 in _M.RECEIVE and _E2 in _E1.Next) => (

_E1.COVER=_E2.COVER)}

// one message's send/receive should be covered by the same operand

fact{all _M: MESSAGE | one _OP: INTERACTIONOPERAND | _M.SEND in _OP.COVER and _M.RECEIVE in

_OP.COVER}

// send before receive

fact{all _M: MESSAGE | _M.RECEIVE in _M.SEND.Next}

// no circle

fact{no e:EVENT | e in e.ˆNext}

/**

*** Run
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**/

run{}

B.2 Alloy model for Sequence Diagram (sd2)

/**

*** Abstract signatures for the elements of the models(metamodel)

**/

abstract sig INTERACTIONOPERAND{COVER:set EVENT+COMBINEDFRAGMENT}

abstract sig EVENT {COVER:one LIFELINE, Next:set EVENT}

abstract sig CF_TYPE{}

abstract sig LIFELINE{CoveredBy:set COMBINEDFRAGMENT}

abstract sig MESSAGE{SEND:one EVENT, RECEIVE:one EVENT}

abstract sig COMBINEDFRAGMENT{OPERAND:set INTERACTIONOPERAND, TYPE:one CF_TYPE}

/**

*** Combined Fragment Type which is Alt in this example

**/

one sig CF_TYPE_ALT extends CF_TYPE{}

/**

*** Combined Fragment

**/

one sig sd2_CF extends COMBINEDFRAGMENT{}

/**

*** Operand

**///CombinedFragment Operands

lone sig sd2_Op1 extends INTERACTIONOPERAND{}

lone sig sd2_Op2 extends INTERACTIONOPERAND{}

/**

*** Messages Names

**/

one sig Name_m1, Name_m2, Name_new, Name_m4, Name_m5{}

/**

*** Lifelines Names

**/

one sig a, b{}

/**

*** Lifelines Classes

**/

one sig A, B{}
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/**

*** Lifelines

**/

one sig sd2_a extends LIFELINE{NAME:one a, CLASS:one A}

one sig sd2_b extends LIFELINE{NAME:one b, CLASS:one B}

/**

*** Events

**/

one sig sd2_f1 extends EVENT{}

one sig sd2_h1 extends EVENT{}

one sig sd2_h2 extends EVENT{}

one sig sd2_f2 extends EVENT{}

one sig sd2_f3 extends EVENT{}

one sig sd2_h3 extends EVENT{}

lone sig sd2_f6 extends EVENT{}

lone sig sd2_h6 extends EVENT{}

lone sig sd2_f5 extends EVENT{}

lone sig sd2_h5 extends EVENT{}

/**

*** Messages

**/

one sig sd2_new extends MESSAGE{NAME:one Name_new}

one sig sd2_m1 extends MESSAGE{NAME:one Name_m1}

one sig sd2_m2 extends MESSAGE{NAME:one Name_m2}

lone sig sd2_m4 extends MESSAGE{NAME:one Name_m4}

lone sig sd2_m5 extends MESSAGE{NAME:one Name_m5}

/**

*** Binding: Combined Fragment Type

**/

// This fact define the type of each CombinedFragment

fact{

all _CF: sd2_CF | _CF.TYPE = CF_TYPE_ALT

}

/**

*** Binding: Message->Event

**/

// This fact specify the event of message send and receive

fact{

sd2_m4.SEND = sd2_f5

sd2_m4.RECEIVE = sd2_h

sd2_new.SEND = sd2_h2

sd2_new.RECEIVE = sd2_f2

sd2_m5.SEND = sd2_f6

183



sd2_m5.RECEIVE = sd2_h6

sd2_m2.SEND = sd2_f3

sd2_m2.RECEIVE = sd2_h3

sd2_m1.SEND = sd2_f1

sd2_m1.RECEIVE = sd2_h1

}

/**

*** Covering: Combined Fragment->Operand

**/

// This fact connect the Operands with their Combined Fragments

fact{

sd2_Op2 in sd2_CF.OPERAND

sd2_Op1 in sd2_CF.OPERAND

}

/**

*** Covering: Combined Fragment->Lifeline

**/

fact{

sd2_CF in sd2_a.CoveredBy

sd2_CF in sd2_b.CoveredBy

}

/**

*** Covering: Event->Lifeline

**/

// This fact connect the Events to Lifelines that covered by

fact{

all _E: sd2_f5 | _E.COVER= sd2_a

all _E: sd2_h6 | _E.COVER= sd2_b

all _E: sd2_f1 | _E.COVER= sd2_a

all _E: sd2_f2 | _E.COVER= sd2_a

all _E: sd2_f6 | _E.COVER= sd2_a

all _E: sd2_h3 | _E.COVER= sd2_b

all _E: sd2_h5 | _E.COVER= sd2_b

all _E: sd2_f3 | _E.COVER= sd2_a

all _E: sd2_h2 | _E.COVER= sd2_b

all _E: sd2_h1 | _E.COVER= sd2_b

}

/**

*** Covering: Operand->Fragment

**/

// This fact connect the Events or CombinedFragment to the operands that located inside or

connect them directly to the Interaction if they are not nested any operand

fact{
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all _F: sd2_f1 | _F in Interaction.*(COVER.OPERAND).COVER

all _F: sd2_f1 | _F !in sd2_CF.ˆ(OPERAND.COVER)

all _F: sd2_h1 | _F !in sd2_CF.ˆ(OPERAND.COVER)

all _F: sd2_h1 | _F in Interaction.*(COVER.OPERAND).COVER

all _F: sd2_h2 | _F !in sd2_CF.ˆ(OPERAND.COVER)

all _F: sd2_h2 | _F in Interaction.*(COVER.OPERAND).COVER

all _F: sd2_f2 | _F !in sd2_CF.ˆ(OPERAND.COVER)

all _F: sd2_f2 | _F in Interaction.*(COVER.OPERAND).COVER

all _F: sd2_f3 | _F !in sd2_CF.ˆ(OPERAND.COVER)

all _F: sd2_f3 | _F in Interaction.*(COVER.OPERAND).COVER

all _F: sd2_h3 | _F in Interaction.*(COVER.OPERAND).COVER

all _F: sd2_h3 | _F !in sd2_CF.ˆ(OPERAND.COVER)

all _F: sd2_f6 | _F in sd2_Op1.*(COVER.OPERAND).COVER

all _F: sd2_h6 | _F in sd2_Op1.*(COVER.OPERAND).COVER

all _F: sd2_f5 | _F in sd2_Op2.*(COVER.OPERAND).COVER

all _F: sd2_h5 | _F in sd2_Op2.*(COVER.OPERAND).COVER

all _F: sd2_CF | _F in Interaction.*(COVER.OPERAND).COVER

}

/**

*** Number: Message = Operand

**/

//This fact for the messages that located inside CombinedFragment. it means that each message

must occur when its Operand appear.

fact{

#sd2_m4=# sd2_Op2

#sd2_m5=# sd2_Op1

}

/**

*** GeneralOrdering

**/

fact{

//Message M1 before new

all ev1: sd2_f2, ev2: sd2_f1 | ev1 in ev2.ˆNext

all ev1: sd2_h2, ev2: sd2_h1 | ev1 in ev2.ˆNext

//Message new before M2

all ev1: sd2_f3, ev2: sd2_f2 | ev1 in ev2.ˆNext

all ev1: sd2_h3, ev2: sd2_h2 | ev1 in ev2.ˆNext

//Message M2 before the content of SD2_CombinedFragment (yes or no messages)

all l: sd2_a, ev1: sd2_f3, ev2: sd2_CF.OPERAND.COVER | ev2.COVER=l =>ev2 in ev1.ˆNext

all l: sd2_b, ev1: sd2_h3, ev2: sd2_CF.OPERAND.COVER | ev2.COVER=l => ev2 in ev1.ˆNext

}
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/**

*** SD interaction

**/

one sig Interaction extends INTERACTIONOPERAND{

LIFELINES: Interaction one -> LIFELINE,

COMBINEDFRAGMENTS: Interaction one -> COMBINEDFRAGMENT,

MESSAGES: Interaction one -> MESSAGE}

/**

*** Constraint: Lifeline

**/

// one event can have at most one Next one one lifeline

fact{all _E1: EVENT | lone _E2: EVENT-_E1 | _E2 in _E1.Next and _E2.COVER=_E1.COVER}

fact{all _E1: EVENT | lone _E2: EVENT-_E1 | _E1 in _E2.Next and _E2.COVER=_E1.COVER}

// at most one event can have no next on the same lifeline

fact{all _L: LIFELINE | lone _E1: EVENT | _E1.COVER=_L and (_L !in _E1.Next.COVER or #_E1.Next

=0) }

/**

*** Constraint: Combined Fragment

**/

// one CF should be covered by at most one Operand

fact{all _F: EVENT | lone _OP: INTERACTIONOPERAND | _F in _OP.COVER}

fact{all _OP: INTERACTIONOPERAND | lone _F: COMBINEDFRAGMENT | _OP in _F.OPERAND}

// INTERACTIONOPERAND: the children can not cover their parent

fact{all _OP: INTERACTIONOPERAND | _OP !in _OP.ˆ(COVER.OPERAND)}

// one cf can be cover by at most one op

fact{all _CF: COMBINEDFRAGMENT | one _OP: INTERACTIONOPERAND | _CF in _OP.COVER}

// INTERACTIONOPERAND: in one OP, at most one event for each lifeline can have no Next

fact{all _L: LIFELINE, _OP: INTERACTIONOPERAND | lone _E: EVENT | _E in _OP.COVER and _E.COVER

=_L and #_E.Next=0}

// alt: exact one operand will be executed

fact{all _CF: COMBINEDFRAGMENT | (_CF.TYPE = CF_TYPE_ALT) => #_CF.OPERAND = 1}

// INTERACTIONOPERAND: one OP can not be before and after the same other OP

fact{all _OP1: INTERACTIONOPERAND, _OP2:INTERACTIONOPERAND, _E1: _OP1.COVER| ( _E1 in _OP2.*(

COVER.OPERAND).COVER.*Next and _OP1 != _OP2 and _OP1 != Interaction and _OP2 !=

Interaction) => _OP1.COVER in _OP2.*(COVER.OPERAND).COVER.*Next}

/**

*** Constraint: Message

**/

// one event can be send/receive by at most one message

fact{all _E: EVENT | one _M: MESSAGE | _E = _M.SEND or _E = _M.RECEIVE}

// only allow relation between Events either they are in same message or on same lifeline
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fact{all _E1: EVENT, _M: MESSAGE, _E2: EVENT | (_E1 in _M.SEND and _E2 in _E1.Next) => (_M.

RECEIVE=_E2) or (_E1.COVER=_E2.COVER)}

fact{all _E1: EVENT, _M: MESSAGE, _E2: EVENT | (_E1 in _M.RECEIVE and _E2 in _E1.Next) => (

_E1.COVER=_E2.COVER)}

// one message's send/receive should be covered by the same operand

fact{all _M: MESSAGE | one _OP: INTERACTIONOPERAND | _M.SEND in _OP.COVER and _M.RECEIVE in

_OP.COVER}

// send before receive

fact{all _M: MESSAGE | _M.RECEIVE in _M.SEND.Next}

/**

*** Constraint: Fragment

**/

// no circle

fact {no e:EVENT | e in e.ˆNext}

/**

*** Run

**/

run{}

B.3 Alloy model for the composition of sd1 and sd2 (sd3)

/**

*** Abstract signatures for the elements of the metamodel

**/

abstract sig INTERACTIONOPERAND{COVER:set EVENT+COMBINEDFRAGMENT}

abstract sig EVENT {COVER:one LIFELINE, Next:set EVENT}

abstract sig CF_TYPE{}

abstract sig LIFELINE{CoveredBy:set COMBINEDFRAGMENT}

abstract sig MESSAGE{SEND:one EVENT, RECEIVE:one EVENT}

abstract sig COMBINEDFRAGMENT{OPERAND:set INTERACTIONOPERAND, TYPE:one CF_TYPE}

/**

*** Combined Fragments Types

**/

one sig CF_TYPE_ALT extends CF_TYPE{}

one sig CF_TYPE_PAR extends CF_TYPE{}

/**

*** Combined Fragment

**/

//This CombinedFragment for the second diagram which contains yes or no

lone sig sd2_CF extends COMBINEDFRAGMENT{}
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//This CombinedFragment for the second diagram which contains M1 or a

one sig sd1_CF1 extends COMBINEDFRAGMENT{}

//This CombinedFragment for the second diagram which contains M2 or b

one sig sd1_CF2 extends COMBINEDFRAGMENT{}

/**

*** Operands

**/

//CombinedFragment2 Operands of SD1 diagram

lone sig sd1_CF2_Op2 extends INTERACTIONOPERAND{}

lone sig sd1_CF2_Op1 extends INTERACTIONOPERAND{}

//CombinedFragment1 Operands of SD1 diagram

one sig sd1_CF1_Op2 extends INTERACTIONOPERAND{}

one sig sd1_CF1_Op1 extends INTERACTIONOPERAND{}

//CombinedFragment Operands of SD2 diagram

lone sig sd2_CF_Op1 extends INTERACTIONOPERAND{}

lone sig sd2_CF_Op2 extends INTERACTIONOPERAND{}

/**

*** Messages Names

**/

one sig m1, m2, m3, m4, m5, new, i, j{}

/**

*** Lifelines Names

**/

one sig a, b{}

/**

*** Lifelines Classes

**/

one sig A, B{}

/**

*** Lifelines

**/

//SD2 lifelines

lone sig sd2_b extends LIFELINE{NAME:one b, CLASS:one B}

lone sig sd2_a extends LIFELINE{NAME:one a, CLASS:one A}

//SD1 lifelines

one sig sd1_a extends LIFELINE{NAME:one a, CLASS:one A}

one sig sd1_b extends LIFELINE{NAME:one b, CLASS:one B}

/**

*** Event

**/

//SD1 Events

lone sig sd1_e2 extends EVENT{}

lone sig sd1_e3 extends EVENT{}
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lone sig sd1_e6 extends EVENT{}

lone sig sd1_e7 extends EVENT{}

lone sig sd1_e9 extends EVENT{}

lone sig sd1_g2 extends EVENT{}

lone sig sd1_g3 extends EVENT{}

lone sig sd1_g6 extends EVENT{}

lone sig sd1_g7 extends EVENT{}

lone sig sd1_g9 extends EVENT{}

//SD2 Events

lone sig sd2_f1 extends EVENT{}

lone sig sd2_h1 extends EVENT{}

one sig sd2_h2 extends EVENT{}

one sig sd2_f2 extends EVENT{}

lone sig sd2_f3 extends EVENT{}

lone sig sd2_h3 extends EVENT{}

lone sig sd2_f6 extends EVENT{}

lone sig sd2_h6 extends EVENT{}

lone sig sd2_f5 extends EVENT{}

lone sig sd2_h5 extends EVENT{}

/**

*** Message

**/

//Messages of SD1 diagram

lone sig sd1_m1 extends MESSAGE{NAME:one m1}

lone sig sd1_m2 extends MESSAGE{NAME:one m2}

lone sig sd1_j extends MESSAGE{NAME:one j}

lone sig sd1_i extends MESSAGE{NAME:one i}

one sig sd1_m3 extends MESSAGE{NAME:one m3}

//Messages of SD2 diagram

lone sig sd2_m1 extends MESSAGE{NAME:one m1}

one sig sd2_new extends MESSAGE{NAME:one new}

lone sig sd2_m2 extends MESSAGE{NAME:one m2}

lone sig sd2_m4 extends MESSAGE{NAME:one m4}

lone sig sd2_m5 extends MESSAGE{NAME:one m5}

/**

*** Binding: Combined Fragment Type

**/

// This fact define the type of each CombinedFragment

fact{

all _CF:sd1_CF2 | _CF.TYPE = CF_TYPE_ALT

all _CF:sd1_CF1 | _CF.TYPE = CF_TYPE_PAR
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all _CF:sd2_CF | _CF.TYPE = CF_TYPE_ALT

}

/**

*** Binding: Message->Event

**/

// This fact specify the event of message send and receive

fact{

sd1_i.SEND = sd1_e2

sd1_i.RECEIVE = sd1_g2

sd1_m1.SEND = sd1_e3

sd1_m1.RECEIVE = sd1_g3

sd1_j.SEND = sd1_e6

sd1_j.RECEIVE = sd1_g6

sd1_m2.SEND = sd1_e7

sd1_m2.RECEIVE = sd1_g7

sd1_m3.SEND = sd1_e9

sd1_m3.RECEIVE = sd1_g9

sd2_m4.SEND = sd2_f6

sd2_m4.RECEIVE = sd2_h6

sd2_m5.SEND = sd2_f5

sd2_m5.RECEIVE = sd2_h5

sd2_new.SEND = sd2_h2

sd2_new.RECEIVE = sd2_f2

sd2_m2.SEND = sd2_f3

sd2_m2.RECEIVE = sd2_h3

sd2_m1.SEND = sd2_f1

sd2_m1.RECEIVE = sd2_h1

}

/**

*** Covering: Combined Fragment->Operand

**/

// This fact connect the Operands with their Combined Fragments

fact{

sd1_CF1_Op1 in sd1_CF1.OPERAND

sd1_CF1_Op2 in sd1_CF1.OPERAND

sd2_CF_Op1 in sd2_CF.OPERAND

sd2_CF_Op2 in sd2_CF.OPERAND

sd1_CF2_Op1 in sd1_CF2.OPERAND

sd1_CF2_Op2 in sd1_CF2.OPERAND

}

/**
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*** Covering: Combined Fragment->Lifeline

**/

fact{

sd1_CF2 in sd1_a.CoveredBy

sd1_CF2 in sd1_b.CoveredBy

sd1_CF1 in sd1_a.CoveredBy

sd1_CF1 in sd1_b.CoveredBy

sd2_CF in sd1_b.CoveredBy

sd2_CF in sd1_a.CoveredBy

}

/**

*** Covering: Event->Lifeline

**/

// This fact connect the Events to Lifelines that covered by

fact{

all _E:sd1_e2 | _E.COVER=sd1_a

all _E:sd1_g2 | _E.COVER=sd1_b

all _E:sd1_e3 | _E.COVER=sd1_a

all _E:sd1_g3 | _E.COVER=sd1_b

all _E:sd1_e6 | _E.COVER=sd1_a

all _E:sd1_g6 | _E.COVER=sd1_b

all _E:sd1_e7 | _E.COVER=sd1_a

all _E:sd1_g7 | _E.COVER=sd1_b

all _E:sd1_e9 | _E.COVER=sd1_a

all _E:sd1_g9 | _E.COVER=sd1_b

all _E:sd2_h2 | _E.COVER=sd1_b

all _E:sd2_f2 | _E.COVER=sd1_a

all _E:sd2_f6 | _E.COVER=sd1_a

all _E:sd2_h6 | _E.COVER=sd1_b

all _E:sd2_f5 | _E.COVER=sd1_a

all _E:sd2_h5 | _E.COVER=sd1_b

all _E: sd2_h3 | _E.COVER= sd2_b

all _E: sd2_f3 | _E.COVER= sd2_a

all _E: sd2_h1 | _E.COVER= sd2_b

all _E: sd2_f1 | _E.COVER= sd2_a

}

/**

*** Covering: Operand->Fragment

**/

// This fact connect the Events or CombinedFragment to the operands that located inside or

connect them directly to the Interaction if they are not nested any operand

fact{

all _F: sd2_CF | _F in Interaction.*(COVER.OPERAND).COVER
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all _F: sd2_h2 | _F in Interaction.*(COVER.OPERAND).COVER

all _F: sd1_g9 | _F !in sd1_CF2.ˆ(OPERAND.COVER)

all _F: sd2_f2 | _F !in sd2_CF.ˆ(OPERAND.COVER)

all _F: sd1_e9 | _F in Interaction.*(COVER.OPERAND).COVER

all _F: sd1_e9 | _F !in sd1_CF2.ˆ(OPERAND.COVER)

all _F: sd1_CF1 | _F !in sd1_CF2.ˆ(OPERAND.COVER)

all _F: sd1_e7 | _F in Interaction.*(COVER.OPERAND).COVER

all _F: sd1_g6 | _F in sd1_CF2_Op1.*(COVER.OPERAND).COVER

all _F: sd1_g3 | _F in sd1_CF1_Op2.*(COVER.OPERAND).COVER

all _F: sd2_h5 | _F in sd2_CF_Op2.*(COVER.OPERAND).COVER

all _F: sd1_e6 | _F in sd1_CF2_Op1.*(COVER.OPERAND).COVER

all _F: sd2_h2 | _F !in sd2_CF.ˆ(OPERAND.COVER)

all _F: sd1_e3 | _F in Interaction.*(COVER.OPERAND).COVER

all _F: sd1_g7 | _F !in sd2_CF.ˆ(OPERAND.COVER)

all _F: sd1_g9 | _F !in sd1_CF1.ˆ(OPERAND.COVER)

all _F: sd1_g3 | _F !in sd2_CF.ˆ(OPERAND.COVER)

all _F: sd1_e7 | _F in sd1_CF2_Op2.*(COVER.OPERAND).COVER

all _F: sd1_CF2 | _F !in sd1_CF1.ˆ(OPERAND.COVER)

all _F: sd1_CF1 | _F in Interaction.*(COVER.OPERAND).COVER

all _F: sd2_f2 | _F in Interaction.*(COVER.OPERAND).COVER

all _F: sd1_e2| _F in sd1_CF1_Op1.*(COVER.OPERAND).COVER

all _F: sd1_e7 | _F !in sd2_CF.ˆ(OPERAND.COVER)

all _F: sd1_g7 | _F in sd1_CF2_Op2.*(COVER.OPERAND).COVER

all _F: sd1_CF2 | _F in Interaction.*(COVER.OPERAND).COVER

all _F: sd1_g7 | _F in Interaction.*(COVER.OPERAND).COVER

all _F: sd2_h6 | _F in sd2_CF_Op1.*(COVER.OPERAND).COVER

all _F: sd2_f6 | _F in sd2_CF_Op1.*(COVER.OPERAND).COVER

all _F: sd1_g3 | _F in Interaction.*(COVER.OPERAND).COVER

all _F: sd1_e3 | _F in sd1_CF1_Op2.*(COVER.OPERAND).COVER

all _F: sd1_e9 | _F !in sd1_CF1.ˆ(OPERAND.COVER)

all _F: sd2_f5 | _F in sd2_CF_Op2.*(COVER.OPERAND).COVER

all _F: sd1_g2 | _F in sd1_CF1_Op1.*(COVER.OPERAND).COVER

all _F: sd1_e3 | _F !in sd2_CF.ˆ(OPERAND.COVER)

all _F: sd1_g9 | _F in Interaction.*(COVER.OPERAND).COVER

all _F: sd2_f1 | _F in Interaction.*(COVER.OPERAND).COVER

all _F: sd2_f1 | _F !in sd2_CF.ˆ(OPERAND.COVER)

all _F: sd2_h1 | _F !in sd2_CF.ˆ(OPERAND.COVER)

all _F: sd2_h1 | _F in Interaction.*(COVER.OPERAND).COVER

all _F: sd2_f3 | _F !in sd2_CF.ˆ(OPERAND.COVER)

all _F: sd2_f3 | _F in Interaction.*(COVER.OPERAND).COVER

all _F: sd2_h3 | _F in Interaction.*(COVER.OPERAND).COVER

all _F: sd2_h3 | _F !in sd2_CF.ˆ(OPERAND.COVER)

}
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/**

*** Number: Message = Operand

**/

//This fact for the messages that located inside (Alt) CombinedFragment. it means that each

message must occur when its Operand appear or the message

//occure when the message before occur.

fact{

#sd2_m4=#sd2_CF_Op1

#sd2_m5=#sd2_CF_Op2

#sd1_m1=#sd1_CF1_Op2

#sd1_m2=#sd1_CF2_Op2

#sd1_j=#sd1_CF2_Op1

#sd1_i=#sd1_CF1_Op1

#sd2_new=#sd1_m1

#sd2_CF = #sd1_m2

}

/**

*** GeneralOrdering

**/

fact{

//new before M2

all ev1:sd1_g7, ev2:sd2_h2 | ev1 in ev2.ˆNext

all ev1:sd1_e7, ev2:sd2_f2 | ev1 in ev2.ˆNext

//M1 before new

all ev1:sd2_h2, ev2:sd1_g3 | ev1 in ev2.ˆNext

all ev1:sd2_f2, ev2:sd1_e3 | ev1 in ev2.ˆNext

//SD1_CombinedFragment before SD1_CombinedFragment2

all ev1:sd1_CF1.OPERAND.COVER, ev2:sd1_CF2.OPERAND.COVER | ev2 in ev1.ˆNext

//// M2 before SD2_CombinedFragment

all l:sd1_a, ev1:sd1_e7, ev2:sd2_CF.OPERAND.COVER | ev2.COVER=l => ev2 in ev1.ˆNext

all l:sd1_b, ev1:sd1_g7, ev2:sd2_CF.OPERAND.COVER | ev2.COVER=l => ev2 in ev1.ˆNext

//M3 after SD1_CombinedFragment2

all l:sd1_a, ev1:sd1_CF2.OPERAND.COVER, ev2:sd1_e9 | ev1.COVER=l => ev2 in ev1.ˆNext

all l:sd1_b, ev1:sd1_CF2.OPERAND.COVER, ev2:sd1_g9 | ev1.COVER=l => ev2 in ev1.ˆNext

}

/**

*** Glue

**/
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fact{

//Merging message M1 of SD2 diagram with its events

all SD1M:sd1_m1 , SD2M:sd2_m1 | (SD1M.NAME = SD2M.NAME) => # SD2M = 0

# sd2_h1 = 0

# sd2_f1 = 0

//Merging message M2 of SD2 diagram with its events

all SD1M:sd1_m2 , SD2M:sd2_m2 | (SD1M.NAME = SD2M.NAME) => # SD2M = 0

# sd2_h3 = 0

# sd2_f3 = 0

//Merging Lifeline L1 of SD2 diagram

all SD1L:sd1_a , SD2L:sd2_a | (SD1L.NAME = SD2L.NAME && SD1L.CLASS = SD2L.CLASS) => # SD2L = 0

//Merging Lifeline L2 of SD2 diagram

all SD1L:sd1_b , SD2L:sd2_b | (SD1L.NAME = SD2L.NAME && SD1L.CLASS = SD2L.CLASS) => # SD2L = 0

}

/**

*** Behavioural Glue

**/

fact negativeTrace {#sd1_j=0

all sd1_j_send:sd1_e6, sd1_j_receive:sd1_g6 |

#sd1_j_send=0 and #sd1_j_receive=0}

fact occurrence {

#sd1_m3.SEND =#sd1_m2.SEND and #sd1_m3.RECEIVE =# sd1_m2.RECEIVE

all sd1_m2_send:sd1_e7, sd1_m3_send:sd1_e9 | sd1_m3_send in sd1_m2_send.ˆNext

all sd1_m2_receive:sd1_g7, sd1_m3_receive:sd1_g9 | sd1_m3_receive in sd1_m2_receive.ˆNext}

/**

*** SD interaction

**/

one sig Interaction extends INTERACTIONOPERAND{

LIFELINES: Interaction one -> LIFELINE,

COMBINEDFRAGMENTS: Interaction one -> COMBINEDFRAGMENT,

MESSAGES: Interaction one -> MESSAGE}

/**

*** Constraint: Lifeline

**/

// one event can have at most one Next one one lifeline

fact{all _E1: EVENT | lone _E2: EVENT-_E1 | _E2 in _E1.Next and _E2.COVER=_E1.COVER}

fact{all _E1: EVENT | lone _E2: EVENT-_E1 | _E1 in _E2.Next and _E2.COVER=_E1.COVER}

// at most one event can have no next on the same lifeline
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fact{all _L: LIFELINE | lone _E1: EVENT | _E1.COVER=_L and (_L !in _E1.Next.COVER or #_E1.Next

=0) }

/**

*** Constraint: Combined Fragment

**/

// one CF should be covered by at most one Operand

fact{all _F: EVENT | lone _OP: INTERACTIONOPERAND | _F in _OP.COVER}

fact{all _OP: INTERACTIONOPERAND | lone _F: COMBINEDFRAGMENT | _OP in _F.OPERAND}

// INTERACTIONOPERAND: the children can not cover their parent

fact{all _OP: INTERACTIONOPERAND | _OP !in _OP.ˆ(COVER.OPERAND)}

// one cf can be cover by at most one op

fact{all _CF: COMBINEDFRAGMENT | one _OP: INTERACTIONOPERAND | _CF in _OP.COVER}

// INTERACTIONOPERAND: in one OP, at most one event for each lifeline can have no Next

fact{all _L: LIFELINE, _OP: INTERACTIONOPERAND | lone _E: EVENT | _E in _OP.COVER and _E.COVER

=_L and #_E.Next=0}

// alt: exact one operand will be executed

fact{all _CF: COMBINEDFRAGMENT | (_CF.TYPE = CF_TYPE_ALT) => #_CF.OPERAND = 1}

// INTERACTIONOPERAND: one OP can not be before and after the same other OP

fact{all _OP1: INTERACTIONOPERAND, _OP2:INTERACTIONOPERAND, _E1: _OP1.COVER| ( _E1 in _OP2.*(

COVER.OPERAND).COVER.*Next and _OP1 != _OP2 and _OP1 != Interaction and _OP2 !=

Interaction) => _OP1.COVER in _OP2.*(COVER.OPERAND).COVER.*Next}

/**

*** Constraint: Message

**/

// one event can be send/receive by at most one message

fact{all _E: EVENT | one _M: MESSAGE | _E = _M.SEND or _E = _M.RECEIVE}

// only allow relation between Events either they are in same message or on same lifeline

fact{all _E1: EVENT, _M: MESSAGE, _E2: EVENT | (_E1 in _M.SEND and _E2 in _E1.Next) => (_M.

RECEIVE=_E2) or (_E1.COVER=_E2.COVER)}

fact{all _E1: EVENT, _M: MESSAGE, _E2: EVENT | (_E1 in _M.RECEIVE and _E2 in _E1.Next) => (

_E1.COVER=_E2.COVER)}

// one message's send/receive should be covered by the same operand

fact{all _M: MESSAGE | one _OP: INTERACTIONOPERAND | _M.SEND in _OP.COVER and _M.RECEIVE in

_OP.COVER}

// send before receive

fact{all _M: MESSAGE | _M.RECEIVE in _M.SEND.Next}

// no circle

fact {no e:EVENT | e in e.ˆNext}

/**

*** Run

**/

run{}
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APPENDIX C

Z3 CODE OF THE EXAMPLES IN CHAPTER 6

This section presents the complete Z3 textual code for the running example presented in Chapter

6. This code represents the sequence diagrams sd1 and sd2 and the composition (see Figure2.5).

In addition, this section illustrates the Z3 code for petrol station example explained in Chapter

6 section 6.4.

C.1 Z3 code for Sequence Diagram (sd1)

from z3 import *

#--------------------------------

#lifelines declarations

#--------------------------------

l = DeclareSort('l')

Sd1_a = Const('Sd1_a', l)

Sd1_b = Const('Sd1_b', l)

L_i = Const('L_i', l)

L_j = Const('L_j', l)

#--------------------------------

#Lifeline_name declarations

#--------------------------------

Lifeline_name = DeclareSort('Lifeline_name')

a = Const('a', Lifeline_name)

b = Const('b', Lifeline_name)
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Lifeline_name = Function('Lifeline_name', l, Lifeline_name, BoolSort())

#--------------------------------

#lifelines_classes declarations

#--------------------------------

Lifeline_class = DeclareSort('Lifeline_class')

A = Const('A', Lifeline_class)

B = Const('B', Lifeline_class)

Lifeline_class = Function('Lifeline_class', l, Lifeline_class, BoolSort())

#--------------------------------

#Messages declarations

#--------------------------------

M = DeclareSort('M')

Sd1_i = Const('Sd1_i', M)

Sd1_M1 = Const('Sd1_M1', M)

Sd1_j = Const('Sd1_j', M)

Sd1_M2 = Const('Sd1_M2', M)

Sd1_M31 = Const('Sd1_M31', M)

Sd1_M32 = Const('Sd1_M32', M)

M_i = Const('M_i', M)

Message_name = DeclareSort('Message_name')

m1 = Const('m1', Message_name)

m2 = Const('m2', Message_name)

i = Const('i', Message_name)

j = Const('j', Message_name)

m3 = Const('m3', Message_name)

Message_name = Function('Message_name', M, Message_name, BoolSort())

#--------------------------------

#Events declarations

#--------------------------------

Event = DeclareSort('Event')

Sd1_e2 = Const('Sd1_e2', Event)

Sd1_e3 = Const('Sd1_e3', Event)

Sd1_e6 = Const('Sd1_e6', Event)

Sd1_e7 = Const('Sd1_e7', Event)

Sd1_e91 = Const('Sd1_e91', Event)

Sd1_e92 = Const('Sd1_e92', Event)

#=================================

Sd1_g2 = Const('Sd1_g2', Event)

Sd1_g3 = Const('Sd1_g3', Event)
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Sd1_g6 = Const('Sd1_g6', Event)

Sd1_g7 = Const('Sd1_g7', Event)

Sd1_g91 = Const('Sd1_g91', Event)

Sd1_g92 = Const('Sd1_g92', Event)

#--------------------------------

#Declarations for the axioms

#--------------------------------

e_i = Const('e_i', Event)

e_j = Const('e_j', Event)

e_n = Const('e_n', Event)

#--------------------------------

#--------------------------------

#Elements Distinct

#--------------------------------

s = Solver()

e1 = Distinct( Sd1_e2, Sd1_g2, Sd1_e3, Sd1_g3,Sd1_e6,Sd1_e7,Sd1_e91,Sd1_e92, Sd1_g6, Sd1_g7,

Sd1_g91,Sd1_g92)

M1 = Distinct(Sd1_i,Sd1_j,Sd1_M31,Sd1_M32,Sd1_M2,Sd1_M1)

s.add(e1, M1)

#--------------------------------

#LES constraint,

#immediate Causality

#--------------------------------

iMNext = Function('iMNext', Event, Event, BoolSort())

s.add(ForAll ([e_i],(Not(iMNext(e_i, e_i)))))

#--------------------------------

##Normal Causality ->*

#--------------------------------

Next = Function('Next1', Event, Event, BoolSort())

s.add(ForAll ([e_i],(Next1(e_i, e_i))))

s.add(ForAll ([e_i,e_j], Implies(And(Next1(e_i, e_j),(e_i != e_j)),Not(Next1(e_j, e_i)))))

s.add(ForAll ([e_i,e_j,e_n], Implies(And(Next1(e_i, e_j),Next1(e_j, e_n)),(Next1(e_i, e_n)))))

# All events connected by immediate Causality(iMNext) are connected by Causality relation (

Next)

s.add(ForAll ([e_i,e_j], Implies (iMNext(e_i,e_j) ,Next1(e_i,e_j))))

#--------------------------------

#immediate Conflict

#--------------------------------

iConflict = Function('iConflict', Event, Event, BoolSort())

#--------------------------------

#Normanl Conflict

#--------------------------------
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Conflict = Function('Conflict', Event, Event, BoolSort())

s.add(ForAll ([e_i],(Not(Conflict(e_i, e_i)))))

s.add(ForAll ([e_i,e_j], Implies(Conflict(e_i, e_j),Conflict(e_j, e_i))))

s.add(ForAll ([e_i,e_j,e_n], Implies(And(And(Conflict(e_i, e_j),Next1(e_j, e_n))),(Conflict(

e_i, e_n)))))

# All events connected by immediate conflict(iConflict) are connected by conflict relation (

Conflict)

s.add(ForAll ([e_i,e_j], Implies (iConflict(e_i, e_j) ,Conflict(e_i, e_j))))

#--------------------------------

#Concurrency

#--------------------------------

Conc = Function('Conc', Event, Event, BoolSort())

s.add(ForAll([e_i, e_j],Conc(e_i, e_j)== Not(Or(Next1(e_i, e_j),Next1(e_j, e_i),Conflict(e_i,

e_j)))))

#--------------------------------

#messages constraint, the messages has only one event as receive and the event connect to only

one messages

#--------------------------------

isMsg = Function('isMsg',Event, M, Event, BoolSort())

s.add(ForAll([M_i, e_i],(Not(isMsg(e_i,M_i,e_i)))))

s.add(ForAll([e_i,M_i,e_j],Implies(isMsg(e_i,M_i,e_j),iMNext(e_i,e_j))))

#--------------------------------

cover = Function('cover', l, Event, BoolSort())

s.add(ForAll([L_i, e_i, L_j], Implies(And (cover(L_i, e_i),(L_i != L_j)), (Not(cover(L_j, e_i)

)))))

#--------------------------------

# Sets of events of lifeline a

#--------------------------------

s.add(iMNext(Sd1_e2,Sd1_e6))

s.add(iMNext(Sd1_e2,Sd1_e7))

s.add(iMNext(Sd1_e3,Sd1_e6))

s.add(iMNext(Sd1_e3,Sd1_e7))

s.add(iMNext(Sd1_e6,Sd1_e91))

s.add(iMNext(Sd1_e7,Sd1_e92))

#--------------------------------

# Sets of events of lifeline b

#--------------------------------

s.add(iMNext(Sd1_g2,Sd1_g6))

s.add(iMNext(Sd1_g2,Sd1_g7))
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s.add(iMNext(Sd1_g3,Sd1_g6))

s.add(iMNext(Sd1_g3,Sd1_g7))

s.add(iMNext(Sd1_g6,Sd1_g91))

s.add(iMNext(Sd1_g7,Sd1_g92))

#--------------------------------

# Sets of events in conflict

#--------------------------------

s.add(iConflict(Sd1_e6,Sd1_e7))

s.add(iConflict(Sd1_g6,Sd1_g7))

#--------------------------------

# Connect messages to send and receive events

#--------------------------------

s.add(isMsg(Sd1_e2,Sd1_i,Sd1_g2))

s.add(isMsg(Sd1_e3,Sd1_M1,Sd1_g3))

s.add(isMsg(Sd1_e6,Sd1_j,Sd1_g6))

s.add(isMsg(Sd1_e7,Sd1_M2,Sd1_g7))

s.add(isMsg(Sd1_e91,Sd1_M31,Sd1_g91))

s.add(isMsg(Sd1_e92,Sd1_M32,Sd1_g92))

#--------------------------------

# Connect Lifelines their events

#--------------------------------

s.add(cover(Sd1_a,Sd1_e2))

s.add(cover(Sd1_a,Sd1_e3))

s.add(cover(Sd1_a,Sd1_e6))

s.add(cover(Sd1_a,Sd1_e7))

s.add(cover(Sd1_a,Sd1_e91))

s.add(cover(Sd1_b,Sd1_g2))

s.add(cover(Sd1_b,Sd1_g3))

s.add(cover(Sd1_b,Sd1_g6))

s.add(cover(Sd1_b,Sd1_g7))

s.add(cover(Sd1_b,Sd1_g91))

#--------------------------------

# Connect message's to Message_names

#--------------------------------

Sd1_M1_name = Message_name(Sd1_i,i)

Sd1_M2_name = Message_name(Sd1_M1,m1)

Sd1_M3_name = Message_name(Sd1_j,j)

Sd1_M4_name = Message_name(Sd1_M2,m2)

Sd1_M5_name = Message_name(Sd1_M31,m3)

Sd1_M52_name = Message_name(Sd1_M32,m3)

#--------------------------------

# Connect lifeline's to lifeline_names

#--------------------------------
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Sd1_L1_name = Lifeline_name(Sd1_a,a)

Sd1_L2_name = Lifeline_name(Sd1_b,b)

#--------------------------------

# Connect lifeline's to lifeline_classes

#--------------------------------

Sd1_L1_class = Lifeline_class(Sd1_a,A)

Sd1_L2_class =Lifeline_class(Sd1_b,B)

print s.check()

C.2 Z3 code for Sequence Diagram (sd2)

from z3 import *

#--------------------------------

#lifelines declarations

#--------------------------------

l = DeclareSort('l')

Sd1_a = Const('Sd1_a', l)

Sd1_b = Const('Sd1_b', l)

L_i = Const('L_i', l)

L_j = Const('L_j', l)

L_n = Const('L_n', l)

L_k = Const('L_k', l)

#--------------------------------

#Lifeline_name declarations

#--------------------------------

Lifeline_name = DeclareSort('Lifeline_name')

a = Const('a', Lifeline_name)

b = Const('b', Lifeline_name)

Lifeline_name = Function('Lifeline_name', l, Lifeline_name, BoolSort())

#--------------------------------

#lifelines_classes declarations

#--------------------------------

Lifeline_class = DeclareSort('Lifeline_class')

A = Const('A', Lifeline_class)

B = Const('B', Lifeline_class)

Lifeline_class = Function('Lifeline_class', l, Lifeline_class, BoolSort())

#--------------------------------

#Messages declarations

#--------------------------------
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M = DeclareSort('M')

M_j = Const('M_j', M)

Sd2_M1 = Const('Sd2_M1', M)

Sd2_new = Const('Sd2_new', M)

Sd2_M2 = Const('Sd2_M2', M)

Sd2_M4 = Const('Sd2_M4', M)

Sd2_M5 = Const('Sd2_M5', M)

#--------------------------------

#Events declarations

#--------------------------------

Event = DeclareSort('Event')

Sd2_f1 = Const('Sd2_f1', Event)

Sd2_f2 = Const('Sd2_f2', Event)

Sd2_f3 = Const('Sd2_f3', Event)

Sd2_f5 = Const('Sd2_f5', Event)

Sd2_f6 = Const('Sd2_f6', Event)

#=================================

Sd2_h1 = Const('Sd2_h1', Event)

Sd2_h2 = Const('Sd2_h2', Event)

Sd2_h3 = Const('Sd2_h3', Event)

Sd2_h5 = Const('Sd2_h5', Event)

Sd2_h6 = Const('Sd2_h6', Event)

#--------------------------------

#Declarations for the axioms

#--------------------------------

g_i = Const('g_i', Event)

g_j = Const('g_j', Event)

g_n = Const('g_n', Event)

#--------------------------------

#Elements Distinct

#--------------------------------

s = Solver()

e2 = Distinct(Sd2_f1, Sd2_h1, Sd2_f2, Sd2_h2, Sd2_f3, Sd2_h3, Sd2_f5,Sd2_f6, Sd2_h5, Sd2_h6)

s.add(e2)

#--------------------------------

#LES constraint,

#immediate Causality

#--------------------------------

iMNext = Function('iMNext', Event, Event, BoolSort())

s.add(ForAll ([g_i],(Not(iMNext(g_i, g_i)))))

#--------------------------------

202



#Normal Causality ->*

#--------------------------------

Next = Function('Next', Event, Event, BoolSort())

s.add(ForAll ([g_i],(Next(g_i, g_i))))

s.add(ForAll ([g_i,g_j], Implies(And(Next(g_i, g_j),(g_i != g_j)),Not(Next(g_j, g_i)))))

s.add(ForAll ([g_i,g_j,g_n], Implies(And(Next(g_i, g_j),Next(g_j, g_n)),(Next(g_i, g_n)))))

# All events connected by immediate Causality(iMNext) are connected by Causality relation (

Next)

s.add(ForAll ([g_i,g_j], Implies (iMNext(g_i,g_j) ,Next(g_i,g_j))))

#=========================

#immediate Conflict

#=========================

iConflict = Function('iConflict', Event, Event, BoolSort())

#--------------------------------

Conflict = Function('Conflict', Event, Event, BoolSort())

s.add(ForAll ([g_i],(Not(Conflict(g_i, g_i)))))

s.add(ForAll ([g_i,g_j], Implies(And(Conflict(g_i, g_j),(g_i != g_j)),Conflict(g_j, g_i))))

s.add(ForAll ([g_i,g_j,g_n], Implies(And(And(Conflict(g_i, g_j),Next(g_j, g_n))),(Conflict(g_i

, g_n)))))

# All events connected by immediate conflict(iConflict) are connected by conflict relation (

Conflict)

s.add(ForAll ([g_i,g_j], Implies (iConflict(g_i, g_j) ,Conflict(g_i, g_j))))

#--------------------------------

#Concurrency

#--------------------------------

Conc = Function('Conc', Event, Event, BoolSort())

s.add(ForAll([g_i, g_j],Conc(g_i, g_j)== Not(Or(Next(g_i, g_j),Next(g_j, g_i),Conflict(g_i,

g_j)))))

#--------------------------------

#messages constraint, the messages has only one event as receive and the event connect to only

one messages

#--------------------------------

isMsg = Function('isMsg',Event, M, Event, BoolSort())

s.add(ForAll([M_j, g_i],(Not(isMsg(g_i,M_j,g_i)))))

s.add(ForAll([g_i,M_j,g_j],Implies(isMsg(g_i,M_j,g_j),iMNext(g_i,g_j))))

cover = Function('cover', l, Event, BoolSort())
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s.add(ForAll([L_n, g_i, L_k], Implies(And (cover(L_n, g_i),(L_n != L_k)), (Not(cover(L_k, g_i)

)))))

#--------------------------------

# Sets of events of lifeline a

#--------------------------------

s.add(iMNext(Sd2_f1,Sd2_f2))

s.add(iMNext(Sd2_f2,Sd2_f3))

s.add(iMNext(Sd2_f3,Sd2_f5))

s.add(iMNext(Sd2_f3,Sd2_f6))

#--------------------------------

# Sets of events of lifeline b

#--------------------------------

s.add(iMNext(Sd2_h1,Sd2_h2))

s.add(iMNext(Sd2_h2,Sd2_h3))

s.add(iMNext(Sd2_h3,Sd2_h5))

s.add(iMNext(Sd2_h3,Sd2_h6))

#--------------------------------

# Sets of events in conflict

#--------------------------------

s.add(iConflict(Sd2_f5,Sd2_f6))

s.add(iConflict(Sd2_h5,Sd2_h6))

#--------------------------------

# Connect messages to send and receive events

#--------------------------------

s.add(isMsg(Sd2_f1,Sd2_M1,Sd2_h1))

s.add(isMsg(Sd2_h2,Sd2_new,Sd2_f2))

s.add(isMsg(Sd2_f3,Sd2_M2,Sd2_h3))

s.add(isMsg(Sd2_f5,Sd2_M4,Sd2_h5))

s.add(isMsg(Sd2_f6,Sd2_M5,Sd2_h6))

#--------------------------------

# Connect Lifelines their events

#--------------------------------

s.add(cover(Sd2_a,Sd2_f1))

s.add(cover(Sd2_a,Sd2_f2))

s.add(cover(Sd2_a,Sd2_f3))

s.add(cover(Sd2_a,Sd2_f5))

s.add(cover(Sd2_a,Sd2_f6))

s.add(cover(Sd2_b,Sd2_h1))

s.add(cover(Sd2_b,Sd2_h2))

s.add(cover(Sd2_b,Sd2_h3))

s.add(cover(Sd2_b,Sd2_h5))

s.add(cover(Sd2_b,Sd2_h6))
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#--------------------------------

# Connect messages to Message_names

#--------------------------------

Sd2_M1_name = Message_name(Sd2_M1,m1)

Sd2_M2_name = Message_name(Sd2_M2,m2)

Sd2_M4_name = Message_name(Sd2_M4,m4)

Sd2_M5_name = Message_name(Sd2_M5,m5)

#--------------------------------

# Connect lifelines to lifeline_names

#--------------------------------

Sd2_a_name = Lifeline_name(Sd1_a,a)

Sd2_b_name = Lifeline_name(Sd1_b,b)

#--------------------------------

# Connect lifeline's to lifeline_classes

#--------------------------------

Sd2_a_class = Lifeline_class(Sd1_a,A)

Sd2_b_class =Lifeline_class(Sd1_b,B)

print s.check()

C.3 Z3 code for the composition of Sd1 and Sd2 (Sd3)

from z3 import *

#--------------------------------

#lifelines declarations of sd1

#--------------------------------

Lifeline1 = DeclareSort('Lifeline1')

Sd1_a = Const('Sd1_a', Lifeline1)

Sd1_b = Const('Sd1_b', Lifeline1)

#--------------------------------

#Declarations for the axioms

#--------------------------------

L_i = Const('L_i', Lifeline1)

L_j = Const('L_j', Lifeline1)

empty3 = Const('empty3', Lifeline1)

#--------------------------------

#lifelines declarations of sd2

#--------------------------------

Lifeline2 = DeclareSort('Lifeline2')

Sd2_a = Const('Sd2_a', Lifeline2)
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Sd2_b = Const('Sd2_b', Lifeline2)

#--------------------------------

#Declarations for the axioms

#--------------------------------

L_n = Const('L_n', Lifeline2)

L_k = Const('L_k', Lifeline2)

empty4 = Const('empty4', Lifeline2)

#--------------------------------

#Lifeline_name declarations

#--------------------------------

Lifeline_name = DeclareSort('Lifeline_name')

a = Const('a', Lifeline_name)

b = Const('b', Lifeline_name)

Lifeline_name1 = Function('Lifeline_name', Lifeline1, Lifeline_name, BoolSort())

Lifeline_name2 = Function('Lifeline_name', Lifeline2, Lifeline_name, BoolSort())

#--------------------------------

#lifelines_classes declarations

#--------------------------------

Lifeline_class = DeclareSort('Lifeline_class')

A = Const('A', Lifeline_class)

B = Const('B', Lifeline_class)

Lifeline_class1 = Function('Lifeline_class1', Lifeline1, Lifeline_class, BoolSort())

Lifeline_class2 = Function('Lifeline_class2', Lifeline2, Lifeline_class, BoolSort())

#--------------------------------

#Messages declarations of sd1

#--------------------------------

Message1 = DeclareSort('Message1')

Sd1_i = Const('Sd1_i', Message1)

Sd1_M1 = Const('Sd1_M1', Message1)

Sd1_j = Const('Sd1_j', Message1)

Sd1_M2 = Const('Sd1_M2', Message1)

Sd1_M31 = Const('Sd1_M31', Message1)

Sd1_M32 = Const('Sd1_M32', Message1)

#--------------------------------

#Declarations for the axioms

#--------------------------------

M_i = Const('M_i', Message1)

#M_j = Const('M_j', Message1)

empty5 = Const('empty5', Message1)

#--------------------------------

#Messages declarations of sd2
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#--------------------------------

Message2 = DeclareSort('Message2')

Sd2_M1 = Const('Sd2_M1', Message2)

Sd2_new = Const('Sd2_new', Message2)

Sd2_M2 = Const('Sd2_M2', Message2)

Sd2_M4 = Const('Sd2_M4', Message2)

Sd2_M5 = Const('Sd2_M5', Message2)

#--------------------------------

#Declarations for the axioms

#--------------------------------

M_j = Const('M_j', Message2)

empty6 = Const('empty6', Message2)

#--------------------------------

#Message_name declarations

#--------------------------------

Message_name = DeclareSort('Message_name')

m1 = Const('m1', Message_name)

new = Const('new', Message_name)

m2 = Const('m2', Message_name)

m4 = Const('m4', Message_name)

m5 = Const('m5', Message_name)

i = Const('i', Message_name)

j = Const('j', Message_name)

m3 = Const('m3', Message_name)

Message_name1 = Function('Message_name1', Message1, Message_name, BoolSort())

Message_name2 = Function('Message_name2', Message2, Message_name, BoolSort())

#--------------------------------

#Events declarations of sd1

#--------------------------------

Event1 = DeclareSort('Event1')

Sd1_e2 = Const('Sd1_e2', Event1)

Sd1_e3 = Const('Sd1_e3', Event1)

Sd1_e6 = Const('Sd1_e6', Event1)

Sd1_e7 = Const('Sd1_e7', Event1)

Sd1_e91 = Const('Sd1_e91', Event1)

Sd1_e92 = Const('Sd1_e92', Event1)

#=================================

Sd1_g2 = Const('Sd1_g2', Event1)

Sd1_g3 = Const('Sd1_g3', Event1)

Sd1_g6 = Const('Sd1_g6', Event1)

Sd1_g7 = Const('Sd1_g7', Event1)

Sd1_g91 = Const('Sd1_g91', Event1)
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Sd1_g92 = Const('Sd1_g92', Event1)

#--------------------------------

#Declarations for the axioms

#--------------------------------

empty1 = Const('empty1', Event1)

e_i = Const('e_i', Event1)

e_j = Const('e_j', Event1)

e_n = Const('e_n', Event1)

#--------------------------------

#Events declarations of sd2

#--------------------------------

Event2 = DeclareSort('Event2')

Sd2_f1 = Const('Sd2_f1', Event2)

Sd2_f2 = Const('Sd2_f2', Event2)

Sd2_f3 = Const('Sd2_f3', Event2)

Sd2_f5 = Const('Sd2_f5', Event2)

Sd2_f6 = Const('Sd2_f6', Event2)

#=================================

Sd2_h1 = Const('Sd2_h1', Event2)

Sd2_h2 = Const('Sd2_h2', Event2)

Sd2_h3 = Const('Sd2_h3', Event2)

Sd2_h5 = Const('Sd2_h5', Event2)

Sd2_h6 = Const('Sd2_h6', Event2)

#--------------------------------

#Declarations for the axioms

#--------------------------------

g_i = Const('g_i', Event2)

g_j = Const('g_j', Event2)

g_n = Const('g_n', Event2)

empty2 = Const('empty2', Event2)

#--------------------------------

#Elements Distinct

#--------------------------------

s = Solver()

e2 = Distinct(Sd2_f1, Sd2_h1, Sd2_f2, Sd2_h2, Sd2_f3, Sd2_h3, Sd2_f5,Sd2_f6, Sd2_h5, Sd2_h6)

e1 = Distinct(Sd1_e2, Sd1_g2, Sd1_e3, Sd1_g3,Sd1_e6,Sd1_e7,Sd1_e91,Sd1_e92, Sd1_g6, Sd1_g7,

Sd1_g91,Sd1_g92)

M2 = Distinct(Sd2_M1, Sd2_M2,Sd2_new,Sd2_M4,Sd2_M5)

M1 = Distinct(Sd1_i,Sd1_j,Sd1_M31,Sd1_M32,Sd1_M2,Sd1_M1)

s.add(e1,e2, M1,M2)

#--------------------------------

#Cartesian product
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#--------------------------------

list_e = [Sd1_e2, Sd1_g2, Sd1_e3, Sd1_g3,Sd1_e6,Sd1_e7,Sd1_e91,Sd1_e92, Sd1_g6, Sd1_g7,

Sd1_g91,Sd1_g92]

list_g = [Sd2_f1, Sd2_h1, Sd2_f2, Sd2_h2, Sd2_f3, Sd2_h3, Sd2_f5,Sd2_f6, Sd2_h5, Sd2_h6]

def mklist(l1, l2):

result = []

for x in l1:

for y in l2:

result.append((x,y))

return result

def addPairs(s, relation, relation2,empty1, empty2, l1, l2, matches):

L = {}

R = {}

for (x, y) in matches:

L[str(x)] = True

R[str(y)] = True

for (x,y) in mklist(l1, l2):

if str((x,y)) in map(str, matches):

s.add(relation(x,y))

s.add(relation2(x,y))

else:

s.add(Not(relation(x,y)))

for x in l1:

if not str(x) in L:

s.add(relation(x, empty2))

s.add(Notmatch1(x))

else:

s.add(Not(Notmatch1(x)))

for x in l2:

if not str(x) in R:

s.add(relation(empty1, x))

s.add(Notmatch2(x))

else:

s.add(Not(Notmatch2(x)))

#==================================================================

#MessagePresent and MessageMatch functions

#==================================================================

MessagePresent = Function('MessagePresent', Message1,Message2, BoolSort())

MessageMatch = Function('MessageMatch ', Message1, Message2, BoolSort())
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#==================================================================

#EventMatch and present functions

#==================================================================

EventMatch = Function('EventMatch ', Event1, Event2, BoolSort())

present = Function('present', Event1,Event2, BoolSort())

#==================================================================

#LifelineMatch and LifelinePresent functions

#==================================================================

LifelinePresent = Function('LifelinePresent', Lifeline1,Lifeline2, BoolSort())

LifelineMatch = Function('LifelineMatch', Lifeline1, Lifeline2, BoolSort())

#==================================================================

#Notmatch functions for Events of sd1 and sd2

#==================================================================

Notmatch1 = Function('Notmatch1', Event1, BoolSort())

Notmatch2 = Function('Notmatch2', Event2, BoolSort())

#==================================================================

#MessageNotmatch functions for Messages of sd1 and sd2

#==================================================================

MessageNotmatch1 = Function('MessageNotmatch1', Message1, BoolSort())

MessageNotmatch2 = Function('MessageNotmatch2', Message2, BoolSort())

#==================================================================

#NotMatchEventLifeline for Lifelines of sd1 and sd2

#==================================================================

LifelineNotmatch1 = Function('LifelineNotmatch1', Lifeline1, BoolSort())

s.add(ForAll ([L_i,L_n], Implies(LifelineMatch(L_i,L_n),Not(LifelineNotmatch1(L_i)))))

LifelineNotmatch2 = Function('LifelineNotmatch2', Lifeline2, BoolSort())

s.add(ForAll ([L_i,L_n], Implies(LifelineMatch(L_i,L_n),Not(LifelineNotmatch2(L_n)))))

#--------------------------------

#LES constraint,

#immediate Causality of sd1

#--------------------------------

iMNext1 = Function('iMNext1', Event1, Event1, BoolSort())

s.add(ForAll ([e_i],(Not(iMNext1(e_i, e_i)))))

#--------------------------------

#Normal Causality ->* of sd1

#--------------------------------

Next1 = Function('Next1', Event1, Event1, BoolSort())

s.add(ForAll ([e_i],(Next1(e_i, e_i))))

s.add(ForAll ([e_i,e_j], Implies(And(Next1(e_i, e_j),(e_i != e_j)),Not(Next1(e_j, e_i)))))

s.add(ForAll ([e_i,e_j,e_n], Implies(And(Next1(e_i, e_j),Next1(e_j, e_n)),(Next1(e_i, e_n)))))

# All events connected by immediate Causality(iMNext) are connected by Causality relation (

Next)
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s.add(ForAll ([e_i,e_j], Implies (iMNext1(e_i,e_j) ,Next1(e_i,e_j))))

#=========================

#--------------------------------

#LES constraint,

#immediate Causality of sd2

#--------------------------------

iMNext2 = Function('iMNext2', Event2, Event2, BoolSort())

s.add(ForAll ([g_i],(Not(iMNext2(g_i, g_i)))))

#--------------------------------

#Normal Causality ->* of sd2

#--------------------------------

Next2 = Function('Next2', Event2, Event2, BoolSort())

s.add(ForAll ([g_i],(Next2(g_i, g_i))))

s.add(ForAll ([g_i,g_j], Implies(And(Next2(g_i, g_j),(g_i != g_j)),Not(Next2(g_j, g_i)))))

s.add(ForAll ([g_i,g_j,g_n], Implies(And(Next2(g_i, g_j),Next2(g_j, g_n)),(Next2(g_i, g_n)))))

# All events connected by immediate Causality(iMNext) are connected by Causality relation (

Next)

s.add(ForAll ([g_i,g_j], Implies (iMNext2(g_i,g_j) ,Next2(g_i,g_j))))

#===============================================

#LES constraint,

#immediate Causality for the composition

#===============================================

iMNext3 = Function('iMNext3 ', Event1,Event2,Event1, Event2, BoolSort())

s.add(ForAll ([e_i,g_i],Not(iMNext3(e_i,g_i,e_i,g_i))))

#===============================================

#LES constraint,

#Normal Causality for the composition

#===============================================

next3 = Function('next3 ', Event1,Event2,Event1, Event2, BoolSort())

s.add(ForAll ([e_i,g_i],(next3(e_i,g_i,e_i,g_i))))

s.add(ForAll ([e_i,g_i,e_j,g_j], Implies (And(next3(e_i,g_i,e_j,g_j),(e_i != e_j),(g_i != g_j)

),Not(next3(e_j,g_j,e_i,g_j)))))

s.add(ForAll ([e_i,g_i,e_j,g_j,e_n,g_n], Implies(And(next3(e_i,g_i,e_j,g_j),next3(e_j,g_j,e_n,

g_n)),(next3(e_i,g_i,e_n,g_n)))))

s.add(ForAll ([e_i,g_i,e_j,g_j], Implies (iMNext3(e_i,g_i,e_j,g_j) ,next3(e_i,g_i,e_j,g_j))))

#--------------------------------

#immediate Conflict for sd1

#--------------------------------

iConflict1 = Function('iConflict1', Event1, Event1, BoolSort())

#--------------------------------

#Normanl Conflict for sd1

#--------------------------------

Conflict1 = Function('Conflict1', Event1, Event1, BoolSort())
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s.add(ForAll ([e_i],(Not(Conflict1(e_i, e_i)))))

s.add(ForAll ([e_i,e_j], Implies(Conflict1(e_i, e_j),Conflict1(e_j, e_i))))

s.add(ForAll ([e_i,e_j,e_n], Implies(And(And(Conflict1(e_i, e_j),Next1(e_j, e_n))),(Conflict1(

e_i, e_n)))))

# All events connected by immediate conflict(iConflict) are connected by conflict relation (

Conflict)

s.add(ForAll ([e_i,e_j], Implies (iConflict1(e_i, e_j) ,Conflict1(e_i, e_j))))

#--------------------------------

#immediate Conflict for sd2

#--------------------------------

iConflict2 = Function('iConflict2', Event2, Event2, BoolSort())

#--------------------------------

#Normanl Conflict for sd2

#--------------------------------

Conflict2 = Function('Conflict2', Event2, Event2, BoolSort())

s.add(ForAll ([g_i],(Not(Conflict2(g_i, g_i)))))

s.add(ForAll ([g_i,g_j], Implies(And(Conflict2(g_i, g_j),(g_i != g_j)),Conflict2(g_j, g_i))))

s.add(ForAll ([g_i,g_j,g_n], Implies(And(And(Conflict2(g_i, g_j),Next2(g_j, g_n))),(Conflict2(

g_i, g_n)))))

# All events connected by immediate conflict(iConflict) are connected by conflict relation (

Conflict)

s.add(ForAll ([g_i,g_j], Implies (iConflict2(g_i, g_j) ,Conflict2(g_i, g_j))))

#--------------------------------

#immediate Conflict for composition

#--------------------------------

iConflict3 = Function('iConflict3', Event1,Event2,Event1, Event2, BoolSort())

#--------------------------------

#Normanl Conflict for composition

#--------------------------------

Conflict3 = Function('Conflict3', Event1,Event2,Event1, Event2, BoolSort())

s.add(ForAll ([e_i,g_i],(Not(Conflict3(e_i,g_i,e_i,g_i)))))

s.add(ForAll ([e_i,g_i,e_j,g_j], Implies (And(Conflict3(e_i,g_i,e_j,g_j),(e_i != e_j),(g_i !=

g_j)),Conflict3(e_j,g_j,e_i,g_j))))

s.add(ForAll ([e_i,g_i,e_j,g_j,e_n,g_n], Implies(And(Conflict3(e_i,g_i,e_j,g_j),next3(e_j,g_j,

e_n,g_n)),(Conflict3(e_i,g_i,e_n,g_n)))))

s.add(ForAll ([e_i,g_i,e_j,g_j], Implies (iConflict3(e_i,g_i,e_j,g_j) ,Conflict3(e_i,g_i,e_j,

g_j))))

#--------------------------------

#Concurrency

#--------------------------------

Conc1 = Function('Conc1', Event1, Event1, BoolSort())

s.add(ForAll([e_i, e_j],Conc1(e_i, e_j)== Not(Or(Next1(e_i, e_j),Next1(e_j, e_i),Conflict1(e_i

, e_j)))))
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Conc2 = Function('Conc2', Event2, Event2, BoolSort())

s.add(ForAll([g_i, g_j],Conc2(g_i, g_j)== Not(Or(Next2(g_i, g_j),Next2(g_j, g_i),Conflict2(g_i

, g_j)))))

Conc3 = Function('Conc3', Event1,Event2,Event1, Event2, BoolSort())

s.add(ForAll([e_i,g_i,e_j,g_j],Conc3(e_i,g_i,e_j,g_j)== Not(Or(next3(e_i,g_i,e_j,g_j),next3(

e_j,g_j,e_i,g_j),Conflict3(e_i,g_i,e_j,g_j)))))

#--------------------------------

#messages constraint, the messages has only one event as receive and the event connect to only

one messages

#--------------------------------

isMsg2 = Function('isMsg2',Event2, Message2, Event2, BoolSort())

s.add(ForAll([M_j, g_i],(Not(isMsg2(g_i,M_j,g_i)))))

s.add(ForAll([g_i,M_j,g_j],Implies(isMsg2(g_i,M_j,g_j),iMNext2(g_i,g_j))))

s.add(ForAll([g_i,M_j,g_j],Implies(And(And(isMsg2(g_i,M_j,g_j),iMNext2(g_i,g_j)),Notmatch2(g_i

),Notmatch2(g_j)),iMNext3(empty1,g_i,empty1,g_j))))

#--------------------------------

#messages constraint, the messages has only one event as receive and the event connect to only

one messages

#--------------------------------

isMsg1 = Function('isMsg1',Event1, Message1, Event1, BoolSort())

s.add(ForAll([M_i, e_i],(Not(isMsg1(e_i,M_i,e_i)))))

s.add(ForAll([e_i,M_i,e_j],Implies(isMsg1(e_i,M_i,e_j),iMNext1(e_i,e_j))))

s.add(ForAll([e_i,M_i,e_j],Implies(And(And(isMsg1(e_i,M_i,e_j),iMNext1(e_i,e_j)),Notmatch1(e_i

),Notmatch1(e_j)),iMNext3(e_i,empty2,e_j,empty2))))

#--------------------------------

#Relation isMsg3 for composition

#--------------------------------

isMsg3 = Function('isMsg3',Event1,Event2, Message1,Message2, Event1,Event2, BoolSort())

#--------------------------------

#Matching axioms for messages

#--------------------------------

s.add(ForAll ([e_i,g_i,e_j,g_j,M_i,M_j], Implies

(And(And(MessageNotmatch1(M_i),MessageNotmatch2(M_j)),isMsg1(e_i,M_i,e_j),isMsg2(g_i,M_j,g_j))

,

And(isMsg3(e_i,empty2,M_i,empty6,e_j,empty2),isMsg3(empty1,g_i,empty5,M_j,empty1,g_j)))))

s.add(ForAll ([e_i,e_j,g_i,g_j,M_i,M_j], Implies (And(EventMatch(e_i,g_i),isMsg1(e_i,M_i,e_j),

isMsg2(g_i,M_j,g_j)),MessageMatch (M_i, M_j))))
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s.add(ForAll ([e_i,e_j,g_i,g_j,M_i,M_j], Implies (And(EventMatch(e_j,g_j),isMsg1(e_i,M_i,e_j),

isMsg2(g_i,M_j,g_j)),MessageMatch (M_i, M_j))))

s.add(ForAll ([e_i,e_j,g_i,g_j,M_i,M_j], Implies (And(MessageMatch (M_i, M_j),isMsg1(e_i,M_i,

e_j),isMsg2(g_i,M_j,g_j)),EventMatch(e_i,g_i))))

s.add(ForAll ([e_i,e_j,g_i,g_j,M_i,M_j], Implies (And(MessageMatch (M_i, M_j),isMsg1(e_i,M_i,

e_j),isMsg2(g_i,M_j,g_j)),EventMatch (e_j, g_j))))

s.add(ForAll ([e_i,g_i,e_j,g_j,M_i,M_j], Implies

(And(And(MessageMatch (M_i, M_j)),isMsg1(e_i,M_i,e_j),isMsg2(g_i,M_j,g_j)),isMsg3(e_i,g_i,M_i,

M_j,e_j,g_j))))

#--------------------------------

#cover relation for sd1

#--------------------------------

cover1 = Function('cover1', Lifeline1, Event1, BoolSort())

s.add(ForAll([L_i, e_i, L_j], Implies(And (cover1(L_i, e_i),(L_i != L_j)), (Not(cover1(L_j,

e_i))))))

#--------------------------------

#cover relation for sd2

#--------------------------------

cover2 = Function('cover2', Lifeline2, Event2, BoolSort())

s.add(ForAll([L_n, g_i, L_k], Implies(And (cover2(L_n, g_i),(L_n != L_k)), (Not(cover2(L_k,

g_i))))))

#=========================

#cover relation for the composition

#=========================

cover3 = Function('cover3', Lifeline1,Lifeline2, Event1,Event2, BoolSort())

#--------------------------------

#--------------------------------

#Matching axioms for lifelines

#--------------------------------

s.add(ForAll ([e_i,g_i,L_i,L_n], Implies (And(And(LifelineMatch(L_i, L_n),EventMatch(e_i,g_i))

,cover1(L_i,e_i),cover2(L_n,g_i)),cover3(L_i,L_n,e_i,g_i))))

s.add(ForAll ([e_i,g_i,L_i,L_n], Implies (And(And(And(cover1(L_i,e_i),cover2(L_n,g_i)),

Notmatch1(e_i),Notmatch2(g_i)),LifelineNotmatch2(L_n),LifelineNotmatch1(L_i)),And(cover3(

L_i,empty4,e_i,empty2),cover3(empty3,L_n,empty1,g_i)))))

s.add(ForAll ([e_i,L_i,L_n], Implies (And(LifelineMatch(L_i, L_n),cover1(L_i,e_i), Notmatch1(

e_i)),cover3(L_i,L_n,e_i,empty2))))

s.add(ForAll ([g_i,L_i,L_n], Implies (And(LifelineMatch(L_i, L_n),cover2(L_n,g_i), Notmatch2(

g_i)),cover3(L_i,L_n,empty1,g_i))))

s.add(ForAll ([e_i,g_i,L_i,L_n], Implies (And(And(EventMatch(e_i,g_i),cover1(L_i,e_i),cover2(

L_n,g_i))),LifelineMatch(L_i,L_n))))
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#--------------------------------

#------------------------------------------------------------

#Matching axioms for Events in Causality relation

#------------------------------------------------------------

s.add(ForAll ([e_i,g_i,e_j,g_j], Implies(And(And(iMNext1(e_i, e_j),iMNext2(g_i,g_j)),

EventMatch(e_i, g_i),EventMatch(e_j, g_j)),iMNext3(e_i,g_i,e_j,g_j))))

s.add(ForAll ([e_i,g_i,e_j,g_j], Implies (And(And(And(iMNext1(e_i, e_j),iMNext2(g_i,g_j)),

Notmatch1(e_i),Notmatch2(g_i)),Notmatch1(e_j),Notmatch2(g_j)),And(iMNext3(e_i,empty2,e_j,

empty2),iMNext3(empty1,g_i,empty1,g_j)))))

s.add(ForAll ([e_i,g_i,e_j], Implies(And(And(EventMatch(e_i,g_i),iMNext1(e_i,e_j)),Notmatch1(

e_j)),iMNext3(e_i,g_i,e_j,empty2))))

s.add(ForAll ([e_i,g_i,g_j], Implies(And(And(EventMatch(e_i,g_i),iMNext2(g_i,g_j)),Notmatch2(

g_j)),iMNext3(e_i,g_i,empty1,g_j))))

s.add(ForAll ([e_i,g_j,e_j], Implies(And(And(EventMatch(e_j, g_j),iMNext1(e_i,e_j)),Notmatch1(

e_i)),iMNext3(e_i,empty2,e_j,g_j))))

s.add(ForAll ([e_j,g_i,g_j], Implies(And(And(EventMatch(e_j, g_j),iMNext2(g_i,g_j)),Notmatch2(

g_i)),iMNext3(empty1,g_i,e_j,g_j))))

#------------------------------------------------------------

#Matching axioms for Events in iConflict1 relation

#------------------------------------------------------------

s.add(ForAll ([e_i,g_i,e_j,g_j], Implies(And(And(iConflict1(e_i, e_j),iConflict2(g_i,g_j)),

EventMatch(e_i, g_i),EventMatch(e_j, g_j)),iConflict3(e_i,g_i,e_j,g_j))))

s.add(ForAll ([e_i,g_i,e_j], Implies(And(And(EventMatch(e_i,g_i),iConflict1(e_i,e_j)),

Notmatch1(e_j)),iConflict3(e_i,g_i,e_j,empty2))))

s.add(ForAll ([e_i,g_i,g_j], Implies(And(And(EventMatch(e_i,g_i),iConflict2(g_i,g_j)),

Notmatch2(g_j)),iConflict3(e_i,g_i,empty1,g_j))))

s.add(ForAll ([e_i,g_j,e_j], Implies(And(And(EventMatch(e_j, g_j),iConflict1(e_i,e_j)),

Notmatch1(e_i)),iConflict3(e_i,empty2,e_j,g_j))))

s.add(ForAll ([e_j,g_i,g_j], Implies(And(And(EventMatch(e_j, g_j),iConflict2(g_i,g_j)),

Notmatch2(g_i)),iConflict3(empty1,g_i,e_j,g_j))))

#--------------------------------

#--------------------------------

#general order between events of sd2

s.add(iMNext2(Sd2_f1,Sd2_f2))

s.add(iMNext2(Sd2_f2,Sd2_f3))

s.add(iMNext2(Sd2_f3,Sd2_f5))

s.add(iMNext2(Sd2_f3,Sd2_f6))

s.add(iMNext2(Sd2_h1,Sd2_h2))

s.add(iMNext2(Sd2_h2,Sd2_h3))

s.add(iMNext2(Sd2_h3,Sd2_h5))

s.add(iMNext2(Sd2_h3,Sd2_h6))

#Conflict2 between events of sd2

s.add(iConflict2(Sd2_f5,Sd2_f6))

215



s.add(iConflict2(Sd2_h5,Sd2_h6))

#==========================

#general order between events of sd1

s.add(iMNext1(Sd1_e2,Sd1_e6))

s.add(iMNext1(Sd1_e2,Sd1_e7))

s.add(iMNext1(Sd1_e3,Sd1_e6))

s.add(iMNext1(Sd1_e3,Sd1_e7))

s.add(iMNext1(Sd1_e6,Sd1_e91))

s.add(iMNext1(Sd1_e7,Sd1_e92))

s.add(iMNext1(Sd1_g2,Sd1_g6))

s.add(iMNext1(Sd1_g2,Sd1_g7))

s.add(iMNext1(Sd1_g3,Sd1_g6))

s.add(iMNext1(Sd1_g3,Sd1_g7))

s.add(iMNext1(Sd1_g6,Sd1_g91))

s.add(iMNext1(Sd1_g7,Sd1_g92))

#Conflict2 between events of sd1

s.add(iConflict1(Sd1_e6,Sd1_e7))

s.add(iConflict1(Sd1_g6,Sd1_g7))

#--------------------------------

# Connect messages to send and receive events of sd2

#--------------------------------

s.add(isMsg2(Sd2_f1,Sd2_M1,Sd2_h1))

s.add(isMsg2(Sd2_h2,Sd2_new,Sd2_f2))

s.add(isMsg2(Sd2_f3,Sd2_M2,Sd2_h3))

s.add(isMsg2(Sd2_f5,Sd2_M4,Sd2_h5))

s.add(isMsg2(Sd2_f6,Sd2_M5,Sd2_h6))

#--------------------------------

# Connect messages to send and receive events of sd1

#--------------------------------

s.add(isMsg1(Sd1_e2,Sd1_i,Sd1_g2))

s.add(isMsg1(Sd1_e3,Sd1_M1,Sd1_g3))

s.add(isMsg1(Sd1_e6,Sd1_j,Sd1_g6))

s.add(isMsg1(Sd1_e7,Sd1_M2,Sd1_g7))

s.add(isMsg1(Sd1_e91,Sd1_M31,Sd1_g91))

s.add(isMsg1(Sd1_e92,Sd1_M32,Sd1_g92))

#--------------------------------

# Connect Lifelines their events sd2

#--------------------------------

s.add(cover2(Sd2_a,Sd2_f1))

s.add(cover2(Sd2_a,Sd2_f2))

s.add(cover2(Sd2_a,Sd2_f3))

s.add(cover2(Sd2_a,Sd2_f5))

s.add(cover2(Sd2_a,Sd2_f6))
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s.add(cover2(Sd2_b,Sd2_h1))

s.add(cover2(Sd2_b,Sd2_h2))

s.add(cover2(Sd2_b,Sd2_h3))

s.add(cover2(Sd2_b,Sd2_h5))

s.add(cover2(Sd2_b,Sd2_h6))

#--------------------------------

# Connect Lifelines their events sd1

#--------------------------------

s.add(cover1(Sd1_a,Sd1_e2))

s.add(cover1(Sd1_a,Sd1_e3))

s.add(cover1(Sd1_a,Sd1_e6))

s.add(cover1(Sd1_a,Sd1_e7))

s.add(cover1(Sd1_a,Sd1_e91))

s.add(cover1(Sd1_b,Sd1_g2))

s.add(cover1(Sd1_b,Sd1_g3))

s.add(cover1(Sd1_b,Sd1_g6))

s.add(cover1(Sd1_b,Sd1_g7))

s.add(cover1(Sd1_b,Sd1_g91))

#==========================

#--------------------------------

# Connect message's to Message_names

#--------------------------------

Sd2_M1_name = Message_name2(Sd2_M1,m1)

Sd2_M2_name = Message_name2(Sd2_new,new)

Sd2_M3_name = Message_name2(Sd2_M2,m2)

Sd2_M4_name = Message_name2(Sd2_M4,m4)

Sd2_M5_name = Message_name2(Sd2_M5,m5)

Sd1_M1_name = Message_name1(Sd1_i,i)

Sd1_M2_name = Message_name1(Sd1_M1,m1)

Sd1_M3_name = Message_name1(Sd1_j,j)

Sd1_M4_name = Message_name1(Sd1_M2,m2)

Sd1_M5_name = Message_name1(Sd1_M31,m3)

Sd1_M52_name = Message_name1(Sd1_M32,m3)

#--------------------------------

# Connect lifeline's to lifeline_names

#--------------------------------

Sd1_a_name = Lifeline_name1(Sd1_a,a)

Sd1_b_name = Lifeline_name1(Sd1_b,b)

Sd2_a_name = Lifeline_name2(Sd2_a,a)

Sd2_b_name = Lifeline_name2(Sd2_b,b)

#--------------------------------

217



# Connect lifeline's to lifeline_classes

#--------------------------------

Sd2_a_class = Lifeline_class2(Sd2_a,A)

Sd2_b_class = Lifeline_class2(Sd2_b,B)

Sd1_a_class =Lifeline_class1 (Sd1_a,A)

Sd1_b_class = Lifeline_class1(Sd1_b,B)

def NameCheck (*items):

for i in range(1, len(items)):

if (str(items[i].arg(1)) != str(items[i-1].arg(1))):

return False

return True

def main():

if NameCheck (Sd2_M1_name, Sd1_M2_name) == False:

print "Message1 not equals"

return

if NameCheck (Sd2_M3_name, Sd1_M4_name) == False:

print "Message2 not equals"

return

if NameCheck (Sd1_a_name, Sd2_a_name) == False:

print "Lifelines 1 names are not equals"

return

if NameCheck (Sd1_b_name, Sd2_b_name) == False:

print "Lifelines 2 names are equals"

return

if NameCheck (Sd2_a_class, Sd1_a_class) == False:

print "Lifelines 1 class are not equals"

return

if NameCheck (Sd2_b_class, Sd1_b_class) == False:

print "Lifelines 2 class are equals"

return

main()

cover_info_event_message = {}

messageMatches = {}

allMessage1 = {}

allMessage2 = {}

#--------------------------------

# Process Message matches

# ==== START

assertions = s.assertions()

for ast in assertions:

if not "is_forall" in dir(ast) and str(ast.decl()) in ["isMsg1", "isMsg2"]:
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cover_info_event_message[str(ast.arg(0))] = ast.arg(1)

cover_info_event_message[str(ast.arg(2))] = ast.arg(1)

if "1" in str(ast.arg(1).sort()):

allMessage1[str(ast.arg(1))] = ast.arg(1)

if "2" in str(ast.arg(1).sort()):

allMessage2[str(ast.arg(1))] = ast.arg(1)

for (x,y) in matches:

oldx = x

oldy = y

x1 = cover_info_event_message[str(oldx)]

y1 = cover_info_event_message[str(oldy)]

pair11 = (str(x1), str(y1))

pair12 = (str(y1), str(x1))

messageMatches[str(pair11)] = True

messageMatches[str(pair12)] = True

allMessagePairs = mklist(allMessage1, allMessage2)

messageMatched = {}

for (x, y) in allMessagePairs:

x = allMessage1[x]

y = allMessage2[y]

if str(x) == str(y): continue

if str((str(x), str(y))) in messageMatches:

s.add(MessageMatch(x, y))

s.add(MessagePresent(x, y))

messageMatched[str(x)]=True

messageMatched[str(y)]=True

else:

s.add(Not(MessagePresent(x, y)))

for l in allMessage1:

if not str(l) in messageMatched:

s.add(MessagePresent(allMessage1[l], empty6))

s.add(MessageNotmatch1(allMessage1[l]))

else:

s.add(Not(MessageNotmatch1(allMessage1[l])))

for l in allMessage2:

if not str(l) in messageMatched:

s.add(MessagePresent(empty5, allMessage2[l]))

s.add(MessageNotmatch2(allMessage2[l]))

else:

s.add(Not(MessageNotmatch2(allMessage2[l])))
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# ==== END

cover_info_event_lineline = {}

lifelineMatches = {}

allLifelines1 = {}

allLifelines2 = {}

#--------------------------------

# Process lifeline matches

# ==== START

assertions = s.assertions()

for ast in assertions:

if not "is_forall" in dir(ast) and str(ast.decl()) in ["cover1", "cover2"]:

cover_info_event_lineline[str(ast.arg(1))] = ast.arg(0)

if "1" in str(ast.arg(0).sort()):

allLifelines1[str(ast.arg(0))] = ast.arg(0)

if "2" in str(ast.arg(0).sort()):

allLifelines2[str(ast.arg(0))] = ast.arg(0)

for (x,y) in matches:

oldx = x

oldy = y

x = cover_info_event_lineline[str(x)]

y = cover_info_event_lineline[str(y)]

pair1 = (str(x), str(y))

pair2 = (str(y), str(x))

lifelineMatches[str(pair1)] = True

lifelineMatches[str(pair2)] = True

allLifelinePairs = mklist(allLifelines1, allLifelines2)

lifelineMatched = {}

for (x, y) in allLifelinePairs:

x = allLifelines1[x]

y = allLifelines2[y]

if str(x) == str(y): continue

if str((str(x), str(y))) in lifelineMatches:

s.add(LifelineMatch(x, y))

s.add(LifelinePresent(x, y))

lifelineMatched[str(x)]=True

lifelineMatched[str(y)]=True

else:

s.add(Not(LifelineMatch(x, y)))

s.add(Not(LifelinePresent(x, y)))

for l in allLifelines1:

if not str(l) in lifelineMatched:

s.add(LifelineNotmatch1(allLifelines1[l]))
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s.add(LifelinePresent(allLifelines1[l], empty4))

else:

s.add(Not(LifelineNotmatch1(allLifelines1[l])))

s.add(Not(LifelinePresent(allLifelines1[l], empty4)))

for l in allLifelines2:

if not str(l) in lifelineMatched:

s.add(LifelineNotmatch2(allLifelines2[l]))

s.add(LifelinePresent(empty3, allLifelines2[l]))

else:

s.add(Not(LifelineNotmatch2(allLifelines2[l])))

s.add(Not(LifelinePresent(empty3, allLifelines2[l])))

addPairs(s, present, EventMatch, empty1, empty2, list_e, list_g, matches)

matches = [

(Sd1_e3,Sd2_f1),(Sd1_g3,Sd2_h1),(Sd1_e7,Sd2_f3),(Sd1_g7,Sd2_h3)

]

print s.check()

C.4 Z3 code for the advice model of the petrol station exam-

ple in section 6.4

from z3 import *

import os

#--------------------------------

#Lifeline declarations

#--------------------------------

Lifeline = DeclareSort('Lifeline')

User = Const('User', Lifeline)

PetrolStation = Const('PetrolStation', Lifeline)

Bank = Const('Bank', Lifeline)

L1 = Const('L1', Lifeline)

L2 = Const('L2', Lifeline)

#--------------------------------

#lifelines_classes declarations

#--------------------------------
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Lifeline_class = DeclareSort('Lifeline_class')

class_User = Const('class_User', Lifeline_class)

class_PetrolStation = Const('class_PetrolStation', Lifeline_class)

class_Bank = Const('class_Bank', Lifeline)

Lifeline_class = Function('Lifeline_class', Lifeline, Lifeline_class, BoolSort())

#--------------------------------

#Events declarations

#--------------------------------

Event = DeclareSort('Event')

e1 = Const('e1', Event)

e2 = Const('e2', Event)

e3 = Const('e3', Event)

e5 = Const('e5', Event)

e6 = Const('e6', Event)

#=================================

g1 = Const('g1', Event)

g2 = Const('g2', Event)

g3 = Const('g3', Event)

g4 = Const('g4', Event)

g6 = Const('g6', Event)

g7 = Const('g7', Event)

g8 = Const('g8', Event)

g9 = Const('g9', Event)

g10 = Const('g10', Event)

#=================================

l1 = Const('l1', Event)

l3 = Const('l3', Event)

l4 = Const('l4', Event)

l5 = Const('l5', Event)

#--------------------------------

#Messages declarations

#--------------------------------

Message = DeclareSort('Message')

ValidPin = Const('ValidPin', Message)

EnterFuelAmount = Const('EnterFuelAmount', Message)

FuelAmount = Const('FuelAmount', Message)

StartFuel = Const('StartFuel', Message)

CheckAmount = Const('CheckAmount', Message)

BalanceOk = Const('BalanceOk', Message)

Withdrow = Const('Withdrow', Message)

Cancel = Const('Cancel', Message)

PaymentDeclined = Const('PaymentDeclined', Message)

m = Const('m', Message)
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#--------------------------------

#Message_name declarations

#--------------------------------

Message_name = DeclareSort('Message_name')

Name_ValidPin = Const('Name_ValidPin', Message_name)

Name_EnterFuelAmount = Const('Name_EnterFuelAmount', Message_name)

Name_FuelAmount = Const('Name_FuelAmount', Message_name)

Name_StartFuel = Const('Name_StartFuel', Message_name)

Name_CheckAmount = Const('Name_CheckAmount', Message_name)

Name_BalanceOk = Const('Name_BalanceOk', Message_name)

Name_Withdrow = Const('Name_Withdrow', Message_name)

Name_Cancel = Const('Name_Cancel', Message_name)

Name_PaymentDeclined = Const('Name_PaymentDeclined', Message_name)

Name_Message_name = Function('Message_name', Message, Message_name, BoolSort())

#--------------------------------

#Distinct

#--------------------------------

s = Solver()

e = Distinct(e1, g1, e2, g2, e3, g3,e5,e6,g4, g6, g7,g8,g9, g10, l1, l3, l4, l5)

M = Distinct(FuelAmount,CheckAmount, Withdrow, ValidPin, EnterFuelAmount, StartFuel, Cancel,

PaymentDeclined, BalanceOk)

L = Distinct(User, PetrolStation, Bank)

s.add(e,M,L)

#--------------------------------

#Events constraint,

#--------------------------------

iMNext = Function('iMNext', Event, Event, BoolSort())

s.add(ForAll ([e1],(Not(iMNext(e1, e1)))))

Next = Function('Next', Event, Event, BoolSort())

s.add(ForAll ([e1],(Next(e1, e1))))

s.add(ForAll ([e1,e2], Implies(And(Next(e1, e2),(e1 != e2)),Not(Next(e2, e1)))))

s.add(ForAll ([e1,e2,e3], Implies(And(And(Next(e1, e2),Next(e2, e3))),(Next(e1, e3)))))

s.add(ForAll ([e1,e2], Implies (And(iMNext(e1, e2),(e1 != e2)) ,Next(e1, e2))))

#--------------------------------

#Conflict Function

#--------------------------------

iConflict = Function('iConflict', Event, Event, BoolSort())

Conflict = Function('Conflict', Event, Event, BoolSort())

s.add(ForAll ([e1],(Not(Conflict(e1, e1)))))

s.add(ForAll ([e1,e2], Implies(And(Conflict(e1, e2),(e1 != e2)),Conflict(e2, e1))))

s.add(ForAll ([e1,e2,e3], Implies(And(And(Conflict(e1, e2),Next(e2, e3))),(Conflict(e1, e3))))

)

s.add(ForAll ([e1,e2], Implies (And(iConflict(e1,e2),(e1 != e2)) ,Conflict(e1,e2))))
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#--------------------------------

#Concurrency

#-------------------------------

Conc = Function('Conc', Event, Event, BoolSort())

s.add(ForAll([e1, e2],Conc(e1, e2) == Not(Or(Conflict(e1, e2),Next(e1, e2),Next(e2, e1)))))

#--------------------------------

#lifeline relation with events

#--------------------------------

cover = Function('cover', Lifeline, Event, BoolSort())

s.add(ForAll([L1, e1, L2], Implies(And (cover(L1, e1),(L1 != L2)), (Not(cover(L2, e1))))))

#--------------------------------

#Message and its events relation

#--------------------------------

isMsg = Function ('isMsg', Event, Message, Event, BoolSort())

s.add(ForAll([e1,m,e2],Implies(isMsg(e1,m,e2),iMNext(e1,e2))))

s.add(ForAll([e1,m],(Not(isMsg(e1,m,e1)))))

#--------------------------------

#general order between events

#--------------------------------

s.add(iMNext(e1,e2))

s.add(iMNext(e2,e3))

s.add(iMNext(e3,e5))

s.add(iMNext(e3,e6))

#==========================

s.add(iMNext(g1,g2))

s.add(iMNext(g2,g3))

s.add(iMNext(g3,g4))

s.add(iMNext(g4,g6))

s.add(iMNext(g6,g7))

s.add(iMNext(g7,g8))

s.add(iMNext(g4,g9))

s.add(iMNext(g9,g10))

s.add(iConflict(e5,e6))

s.add(iConflict(g6,g9))

#==========================

s.add(iMNext(l1,l3))

s.add(iMNext(l3,l4))

s.add(iMNext(l1,l5))

s.add(iConflict(l3,l5))

#--------------------------------

# Connect message's to send event and receive event
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#--------------------------------

s.add(isMsg(g1,ValidPin,e1))

s.add(isMsg(g2,EnterFuelAmount,e2))

s.add(isMsg(e3,FuelAmount,g3))

s.add(isMsg(g4,CheckAmount,l1))

s.add(isMsg(g8,StartFuel,e5))

s.add(isMsg(g10,PaymentDeclined,e6))

s.add(isMsg(l4,Withdrow,g7))

s.add(isMsg(l3,BalanceOk,g6))

s.add(isMsg(l5,Cancel,g9))

#==========================

#assigning lifeline with its events

#==========================

s.add(cover(User,e1))

s.add(cover(User,e2))

s.add(cover(User,e3))

s.add(cover(User,e5))

s.add(cover(User,e6))

s.add(cover(PetrolStation,g1))

s.add(cover(PetrolStation,g2))

s.add(cover(PetrolStation,g3))

s.add(cover(PetrolStation,g4))

s.add(cover(PetrolStation,g6))

s.add(cover(PetrolStation,g7))

s.add(cover(PetrolStation,g8))

s.add(cover(PetrolStation,g9))

s.add(cover(PetrolStation,g10))

s.add(cover(Bank,l1))

s.add(cover(Bank,l3))

s.add(cover(Bank,l4))

s.add(cover(Bank,l5))

#--------------------------------

#graph generator

#--------------------------------

print (s.check())

print (s.model())
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C.5 Z3 code for the base model of the petrol station example

in section 6.4

from z3 import *

#--------------------------------

#Lifeline declarations

#--------------------------------

Lifeline = DeclareSort('Lifeline')

User = Const('User', Lifeline)

PetrolStation = Const('PetrolStation', Lifeline)

Bank = Const('Bank', Lifeline)

L1 = Const('L1', Lifeline)

L2 = Const('L2', Lifeline)

#--------------------------------

#lifelines_classes declarations

#--------------------------------

Lifeline_class = DeclareSort('Lifeline_class')

class_User = Const('class_User', Lifeline_class)

class_PetrolStation = Const('class_PetrolStation', Lifeline_class)

class_Bank = Const('class_Bank', Lifeline)

Lifeline_class = Function('Lifeline_class', Lifeline, Lifeline_class, BoolSort())

#--------------------------------

#Events declarations

#--------------------------------

Event = DeclareSort('Event')

e1 = Const('e1', Event)

e2 = Const('e2', Event)

e3 = Const('e3', Event)

e5 = Const('e5', Event)

e6 = Const('e6', Event)

e7 = Const('e7', Event)

e8 = Const('e8', Event)

e101 = Const('e101', Event)

e102 = Const('e102', Event)

#=================================

g1 = Const('g1', Event)

g2 = Const('g2', Event)

g3 = Const('g3', Event)

g4 = Const('g4', Event)

g5 = Const('g5', Event)
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g7 = Const('g7', Event)

g8 = Const('g8', Event)

g9 = Const('g9', Event)

g10 = Const('g10', Event)

g121 = Const('g121', Event)

g122 = Const('g122', Event)

#=================================

l1 = Const('l1', Event)

l2 = Const('l2', Event)

#=================================

#Messages declarations

#=================================

Message = DeclareSort('Message')

InserCard = Const('InserCard', Message)

RequestPin = Const('RequestPin', Message)

PinCode = Const('PinCode', Message)

Validate = Const('Validate', Message)

Result = Const('Result', Message)

ValidPin = Const('ValidPin', Message)

StartFuel = Const('StartFuel', Message)

Stop = Const('Stop', Message)

InvalidPin = Const('InvalidPin', Message)

CardOut = Const('CardOut', Message)

m = Const('m', Message)

#--------------------------------

#Message_name declarations

#--------------------------------

Message_name = DeclareSort('Message_name')

Name_InserCard = Const('Name_InserCard', Message_name)

Name_RequestPin = Const('Name_RequestPin', Message_name)

Name_PinCode = Const('Name_PinCode', Message_name)

Name_Validate = Const('Name_Validate', Message_name)

Name_Result = Const('Name_Result', Message_name)

Name_ValidPin = Const('Name_ValidPin', Message_name)

Name_StartFuel = Const('Name_StartFuel', Message_name)

Name_Stop = Const('Name_Stop', Message_name)

Name_InvalidPin = Const('Name_InvalidPin', Message_name)

Name_CardOut = Const('Name_CardOut', Message_name)

Name_Message_name = Function('Message_name', Message, Message_name, BoolSort())

#--------------------------------

#Distinct

#--------------------------------

s = Solver()
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e = Distinct( e1, g1, e2, g2, e3, g3, g4, e5, g5,e6, e7, g7,e8,e101,e102,g8,g9,g10,g122,l1, l2

)

M = Distinct(InserCard,RequestPin, PinCode, Validate,ValidPin, Result, StartFuel, Stop,

InvalidPin, CardOut)

L = Distinct(User, PetrolStation, Bank)

s.add(e,M,L)

#--------------------------------

#Events constraint,

#--------------------------------

iMNext = Function('iMNext', Event, Event, BoolSort())

Next = Function('Next', Event, Event, BoolSort())

s.add(ForAll ([e1],(Next(e1, e1))))

s.add(ForAll ([e1,e2], Implies(And(Next(e1, e2),(e1 != e2)),Not(Next(e2, e1)))))

s.add(ForAll ([e1,e2,e3], Implies(And(And(Next(e1, e2),Next(e2, e3))),(Next(e1, e3)))))

s.add(ForAll ([e1,e2], Implies (And(iMNext(e1, e2),(e1 != e2)) ,Next(e1, e2))))

#--------------------------------

#Conflict Function

#--------------------------------

iConflict = Function('iConflict', Event, Event, BoolSort())

Conflict = Function('Conflict', Event, Event, BoolSort())

s.add(ForAll ([e1],(Not(Conflict(e1, e1)))))

s.add(ForAll ([e1,e2], Implies(And(Conflict(e1, e2),(e1 != e2)),Conflict(e2, e1))))

s.add(ForAll ([e1,e2,e3], Implies(And(And(Conflict(e1, e2),Next(e2, e3))),(Conflict(e1, e3))))

)

s.add(ForAll ([e1,e2], Implies (And(iConflict(e1,e2),(e1 != e2)) ,Conflict(e1,e2))))

#--------------------------------

#Concurrency

#-------------------------------

Conc = Function('Conc', Event, Event, BoolSort())

s.add(ForAll([e1, e2],Conc(e1, e2) == Not(Or(Conflict(e1, e2),Next(e1, e2),Next(e2, e1)))))

#--------------------------------

#lifeline relation with events

#--------------------------------

cover = Function('cover', Lifeline, Event, BoolSort())

s.add(ForAll([L1, e1, L2], Implies(And (cover(L1, e1),(L1 != L2)), (Not(cover(L2, e1))))))

#--------------------------------

#Message and its events relation

#--------------------------------

isMsg = Function ('isMsg', Event, Message, Event, BoolSort())

s.add(ForAll([e1,m,e2],Implies(isMsg(e1,m,e2),iMNext(e1,e2))))

s.add(ForAll([e1,m],(Not(isMsg(e1,m,e1)))))

#--------------------------------

#general order between events
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#--------------------------------

s.add(iMNext(e1,e2))

s.add(iMNext(e2,e3))

s.add(iMNext(e3,e5))

s.add(iMNext(e5,e6))

s.add(iMNext(e6,e7))

s.add(iMNext(e7,e101))

s.add(iMNext(e3,e8))

s.add(iMNext(e8,e102))

s.add(iMNext(g1,g2))

s.add(iMNext(g2,g3))

s.add(iMNext(g3,g4))

s.add(iMNext(g4,g5))

s.add(iMNext(g5,g7))

s.add(iMNext(g5,g10))

s.add(iMNext(g7,g8))

s.add(iMNext(g8,g9))

s.add(iMNext(g9,g121))

s.add(iMNext(g10,g122))

s.add(iMNext(l1,l2))

s.add(iConflict(g7,g10))

s.add(iConflict(e5,e8))

#--------------------------------

# Connect message's to send event and receive event

#--------------------------------

s.add(isMsg(e1,InserCard,g1))

s.add(isMsg(g2,RequestPin,e2))

s.add(isMsg(e3,PinCode,g3))

s.add(isMsg(g4,Validate,l1))

s.add(isMsg(l2,Result,g5))

s.add(isMsg(g7,ValidPin,e5))

s.add(isMsg(g8,StartFuel,e6))

s.add(isMsg(e7,Stop,g9))

s.add(isMsg(g10,InvalidPin,e8))

s.add(isMsg(g121,CardOut,e101))

s.add(isMsg(g122,CardOut,e102))

#==========================

#assigning lifeline with its events

#==========================

s.add(cover(User,e1))

s.add(cover(User,e2))

s.add(cover(User,e3))
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s.add(cover(User,e5))

s.add(cover(User,e6))

s.add(cover(User,e7))

s.add(cover(User,e8))

s.add(cover(User,e101))

s.add(cover(User,e102))

s.add(cover(PetrolStation,g1))

s.add(cover(PetrolStation,g2))

s.add(cover(PetrolStation,g3))

s.add(cover(PetrolStation,g4))

s.add(cover(PetrolStation,g5))

s.add(cover(PetrolStation,g7))

s.add(cover(PetrolStation,g8))

s.add(cover(PetrolStation,g9))

s.add(cover(PetrolStation,g10))

s.add(cover(PetrolStation,g121))

s.add(cover(PetrolStation,g122))

s.add(cover(Bank,l1))

s.add(cover(Bank,l2))

#--------------------------------

print (s.check())

print (s.model())

C.6 Z3 code for the woven model of the petrol station exam-

ple in section 6.4

from z3 import *

#--------------------------------

#Lifeline declarations

#--------------------------------

Lifeline1 = DeclareSort('Lifeline1')

Lifeline2 = DeclareSort('Lifeline2')

Base_User = Const('Base_User', Lifeline1)

Base_PetrolStation = Const('Base_PetrolStation', Lifeline1)

Base_Bank = Const('Base_Bank', Lifeline1)

Advice_User = Const('Advice_User', Lifeline2)

Advice_PetrolStation = Const('Advice_PetrolStation', Lifeline2)

Advice_Bank = Const('Advice_Bank', Lifeline2)
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#--------------------------------

#Declarations for the axioms

#--------------------------------

L_n = Const('L_n', Lifeline2)

L_k = Const('L_k', Lifeline2)

empty4 = Const('empty4', Lifeline2)

#--------------------------------

#Declarations for the axioms

#--------------------------------

L_i = Const('L_i', Lifeline1)

L_j = Const('L_j', Lifeline1)

empty3 = Const('empty3', Lifeline1)

#--------------------------------

#Events declarations

#--------------------------------

Event1 = DeclareSort('Event1')

Base_e1 = Const('Base_e1', Event1)

Base_e2 = Const('Base_e2', Event1)

Base_e3 = Const('Base_e3', Event1)

Base_e5 = Const('Base_e5', Event1)

Base_e6 = Const('Base_e6', Event1)

Base_e7 = Const('Base_e7', Event1)

Base_e8 = Const('Base_e8', Event1)

Base_e101 = Const('Base_e101', Event1)

Base_e102 = Const('Base_e102', Event1)

#=================================

Base_g1 = Const('Base_g1', Event1)

Base_g2 = Const('Base_g2', Event1)

Base_g3 = Const('Base_g3', Event1)

Base_g4 = Const('Base_g4', Event1)

Base_g5 = Const('Base_g5', Event1)

Base_g7 = Const('Base_g7', Event1)

Base_g8 = Const('Base_g8', Event1)

Base_g9 = Const('Base_g9', Event1)

Base_g10 = Const('Base_g10', Event1)

Base_g121 = Const('Base_g121', Event1)

Base_g122 = Const('Base_g122', Event1)

#=================================

Base_l1 = Const('Base_l1', Event1)

Base_l2 = Const('Base_l2', Event1)

#=================================

#=================================

Event2 = DeclareSort('Event2')
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Advice_e1 = Const('Advice_e1', Event2)

Advice_e2 = Const('Advice_e2', Event2)

Advice_e3 = Const('Advice_e3', Event2)

Advice_e5 = Const('Advice_e5', Event2)

Advice_e6 = Const('Advice_e6', Event2)

#=================================

Advice_g1 = Const('Advice_g1', Event2)

Advice_g2 = Const('Advice_g2', Event2)

Advice_g3 = Const('Advice_g3', Event2)

Advice_g4 = Const('Advice_g4', Event2)

Advice_g6 = Const('Advice_g6', Event2)

Advice_g7 = Const('Advice_g7', Event2)

Advice_g8 = Const('Advice_g8', Event2)

Advice_g9 = Const('Advice_g9', Event2)

Advice_g10 = Const('Advice_g10', Event2)

#=================================

Advice_l1 = Const('Advice_l1', Event2)

Advice_l3 = Const('Advice_l3', Event2)

Advice_l4 = Const('Advice_l4', Event2)

Advice_l5 = Const('Advice_l5', Event2)

#=================================

#Messages declarations

#=================================

Message1 = DeclareSort('Message1')

Base_InserCard = Const('Base_InserCard', Message1)

Base_RequestPin = Const('Base_RequestPin', Message1)

Base_PinCode = Const('Base_PinCode', Message1)

Base_Validate = Const('Base_Validate', Message1)

Base_Result = Const('Base_Result', Message1)

Base_ValidPin = Const('Base_ValidPin', Message1)

Base_StartFuel = Const('Base_StartFuel', Message1)

Base_Stop = Const('Base_Stop', Message1)

Base_InvalidPin = Const('Base_InvalidPin', Message1)

Base_CardOut1 = Const('Base_CardOut1', Message1)

Base_CardOut2 = Const('Base_CardOut2', Message1)

#--------------------------------

#Declarations for the axioms

#--------------------------------

M_i = Const('M_i', Message1)

#M_j = Const('M_j', Message1)

empty5 = Const('empty5', Message1)

#--------------------------------

#--------------------------------
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Message2 = DeclareSort('Message2')

Advice_Validate = Const('Advice_Validate', Message2)

Advice_EnterFuelAmount = Const('Advice_EnterFuelAmount', Message2)

Advice_FuelAmount = Const('Advice_FuelAmount', Message2)

Advice_CheckAmount = Const('Advice_CheckAmount', Message2)

Advice_BalanceOk = Const('Advice_BalanceOk', Message2)

Advice_StartFuel = Const('Advice_StartFuel', Message2)

Advice_Withdrew = Const('Advice_Withdrew', Message2)

Advice_Cancel = Const('Advice_Cancel', Message2)

Advice_PaymentDeclined = Const('Advice_PaymentDeclined', Message2)

Advice_ValidPin = Const('Advice_ValidPin', Message2)

#--------------------------------

#Declarations for the axioms

#--------------------------------

M_j = Const('M_j', Message2)

empty6 = Const('empty6', Message2)

#--------------------------------

#--------------------------------

#elements used for the constrants

#--------------------------------

L_i = Const('L_i', Lifeline1)

L_j = Const('L_j', Lifeline1)

L_n = Const('L_n', Lifeline2)

L_k = Const('L_k', Lifeline2)

empty1 = Const('empty1', Event1)

e_i = Const('e_i', Event1)

e_j = Const('e_j', Event1)

e_n = Const('e_n', Event1)

empty2 = Const('empty2', Event2)

g_i = Const('g_i', Event2)

g_j = Const('g_j', Event2)

g_n = Const('g_n', Event2)

M_i = Const('M_i', Message1)

M_j = Const('M_j', Message2)

#--------------------------------

list_e = [Base_e1,Base_e2,Base_e3,Base_e5,Base_e6,Base_e7,Base_e8,Base_e101,Base_e102,Base_g1,

Base_g2,Base_g3,Base_g4,Base_g5,Base_g7,Base_g8,

Base_g9,Base_g10,Base_g121,Base_g122,Base_l1,Base_l2]

list_g = [Advice_e1,Advice_e2,Advice_e3,Advice_e5,Advice_e6,Advice_g1,Advice_g2,Advice_g3,

Advice_g4,Advice_g6,Advice_g7,Advice_g8,Advice_g9,Advice_g10,

Advice_l1,Advice_l3,Advice_l4,Advice_l5]

ee1 = Distinct(Base_e1,Base_e2,Base_e3,Base_e5,Base_e6,Base_e7,Base_e8,Base_e101,Base_e102,

Base_g1,Base_g2,Base_g3,Base_g4,Base_g5,Base_g7,Base_g8,
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Base_g9,Base_g10,Base_g121,Base_g122,Base_l1,Base_l2)

ee2 = Distinct(Advice_e1,Advice_e2,Advice_e3,Advice_e5,Advice_e6,Advice_g1,Advice_g2,Advice_g3

,Advice_g4,Advice_g6,Advice_g7,Advice_g8,Advice_g9,Advice_g10,

Advice_l1,Advice_l3,Advice_l4,Advice_l5)

s.add(ee1,ee2,MM1,MM2)

def mklist(l1, l2):

result = []

for x in l1:

for y in l2:

result.append((x,y))

return result

def addPairs(s, relation, relation2,empty1, empty2, l1, l2, matches):

L = {}

R = {}

for (x, y) in matches:

L[str(x)] = True

R[str(y)] = True

for (x,y) in mklist(l1, l2):

if str((x,y)) in map(str, matches):

s.add(relation(x,y))

s.add(relation2(x,y))

else:

s.add(Not(relation(x,y)))

for x in l1:

if not str(x) in L:

s.add(relation(x, empty2))

s.add(Notmatch1(x))

else:

s.add(Not(Notmatch1(x)))

for x in l2:

if not str(x) in R:

s.add(relation(empty1, x))

s.add(Notmatch2(x))

else:

s.add(Not(Notmatch2(x)))

#print mklist(list_e, list_g)

s = Solver()

#==================================================================

#MessagePresent and MessageMatch functions

#==================================================================

MessagePresent = Function('MessagePresent', Message1,Message2, BoolSort())

MessageMatch = Function('MessageMatch ', Message1, Message2, BoolSort())
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#==================================================================

#EventMatch and present functions

#==================================================================

EventMatch = Function('EventMatch ', Event1, Event2, BoolSort())

present = Function('present', Event1,Event2, BoolSort())

#==================================================================

#LifelineMatch and LifelinePresent functions

#==================================================================

LifelinePresent = Function('LifelinePresent', Lifeline1,Lifeline2, BoolSort())

LifelineMatch = Function('LifelineMatch', Lifeline1, Lifeline2, BoolSort())

#==================================================================

#Notmatch functions for Events of sd1 and sd2

#==================================================================

Notmatch1 = Function('Notmatch1', Event1, BoolSort())

Notmatch2 = Function('Notmatch2', Event2, BoolSort())

#==================================================================

#MessageNotmatch functions for Messages of sd1 and sd2

#==================================================================

MessageNotmatch1 = Function('MessageNotmatch1', Message1, BoolSort())

MessageNotmatch2 = Function('MessageNotmatch2', Message2, BoolSort())

#==================================================================

#NotMatchEventLifeline for Lifelines of sd1 and sd2

#==================================================================

LifelineNotmatch1 = Function('LifelineNotmatch1', Lifeline1, BoolSort())

s.add(ForAll ([L_i,L_n], Implies(LifelineMatch(L_i,L_n),Not(LifelineNotmatch1(L_i)))))

LifelineNotmatch2 = Function('LifelineNotmatch2', Lifeline2, BoolSort())

s.add(ForAll ([L_i,L_n], Implies(LifelineMatch(L_i,L_n),Not(LifelineNotmatch2(L_n)))))

#--------------------------------

#Distinct

#--------------------------------

MM1 = Distinct(Base_InserCard,Base_RequestPin,Base_PinCode,Base_Validate,Base_Result,

Base_ValidPin,Base_StartFuel,Base_Stop,Base_InvalidPin,Base_CardOut1,Base_CardOut2)

MM2 = Distinct(Advice_Validate,Advice_EnterFuelAmount,Advice_FuelAmount, Advice_CheckAmount,

Advice_BalanceOk, Advice_StartFuel,Advice_Withdrew,Advice_Cancel,Advice_PaymentDeclined,

Advice_ValidPin)

s.add(ee1,ee2,LL1,LL2,MM1,MM2)

#--------------------------------

#LES constraint,

#immediate Causality

#--------------------------------

iMNext1 = Function('iMNext1', Event1, Event1, BoolSort())

s.add(ForAll ([e_i],(Not(iMNext1(e_i, e_i)))))

#--------------------------------
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#Causality ->*

#--------------------------------

Next1 = Function('Next1', Event1, Event1, BoolSort())

s.add(ForAll ([e_i],(Next1(e_i, e_i))))

s.add(ForAll ([e_i,e_j], Implies(And(Next1(e_i, e_j),(e_i != e_j)),Not(Next1(e_j, e_i)))))

s.add(ForAll ([e_i,e_j,e_n], Implies(And(Next1(e_i, e_j),Next1(e_j, e_n)),(Next1(e_i, e_n)))))

# All events connected by immediate Causality(iMNext) are connected by Causality relation (

Next)

s.add(ForAll ([e_i,e_j], Implies (iMNext1(e_i,e_j) ,Next1(e_i,e_j))))

#=========================

#--------------------------------

#LES constraint,

#immediate Causality

#--------------------------------

iMNext2 = Function('iMNext2', Event2, Event2, BoolSort())

s.add(ForAll ([g_i],(Not(iMNext2(g_i, g_i)))))

#--------------------------------

#Causality ->*

#--------------------------------

Next2 = Function('Next2', Event2, Event2, BoolSort())

s.add(ForAll ([g_i],(Next2(g_i, g_i))))

s.add(ForAll ([g_i,g_j], Implies(And(Next2(g_i, g_j),(g_i != g_j)),Not(Next2(g_j, g_i)))))

s.add(ForAll ([g_i,g_j,g_n], Implies(And(Next2(g_i, g_j),Next2(g_j, g_n)),(Next2(g_i, g_n)))))

# All events connected by immediate Causality(iMNext) are connected by Causality relation (

Next)

s.add(ForAll ([g_i,g_j], Implies (iMNext2(g_i,g_j) ,Next2(g_i,g_j))))

#=========================

#=========================

iMNext3 = Function('iMNext3 ', Event1,Event2,Event1, Event2, BoolSort())

s.add(ForAll ([e_i,g_i],Not(iMNext3(e_i,g_i,e_i,g_i))))

next3 = Function('next3 ', Event1,Event2,Event1, Event2, BoolSort())

s.add(ForAll ([e_i,g_i],(next3(e_i,g_i,e_i,g_i))))

s.add(ForAll ([e_i,g_i,e_j,g_j], Implies (And(next3(e_i,g_i,e_j,g_j),(e_i != e_j),(g_i != g_j)

),Not(next3(e_j,g_j,e_i,g_j)))))

s.add(ForAll ([e_i,g_i,e_j,g_j,e_n,g_n], Implies(And(next3(e_i,g_i,e_j,g_j),next3(e_j,g_j,e_n,

g_n)),(next3(e_i,g_i,e_n,g_n)))))

s.add(ForAll ([e_i,g_i,e_j,g_j], Implies (iMNext3(e_i,g_i,e_j,g_j) ,next3(e_i,g_i,e_j,g_j))))

#=========================

#--------------------------------

# This just to show the direct conflict relation

#--------------------------------

iConflict1 = Function('iConflict1', Event1, Event1, BoolSort())

#--------------------------------
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Conflict1 = Function('Conflict1', Event1, Event1, BoolSort())

s.add(ForAll ([e_i],(Not(Conflict1(e_i, e_i)))))

s.add(ForAll ([e_i,e_j], Implies(Conflict1(e_i, e_j),Conflict1(e_j, e_i))))

s.add(ForAll ([e_i,e_j,e_n], Implies(And(And(Conflict1(e_i, e_j),Next1(e_j, e_n))),(Conflict1(

e_i, e_n)))))

# All events connected by immediate conflict(iConflict) are connected by conflict relation (

Conflict)

s.add(ForAll ([e_i,e_j], Implies (iConflict1(e_i, e_j) ,Conflict1(e_i, e_j))))

#--------------------------------

# This just to show the direct conflict relation

#--------------------------------

iConflict2 = Function('iConflict2', Event2, Event2, BoolSort())

#--------------------------------

Conflict2 = Function('Conflict2', Event2, Event2, BoolSort())

s.add(ForAll ([g_i],(Not(Conflict2(g_i, g_i)))))

s.add(ForAll ([g_i,g_j], Implies(And(Conflict2(g_i, g_j),(g_i != g_j)),Conflict2(g_j, g_i))))

s.add(ForAll ([g_i,g_j,g_n], Implies(And(And(Conflict2(g_i, g_j),Next2(g_j, g_n))),(Conflict2(

g_i, g_n)))))

# All events connected by immediate conflict(iConflict) are connected by conflict relation (

Conflict)

s.add(ForAll ([g_i,g_j], Implies (iConflict2(g_i, g_j) ,Conflict2(g_i, g_j))))

#=========================

#=========================

iConflict3 = Function('iConflict3', Event1,Event2,Event1, Event2, BoolSort())

Conflict3 = Function('Conflict3', Event1,Event2,Event1, Event2, BoolSort())

s.add(ForAll ([e_i,g_i],(Not(Conflict3(e_i,g_i,e_i,g_i)))))

s.add(ForAll ([e_i,g_i,e_j,g_j], Implies (And(Conflict3(e_i,g_i,e_j,g_j),(e_i != e_j),(g_i !=

g_j)),Conflict3(e_j,g_j,e_i,g_j))))

s.add(ForAll ([e_i,g_i,e_j,g_j,e_n,g_n], Implies(And(Conflict3(e_i,g_i,e_j,g_j),next3(e_j,g_j,

e_n,g_n)),(Conflict3(e_i,g_i,e_n,g_n)))))

s.add(ForAll ([e_i,g_i,e_j,g_j], Implies (iConflict3(e_i,g_i,e_j,g_j) ,Conflict3(e_i,g_i,e_j,

g_j))))

#--------------------------------

#messages constraint, the messages has only one event as receive and the event connect to only

one messages

#--------------------------------

isMsg2 = Function('isMsg2',Event2, Message2, Event2, BoolSort())

s.add(ForAll([M_j, g_i],(Not(isMsg2(g_i,M_j,g_i)))))

s.add(ForAll([g_i,M_j,g_j],Implies(isMsg2(g_i,M_j,g_j),iMNext2(g_i,g_j))))

s.add(ForAll([g_i,M_j,g_j],Implies(And(And(isMsg2(g_i,M_j,g_j),iMNext2(g_i,g_j)),Notmatch2(g_i

),Notmatch2(g_j)),iMNext3(empty1,g_i,empty1,g_j))))

#--------------------------------
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#messages constraint, the messages has only one event as receive and the event connect to only

one messages

#--------------------------------

isMsg1 = Function('isMsg1',Event1, Message1, Event1, BoolSort())

s.add(ForAll([M_i, e_i],(Not(isMsg1(e_i,M_i,e_i)))))

s.add(ForAll([e_i,M_i,e_j],Implies(isMsg1(e_i,M_i,e_j),iMNext1(e_i,e_j))))

s.add(ForAll([e_i,M_i,e_j],Implies(And(And(isMsg1(e_i,M_i,e_j),iMNext1(e_i,e_j)),Notmatch1(e_i

),Notmatch1(e_j)),iMNext3(e_i,empty2,e_j,empty2))))

#--------------------------------

#Relation isMsg3 for composition

#--------------------------------

isMsg3 = Function('isMsg3',Event1,Event2, Message1,Message2, Event1,Event2, BoolSort())

#--------------------------------

#Matching axioms for messages

#--------------------------------

s.add(ForAll ([e_i,g_i,e_j,g_j,M_i,M_j], Implies

(And(And(MessageNotmatch1(M_i),MessageNotmatch2(M_j)),isMsg1(e_i,M_i,e_j),isMsg2(g_i,M_j,g_j))

,

And(isMsg3(e_i,empty2,M_i,empty6,e_j,empty2),isMsg3(empty1,g_i,empty5,M_j,empty1,g_j)))))

s.add(ForAll ([e_i,e_j,g_i,g_j,M_i,M_j], Implies (And(EventMatch(e_i,g_i),isMsg1(e_i,M_i,e_j),

isMsg2(g_i,M_j,g_j)),MessageMatch (M_i, M_j))))

s.add(ForAll ([e_i,e_j,g_i,g_j,M_i,M_j], Implies (And(EventMatch(e_j,g_j),isMsg1(e_i,M_i,e_j),

isMsg2(g_i,M_j,g_j)),MessageMatch (M_i, M_j))))

s.add(ForAll ([e_i,e_j,g_i,g_j,M_i,M_j], Implies (And(MessageMatch (M_i, M_j),isMsg1(e_i,M_i,

e_j),isMsg2(g_i,M_j,g_j)),EventMatch(e_i,g_i))))

s.add(ForAll ([e_i,e_j,g_i,g_j,M_i,M_j], Implies (And(MessageMatch (M_i, M_j),isMsg1(e_i,M_i,

e_j),isMsg2(g_i,M_j,g_j)),EventMatch (e_j, g_j))))

s.add(ForAll ([e_i,g_i,e_j,g_j,M_i,M_j], Implies

(And(And(MessageMatch (M_i, M_j)),isMsg1(e_i,M_i,e_j),isMsg2(g_i,M_j,g_j)),isMsg3(e_i,g_i,M_i,

M_j,e_j,g_j))))

#--------------------------------

#cover relation for sd1

#--------------------------------

cover1 = Function('cover1', Lifeline1, Event1, BoolSort())

s.add(ForAll([L_i, e_i, L_j], Implies(And (cover1(L_i, e_i),(L_i != L_j)), (Not(cover1(L_j,

e_i))))))

#--------------------------------

#cover relation for sd2

#--------------------------------

cover2 = Function('cover2', Lifeline2, Event2, BoolSort())

s.add(ForAll([L_n, g_i, L_k], Implies(And (cover2(L_n, g_i),(L_n != L_k)), (Not(cover2(L_k,

g_i))))))

#=========================
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#cover relation for the composition

#=========================

cover3 = Function('cover3', Lifeline1,Lifeline2, Event1,Event2, BoolSort())

#--------------------------------

#--------------------------------

#Matching axioms for lifelines

#--------------------------------

s.add(ForAll ([e_i,g_i,L_i,L_n], Implies (And(And(LifelineMatch(L_i, L_n),EventMatch(e_i,g_i))

,cover1(L_i,e_i),cover2(L_n,g_i)),cover3(L_i,L_n,e_i,g_i))))

s.add(ForAll ([e_i,g_i,L_i,L_n], Implies (And(And(And(cover1(L_i,e_i),cover2(L_n,g_i)),

Notmatch1(e_i),Notmatch2(g_i)),LifelineNotmatch2(L_n),LifelineNotmatch1(L_i)),And(cover3(

L_i,empty4,e_i,empty2),cover3(empty3,L_n,empty1,g_i)))))

s.add(ForAll ([e_i,L_i,L_n], Implies (And(LifelineMatch(L_i, L_n),cover1(L_i,e_i), Notmatch1(

e_i)),cover3(L_i,L_n,e_i,empty2))))

s.add(ForAll ([g_i,L_i,L_n], Implies (And(LifelineMatch(L_i, L_n),cover2(L_n,g_i), Notmatch2(

g_i)),cover3(L_i,L_n,empty1,g_i))))

s.add(ForAll ([e_i,g_i,L_i,L_n], Implies (And(And(EventMatch(e_i,g_i),cover1(L_i,e_i),cover2(

L_n,g_i))),LifelineMatch(L_i,L_n))))

#--------------------------------

#--------------------------------

#Concurrency

#--------------------------------

Conc1 = Function('Conc1', Event1, Event1, BoolSort())

s.add(ForAll([e_i, e_j],Conc1(e_i, e_j)== Not(Or(Next1(e_i, e_j),Next1(e_j, e_i),Conflict1(e_i

, e_j)))))

Conc2 = Function('Conc2', Event2, Event2, BoolSort())

s.add(ForAll([g_i, g_j], Conc2(g_i, g_j)== Not(Or(Next2(g_i, g_j),Next2(g_j, g_i),Conflict2(

g_i, g_j)))))

Conc3 = Function('Conc3', Event1,Event2,Event1, Event2, BoolSort())

s.add(ForAll([e_i,g_i,e_j,g_j],Conc3(e_i,g_i,e_j,g_j)== Not(Or(next3(e_i,g_i,e_j,g_j),next3(

e_j,g_j,e_i,g_j),Conflict3(e_i,g_i,e_j,g_j)))))

#------------------------------------------------------------

#Matching axioms for Events in Causality relation

#------------------------------------------------------------

s.add(ForAll ([e_i,g_i,e_j,g_j], Implies(And(And(iMNext1(e_i, e_j),iMNext2(g_i,g_j)),

EventMatch(e_i, g_i),EventMatch(e_j, g_j)),iMNext3(e_i,g_i,e_j,g_j))))

s.add(ForAll ([e_i,g_i,e_j,g_j], Implies (And(And(And(iMNext1(e_i, e_j),iMNext2(g_i,g_j)),

Notmatch1(e_i),Notmatch2(g_i)),Notmatch1(e_j),Notmatch2(g_j)),And(iMNext3(e_i,empty2,e_j,

empty2),iMNext3(empty1,g_i,empty1,g_j)))))

s.add(ForAll ([e_i,g_i,e_j], Implies(And(And(EventMatch(e_i,g_i),iMNext1(e_i,e_j)),Notmatch1(

e_j)),iMNext3(e_i,g_i,e_j,empty2))))

s.add(ForAll ([e_i,g_i,g_j], Implies(And(And(EventMatch(e_i,g_i),iMNext2(g_i,g_j)),Notmatch2(

g_j)),iMNext3(e_i,g_i,empty1,g_j))))
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s.add(ForAll ([e_i,g_j,e_j], Implies(And(And(EventMatch(e_j, g_j),iMNext1(e_i,e_j)),Notmatch1(

e_i)),iMNext3(e_i,empty2,e_j,g_j))))

s.add(ForAll ([e_j,g_i,g_j], Implies(And(And(EventMatch(e_j, g_j),iMNext2(g_i,g_j)),Notmatch2(

g_i)),iMNext3(empty1,g_i,e_j,g_j))))

#------------------------------------------------------------

#Matching axioms for Events in iConflict1 relation

#------------------------------------------------------------

s.add(ForAll ([e_i,g_i,e_j,g_j], Implies(And(And(iConflict1(e_i, e_j),iConflict2(g_i,g_j)),

EventMatch(e_i, g_i),EventMatch(e_j, g_j)),iConflict3(e_i,g_i,e_j,g_j))))

s.add(ForAll ([e_i,g_i,e_j,g_j], Implies (And(And(And(iConflict1(e_i, e_j),iConflict2(g_i,g_j)

),Notmatch1(e_i),Notmatch2(g_i)),Notmatch1(e_j),Notmatch2(g_j)),And(iConflict3(e_i,empty2,

e_j,empty2),iConflict3(empty1,g_i,empty1,g_j)))))

s.add(ForAll ([e_i,g_i,e_j], Implies(And(And(EventMatch(e_i,g_i),iConflict1(e_i,e_j)),

Notmatch1(e_j)),iConflict3(e_i,g_i,e_j,empty2))))

s.add(ForAll ([e_i,g_i,g_j], Implies(And(And(EventMatch(e_i,g_i),iConflict2(g_i,g_j)),

Notmatch2(g_j)),iConflict3(e_i,g_i,empty1,g_j))))

s.add(ForAll ([e_i,g_j,e_j], Implies(And(And(EventMatch(e_j, g_j),iConflict1(e_i,e_j)),

Notmatch1(e_i)),iConflict3(e_i,empty2,e_j,g_j))))

s.add(ForAll ([e_j,g_i,g_j], Implies(And(And(EventMatch(e_j, g_j),iConflict2(g_i,g_j)),

Notmatch2(g_i)),iConflict3(empty1,g_i,e_j,g_j))))

#--------------------------------

#general order between events

#--------------------------------

s.add(iMNext2(Advice_e1,Advice_e2))

s.add(iMNext2(Advice_e2,Advice_e3))

s.add(iMNext2(Advice_e3,Advice_e5))

s.add(iMNext2(Advice_e3,Advice_e6))

#==========================

s.add(iMNext2(Advice_g1,Advice_g2))

s.add(iMNext2(Advice_g2,Advice_g3))

s.add(iMNext2(Advice_g3,Advice_g4))

s.add(iMNext2(Advice_g4,Advice_g6))

s.add(iMNext2(Advice_g6,Advice_g7))

s.add(iMNext2(Advice_g7,Advice_g8))

s.add(iMNext2(Advice_g4,Advice_g9))

s.add(iMNext2(Advice_g9,Advice_g10))

#==========================

s.add(iMNext2(Advice_l1,Advice_l3))

s.add(iMNext2(Advice_l3,Advice_l4))

s.add(iMNext2(Advice_l1,Advice_l5))

s.add(iConflict2(Advice_e5,Advice_e6))

s.add(iConflict2(Advice_g6,Advice_g9))
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s.add(iConflict2(Advice_l3,Advice_l5))

#==========================

#==========================

s.add(iMNext1(Base_e1,Base_e2))

s.add(iMNext1(Base_e2,Base_e3))

s.add(iMNext1(Base_e3,Base_e5))

s.add(iMNext1(Base_e5,Base_e6))

s.add(iMNext1(Base_e6,Base_e7))

s.add(iMNext1(Base_e7,Base_e101))

s.add(iMNext1(Base_e3,Base_e8))

s.add(iMNext1(Base_e8,Base_e102))

s.add(iMNext1(Base_g1,Base_g2))

s.add(iMNext1(Base_g2,Base_g3))

s.add(iMNext1(Base_g3,Base_g4))

s.add(iMNext1(Base_g4,Base_g5))

s.add(iMNext1(Base_g5,Base_g7))

s.add(iMNext1(Base_g5,Base_g10))

s.add(iMNext1(Base_g7,Base_g8))

s.add(iMNext1(Base_g8,Base_g9))

s.add(iMNext1(Base_g9,Base_g121))

s.add(iMNext1(Base_g10,Base_g122))

s.add(iMNext1(Base_l1,Base_l2))

s.add(iConflict1(Base_e5,Base_e8))

s.add(iConflict1(Base_g7,Base_g10))

#==========================

# assigning messages with its events

#==========================

s.add(isMsg2(Advice_g1,Advice_ValidPin,Advice_e1))

s.add(isMsg2(Advice_g2,Advice_EnterFuelAmount,Advice_e2))

s.add(isMsg2(Advice_e3,Advice_FuelAmount,Advice_g3))

s.add(isMsg2(Advice_g4,Advice_CheckAmount,Advice_l1))

s.add(isMsg2(Advice_g8,Advice_StartFuel,Advice_e5))

s.add(isMsg2(Advice_g10,Advice_PaymentDeclined,Advice_e6))

s.add(isMsg2(Advice_l4,Advice_Withdrew,Advice_g7))

s.add(isMsg2(Advice_l3,Advice_BalanceOk,Advice_g6))

s.add(isMsg2(Advice_l5,Advice_Cancel,Advice_g9))

#==========================

s.add(isMsg1(Base_e1,Base_InserCard,Base_g1))

s.add(isMsg1(Base_g2,Base_RequestPin,Base_e2))

s.add(isMsg1(Base_e3,Base_PinCode,Base_g3))

s.add(isMsg1(Base_g4,Base_Validate,Base_l1))

s.add(isMsg1(Base_l2,Base_Result,Base_g5))

s.add(isMsg1(Base_g7,Base_ValidPin,Base_e5))
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s.add(isMsg1(Base_g8,Base_StartFuel,Base_e6))

s.add(isMsg1(Base_e7,Base_Stop,Base_g9))

s.add(isMsg1(Base_g10,Base_InvalidPin,Base_e8))

s.add(isMsg1(Base_g121,Base_CardOut1,Base_e101))

s.add(isMsg1(Base_g122,Base_CardOut2,Base_e102))

#==========================

#assigning lifeline with its events

#==========================

s.add(cover2(Advice_User,Advice_e1))

s.add(cover2(Advice_User,Advice_e2))

s.add(cover2(Advice_User,Advice_e3))

s.add(cover2(Advice_User,Advice_e5))

s.add(cover2(Advice_User,Advice_e6))

s.add(cover2(Advice_PetrolStation,Advice_g1))

s.add(cover2(Advice_PetrolStation,Advice_g2))

s.add(cover2(Advice_PetrolStation,Advice_g3))

s.add(cover2(Advice_PetrolStation,Advice_g4))

s.add(cover2(Advice_PetrolStation,Advice_g6))

s.add(cover2(Advice_PetrolStation,Advice_g7))

s.add(cover2(Advice_PetrolStation,Advice_g8))

s.add(cover2(Advice_PetrolStation,Advice_g9))

s.add(cover2(Advice_PetrolStation,Advice_g10))

s.add(cover2(Advice_Bank,Advice_l1))

s.add(cover2(Advice_Bank,Advice_l3))

s.add(cover2(Advice_Bank,Advice_l4))

s.add(cover2(Advice_Bank,Advice_l5))

#--------------------------------

s.add(cover1(Base_User,Base_e1))

s.add(cover1(Base_User,Base_e2))

s.add(cover1(Base_User,Base_e3))

s.add(cover1(Base_User,Base_e5))

s.add(cover1(Base_User,Base_e6))

s.add(cover1(Base_User,Base_e7))

s.add(cover1(Base_User,Base_e8))

s.add(cover1(Base_User,Base_e101))

s.add(cover1(Base_User,Base_e102))

s.add(cover1(Base_PetrolStation,Base_g1))

s.add(cover1(Base_PetrolStation,Base_g2))

s.add(cover1(Base_PetrolStation,Base_g3))

s.add(cover1(Base_PetrolStation,Base_g4))

s.add(cover1(Base_PetrolStation,Base_g5))

s.add(cover1(Base_PetrolStation,Base_g7))

s.add(cover1(Base_PetrolStation,Base_g8))
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s.add(cover1(Base_PetrolStation,Base_g9))

s.add(cover1(Base_PetrolStation,Base_g10))

s.add(cover1(Base_PetrolStation,Base_g121))

s.add(cover1(Base_PetrolStation,Base_g122))

s.add(cover1(Base_Bank,Base_l1))

s.add(cover1(Base_Bank,Base_l2))

cover_info_event_message = {}

messageMatches = {}

allMessage1 = {}

allMessage2 = {}

#--------------------------------

# Process Message matches

# ==== START

assertions = s.assertions()

for ast in assertions:

if not "is_forall" in dir(ast) and str(ast.decl()) in ["isMsg1", "isMsg2"]:

cover_info_event_message[str(ast.arg(0))] = ast.arg(1)

cover_info_event_message[str(ast.arg(2))] = ast.arg(1)

if "1" in str(ast.arg(1).sort()):

allMessage1[str(ast.arg(1))] = ast.arg(1)

if "2" in str(ast.arg(1).sort()):

allMessage2[str(ast.arg(1))] = ast.arg(1)

for (x,y) in matches:

oldx = x

oldy = y

x1 = cover_info_event_message[str(oldx)]

y1 = cover_info_event_message[str(oldy)]

pair11 = (str(x1), str(y1))

pair12 = (str(y1), str(x1))

messageMatches[str(pair11)] = True

messageMatches[str(pair12)] = True

allMessagePairs = mklist(allMessage1, allMessage2)

messageMatched = {}

for (x, y) in allMessagePairs:

x = allMessage1[x]

y = allMessage2[y]

if str(x) == str(y): continue

if str((str(x), str(y))) in messageMatches:

s.add(MessageMatch(x, y))

s.add(MessagePresent(x, y))

messageMatched[str(x)]=True
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messageMatched[str(y)]=True

else:

s.add(Not(MessagePresent(x, y)))

for l in allMessage1:

if not str(l) in messageMatched:

s.add(MessagePresent(allMessage1[l], empty6))

s.add(MessageNotmatch1(allMessage1[l]))

else:

s.add(Not(MessageNotmatch1(allMessage1[l])))

for l in allMessage2:

if not str(l) in messageMatched:

s.add(MessagePresent(empty5, allMessage2[l]))

s.add(MessageNotmatch2(allMessage2[l]))

else:

s.add(Not(MessageNotmatch2(allMessage2[l])))

# ==== END

cover_info_event_lineline = {}

lifelineMatches = {}

allLifelines1 = {}

allLifelines2 = {}

#--------------------------------

# Process lifeline matches

# ==== START

assertions = s.assertions()

for ast in assertions:

if not "is_forall" in dir(ast) and str(ast.decl()) in ["cover1", "cover2"]:

cover_info_event_lineline[str(ast.arg(1))] = ast.arg(0)

if "1" in str(ast.arg(0).sort()):

allLifelines1[str(ast.arg(0))] = ast.arg(0)

if "2" in str(ast.arg(0).sort()):

allLifelines2[str(ast.arg(0))] = ast.arg(0)

for (x,y) in matches:

oldx = x

oldy = y

x = cover_info_event_lineline[str(x)]

y = cover_info_event_lineline[str(y)]

pair1 = (str(x), str(y))

pair2 = (str(y), str(x))

lifelineMatches[str(pair1)] = True

lifelineMatches[str(pair2)] = True

allLifelinePairs = mklist(allLifelines1, allLifelines2)

lifelineMatched = {}
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for (x, y) in allLifelinePairs:

x = allLifelines1[x]

y = allLifelines2[y]

if str(x) == str(y): continue

if str((str(x), str(y))) in lifelineMatches:

s.add(LifelineMatch(x, y))

s.add(LifelinePresent(x, y))

lifelineMatched[str(x)]=True

lifelineMatched[str(y)]=True

else:

s.add(Not(LifelineMatch(x, y)))

s.add(Not(LifelinePresent(x, y)))

for l in allLifelines1:

if not str(l) in lifelineMatched:

s.add(LifelineNotmatch1(allLifelines1[l]))

s.add(LifelinePresent(allLifelines1[l], empty4))

else:

s.add(Not(LifelineNotmatch1(allLifelines1[l])))

s.add(Not(LifelinePresent(allLifelines1[l], empty4)))

for l in allLifelines2:

if not str(l) in lifelineMatched:

s.add(LifelineNotmatch2(allLifelines2[l]))

s.add(LifelinePresent(empty3, allLifelines2[l]))

else:

s.add(Not(LifelineNotmatch2(allLifelines2[l])))

s.add(Not(LifelinePresent(empty3, allLifelines2[l])))

# ==== END

addPairs(s, present, EventMatch, empty1, empty2, list_e, list_g, matches)

#--------------------------------

#Pointcut

#==========================

# Message Match (Base_ValidPin, Advice_ValidPin))

# Message Match (Base_StartFuel, Advice_StartFuel))

s.add (LifelineMatch (Base_Bank, Advice_Bank))

matches = [(Base_e5,Advice_e1),(Base_e6,Advice_e5),(Base_g7,Advice_g1),(Base_g8,Advice_g8)]

print (s.check())
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[10] João Araújo and Jon Whittle. Aspect-oriented compositions for dynamic behavior mod-

els. In Aspect-Oriented Requirements Engineering, pages 45–60. 2013.
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