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Abstract

Cryptosystems rely on the assumption that the computer end-points can securely

store and use cryptographic keys. Yet, this assumption is rather hard to justify

in practice. New software vulnerabilities are discovered every day, and malware is

pervasive on mobile devices and desktop PCs.

This thesis provides research on how to mitigate private key compromise in three

different cases. The first case considers compromised signing keys of certificate au-

thorities in public key infrastructure. To address this problem, we analyse and

evaluate existing prominent certificate management systems, and propose a new

system called Distributed and Transparent Key Infrastructure, which is secure even

if all service providers collude together.

The second case considers the key compromise in secure communication. We de-

velop a simple approach that either guarantees the confidentiality of messages sent

to a device even if the device was previously compromised, or allows the user to de-

tect that confidentiality failed. We propose a multi-device messaging protocol that

exploits our concept to allow users to detect unauthorised usage of their device keys.

The third case considers the key compromise in secret distribution. We develop

a self-healing system, which provides a proactive security guarantee: an attacker

can learn a secret only if s/he can compromise all servers simultaneously in a short

period.
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CHAPTER 1

INTRODUCTION

Key management is the hardest part of

cryptography and often the Achilles heel of

an otherwise secure system.

Bruce Schneier [Sch96, Chapter 8].

Alice wants to communicate with Bob securely. Depending on what they want

to do, e.g. to process on-line payment or to exchange private messages, they use

different cryptographic protocols. Unfortunately, even if the protocol they use is

secure, an attacker might still be able to learn the private communication between

Alice and Bob by attacking the security assumption about secure key management.

In fact, most attacks in practice are aimed at key management of cryptosystems

rather than the cryptographic algorithms. So, successful key management is critical

to the security of cryptosystems.

Key management mainly deals with the key generation, distribution, and stor-

age. The attacks on key management are mainly trying to (A) compromise the

authenticity of public keys; and (B) make unauthorised uses of private keys.

This thesis presents research on the solutions defending against the above attacks,

with a focus on the following three cases.

Case 1 In public key cryptography, the authenticity of public keys is mainly as-

sured by certificate authorities (CAs). If a CA is compromised, then the

authenticity of public keys cannot be guaranteed. The first case considers

how to provide authenticity of public keys when CAs are compromised by

an attacker.

2



1.1. Key compromise in web PKI 3

Case 2 In the presence of software bugs and malware, an attacker might be able to

learn a victim’s private keys by attacking the victim’s devices. If all private

keys are obtained by the attacker, then the security of associated systems is

broken. The second case considers how to mitigate the damage caused by

compromised private keys, with an application to secure messaging.

Case 3 In secret distribution schemes, a secret is distributed to a set of servers in

the way that reconstructing the secret requires a sufficient number of servers

to work together. If an attacker is able to gradually compromise a sufficient

number of servers, then the attacker will be able to reconstruct all distributed

secrets. The third case considers how to provide a better security guarantee

against such an attacker.

1.1 Key compromise in web PKI

Public key cryptography is widely used in network protocols to secure communi-

cations. To ensure security, it is important to use the correct public keys of the

communication parties. For example, suppose a user wishes to log in to her bank

account through her web browser. The web session will be secured by the public

key of the bank through the TLS protocol [DR08, TP11]. If the user’s web browser

accepts an inauthentic public key for the bank, then the traffic (including log-in

credentials) can be intercepted and manipulated by an attacker.

The authenticity of keys is assured at present by certificate authorities (CAs).

In the given example, the browser is presented with a public key certificate for the

bank, which is intended to be unforgeable evidence that the given public key is the

correct one for the bank. A public key certificate is a digital document declaring that

the recorded subject owns the public key presented in the certificate. It contains a

public key, the identity of the key owner, and a signature of an entity that has verified

the certificate’s contents are correct. In a typical web PKI scheme, the signer is a

trusted party called certificate authority (CA), usually a company (e.g. VeriSign

and Comodo) which charges customers to issue certificates for them. The user’s

browser is pre-configured to accept certificates from certain known CAs. A typical

installation of Firefox has about 100 root certificates in its database. Each root CA
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can empower many intermediate CAs. The EFF SSL observatory has observed more

than 1500 CAs [The].

Unfortunately, the CA model is broken. The main weakness of the CA model is

that CAs must be assumed to be trustworthy. If a CA is dishonest or compromised,

then the CA’s private key may be misused to issue certificates asserting the authen-

ticity of fake keys; those keys could be created by an attacker or by the CA itself.

In practice, the assumption of honesty does not scale up very well. As already men-

tioned, a browser typically has hundreds of CAs registered in it, and the user cannot

be expected to have evaluated the trustworthiness and security of all of them. This

fact has been exploited by attackers [Eck11, Ley12, MS0, Rob11, Ste11, FMC11]. In

2011, two CAs were compromised: Comodo [App11] and DigiNotar [Bla12]. In both

cases, certificates for high-profile sites were illegitimately obtained (e.g. Google,

Yahoo, Skype, etc.). In the second case, these certificates reportedly used in a man

in the middle (MITM) attack [Art11].

Another problem with the CA model is the certificate revocation management.

When a mis-issued certificate is detected, or when a private key associated to

a genuine certificate is lost or compromised, then this certificate should be re-

voked immediately. The CA model itself does not provide any effective way for

managing certificate revocation. In common practice, Certificate Revocation Lists

(CRL) [CSF+08, Riv98, Lan12], On-line Certificate Status Protocol (OCSP), and

certificate revocation trees [Koc98, NN98, LK12] are used to handle certificate revo-

cation. In order to remove the need for on-the-fly revocation checking, they mostly

involve periodically pushing revocation lists to browsers. However, such solutions

create a window during which the browser’s revocation lists are out of date until the

next push.

Assuming an attacker is able to obtain a copy of CAs’ private keys, Case 1

considers how to securely manage public key certificate issuance and revocation.

1.2 Key compromise in secure communication

Encryption is the main mechanism used to protect the confidentiality of messages

sent between computers. It relies on the assumption that the computer end-points

can securely store and use cryptographic keys. If this assumption does not hold,
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then encryption does not guarantee confidentiality. Yet, this assumption is rather

hard to justify in practice. New software vulnerabilities [CVE] are discovered ev-

ery day, and malware is pervasive on mobile devices such as phones and tablets

[FFC+11] as well as on traditional platforms like desktop PCs. Although the se-

curity architecture of mobile devices running Android and iOS is an improvement

over the PC security architecture, thanks to better security sandboxing of apps that

limits attacks spreading between apps, it does not seem likely that completely secure

platforms will be built soon.

Assuming an attacker is able to obtain a copy of private keys of a user or a

server, Case 2 considers how to reduce the damage caused from compromised keys

by detecting unauthorised usage of private keys.

1.3 Key compromise in secret distribution

Secret distribution is a concept for distributing a secret amongst a group of servers.

It enables a secret owner to distribute his secrets to many servers and reconstruct

them when needed. One way to achieve it is using secret sharing schemes. A secret

sharing scheme allows a user to split a secret into shares, so that each share is held by

a server. Then, when the user wants to retrieve the secret, the servers can combine

their shares to recover the data. Unfortunately, if the servers become compromised

(say by malware) one by one over a long period, then an attacker would eventually

be able to compromise sufficiently many servers, and use the accumulated shares to

reconstruct the secrets.

Assuming an attacker is able to gradually obtain a copy of all secrets of servers

over a long time period, Case 3 considers how to protect the confidentiality of

distributed secrets.
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1.4 Aims and Contributions

Aims

The aim of this thesis is providing potential solutions to the above identified prob-

lems. The main research objectives are:

• to identify and define adversary models and security goals for each of the above

problems;

• to design cryptosystems to achieve our defined security goals;

• to formally verify the security of proposed solutions.

Contributions

The contributions to each of the three cases are listed as follows:

Case 1 • We identify new properties for web certificate management, and pro-

vide a critical analysis on the existing web PKI alternatives. In par-

ticular, we classify 15 prominent proposals into four categories, and

provide a qualitative analysis on selected proposals based on 16 iden-

tified criteria. (See Chapter 3.)

• We propose a new system for managing web certificates, called Dis-

tributed Transparent Key Infrastructure (DTKI). It prevents attacks

that use mis-issued certificates, provides a transparent way for certifi-

cate management, verifies output from trusted parties, and is secure

even if all service providers collude together. In addition, we provide

an evaluation on its performance, a comparison between the proposed

system and its predecessors, and discussions on variety of concerns

related to DTKI. (See Chapter 4.)

• We provide formal machine-checked verification of the core security

property of DTKI by using the Tamarin prover [MSCB13]. Loosely

speaking, the core security property guarantees that if the required

(crowd-sourced) checkings have been successfully verified, and domain

owners have successfully verified their initial certificate, then DTKI
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can prevent attacks from an adversary with compromised keys from

trusted parties. Otherwise, DTKI enables users to detect attacks af-

terwards. (See Chapter 4.)

Case 2 • Our first contribution to Case 2 develops the idea of malware dam-

age detection and containment. This recognises that no architecture

is immune from software vulnerabilities and consequent malware, and

therefore it is useful to find new ways of limiting the impact that they

have. We complement traditional software mitigation techniques (such

as sandboxing and privilege limitation) by enabling a victim to detect

that private keys have been compromised. To make this precise, we

develop an attacker model in which platforms are periodically com-

promised. That means that they can be compromised by an attacker

at any time, but we assume that the victim periodically takes steps

to remove malware and eliminate vulnerabilities. Unfortunately, the

compromise could have revealed long-term keys. We thus propose se-

curity goals that aim to detect the subsequent usage of such keys by

the attacker. (See Chapter 5.)

• Second, we propose an approach for a messaging application to trans-

parently manage ephemeral encryption/decryption keys. This ap-

proach is simple but effective. It detects subsequent usage of com-

promised long-term keys by the attacker, while avoiding the use of

expensive and inconvenient manual process for re-authenticating and

distributing keys through the underlying PKIs (e.g. applying for a

new certificate from a CA), unless attacks are detected.

We call this approach “key usage detection” (KUD), and we develop

two protocols for it. The first is a basic protocol that makes strong

assumptions about the participants being simultaneously on-line, and

serves mostly to explain the concepts. The second protocol is a more

fully developed messaging application, supporting multiple devices per

user and allowing the receiver to be offline at the time the sender sends

a message. (See Chapter 5.)

• Our third contribution to Case 2 is the security analysis, which shows
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that the protocols satisfy precise properties expressing software dam-

age containment. Informally, if an attacker controlled device has been

recovered from a compromised state to a secure state, then our system

can either guarantee the confidentiality of the communications during

the secure state; or automatically detect the fact that the long term

key is compromised and has been used by an attacker, and therefore

the victim will be prompted to manually revoke the key and generate a

new one. We use the Tamarin prover to prove several key properties

of our protocol. (See Chapter 5.)

Case 3 • We introduce a scheme based on bilinear pairings for distributed cloud

storage, which we call “self-healing” distributed storage. It satisfies a

list of requirements that is necessary for secure secret distribution. It is

also optimal in round communication between a client and servers, i.e.

it requires only one round communication per-server in both phases for

data distribution and for data reconstruction, and does not require any

client involvement for the periodic update. In addition, it requires only

two exponentiation operations on the client side for data encryption

or reconstruction, and provides a proactively secure channel. One

notable feature of the system is that even though the service secrets

change in each time period, the public key to be known by data owners

remains constant. This feature could be used as a building block that

allows us to tackle a more general server authentication issue, where

the servers are compromisable cross time periods. (See Chapter 6.)

• We formalise a security model for this kind of “self-healing” system.

Since there might be robust malware that cannot be removed from a

server, our security model allows the adversary to permanently com-

promise servers. We provide a rigorous formal security proof of the

proposed system under the defined security model. Our proof also

shows that the proposed scheme provides IND-CCA2 security (See

Chapter 6.)

• To the best of our knowledge, the proposed system is the first secure

self-healing distributed storage, with formal security model and proof.
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(See Chapter 6.)

1.5 Thesis structure

We proceed this thesis in the following way. After introducing the background in

Chapter 2, we present our main work in three parts, namely Part II, Part III, and

Part IV.

Part II presents our solutions to Case 1, by first evaluating the existing PKI sys-

tems in Chapter 3, and proposing our system with formal security proof in Chapter 4.

Chapter 3 identifies desired features and security concerns of web certificate manage-

ment systems, classifies the existing proposals for certificate management into four

categories, and evaluates these proposals and concludes the observed characters of

different categories. Chapter 4 proposes a new system for certificate management,

called DTKI, with formal security analysis, performance evaluation, and a compar-

ison with its predecessors. The full code required to understand and reproduce our

security analysis is presented in Appendix A. In particular, the code also includes

the complete DTKI models.

Part III presents our solutions to Case 2. It, in Chapter 5, formalises the asso-

ciated security model, and details our basic key usage detection (KUD) approach

with a more fully developed messaging application. A formal security proof and

performance evaluations of the messaging application are also presented in the same

chapter. Similar to the previous part, the code required to understand and reproduce

our security analysis of the KUD messaging application is presented in Appendix B.

Part IV presents our solutions to Case 3 in Chapter 6. Before proposing our

self-healing scheme for distributed storage, it first formalises a security model for

such systems. After introducing our scheme in great detail, we formally prove the

security of the proposed scheme under the defined security model.

Finally, Part V concludes the thesis.



CHAPTER 2

BACKGROUND

This chapter introduces related background knowledge. It first presents some crypto

preliminaries, and then introduces Tamarin prover — a tool for automatic security

protocol verification.

2.1 Crypto preliminaries

The following problems are assumed hard in cryptography.

2.1.1 Discrete Logarithm Problem

The discrete logarithm problem is a significant element in cryptology, and is the

root of many cryptographic security assumptions. Let G be a cyclic group of order

p, and g be a generator of G.

Definition 2.1 (Discrete Logarithm (DL) Problem). Given (g,X) such that X = gx

for some random x ∈ Z∗
p, the discrete logarithm problem is to compute x.

2.1.2 Diffie-Hellman Problem

The Diffie-Hellman problem was proposed by Diffie and Hellman in 1976 [DH76].

Definition 2.2 (Diffie-Hellman Problem). Given (g, ga, gb) for some random a, b ∈
Z∗

p, the computational Diffie-Hellman problem is to compute gab.

There are several versions of this problem. We normally refer the Diffie-Hellman

problem as computational Diffie-Hellman (CDH) problem. The decisional version

of the CDH problem [Bon98] is defined as follows.

10
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Definition 2.3 (Decisional Diffie-Hellman (DDH) Problem). Given (g, ga, gb, Q)

for some random a, b ∈ Z∗
p and Q ∈ G, the decisional Diffie-Hellman problem is to

distinguish between Q = gab and Q random.

Another related problem is called “q-Diffie-Hellman inversion (DHI) problem”

[BB04a], defined as follows.

Definition 2.4 (q-Diffie-Hellman Inversion (DHI) Problem). Given (g, gx, gx
2
, . . . ,

gx
q
) ∈ (G)q+1, for x random the q-Diffie-Hellman inversion problem is to compute

g1/x.

2.1.3 Bilinear paring

We first define a bilinear map, as follows.

Definition 2.5 (Bilinear Map). Let G1, Ĝ1 be two cyclic groups of a sufficiently large

prime order p. A map e : G1×Ĝ1 → G2 is said to be bilinear if e(ga, hb) = e(g, h)ab is

efficiently computable for all g ∈ G1, h ∈ Ĝ1 and a, b ∈ Z∗
p; and e is non-degenerate,

i.e. e(g, h) ̸= 1.

In the above definition, when G1 = Ĝ1, the pairing is called symmetric. Let

e : G1 × G1 → G2 be a bilinear map, and g be a generator of G1 whose order

is p. We define the bilinear Diffie-Hellman (BDH) problem [BF03], the decisional

bilinear Diffie-Hellman (DBDH) problem [Jou02], and the q-decisional bilinear Diffie-

Hellman inversion (q-DBDHI) problem [BB04b], as follows.

Definition 2.6 (Bilinear Diffie-Hellman (BDH) Problem). Given (g, ga, gb, gc) for

some random a, b, c ∈ Z∗
p, the bilinear Diffie-Hellman problem is to compute e(g, g)abc.

Definition 2.7 (Decisional Bilinear Diffie-Hellman (DBDH) Problem). Given (g, ga,

gb, gc, Q) for some random a, b, c ∈ Z∗
p and Q ∈ G2, the decisional bilinear Diffie-

Hellman problem is to distinguish between Q = e(g, g)abc and Q random.

The q-Decisional Bilinear Diffie-Hellman Inversion (q-DBDHI) problem was first

used by Boneh and Boyen [BB04b], and proved to be difficult in the generic group

mode by Dodis and Yampolskiy [DY05].

Definition 2.8 (q-DBDHI Problem). Given (g, gx, gx
2
, . . . , gx

q
) ∈ (G1)

q+1 and Q ∈
G2, the q-DBDHI problem is to distinguish between Q = e(g, g)1/x and Q random.
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2.1.4 Secret sharing

Secret sharing is a protocol for distributing a secret amongst a group of participants.

Each of the participants will obtain a share of the secret, in the way that the secret

can only be reconstructed when at least a sufficient number of shares are combined

together. The smallest sufficient number is called a “threshold” of the system. If

the size of the group is n and the threshold is t, then such a system is called (t, n)-

threshold secret sharing scheme.

The Shamir secret sharing scheme [Sha79] is one of the classic secret sharing

schemes. The main idea of Shamir secret sharing scheme is derived from the polyno-

mial interpolation. For example, one needs at least two points to define a line. So, if

the line is a secret, and points on the line are the shares, then it is a (2, n)-threshold

secret sharing scheme. Similarly, t points are sufficient to define a polynomial of

degree t − 1. Thus, it can be applied to obtain a (t, n)-threshold secret sharing

scheme.

Let Fq be a finite field of order q, such that q is a prime power and q > n. The

(t− n)-Shamir secret sharing is explained as follows.

Distributing a secret The secret s can be distributed as follows:

• choose a random polynomial f ∈ Fp of degree t− 1 < n, such that f(0) = s ∈
Fp;

• generates shares for each of the participants, such that the ith-share for the

ith-participant is (i, f(i)), where i ∈ {1, 2, . . . , n}, and

f(i) = s+
t−1∑
j=1

cj · ij mod p

where all cj ∈ Fp are random coefficients.

Reconstructing a secret Given any t out of n shares, let’s say (i, f(i)) for i ∈
{1, 2, . . . , t}. The secret s can be recovered as follows:

• reconstructs the polynomial f by applying Lagrange interpolation to the re-

ceived shares, such that
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f(x) =
t∑

i=1

f(i)
t∏

j=1,j ̸=i

x− j

i− j
mod p

• recovers the secret by computing f(0) mod q, such that

f(0) =
t∑

i=1

f(i)
t∏

j=1,j ̸=i

−j

i− j
mod p

2.1.5 Knowledge Proof

The proof of knowledge is a protocol enabling a prover to convince a verifier that

the prover knows some secrets without showing the secrets to the verifier. Zero-

knowledge proof enables a prover to convince a verifier the truth of an assertion,

without revealing anything but the validity of proof. If a proof of knowledge is also a

zero knowledge proof, then it is called a zero-knowledge proof of knowledge (ZKPK).

The Schnorr identification protocol [Sch89] is one of the simplest and frequently used

honest verifier zero-knowledge proof of knowledge.

Let G be a cyclic group of order p, and g ∈ Z∗
p be a generator of G. The prover’s

goal is to prove that y = gx for some x. The Schnorr identification protocol is

described as follows:

• The prover generates a random number r ∈ Z∗
p, commits to r by sending

a = gr to the verifier;

• The verifier generates a challenge c ∈ Z∗
p and sends it to the prover;

• The prover computes the proof t = r + cx mod p;

• The verifier verifies the proof by checking whether gt = ayc or not. If gt = ayc,

then the proof is valid. Otherwise, the proof is invalid.

The above interactive honest verifier ZKPK can be transferred to a non-interactive

version through a Fiat-Shamir transformation [FS86]. To do so, rather than asking

the verifier to generate a challenge c, the prover computes c = h(m, a), where h

is a secure cryptographic hash function, and m is the message contains g, y, the



2.2. Tamarin Prover 14

prover’s identity, and possibly some other information. So, a verifier can recompute

c and verifies the proof in the same way. The Schnorr signature scheme is one of its

application, where m is the to be signed message.

Another proof of knowledge related to this thesis is the Chaum-Pedersen proto-

col [CP92]. It is a protocol for proving the equality of two discrete logarithms. The

application of which in our thesis is to prove that (g, gx, gy, gxy) is a DDH tuple.

Let G be a cyclic group of order p, and g be a generator of G. The prover’s aim

is to prove that (g, y, w, u) is a DDH tuple, such that (g, y, w, u) = (g, gx, gr, grx).

We describe the Chaum-Pedersen honest verifier ZK protocol as follows.

• The prover generates a random s ∈ Z∗
p, and sends (a = gs, b = ws) to the

verifier;

• The verifier generates a random challenge c ∈ Z∗
p, and sends it to the prover;

• The prover calculates the proof t = s+ cx mod p and sends the proof to the

verifier;

• The verifier verifies the proof. If gt = ayc and wt = buc, then the proof is

valid. Otherwise, the proof is invalid.

To make the above proof non-interactive, rather than letting the verifier to gen-

erate a challenge c, the prover can generate c = h(w, u, a, b). The proof (c, t) is valid

if c = h(w, u, gt

yc
, w

t

uc ). Otherwise, the proof is invalid.

2.2 Tamarin Prover

Tamarin prover is a symbolic security protocol verification tool. It supports an un-

bounded number of instances, and supports reasoning about protocols with mutable

global state. The adversary in Tamarin prover is in Dolev-Yao model, i.e. it car-

ries the message exchanged in the protocol. With Tamarin prover, cryptographic

functions are assumed to be secure.

In Tamarin prover, protocols and adversary models are specified using multi-

set rewriting rules on the multiset that models the state of the protocol. Security
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properties are expressed in a guarded fragment of first order logic that allows quan-

tification over timepoints.

A multiset is a generalisation of set, allows multiple instances of elements in the

multiset. An element contained in the multiset is called a “fact”, which is a ground

message, or a message derived from a ground message according to the rules. A

fact is of the form F(t1, . . . , tk), where F is the fact symbol, and (t1, . . . , tk) are k

terms for some k. A fact is either linear or persistent. A linear fact can only be

consumed once, whereas a persistent fact can be consumed arbitrarily. There are

some reserved facts. A persistent fact K(m) denotes that the adversary has the

knowledge of m. Linear facts In(m) and Out(m) denote that message m is sent

or received by the protocol, respectively. A linear fact Fr(n) denotes that a name

n is freshly and randomly generated. A fresh generated name is unknown to the

attacker.

A rule, denoted [l]− [a] → [r], is a sequences of facts, where the set l of facts is

called premises, the set a of facts is called actions, and the set r of facts is called

conclusions. Rules can only be applied if all the premises are in the multiset. A rule

application can rewrite its premises, and can introduce new facts.

In Tamarin prover, a theory specifies a security protocol together with its secu-

rity properties; a lemma is a rule to specify only security properties; and an axiom

is a rule to specify an assumption of the protocol. Since Tamarin’s property speci-

fication language is a fragment of first-order logic, it contains logical connectives (|,

&, ==>, not, ...) and quantifiers (All, Ex). The #-prefix is used to denote timepoints,

and “E @ #i” expresses that the event E occurs at timepoint i.

Tamarin prover is capable of automatic verification in many cases, and it also

supports interactive verification by manual traversal of the proof tree. If the tool

terminates without finding a proof, it returns a counter-example. Counter-examples

are given as so-called dependency graphs, which are partially ordered sets of rule in-

stances that represent a set of executions violating the specified properties. Counter-

examples can be used to refine the model, and give feedback to the implementer and

designer.



Part II

Key compromise in web PKI
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CHAPTER 3

EVALUATING WEB PKIS

3.1 Introduction

Certificate authorities serve as trusted parties to help secure web communications.

They verify the identity of domains, and issue certificates declaring that the binding

between a domain name and a public key is correct. Web browsers accept such

a binding if the associated certificate is valid and issued by a certificate authority.

Unfortunately, recent attacks using mis-issued certificates show this model is severely

broken. Much research has been done to enhance web certificate management.

However, none of it has been widely adopted yet, and it is hard to judge which one

is the winner.

To analyse the existing issues and evaluate existing proposals, Clark and Van

Oorschot [CvO13] have presented an analysis on TLS mechanism and issues, by

concerning themselves with crypto weakness and implementation issues of HTTPS,

and trust issues of certificate management. However, they left the log-based cer-

tificate management systems out of the analysis. The use of public logs is now the

dominant trend in managing web certificates. The main idea of log-based certificate

management systems is to make certificate management transparent by using public

audit-able logs to record all issued certificates. Clients will only accept a certificate

if it is recorded in the log. Site owners can compare their own local record with the

log to check whether a mis-issued certificate has been recorded in the log. This gives

the site owners the ability to verify issued certificates for their sites, and make the

certificate management transparent.

Kim et al. [KHP+13] have presented a comparison of web certificate management

mainly based on the duration of compromise and duration of unavailability. The

17
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former shows, given the compromise of a domain’s private key, how long the domain

can be impersonated; and the later concerns the unavailability time period of a

domain’s certificate in a system.

The above two works are broad and they evaluate web certificate management

systems from different perspectives. However, some important aspects are not con-

sidered in the existing work. For example, offline verification is one of the desired

properties that have been left out from the above analyses. This property ensures

that internet users can verify a received certificate without having to communicate

with other parties. This is extremely useful when a user needs to connect from a

captive portal in an airport or in a hotel, since the user’s device cannot make other

connections before they paid for the internet connection. In addition, this property

also reduces the communication cost for certificate verification, as the verifier is not

required to have extra connections for verifying a certificate.

Another important property not considered by the existing works is trust agility

[Mar11] — it allows users to freely make decisions on which certificate management

service provider they wish to trust, for establishing secure communications with

domain servers. In particular, we discovered a new aspect of trust agility, namely

independence of trust. It requires that one or more service providers cannot not

influence another service provider’s services. It is in particular useful in the scenario

where there exists a set of service providers, and users need to put their trust in

a subset of these service providers for certificate management. If a system does

not offer this feature, then it means that even if the set of service providers chosen

by a user is trustworthy, a malicious service provider that is not trusted by the

user can still influence the certificate verification result, and put the user in the

risk of accepting fake certificates. Since the independence of trust is more strict,

it is possible that a system offers the generic trust agility, but it does not offer

independence of trust. In this case, users are free to make their trust decisions,

but servers that are not trusted by the user are still able to affect the certificate

management services delivered to the user.

In addition, we observed the problem of oligopoly, which has not been consid-

ered before. The present-day certificate authority model requires that the set of

global certificate authorities is fixed and known to every browser, which implies an
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oligopoly. Currently, the majority of CAs in browsers are organisations based in

the USA, and it is hard to become a browser-accepted CA because of the strong

trust assumption that it implies. This means that a Russian bank operating in

Russia and serving Russian citizens living in Russia has to use an American CA for

their public key. This cannot be considered satisfactory in the presence of mutual

distrust between nations regarding cybersecurity and citizen surveillance, and also

trade sanctions which may prevent the USA offering services (such as CA services)

to certain other countries.

To help research in securing the web certificate management, and to have a

better understanding on the problem, we classify prominent proposals into different

categories, and provide a qualitative analysis on selected proposals based on 15

criteria.

3.2 Desired Features and security concerns

To evaluate different systems in a systemic way, we list the desired features and

security concerns for web certificate management systems.

1. Trust

• Trust agility [Mar11] allows users to freely decide which entities they want

to trust for confirming public key information of domain servers, and to

revise their decision at any time.

In particular, we observed one aspect of the trust agility that has not been

discovered in the literature, namely the independence of trust. It requires

that the trust relations between service providers will not influence the

trust relations between clients and the service providers they trust. In

other words, one or more service providers cannot not influence another

service provider’s service to its clients.

• Free of trusted parties is the property says that no party is required to

be trusted for certificate issuance and revocation. This is the strongest

one in all trust-related features.
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• Verifiable trusted parties is the property says that the behaviour of trusted

parties is transparent to and can be efficiently verified by users.

• Anti-oligopoly is a new property we identified. It prevents the monopoly

or oligopoly of certificate management services.

To achieve anti-oligopoly, the trust on any service provider (e.g. CAs)

should be minimised, and the system should support self-issued certifi-

cates.

2. Availability

• Offline verification is a feature such that in a system, clients can verify

a given key or certificate without having to connect from other parties.

This feature is desired when a user needs to connect from a captive

portal— a login page or payment page — before using the internet. The

use of captive portal is very common in public places, for example, air-

ports or hotels. When a user is presented a captive portal, the user cannot

establish a connection with any party to check the obtained public key

as no internet is available. In addition, this feature also reduces the com-

munication cost and network latency, as it does not require additional

connections.

• Built-in key revocation requires the system to have its own mechanism to

effectively manage certificate revocation, rather than relaying on existing

revocation protocols (e.g. certificate revocation list (CRL) or on-line

certificate status protocol (OCSP)).

The current certificate revocation management protocols (e.g. CRL and

OCSP) have different limitations and cannot offer satisfactory services.

So it is necessary for systems to have an integrated revocation mechanism

to effectively manage certificate revocations.

• Scalability is the property enabling a system to handle increasing real

world workload. It is important that a system is capable to support

enrolment from existing and potential future HTTPS servers.

• Multiple certificate support says that the certificate verification system
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allows a domain to have multiple certificates. The fact that many sites

have multiple certificates emphasises the importance of this feature.

• Timely key verification says that the period from the time a domain

owner establishes a key and the time a user can verify the key is short.

This is a feature that has not been prominent in the literature. This

feature is useful when a domain server updates its certificates. A system

that does not offer this feature would cause the problem that the newly

issued certificate cannot be verified and will not be accepted by web

browsers within a short time period after the certificate issuance. This

reduces the availability.

3. Security

• First connection protection is the feature that protects the first connection

between two communication parties.

This is useful to prevent attacks on ’trust on first use’-based systems. In

addition, it is likely to be the first connection when a user connects from

a captive portal. So the system should protect users’ first connection to

a domain server.

• Denial of service (DoS) attack protection is the security guarantee that

prevents attacks on the key verification infrastructure in order to denial

the verification services.

This feature is useful to prevent attacks that attempt to block the veri-

fication servers to stop users verifying the received certificates.

• Use of mis-issued certificate prevention measures whether the system can

prevent MITM attacks launched by an attacker with mis-issued certifi-

cates. In other words, even if an attacker has obtained a mis-issued cer-

tificate, web browsers should still not accept this certificate. This gives

users extra security guarantee against compromised CAs.

• Use of mis-issued certificate detection measures whether the system pro-

vides features allowing one to detect MITM attacks launched by using

mis-issued certificates.
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This is a weaker security guarantee, as it can only detect attacks rather

than prevent attacks. However, CAs are business, and they are willing

to maintain their reputation to keep their customers. So they might not

launch attacks if their attacks will be detected. So this feature still offers

some sensible security guarantee.

• Provably secure measures if the security of a given system is formally

verified.

It is well-known that security protocols are notoriously difficult to get

right, and the only way to avoid this is with systematic verification.

4. Usability

• No user involvement is a feature related to usability, such that the key

verification result and the decision of accepting or rejecting a certificate

do not need the extra involvement of users.

This is an important feature to have, as users are not qualified to make

decisions on the browser warnings, and they will likely to click through

security warnings [AF13].

5. Privacy

• Protecting browsing history says that the system does not leak users

browsing history to other parties. In a PKI, if a user needs to ask another

party to verify a received certificate, then the user’s browsing activity is

leaked to the verification party, as the subject of the to be verified cer-

tificate would very likely to be the website that the user is going to visit.

3.3 Analysis of existing proposals

Several protocols are proposed to strengthen the current certificate management

system. According to the principles of each design, we classify leading certificate

management systems into three categories, namely difference observation, scope re-

striction, and certificate management transparency (shown in Table 3.1).
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Table 3.1: Existing prominent proposals

Category Existing Proposals

Classic CA-based certificate management system;

Difference observation
Perspectives (’08) [WAP08]; DoubleCheck (’09) [AK09];

Convergence (’11) [Mar11]; Certificate Patrol (’11) [Cer]; CertLock (’11) [SS11]; TACK (’12) [MP12].

Scope restriction Public key pinning (’11) [Lan11]; DANE (’11) [Bar11b];CAge (’13) [KWH13].

Certificate management transparency
Sovereign Keys (’12) [Eck12]; Certificate Transparency (’12) [LLK13];

AKI (’13) [KHP+13]; CIRT(’14) [Rya14]; ARPKI (’14) [BCK+14]

3.3.1 Classic CA model

CA-based certificate management system is the current deployed PKI. It is highly

usable and scalable. Unfortunately, it requires users to fully trust all certificate

authorities, and the trust cannot be modified without sacrificing users’ ability to

securely communicate with some domains securely. As a result, it does not provide

trust agility, implies an oligopoly (on CA), and cannot easily prevent nor detect

MITM attacks using mis-issued certificates.

3.3.2 Difference observation

Difference observation is a concept aiming to detect untrustworthy CAs, by enabling

a browser to verify if the received certificates are different from those that other

people are being offered [WAP08, AK09, Cer, SS11, Mar11].

Perspectives In 2008, Wendlandt, Andersen and Perrig implemented a Firefox

addon, called Perspectives [WAP08]. It is proposed to improve the security of trust-

on-first-use authentication by asking different observers (a.k.a. notary servers) to

detect inconsistent public keys of the same server. In Perspectives, observers are

decentralised and independent. Each observer stores all observed keys or certificates

with corresponding timestamps, and periodically checks updates and revocations.

When a client wants to make a secure connection with a domain server, the client

requests the server’s public key from the server and from multiple observers, then

compares the received keys. If the obtained public keys are consistent, the client
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considers the public key is trustworthy and uses this key to establish a secure connec-

tion. Otherwise, it might indicate that an attacker has launched man-in-the-middle

(MITM) attack by offering a different public key to the client. So the client needs

to make a decision on whether to use the obtained key or not.

• Strength

Perspectives makes MITM attacks using mis-issued certificates difficult to

launch without being detected, as an attacker would have to additionally inter-

cept all connections between observers and the victim. In addition, it provides

trust agility as users can choose which observer they want to use for certificate

verification. Moreover, since it supports self-signed certificates, and does not

require a fixed set of observers, it provides anti-oligopoly.

• Weakness

With Perspectives, if a server has multiple public keys or certificates, then

clients will likely get a warning of receiving inconsistent public keys. This is

due to the fact that a client might receive two different genuine certificates of

the same domain from the domain server and an observer. In addition, a new

public key or a new server will suffer an unavailability period in the system.

Since observers periodically check new public keys and revocations, the latest

information about new public keys and revocations will not be immediately

available from the observers. So, Perspectives does not offer timely key verifi-

cation. Also, when a browser receives the latest genuine one from the server,

and the revoked one from observers, then the browser will show a pop-up win-

dow warning the user that two different keys are observed, although what the

server provided is a valid certificate. Such faulty warnings reduce usability of

the system. Moreover, if two different certificates are detected, then the user

needs to make a decision on whether to continue the connection. However,

users are not qualified to make such a decision and they are likely to click

through the warnings [AF13]. Furthermore, any observer can learn a user’s

browsing history when the user requests verification on a certificate. Last,

it does not work when a user needs to connect from a captive portal, as no

internet is available for connecting to an observer.
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DoubleCheck In 2009, Alicherry and Keromytis [AK09] proposed DoubleCheck

to solve the issue of leaking user browsing history, and the issue that new keys

might suffer an unavailable period in Perspectives. The main idea is to query the

certificate from a target server twice: once through a TLS connection, and once

through Tor [DMS04].

• Strength

Compared to Perspectives, it additionally protects user browsing history, and

new keys does not suffer an unavailability period. Moreover, it can be deployed

without requiring any new infrastructure.

• Weakness

The use of Tor adds extra time cost (up to 15 seconds [SS11]) for each certifi-

cate verification. In addition, a use is likely to get a warning when a server has

multiple certificates. Also, when a warning is given, a user will need to make

a decision on which certificate to trust, and they are likely to click through

the warning. Moreover, it will not work when a user needs to connect from a

captive portal.

Convergence Marlinspike proposed Convergence [Mar11], a Firefox addon and

an improvement on Perspectives, in Black Hat 2011. In Convergence, to protect

users’ browsing history, instead of directly communicating with notary servers (i.e.

observers), users randomly choose one notary server to pass the client request to

other notary servers, through an onion routing like mechanism. So the intermediate

notary server does not know what a requester is requesting, and the end notary

server does not know who is the requester. In addition, to reduce the number of

connections a user has to make, users store verified certificates in their browser cache

and only query notary servers when they received a different one. Moreover, rather

than querying the certificate of a domain server from a notary server, users send the

certificate received from the server to notary servers. The notary server will request

a certificate from the domain server if the received certificate does not match the

notary’s cache.

• Strength
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As an improvement of Perspectives, it additionally supports timely key veri-

fication, does not require user to make decisions on which certificate to trust,

and it protects user privacy. Moreover, it offers offline verification if the site

has been visited before.

• Weakness

Similar to Perspectives, Convergence does not support multiple certificates,

and does not protect users when they are connected to a captive portal.

Certificate Patrol Certificate Patrol [Cer] is another Firefox add-on for managing

web certificates. It monitors and stores all SSL certificates a browser has obtained.

Since the validity period of a certificate is fairly long, it is unlikely a certificate is

changed in a short time. So, when a different certificate is observed, it is possible that

one of them is a mis-issued certificate used by attackers. With Certificate Patrol, if

the newly received certificate is different from the previously stored certificate of the

same domain, the browser will display to the user the difference between the two

certificates, and the user needs to make a decision on whether to trust the newly

received one.

• Strength

It is a lightweight tool to protect user browsing history, and to offer an extra

layer of security – it helps users to detect any change of the previously received

certificate.

• Weakness

This addon will not work if a domain has multiple certificates, and it requires

users to make decisions. In addition, it does not protect user’s first connection

to a website nor protect user connection from a captive portal.

CertLock CertLock [SS11] is a Firefox addon for monitoring CAs’ location. In

particular, it observes the country of the CA who issued the received certificate. On

the detection that two CAs from different countries have issued certificates for the

same site, the browser will display a warning to the user.

• Strength

CertLock helps users to detect attacks in some specific scenario. For example,
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a site authorised certificate authority CA1 in country A to issue certificate for

its domain. A malicious government agency in country B wants to intercept

the communication between users and the site. The malicious government

agency can compel a certificate authority CA2 located in country B to issue

fake certificates for the site, then uses this mis-issued certificate to launch

MITM attacks. CertLock can help users to detect such attacks.

• Weakness

CertLock won’t be able to detect attacks using fake certificates that are issued

by CAs in the same country. In addition, a false warning will be displayed if a

site has switched from a CA in country A to a CA in country B. In addition,

it still relies on the CA trust model, so it does not offer trust agility nor anti-

oligopoly. Also, it cannot protect user’s first connection and cannot protect a

user who is connected to a captive portal.

TACK In 2012, Marlinspike and Perrin proposed trust assertions for certificate

keys (TACK) [MP12] to remove the need of trusting CAs. In TACK, a domain

server generates a TACK private/public key pair, and uses the TACK private key

to certify its TLS public keys. After a client observes a consistent TACK public

key of a domain multiple times, it pins the public key to the domain name, and

trusts this “pin” for a period, and accepts the public key if it is certified by the

private key corresponding to the observed TACK public key. If a certificate becomes

compromised and the observed information has not been pinned, then the client must

delete the observed TACK information and re-start the observation process. To be

scalable, TACK will need an online pin store, where users can share their observed

pins. However, the problem of how to design a secure pin store for users to share

their observations, while prevent attackers to spoof or poison the store, remains

unsolved.

• Strength

TACK removes the need of CA, offers trust agility, does not require users to

any trusted party1, and provides anti-oligopoly. Once local observations are

built, TACK allows offline verification, supports multiple certificates.

1Here, we only consider the TACK without having an online pin store



3.3. Analysis of existing proposals 28

• Weakness

Since TACK relies on visit patterns by clients to pin the domain’s public key,

the first several connections to a domain server will not be protected, and every

new TACK key pair or new domain suffers an initial unavailability period. In

addition, the revoked key will still be accepted by the client if the client still

trusts its previous observation.

To be scalable, TACK requires an on-line store to share TACK keys observed

by different clients. The use of such on-line stores make TACK difficult to

provide the independence of trust required by trust agility. Because a client

Alice, might choose to trust some stores or clients for the TACK keys they

observed. However, the store or clients trusted by Alice might put their trust

on other stores and clients. This transitive trust relation could effect Alice’s

trust option and Alice’s observation on the TACK keys. Currently, it is hard

to judge whether TACK offers the independence of trust required by trust

agility, as the online store is not designed yet.

3.3.3 Scope restriction

Scope restriction is the concept aiming to reduce the power of CAs by restricting

the domain scope that a CA can vouch for.

Public key pinning (PKP) Public key pinning (a.k.a. certificate pinning) is a

mechanism for domain servers to specify which CAs are authorised to certify public

keys for a given domain. Langley et al. implemented it in Google Chrome [Lan11].

Scalability is a main challenge for key pinning, due to the need of pre-knowledge

of the mapping between each domain server and CAs. Public key pinning extension

for HTTP [EPS14] addresses the scalability challenge by allowing a domain server

to declare the authorised CAs for its sites in an HTTP header.

• Strength

As PKP is a way to restrict CAs’ power by specifying which CAs are authorised

for a given website, it protects user communications against attackers who

have mis-issued certificates from CAs that are not authorised for the victim.
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In addition, PKP allows a website to have multiple certificates, does support

offline verification, and is scalable with the PKP extension for HTTP.

• Weakness

The weakness of PKP is that it cannot completely protect all user connections.

For example, it cannot protect when a user does not have a pin of a website,

which is generally the case for the first connection. Also, it cannot protect

the connection when the pin is expired in the user browser. Moreover, it

cannot effectively detect attacks when a CA has mis-issued certificates for the

domains that the CA is pinned for. Furthermore, it does not offer trust agility

nor anti-oligopoly.

DANE DNS-based authentication of named entities (DANE) [Bar11a, HS12] binds

the public key information to a domain name by using Domain Name System Se-

curity Extensions (DNSSEC). More specifically, DANE enables a domain server

to certify its public keys by storing the public keys in its domain name system

(DNS) records. This DNS record is valid only if it is correctly signed as specified

in DNSSEC [WB13]. So, the parent domain servers are the authority of their child

domains. In other words, only the parent domain can certify public keys of its

child domains. In this way, DANE limits the damage of dishonest or compromised

authorities.

• Strength

Compared to PKP, DANE is highly scalable since it is based on DNSSEC.

In addition, it can protect a user even when the user connects from a captive

portal.

• Weakness

The security of DANE strongly relies on the trustworthiness of parent do-

mains according to the DNS hierarchy. As a result, ICANN, top-level do-

mains (TLDs), and second-level domains (SLDs) become to be very powerful

and fully trusted CAs. So, DANE does not provide trust agility and anti-

oligopoly. In addition, domain servers cannot choose which CA they want to

get service from, as they have to get their keys to be certified by their parent

domain.
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CAge In 2013, Kasten, Wustrow and Halderman proposed CAge [KWH13] to

restrict the scope of domains that a CA can certify public keys for. According to

the data observed in [HDWH12], they show that only a small number of CAs have

signed certificates for TLDs. Based on this observation, CAge suggests to limit a

CA’s certification scope by only allowing a CA to issue certificates on a restricted

set of TLDs. CAge limits the scale of MITM attacks, but cannot completely solve

this problem.

• Strength

As all systems in the category of scope restriction, CAge reduces the damage

from a compromised CA by limiting the set of domains that a CA can vouch

for.

• Weakness

Since CAge is still based on the CA trust model although with restrictions on

a CA’s ability, it does not offer trust agility and anti-oligopoly. In addition,

domain servers have less flexibility to choose which CA they want to use,

because only a subset of CAs will be eligible for certifying keys for given

domains.

3.3.4 Certificate management transparency

Certificate management transparency is the concept aiming to make CAs’ behaviour

transparent. The basic idea is to use a publicly visible log to record issued certifi-

cates. So interested parties can check the log to detect any mis-issued certificates.

Sovereign Keys Sovereign Keys (SK) [Eck12] aims to get rid of browser certificate

warnings, by allowing domain owners to establish a long term (“sovereign”) key and

by providing a mechanism by which a browser can hard-fail if it doesn’t succeed in

establishing security via that key. A sovereign key is a long-term key used to cross-

sign operational TLS keys, and it is stored in an append-only log on a “timeline

server”, which is abundantly mirrored.

When a browser connects to a website, it sends a query to a mirror of the

“timeline server” to check if the site has a sovereign key. If the site does have a

sovereign key, then the browser only accepts a certificate for this site if the certificate
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is issued by CAs and is cross-signed by the sovereign key. If the certificate is not

cross-signed, then rather than emit certificate warnings, the browser will try to find

a way to make a sovereign key connection to the site. There are several ways to

establish a connection without having a cross-signed certificate. The strongest way

is to compute a hash of the sovereign key, and use that as the .onion address of

the Tor hidden service which allows the secure connection. Weaker ways include

stapling to the sovereign key and trying to connect through other means such as

proxy and VPN, until the browser gets a verified connection.

• Strength

SK introduces the first log-based PKI. It eliminates browser certificate warn-

ings, reduces the trust put on CAs, allow a site to have multiple certificates,

and prevents attacks from an attacker who compromised CAs.

• Weakness

Sovereign Keys doesn’t have an efficient way for the timeline server and mirrors

to prove their correct behaviour. The only way for verifying it is to download

an verify the entire log. So internet users and domain owners have to trust

mirrors of time-line servers. Additionally, it doesn’t provide any mechanism for

key revocation, either of TLS keys or sovereign keys. If a domain owner loses

the sovereign private key, they lose the ability to switch to new TLS keys,

and may even lose control of their domain, until the sovereign key expires.

Another security concern is that if a site does not have a sovereign key yet,

then a determined attacker could register his own sovereign key for the site

and intercept secure connections made to the site.

Certificate transparency Certificate transparency (CT) [LLK13] is proposed by

Google aiming to allow domain owners to efficiently detect mis-issued certificates,

by making certificate issuance transparent.

The basic idea is to use public audit-able logs to record all issued certificates. In

this way, interested parties can monitor the log to verify all of CAs’ behaviour. To

enforce CAs to publish all issued certificates into the log, web browsers only accept

certificates if a verifiable evidence is provided to prove that the certificate is present

in the log.
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In more detail, domain owners request from the log maintainer signed confirma-

tions saying that their certificates are included in the log, and then they can pro-

vide this confirmation together with the corresponding certificate to web browsers.

Browsers only accept a certificate if both the certificate and the signed confirmation

are valid. Browsers also need to periodically verify received signed confirmation

against the public log to check if the certificate is indeed being inserted in the log.

To reduce the trust put on CAs and log maintainers, CT uses an append-only

log which is organised as an append-only Merkle tree. In the tree, data items (i.e.

certificates or references to certificates) are stored left-to-right in chronological order

at the leaves, and added by extending the tree to the right. This structure enables

the log maintainer to provide two types of verifiable cryptographic proofs: (a) a

proof that the log contains a given certificate, and (b) a proof that a snapshot of

the log is an extension of another snapshot (i.e., only appends have taken place

between the two snapshot). The time and size for proof generation and verification

are logarithmic in the number of certificates recorded in the log. To ensure the log

maintainer is behaving correctly, CT requires monitors to check the consistency of

logs.

• Strength

Since CAs’ behaviour is transparent, CT does not require users to blindly

trust CAs, i.e. the behaviour of CAs are verifiable. This makes CT to offer

trust agility. In addition, CT enables domain owners to readily detect any

mis-issued certificates.

• Weakness

A main weakness of CT is that users still have to trust “monitors” for verifying

the behaviour of logs. In addition, CT does not provide an efficient scheme for

key revocation. Also, CT does not provide anti-oligopoly, because although

the set of log servers are not fixed, it doesn’t have any method to allocate

different domains to different logs. In CT, when a domain owner wants to

check whether mis-issued certificates are recorded in logs, he needs to contact

all existing logs, and download all certificates in each of the logs, because there

is no way to prove to the domain owner that no certificates for his domain is

in the log, or to prove that the log maintainer has showed all certificates in
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the log for his domain to him. Thus, to be able to detect fake certificates, CT

has to keep a very small number of log maintainers. This prevents new log

providers being flexibly created, creating an oligopoly. Another limitation is

that CT can only detect mis-issued certificates, rather than prevent attacks

that use mis-issued certificates.

Accountable key infrastructure Accountable key infrastructure (AKI) [KHP+13]

also uses public logs to make certificate management more transparent.

Similar to SK, AKI allows domain owners to define their own security policy by

specifying several additional attributes of a certificate, such as which CA and log

maintainer a domain owner wants to get services from, what is the minimum number

of CA signatures to validate a certificate for her domain, etc. To obtain a certificate,

a domain owner contacts at least a minimum number of CAs that she wishes to trust

based on the policy, and to cross sign her public key with her security policy. Then

she requests log maintainers to update her certificate, and expects a signed proof

that the certificate is recorded in the log. Clients only accept a certificate if the

certificate satisfies defined security policy, and is currently recorded in the log.

To be able to manage key revocations, AKI stores only the current valid cer-

tificates of domains in a public log. The log is organised as a hash tree, where

certificates stored in leaves ordered lexicographically.

To detect mis-behaviours, AKI uses the “checks-and-balances” idea that allows

parties to monitor each other’s behaviour. So AKI limits the requirement to trust

any party. Moreover, AKI prevents attacks that use fake certificates rather than

merely detecting such attacks (as in CT).

• Strength

AKI extends the previous architectures in several ways. First, it allows mul-

tiple CAs to sign a single certificate. Additionally, the domain can specify

in its certificate which CAs and logs are allowed to attest to the certificate’s

authenticity. These features provide resilience against a certificate signed by a

compromised or unauthorised CA. AKI can also handle key loss or compromise

through cool-off periods. For example, if a domain loses its private key and

registers a new certificate not signed by its old private key, the new certificate
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will be subject to a cool-off period (e.g., three days) during which the certifi-

cate is publicly visible but not usable. This ensures that even if an adversary

obtains and registers a fake certificate, the domain has the opportunity to

contact the CAs and logs to resolve the issue.

• Weakness

To ensure that any log server can provide a proof for a domain’s certificate,

AKI logs maintain a globally consistent view of the entries that they have for

a given domain name. This applies for every certificate operation (registra-

tion, update, and revocation), meaning that even frequent certificate updates

(such as in the case of short-lived certificates) are subject to successful log

synchronisation. In addition, AKI requires that each domain name only has

one active and valid certificate associate with it at any given time. Moreover,

AKI needs to rely on third parties called validators to ensure that the log is

maintained without improper modifications, and to assume that CAs, public

log maintainers, and validators do not collude together.

Certificate issuance and revocation transparency Certificate issuance and

revocation transparency (CIRT) [Rya14] improves certificate transparency by pro-

viding transparent key revocation, and reducing reliance on trusted parties.

To provide an effective way for certificate revocation, CIRT proposes a new log

structure that consists of two tree structures presenting the same set of data. The

first tree is called a ChronTree, which is an append-only Merkle tree (as in CT)

ordered chronologically. The second tree is called LexTree, which is a Merkle tree

ordered lexicographically by the subject of the certificate. The ChronTree stores in

the leaves a pair (C, h), where C is a certificate appended in the ChronTree, and h is

the hash root value of the LexTree in which the last inserted data is C. The LexTree

stores h(di) in every node for some i, where d is an ordered list of certificates that

has the same subject. The last element in the list is the current valid certificate of

the subject.

This log structure enables the log maintainer to provide efficient proofs that (A)

some data is present in the log, (B) any data having a given attribute (e.g. an

identity) is absent from the log, (C) some data is the latest valid one in the log, and

(D) the current log is extended from a previous version.
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Loosely speaking, by proving a proof that a certificate C is the last element in

an ordered list d, and h(d) is present in the LexTree of the log, a verifier is ensured

that C is the currently valid certificate, i.e. not revoked. Due to the use of two

different trees presenting the same set of data, it is crucial to ensure that the data

presented by the two trees are consistent. To verify the consistency of the two trees,

CIRT distributes the monitoring role among user browsers. To do so, each user

browser verifies if a randomly selected certificate stored in the ChronTree is also

in the LexTree. If the number of such random verification is big enough, then the

consistency between the two trees is likely to be verified.

• Strength

CIRT provides a solution for managing both certificate issuance and revoca-

tion by using a new log structure, and reduces reliance on trusted parties by

using user side random verifications. It also allows a domain to have multiple

certificates, and to update keys timely. In addition, similar to all other sys-

tems in certificate management transparency category, it does not need users

to be involved.

• Weakness

A weakness of CIRT is that it can only detect attacks that use fake certificates;

it cannot prevent them. Also, since CIRT was proposed for email applications,

it does not support the multiplicity of log maintainers that would be required

for web certificates.

Attack Resilient Public-Key Infrastructure Attack Resilient Public-Key In-

frastructure (ARPKI) [BCK+14] is an improvement on AKI. In ARPKI, a client can

designate n service providers (e.g. CAs and log maintainers), and only needs to con-

tact one CA to register her certificate. Each of the designated service providers will

monitor the behaviour of other designated service providers. As a result, ARPKI

prevents attacks even when n−1 service providers are colluding together, whereas in

AKI, an adversary who successfully compromises two out of three designated service

providers can successfully launch attacks [BCK+14].

• Strength
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ARPKI is the first formally verified log-based PKI system. Its security proper-

ties are proved by using a protocol verification tool calledTamarin prover [MSCB13].

The verification uses several abstractions during modelling. For example, they

represent its underlying log structure (a Merkle tree) as a list.

• Weakness

The weakness of ARPKI is that all n designated service providers have to

be involved in all the processes (i.e. certificate registration, confirmation, and

update), which would cause considerable extra latencies and the delay of client

connections.

3.4 Observations

Based on the above analysis, we observed the advantage and weakness in each cate-

gory. This section discusses the observations based on different perspectives, i.e. on

the property perspective and on the system perspective. In addition, this section

summarises our observation regarding to the leading proposals in Table 3.2.

3.4.1 Property Perspective

We summarise our observations on different system categories according to the per-

spective of identified properties.

Trust agility

The current CA model does not provide this feature, since any compromised CA

can issue valid certificates for any domain server. Similarly, systems in the category

of Scope restriction also do not provide this feature, because they merely restrict

the set of domains that CAs can issue certificates for. Most systems in difference

observation offer this feature, as any one can be a notary server, and users can select

which notary servers they want to trust, and any notary server will not be influenced

by other notary servers.

Anti-oligopoly

Systems in the category of difference observation normally provide this feature,

as the number of observers are not fixed. In addition, the certificate verification
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Table 3.2: Evaluation of proposals

Desired Features Classic Difference observation Scope restriction Cert Mngmt Trans

CA-based Perspectives Convergence TACK PKP DANE CT ARPKI

Trust

Trust agility × √ √ √1 × × √ √

Free of trusted parties × × × √1 × × × ×

Verifiable of trusted parties × × × × × × √ √

Anti-oligopoly × √ √ √ × × × ×

Availability

Offline verification
√ × ⊗2

√ √ √ √ √

Built-in key revocation × × × × × × × √

Scalability
√ √ √ ×1

√ √ √ √

Multiple certificate support
√ × × √ √ √ √ ×

Timely key verification
√ × √ × √ √ √ √

Security

First connection protection
√ √ √ × √ √ √ √

DOS attack protection
√ × ⊗3

√
1

√ √ √ √

Use of mis-issued certificate prevention × √ √ √ ⊗4 ⊗4 × √

Use of mis-issued certificate detection × √ √ √ ⊗4 ⊗4
√ √

Provably secure × × × × × × × √

Usability

No user involvement
√ × √ × √ √ √ √

Privacy

Protecting browsing history
√ × √ √1 √ √ √ √

√
– The subject offers this feature.

⊗ – The subject offers this feature but with other concerns.
× – The subject does not offer this feature.
− – Not applicable.

1 We consider the case without using an on-line crowed-sourced pin store. If an online pin store is used, then the result might be
different depending on how the store is designed. (The pin store has not been proposed yet.)

2 This feature is satisfied if and only if the received public key/certificate can be found in the local cache.
3 This feature is satisfied if and only if the received public key certificate can be found in the local cache, and the subject of the
certificate has not updated its certificate.

4 This feature is satisfied if the malicious CA is not authorised for the victim domain.
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result relies on the out-of-band checking through a different path. So, as far as the

observed certificates are the same one, the client will accept it. Thus, the role of

CA is minimised.

Offline verification

In the current CA model, clients only need to verify the validity of the received

certificate. So, it satisfies offline verification. Systems in the category of scope

restriction also provide this feature, as the way they work is similar to the current

CA model, but with some restrictions.

Most systems in the category of certificate management transparency offer this

feature as well, because in these systems the proofs to be verified about a certificate

are provided together with the certificate. In contrast, most systems in the difference

observation category don’t offer this feature, because with these systems, clients have

to make additional connections to verify the certificates they obtained.

Built-in key revocation

Most systems in the category of difference observation and scope restriction do

not provide this feature. Most systems in the category of certificate management

transparency do offer this feature. For example, CIRT proposed a way to manage

certificate revocation by using an advanced log structure; and AKI and ARPKI

manage certificate revocation by only recording the latest certificates of domains in

their logs.

Multiple certificate support

The current CA model offers this feature. Systems in the category of difference

observation generally don’t provide this feature. Because when clients see different

certificates of the same website from different paths or observers, a warning will be

displayed to clients even if the received certificates are all genuine. Systems in the

category of scope restriction and certificate management transparency provide this

feature.

Timely key verification

Systems in difference observation are likely to not provide this feature, as the ob-

servers might not be always up to date with all domains.

First connection protection

Systems such as Certificate Patrol, Certlock, and TACK in difference observation
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do not provide this feature, because they verify the certificate based on what has

been observed in the previous connections.

Denial of service (DoS) attack protection

The CA model offers this feature. All systems in the category of scope restriction

and most systems in the category of certificate management transparency provide

this feature as well. However, some systems in difference observation require out-

of-band observation, so they will not provide this feature, as the verification server

can be blocked.

Use of mis-issued certificate prevention

All systems in difference observation, and some systems in the category of certificate

management transparency, provide this feature. In contrast, systems in the category

of scope restriction do not provide this feature if the mis-issued certificate is issued

by a CA who is authorised for the victim domain. For example, DANE cannot

prevent MITM attacks when the fake certificate used by an attacker is issued by the

parent domain of the victim domain.

Use of mis-issued certificate detection

All systems in difference observation and in certificate management transparency

provide this feature.

3.4.2 System Perspective

As shown in the table, systems in the category of difference observation provide

better trust-related features. However, they can have difficulties to provide a better

availability, because the observer might not have the latest update, the systems in

general do not provide an effective key revocation management, and they require

user involvement to make decisions. Moreover, they can suffer from DoS attacks on

the observers.

Systems in the category of scope restriction provide better usability and avail-

ability. However, they have only restricted the power of each trusted parties, but

internet users still need to trust them. This can limit the damage from attacks

launched by malicious CAs, but cannot completely solve the problem.

Systems in the category of certificate management transparency provide better

security and availability. However, anti-monopoly might be a problem for these
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systems. It is desired to provide a fully distributed system and still be able to

remove the need of trusted parties.

Summary As discussed above, different systems in different categories have differ-

ent pros and cons. Systems in the category of certificate management transparency

is a new research trend, and they seem to provide more desired features than systems

in other categories.

3.5 Conclusion

The current certificate authority trust model is broken. As a result, the communi-

cations between internet users and web servers might be vulnerable to man-in-the-

middle attacks. Interested malicious parties could intercept user communication

and steal user credential data.

Many security-enhanced alternatives have been proposed. Our evaluation shows

that four main concepts are used to design web certificate management systems.

They have different advantages and shortcomings, and as yet there is no clear win-

ner. We hope our evaluation framework would help the ongoing research on web

certificate management alternatives.



CHAPTER 4

DISTRIBUTED TRANSPARENT KEY
INFRASTRUCTURE

4.1 Introduction

This chapter presents a new log-based architecture for managing web certificates,

called Distributed Transparent Key Infrastructure (DTKI). DTKI minimises the

presence of oligopoly, prevents attacks that use fake certificates, provides a way

to manage certificate revocation, and is secure even if all service providers (e.g. CAs

and log maintainers) collude together. We also provide formal machine-checked

verification of core security properties of DTKI, by using the Tamarin prover.

The rest of this chapter is organised as follows. We first provide an overview of

DTKI in §4.2, then detail the public log structure in §4.3, and our main protocol in

§4.4. Our security verification and performance evaluation are presented in §4.5 and

§4.6, respectively. The comparison with other systems in the category of certificate

management transparency is given in §4.7, and more discussions are presented in

§4.8.

4.2 Overview

Distributed Transparent Key Infrastructure (DTKI) is an infrastructure for manag-

ing keys and certificates on the web in a way that is transparent, minimises oligopoly,

and allows verification of the behaviour of trusted parties. In DTKI, we mainly have

the following agents:

Certificate log maintainer (CLM): A certificate log maintainer maintains a database

of all valid and invalid (e.g. expired or revoked) certificates for a particular set of

41
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domains for which it is responsible. It commits to the digest of its log, and is able to

provide efficiently verifiable proofs of presence or absence of a certificate in its log.

Certificate log maintainers behave transparently and their actions can be verified.

To minimise oligopoly, DTKI does not fix the set of certificate logs.

Mapping log maintainer (MLM): The mapping log maintainer maintains asso-

ciation between certificate logs and the domains they are responsible for. It also

commits to digests of the log, and provides the proof of presence of a current asso-

ciation, and behaves transparently. Clients of the mapping log are not required to

blindly trust the maintainer, because they can efficiently verify the obtained proofs

with respect to the obtained associations.

Mirror: Mirrors are servers that maintain a full copy of the mapping log and

certificate logs. In other words, mirrors maintain distributed copies of logs. Anyone

(e.g. ISPs, CLMs, CAs, domain owners) can be a mirror. Unlike in SK, mirrors are

not required to be trusted in DTKI, because all information provided by a mirror

must accompany by proofs. The proofs are efficiently verifiable, and are associated

to the digest committed by log maintainers.

Certificate authority (CA): They check the identity of domain owners, and create

certificates for them. However, in contrast with today’s CAs, the ability of CAs in

DTKI is limited since the issuance of a certificate from a CA is not enough to

convince web browsers to accept the certificate (proof of presence of the certificate

in the relevant certificate log is also needed).

In DTKI, each domain owner has two types of certificate, namely TLS certificate

and master certificate. Domain owners can have multiple TLS certificates but can

have only one master certificate. A TLS certificate contains the public key of a

domain server for a TLS connection, whereas the master certificate contains a public

key, called “master verification key”. The corresponding secret key of the master

certificate is called “master signing key”. Similar to the “sovereign key” in SK

[Eck12], the master signing key is only used to validate a TLS certificate (of the same

subject) by issuing a signature on it. This limits the ability of certificate authorities

since without having a valid signature (issued by using the master signing key), the

TLS certificate will not be accepted. Hence, the TLS secret key is the one for daily

use; and the master signing key is rarely used. (The master signing key will only be

used for validating a new certificate, or revoking an existing certificate.)
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After a domain owner obtains a master certificate or a TLS certificate from a

CA, he needs to make a registration request to the corresponding CLM to publish

the certificate into the log. To do so, the domain owner signs the certificate using

the master signing key, and submits the signed certificate to a CLM determined

(typically based on the top-level domain) by the mapping log maintainer. The

certificate log maintainer checks the signature, and accepts the certificate by adding

it to the certificate log if the signature is valid. The process of revoking a certificate

is handled similarly to the process of registering a certificate in the log.

When establishing a secure connection with a domain server, the browser receives

a certificate from the domain server and proofs from a mirror. The expected proofs

include a proof that the certificate is not revoked, a proof that the certificate is

recorded in the certificate log, and a proof that this certificate log is authorised to

manage certificates for the domain. Users and their browsers should only accept a

certificate if the certificate is issued by a CA, and validated by the domain owner,

and all proofs are successfully verified.

Fake master certificates or TLS certificates can be easily detected by the domain

owner, because the attacker will have had to insert such fake certificates into the log

(in order to be accepted by browsers), and is thus visible to the domain owner.

In order to fool a victim, an attacker will have to insert fake certificates into the

log. So domain owners can easily detect such attacks by checking the log.

Rather than relying solely on trusted monitors to verify the healthiness of logs

and the relations between logs, DTKI uses a crowdsourcing-like way to ensure the

integrity of the log, and to ensure the relations between the mapping log and certifi-

cate logs, and between certificate logs. In particular, the monitoring work in DTKI

can be broken into independent little pieces, and thus can be done by distributing

the pieces to users’ browsers. In this way, users’ browsers can perform randomly-

chosen pieces of the monitoring role in the background (e.g. once a day). Thus, web

users can collectively monitor the integrity of the logs. We envisage parameters in

browsers allowing users to control how that works.
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Table 4.1: The methods supported by the log.

Method Input Output

Size T The size of the Merkle tree T .

Root T The root value of the Merkle tree T .

Last T The data stored in the rightmost side leaf of the Merkle tree T .
This proof can only work if T is a ChronTree.

PoP (T, d) Proof of Presence: The proof that d is in T .

PoC (T, d) Proof of Currency : The proof that d is the latest added data. This
proof can only work if T is a ChronTree.

PoE (T, dg′) Proof of Extension: The proof that the Merkle tree T is an exten-
sion of another Merkle tree whose digest is dg′. This proof can only
work if both trees are ChronTrees.

PoA (T, a) Proof of Absence: The proof that any data d having attribute a is
absent from the Merkle tree T . This proof can only work if T is a
LexTree.

4.3 The public log

DTKI uses append-only logs to record all requests processed by the log maintainer,

and allows log maintainers to generate proofs that can be efficiently verified. These

proofs mainly include that some data (e.g. a certificate or a revocation request)

has or has not been added to the log; and that a log is extended from a previous

version. So, the log maintainer’s behaviour is transparent to the public. In DTKI,

to provide all needed proofs, the public log is constructed by using two types of data

structures, namely chronological data structure and ordered data structure.

We first present the two types of data structures encapsulating the desired prop-

erties, together with concrete implementations using Merkle tree [Mer87]. Then, we

explain how to use the data structure to construct our public logs.

4.3.1 Data structures

We use the notion of digest to uniquely characterise a set of data, such that the

size of a digest is a constant. In our implementation (that will be presented later),

the digest of a set of data is the root hash of a Merkle tree storing the set of data.

Table 4.1 summarises the methods that our log supports, according to our detailed

implementation.
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Abstract data structures

A chronological data structure is an append-only data structure, i.e. the only allowed

change operation is adding some data. Let S be a sequence of data, and N and dg be

the size and digest of S, respectively. With a chronological data structure, we have

that d ∈ S for some data d, if and only if there exists a proof p of size O(log(N)),

called the proof of presence of d in S, such that p can be efficiently verified; and for

all sequence S ′ with digest dg′ and size N ′ < N , we are able to show that S ′ is a

prefix of S, if and only if there exists a proof p′ of size O(log(N)), called the proof

of extension of S from S ′, such that p′ can be efficiently verified.

The chronological data structure enables one to prove that some data (e.g. a

certificate) is in a set of data (e.g. the log), and a version of the set of data is an

extension of a previous version. The size of these proofs are small, i.e. O(log(N)),

and the proofs can be efficiently verified. This is useful for our public log since it

enables users to verify the history of a log maintainer’s behaviours.

Unfortunately, the chronological data structure does not provide all desired fea-

tures needed for our log. For example, it is very inefficient to verify that some

data (e.g. a certificate revocation request) is not in the chronological data structure

(the cost is O(N)). To provide missing features, we need to use the ordered data

structure.

An ordered data structure is a data structure allowing one to insert, delete, and

modify stored data. In addition, with an ordered data structure, we have d ∈ S

(resp. d /∈ S) for some data d, if and only if there exists a proof p of size O(log(N)),

called the proof of presence (resp. absence) of d in (resp. not in) S, such that p can

be efficiently verified.

With an ordered data structure, however, the size of proof that the current

version of the data is extended from a previous version is O(N). As the chronological

data structure and the ordered data structure have complementary properties, we

will use the combination of them to organise our log. We first define the concrete

data structures, then introduce how to construct the two data structures in detail,

and finally show how to use them to construct our public logs.
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Chronological data structure implementation

Possible implementations of chronological data structure include append-only Merkle

tree [Mer87] and append-only skip list, as proposed in [LLK13] and [MB03], respec-

tively. Our implementation of the chronological data structure is called ChronTree,

which is based on the Merkle tree structure. We consider a secure hash function

(e.g. SHA256), denoted h.

A ChronTree T is a binary tree whose nodes are labelled by bitstrings such that:

• every leaf node is labeled by a data item being stored in the ChronTree; and

• every non-leaf node in T has two children, and is labelled with h(tℓ, tr) where

tℓ (resp. tr) is the label of its left child (resp. right child); and

• the subtree rooted by the left child of a node is perfect, and its height is greater

than or equal to the height of the subtree rooted by the right child.

Here, a subtree is “perfect” if every non-leaf node of the subtree has two children

and all leaves of the subtree have the same depth.

Note that a ChronTree is a not necessarily a balanced tree. The two trees in

Figure 4.1 are examples of ChronTrees where the data stored are the bitstrings

denoted d1, . . . , d6.

h(h(d1, d2), d3)

h(d1, d2)

d1 d2

d3

r

(a) ChronTree Ta

h(h(h(d1, d2), h(d3, d4)), h(d5, d6))

h(d5, d6)

d5 d6

h(h(d1, d2), h(d3, d4))

h(d1, d2)

d1 d2

h(d3, d4)

d3 d4

r

ℓ

ℓ

(b) ChronTree Tb

Figure 4.1: Example of two ChronTrees, Ta and Tb.

Given a ChronTree T with N leaves, we use S(T ) = [d1, . . . , dN ] to denote the

sequence of bitstrings stored in T . Note that a ChronTree is completely defined
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by the sequence of data stored in the leaves. Moreover, we say that the size of a

ChronTree is the number its leaves.

Intuitively, a proof of presence of d in T contains the minimum amount of infor-

mation necessary to recompute the label of the root of T from the leaf containing

d. The algorithm that outputs the unique proof is defined as follows.

Given a bitstring d and a ChronTree T , the proof of presence of d in T exists if

there is a leaf n1 in T labelled by d; and is defined as (w, [b1, . . . , bk]) such that:

• w is the position in {ℓ, r}∗ of n1 (that is, the sequence of left or right choices

which lead from the root to n1), and |w| = k; and

• if n1, . . . , nk+1 is the path from n1 to the root, then for all i ∈ {1, . . . , k}, bi is
the label of the sibling node of ni.

Given d, (w, seq) and (h,N), to verify that (w, seq) proves the presence of d in

the ChronTree T such that Root(T ) = h and Size(T ) = N , a verifier should check

|w| = |seq|, and verify if the final output of following algorithm f(w, seq, d) is equal

to h. For some value t, the algorithm is defined as follows:

• f(null, [], t) = t

• f(w · ℓ, [b1, . . . , bk], t) = f(w, [b2, . . . , bk], h(t, b1))

• f(w · r, [b1, . . . , bk], t) = f(w, [b2, . . . , bk], h(b1, t))

Example 4.1. Consider the ChronTree Tb of Figure 4.1. The proof of presence of

d3 in Tb is the tuple (w, seq) where:

• w = ℓ · r · ℓ

• seq = [d4, h(d1, d2), h(d5, d6)]

To verify the above proof, one needs to check if the reconstructed hash value

is equal to the root hash of Tb, i.e. whether h(h(h(d1, d2), h(d3, d4)), h(d5, d6)) =

Root(Tb) or not.

The proof of currency is the same as the proof of presence, but there is an extra

constraint for the verifier to check, namely that the path w to the leaf (e.g., the

path from the root to d6 in Tb of Figure 4.1) is of the form r · r . . . · r.
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Let T and T ′ be ChronTrees of size N and N ′, digest h and h′, respectively,

such that N ′ ≤ N , S(T ) = [d1, . . . , dN ′ , . . . , dN ], and S(T ′) = [d1, . . . , dN ′ ] for some

bitstrings d1, . . ., dN ′ , . . ., dN . In the binary representation of a number, we consider

that the rightmost bit is at position 0. For example in 01001100, the smallest position

of the bit 1 is 2.

The proof of extension of T ′ into T is the list of nodes in the ChronTree required

to verify that the first N ′ data items S(T ′) are equal in both trees. We define an

algorithm that outputs the unique proof.

Let m be the smallest position of the bit “1” in the binary representation of N ′;

and let (d, w) be the (m+ 1)-th node in the path of the node labelled by dN ′ to the

root in T , where d is a bitstring and w ∈ {ℓ, r}∗ indicates the position of this node.

Finally, let (w, seq′) be the proof of presence of d in T . The proof of extension of T ′

into T is defined as the sequence seq of bitstrings such that

• if N ′ = 2k for some k, then seq = seq′; otherwise

• seq = d||seq′, where || is the concatenation operation.

Example 4.2. The proof of extension of Ta into Tb (Figure 4.1) is the sequence

seq = [d3, d4, h(d1, d2), h(d5, d6)]. In more detail, since the size N ′ of Ta is 3 and

the binary representation of which is 11, we have that m = 0. In addition, since

the size does not satisfy N ′ = 2k
′
for some k′ ∈ N, we have that seq = d3||seq′,

where d3 is the (m+ 1)-th node (i.e. the first node) in the path of the node labelled

by dN ′ to the root in Tb, and seq′ = [d4, h(d1, d2), h(d5, d6)] is the sequence in the

proof (w, seq′) of presence of d3 in Tb. Thus, the proof of extension of Ta into Tb is

[d3, d4, h(d1, d2), h(d5, d6)].

Let w1 · w2 and w′
1 · w2 be the position of the node labelled by dN ′ in T and T ′,

respectively. Given (N, h), (N ′, h′), and seq = [d1, . . . , dk], the verification of the

above proof seq of extension is defined as follows:

• if N ′ = 2k
′
for some k′ ∈ N, then verify that (w1, seq) is the proof of presence

of a node labelled by h′ in T ;

• otherwise, we have |w1| = k − 1, and if we denote w1 = ak · . . . · a2 and if

S = [i1, . . . , ip] is the increasing sequence of integer such that ∀j ∈ S, aj = r;
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and ∀j ∈ {2, . . . , k} \S, aj = ℓ then we have that (w1, [b2, . . . , bk]) is the proof

of presence of b1 in T , and (w′
1, [bi1 , . . . , bip ]) is the proof of presence of b1 in

T ′.

Example 4.3. Figure 4.1 is the graphical representation of the verification of the

proof of extension of Ta into Tb. Given size and root of Ta and Tb, one can derive

the shape of the trees (so the position of the node labelled by dN ′ in T and T ′), and

verify the proof (generated in the previous example). In more detail, since N ′, which

is the size of Ta, does not satisfy N ′ = 2k
′
for some k′ ∈ N, the verifier knows that

w1 = k − 1, where k = |seq| = 4. So, we have w1 = ℓ · r · ℓ = a4 · a3 · a2, w′
1 = r,

w2 = null, and S = [b3], where b3 is the third elements, i.e. h(d1, d2), in seq. Thus,

the final check the verifier needs to perform is that (ℓ · r · ℓ, [d4, h(d1, d2), h(d5, d6)])
proves the presence of d3 in Tb, and (r, [h(d1, d2)]) proves the presence of d3 in Ta.

Ordered data structure implementation

Possible implementations of the ordered data structure include lexicographically

ordered Merkle tree ([Rya14]), and authenticated dictionaries [AGT01]. Our imple-

mentation of the ordered data structure is called LexTree, which is the combination

of a binary search tree and a Merkle tree. The idea is that we can regroup all the

information about a subject into a single node of the binary search tree, and while

being able to efficiently generate and verify the proof of presence. We consider a

total order on bitstrings denoted ≤. This order could be the lexicographic order in

the ASCII representations but it could be any other total order on bitstrings.

A LexTree T is a binary search tree over pairs of bitstrings

• for all two pairs (d, h) and (d′, h′) of bitstrings in T , (d, h) occurs in a node

left of the occurrence of (d′, h′) if and only if d ≤ d′ lexicographically;

• for all nodes n ∈ T , n is labelled with the pair (d, h(d, hℓ, hr)) where d is some

bistring and (dℓ, hℓ) (resp. (dr, hr)) is the label of its left child (resp. right

child) if it exists; or the constant null otherwise.

Note that contrary to a ChronTree, the same set of data can be represented by

different LexTrees depending on how the tree is balanced. To avoid this situation,

we assume that there is a pre-agreed way for balancing trees.
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d6, h(d6, h(d4, h(d2, h1, h3), h5), h(d10, h(d8, h7, h9), h(d12, h11, null)))

d10, h(d10, h(d8, h7, h9), h(d12, h11, null))

d8, h(d8, h7, h9)

d7, h7 d9, h9

d12, h(d12, h11, null)

d11, h11

d4, h(d4, h(d2, h1, h3), h5)

d2, h(d2, h1, h3)

d1, h1 d3, h3

d5, h5

Figure 4.2: An example of a LexTree Tc, where hi = h(di, null, null) for all i =
{1, 3, 5, 7, 9, 11}

Example 4.4. The tree in Figure 4.2 is an example of LexTree where d1 ≤ d2 ≤
. . . ≤ d12.

Similar to ChronTree, the verification of the proof of presence of some data d in

a LexTree T is to reconstruct the hash value of the root of T .

Example 4.5. Consider the LexTree T of Figure 4.2. The proof of presence of d8

in T is the tuple (hℓ, hr, seqd, seqh) where:

• hℓ = h7 and hr = h9; and

• seqd = [d10, d6]

• seqh = [h(d12, h11, null), h(d4, h(d2, h1, h3), h5)]

The proof of absence of some data d in a LexTree can be done by showing that

two data items di and dj for some i and j are adjacent in the left-right traversal of

LexTree, while lexicographically we have dj < d < dj; this is also O(log(N)).

Example 4.6. Consider the Tc of Figure 4.2, and some data d such that d7 ≤ d ≤
d8. The proof of absence of d in Tc is the tuple (null, null, seqd, seqh) where:

• seqd = [d7, d8, d10, d6]

• seqh = [h9, h(d12, h11, null), h(d4, h(d2, h1, h3), h5)]

To verify this proof, one needs to verify that both d7 and d8 are present in Tc, and

d8 is the smallest one larger than d7 lexicographically according to their positions

in Tc, as shown in Figure 4.2.
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4.3.2 The mapping log

To minimise oligopoly, DTKI uses multiple certificate logs, and does not fix the set

of certificate logs and the mapping between domains and certificate logs. The map-

ping log records associations between domain names and certificate log maintainers,

and its maintainer can provide efficiently verifiable proofs regarding the current as-

sociation. Due to the large number of domains, it would be rather inefficient to

explicitly associate each domain name to a certificate log. To address this problem,

we use a class of simple regular expressions to present a group of domain names,

and record the associations between regular expressions and certificate logs in the

mapping log. For example, (*\.org, Clog1) and ([a-h].*\.com, Clog1) mean that

certificate log maintainer Clog1 is authorised for all domains end with .org and all

domains start with letters from a to h end with .com.

Intuitively, the mapping log is organised by using a chronological data structure,

and stores received requests together with the request time, and four digests of

different ordered data structures representing the status of the log. Each record is

of the form

h(req, t, dgs, dgbl, dgr, dgi)

In this formula, as presented in Figure 4.3, req is the request received by the mapping

log at time t; dgs1 stores information about certificate log maintainers (e.g. the

certificate of the certificate log maintainer, and the current digest of the certificate

log clog); dgbl stores the identity of blacklisted certificate log maintainers; dgr stores

the mapping from a regular expression to the identity of certificate log maintainers,

and dgi stores the mapping from the identity of certificate log maintainers to a set

of regular expressions.

In more detail, each record of the mapping log contains digests after processing

the request req (received by the mapping log maintainer at time t) on the digest

stored in the previous record. Each of the notations is explained as follows:

• req includes add(rgx, id), del(rgx, id), new(cert), mod(cert, sign{cert′}sk,
sign{n, dg, t}sk′), bl(id), and end, respectively corresponding to a request to

1We simplified the description here: we should say the ordered data structure represented by
dgs stores the information, rather than the digest dgs stores it. We will use this simplification
through the thesis.
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add a mapping (rgx, id) of regular expression rgx and identity id of a clog, to

delete a mapping (rgx, id), to add a certificate cert of a new clog, to change

the certificate of a clog from cert to cert′, to blacklist id of an existing clog,

and to close the update request; where sk and sk′ are signing keys associated

to the certificate cert and cert′, respectively; cert and cert′ share the same

subject, and n and dg are the size and the digest of the corresponding clog at

time t, respectively;

• dgs is the digest of an ordered data structure storing the identity information

of the form (cert, sign{n, dg, t}sk for the currently active certificate logs, where

cert is the certificate for the signing key sk of the certificate log, and n and dg

are respectively the size and digest of the certificate log at time t. Data are

ordered by the domain name in cert.

• dgbl is the digest of an ordered data structure storing the domain names of

blacklisted certificate logs. Data are ordered by the domain names.

• dgr is the digest of an ordered data structure storing elements of the form

(rgx, id), which represents the mapping from regular expression rgx to the

identity id of a clog, data are ordered by rgx;

• dgi is the digest of an ordered data structure storing elements of the form

(id, dgirgx), which represents the mapping from identity id of a clog to a digest

dgirgx of ordered data structure storing a set of regular expressions, data are

ordered by id.

The requests are used for modifying mappings or the existing set of certificate

log maintainers. For example, when a request del(rgx, id) (or add(rgx, id)) has been

processed, the mapping between the certificate log with identity id and regular ex-

pression rgx is revoked (resp. created). After appending all needed update requests

in an update, the end will be appended in the mapping log to indicate that the

current update process is done.
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h(req, t, dgs, dgbl, dgr, dgi)

request req received at time t, where req includes
add(rgx, id), del(rgx, id), new(cert),
mod(cert, sign{cert′}sk, sign{n, h, t}sk′), bl(id), and end.

dgs is the digest of an ordered data structure storing
(cert, sign{n, dg, t}sk)

dgbl is the digest of an ordered data structure storing the
identity of blacklisted certificate logs

dgr is the digest of an ordered data structure storing
(rgx, id)

dgi is the digest of an ordered data structure storing
(id, dgirgx), where dgirgx is the digest of an ordered data
structure storing a set of rgx associated to the corre-
sponding id

Figure 4.3: A figure representation of the format of each record in the mapping log.

4.3.3 Certificate logs

A certificate log mainly stores certificates for domains according to the mappings

presented in the mapping log. In particular, a certificate log is organised by using a

chronological data structure, and each record of the log is of the form

h(req,N, dgrgx)

where req is the received request and is processed at the time such that the mapping

log is of size N ; dgrgx represents an ordered data structure storing a set of map-

pings from regular expressions to the information associated to the corresponding

domains, such that the domain name is an instance of the regular expression. The

stored information of a domain includes the identity and the master certificate of the

domain, and two digests dga and dgrv each presents an ordered data structure stor-

ing a set of active TLS certificates and a set of expired or revoked TLS certificates,

respectively.

Elements in a record (as shown in 4.4) of a certificate log are detailed as follows.

• req includes reg(sign{cert, t, ‘reg’}sk), rev(sign{cert, t, ‘rev’}sk, upadd(h(id), h),
and updel(h(id), h). In which, the request reg(sign{cert, t, ‘reg’}sk) (or

rev(sign{cert, t, ‘rev’}sk) is a request to register (resp. revoke) a certificate

cert signed by using the master key sk, at an agreed time t, where ‘reg’ and
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‘rev’ are constant. upadd(h(id), h) (or updel(h(id), h)) is the request to update

the certificate log by adding (resp. deleting) certificates of identity id accord-

ing to the changes of mlog, where h is the digest presenting the status of id

at time t. The status of id includes its master certificate, and the set of its

active certificates and the set of its revoked certificates.

• N is the size of mlog at the time req is processed;

• dgrgx is the digest of an ordered data structure storing a set of elements of the

form (rgx, dgid), represents the status of the certificate log after processing

the request req, and stores all the regular expressions rgx that the certificate

log is associated to. dgid is the digest of an ordered data structure storing

a set of elements of the form (h(id), h(cert, dga, dgrv)). It represents all do-

mains associated to rgx. id is an instance of rgx and is the subject of master

certificate cert. dga and dgrv are digests of two ordered data structures each

of which respectively stores a set of active and revoked TLS certificates. In

addition, data in the structure represented by dgrgx and dgid are ordered by

rgx and h(id), respectively; data in the structure represented by dga and dgrv

are ordered by the subject of TLS certificates.

Note that requests upadd(h(id), h) and updel(h(id), h) are made according to the

mapping log. Even though these modifications are not requested by domain owners,

it is important to record them in the certificate log to ensure the transparency of

the log maintainer’s behaviour. Request upadd(h(id), h) states that the certificate

log maintainer is authorised to manage certificates for the domain name id from

now on, and the current status of certificates for id is represented by h, where

h = h(cert, dga, dgrv) for some master certificate cert and some digest dga and dgrv

representing the active and revoked certificates of id. h is the value obtained from

the certificate log that is previously authorised to manage certificates for domain

id. Similarly, request updel(h(id), h) indicates that the certificate log cannot manage

certificates for domain id any more according to the request in the mapping log.
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h(req,N, dgrgx)

req can be
reg(sign{cert, t.‘reg’}sk,
rev(sign{cert, t, ‘rev’}sk),

upadd(h(id), h),
or updel(h(id), h)

N is the size of the
mapping log at the time
that req is processed

dgrgx is the digest of an ordered
data structure storing a set of el-
ements of the form (rgx, dgid)

dgid is the digest of an ordered data
structure storing a set of elements
of the form (h(id), h(cert, dga, dgrv))

dga is the digest of an or-
dered data structure storing
all valid certificates of id

dgrv is the digest of an ordered
data structure storing all
revoked certificates of id

Figure 4.4: A figure representation of the format of each record in the certificate
log.

4.3.4 Synchronising the mapping log and certificate logs

The mapping log periodically (e.g. every day) publishes a signature sign{t, dg,N}sk,
called signed Mlog time-stamp, on a time t indicating the publishing time, and the

digest dg and size N of the mapping log. Similarly, certificate log maintainers also

publishes their signed Clog time-stamp periodically. Mirrors need to download these

signed data, and update their copy of logs when the logs are updated. A signed

time-stamp is only valid for a short period (e.g. one day). Note that mirrors can

provide the same set of proofs as the log maintainers, since they have a complete

copy of the logs. Mirrors are not required to be trusted, because they do not need to

sign anything, and a mirror which altered a log cannot convince browsers to accept

it since the mirror cannot forge a signed time-stamp.

When a mapping log maintainer needs to update the mapping log, he requests

all certificate log maintainers to perform the required update, and expects to receive

the digest and size of all certificate logs once they are updated. After the mapping

log maintainer receives these confirmations from all certificate log maintainers, he

publishes the series of update requests in the mapping log, and appends an extra

constant request end after them in the log to indicate that the update is done.
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Log maintainers only answer requests according to their newly updated log if

the mapping log maintainer has published the update requests in the mapping log.

If requests received during the log update period, log maintainers will answer to the

request according to the version of their log before the update started.

We say that the mapping log and certificate logs are synchronised, if certificate

logs have completed the log update according to the request in the mapping log. Note

that a mis-behaving certificate log maintainer (e.g. one recorded fake certificates in

his log, or did not correctly update his log according to the request of the mapping

log) can be terminated by the mapping log maintainer by putting the certificate

log maintainer’s identity into the blacklist, which is organised as an ordered data

structure represented by dgbl (as presented in 4.3.2).

4.4 Detailed implementation

Distributed transparent key infrastructure (DTKI) contains three main protocols,

namely certificate publication, certificate verification, and log verification. In the

certificate publication protocol, domain owners can upload new certificates and re-

voke existing certificates in the certificate log they are assigned to; in the certificate

verification protocol, one can verify the validity of a certificate; and in the log veri-

fication protocol, one can verify whether a log behaves correctly.

Let Alice be an internet user who wants to securely communicate with a domain

owner Bob who maintains the domain example.com.

4.4.1 Certificate publication

To insert or revoke certificates in the certificate log, the domain owner Bob needs to

know which certificate log is authorised to record certificates for his domain. This

can be done by communicating with the maintainer of (a mirror of) the mapping

log. We detail the protocol for requesting the mapping for Bob’s domain.

Request mappings Upon receiving the request, the mirror locates the certificate

of the authorised certificate log maintainer, and generates proofs that

a) the provided information is the latest information; and
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vk(skmlog), cache := (dg′mlog, N
′
mlog, t

′
mlog, σ

′
mlog)

Domain owner Bob

mlog, σmlog

Mirror

request forexample.com

- P1 := proof that h = h(req, t, dgs, dgbl, dgr, dgi)

is the rightmost leaf in the tree represented by dgmlog

- Locate cert of the authorised CLM for example.com

- P2 := proof of presence that (cert, sign{n, dg, t}sk)

in the ordered data structure presented by dgs

- Locate the subject id of cert in the

ordered data structure represented by dgr

- P3 := proof of presence that (rgx, id) in the

ordered data structure represented by dgr

- m := (σmlog, cert, sign{n, dg, t}sk, rgx, id, h)

(m,P1, P2, P3)

- Verify all signatures

- Verify that example.com is an instance of rgx

- Verify that id is the subject of cert

- Verify (P1, P2, P3)

(dg′mlog, N
′
mlog)

P4 := proof of extension of (dg′mlog, N
′
mlog) into (dgmlog, Nmlog)

P4

Verify P4

Figure 4.5: The protocol presenting how domain owner Bob requests a mapping
for his domain example.com with a mirror of mapping log. In which, σ′

mlog =
sign{t′mlog, dg

′
mlog, N

′
mlog}skmlog

, and σmlog = sign{tmlog, dgmlog, Nmlog}skmlog
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b) the certificate for the certificate log maintainer is recorded in the log;

c) the certificate log maintainer is authorised for the domain.

Loosely speaking, proof a) is the proof that both dgs and dgr are present in

the latest record of the mapping log; proof b) is the proof that the certificate with

subject id is present in dgs; and proof c) is the proof that the mapping from regular

expression rgx to identity id is present in the digest dgr (as presented in the mapping

log structure), such that example.com is an instance of rgx, and id is the identity

of the certificate log maintainer. All proofs should be linked to the latest digest

signed by the mapping log maintainer. If Bob has previously observed a version of

the mlog, then a proof that the current mlog is an extension of the version that Bob

observed will also be provided.

Bob accepts the response if all proofs are valid. He then stores the verified data

in his cache for future connection until the signed digest is expired.

In more detail, after a mirror receives a request from Bob, the mirror ob-

tains the data of the latest element of its copy of the mapping log, denoted h =

h(req, t, dgs, dgbl, dgr, dgi), and generates the proof of its presence in the digest (de-

noted dgmlog) of its log of size N . Then, it generates the proof of presence of the

element (cert, sign{n, dg, t}sk) in the digest dgs for some sign{n, dg, t}sk. This proves
that the certificate log associated to cert is still active. Moreover, it generates the

proof of presence of some element (rgx, id) in the digest dgr, where id is the sub-

ject of cert and example.com is an instance of the regular expression rgx. This

proves that id is authorised to store the certificates of example.com. The mirror

then sends to Bob the hash h, the signature sign{n, dg, t}sk, the regular expression

rgx, the three generated proofs of presence, and the latest signed Mlog time-stamp

containing the time tmlog, and digest dgmlog and size Nmlog of the mapping log.

Bob first verifies the received signed Mlog time-stamp with the public key of

the mapping log maintainer embedded in the browser, and verifies whether tMlog

is valid or not. Then Bob checks that example.com is an instance of rgx, and

verifies the three different proofs of presence. If all checks hold, then Bob sends

the signed Mlog time-stamp containing (t′Mlog, dg
′
mlog, N

′
mlog) that he stored during

a previous connection, and expects to receive a proof of extension of (dg′mlog, N
′
mlog)

into (dgmlog, Nmlog). If the received proof of extension is valid, then Bob stores the
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current signed Mlog time-stamp, and believes that the certificate log with identity

id, certificate cert, and size that should be no smaller than n, is currently authorised

for managing certificates for his domain.

Insert and revoke certificates At the first time when Bob wants to publish a

certificate for his domain, he needs to generate a pair of master signing key, denoted

skm, and verification key. The latter is sent to a certificate authority, which verifies

Bob’s identity and issues a master certificate certm for Bob. After Bob receives his

master certificate, he checks the correctness of the information in the certificate.

The TLS certificate can be obtained in the same way.

To publish the master certificate, Bob signs the certificate together with the

current time t by using the master signing key skm, and sends it together with the

request AddReq to the authorised certificate log maintainer whose signing key is

denoted skclog. The certificate log maintainer checks whether there exists a valid

master certificate for example.com; if there is one, then the log maintainer aborts

the conversation. Otherwise, the log maintainer verifies the validity of time t and

the signature.

If they are all valid, the log maintainer updates the log, generates the proof of

presence that the master certificate for Bob is included in the log, and sends the

signed proof and the updated digest of the log back to Bob. If the signature and

the proof are valid, and the size of the log is no smaller than what the mirror says,

then Bob accepts and stores the response as an evidence of successful certificate

publication. If Bob has previously observed a version of the clog, then a proof that

the current clog is an extension of the version that Bob observed is also required.

Figure 4.6 presents the detailed process to publish the master certificate certm.

After a log maintainer receives and verifies the request from Bob, the log maintainer

updates the log, generates the proof of presence of (h(id), h(certm, dg
a, dgrv)) in

dgid, (rgx, dgid) in dgrgx, and h(reg(sign{certm, t, ‘reg’}skm), Nmlog, dg
rgx) is the last

element in the data structure represented by dgclog, where id is the subject of certm

and an instance of rgx; reg(sign{certm, t, ‘reg’}skm) is the register request to adding

certm into the certificate log with digest dgclog at time t. The log maintainer then

issues a signature on (dgclog, N, h), where N is the size of the certificate log, and

h = h((rgx, dgid), dgrgx, P ), where P is the sequence of the generated proofs, and
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sends the signature σ2 together with (dgclog, N, rgx, dgid, dgrgx, dga, dgrv, P ) to Bob.

If the signature and the proof are valid, and N is no smaller than the size n contained

in the signed Mlog time-stamp that Bob received from the mirror, then Bob stores

the signed (dgclog, N, h), sends the previous stored (dg′clog, N
′) to the certificate log

maintainer, and expects to receive a proof of extension of (dg′clog, N
′) into (dgclog, N).

If the received proof of extension is valid, then Bob believes that he has successfully

published the new certificate.

Note that it is important to send (dg′clog, N
′) after receiving (dgclog, N), because

otherwise the log maintainer could learn the digest that Bob has, then give a pair

(dg′′clog, N
′′) of digest and size of the log such that N ′ < N ′′ < N . This may open a

window to attackers who wants to convince Bob to use a certificate which was valid

in dg′′clog but revoked in dgclog.

In addition, if Bob has run the request mapping protocol more than once, and has

obtained a digest that is different from his local copy of the corresponding certificate

log, then he should ask the certificate log maintainer to prove that one of the digests

is an extension of the other.

The process of adding a TLS certificate is similar to the process of adding a

master certificate, but the log maintainer needs to verify that the TLS certificate is

signed by the valid master signing key corresponding to the master certificate in the

log.

To revoke a (master or TLS) certificate, the domain owner can perform a process

similar to the process of adding a new certificate. For a revocation request with

sign{cert, t}skm , the log maintainer needs to check that sign{cert, t′}skm is already in

the log and t > t′. This ensures that the same master key is used for the revocation.

4.4.2 Certificate verification

When Alice wants to securely communicate with example.com, she sends the con-

nection request to Bob, and expects to receive a master certificate certm and a signed

TLS certificate sign{cert, t}skm from him. To verify the received certificates, Alice

checks whether the certificates are expired. If both of them are still in the validity

time period, Alice requests (as described in 4.4.1) the corresponding mapping from
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vk(sk), skm, cache := (dg′clog, N
′, h′1, σ

′)

Domain owner Bob

sk, clog

Mirror

σ1 := sign{certm, t}skm

(AddReq, certm, t, σ1)

- Check that there is no existing master certificate for Bob

- Verify certm, t, σ1

- add certm, t, σ1 to the log

- dgclog := digest of the log

- N := size of the log

- P1 := proof of presence of h(reg(sign{certm, t, ‘reg’}skm),

Nmlog, dg
rgx) is the N th element in dgclog

- P2 := proof of presence of (rgx, dgid) in dgrgx

- P3 := proof of presence of (h(id), h(certm, dga, dgrv)) in dgid

- P := [P1, P2, P3]

- m := (rgx, dgid, dgrgx, dga, dgrv, P )

- σ2 := sign{dgclog, N, h(m)}sk

(dgclog, N,m, σ2)

- Verify σ2

- Verify each proof in P

(dg′clog, N
′)

P4 := proof of extension of (dg′clog, N
′) into (dgclog, N)

P4

Verify P4

Figure 4.6: The protocol presenting how domain owner Bob communicates with a
mirror of the certificate log to publish a master certificate certm.
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vk(sk), certm, (cert, t), cache := (dg′clog, N
′, t′A, h

′, σ′)

Alice’s browser

sk, clog

Mirror

(VerifReq, tA, cert, certm)

- Locate rgx, certm, cert

- dgclog := digest of the log

- N := size of the log

- P1 := proof of presence of h(req,Nmlog, dg
rgx)

is the N th element in dgclog

- P2 := proof of presence of (rgx, dgid) in dgrgx

- P3 := proof of presence of (h(id), h(certm, dga, dgrv)) in dgid

- P4 := proof of presence of cert in dga

- P := [P1, . . . , P4]

- m := (dga, dgrv, rgx, dgid, req,Nmlog, dg
rgx, P )

- σ := sign{dgclog, N, tA, h(m)}sk

(dgclog, N,m, σ)

- Verify tA and signature with vk(sk)

- Verify each proof in P

(dg′clog, N
′)

P5 := proof of extension of (dg′clog, N
′) into (dgclog, N)

P5

Verify that P5

Figure 4.7: The protocol for verifying a certificate with a mirror of the corresponding
certificate log.
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a mirror to find out the authorised certificate log for example.com, and communi-

cates with the (mirror of) authorised certificate log maintainer to verify the received

certificate.

Note that this verification requests extra communication round trips, but it gives

a higher security guarantee. An alternative way is that Bob provides both certificates

and proofs, and Alice verifies the received proofs directly.

The Figure 4.7 presents the detailed process of verifying a certificate. After

Alice learns the identity of the authorised certificate log, she sends the verification

request V erifReq with her local time tA and the received certificate to the certificate

log maintainer. The time tA is used to prevent replay attacks, and will later be

used for accountability. The certificate log maintainer checks whether tA is in an

acceptable time range (e.g. tA is in the same day as his local time). If it is, then

he locates the corresponding (rgx, dgid) in dgrgx in the latest record of his log such

that example.com is an instance of regular expression rgx, locates (h(id), h(certm,

dga, dgrv)) in dgid and cert in dga, then generates the proof of presence of cert in

dga, (h(id), h(certm, dg
a, dgrv)) in dgid, (rgx, dgid) in dgrgx, and h(req,Nmlog, dg

rgx)

is the latest record in the digest dgclog of the log with size N . Then, the certificate

log maintainer signs (dgclog, N, tA, h), where h = h(m) such that m = (dga, dgrv,

rgx, dgid, req,Nmlog, dg
rgx, P ), and P is the set of proofs, and sends (dgclog, N, σ) to

Alice.

Alice should verify that Nmlog is the same as her local copy of the size of mapping

log. If the received Nmlog is greater than the copy, then it means that the mapping

log is changed (it rarely happens) and Alice should run the request mapping protocol

again. If Nmlog is smaller, then it means the certificate log maintainer has misbe-

haved. Alice then verifies the signature and proofs, and sends the previously stored

dg′clog with the size N ′ to the log maintainer, and expects to receive the proof of

extension of (dg′clog, N
′) into (dgclog, N). If they are all valid, then Alice replaces the

corresponding cache by the signed (dgclog, N, tA, h) and believes that the certificate

is an authentic one.

In order to preserve privacy of Alice’s browsing history, instead of asking Alice

to query all proofs from the log maintainer, Alice can send the request to Bob who

will redirect the request to the log maintainer, and redirect the received proofs from

the log maintainer to Alice.
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With DTKI, Alice is able to verify whether Bob’s domain has a certificate by

querying the proof of absence of certificates for example.com in the corresponding

certificate log. This is useful to prevent TLS stripping attacks, where an attacker

can maliciously convert an HTTPS connection into an HTTP connection.

4.4.3 Log verification

Users of the system need to verify that the mapping log maintainer and certificate

log maintainers did update their log correctly according to the requests they have

received, and certificate log maintainers did follow the latest mappings specified in

the mapping log.

These checks can be easily done by a trusted monitor. However, to reduce the

need of trusted parties, DTKI uses a crowdsourcing-like method, based on random

checking, to monitor the correctness of the public log. The basic idea of random

checking is that each user randomly selects a record in the log, and verifies whether

the request and data in this record have been correctly managed. If all records

are verified, the entire log is verified. Users only need to run the random checking

periodically (e.g. once a day). We provide some examples of the random checking.

Example 4.7 presents the random checking process to verify the correct behaviour

of the mapping log.

Example 4.7. Suppose verifier has randomly selected the kth record of the mapping

log, and the record has the form h(add(rgx, id), tk, dg
s
k, dg

bl
k , dg

r
k, dg

i
k). The verifier

should check that all digests in this record are updated from the (k − 1)th record by

adding a new mapping (rgx, id) in the mapping log at time tk.

Let the label of the (k − 1)th record be h(reqk−1, tk−1, dg
s
k−1, dg

bl
k−1, dg

r
k−1, dg

i
k−1),

then to verify the correctness of this record, the verifier should run the following

process:

• tk > tk−1;

• verify that dgsk = dgsk−1 and dgblk = dgblk−1; and

• verify that dgrk is the result of adding (rgx, id) into dgrk−1; and

• verify that dgik is the result of replacing (id, dgirgxk−1 ) in dgik−1 by (id, dgirgxk ); and
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• verify that dgirgxk is the result of adding rgx into dgirgxk−1 .

Note that all proofs required in the above are given by the log maintainer. If the

above tests succeed, then the mapping log maintainer has behaved correctly for this

record.

Every time a certificate log maintainer is blacklisted by the mapping log main-

tainer, Bob checks the authenticity of the master certificate for his domain stored

in the corresponding certificate log.

In addition, we need to ensure that the mapping log maintainer and certificate log

maintainers behaved honestly. In particular, we need to ensure that the mapping log

maintainer and certificate log maintainers did update their log correctly according to

the request, and certificate log maintainers did follow the latest mappings specified

in the mapping log.

The verification on the certificate log is similar to the mapping log. However,

there is one more thing needed to be verified – the synchronisation between the

mapping log and certificate logs. This verification includes that the certificate log

only manage the certificates for domains they are authorised to (according to the

mapping log); and if there are modifications on the mapping, then the corresponding

certificate log maintainer should add or remove all certificates according to the

modified mapping. We present an example to show what a verifier should do to

verify that the certificate log was authorised to add or remove a certificate.

Example 4.8. Suppose the verifier has randomly selected the kth record of a certifi-

cate log, and the record has the form h(reg(sign{certTLS, t, ‘reg’}sk), Nk, dg
rgx
k ), where

dgrgxk is the digest of ordered sequence of format (rgx, dgidk ), dg
id
k is the digest of or-

dered sequence of format (h(id), h(certm, dg
a
k , dg

rv
k )), certm is a master certificate,

and certTLS is a TLS certificate. Let dgrgxk−1 be the digest in the k − 1th record, and

similarly for dgidk−1, dgak−1 ,dgrvk−1. Let the subject of certTLS be id′. The verifier

should verify the following tests:

• Verify that sign{certTLS, t}sk is correctly signed according to certm; and

• Verify that certm is not expired, and shares the same subject id′ with certTLS,

and id′ = id; and

• Verify that dgak is the result of adding certTLS into dgak−1; and
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• Verify that dgidk is the result of replacing

(h(id), h(certm, dg
a
k−1, dg

rv
k−1)) by (h(id), h(certm, dg

a
k , dg

rv
k )) in dgidk−1; and

• Verify that dgrvk = dgrvk−1; and

• Verify that dgrgxk is the result of replacing (rgx, dgidk−1) by (rgx, dgidk ) in dgrgxk−1;

and

• Verify that (rgx′, id′′) is in the dgrNk
of the N th

k element of the mapping log,

such that rgx′ = rgx, and id′ is the identity of the certificate log.

If the above tests succeed, then the certificate log maintainer behaves correctly on

this record.

4.5 Security Analysis

We consider an adversary who can compromise the private key of all infrastructure

servers in DTKI. In other words, the adversary can collude with all log servers and

certificate authorities to launch attacks.

Main result Our security analysis shows that

• if the distributed random checking has verified all required tests, and domain

owners have successfully verified their initial master certificates, then DTKI

can prevent attacks from the adversary; and

• if the distributed random checking has not completed all required tests, or do-

main owners have not successfully verified their initial master certificates, then

an adversary can launch attacks, but the attacks will be detected afterwards.

We analyse the main security properties of the DTKI protocol using theTamarin

prover [MSCB13]. Since Tamarin prover supports an unbounded number of in-

stances and reasoning about protocols with mutable global state, it is suitable for

our log-based protocol. We provide all source codes and files required to understand

and reproduce our security analysis at Appendix A. In particular, these include the

complete DTKI models and the verified proofs.
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Modeling aspects We used several abstractions during modeling. We model our

log as lists, similar to the abstraction used in [BCK+14]. We also assume that the

random checking is verified, and participants can see the same log.

We model the protocol roles D (domain server), M (mapping log maintainer),

C (certificate log maintainer), and CA (certificate authority) by a set of rewrite

rules. Each rewrite rule typically models receiving a message, taking an appropriate

action, and sending a response message. Our modeling approach is similar to the

one used in most Tamarin models. Our modeling of the roles directly corresponds

to the protocol descriptions in the previous sections. Tamarin provides built-in

support for a Dolev-Yao style network attacker, i.e., one who is in full control of

the network. We additionally specify rules that enable the attacker to compromise

service providers, namely the mapping log maintainer, certificate log maintainers

and CAs, learn their secrets, and modify public logs.

Our final DTKI model (presented in Appendix A) consists of 959 lines for the

base model and five main property specifications, examples of which we will give

below.

Proof goals We state several proof goals for our model, exactly as specified in

Tamarin’s syntax. Since Tamarin’s property specification language is a fragment

of first-order logic, it contains logical connectives (|, &, ==>, not, ...) and quantifiers

(All, Ex). In Tamarin, proof goals are marked as lemma. The #-prefix is used to

denote timepoints, and “E @ #i” expresses that the event E occurs at timepoint i.

The first goal is a check for executability that ensures that our model allows for

the successful transmission of a message. It is encoded in the following way.

lemma protocol_correctness:

exists-trace

" /* It is possible that */

Ex D Did m rgx ltpkD stpkD #i1.

/* The user has sent an encrypted message aenc{m}stpkD to domain

server D whose identity is Did and TLS key is stpk, and the user

received from D a confirmation h(m) of receipt. */

Com_Done(D, Did, m, rgx, ltpkD, stpkD) @ #i1

/* without the adversary compromising any party. */
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& not (Ex #i2 CA ltkCA.

Compromise_CA(CA,ltkCA) @ #i2)

& not (Ex #i3 C ltkC.

Compromise_CLM(C,ltkC) @ #i3)

& not (Ex #i4 M ltkM.

Compromise_MLM(M,ltkM) @ #i4)

"

The property holds if the Tamarin model exhibits a behaviour in which a

domain server received a message without the attacker compromising any service

providers. This property mainly serves as a sanity check on the model. If it did

not hold, it would mean our model does not model the normal (honest) message

flow, which could indicate a flaw in the model. Tamarin automatically proves this

property in 49 steps and generates the expected trace in the form of a graphical

representation of the rule instantiations and the message flow.

We additionally proved several other sanity-checking properties to minimize the

risk of modeling errors.

The second example goal is a secrecy property with respect to a classical attacker,

and expresses that when no service provider is compromised, the attacker cannot

learn the message exchanged between a user and a domain server. Note that K(m)

is a special event that denotes that the attacker knows m at this time.

lemma message_secrecy_no_compromised_party:

"

All D Did m rgx ltpkD stpkD #i1.

/* The user has sent an encrypted message aenc{m}stpkD to domain

server D whose identity is Did and TLS key is stpk, and the user

received from D a confirmation h(m) of receipt. */

(Com_Done(D, Did, m, rgx, ltpkD, stpkD) @ #i1

/* and no party has been compromised */

& not (Ex #i2 CA ltkCA.

Compromise_CA(CA,ltkCA) @ #i2)

& not (Ex #i3 C ltkC.

Compromise_CLM(C,ltkC) @ #i3)
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& not (Ex #i4 M ltkM.

Compromise_MLM(M,ltkM) @ #i4)

)

==>

( /* then the adversary cannot know m */

not (Ex #i5. K(m) @ #i5)

)

"

Tamarin proves this property automatically (in 575 steps).

The above result implies that if a domain server D, whose domain name is Did

such that Did is an instance of regular expression rgx, receives a message that was

sent by a user, and the attacker did not compromise server providers, then the

attacker will not learn the message.

The next two properties encode the unique security guarantees provided by our

protocol, in the case that even all service providers are compromised.

The first main property we prove is that when all service providers (i.e. CAs,

the MLM, and CLMs) are compromised, and the domain owner has successfully

verified his master certificate in the log, then the attacker cannot learn the message

exchanged between a user and a domain owner. It is proven automatically by

Tamarin in 5369 steps.

lemma message_secrecy_compromise_all_domain_verified_master_cert:

"

All D Did m rgx ltpkD stpkD #i1.

/* The user has sent an encrypted message aenc{m}stpkD to domain

server D whose identity is Did and TLS key is stpk, and the user

received from D a confirmation h(m) of receipt. */

(Com_Done(D, Did, m, rgx, ltpkD, stpkD) @ #i1

/* and at an earlier time, the domain server has verified his

master certificate */

& Ex #i2.

VerifiedMasterCert(D, Did, rgx, ltpkD) @ #i2

& #i2 < #i1

)

==>

( /* then the adversary cannot know m */

not (Ex #i3. K(m) @ #i3)

)

"
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The property states that if a domain server D receives a message that was sent by

a user, and at an earlier time, the domain server has verified his master certificate,

then even if the attacker can compromise all server providers, the attacker cannot

learn the message.

The final property states that when all service providers can be compromised,

and a domain owner has not verified his/her master certificate, and the attacker

learns the message exchanged between a user and the domain owner, then afterwards

the domain owner can detect this attack by checking the log. It is also verified by

Tamarin within a few minutes.

lemma detect_bad_records_in_the_log_when_master_cert_not_verified:

"

All D Did m rgx ltpkD flag stpkD #i1 #i2 #i3.

/* The user has sent an encrypted message aenc{m}stpkD to domain

server D whose identity is Did and TLS key is stpk, and the user

received from D a confirmation h(m) of receipt. */

(Com_Done(D, Did, m, rgx, ltpkD, stpkD) @ #i1

/* and the adversary knows m */

& K(m) @ #i2

/* and we afterwards check the log */

& CheckedLog(D, Did, rgx, ltpkD, flag, stpkD) @ #i3

& #i1 < #i3)

==>

( /* then we can detect a fake record in the log */

(flag = ’bad’)

)

"

4.6 Performance Evaluation

Assumptions We assume that the size of a certificate log is 108 (the total number

of registered domain names currently is 2.71× 108 [Dom14], though only a fraction

of them have certificates). In addition, we assume that the number of stored regular

expressions, the number of certificate logs, and the size of the mapping log are 1000

each. (In fact, if we assume a different number or size (e.g. 100 or 10000) for them,
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it makes almost no difference to the conclusion). Moreover, in the certificate log, we

assume that the size of the set of data represented by dgrgx is 10, by dgid is 105, by

dga is 10, and by dgrv is 100. These assumptions are based on the fact that dgrgx

represents the set of regular expressions maintained by a certificate log; the dgid

represents the set of domains which is an instance of a regular expression; and dga

and dgrv represent the set of currently valid certificates and the revoked certificates,

respectively. Furthermore, we assume that the size of a certificate is 1.5 KB, the

size of a signature is 256 bytes, the length of a regular expression and an identity is

20 bytes each, and the size of a digest is 32 bytes.

Space Based on these assumptions, the approximate size of the transmitted data

in the protocol for publishing a certificate is 4 KB, for requesting a mapping is 3 KB,

and for verifying a certificate is 5 KB. Since the protocols for publishing a certificate

and requesting a mapping are run occasionally, we mainly focus on the cost of the

protocol for verifying a certificate, which is required to be run between a log server

and a web browser in each secure connection.

By using Wireshark, we2 measure that the size of data for establishing an HTTPS

protocol to log-in to the internet bank of HSBC, Bank of America, and Citibank

are 647.1 KB, 419.9 KB, and 697.5 KB, respectively. If we consider the average size

(≈588 KB) of data for these three HTTPS connections, and the average size (≈6

KB) of data for their corresponding TLS establishment connections, we have that

in each connection, DTKI incurs 83% overhead on the cost of the TLS protocol.

However, since the total overhead of an HTTPS connection is around 588 KB, so

the cost of DTKI only adds 0.9% overhead to each HTTPS connection, which we

consider acceptable.

Time Our implementation uses a SHA-256 hash value as the digest of a log and a

2048 bit RSA signature scheme. The time to compute a hash3 is ≈ 0.01 millisecond

(ms) per 1KB of input, and the time to verify a 2048 bit RSA signature is 0.48

ms. The approximate verification time on the user side needed in the protocol for

verifying certificates is 0.5 ms.

2We use a MacBook Air 1.8 GHz Intel Core i5, 8 GB 1600 MHz DDR3.
3SHA-256 on 64 byte size block.
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Hence, on the user side, the computational cost on the protocol for verifying

certificates incurs 83% on the size of data for establishing a TLS protocol, and 0.9%

on the size of data for establishing an HTTPS protocol; the verification time on the

protocol for verifying certificates is 1.25 % of the time for establishing a TLS session

(which is approximately 40 ms measured with Wireshark on the TLS connection to

HSBC bank).

4.7 Comparison

Following our evaluation of existing proposals (as shown in Table 3.2), the only

feature that DTKI does not offer is offline verification. This is the sacrifice that

DTKI made in exchange for a strong security guarantee.

As mentioned previously, DTKI builds upon a wealth of ideas from SK [Eck12],

CT [LLK13], CIRT [Rya14], and AKI [KHP+13]. It is more interesting to see the

comparison among these systems in the same category, i.e. certificate management

transparency. Figure 4.2 shows the dimensions along which DTKI aims to improve

on those systems.

Compared with CT, DTKI supports revocation by enabling log providers to offer

proofs of absence and currency of certificates. In CT, there is no mechanism for

revocation. CT has proposed additional data structures to hold revoked certificates,

and those data structures support proofs of their contents [LK12]. However, there is

no mechanism to ensure that the data structures are maintained correctly in time.

Compared to CIRT, DTKI extends the log structure of CIRT to make it suitable

for multiple log maintainers, and provides a stronger security guarantee as it prevents

attacks rather than merely detecting them. In addition, the presence of the mapping

log maintainer and multiple certificate log maintainers create some extra monitoring

work. DTKI solves it by using a detailed crowd-sourcing verification system to

distribute the monitoring work to all users’ browsers.

Compared to AKI and ARPKI, in DTKI the log providers can give proof that

the log is maintained append-only from one step to the next. The data structure in

A(RP)KI does not allow this, and therefore they cannot give a verifiable guarantee

to the clients that no data is removed from the log.

DTKI improves the support that CT and A(RP)KI have for multiple log providers.
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In CT and AKI, domain owners wishing to check if there exists a log provider that

has registered a certificate for him has to check all the log providers, and therefore

the full set of log providers has to be fixed and well-known. This prevents new log

providers being flexibly created, creating an oligopoly. In contrast, DTKI requires

the browsers only to have the MLM public key built-in, minimising the oligopoly

element.

In DTKI, trusted monitors are optional, as it uses crowd-sourced verification.

More precisely, a trusted monitor’s verification work can be done probabilistically

in small pieces by users’ browsers.

Unlike the mentioned previous work, DTKI allows the possibility that all service

providers (i.e. the MLM, CLMs, and mirrors) to collude together, and can still

prevent attacks. In contrast, SK and CT can only detect attacks, and to prevent

attacks, A(RP)KI requires that not all service providers collude together. Similar to

A(RP)KI, DTKI also assumes that the domain is initially registered by an honest

party to prevent attacks, otherwise A(RP)KI and DTKI can only detect attacks.

Similar to CT and AKI, DTKI also protects user privacy – instead of asking users

to query all proofs from the log maintainer, the domain servers gather the proof

of presence and proof of currency from the log maintainer, and send the certificate

along with these proofs to the users. The user still needs to query the proof of

consistency, but this does not expose the browsing history.

4.8 Discussion

Responding to incorrect proofs How should the browser (and the user) respond

if a received proof (e.g., a proof of presence in the log) is incorrect? Such situations

should be handled in the background by the software in the browser that verifies

proofs, and be sent to domain owners for further investigations. The browser can

also present errors to the user in the same way as the current state of the art. So,

the user interface will remain the same. For example, a user might be shown two

options, i.e. either to continue anyway, or not to trust the certificate and abort this

connection. Another possible way is to hard fail if the verification has not been

succeeded, as suggested by Google certificate transparency. However, this might be

an obstacle for deploying DTKI in early stages.
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SK [Eck12] CT [LLK13] AKI [KHP+13] ARPKI [BCK+14] DTKI

Terminology

Log provider Time-line
server

Log Integrity log server
(ILS)

ILS Log maintainer

Log extension - Log consistency - - Log extension

Trusted party Mirror Auditor &
monitor

Validator Validator† -

Whether answers to queries rely on
trusted parties or are accompanied
by a proof

Certificate-in-log query: Rely Proof Proof Proof Proof

Certificate-current-in-log query: Rely Rely Proof Proof Proof

Subject-absent-from-log query: Rely Rely Proof Proof Proof

Log extension query: Rely Proof Rely Rely Proof

Non-necessity of trusted monitors

The role of trusted monitors can be
distributed to browsers

No No No+ No+ Yes

Trust assumptions

Not all service providers collude together Yes Yes Yes Yes No

Domain is initially registered by an
honest party

No No Yes* Yes* Yes*

Security guarantee

Attacks detection or prevention Detection Detection Prevention Prevention Prevention

Oligopoly issues

Log providers required to be built into
browser (oligopoly)

Yes Yes Yes Yes Only the MLM

Monitors required to be built into
browser (oligopoly and trust non-agility)

Yes No Yes Yes† No

+ The system limits the trust in each server by letting them to monitor each other’s behaviour.

* Without the assumption, the security guarantee is detection rather than prevention.

† The trusted party is optional.

Table 4.2: Comparison of log-based approaches to certificate management. Termi-
nology helps compare the terminology used in the papers. How queries rely on
trusted parties shows whether responses to browser queries come with proof of
correctness or rely on the honesty of trusted parties. Necessity of trusted par-
ties shows whether the TP role can be performed by browsers. Trust assumptions
shows the assumption for the claimed security guarantee. Oligopoly issues shows
the entities that browsers need to know about.
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Coverage of random checking As mentioned previously, several aspects of the

logs are verified by user’s browsers performing randomly-chosen checks. The number

of things to be checked depends on the size of the mapping log and certificate logs.

The size of the mapping log mainly depends on the number of certificate logs and

the mapping from regular expressions to certificate logs; and the size of certificate

logs mainly depends on the number of domain servers that have a TLS certificate.

Currently, there are 2.71 × 108 domains [Dom14] (though not every domain has a

certificate), and 3×109 internet users [Int14]. Thus, if every user makes one random

check per day, then everything will on average, be checked 10 times per day.

Another way to see this is that the probability of a given domain not being

checked on a given day (or. week) is (1 − 1
2.71×108

)3×109 ≈ 1.56 × 10−5 (resp. ((1 −
1

2.71×108
)3×109)7 ≈ 2.25 × 10−34). Thus, the expected number of unchecked domains

per day (resp. per week) is 4.23× 103 (resp. 6.10× 10−26).

Gossip protocol A potential problem in CT or CIRT arises if an attacker shows

different versions of the log to different clients. This is sometimes called the “bubble”

problem; two clients in different bubbles could see different keys for the same subject.

A gossip protocol is a mechanism that allows clients of a log to directly exchange

digests of the log, in order to ensure that they have the same view of the log. If

Alice holding digest dgA receives a digest dgB from Bob, she can challenge the log

maintainer to prove that dgA and dgB are related by extension. Gossip protocols for

log transparency are currently being specified [Nor14a, Nor14b, CSP+15]. In DTKI,

we also assume gossip protocols [JVG+07] are used to disseminate digests of the log.

Accountability of mis-behaving parties The main goal of new certificate man-

agement schemes such as CT, CIRT, AKI, ARPKI and DTKI is to address the

problem of mis-issued certificates, and to make the mis-behaving (trusted) parties

accountable.

In DTKI, a domain owner can readily check for rogue certificates for his domain.

First, he queries a mirror of the mapping log maintainer to find which certificate log

maintainers (CLMs) are allowed to log certificates for the domain (section 4.4). Then

he examines the certificates for his domain that have been recorded by those CLMs.

The responses he obtains from the mirror and the CLMs are accompanied by proofs.
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If he detects a mis-issued certificate, he requests revocation in the CLM. If that is

refused, he can complain to the top-level domain, who in turn can request the MLM

to change the CLM for his domain (after that, the offending CLM will no longer

be consulted by browsers). This request should not be refused because the MLM

is governed by an international panel. The intervening step, of complaining to the

top-level domain, reflects the way domain names are actually managed in practice.

Different top-level domains have different terms and conditions, and domain owners

take them into account when purchasing domain names. In DTKI, log maintainers

are held accountable because they sign and time-stamp their outputs. If a certificate

log maintainer issues an inconsistent digest, this fact will be detected and the log

maintainer can be blamed and blacklisted. If the mapping log misbehaved, then its

governing panel must meet and resolve the situation.

In certificate transparency, this process is not as smooth. Firstly, the domain

owner doesn’t get proof that the list of issued certificates is complete; he needs to

rely on monitors and auditors. Next, the process for raising complaints with log

maintainers who refuse revocation requests is less clear (indeed, the RFC [LLK13]

says that the question of what domain owners should do if they see an incorrect log

record is beyond scope of their document). In CT, a domain owner has no ability

to dissociate himself from a log maintainer and use a different one.

AKI addresses this problem by saying that log maintainer that refuses to un-

register an record will eventually lose credibility through a process managed by

validators, and will be subsequently ignored. The details of this credibility man-

agement are not very clear, but it does not seem to offer an easy way for domain

owners to control which log maintainers are relied on for their domain.

Master certificate concerns One concern is that a CA might publish fake mas-

ter certificates for domains that the CA doesn’t own and are not yet registered.

However, this problem is not likely to occur: CAs are businesses, they cannot af-

ford the bad press from negative public opinion and they cannot afford the loss of

reputation. Hence, they will only want to launch attacks that would not be caught.

(Such an adversary model has been described by Franklin and Yung [FY92], Canetti

and Ostrovsky [CO99], Hazay and Lindell [HL08], and Ryan [Rya14]). In DTKI, if

a CA attempts to publish a fake master certificate for some domain, it will have to
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leave evidence of its misbehaviour in the log, and the misbehaviour will eventually

be detected by the genuine domain owner.

Another concern is the assumption that the domain owners can securely handle

their master keys. In practice, the domain owners might have problems looking after

their master keys due to lack of awareness of good practices. This problem arises in

any web PKI: it is assumed that domain owners can securely handle their TLS keys.

Our system adds one more key (the master key) to that requirement. A possible

practical solution for domain owners is to use a trustworthy service to handle TLS

keys (and the master key); the details are beyond the scope of the thesis.

Avoidance of oligopoly As we mentioned in the introduction, the predecessors

(SK, CT, CIRT, AKI, ARPKI) of DTKI do not solve a foundational issue, namely

oligopoly. These proposals require that all browser vendors agree on a fixed list of

log maintainers and/or validators, and build it into their browsers. This means there

will be a large barrier to create a new log maintainer.

CT has some support for multiple logs, but it doesn’t have any method to allocate

different domains to different logs. In CT, when a domain owner wants to check

whether mis-issued certificates are recorded in logs, he needs to contact all existing

logs, and download all certificates in each of the logs, because there is no way to

prove to the domain owner that no certificates for his domain is in the log, or to

prove that the log maintainer has showed all certificates in the log for his domain

to him. Thus, to be able to detect fake certificates, CT has to keep a very small

number of log maintainers. This prevents new log providers being flexibly created,

creating an oligopoly.

In contrast to its predecessors, DTKI does not have a fixed set of certificate log

maintainers (CLMs) to manage certificates for domain owners, and it allows oper-

ations of adding or removing a certificate log maintainer by updating the mapping

log. In DTKI, the public log of the MLM is the only thing that browsers need to

know.

The MLM may be thought to represent a monopoly; to the extent that it does, it

is likely to be a much weaker monopoly than the oligopoly of CAs or log maintainers.

CAs and log maintainers offer commercial services and compete with each other, by

offering different levels of service at different price points in different markets. The
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MLM should not offer any commercial services; it should perform a purely adminis-

trative role, and is not required to be trusted because it behaves fully transparently

and does not manage any certificates for web domains. In addition, the MLM is ex-

pected to be operated by an international panel with a lot of members. In practice,

we expect ICANN to be the MLM, as it is responsible for coordinating name-spaces

of the Internet, and is governed by a Governmental Advisory Committee containing

representatives from 111 states. However, there might be concerns here, including

the concern that ICANN might not be interested to be the MLM, due to the fact

that the service won’t generate any revenue. Our solution does not address political

issues around making decisions of whether to add or remove some CLMs or not.

Additional latency DTKI introduces additional round-trips in the TLS connec-

tion to verify certificates and prevent potential attacks. This will add some extra

latency to the TLS connection. This may be considered justified by the fact that

DTKI offers a strong security guarantee.

In fact, the additional latency can be eliminated by delaying the added verifica-

tion process from the user side. In this case, users obtain a slightly weaker security

guarantee: they are still able to verify the authenticity of received certificates after-

wards and therefore can detect mis-issued certificates.

Synchronisation concerns The synchronisation among a large number (e.g.

thousands) of participants is normally a difficult task. However, in DTKI, the

synchronisation among the MLM and CLMs is not expected to be a problem. First,

the mapping log is rarely changed – it will be changed only if a new CLM has been

added or terminated. In the steady state, this is likely to be no more than a few

times per year. Second, the MLM can send the corresponding update request to

CLMs in advance, and the synchronisation process is allowed to take an acceptable

time period. During this time period, users will use the current logs until all logs

are synchronised. Third, the MLM can terminate a CLM that has failed to update

on time (e.g. have not finished the update process in a certain time period). So, in

a long run, all parties will be able to do their work properly.
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4.9 Conclusion

In the category of certificate management transparency, sovereign keys (SK), certifi-

cate transparency (CT), accountable key infrastructure (AKI), certificate issuance

and revocation transparency (CIRT), and attack resilient PKI (ARPKI) are recent

proposals to make public key certificate authorities more transparent and verifiable,

by using public logs. CT is currently being implemented in servers and browsers.

Google is building a certificate transparency log containing all the current known

certificates, and is integrating verification of proofs from the log into the Chrome

web browser.

Unfortunately, as it currently stands, CT risks creating an oligopoly of log main-

tainers (as discussed in section 4.8), of which Google itself will be a principal one.

Therefore, adoption of CT risks investing more power about the way the internet is

run in a company that arguably already has too much power.

We proposed DTKI – a transparent public key validation system using an im-

proved construction of public logs. DTKI can prevent attacks based on mis-issued

certificates, and minimises undesirable oligopoly situations by using the mapping

log. In addition, since devising new security protocols is notoriously error-prone,

we provide a formalisation of DTKI, and formally proved its security properties by

using Tamarin prover.



Part III

Key compromise in secure

communication
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CHAPTER 5

KEY USAGE DETECTION

5.1 Introduction

The previous chapter introduces how to provide the authenticity of public keys

when an attacker is able to compromise certificate authorities. However, even if the

authenticity of keys is guaranteed, the confidentiality of encrypted data still relies

on another assumption that the associated decryption key has not been exposed to

attackers. In particular, it requires that the device performing the crypto operations

is free of malware. In practice, this assumption is hard to justify.

This chapter explores ways in which some security guarantees can be obtained,

even if the end-point devices have software vulnerabilities that allow an attacker

to obtain keys and/or control the device. Although we consider situation in which

the device is controlled by an adversary, we assume that devices are periodically

trustworthy. That is, a device may become vulnerable or infected at any time, but

at some later time it will be again made secure. In other words, we assume that

users periodically successfully perform malware scans, operating system upgrades,

and software updates, bringing their devices back into a trustworthy state.

If a device is compromised by exploiting software vulnerabilities, and is then

made secure again, the attacker remains in possession of secrets (such as keys) he

obtained during the compromise. Since victims do not know when compromises take

place, they are not motivated to revoke their keys. In reality, it is impractical to

ask users to manually revoke their keys and distribute new ones after every security

update.

We develop messaging protocols that allow users to detect if their long-term

keys have been compromised and are being used by an attacker. It is clear that if

81
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a recipient’s device becomes temporarily compromised and leaks all of its secrets,

it is impossible to ensure the secrecy of messages sent during the compromised

period. Informally speaking, we achieve the following unique security guarantee: if

an attacker abuses previously compromised secrets to learn the contents of messages

sent during trustworthy periods, for example by using the recipient’s long-term key

to impersonate him, then the recipient will detect this has happened. This detection

is done by presenting information about which devices (keys) have been used, which

the user can verify against her own experience and recollection (see Figure 5.3).

We achieve this by exploiting temporary asymmetric keys to limit attack windows,

whose public keys are sent to a log server to enable attack detection. We call this

approach “key usage detection” (KUD).

We minimise the burden placed on users: in particular, reflecting the fact that

it is perceived as a burden to do so, we do not require that users routinely change

passwords and regenerate long-term keys. This means that an attacker that has

compromised a device and obtained its secrets continues to possess the secrets even

after the device has been restored to a trustworthy state.

Our proposal not only detects situations in which the adversary has copied a key

and uses it, but also situations in which he has access to a key but is not able to

copy it (for example, if a key is protected in a Trusted Platform Module (TPM)).

Use case We expect our protocol will be most useful for high-value targets that

may be the victim of a determined attack. This can include politicians, senior com-

pany executives and civil servants that typically conduct business using commodity

devices, as well as professional users, such as doctors, lawyers, engineers, patent

attorneys, that have to deal in confidential documents and need this extra layer

of security. These are cases in which attackers may be highly motivated to breach

confidentiality.

Those users will take all the precautions available to ensure the confidentiality of

messages they send and receive. Our protocol offers them an extra layer of security:

it enables a user to detect if a malfeasor has obtained her private key, and is using

it surreptitiously. Our protocol doesn’t defend against all attacks, but it raises the

bar for the attacker. It allows detection of key usage if the legitimate device in

possession of the key is either restored to a secure state, or is switched off.
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Key usage detection could be applied to solve other problems. One example is

to apply it to identity-based signatures (IBS) to mitigate the key escrow problem,

as it allows a signer to detect that an unauthorised signature (e.g. one made by the

identity provider) has been issued.

We proceed in the following way. We detail our attacker model and security goals

in Section 5.2 and present our key usage detection protocols in Section 5.3. The

detailed implementation of our messaging protocol is presented in Section 5.4, and

its security is formally proved in Section 5.5. We present performance evaluations

in Section 5.6, and conclude this chapter in Section 5.7.

5.2 Threat model and design goals

Assumptions We assume a role called sender, that sends messages, and another

one called receiver, that receives messages. Users can perform one or both of those

roles. Each user has one or more devices, and can pick any of his/her devices to

send a message, and can receive messages on any of them. We use Sally and Robert

to refer to an arbitrary sender and receiver, respectively.

Threat model The attacker has control over the network, but not completely. This

means he can eavesdrop, modify, insert and suppress any messages, and as many of

them he wants, but he cannot suppress or modify all the messages. In other words,

we assume that Sally and Robert can eventually exchange an unmodified message1.

In addition, the attacker may compromise any user’s devices at any time. After

compromising a device, the attacker fully controls it, and can retrieve and store all

the data (including secret keys) that are stored on it.

Periodically and routinely, users detect and remove malware on their devices,

upgrade the operating system, and install software patches that remove known vul-

nerabilities. This can put the device back into a trustworthy state. The users do

not regenerate long-term keys or change passwords.

Thus, we assume that devices are periodically trustworthy. An attacker compro-

mises the device by exploiting a vulnerability, and sometime later the device owner

1In practice, this can be achieved in many ways, such as by using diverse channels. For example,
although two Hotmail users can be intercepted completely when the adversary controls the Hotmail
servers, they can still get an unmodified message through by using Gmail.
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compromised compromised compromised

. . . . . .

secure secure secure

t1 t′1 t2 t′2 tn t′n

Figure 5.1: A device is compromised at time t1, and then restored into a secure
state at time t′1. This cycle is repeated. Thus, the device is in a compromised state
during the intervals {(tj, t′j) | j ∈ {1, 2, 3, . . .}}.

restores it into a secure state. This cycle repeats, as illustrated in Figure 5.1.

The problem Once a device is compromised, then the victim’s secrets stored in

the device are exposed to the attacker. Performing security updates and removing

malware is insufficient to prevent the attacker masquerading as the victim.

Security goals To solve this problem, our system detects key usages by the at-

tacker. We state our security goal here, and explain how to achieve the goal in

the following sections. In the security statements below, we assume a parameter ζ,

which is a time period set by the user. A shorter ζ brings greater security. How-

ever, devices are automatically unregistered from the system if they are not used for

periods longer than ζ, and have to be re-registered. Thus, a very short ζ reduces

usability. Typically, ζ would be about two days. We discuss ζ and other system

parameters later.

In the next section, we develop two protocols: the basic KUD protocol and full

KUD messaging application. These offer slightly different guarantees.

• Basic KUD protocol.

Suppose receiver Robert’s device is compromised during the periods {(tj, t′j) |
j ∈ N}. Suppose a message is sent by sender Sally at time t from a device in

a trustworthy state, and the plaintext is obtained by the attacker. Robert can

detect this attack provided his device

– was well within a trustworthy state when the message was sent; that is,

t′j + ζ ≤ t ≤ tj+1 − ζ for some j.

• Messaging application (many users each with many devices).

Suppose Robert’s devices are periodically compromised, as before: Di is com-

promised during the intervals
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{(ti,j, t′i,j) | j ∈ N}. Suppose a message is sent by Sally at time t from a device

in a trustworthy state, and the plaintext is obtained by the attacker. Robert

can detect this attack provided, for each of his devices Di,

– Di was well within a trustworthy state when the message was sent; that

is, t′i,j + ζ ≤ t ≤ ti,j+1 − ζ for some j, or

– Di was in a compromised state, but had not been used by Robert since

t− ζ.

The last condition reflects the fact that one can tell that a device has been

compromised if the device was not being used at the time its key was used.

Later, in Section 5.3.2, we show the user interface that allows a user to check

this.

As part of our solution, we introduce an auxiliary role called the log maintainer.

In practice, there can be one or more agents acting as log maintainers. We do not

require that any of these log maintainers are trusted and assume that the attacker

controls them.

5.3 Overview

We present an overview of two protocols for Key Usage Detection (KUD). In the

first, the participants are a single sender and a single receiver, assisted by a log

maintainer. This situation is too simple to be useful, but serves to illustrate the

core concepts. The second protocol is more involved; there are multiple senders

and receivers, and each of them has multiple devices. This reflects a more realistic

situation, and the multiple devices assist in the detection of attacks.

5.3.1 The basic protocol

Our solution involves three roles: senders, receivers, and a log maintainer. We

assume all of these can be compromised. We assume a log maintainer is capable of

receiving data and storing it in an append-only log.

During the bootstrapping phase, the receiver Robert obtains or generates a long-

term signing and verification key pair (skR, vkR), and the sender Sally obtains an
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authentic copy of vkR. The log maintainer has a signing key skL, and Robert and

Sally have an authentic copy of the corresponding verification key vkL. How these

keys are securely distributed is not the subject of this chapter; we assume it can be

done through PKIs such as the DTKI presented in the previous chapter.

The log maintainer signs and publishes digests of the log, and provides supported

proofs as presented in the previous chapter.

Sally and Robert track the digests issued by the log, all the time checking the

proofs issued by the log that later digests represent extensions of earlier ones. Sally

and Robert also periodically directly exchange the digests they know about, and

request and check proofs of extension of those digests with respect to those they

already have. Our assumption that the attacker cannot suppress all messages ensures

that they are being presented with the same version of the log.

The transmission part of the basic KUD protocol then runs as follows (see Figure

5.2).

• To prepare for receiving a message, Robert’s device creates an ephemeral en-

cryption and decryption key pair (ek, dk), and certifies it with his long-term

signing key skR. He publishes the certificate CertskR(R, ek) in the log. Pub-

lishing the certificate in the log assures Sally that it is a valid encryption key

belonging to Robert.

• To send a message, Sally’s device retrieves CertskR(R, ek) from the log along

with a proof of its currency in the log. She encrypts the message with ek and

sends it to Robert. Sally will not use a key whose certificate is not in the log.

• Robert’s device receives the encrypted message and decrypts it.

Additionally, Robert’s device periodically checks (where the period is determined

by the parameter ζ) that all the keys ek′ for which a certificate CertskR(R, ek′) exists

in the log were put there by him. If he finds entries in the log not corresponding to

his actions, then he knows that his long term credentials have been disclosed and

abused by an attacker.

The basic protocol assumes that Robert is online at the time that Sally wants

to send a message. In the messaging application protocol below, we generalise this

to work when Robert is offline.
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Sally Robert

- Generate ephemeral key pair (ek, dk)
- Create a certificate σ = CertskR(R, ek)
- Sends σ to the log maintainer
for insertion in log

σ

- Request proofs from the log maintainer
to check that σ is present in log

- Verify obtained proofs
- Encrypt message m using ek

Encek(m)

- Use dk to decrypt message
- Request proofs from the log maintainer
to check that all keys in log for “Robert”
are genuine

Figure 5.2: The basic KUD protocol. Robert has a pair (skR, vkR) of long term
keys for signature signing and verification. He generates an ephemeral key pair
(ek, dk) for encryption, creates the certificate σ = CertskR(R, ek) on ek, and sends
the certificate to the log maintainer for insertion into the public log. Meanwhile,
Robert also sends the certificate to Sally. After receiving σ, Sally requests from the
log maintainer proofs that the certificate is present in the log. If the proof is valid,
Sally sends a message m to Robert encrypted with ek. Robert requests proofs from
the log maintainer to enable him to verify whether the log contains signatures that
he did not generate.

Intuitively, our protocol design detects compromise attacks because an attacker

in possession of Robert’s long term key would have to leave evidence of its usage of

the key in the log. We give examples of how this detection works in Section 5.3.3.

We perform a formal analysis of our designs in Section 5.5.

5.3.2 Messaging application

The messaging application generalises the basic protocol, allowing the users to have

multiple devices. Sally can choose any of her devices to send a message, and Robert
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is able to receive the message on all of his devices. Although this makes the protocol

a bit more complicated, it also allows us to obtain a stronger security guarantee,

because even if one of Robert’s devices is in an untrustworthy state we are able to

leverage security from the other ones.

As before, we assume a log, with the same capabilities mentioned above. We also

assume that Robert and the log maintainer have long-term signing and verification

key pairs (skR, vkR) (skL, vkL) respectively, and all parties have authentic copies of

the verification keys they need.

The parameters δ, ϵ and ζ The protocol is parameterised by three values:

• δ is the period between the times at which device registration requests are

processed. It is set by the log maintainer. We expect it to be typically one

hour.

• ϵ is the period between the times at which key update requests are processed.

We refer to such periods as “epochs”. It is also set by the log maintainer, and

is typically one day.

• ζ is the maximum lifetime of a key. It is set by the user. Different users can

choose different values of ζ, subject to the constraint ϵ ≤ ζ. We expect it to

be about two or three days.

The messaging protocol has three main sub-protocols: enrolling, message trans-

mission, and key updates. We describe these in turn.

Enrolling a device To enroll a device Dℓ, Robert needs to install skR onto it. We

assume that skR is derived from a passphrase that Robert types into Dℓ. Next, Dℓ

needs to create a device key and publish its certificate in the log. More precisely:

• Dℓ generates a new ephemeral encryption key pair (ekℓ, dkℓ) and sends the

certificate CertskR(Dℓ, ekℓ, tℓ) to the log maintainer. Here, tℓ is the key cre-

ation time. The key will be used from the current time until the next epoch

beginning, for the purpose of encrypting messages for Robert’s device.

• After time δ, the log maintainer has inserted the certificate into the log and

sends to Dℓ the list of device certificates CertskR(Di, eki, ti) for Robert present

in the log, together with a proof that the list is complete, and current in the

log.
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Figure 5.3: An example of envisaged GUI that presents the table (Di, ti) for i =
{1, 2} to Robert. Section 5.3.3 describes how Robert uses this information. The
figure gives an impression of the kind of user interface we envisage. Usability is
important and difficult to get right, and we need to work with HCI experts to
design the interface fully.

• Dℓ verifies the proof of currency for CertskR(Dℓ, ekℓ, tℓ). It displays the table

(Di, ti) (for each i) to Robert, so he can check that the devices mentioned

are indeed recently used. If Robert sees a device mentioned that he has not

recently used, it is evidence of an attack (§ 5.3.4). Figure 5.3 presents an

example of the envisaged GUI to show how the information is likely to be

presented to Robert.

The device is now ready to be used. When Sally encrypts a message, her device will

obtain all the current device keys for Robert from the log, and encrypt the messages

with each of them.

Remark 5.1. The method of displaying on a user’s device the user’s activities on

other devices is well-known (for example, in Gmail, a user can click “last account

activity” to see a table of the sessions open by other devices). A crucial difference in

our protocol is that the displaying device can fully verify the veracity of the account

activity provided by the untrusted log maintainer.

Sending and receiving a message

• To send a message, Sally retrieves CertskR(Di, eki, ti) (for each available i)

from the log along with proofs of currency. Her device encrypts a copy of the
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message with a fresh symmetric key k, and encrypts k with each received eki.

It sends the encrypted message and together with the encrypted k to each of

Robert’s devices.

• Robert picks up any of his devices, receives the encrypted message, and de-

crypts it.

Updating the keys Whenever Robert invokes the messaging app on a device

Dℓ, the device checks to see if it is the first time it has run the app during that

ϵ-long epoch. If so, it generates a new device key which will become the key for the

following epoch. More precisely, on the first invocation during an epoch:

• Dℓ requests and verifies proof of currency for all of the current epoch’s device

certificates CertskR(Di, eki, ti) for each available i. It verifies that ekℓ is indeed

the one it created and sent the previous epoch; if this verification fails, it

is evidence of an attack (§ 5.3.4). Dℓ displays the table (Di, ti) (each i) to

Robert, so he can check that the devices mentioned are indeed recently used.

If Robert sees a device mentioned that he has not recently used, it is again

evidence of an attack.

• Dℓ next creates a new ephemeral encryption key pair (ek′
ℓ, dk

′
ℓ) and sends the

certificate CertskR(Dℓ, ek
′
ℓ, tℓ) to the log maintainer. Here, tℓ is the key creation

time.

• By the next epoch, the log maintainer has inserted into the log all the device

keys thus received. If a device does not send a new key during an epoch, the

old key is retained in subsequent epochs until a period ζ has elapsed. At that

time, keys of devices that did not send new keys are revoked.

• When a new key becomes valid, Dℓ securely removes the old key in the device.

In other words, devices change their key every epoch, and if they don’t do so

(because the application is not invoked during a particular epoch) then their key is

reused for a certain period, and then revoked. In this last case, the device can’t be

used until it re-registers.



5.3. Overview 91

5.3.3 Detecting attacks: examples

To provide intuition on how our protocol allows users to detect attacks, we ex-

plain some potential attack detection scenarios. We will present our formal security

analysis in Section 5.5.

Attacks from a third party Suppose one of Robert’s devices, say his phone,

is infected with malware, allowing an adversary to mis-use all the keys stored on

the device. The adversary may decrypt messages encrypted with ephemeral keys,

and may create new signed ephemeral keys by using the phone’s long term key

and inserting them into the log. While the phone remains under the control of the

attacker, the decryption activity is not detected. However, the long-term key usage

is detected if the user notices unexpected usage of phone using the GUI of Figure

5.3. The figure shows the GUI displayed on another device of Robert’s. It informs

him that (so far in the current epoch) the keys corresponding to his phone and his

ipad have been active. If Robert has not used his phone in the epoch, then he learns

that it has been compromised. The GUI also confirms that the proofs about the

usage statement have been verified.

Suppose Robert regains control of his phone, through routine malware scanning

and software patching. If the adversary continues to use the phone’s long-term key

to create ephemeral keys, the phone can detect this activity via the log, and report

it to the user.

Attacks on or by the log maintainer Suppose the log maintainer is malicious

or compromised. It may provide fake proofs, or provide no proofs at all. This is

readily detected by client software. It may maintain the log incorrectly, either by not

correctly recording signed ephemeral keys or by incorrectly recording fake ephemeral

keys. These attacks are detected when the key owner requests a complete proof of

presence.

A more interesting attack arises if the log maintainer shows different versions

of the log to different users. A receiver may see a version in which his ephemeral

keys are correctly recorded, while the sender sees a version in which attacker-owned

keys are present instead. This would allow the attacker to play man-in-the-middle

attacks, preventing the sender and receiver ever exchanging information about the

log digests they have. Such an attack would be extremely hard in practice, because
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the attacker would have to persistently control all the messages sent between a

sender and receiver. (For that reason, similarly to [LLK13, Rya14], we ruled out an

attacker that completely controls the network.) As mentioned in the last chapter,

gossip protocols have been introduced to further reduce the feasibility of this attack.

5.3.4 Responding to attacks

If Robert detects unexpected activity on a device, or some verification fails, this is

evidence of an attack. Robert’s response should be to fix the software on his devices.

He should generate a new long-term key, in order to prevent attacks occurring (and

being detected) due to the disclosure of his current long-term key. The corresponding

public key can be distributed using the method used in the bootstrapping phase.

Furthermore, he can inform Sally that some of her recent messages to him may have

been compromised.

Robert can also detect failure when he verifies the actions of the log maintainer.

His response is to change to a different provider.

5.4 Detailed messaging implementation

This section presents the details of our proposal. We first present the log structure

in Section 5.4.1. We then turn to describing the full protocol details in Section 5.4.2.

The procedures that ensure that we detect malicious log maintainers are described

in Section 5.4.3. After presenting the details, we discuss privacy concerns in Sec-

tion 5.4.4.

5.4.1 Log structure

Similar to the public log employed in DTKI, the public log employed here is also

organised as a tree of trees: the top-level tree is append-only, and its leaves are

lexicographically ordered trees.

The ChronTree T (as shown in Figure 5.4) records the entire update history.

Items in T are stored only in leaves and ordered chronologically, and each leaf is

labelled by the root hash value of another Merkle tree T ′ (presented in Figure 5.5).
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h(h(h(d1, d2), h(d3, d4)), h(d5, d6))

h(h(d1, d2), h(d3, d4))

h(d1, d2)

d1 := Root(T ′
1)

d2 := Root(T ′
2)

h(d3, d4)

d3 := Root(T ′
3)

d4 := Root(T ′
4)

h(d5, d6)

d5 := Root(T ′
5)

d6 := Root(T ′
6)

Merkle tree T

Figure 5.4: An example of the log containing six updates {d1, d2, . . . , d6}. The log
is maintained as an append-only Merkle tree T whose leaves are ordered chronolog-
ically.

Items in T ′ are also stored only in the leaves2, but ordered according to user identity.

Each leaf of T ′ is labelled by users’ identity and a list of ephemeral certificates for

different devices of the same user.

To recall how the proofs can be done with our log, we give some examples based

on Figure 5.4 and 5.5. We will explain how to verify that the log is maintained

correctly — i.e. the log maintainer only appends data in T , and items in every T ′

are ordered lexicographically — in §5.4.3.

Example of proof of presence To prove that data d′2 for Bob is in T ′
6 (see Figure

5.5), the log maintainer only needs to give the data needed to compute the label of

parent node from d′2 to the root of the tree.

PoP(T ′
6, d

′
2) = [w, d′1, h(3,4), h(5,7)]

where w = l · l · r is the path to d′2, and l (resp. r) indicates the path to the left

(resp. right) child. So, given d′2, Root(T
′
6), and the proof PoP(T ′

6, d
′
2), one can verify

the proof by reconstructing the root value hT = h(h(h(d′1, d
′
2), h(3,4)), h((5, 7))). If

hT = Root(T ′
6), then the proof is valid.

Example of proof of currency The proof of currency is the same as the proof

of presence, but there is an extra constraint for the verifier to check, namely that

the path to the root of the lexicographic tree only contains (an arbitrary number

2Note that the T ′ is implemented in a way that is slightly different to the LexTree in the
previous chapter: in LexTree, data items are stored in both leaves and non-leaf nodes.
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h(1,7)

h(1,4)

h(1,2)

d′1 := (Alice,
DA,1, tA,1, h(certA,1)
DA,2, tA,2, h(certA,2))

d′2 := (Bob,
DB,1, tB,1, h(certB,1)
DB,2, tB,2, h(certB,2)
. . .
DB,5, tB,5, h(certB,5))

h(3,4)

d′3 d′4

h(5,7)

h(5,6)

d′5 d′6

d′7 := (Robert,
DR,1, tR,1, h(certR,1)
DR,2, tR,2, h(certR,2)
DR,3, tR,3, h(certR,3)
DR,4, tR,4, h(certR,4))

Merkle tree T ′
6

Figure 5.5: An example of the data structure T ′ recording data in each update. Items
in T ′ are ordered lexicographically. For all a, b ∈ [1, 7], h(a,b) is the root hash value
of a Merkle tree containing data from d′a to d′b. For example, h(1,2) = h(d′1, d

′
2), and

h(1,7) = h(h(1,4), h(5,7)). Each leaf of T ′ is labelled by (h(ID), (Dj, tj, h(certj))
n
j=1),

such that certj is a certificate on (Dj, ekj, tj) issued by ID, where Dj is the identity
of the jth device of ID, ekj is an (ephemeral) public encryption key, and tj is the
issuing time.

of) “r”.

Example of proof of extension To prove that the current version of the log

represented by T (see Figure 5.4) is an extension of a previous version (Told) con-

taining four updates (i.e. Root(Told) = h(h(d1, d2), h(d3, d4)) and Size(Told) = 4), the

log maintainer gives h(d5, d6) as the proof. Given the two digests and this proof, the

verifier can verify that T is extended from Told by reconstructing Root(T ).

Example of Proof of absence To prove that no certificates for user identity ‘Bill’

is included in T ′
6 (see Figure 5.5), the log maintainer needs to prove that any node

whose label containing Bill is absent from T ′
6, by performing the following steps.

• Locate node A such that the user identity contained in its label is lexicograph-

ically the largest one smaller than Bill. In our example, the label of node A is

d′1 which contains user identity ‘Alice’.

• Locate node B such that the user identity contained in its label is lexicograph-

ically the smallest one greater than Bill. In our example, the label of node B

is d′2 which contains user identity ‘Bob’.
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• Prove that d′1 and d′2 are present in T ′
6, and they are siblings (so no node is

placed in between of them). The former is proved by using proof of presence,

and the latter one can be verified by checking the path to d′1 and d′2.

5.4.2 Messaging protocol details

We provide our main protocol with detailed message sequence here. It would help

readers to see the exact exchanged messages. Also, it will be useful later to read-

ers for understanding our formal model (presented in Appendix B) implemented

in Tamarin prover [MSCB13], which we used to give a rigorous formal machine-

checked verification on the core security property of KUD (in the next section).

Enrolling a device (Figure 5.6)

We assume that all Robert’s devices have shared his long-term signing key skR. To

enrol a device Dℓ, it generates a new ephemeral certificate, and publishes it in the

log. In more detail, as presented in Figure 5.6:

• Dℓ generates a new ephemeral key pair (dkℓ, ekℓ) for decryption and encryption,

respectively. Then, Dℓ issues a self-signed certificate CertskR(Dℓ, ekℓ, tℓ) on

(Dℓ, ekℓ, tℓ) by using skR, where tℓ is the key creation time; and sends the

signed registration request

m1 = (req1, R, dgold,CertskR(Dℓ, ekℓ, tℓ)) to the log, where req1 is the request

identity, R is the identity of Robert, and dgold = (Root(Told), Size(Told)) is the

digest of the log that Robert possibly has previously stored (it is likely to

happen if Robert is re-enrolling his device Dℓ).

• After the log maintainer receives the request, it verifies the signature and the

certificate, and that tℓ is in the time interval of the current update epoch δ.

If they are all valid, it stores the request, and issues a signed confirmation

sign{Root(log), Size(log),CertskR(Dℓ, ekℓ, tℓ)}skL , where log is organised as T ,

as explained in §5.4.1. If dgold is provided, the log maintainer also generates a

proof P of extension that the current log is extended from the log represented

by dgold, and sends the proof together with signed confirmation as the message

m2 to Robert.
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skR, dgold, σ
old
L

Robert’s device Dℓ

skL, log

Log maintainer

- Generate (dkℓ, ekℓ)
- Issue CertskR(Dℓ, ekℓ, tℓ)
- dgold = (Root(Told), Size(Told))

m1 = (req1, R, dgold,CertskR(Dℓ, ekℓ, tℓ))

- Verify the received certificate and tℓ
- Store m1

- dgnew := (Root(T ), Size(T ))
- σL := sign{dgnew, h(CertskR(Dℓ, ekℓ, tℓ))}skL
- P1 := PoE(T, dgold)

m2 = (dgnew, σL, P1)

- Verify σL and P1

- dgold := dgnew
- σold

L := σL
- Remove expired keys if there is one

After δ time

m3 = (req′1, R,Dℓ, dgnew)

- Update the log from T to Tnew

- T := Tnew

- Last(T ) := Root(T ′
n+1)

- find d in T ′
n+1 such that R is contained in d

- P2 := PoC(T, Last(T ))
- P3 := PoP(T ′

n+1, d)
- P4 := PoE(T, dgnew)
- md := all data associated to d
- dg′new := (Root(T ), Size(T ))
- mL := (dg′new, Last(T ), {Pi}4i=2,md, t)
- σ′L := sign{mL}skL

m4 = (mL, σ′L)

- Verify σ′L and all received proofs
- Verify that CertskR(Dℓ, ekℓ, tℓ) is in md

- (dgnew, σL) := (dg′new, σ′L)
- Display all (Di, ti) to Robert

Figure 5.6: The protocol for (re-)enrolling a device. In the protocol, if Robert is re-
enrolling his device, then dgold and σold

L are the previously stored digest and signature
received from the log maintainer, respectively.
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• Dℓ verifies the received signature and proof, stores the new digest dgnew with

signature σL, and sends the request m3 containing a request identity req′1,

Robert and the device’s identity (R,Dℓ), and current observed digest to the

log maintainer after δ time.

• After each period of length δ, the log maintainer updates the log according to

the list of device enrollment requests received from its customers. The list of

request should be in the form of

(Ri, (CertskRi
(Di,j, eki,j, ti,j))

P
j=1)

M
i=1

where Ri is the client identity, P is the number of devices that a client has

requested to enrolling this update, and M is the total number of clients who

has sent the enrollment request for this update.

To update the log, the log maintainer retrieves the current T ′
n such that

Root(T ′
n) = Last(T ), and creates T ′

n+1 by adding each request to the appropri-

ate node of T ′
n, where n is the size of the current log. It then extends T with

a new rightmost node T ′
n+1.

In addition, the log maintainer proves that the list of certificates (including

the ones in the enrollment request) for each participant Ri is complete, and

current in the log. If Ri has previously observed a digest dgold of the log,

then log maintainer also generates a proof of extension that the current log

is extended from the log represented by dgold. To do so, the log maintainer

locates the node labelled with d for Ri in T ′
n+1, and generates:

– PoP(T ′
n+1, d) that d is present in T ′

n+1;

– PoC(T, T ′
n+1) that the root hash value of T ′

n+1 is the label of the rightmost

leaf in T ; and

– PoE(T, dgold) that the current log is extended from the log represented by

dgold.

So Ri can verify that d—which contains a full list of certificates for his devices

(including the newly enrolled ones) — is present in the latest update of the

log.
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• Dℓ verifies the received proofs and signatures. Additionally, it displays the

table (Di, ti) (for all i ∈ [1, P ]) to Robert, so he can check that the devices

mentioned are indeed recently used. If Robert sees a device mentioned that

he has not recently used, it is evidence of an attack that an attacker who has

used his long-term key without authorisation and has inserted a certificate for

him.

The device is now ready to be used. A similar process will be used to un-register

a device with the log maintainer.

Sending and receiving a message (Figure 5.7)

To send a message to Robert, Sally’s device retrieves all the current device certifi-

cates for Robert from the log, and encrypts the messages with each of them. More

precisely (as presented in Figure 5.7), to send a message:

• Sally sends requestm1 = (req2, R, r, dgold) to the log, where req2
3 is the request

identity, R is the identity of Robert, r is a random number, and where dgold =

(Root(Told), Size(Told)) is the digest of the log that Sally received in the last

session.

• After receiving the request, the log maintainer locates the leaf whose label d

contains R in the latest update T ′ (that is represented by the rightmost leaf

of T ), and generates the proof P1 that Root(T ′) is current in T , proof P2 that

d is in T ′, and proof P3 that the current log is an extension of the log that

Sally has previously observed. It then sends m2, which is the signed message

(‘CertResp’, dgnew, Last(T ), P1, P2, P3, r,md, t) to Sally, where ‘CertResp’ is a

tag, dgnew = (Root(T ), Size(T )), md = (R, (Dj, tj, ekj,Certj)
P
j=1) is the data

associated to d, and t is the time to identify the current epoch.

• After receiving the message from the log maintainer, Sally verifies if t is cor-

responds to the current epoch, and verifies the received signature, proofs, and

certificates. If all verifications succeed, she replaces dgold and σold
L by dgnew and

σL, respectively, where σL is the signature from the log maintainer. Her device

encrypts a copy of the message with a fresh symmetric key k, and encrypts k

3This request corresponds to the ‘CertReq’ in our Tamarin code.



5.4. Detailed messaging implementation 99

skL, log, vkR

Log maintainer

dgold, σ
old
L , vkR, vkL

Sally

skR, dki

Robert’s device Di

- Generate random number r
- dgold := (Root(Told), Size(Told))
- m1 = (req2, R, r, dgold)

m1

- Last(T ) := Root(T ′)
- Find d in T ′ such that R is contained in d
- P1 := PoC(T, Last(T ))
- P2 := PoP(T ′, d)
- P3 := PoE(T, dgold)
- md := all data associated to d
- dgnew = (Root(T ), Size(T ))
- mL := (‘CertResp’, dgnew, Last(T ), {Pi}3i=1,md, t)
- σL := sign{mL, r}skL
- m2 := (mL, σL)

m2

- Verify t
- Verify σL
- Verify all received proofs
- Verify received certificates
- dgold := dgnew
- σold

L := σL
- Extract ephemeral encryption key eki
from each received certificates

- Create symmetric key k
- m3 := ({m}k, {k}eki) for all possible i

m3

- Decrypt {k}eki by using dki
- Decrypt {m}k by using k

Figure 5.7: The protocol for sending and receiving a message. In which, σold
L is the

signature received from the log maintainer in the last session. If any of the stated
verification fails, the agent aborts the protocol.
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with each received eki. It sends the encrypted message and together with the

encrypted k to each of Robert’s devices.

• Robert picks up any of his devices, receives the encrypted message, and de-

crypts it.

Note that in the protocol, if there is no certificate for Robert in the latest update,

then a proof of absence that the identity of Robert is not in the latest update is

provided to the user.

Remark 5.2. The signed t is used to prevent attacks that replay a selected version

of the log from the (compromised) log maintainer. Let x be the version of the log that

Sally has previously observed, and z be the latest update. The replay attack is that the

log maintainer picks and sends a version y of the log to Sally, such that x < y < z,

and Robert’s ephemeral key that is valid in the version y has been compromised by

the attacker. In this case, if we do not have the signed t, then even with a gossip

protocol, all verifications will succeed, because version y is also a genuine version of

the log.

Updating the keys (Figure 5.8)

Devices change their key every epoch w.r.t. ϵ, and if they don’t do so (because the

application is not invoked on a particular day), then their key will be reused for a

certain period (e.g. a few more ϵ), and then will not be included in the log for the

next further update epoch. In this last case, the device can’t be used for receiving

and reading messages until Robert uses the device again — it will re-register the

device automatically. So, after Robert can use this device again in δ time (e.g. one

hour). Note that if Robert has un-registered the device, then the device will not

automatically re-register itself; and Robert has to re-register it manually in this

case.

More precisely, whenever Robert invokes the messaging app on a device Dℓ, the

device checks to see if it is the first time it has run the app during that epoch w.r.t.

ϵ. If so,

• Dℓ creates a new ephemeral key pair (dkℓ, ekℓ), issues a certificate CertskR(Dℓ, ekℓ, tℓ),

which will become the valid key in next epoch, where tℓ is the key creation
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skR, dk
old
ℓ , Certold, dgold, σ

old
L

Robert’s device Dℓ

skL, log

Log maintainer

- Generate (dkℓ, ekℓ)
- Issue CertskR(Dℓ, ekℓ, tℓ)
- dgold = (Root(Told), Size(Told))
- m1 := (req3, R, dgold,CertskR(Dℓ, ekℓ, tℓ))

m1

- Verify the received certificate
- Verify tℓ
- dgnew := (Root(T ), Size(T ))
- σL := sign{‘Confirmation’, dgnew, h(CertskR(Dℓ, ekℓ, tℓ))}skL
- Last(T ) := Root(T ′)
- Find d in T ′ such that R is in d
- P1 := PoC(T, Last(T ))
- P2 := PoP(T ′, d)
- P3 := PoE(T, dgold)
- Store m1

- md := all data associated to d
- m2 := (dgnew,md, σL, {Pi}3i=1)

m2

- Verify σL
- Verify all received proofs
- Verify that h(Certold) is in md

- dgold := dgnew
- σold

L := σL
- Remove expired keys
- Display all (Di, ti) to Robert

At the end of the epoch w.r.t. ϵ

Updating the log in the way similar to the one in Figure 5.6

Figure 5.8: The protocol for updating keys. In the protocol, dkold
ℓ is the current

valid ephemeral secret key, Certold is the corresponding certificate, dgold and σold
L

are the digest and signature received from the log maintainer in the last session,
respectively.
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time. Then, he sends the signed request

m1 = (req3, R, dgold,CertskR(Dℓ, ekℓ, tℓ)) to the log maintainer, where req3
4 is

the identity of update request, dgold = (Root(Told), Size(Told)) is the digest of

the log that he observed in the last session.

• After receiving the request, the log maintainer verifies the signature, time tℓ,

and the received certificate. If they all valid, then it generates a commitment

σL = sign{‘Confirmation’, dgnew, h(CertskR(Dℓ, ekℓ, tℓ))}skL
that it will put the received new certificate in the log by the end of this epoch.

The log maintainer locates the node d for Robert in the latest update of the

log, and generates the proof P1 that the root hash value of T ′ is the label of

the rightmost leaf in T , proof P2 that d is present in T ′, and the proof P3 that

T is an extension of the log that Robert has observed in the last session. Note

that P1 and P2 together form the proof that d is the latest update for Robert

in the log. The log maintainer sends the generated signature and proofs to Dℓ.

• Upon receiving the response, Dℓ verifies all signatures and proofs. Addition-

ally, it verifies that the hashed certificate (contained in d) for Dℓ in the latest

update is indeed corresponding to the one it created and sent in the previous

epoch. This verification ensures that no unauthorised request has been gen-

erated and recorded in the current log. (We will explain in the §5.4.3 that

why we don’t need to require Dℓ to verify all history certificates for Dℓ in the

log are indeed generated by Dℓ.) If all verifications succeed, Dℓ removes any

expired keys stored in Dℓ, replaces the stored digest of the log with the new

one, and displays the table (Di, ti) (for each possible i) to Robert, so he can

check that the devices mentioned are indeed recently used. If Robert sees a

device mentioned that he has not recently used, it is evidence of an attack.

• At the turn of the epoch, the log maintainer inserts all received update request

into the log. Suppose in the current epoch, the log maintainer which maintains

the log (represented by T of size n) has the tree T ′
n containing

4This request corresponds to the ‘UpdateReq’ in our Tamarin code.
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(Alice, DA,1, tA,1, h(certA,1)

DA,2, tA,2, h(certA,2)),

(Bob, DB,1, tB,1, h(certB,1)

DB,2, tB,2, h(certB,2)

. . .

DB,5, tB,5, h(certB,5)),

. . . . . .

and receives

(Ri, (CertskRi
(Di,j, eki,j, ti,j))

P ′

j=1)
M ′

i=1

for some identity Ri and certificates for its devices Di,j, where P
′ is the number

of a user’s devices that has sent a key update request, and M ′ is the total

number of clients who has sent the key update request in this epoch.

To up date the log, the log maintainer performs the following steps:

Step 1) creates a new tree T ′
n+1 by copying and pasting the entire T ′

n;

Step 2) replaces the old certificates with the corresponding new ones in T ′
n+1;

Step 3) checks if any un-replaced certificate is older than ζ; if there is any, the

log maintainer removes them from T ′
n+1;

Step 4) extends T with a new rightmost node Root(T ′
n+1).

Similar to the idea explained in §5.4.2, the log maintainer can provide the proof

that the list of certificates (including the ones in the key update request) for

Ri is complete, and current in the log; and the proof that the current log is

an extension of the log that Ri has previously observed.

If a device has not updated ephemeral keys and has been excluded from the

latest update by the log maintainer, then the device will automatically re-

register itself when the owner has used the device again, so the device will be

included in the log and be ready to receive and decrypt messages in δ time.
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5.4.3 Crowd-sourced verification

Since we want to guarantee some security even when the log maintainer is not

trusted, we need to monitor the log maintainer’s behaviour to see if the log is

maintained correctly. This can be easily verified if we introduce a trusted party to

monitor the entire log. Alternately, similar to the approach used in the previous

chapter, to avoid having a trusted party, we can use crowd-sourced verification by

breaking the verification work into independent little pieces, and distribute each

piece to different devices.

First, we need to verify that the log update history recorded in T is maintained

in an append-only manner. This is achieved by verifying the proof of extension per-

formed in each of above protocols, namely enrolling a device, updating the keys, and

sending/receiving a message. Hence, there is no need for any additional verification.

Second, we need to verify that in each update T ′
i , items are ordered lexicograph-

ically according to the user identity. It can be verified by asking each device to pick

a random leaf in an update T ′
i , and verify that the user identity recorded in its left

(or right) neighbour leaf is lexicographically smaller (resp. greater) than the user

identity in the picked leaf.

Third, in our protocol a device only checks its latest certificate in the log, instead

of verifying all certificates recorded in the log. So, it cannot guarantee that no

attacker-generated certificates have been previously included in the log. To detect

such behaviour, we need to verify that the time of the key generation for the same

device in different updates of the log is only going forward. To achieve this, each

device picks a random leaf for a user in an update Ti, and verifies that either the

record in an update is the same as the one in the previous update, or it is different

and the time in the node for the same device of the user in the left (or right)

neighbour update Ti−1 (or Ti+1) is no greater (or no smaller) than the time in the

picked leaf, respectively. Additionally, if the two times are equal, then the hash

values of the certificates should also be equal. A missing associated record in a

new update is evidence of misbehaviour. If no leaf for the user is included in the

neighbour update, then a proof of absence that a node containing the user identity

is not included in the update is provided.
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Last, to ensure that the log maintainer did not show different logs to different

users, users should exchange the digest of the log that they observed, for example,

by using a gossip protocol.

5.4.4 Privacy considerations

The public log may cause some privacy concerns. For example, one may want to

hide the user identities contained in a log, the total number of communications of a

user, or the time distribution of a user’s communications, etc.

In the above examples, to hide the user identity, the log maintainer can use a hash

value of the signed user identity in the labels of leaves in each log update, rather than

containing the user identity directly in the labels (see Figure 5.5). The signature

scheme used should be deterministic and unforgeable, as suggested in [MBB+14].

Hence, users that have the recipient’s address can request the signed user identity

from the log maintainer, and verify the log; but an attacker who has downloaded

the entire log cannot recover the identity of users, based on the unforgeability of

the chosen signature scheme. In this case, the nodes in each update tree T ′
i will be

ordered lexicographically according to the hash value of the signed user identity. In

addition, users can also make the log to be only available to a fixed set of contacts.

To hide the real number of communications associated to a given client of the log,

the client can generate some noise — for example, the client can make ‘spoof queries’

to the log maintainer through an anonymous channel (e.g. Tor network).

There are many other possible solutions (e.g. server side access control). We do

not detail them here as they are not the main focus of this thesis.

5.5 Security Analysis

We provide all input files required to understand and reproduce our security analysis

at Appendix B. In particular, these include the complete KUD models.
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5.5.1 Security properties

Our protocol achieves both classical security properties as well as novel ones. In a

classical sense, Sally obtains the guarantee that if Robert’s devices are not compro-

mised, then the attacker will not learn the messages she sends.

The more interesting properties are achieved in the cases where Robert’s devices

get compromised. In this case, we cannot avoid that messages sent by Sally in the

same epoch are also compromised. However, we prove that if any of Sally’s messages

from different epochs are compromised, then Robert will be able to detect this.

5.5.2 Formal analysis

We analyse the main security properties of the KUD protocol using theTamarin prover

for a similar reason as explained in § 4.5.

Modeling aspects We used several abstractions during modeling. We model the

Merkle hash trees as lists, similar to the verification of DTKI.

We model the protocol roles S (sender), R (receiver) and L (log maintainer) by a

set of rewrite rules. Each rewrite rule typically models receiving a message, taking

an appropriate action, and sending a response message. Our modeling approach

is similar to most existing Tamarin models. Our modeling of the roles directly

corresponds to the protocol descriptions in the previous sections. Tamarin provides

built-in support for a Dolev-Yao style network attacker, i.e., one who is in full control

of the network. We additionally specify rules that enable the attacker to compromise

devices and learn their long and short-term secrets.

The final KUD model consists of 450 lines for the base model, and six main

property specifications, examples of which we will give below.

Proof goals The first goal is a check for executability that ensures that our model

allows for the successful transmission of a message. It is encoded in the following

way.

lemma protocol_correctness:

exists-trace

" /* It is possible that */

Ex d R skR dkR m #i.

/* R received an encrypted message m on device d */

MsgReceived(d, R, skR, dkR, m) @ #i

/* without the adversary compromising any device. */
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& not (Ex d2 A ltk dkR #j.

Compromise_Device(d2, A, ltk, dkR) @ #j) "

The property holds if the Tamarin model exhibits a behaviour in which one of

R’s devices received a message without the attacker compromising any device. This

property mainly serves as a sanity check on the model. If it did not hold, it would

mean our model does not model the normal (honest) message flow, which could

indicate a flaw in the model. Tamarin automatically proves this property in a few

seconds and generates the expected trace in the form of a graphical representation

of the rule instantiations and the message flow.

We additionally proved several other sanity-checking properties to minimize the

risk of modeling errors.

The second example goal is the core secrecy property with respect to a classical

attacker, and expresses that unless the attacker compromises a key, he cannot learn

any messages sent by Sally. Note that K(m) is a special event that denotes that the

attacker knows m at this time.

lemma message_secrecy:

"All R skR ekR m #i.

/* If S sent a message m to R */

( MsgSent(R, skR, ekR, m) @ #i &

/* without the adversary compromising any device */

not (Ex #j d sk dkR.

Compromise_Device(d, R, sk, dkR) @ #j)

) ==>

( /* then the adversary cannot know m */

not ( Ex #j. K(m) @ #j)

) "

Tamarin also proves this property automatically.

The above result implies that if Robert receives a message that was sent by Sally,

and the attacker did not compromise his device during the current epoch, then the

attacker will not learn the message.

The next two properties encode the unique security guarantees provided by our

protocol. If the attacker compromises Robert’s device in an epoch, he can use the

private ephemeral key to decrypt Sally’s messages in that epoch. The first main

property we prove is that if he uses the compromised long-term key of Robert to

learn messages sent by Sally in other epochs, then he will be detected once Robert

checks the log.
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lemma detect_usage_S_sends:

"All d skR dkR m #i1 #i2 #i3 detectionresult R k.

/* If S sent to R an encrypted message m,

where pk(dkR)=ekR */

( MsgSent(R, skR, pk(dkR), m) @ #i1 &

/* and the adversary knows m */

K(m) @ #i2 &

/* and the ephemeral key used by the sender

was not compromised, i.e., the compromise

occurred in a different epoch

*/

not (Ex #j sk .

Compromise_Device(d, R, sk, dkR) @ #j ) &

/* and Robert afterwards checks the log */

CheckedLog(d, R, detectionresult, k ) @ #i3 &

#i1 < #i3

) ==>

( /* then we detect a compromise */

(detectionresult = ’bad’)

) "

The property states that if Sally sends a message when Robert’s device is not

controlled by an attacker in the current epoch (but might have been compromised

previously), and the attacker learns the message, then Robert detects the fact that

his key was previously compromised when he next verifies the log.

The final property extends the previous for the messages that Robert actually

receives from Sally, and shows that this also leads to detection of the key’s abuse.

lemma detect_usage_R_receives:

"All d skR dkR dkR2 m #i1 #i2 #i3 #i4 detectionresult R k.

/* If S sent to R an encrypted message m,

where pk(dkR)=ekR */

( MsgSent(R, skR, pk(dkR), m) @ #i1 &

// /* and R receives it */

MsgReceived(d, R, skR, dkR2, m) @ #i2 &

/* and the adversary knows m */

K(m) @ #i3 &

/* and the ephemeral key used by the sender was

not compromised, i.e., the compromise was in

a different epoch then when m was sent.

*/

not (Ex #j sk .

Compromise_Device(d, R, sk, dkR) @ #j ) &

/* and Robert afterwards checks the log */

CheckedLog(d, R, detectionresult, k ) @ #i4 &

#i2 < #i4

) ==>
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( /* then we can detect a compromise */

(detectionresult = ’bad’)

) "

The last two properties encode the core security properties of our design. Both

of them are proven automatically by the Tamarin prover on a laptop within a few

minutes.

Overall, the modeling effort was in the order of weeks, with several iterations

to debug both the abstract model and the property specifications. The verification

process helped us not only to prove, but also to refine the precise security properties

of our protocol.

Our initial model and property specification could not be automatically verified

by Tamarin and we used the tool’s interactive mode to determine the cause of non-

termination. Ultimately, this enabled us to use Tamarin’s lightweight heuristics-

influencing mechanism, which boils down to adding two lines of code per property,

to guide the prover to find the proofs automatically and efficiently. This took several

iterations and also revealed errors in earlier specifications, which made it clear that

the complexity of the model required us to specify and prove several sanity checks.

5.6 Realization in practice

5.6.1 Estimating communication cost

To check if deployment might be feasible, we estimate the expected cost of our

protocol design. As an example, we consider the following scenario. We assume

that there are 109 users, each user has 5 devices, the log has been operating for 100

years, the log update period δ for registration request is 1 hour, and the log update

epoch ϵ for certificate update is 1 day.

In this scenario, the size of T will be 100 · 365 + 100 · 365 · 24 = 912500 < 220,

and the size of each T ′ is 109 which is less than 230. In addition, we assume that

the size of a hash value is 256 bits (e.g. SHA256), the size of a signature is 64 Bytes

(e.g. ECDSA), and the size of a certificate is 1.5 KB.

In addition, we assume that the size of a user (or device) identity is 12 Bytes,

and time is in the 64-bit format, a random number is 28 bytes (recommended by
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Table 5.1: The size of messages in different protocols. In which, sizeP is the size
of proofs in the corresponding message, and sizeM is the maximum size of a message.

Message sizeP sizeM
Enrolling a device

request - 1.6 KB
response 2.2 KB 2.5 KB

Total 4.1 KB

Fetching keys from log
request - 78 B
response 2.2 KB 9.9 KB

Total 10 KB

Updating the keys
request - 1.5 KB
response 2.2 KB 2.5 KB

Total 4 KB

crowd-sourced verification
Total 5.3 KB 5.9 KB

TLS 1.2 [DR08]), each request identifier is 4 bits, and the size of a digest of a log is

300 bits.

The size of a proof of presence that some data is in T and is in T ′ will be at

most 640 bytes and 960 bytes, respectively; the size of the proof that a version of

the log is extended from a previous version is at most 640 bytes. We present the

size of messages in the protocol in our example scenario in Table 5.1.

From Table 5.1 we can see that up to 5 KB data are needed to be transferred

for both enrolling a device and updating keys. The protocol for fetching keys from

the log is the most expensive one, as the sender has to download all certificates for

different devices of the same users. In our example, the sender needs to download 5

certificates, the size of which is already 7.5 KB.

The results of our analysis indicate that the space cost of our system is accept-

able.

5.6.2 Proof-of-concept log server prototype

To demonstrate the deployment of KUD in a real-world setting, we built a proof-of-

concept prototype of the log server. We implemented a full log server implementation

with interfaces, and client-side code for (a) adding users/devices, (b) rotating keys at

the end of each epoch, and (c) sending messages. This involves all the operations to
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manipulate the log (consisting of a tree of trees), produce various proofs, and produce

and verify the appropriate signatures. Anticipating a deployment on platforms such

as Google’s App Engine, we implemented our code in Python. We use basic caching

mechanisms for previously computed results. On a quad-core 4 GHz Intel Core i7

with 32 GB of memory, we obtain the following times. The times are measured

locally and therefore do not include network latency. Performing 100000 (1e05)

enrollment requests from distinct users takes 1526 seconds, i.e., 15 milliseconds per

request on average. When 100000 (1e05) users enroll 3 devices each, enrollment

takes 1708 seconds, i.e., 5.7 milliseconds on average. The delay experienced by the

user is therefore dominated by the network latency of transmitting 4.1 KB (Table

5.1), which is certainly less than a second.

When the tree contains 10000 (1e04) entries, the server produces 100000 (1e05)

responses to message queries in 14.1 seconds, i.e., 0.14 milliseconds per message

query. Updating a tree by simultaneously adding 10000 (1e04) entries takes about 1

second, which is mostly spent in creating the leaf data structures. Once again, the

user’s experience is mostly affected by the network latency, which is small because

the data transferred is a few KB.

The memory usage when 100000 (1e05) users enroll one device is 410 MB (com-

puted using “heapy” for the full process, not just reachable objects). If they enroll

three devices each, memory usage increases to 900 MB.

Thus, even though our proof-of-concept implementation is not yet optimized for

efficiency or storage, its performance already indicates our scheme is feasible.

5.7 Conclusion

We have presented a novel messaging protocol that offers security guarantees even

when an attacker can access secret keys in a user’s devices. In particular, (a) the pro-

tocol limits the impact of a compromise, since the attacker can only learn messages

sent in the same epoch without being detected, and (b) if the attacker uses compro-

mised long-term keys to impersonate users, then the protocol allows the participants

to detect this, and therefore to take remedial action. Our protocol supports multi-

ple devices per user, and the multiplicity of devices helps detect attacks by intuitive

indicators to users about which (device) keys have recently been active.



5.7. Conclusion 112

The methods we introduce are not intended to replace existing methods used

to keep keys safe. Existing technologies such as TPMs, smart-cards, and ARM

TrustZone are all useful for securing keys. However, none of these technologies are

completely secure. For example, even if hardware security is used, malware may be

able to trigger usages of the key without having the ability to copy the key. Our

methods can also detect such cases. Thus, KUD adds an additional layer of security

that allows users to detect when other layers fail.
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CHAPTER 6

SELF-HEALING DISTRIBUTED
STORAGE

6.1 Introduction

Cloud storage has been widely adopted to relieve the pain of maintaining dedicated

hardware locally. For data owners, however, the confidentiality of outsourced data

storage is a big concern. In particular, in the presence of system bugs, malware, and

cyber attacks, the security of cloud servers cannot be guaranteed [Rya13, AKV15].

The data owner can encrypt the data before outsourcing it to the cloud. But

this still leaves open the question of where to store the decryption keys. We would

like a solution in which clients do not need to store any decryption keys. A client

will authenticate itself to the server in order to request decryption.

One way to achieve such a solution is distributing the decryption keys of the

encrypted data to many cloud servers. Secret sharing is a well-known technique to

achieve this securely. In this case, an attacker would have to compromise a sufficient

number of servers to break the security of the system. This makes the attacker’s

work more difficult. However, this solution is not good enough, as an attacker may

be able to attack each server one-by-one over a long period. Eventually the attacker

would be able to compromise sufficiently many servers and recover the decryption

key.

To address this problem, we further develop the idea of storing secrets on several

servers, with the aim of preventing gradual attacks over a long time. We assume

that time is divided into periods. A server that is compromised in a time period

may be repaired by its maintainers in the next time period [SCL+15, YR15]. At

the end of each time period, servers update all their secrets needed to recover the

114
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decryption key, before they start the next time period. The intuition is that, after

a server has been repaired and has updated its secrets, the secrets learnt by an

attacker in previous periods are rendered useless.

Unfortunately, the fact that the servers’ secrets could be compromised and are

changed periodically causes a problem for how a client should authenticate the

servers. To solve this, we require a way for servers to have a public key for authenti-

cation that remains constant, even though the associated secrets held by the server

are updated in each period. Achieving this requirement means that the clients do

not need to be involved in (or even aware of) the server’s regime for updating secrets.

In summary, we identify the following list of requirements:

1. The clients do not need to store any keys for performing decryption.

2. The system is secure even if all servers are compromised over a long time,

provided that no more than a threshold number of servers are compromised

in a given period.

3. The system provides a fixed public key for authentication, valid for all time

periods.

4. The number of messages exchanged between the servers during the update

period is independent of the number of data items stored.

5. As with any security protocol, there needs to be a well-defined adversary

model, and a formal security proof.

This chapter presents a system based on bilinear pairings for distributed cloud

storage, which we call “self-healing” cloud storage. The system satisfies the require-

ments mentioned above. One notable feature is that even though the service secrets

change in each time period, the public key to be known by data owners remains

constant. This feature could be used as a building block that allows us to tackle a

more general server authentication issue, where the servers are compromisable cross

time periods.

To formally prove the security guarantee of our self-healing scheme, we started

our security verification first by using Tamarin prover. However, we found (and
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reported) bugs in Tamarin prover when modelling bilinear paring based protocols.

Since compared to DTKI and KUD protocols the scheme here has a heavy use of

crypto, we proved this scheme by using classical game-based approach.

Before presenting this system in Section 6.3, we first formally define attacker

model and security goals in Section 6.2. A rigorous formal security proof of the

proposed system under the defined security model is presented in Section 6.4.

To the best of our knowledge, the proposed system is the first self-healing dis-

tributed storage, with a formal security model and a formal security proof.

6.2 Attacker model and security goal

This section first informal presents an attacker model and our security goal, in

Section 6.2.1 and Section 6.2.2, respectively. It then defines the formal security

model in Section 6.2.3.

We consider the scenario that an attacker wants to steal the sensitive data of

users on cloud servers, by gradually breaking into servers of the system.

6.2.1 Attacker model

Suppose an attacker compromises a server. Then the attacker can fully control the

server and has access to all its short-term and long-term secrets. Suppose sometime

later, the maintainer of the server applies software patches and malware removal.

Depending on the nature of the compromise, that action might restore the server

into a secure state, or it might not.

As shown in Table 6.1, we use SPAC to present the set of permanently attacker-

controlled servers; STAC to present the set of temporarily attacker-controlled servers

(as illustrated in Figure 6.3); and SSec to present the set of secure servers. For

client side, we only consider two possibilities, namely the set CAC of permanently

attacker-controlled client and the set CSec of secure clients.

Figure 6.1 and Figure 6.2 show the possible transformation between different

types of servers and clients, respectively. Generally, any secure server in SSec may

become a temporarily attacker-controlled server; and any server in STAC may become

a secure server; and any server in SSec or STAC may become a permanently attacker-

controlled server. On the client side, we consider that any secure client may become
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Table 6.1: The explanation on different types of participants.

Notation Description

SPAC The set of servers that are permanently controlled by attackers.
Security actions, e.g. software patches and malware removal, can
not succeed in restoring the servers to a secure state.

STAC The set of servers that are temporarily controlled by attackers.
Security actions, e.g. software patches and malware removal, can
succeed in restoring the servers to a secure state

SSec The set of servers that are currently secure.

CAC The set of clients that are controlled by attackers.

CSec The set of clients that are currently secure.

SAlice The set of servers selected by client Alice.

S The complete set of all servers, such that S = SPAC ∪ STAC ∪ SSec

C The complete set of all clients, such that C = CAC ∪ CSec

P The complete set of all participants, such that P = S ∪ C.

an attacker-controlled client.

6.2.2 Security goal

All servers update their secrets simultaneously at pre-determined times. We say T

is an epoch if T starts from the beginning of the process for updating secrets, and

ends at the beginning of the next process for updating secrets. Note that since we

allow an adversary to corrupt servers at any moment during an epoch, if a server is

corrupted during an update phase from epoch T to the next epoch T ′, we consider

the attacker being able to obtain secrets in both the T -th and T ′-th epochs.

Let SAlice be set of servers selected by Alice. At a given epoch T , let SPAC(T )

be the number of permanently attacker-controlled servers in SAlice, and STAC(T )

the number of temporarily attacker-controlled servers in SAlice. Our security goal

is that an attacker cannot learn any secret of Alice, provided the total number of

attacker-controlled servers in T and T ′ is less than the number of servers chosen by

Alice, i.e. SPAC(T
′) + STAC(T ) + STAC(T

′) < |SAlice|.

Remark 6.1. Loosely speaking, it says that the system should be secure if the total

number of compromised servers in two adjacent epochs is less than the number of
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SPAC STAC SSec

CreateAttackerControlledServer()

CreateSecureServer()

TakeOwnershipServer()

TakeOwnershipServer()

CompromiseServer()

SecurityAction()

Figure 6.1: A figure presenting the possible transformation between different types
of servers, i.e. permanently attacker-controlled server SPAC ; temporarily attacker-
controlled server STAC ; and secure server SSec. In our formal security model, these
transformations can be achieved by using oracle queries as defined in Section 6.2.3.

CAC CSec

CreateAttackerControlledClient()

CreateSecureClient()

CompromiseClient()

Figure 6.2: A figure presenting the possible transformation between different states
of clients, i.e. secure client CSec and attacker-controlled client CAC . In our formal
security model, these transformations can be achieved by using oracle queries as
defined in Section 6.2.3.

servers chosen by Alice. Note that SPAC(T ) is the number of permanently compro-

mised servers at epoch T , and these servers will be included in the set of permanently

compromised servers in future epochs as well. So we have SPAC(T ) ≤ SPAC(T
′).

However, this is not true for STAC(·).

6.2.3 Formal Model

We first define the scenario we are considering, i.e. attackers can periodically com-

promise cloud servers for storage. Then we formally define the ability of an attacker,

and the security of a self-healing distributed cloud storage system.

Definition 6.1. A periodically compromised system environment (PCSE)

is an environment in which an attacker can periodically control honest participants

of a protocol. It consists of



6.2. Attacker model and security goal 119

compromised compromised compromised

. . . . . .

secure secure secure

t1 t′1 t2 t′2 tn t′n

Figure 6.3: A timeline presenting a server’s security state transformation between a
temporarily attacker controlled server STAC and a secure server SSec. For all i > 0,
we assume that the server is compromised in the time interval between ti and t′i,
and is secure in the time interval between t′i and ti+1.

1. Protocol Π: the underlying security protocol;

2. Security checking oracle SecurityCheck(Π, S, t): given a server S ∈ S in

protocol Π at time t, it outputs a boolean value VS,t to indicate if S is vulnerable

at t. If VS,t = True, then an attacker is able to compromise S; otherwise, S is

secure. This models the security status of a server.

3. Security action oracle SecurityAction(Π, S, t): given a server S and time t,

it outputs a strategy for S such that if S is a temporarily attacker-controlled

server, i.e. S ∈ STAC, and it executes the strategy at time t, then the server

will become a secure server, i.e. SecurityCheck(Π, S, t′) = False, where t′ is

the time point right after t.

We define our security model through a game with two participants, namely a

challenger and a probabilistic polynomial time (PPT) adversary A. The attacker’s

goal is to win the game that is initialised by the challenger. A is able to ask the

following oracle queries.

1. O1: Settings(Π). By sending this query, the attacker is given all the public

parameters of Π.

2. O2: Execute(Π,P ′). Upon receiving this query, the set of participants P ′ ⊆ P
executes protocol Π, if applicable. The exchanged messages will be recorded

and sent to A. This oracle query models an attacker’s ability to eavesdrop

communications between participants in Π.

3. O3: CreateAttackerControlledClient(Π, C). Upon receiving this query with

a fresh identity C, the oracle creates an attacker-controlled client C in Π

according to the attacker’s choice. After this query has been made, we have
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that CAC := CAC ∪ {C}. We say an identity is “fresh” if and only if the

identity is unique and has not been previously generated. This oracle models

an attacker’s ability to register a new client of its choice.

4. O4: CreateAttackerControlledServer(Π, S). Upon receiving this query, the

oracle creates a fresh server S, and sends the corresponding secret key and

public key to the attacker. After this query has been made, we have that

SPAC := SPAC ∪{S}. This oracle allows A to adaptively register permanently

attacker-controlled servers of its choice.

5. O5: CreateSecureClient(Π, C). Upon receiving this query, the oracle creates

a fresh client C in Π. After this query has been made, we have that CSec :=
CSec ∪ {C}. This oracle query allows an attacker to introduce more clients,

which are initially secure.

6. O6: CreateSecureServer(Π, S). Upon receiving this query, the oracle creates

a fresh server S in Π. After this query has been made, we have that SSec :=

SSec ∪ {S}. This oracle query allows an attacker to introduce more servers,

which are initially secure.

7. O7: CompromiseClient(Π, C). Upon receiving this query for some C ∈ CSec
in Π, the oracle forwards all corresponding secrets of C to A. From now on the

attacker controls C so that C ∈ CAC and C /∈ CSec after this query has been

made. This oracle query allows A to adaptively and permanently compromise

a client of its choice.

8. O8: TakeOwnershipServer(Π, S). Upon receiving this query for some S ∈
SSec or S ∈ STAC in Π, the oracle forwards all corresponding secrets of S to

A, and from now on the attacker controls S. So, S is moved from its current

set in to SPAC after this query has been made. This oracle query allows A to

adaptively and permanently compromise a server of its choice.

9. O9: CompromiseServer(Π, S). Upon receiving this query, the oracle outputs

all secrets of S ∈ SSec in Π. We have S /∈ SSec and S ∈ STAC after this query

has been made. This oracle query models A’s ability to adaptively compromise

a temporarily attacker-controlled server of its choice.
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10. O10: Dec(Π, Enc(M,PKSC
), C). Upon receiving this query for some client

C ∈ CSec with secret M , the set SC of servers collectively executes the decryp-

tion protocol to decrypt the encrypted message Enc(M,PKSC
), and sends the

decryption result M to the attacker, where PKSC
is the common public key

of the set SC servers selected by C for encryption/decryption.

We now consider the distributed cloud storage scenario. If a powerful attacker

A can fully control a data owner’s device when the device is creating or recovering

a secret s, then A can easily learn s. As mentioned before, we do not consider this

case, as there is nothing we can do and it is not interesting. To focus on the more

interesting cases, we only consider that A cannot learn s by compromising the data

owner’s device during the secret creation or recovery time.

Definition 6.2. A self-healing distributed storage protocol Π is (k, n)-secure if the

advantage AdvA,n,k(λ) = |Pr[b = b′] − 1
2
| of A to win the following game, denoted

Game-PCSE, is negligible in the security parameter λ.

Game-PCSE:

• Setup(Π, λ). The challenger sets up protocol Π according to the security pa-

rameter λ. Initially, S = C = ∅.

• Query phase. The attacker can ask a polynomially bounded number of oracle

queries Oi for i ∈ {1, 2, . . . , 10}. Let j4, j8, and j9 be counters counting the

total number of O4, O8, and O9 queries asked by the attacker, respectively.

We have that j4 + j8 + j9 < k.

• Security action phase. The challenger makes security checking oracle queries

on all servers, and then makes security action oracle queries on the servers

that are temporarily controlled by the attacker. At the end of this phase, the

counter j9 will be reset to “0”.

• The query phase and the security action phase are repeated a polynomially

bounded number of times.

• Challenge(Cb, C). The attacker selects a target client C who has not been

asked through Oi for i ∈ {3, 7}, i.e. C ∈ CSec; and selects two messages M0
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and M1, s.t. |M0| = |M1|. The attacker then sends them to the challenger.

The challenger tosses a coin. Let b ∈ {0, 1} be the result of the coin toss.

The challenger then encrypts Mb according to Π, and sends the ciphertext

Cb = Enc(Mb, PKS) back to the attacker.

• The query phase and the security action phase are repeated a polynomially

bounded number of times. Additionally, we require that the target client C can-

not be asked through O3 and O7, and Dec(Π, Cb, C) cannot be queried through

O10.

• Guess(b). The attacker makes a guess b′ of the value of b, and outputs b′. The

attacker wins if b = b′.

Remark 6.2. In the game defined above, the execution of a query phase followed

by a security action phase simulates an epoch of the protocol.

Remark 6.3. In a (k, n)-threshold cryptosystem, an attacker can break the security

if the attacker is able to compromise k secrets/parties during the lifetime of the

system. However, in the above defined (k, n)-secure system in the PCSE, an attacker

cannot break the security even if the attacker can compromise all n parties in the

lifetime of the system, provided at any time point t between two updates, at most

k − 1 parties are compromised by the attacker.

6.3 Our solution

We present our solution, first in a non-threshold form (i.e., we stipulate that the

minimum number k of servers needed for performing decryption is equal to n, the

total number of servers). Later, in section 6.5.1, we generalise it to a threshold-based

solution where we allow one to choose k < n.

6.3.1 Basic idea

Alice selects a set of servers, and encrypts her secret by using the combined public

key of the selected servers.
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Setup
SA : (a, ga), SB : (b, gb), SC : (c, gc), PK = gabc

Zero-th Update

SA : (a0, g
a0), SB : (b0, g

b0), SC : (c0, g
c0), H0 = g(a0b0c0/abc)

First Update

SA : (a1, g
a1), SB : (b1, g

b1), SC : (c1, g
c1), H1 = g(a1b1c1/abc)

The j-th Update

SA : (aj, g
aj), SB : (bj, g

bj), SC : (cj, g
cj), Hj = g(ajbjcj/abc)

Encryption at any time
C = (α = gabck, β = sZk), for some secret s and random number k
Decryption at the j-th epoch
Compute γ = e(α,Hj), then decrypt (β, γ) by using (aj, bj, cj)

Figure 6.4: The data associated with the servers SA, SB and SC at different stages
of the protocol, and the encryption and decryption computations.

Time is divided into epochs. At the end of each epoch, the servers execute

a protocol during which they generate new decryption keys and destroy the old

ones. If a server is compromised in an epoch, the attacker obtains all its (shares

of) decryption keys. However, the protocol ensures that decryption keys from a

server in one epoch cannot be used together with decryption keys from a server in a

different epoch. Each change of epoch renders useless the decryption keys obtained

by the attacker in previous epochs. Thus, to decrypt the secret, and attacker would

have to compromise a threshold number of servers within the same epoch.

6.3.2 Abstract construction

We explain the protocol with three servers, SA, SB, and SC . Let G1, G2 be two

cyclic groups of a sufficiently large prime order p, such that |p| = λ, with a bilinear

map e : G2
1 → G2, and g ∈ G1 is a generator and Z = e(g, g) ∈ G2 (as defined in

Chapter 2). The data associated with the servers at different stages of the protocol

are presented in Figure 6.4.

Setup and zero-th epoch. SA generates a private key a ∈ Zp, and a public

key ga. Similarly, SB and SC generate (b, gb) and (c, gc), such that b, c ∈ Zp. Then

SA, SB, SC collectively compute and publish their joint public key gabc.

Next, SA generates a new key a0 ∈ Zp and public key ga0 , and similarly SB and

SC generate (b0, g
b0) and (c0, g

c0), such that b0, c0 ∈ Zp. Then SA, SB, SC collectively
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compute and publish helper data H0 = g(a0/a)·(b0/b)·(c0/c) with proofs that they have

correctly performed the computation. They destroy the secrets a, b, c.

At the end of the (j − 1)-th epoch. The servers replace their decryption

keys aj−1, bj−1, and cj−1 with new ones aj, bj, and cj. Then SA, SB, SC collectively

compute and publish helper data Hj = g(aj/a)·(bj/b)·(cj/c) with proofs that they have

correctly performed the computation. The values a, b, c are not required to compute

Hj. They destroy the secrets aj−1, bj−1, cj−1.

Encryption of secret s. At any time during the server lifecycle (i.e. any epoch

j), a client Alice can encrypt her data with the (unchanging) public key gabc. To

encrypt secret s, she selects a new random k and computes C = (α = gabck, β = sZk).

Decryption of ciphertext (α, β) at the j-th epoch.

After authenticating client Alice’s request for decryption, the servers can collec-

tively decrypt a ciphertext (α, β) during any epoch. To decrypt (α, β), the servers

compute γ = e(α,Hj) = Zajbjcjk. Then the servers use their secrets aj, bj, and cj to

collectively compute Zk, and then they can recover the secret s from β = sZk. Note

that duing this decryption process, Alice should apply masking to the γ to prevent

servers from learning the plaintext. More details are presented in the next section.

Remark 6.4. Note that the public key used by clients for encryption remains con-

stant regardless of the secret updates on the server side (requirement 3 in Sec-

tion 6.1). Also, the update procedure is independent of the number of stored ci-

phertexts (requirement 4). That is because in the update phase the servers need only

collectively compute the helper data. The ciphertext (α, β) of each data item remains

unchanged.

6.3.3 Detailed construction

Initialisation Setup. Let S1, S2, . . . , Sn be the servers selected by Alice. Si creates

setting-up key pair (si, g
si), for some si ∈ Zp, respectively. They also compute a

common public key PK = g
∏

si , which is available to the client in an authentic

matter, e.g., via a certificate. This key can be established as follows:

• Each Si computes and publishes Pi = gsi .
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• S2 computes PK12 = (P1)
s2 . This computation can be verified by checking

e(PK12, g) = e(P1, P2).

• Si computes PK1...i = (PK1...(i−1))
si , which again can be verified by checking

e(PK1...i, g) = e(PK1...(i−1), Pi).

Now, each Si has a secret key si and a common public key PK.

Zero-th epoch. This epoch is to generate the first decryption keys. Each Si

chooses another secret key si0, computes ui0 = si0/si, computes and publishes Pi0 =

gsi0 , P ′
i0 = gui0 and deletes si. The correctness of these values can be checked as

e(P ′
i0, Pi) = e(Pi0, g).

By using ui0, Si works with other servers to get H0 = g
∏

si0/si in the same way

as computing PK, and then deletes ui0.

At the end of the initialisation, Si only holds si0 at secret. This value can be

used for decryption (if needed) and is used for the next decryption key update. In

addition, Si also holds two public values, namely a helper data H0 and a common

public key PK.

Note that the common public key is used for data encryption by the clients. This

implies that the clients do not have to follow the server key updating processes, and

they will keep using the key PK for a reasonably long time.

Updating the decryption keys The decryption key update process is similar

to the computation of the first decryption keys presented in the previous phase. At

the end of the (j − 1)-th epoch for some j ≥ 1, the servers replace their decryption

keys si(j−1) with new ones, sij. This is achieved as follows.

• With the input si(j−1), Si chooses sij, computes uij = sij/si(j−1), computes

and publishes Pij = gsij and P ′
ij = guij , and deletes si(j−1). The correctness of

these values can be checked as e(P ′
ij, Pi(j−1)) = e(Pij, g).

• By using uij, Si works with other servers to get Hj = H
∏

sij/si(j−1)

j−1 = g
∏

sij/si

and then deletes uij. The correctness of these values should also be verified in

the same way as computing PK.
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At the end of (j − 1)-th update, Si only holds sij. This value is used for both

decryption and update in the (j)-th epoch.

Encryption To encrypt a secret s, Alice selects a new random k, and computes

PKk = gk·
∏

si and sZk. Alice sends (α = PKk, β = sZk) to each server.

Servers only accept (α, β) as some encrypted data from Alice if a valid proof of

knowledge of s (or k) is provided. This is used to prevent replay attacks in which an

attacker who has observed (α, β) sets up an account with the servers, and provides

(α, β) as the attacker’s encrypted data, then requests servers to decrypt it for the

attacker. Any secure zero knowledge proof of knowledge (ZKPK) can be used. For

example, the proof can be a Schnorr ZKPK of k, where the prover knows k and the

verifier knows PKk. If the prover shows knowledge of k, this implies that she also

knows s.

At the end, Alice destroys s and k after all servers are convinced and accepted

the ciphertext.

Decryption An abstract protocol for decrypting an encrypted secret is presented

in Figure 6.5.

In more detail, in the j-th epoch for some j ≥ 0, Alice sends a request to a

selected server for retrieving the encrypted data. After successfully authenticating

Alice, the server calculates γ = e(α,Hj) = Zk·
∏

sij , and sends (β, γ) to Alice.

Alice selects a new random k′ ∈ Zp, sends Zk′ to each of the servers as her

commitment on k′, computes γk′ = Zkk′·
∏

sij , and asks each server to remove its sij

from the exponent. The final output should be Zkk′ . She then can recover Zk by

computing (Zkk′)
1/k′

, and thus be able to decrypt sZk.

Before a server decrypts some message requested by a user, the server expects

a proof that the requested decryption is indeed a step to help the user to recover a

key that the user actually owns, i.e. to prove that

(Z,Zk′ , Zk·
∏

sij , Zkk′·
∏

sij)

is a DDH tuple. This can be done by using classic non-interactive ZKPK schemes, for

proving that (g, gx, gy, gxy) is a DDH tuple (e.g. Chaum-Pedersen protocol [CP92],
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Alice SAlice

Request

Authentication process

- If the authentication succeeded, then

compute γ = e(α,Hj) = Zk·
∏

sij

(β, γ)

- Select k′ ∈ Zp

- Compute γk
′

- Generate proof P that

(Z,Zk′ , Zk·
∏

sij , Zkk′·
∏

sij ) is a DDH tuple

(γk′ , P )

- Verify P

- Compute Zkk′ by collectively decrypting γk
′

Zkk′

- Compute Zk = (Zkk′)
1/k′

- Decrypt sZk

Figure 6.5: An abstract presentation of the protocol for decrypting a distributed
and encrypted secret.

as reviewed in Chapter 2). Each server also needs to check the received values from

other servers in the same way.

6.4 Security analysis

Our goal is to prove the security of our protocol per Definition 6.2; that is, we prove

that the advantage that a probabilistic polynomial-time (PPT) adversary A has to

win the Game-PCSE is negligible.
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We first introduce a new assumption, called “modified decisional bilinear Diffie-

Hellman inversion (M-DBDHI)”, and show how this assumption is related to our

system. We then define a game based on the M-DBDHI assumption. The game has

multiple rounds. We call such a game with j rounds as j-round modified decisional

bilinear Diffie-Hellman inversion game, denoted Game-j-R-MDBDHI.

We then prove that if an adversary can win Game-j-R-MDBDHI with a non-

negligible advantage, then we can break the M-DBDHI assumption.

Finally, we simulate our protocol and adversary model by using Game-j-R-

MDBDHI, and prove in our theorem that if an adversary can win Game-PCSE with

a non-negligible advantage ϵ, then we can make use of this adversary to win Game-j-

R-MDBDHI with advantage (1+2ϵ)(N−N ′′)(N−N ′)
8N2 , which is also non-negligible. (Here,

the values N , N ′ and N ′′ are quantities of servers participating in the protocol.)

6.4.1 Hardness assumption and discussion

We first define the Modified Decisional Bilinear Diffie-Hellman Inversion (M-DBDHI)

assumption as follows.

Definition 6.3 (M-DBDHI Assumption). Given (g, ga, gb, gx, g1/x, gx/b), where g ∈
G1 is a generator, a, b, x ∈ Zp, it is hard to distinguish e(g, g)a/b from random.

Remark 6.5. Roughly speaking, the connection with our protocol is the following.

Let k be an element in Zp such that ga = gbk and let the common public key be

PK = gb. Then the ciphertext of a message m is

(α, β) = (PKk,m · e(g, g)k) = (ga,m · e(g, g)a/b)

So, if an adversary is able to distinguish e(g, g)a/b from random, then we can make

use of the adversary to determine whether (ga,m · e(g, g)a/b) is a correct encryption

of m or not.

As far as we know, the M-DBDHI assumption is not provable from other similar

assumptions in the literature. However, a weaker form of it follows from the q-

Decisional Bilinear Diffie-Hellman Inversion (q-DBDHI) assumption (see Chapter

2).

We show how to prove the weaker assumption as follows.
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Lemma 6.1. Assume q-DBDHI. Given (g, ga, gb), where g ∈ G1 is a generator,

a, b ∈ Zp, it is hard to distinguish e(g, g)a/b from random.

Proof. It can be proved hard by contradiction: If there exists an adversary A which

has a non-negligible advantage ϵ to distinguish e(g, g)a/b from random, then we can

construct a PPT Turing machine B to break the q-DBDHI assumption.

Let (g, gx, gx
2
, . . . , gx

q
) ∈ (G1)

q+1 be the given (q + 1)-tuple in q-DBDHI, and

the challenge for B is to decide if a given challenge Q is e(g, g)1/x. We now explain

how to make use of A to break q-DBDHI assumption.

To generate a challenge for A, B first randomly picks a ∈ Zp, and sends (g, ga, gx)

and challenge Qa to A. A should send a decision to state if Qa = e(g, g)a/x or not.

B then uses the received decision as his decision on whether Q = e(g, g)1/x or not.

So, the advantage that B can break the q-DBDHI assumption is also ϵ, which is

non-negligible. This contradicts our assumption.

The M-DBDHI assumption is stronger because, in addition to (g, ga, gb) which

are the elements that an attacker can learn in a single epoch of the protocol, the

adversary is given the extra elements (gx, g1/x, gx/b) in the given tuple. In fact,

these elements are the knowledge that an attacker can learn from other epochs of

our protocol (more details can be found in the proof of Lemma 6.2).

Intuitively, the M-DBDHI is expected to be a hard problem, as the extra infor-

mation (gx, g1/x, gx/b) does not help one to distinguish e(g, g)a/b, due to the discrete

logarithm problem and Decisional Diffie-Hellman Problem on G2. How to formally

prove the relationship between M-DBDHI and any well-known hard problem is an

open question.

6.4.2 Formal security analysis

We define the j-round modified decisional bilinear Diffie-Hellman inversion game

(Game-j-R-MDBDHI) as follows.
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Game-j-R-MDBDHI

1. The challenger sets j = 1, selects r0 ∈ {0, 1} uniformly at random, and gener-

ates a tuple (g, ga0 , gb0 , Q0) according to security parameter λ, where g ∈ G1

is a generator, a0, b0 ∈ Zp such that |p| = λ. If r0 = 0, then Q0 = e(g, g)a0/b0 ;

otherwise Q0 is randomly chosen from G2. The challenger sends the tuple to

the adversary.

2. Query phase. The adversary selects and makes one of the following two re-

quests to the challenger.

a) Update. Upon receiving this request, the challenger selects new random

aj, bj ∈ Zp, and outputs gbj/bj−1 , selects rj ∈ {0, 1} uniformly at random,

and an updated tuple (g, gaj , gbj , Qj). If rj = 0, then Qj = e(g, g)aj/bj ;

otherwise Qj is randomly chosen from G2.

b) Reveal and update. Upon receiving this request, the challenger outputs

(aj−1, bj−1), and updates the tuple as presented above.

After a challenger answers a request, the challenger sets j = j + 1.

3. The query phase is repeated a polynomially bounded number of times.

4. The adversary outputs a decision on whether Qi = e(g, g)ai/bi , for any i ∈
{0, 1, . . . , j}, such that the value of (ai, bi) and (ai+1, bi+1) is not revealed to

the adversary through request (b), if applicable. The adversary wins the game

if the decision is correct.

5. After the adversary outputs a decision, the current (aj, bj) will be revealed to

the adversary.

Remark 6.6. In the above game, the request (a) will be used indirectly to help us to

simulate the protocol for updating decryption keys; and the request (b) will be used

indirectly to help us to simulate oracles of compromising a server’s decryption key in

Game-PCSE. The last step, i.e. revealing (aj, bj), only happens after the adversary

has made a decision. So this has no value for the game. However, it will also

indirectly help us to simulate the protocol in the Game-PCSE.
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Lemma 6.2. Assuming M-DBDHI, an adversary can win Game-j-R-MDBDHI only

with a negligible advantage.

Proof. This lemma can be proved by contradiction. Let the j′-th round challenge

be the target challenge, for some j′ ∈ [0, j]. Apart from the initial knowledge

(g, ga0 , gb0 , Q0), an attacker also has the following extra knowledge:

• all secrets (i.e. (ai, bi)) associated to the i-th challenge can be learnt by the

attacker, for all i such that i ∈ {0, 1, 2, . . . , j′ − 1, j′ + 2, . . .}. In other words,

the j′-th and (j′ + 1)-th secret cannot be learnt by the attacker;

• the attacker can also learn gbi/bi−1 for all i ∈ {1, 2, . . . , j′, . . .}.

Since the secrets related to the j′-th tuple are selected from random, it is inde-

pendent of the first (j′−2) rounds. The connection between j′-th tuple and (j′−1)-th

tuple is that when the request (b) is asked on the (j′−1)-th tuple, then the attacker

learns aj′−1, bj′−1, g
b′j/bj′−1 . It is easy to see that the attacker will not gain any extra

information associated to the j′-th round, due to the discrete logarithm assumption

and Diffie-Hellman assumption.

For the secret revealed after (j′ + 1)-th round, the extra knowledge an attacker

has is (aj′+2, bj′+2, g
bj′+2/bj′+1 , aj′+3, bj′+3, g

bj′+3/bj′+2 , . . .). Since the secrets generated

after (j′ + 2)-th round are also random, and they are not linked to the j′-th round

in any format, they are independent of the j′-th round. So, the actual related

knowledge the attacker has is

(g, ga
′
j , gb

′
j , gbj′+1 , gbj′+1/b

′
j , bj′+2, g

bj′+2/bj′+1 , Q′
j)

We now prove that given the above tuple, an adversary cannot determine if

Q′
j = e(g, g)a

′
j/b

′
j with non-negligible advantage. This can be proved by contradic-

tion, namely, if an adversary can determine if Q′
j = e(g, g)a

′
j/b

′
j with non-negligible

advantage, then we can construct a PPT Turing machine B to break M-DBDHI

assumption.

Given a challenge (g, ga, gb, gx, g1/x, gx/b, Q) as stated in M-DBDHI assumption,

B selects a new random r, and computes (g1/x)r, then sends (g, ga, gb, gx, gx/b, r, gr/x, Q),

which is of the same form as the knowledge the attacker has related to the challenge
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given in the j′-th round. If the adversary can determine whether Q = e(g, g)a/b or

not with non-negligible advantage, then B can re-direct the adversary’s answer to

break M-DBDHI assumption with non-negligible advantage, which forms a contra-

diction.

Thus, if an adversary can win Game-j-R-MDBDHI with a non-negligible ad-

vantage, we can make use of it to break M-DBDHI assumption. This forms a

contradiction.

Theorem 6.3. Assuming M-DBDHI, the proposed system is secure in the sense of

Definition 6.2.

Proof. We prove our theorem by contradiction. If an attacker A is able to win

Game-PCSE (Definition 6.2), with non-negligible advantage, then we can construct

a PPT Turing machine B to win Game-j-R-MDBDHI.

We now explain how to construct B to make use ofA to win Game-j-R-MDBDHI,

in the following steps.

Let λ be the security parameter used in this game.

B, as an adversary, starts Game-j-R-MDBDHI with a challenger Chl, and ob-

tains (g, ga0 , gb0 , Q0) from Chl. Then, B, as a challenger, sets up Game-PCSE with

A as follows.

• B sets up our proposed protocol through Setup(Π, λ). A declares the number

N of servers that will be created.

• Query phase. We present how B answers the following oracle queries made

by A. To answer O1 (i.e. Settings(Π)), B outputs current public parameters.

We will present how to answer O2, i.e. to execute the protocol, later. To an-

swer Oi for i ∈ {3, 4, 5, 6}, i.e. create new participants, B creates a participant

accordingly, and if i ∈ {3, 4}, then B sends the corresponding key pair to A.

B can also answer Oi for i ∈ {7, 8, 9}, i.e. compromise or take ownership of

participants, since B creates them and knows all associated secrets. Similarly,

B can answer the decryption oracle O10. Note that there is a special case on

answering the O8 and O9, which we will discuss after we present how to answer

O2.
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To answer O2, we need to present how to simulate our protocol. In the setup

phase, all participants are created through the adversary’s create-participant

oracle. For the first received O6 (CreateSecureServer(Π, Si)), B will use gb0

provided by Chl as Si’s initial public key gsi . We call this server a “trap”

server. From A’s point of view, there is no difference between the trap server

and other servers. When all N servers are created, B creates the common

public key PK.

To generate the first decryption key, B can directly generate decryption keys

for all the servers he created, since B knows all corresponding initial secrets.

For the trap server, B does not know the corresponding secret b0, however, B
can still generate the first decryption key by making request (a) in Game-j-R-

MDBDHI. The output of request (b) is (g, ga1 , gb1 , Q1) and gb1/b0 . The gb1 will

be used as the public value associated to the first decryption key b1, and the

value gb1/b0 is in fact the gui0 associated to the trap server Si in our protocol,

and this value will be used to calculate helper data H0.

At the end of the j-th epoch, the decryption keys of servers (apart from the trap

server) can be easily updated, since B creates them and knows all the secrets.

For the trap server, B can simulate the decryption key update in the same

way as generating the first decryption key. B asks the request (a) in Game-j-

R-MDBDHI, i.e. update the tuple from (g, gaj , gbj , Qj) to (g, gaj+1 , gbj+1 , Qj+1)

for the (j + 1)-th epoch.

The encryption process does not need the knowledge of bj, so B can pick a

random k ∈ Zp, and simulates the encryption. B will store the value of k in

order to be able to simulate the decryption oracle without knowing bj.

Now we can see that the special case of answering O8 and O9 is when the trap

server is being asked, since B does not know the value of bj. In the j-th epoch

for some j ̸= 1, when CompromiseServer(Π, Si) is being made on the trap

server Si, B asks Chl to reveal the current secret through request (b). Chl

reveals bj, and updates the tuple as stated in Game-j-R-MDBDHI. B then

redirects bj to A.

If at the first epoch the CompromiseServer(Π, Si) is being made on the trap
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server, or if at any epoch the TakeOwnershipServer(Π, Si) is being made

on the trap server Si, then B make a random guess as the decision on the

currently challenge Qj from Chl, and the game Game-j-R-MDBDHI is over.

Note that B is still able to continue with A, as bj is revealed at the end of

Game-j-R-MDBDHI.

• Security action phase. B makes security action oracle queries on all tem-

porarily attacker-controlled servers, and executes the received strategy for the

associated server. Then B updates the decryption keys of all servers as de-

scribed above in the query phase.

• Challenge phase. After receiving two messages M1 and M2 from A, B tosses

a coin, and b ∈ {0, 1} is the result of the coin tossing. B computes PK ′ such

that PK ′ is the result of replacing b0 in PK by using a0. B can do this because

that B knows ga0 and all other initial secrets. B then sends (PK ′,Mb · Q0)

back to A as the ciphertext Cb.

• If B has received a correct guess from A, then B says to Chl that Q0 =

e(g, g)a0/b0 . Otherwise, B makes a random guess. Note that as previously

explained, we can think of the a0/b0 as the random number k picked by a

client in the encryption phase. So, if (PK ′,Mb ·Q0) is a correct encryption of

message Mb under public key PKS , then we have that Q0 = e(g, g)a0/b0 .

Note that the above simulation opts out the case that an attacker requests the

servers to decrypt the target ciphertext. The attacker can do it by providing the

ciphertext to servers for decryption. However, our protocol prevents an attacker to

do so by using the two secure zero knowledge proof schemes: one is used for verifying

the ownership during the encryption process, and one is used to verify that the to-

be-decrypted ciphertext is the one belongs to a client during the decryption process.

Let N ′ be the number of TakeOwnershipServer(Π, Si) queries made by A in

Game-PCSE ; and let N ′′ be the number of CompromiseServer(Π, Si) queries made

by A in the first epoch.

The probability that B wins the game associated to Qj with Chl is analysed as

follows.
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• The probability that the adversary chooses to perform CompromiseServer(Π, Si)

in the first epoch on the trap server is N ′′

N
. In this case, the probability that

B wins Game-j-R-MDBDHI is 1
2
, as B can only make random guess. This is

due to the fact that if the oracle query has been asked at the first epoch, then

(a1, b1) will be revealed B, and Q0 is not a valid challenge anymore.

• The probability that CompromiseServer(Π, Si) is not made in the first epoch

on the trap server, and TakeOwnershipServer(Π, Si) is performed on the trap

server in Game-PCSE, is (1− N ′′

N
) · N ′

N
. In this case, the probability that B wins

Game-j-R-MDBDHI is 1
2
, as B can only make random guess. This is due to

the fact that all secrets associated to the Game-j-R-MDBDHI will be revealed

to B in order to simulate the TakeOwnershipServer(Π, Si) oracle query, so

B cannot make use of A to win Game-j-R-MDBDHI.

• The probability that CompromiseServer(Π, Si) is not made in the first epoch

on the trap server, and trap server has not been asked through

TakeOwnershipServer(Π, Si) in Game-PCSE is (1 − N ′′

N
) · (1 − N ′

N
). In this

case, the probability that B wins Game-j-R-MDBDHI has two cases:

– if Qj = e(g, g)aj/bj , then the probability that B wins is

(
1

2
+ ϵ) · 1 + (

1

2
− ϵ)) · 1

2

(Recall that if A wins (the probability is 1
2
+ ϵ), then B will win with

probability 1; and if A does not win, then B makes a random guess.)

– if Qj ̸= e(g, g)aj/bj , then the probability of B wins is 1
2
, as B does not

have any advantage by using A, since the encryption is not in a correct

format.

These two cases occur with equal probability.

So the advantage AdvB,N,N(λ) B has to win the game associated to Qj with Chl
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is

AdvB,N,N (λ) =

N ′′

N
·
1

2

+ (1−
N ′′

N
) ·

N ′

N
·
1

2

+ (1−
N ′′

N
) · (1−

N ′

N
) ·

1

2
((
1

2
+ ϵ) · 1 + (1− (

1

2
+ ϵ)) ·

1

2
)

+ (1−
N ′′

N
) · (1−

N ′

N
) ·

1

2
·
1

2

−
1

2

=
(1 + 2ϵ)(N −N ′′)(N −N ′)

8N2

Since ϵ is non-negligible, N − N ′ ≥ 1, and N − N ′′ ≥ 1, so we have that the

advantage B has to win Game-j-R-MDBDHI is non-negligible. This contradicts our

assumption.

6.5 Discussion and related work

6.5.1 Extension to a threshold system

As mentioned in previous sections, our system requires the presence of all servers for

recovering a secret. Inspired by [Rab98], the proposed system can be easily extended

to a threshold-based system, by using any classical (verifiable) secret sharing schemes

to back-up all ephemeral secret keys of servers.

To be more precise, let “key servers” be the servers in our standard protocol

and “back-up servers” be the secret sharing servers. Each time a new key of a key

server is generated, the key will be distributed to a set of back-up servers through

secret sharing schemes, and the shares associated to the old keys will be destroyed.

So, when a key server is dead, our system can still continue by recovering the dead

server’s secret keys from shares, and take actions from there to re-build the server.

Intuitively, the extended threshold system is secure even if we additionally allow

an attacker to compromise less than a threshold number of back-up servers at any

epoch, provided that the set of back-up servers are not overlapped with the set of

key servers, and all key servers uses the same threshold with the same set of back-up

servers for sharing their keys. Loosely speaking, since the shares of different epochs
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are completely independent to each other, the compromise of shares in an epoch

does not help an attacker to recover secrets shared in other epochs.

In fact, we can easily improve the security guarantee of the extended threshold

system by letting key servers use different sets of back-up servers for sharing their

keys. In this way, an attacker would need to compromise a threshold number of

back-up servers to only obtain the secret of a single key server, rather than being

able to recover all key servers’ secrets. A more rigorous security analysis of the

extended threshold system will be our future work.

6.5.2 Related work

A similar adversary model, called “mobile adversary”, was introduced by Ostrovsky

and Yung [OY91]. The mobile adversary considers viruses that migrate between

computers. A system that is secure against a mobile adversary is called proactively

secure. Research [CH94, HJKY95, NN04, HJJ+97, FGMY97b, FGMY97a, FMY01,

FMY99, Rab98] on proactively secure systems is mainly focusing on secret sharing

schemes and signature schemes.

Proactive secret sharing (PSS) (e.g., [HJKY95, NN04, SLL10, BDLO14]) is a

technique for sharing a secret among a set of servers; it is secure against an attacker

that can compromise servers, one by one, over a long period. In PSS, as in our

protocol, time is divided into epochs. In each epoch, the servers that hold shares of

the secret engage in a protocol to update their shares. An attacker may compromise

some servers in a given epoch, but the learnt secrets are useless in other epochs.

Thus, even if all the servers are eventually compromised over different epochs, the

secret remains intact provided that in each epoch there was at least one server that

remained honest.

One might try to solve the problem of this paper by treating the service’s secret

key as the secret to be shared among multiple servers. This does not solve the

problem, however, because decrypting a message encrypted with the service’s public

key would require reconstructing the secret key. An attacker that compromises the

server holding the secret key at that point would obtain the secret key.

Proactively secure cryptographic systems apply the ideas of proactively secure

secret sharing to sharing decryption or signing secrets among several servers. Such
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systems have been achieved by combining a proactively secure secret sharing scheme

with an encryption or signature scheme (e.g., [FGMY97b, FGMY97a, FMY99,

FMY01, CKLS02, ADN06]). However, these constructions make use of a trusted

dealer, who creates the secret key and distributes shares of some secrets to the

servers. Unfortunately, the creation of the secret key in a single location by the

dealer prevents the decentralisation required and achieved in our protocol. Al-

though it is mentioned in a number of papers that the function of the trusted dealer

in these schemes can be done by the servers, it is well known that both distributing

a secret in Shamir’s secret sharing scheme and creating and distributing an RSA

key, amongst multiple players without a trusted dealer, are complicated and costly.

In this paper, we propose a decentralised distributed decryption scheme, which does

not have such a trusted dealer and is efficient.

6.6 Conclusion

Increasing numbers of attacks on cloud servers challenge the security of distributed

storage. We have introduced a provably secure self-healing distributed storage as

a security-enhanced approach to this challenge. It does not require data owners to

store decryption keys, and is secure even if all the servers are compromised over a

long time, provided that no more than a threshold number of servers are compro-

mised in a single epoch. In addition, the system has a feature of updating decryption

keys on the server, while the public key used by data owners remains unchanged.

This solves the problem of how to authenticate servers when they are compromisable.
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CHAPTER 7

CONCLUSION

7.1 Introduction

Cryptographic key management is arguably the hardest part of cryptography, and

having a secure way to manage cryptographic keys is one of the core assumptions

of cryptosystems. If the key management is not secure, then the security of cryp-

tosystems will fail.

The study was set out to explore solutions to defend against attacks on the key

management, with a focus on the unauthorised uses of private keys. In particular,

this thesis sought to tackle the following challenges:

Challenge 1. How to ensure the authenticity of public keys when an attacker is able

to compromise certificate authorities?

Challenge 2. How to mitigate the damage caused by the compromised private keys

in secure messaging applications?

Challenge 3. How to provide a better guarantee on the confidentiality of a dis-

tributed secret when an attacker is able to gradually compromise all

distributed storage servers?

The main findings to the above challenges are part specific and were summarised

within the respective parts (i.e. Part II, Part III, and Part IV, respectively). This

chapter summarises our findings to the above challenges: it discusses each of our

solutions to the challenges, and gives several thoughts on the possible directions of

further research.
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7.2 Key compromise in web PKI

Many alternatives are proposed to address the challenge of protecting the authen-

ticity of public keys against compromised certificate authorities. They each have

different pros and cons, and it is hard to judge which one is better and whether they

have addressed the problem completely or not.

To understand the current state of the art, Part II of this thesis first identi-

fied 15 fundamental criteria. Second, based on the nature of the proposals’ design

concept, we classified these proposals into three categories, namely difference ob-

servation, scope restriction, and certificate management transparency. Third, we

provided an analysis on each of the proposals based on our identified criteria. We

observed that although no system satisfies all criteria, systems in the category of

certificate management transparency provide more desired features than systems in

other categories.

Based on the observations, we presented our new research result on a distributed

and transparent key infrastructure, which we call “DTKI”. Compared to its prede-

cessors, DTKI has the advantage of minimising the oligopoly of certificate manage-

ment, and is the first to prevent attacks when all service providers collude together.

However, DTKI does not provide offline verification. As a result, DTKI in-

troduces extra network latency. In addition, the avoidance of oligopoly provided

by DTKI requires an international panel to serve as the mapping log maintainer

(MLM). In practice, there might be concerns around this requirement, such as how

to decide which party should be the MLM, how to organise the governing represen-

tatives from many countries to minimise the oligopoly, and how the log maintainers

should be funded. To deploy DTKI, further research addressing these concerns is

needed.

Overall, we provided what we hope is a clear picture on the current status of the

research on solving the first challenge. We contributed a framework for evaluating

the potential solutions, presented our improvement (i.e. DTKI) on the current web

PKI alternatives, and formally modelled and verified security properties of DTKI

using the Tamarin prover.
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7.3 Key compromise in secure communication

Part III developed two key usage detection (KUD) protocols to mitigate the private

key compromise in secure communication.

The first protocol is a basic protocol used to explain the concept of KUD, and

it requires the recipient being online when a sender wants to send a message. The

second protocol is a more developed protocol for secure messaging. It does not

require the sender and the recipient being online at the same time, supports multiple

devices per user, and the multiplicity of devices helps detect attacks by reporting

device activities to the device owner.

Assuming compromised devices can be made secure again, rather than com-

pletely lose the game, our protocols could additionally either guarantee the con-

fidentiality of messages sent to a device, or (under certain conditions) allow the

victim to detect that confidentiality failed. We formally modelled the detailed KUD

protocol, and proved its security properties by using Tamarin prover.

Intuitively, the concept of KUD can also detect situations in which an attacker

has access to a key rather than retains a copy of it. For example, it could detect the

abuse of keys that are protected using a Trusted Platform Module. However, the

detailed use cases and security guarantee requires further study.

Overall, although KUD protocols do not completely solve the problem of key

compromise in secure communication, it raises the bar for the attacker, and provides

an extra level of security guarantee to the existing messaging systems.

7.4 Key compromise in secret distribution

Part IV aimed to provide a better security guarantee on the system for distributing

secrets when an attacker is able to gradually compromise all distributed storage

servers, without requiring the secret owner to store any keys for performing decryp-

tion.

We developed a security-enhanced self-healing scheme based on bilinear pairings

for distributing a secret. With the proposed system, data are encrypted by using a

common public key derived from the public keys of the set of servers selected by the

owner. Servers update their part of decryption keys periodically, while the common
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public key remains constant. The system provides a proactive security guarantee:

an attacker can learn a secret only if s/he can compromise all servers simultaneously

in a short period. We proved the security guarantee by using game-based approach.

Our scheme requires the involvement of all selected servers to perform secret

recovery, although there is an easy way to extend it to a threshold-based system

as discussed in Section 6.5, further research on the exact security guarantee of the

threshold-based scheme and its performance is needed.

Overall, although our solution still allows an attacker to launch attacks, it makes

the attacker’s work a lot difficult by rendering useless the decryption keys obtained

by the attacker in previous epochs.

7.5 Research questions and directions

We list some research questions emerging from the work presented in this thesis, and

these questions might lead to possible research directions associated to our presented

research.

Eliminating the use of gossip protocols. Both DTKI and KUD are log-based

systems, and they require a gossip protocol to exchange their view (i.e. the digest)

of the log to prevent “bubble” attacks. One research question is that is it possible

to use distributed logs (such as the blockchain used by Bitcoin) to avoid the use of

gossip protocol? Also, if this is possible, then what is the security assumption the

new system relies on, and what is the advantage of the new system over the one

using a gossip protocol?

Providing transparency to all security systems. Both DTKI and KUD pro-

vide a transparent key management by using public logs. It forces attackers to leave

evidence of their attacks, and enables victims to verify behaviours of participants.

Loosely speaking, if an attacker is fully malicious, then the log-based system might

help victims to detect attacks; if an attacker is malicious but cautious, which means

that the attacker would not launch attacks if the attack will be detected, then it

would prevent attacks from the attacker. A research question is that can we apply

this concept to all other security systems to make the behaviours of participants
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transparent for achieving a better security guarantee?

Applying KUD to other systems. This thesis only explored the messaging ap-

plication of our KUD concept in the settings of public key cryptography. Intuitively,

our KUD concept can be applied to the symmetric key cryptosystem as well. Future

research could explore more on what are other possible applications. (For example,

can we apply KUD to TLS protocol or to security protocols for the Internet of

Things?) The related research questions are that can we apply the KUD concept

to other cryptosystems, and can we improve the system to achieve a better security

guarantee such as attack prevention rather than merely detecting attacks?

Improving the self-healing scheme. This thesis explored how to securely dis-

tribute secrets through a self-healing system. The proposed system enables the

secret owner to recover the secret when needed. A security concern is that when

the secret is being recovered, if the data owner’s device is compromised, then the

secrets would be exposed to the attacker.

Solutions to address the above concern are future research directions. For exam-

ple, one research direction is designing a self-healing storage system in the way that

a secret can only be accessed for performing some computation (such as message

decryption, signature generation, and user authentication), but cannot be recovered

directly. This would limit the damage caused by compromised data owner devices.

7.6 Conclusion

Key management is often the most vulnerable part of cryptosystems. This chapter

concluded our research on mitigating the private key compromise in three cases,

namely private key compromise in web PKI, private key comprise in secure commu-

nication, and private key compromise in secret distribution. In addition, to drive the

research further, this chapter asked several research questions and indicated possible

future research directions.
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APPENDIX A

TAMARIN CODE FOR DTKI

The version of the Tamarin prover we use to perform our proofs is git commit

f1a215550d95d57d3e59267a4fb268dfbf6e826e. One can run the following command

to check the well-formedness of our modeling.

$ tamarin-prover file-name.spthy

To verify properties, run the following command.

$ tamarin-prover --prove file-name.spthy

DTKI.spthy

theory DTKI

begin

builtins: multiset

functions: adec/2, aenc/2, fst/1, h/1, pair/2, pk/1, sdec/2, senc/2,

sign/2, snd/1, false/0, true/0, verify/3

equations:

adec(aenc(x.1, pk(x.2)), x.2) = x.1,

fst(<x.1, x.2>) = x.1,

sdec(senc(x.1, x.2), x.2) = x.1,

snd(<x.1, x.2>) = x.2,

verify(sign(x.1, x.2), x.1, pk(x.2)) = true

/*Initialisation: Mapping log maintainer. */

rule INIT_MLM:

[ Fr(~ltkM) ]

--[ Is_Type(‘MLM’, $M),

Only_One(‘INITMLM’) // The MLM is unique in DTKI
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]->

[

!Ltk($M, ~ltkM),

!Pk($M, pk(~ltkM)),

Out(pk(~ltkM))

]

/*Initialisation: Certificate log maintainer CLM1. */

rule INIT_CLM_RGX_1:

[ Fr(~ltkC) ]

--[ Is_Type(‘CLM’, $C),

Only_One(‘INITCLM_RGX_1’) // We only allow two CLMs in this

// proof, it can be extended to many

// CLMs. We predefined two regular

// expressions, namely RGX1 and RGX2,

// and each CLM is authorised for

// either of them. This one is

// authorised for regular expression

// 1.

]->

[ !Ltk($C, ~ltkC),

!Pk($C, pk(~ltkC)),

Rgx($C, pk(~ltkC), ‘RGX1’),

StStateInitCLM($C, pk(~ltkC), ‘RGX1’),

Out(pk(~ltkC))

]

/*Initialisation: Certificate log maintainer CLM2. */

rule INIT_CLM_RGX_2:

[ Fr(~ltkC) ]

--[ Is_Type(‘CLM’, $C),

Only_One(‘INITCLM_RGX_2’) // We only allow two CLMs in this

// proof, it can be extended to many

// CLMs. We predefined two regular

// expressions, namely RGX1 and RGX2,

// and each CLM is authorised for

// either of them. This one is

// authorised for regular expression

// 2.

]->

[ !Ltk($C, ~ltkC),

!Pk($C, pk(~ltkC)),

Rgx($C, pk(~ltkC), ‘RGX2’),

StStateInitCLM($C, pk(~ltkC), ‘RGX2’),

Out(pk(~ltkC))

]

/*Initialisation: Mapping log. */
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rule INIT_MLOG:

[

!Ltk($M, ltkM),

Fr(~mlogid)

]

--[ Is_Type(‘MLM’, $M),

Only_One(‘INITMLOG’) // Each log maintainer has only one log.

]->

[

L_Mlog($M, ~mlogid, ‘nil’) // ‘nil’ is just a normal constant.

// I use this constant to fill this

// position when no record is available.

]

/*Initialisation: Certificate log. */

rule INIT_CLOG_RGX1:

[

!Ltk($C, ltkC),

StStateInitCLM($C, pk(ltkC), ‘RGX1’),

Fr(~clogid)

]

--[ Is_Type(‘CLM’, $C),

Only_One(‘CLOG1’) // Each log maintainer has only one log.

]->

[

L_Clog($C, ~clogid, ‘RGX1’, ‘nil’) // the log maintained by the

// CLM is for domains whose

// name is an instance of

// regular expression RGX1

]

rule INIT_CLOG_RGX2:

[

!Ltk($C, ltkC),

StStateInitCLM($C, pk(ltkC), ‘RGX2’),

Fr(~clogid)

]

--[ Is_Type(‘CLM’, $C),

Only_One(‘CLOG2’) // Each log maintainer has only one log.

]->

[

L_Clog($C, ~clogid, ‘RGX2’, ‘nil’) // the log maintained by the

// CLM is for domains whose

// name is an instance of

// regular expression RGX2

]
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/* Adding a new Clog into Mlog. Phase 1, a CLM sends a request to the MLM.*/

rule MLOG_ADD_NEW_CLOG_PHASE_1_CLM:

let Request = sign(<‘AddCLMRequest’, $C, clogid, rgx, pk(ltkC)>, ltkC)

in

[

!Ltk($C, ltkC),

Rgx($C, pk(ltkC), rgx),

L_Clog($C, clogid, rgx, clog)

]

--[

Is_Type(‘CLM’, $C)

]->

[

L_Clog($C, clogid, rgx, clog),

Out(Request)

]

/* Adding a new Clog into Mlog. Phase 2, the MLM records the verified request in the mlog.*/

rule MLOG_ADD_NEW_CLOG_PHASE_2_MLM:

let

Request = sign(<‘AddCLMRequest’, $C, clogid, rgx, ltpkC>, ltkC)

Proof_MLM = sign( <‘AddedByMLM’, $C, clogid, rgx, ltpkC>, ltkM)

in

[

In(Request),

!Ltk($M, ltkM),

!Pk($C, ltpkC),

L_Mlog($M, mlogid, mlog)

]

--[

Is_Type(‘CLM’, $C),

Is_Type(‘MLM’, $M),

Eq(verify(Request, <‘AddCLMRequest’, $C, clogid, rgx, ltpkC>, ltpkC), true ),

Eq(ltpkC,pk(ltkC)),

Start_Role(<‘MANCP2M’,‘M’,rgx>, <$M,$C,rgx>) // To find the basic

// trace and spead

// up the proof, we

// only have one

// instance of each

// role.

]->

[

L_Mlog($M, mlogid, mlog + <$C, clogid, rgx, ltpkC>),

Out(Proof_MLM)

]

/* The MLM can modify its own log */
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rule MODIFY_MLOG:

let record = <$C, clogid, rgx, ltpkC>

in

[

In(record),

!Ltk($M, ltkM),

StCompromisedMLM($M,ltkM),//only a malicious log maintainer

//would modify logs in this way.

L_Mlog($M, mlogid, mlog)

]

--[

Is_Type(‘CLM’, $C),

Is_Type(‘MLM’, $M),

Modify_Mlog($M, mlogid, ltkM)

]->

[L_Mlog($M, mlogid, mlog + record)]

/* Adding a new Clog into Mlog. Phase 3, generating a proof for

convincing other participants. This also enables a malicious MLM

to create any fake proof about the mlog.*/

rule MLOG_ADD_NEW_CLOG_PHASE_3_CLM:

let

Proof_MLM = sign( <‘AddedByMLM’, $C, clogid, rgx, ltpkC>, ltkM)

in

[

In(Proof_MLM),

!Pk($M,ltpkM)

]

--[

Is_Type(‘CLM’, $C),

Is_Type(‘MLM’, $M),

Eq(verify(Proof_MLM, <‘AddedByMLM’, $C, clogid, rgx, ltpkC>, ltpkM), true )

]->

[

!Mapping(Proof_MLM)

]

/* Initialisation: Certificate authorities*/

rule INIT_CA:

[ Fr(~ltkCA) ]

--[

Is_Type(‘CA’, $CA),

Only_One(‘CA’)

]->

[ !Ltk($CA, ~ltkCA),
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!Pk($CA, pk(~ltkCA)),

Out(pk(~ltkCA))

]

/* Compromise a CA */

rule COMPROMISE_CA:

[ !Ltk($CA, ltkCA)

]

--[

Is_Type(‘CA’, $CA),

Compromise_CA($CA,ltkCA)

]->

[

Out(ltkCA)

]

/* Compromise the MLM */

rule COMPROMISE_MLM:

[ !Ltk($M, ltkM)

]

--[

Is_Type(‘MLM’, $M),

Compromise_MLM($M,ltkM)

]->

[

Out(ltkM),

StCompromisedMLM($M,ltkM)

]

/* Compromise a CLM */

rule COMPROMISE_CLM:

[ !Ltk($C, ltkC)

]

--[

Is_Type(‘CLM’, $C),

Compromise_CLM($C,ltkC)

]->

[

Out(ltkC),

StCompromisedCLM($C,ltkC)

]

/*Initialisation: domain server Did, s.t. Did is an instance of RGX1. */
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rule INIT_DOMAIN_RGX1:

[ Fr(~ltkD),

Fr(~Did)

]

--[ Is_Type(‘Domain’, $D)]->

[ !Ltk($D, ~ltkD),

!Pk($D, pk(~ltkD)),

!DomainInfo($D, ~Did, ‘RGX1’, pk(~ltkD)),

L_LocalRecord($D, ~Did, ‘RGX1’, ‘nil’),

MasterKey($D, ~Did, ‘RGX1’, pk(~ltkD)),

Out(pk(~ltkD))

]

/*Initialisation: domain server Did, s.t. Did is an instance of RGX2. */

rule INIT_DOMAIN_RGX2:

[ Fr(~ltkD),

Fr(~Did)

]

--[ Is_Type(‘Domain’, $D)]->

[ !Ltk($D, ~ltkD),

!Pk($D, pk(~ltkD)),

!DomainInfo($D, ~Did, ‘RGX2’, pk(~ltkD)),

L_LocalRecord($D, ~Did, ‘RGX2’, ‘nil’),

MasterKey($D, ~Did, ‘RGX2’, pk(~ltkD)),

Out(pk(~ltkD))

]

/* Request a master certificate from CAs */

rule REQUEST_MASTER_CERT:

let request= <‘RequestMasterCert’, $D, Did, rgx, ltpkD>

in

[

!DomainInfo($D, Did, rgx, ltpkD),

MasterKey($D, Did, rgx, ltpkD)

]

--[

Is_Type(‘Domain’, $D),

Is_Type(‘CA’, $CA)

]->

[

Out(request)

]

/* A CA certifies a master key. The verification of domain name and

key is done by linking !Pk($D, ltpkD) to the ($D, ltpkD) in the

request.*/
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rule CREATE_MASTER_CERT_PHASE_1:

let request= <‘RequestMasterCert’, $D, Did, rgx, ltpkD>

Cert_M= sign( <‘MasterCert’, $D, Did, rgx, ltpkD>, ltkCA)

in

[

In(request),

!Ltk($CA, ltkCA),

!Pk($D, ltpkD)

]

--[

Is_Type(‘Domain’, $D),

Is_Type(‘CA’, $CA),

Start_Role(<‘CMCP’,‘CA’>,<$CA, $D>)

]->

[

Out(Cert_M)

]

/* If a statement is signed by a CA, then this is a certificate. The

reason that we don’t put !MasterCert(Cert_M) in the last rule,

namely CREATE_MASTER_CERT_PHASE_1, is that the last rule would have to

link the certificate to the real pk since !Pk is used. However,

in the real world, a CA is able to certify any public key. Thus

we have this extra rule to give the CA’s ability to certify any

pk for any domain.*/

rule CREATE_MASTER_CERT_PHASE_2:

let

Cert_M= sign( <‘MasterCert’, $D, Did, rgx, ltpkD>, ltkCA)

in

[

In(Cert_M),

!Pk($CA,ltpkCA)

]

--[

Is_Type(‘Domain’, $D),

Is_Type(‘CA’, $CA),

Eq(ltpkCA,pk(ltkCA)),

Eq(verify(Cert_M, <‘MasterCert’, $D, Did, rgx, ltpkD>, ltpkCA), true )

]->

[!MasterCert(Cert_M)]

/*Generate TLS keys. Any domain owner with a secret key corresponding

to a master certificate can issue TLS certificates.*/

rule UPDATE_DOMAIN_TLSKEY_PHASE_1:

let

Cert_M= sign( <‘MasterCert’, $D, Did, rgx, ltpkD>, ltkCA)

Cert_TLS=sign( <‘TLSCert’, $D, Did, rgx, ltpkD, pk(~stkD)>, ltkD)
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in

[ !Ltk($D, ltkD),

!MasterCert(Cert_M),

L_LocalRecord($D, Did, rgx, record),

Fr(~stkD) // a new short term (TLS) key

]

--[ Is_Type(‘Domain’, $D),

D_Key($D, Did, rgx, ltkD, ~stkD),

Eq(pk(ltkD),ltpkD),

Start_Role(<‘UDTP’,‘D’,rgx>, <$D,$C>)

]->

[!Stk($D, Did, ~stkD),

L_LocalRecord($D, Did, rgx, record+<$D, Did, ltpkD, pk(~stkD)>),

Out(Cert_TLS),

Out(pk(~stkD))

]

/*For the reason similar to generating master certificates, we have

two phases for enabling anyone who has the secret corresponding to a

master certificate to generate TLS certificates.*/

rule UPDATE_DOMAIN_TLSKEY_PHASE_2:

let

Cert_M= sign( <‘MasterCert’, $D, Did, rgx, ltpkD>, ltkCA)

Cert_TLS=sign( <‘TLSCert’, $D, Did, rgx, ltpkD, stpkD>, ltkD)

in

[In(Cert_TLS),

!MasterCert(Cert_M),

!Pk($CA,ltpkCA)

]

--[

Is_Type(‘Domain’, $D),

Is_Type(‘CA’, $CA),

Eq(ltpkCA,pk(ltkCA)),

Eq(ltpkD, pk(ltkD))

]->

[!TLSCert(Cert_TLS)]

/* To publish domain information into clog, a domain first needs to

query the mapping. This can be done by supplying the Proof_MLM

directly. */

rule REQUEST_MAPPING_DOMAIN:

let Request = <‘MappingRequest’, rgx, ~n>

in

[

Fr(~n),

!DomainInfo($D, Did, rgx, ltpkD)

]
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--[

Is_Type(‘Domain’, $D),

Start_Role(<‘RMD’,‘D’,rgx>,<$D,rgx>)

]->

[

StAskMapping(Request),

Out(Request)

]

rule PROVE_MAPPING:

let

Request = <‘MappingRequest’, rgx, n>

Proof_MLM = sign( <‘AddedByMLM’, $C, clogid, rgx, ltpkC, n>, ltkM)

in

[

In(Request),

!Ltk($M, ltkM),

!Mapping(Proof_MLM)

]

--[

Is_Type(‘CLM’, $C),

Is_Type(‘MLM’, $M),

Start_Role(<‘PM’,‘M’,rgx>,<$M,$D,rgx>)

]->

[

Out(Proof_MLM)

]

rule UP_CLOG_ADD_PHASE_1_Domain:

let

Request1 = <‘MappingRequest’, rgx, n>

Cert_M= sign( <‘MasterCert’, $D, Did, rgx, pk(ltkD)>, ltkCA)

Cert_TLS=sign( <‘TLSCert’, $D, Did, rgx, ltpkD, stpkD>, ltkD)

Request2=<‘AddDomainRequest’, Cert_M, Cert_TLS>

Proof_MLM = sign( <‘AddedByMLM’, $C, clogid, rgx, ltpkC, n>, ltkM)

in

[

StAskMapping(Request1),

In(Proof_MLM),

!Pk($M,ltpkM),//It is built into browsers.

!MasterCert(Cert_M),

!TLSCert(Cert_TLS),

L_Mlog($M, mlogid, mlog)

]

--[

Is_Type(‘MLM’, $M),

Is_Type(‘CLM’, $C),
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Eq(verify(Proof_MLM, <‘AddedByMLM’, $C, clogid, rgx, ltpkC, n>, ltpkM), true ),

IsIn(<$C, clogid, rgx, ltpkC>, mlog)

]->

[

Out(Request2),

L_Mlog($M, mlogid, mlog)

]

rule UP_CLOG_ADD_PHASE_2_CLM:

let

Cert_M= sign( <‘MasterCert’, $D, Did, rgx, ltpkD>, ltkCA)

Cert_TLS=sign( <‘TLSCert’, $D, Did, rgx, ltpkD, stpkD>, ltkD)

Request2=<‘AddDomainRequest’, Cert_M, Cert_TLS>

Proof_MLM = sign( <‘AddedByMLM’, $C, clogid, rgx, ltpkC>, ltkM)

Proof_CLM= sign( <‘AddedByCLM’, Cert_M, Cert_TLS>, ltkC)

in

[

In(Request2),

!Ltk($C, ltkC),

!Pk($CA, ltpkCA),

!Pk($M, ltpkM),

!Mapping(Proof_MLM),

L_Clog($C, clogid, rgx, clog)

]

--[ Is_Type(‘Domain’, $D),

Is_Type(‘CLM’, $C),

Is_Type(‘MLM’, $M),

Eq(ltpkC, pk(ltkC)),

Eq(verify(Cert_M, <‘MasterCert’, $D, Did, rgx, ltpkD>, ltpkCA), true),

Eq(verify(Cert_TLS, <‘TLSCert’, $D, Did, rgx, ltpkD, stpkD>, ltpkD), true),

Eq(verify(Proof_MLM, <‘AddedByMLM’, $C, clogid, rgx, ltpkC>, ltpkM), true ),

Start_Role(<‘UCAP’,‘C’,rgx>, <$D,$C>)

]->

[

L_Clog($C, clogid, rgx, clog + <$D, Did, ltpkD, stpkD>),

Out(Proof_CLM)

]

/* A CLM can modify its own log */

rule MODIFY_CLOG:

let record = <$D, Did, ltpkD, stpkD>

in

[

In(record),

!Ltk($C, ltkC),

StCompromisedCLM($C,ltkC),//only malicious log maintainers

//would modify logs in this way.

L_Clog($C, clogid, rgx, clog)

]
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--[

Is_Type(‘Domain’, $D),

Is_Type(‘CLM’, $C),

Modify_Clog($C, clogid, rgx, ltkC)

]->

[L_Clog($C, clogid, rgx, clog + record)]

/* The CLM can provide fake information about Domains*/

rule UP_CLOG_ADD_2:

let

Cert_M= sign( <‘MasterCert’, $D, Did, rgx, pk(ltkD)>, ltkCA)

Proof_CLM= sign( <‘AddedByCLM’, Cert_M, Cert_TLS>, ltkC)

in

[

In(Proof_CLM),

!Pk($C,ltpkC)

]

--[

Is_Type(‘CLM’, $C),

Eq(verify(Proof_CLM, <‘AddedByCLM’, Cert_M, Cert_TLS>, ltpkC), true )

]->

[!TLS_Cert_In_Clog(Proof_CLM)]

/* Start secure communication */

rule SECURE_COMMUNICATION_USER_1:

let

Cert_M= sign( <‘MasterCert’, $D, Did, rgx, ltpkD>, ltkCA)

Cert_TLS=sign( <‘TLSCert’, $D, Did, rgx, ltpkD, stpkD>, ltkD)

Proof_MLM = sign( <‘AddedByMLM’, $C, clogid, rgx, ltpkC>, ltkM)

Proof_CLM= sign( <‘AddedByCLM’, Cert_M, Cert_TLS>, ltkC)

in

[

Fr(~n),

!Pk($C, ltpkC),

!Pk($M,ltpkM),

!MasterCert(Cert_M),//if the random verification is successfully

//verified with positive result, then all

//users will see the same master certificate

//of the same domain.

!Mapping(Proof_MLM),

!TLS_Cert_In_Clog(Proof_CLM),

L_Clog($C, clogid, rgx, clog),

L_Mlog($M, mlogid, mlog)

]

--[

Is_Type(‘Domain’, $D),

Is_Type(‘CLM’, $C),

Is_Type(‘MLM’, $M),

Eq(verify(Proof_MLM, <‘AddedByMLM’, $C, clogid, rgx, pk(ltkC)>, ltpkM), true ),
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Eq(verify(Proof_CLM, <‘AddedByCLM’, Cert_M, Cert_TLS>, ltpkC), true ),

Eq(verify(Cert_TLS, <‘TLSCert’, $D, Did, rgx, ltpkD, stpkD>, ltpkD), true ),

IsIn(<$D, Did, ltpkD, stpkD>, clog),

IsIn(<$C, clogid, rgx, ltpkC>, mlog),

Start_Role(<‘SCU’,‘U’>,<$D>)

]->

[

Out(aenc{‘1’, ~n}stpkD),

StSend($D, Did, ~n, rgx, ltpkD, stpkD),

L_Clog($C, clogid, rgx, clog),

L_Mlog($M, mlogid, mlog)

]

rule SECURE_COMMUNICATION_DOMAIN_1:

let m=aenc{‘1’, n}stpk

Cert_TLS=sign( <‘TLSCert’, $D, Did, rgx, ltpkD, stpkD>, ltkD)

in

[

In(m),

!Stk($D, Did, stkD),

!Ltk($D, ltkD),

!TLSCert(Cert_TLS)

]

--[

Is_Type(‘Domain’, $D),

Eq(fst(adec(m, stkD)), ‘1’),

Start_Role(<‘SCD’,‘D’>,<$D>)

]->

[

Out( h(snd(adec(m, stkD))) )

]

rule SECURE_COMMUNICATION_USER_2:

[ StSend($D, Did, n, rgx, ltpkD, stpkD),

In( h(n) ) // Receive hashed secret from network

]

--[ Com_Done($D, Did, n, rgx, ltpkD, stpkD) ]-> // It states that the secret ‘n’

// was sent to domain $D

[

StDone($D, Did, n, rgx, ltpkD, stpkD)

]

/* Domain owners should verify that their master certificate are

correctly recorded in the log */

rule DOMAIN_CHECK_MASTER_CERTIFICATE:

let

Cert_M= sign( <‘MasterCert’, $D, Did, rgx, pk(ltkD)>, ltkCA)

in

[
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!Pk($D,ltpkD),

!MasterCert(Cert_M),

!DomainInfo($D, Did, rgx, ltpkD)

]

--[

Is_Type(‘Domain’, $D),

Eq(pk(ltkD),ltpkD),

VerifiedMasterCert($D, Did, rgx, ltpkD)

]->

[

Master_Cert_Verified(Cert_M)

]

/* Detection */

rule DOMAIN_PERIODICAL_VERIFICATION_GOOD:

[

L_LocalRecord($D, Did, rgx, record),

L_Clog($C, clogid, rgx, clog)

,StDone($D, Did, n, rgx, ltpkD, stpkD)

]

--[

SubsetEq(clog, record),// clog is a subset of D’s local

// history. It means that all records

// about D in the clog are generated

// by the domain owner D.

CheckedLog($D, Did, rgx, ‘nil’, ‘good’, ‘nil’)

]->

[

L_LocalRecord($D, Did, rgx, record),

L_Clog($C, clogid, rgx, clog)

]

rule DOMAIN_PERIODICAL_VERIFICATION_BAD:

let

Cuckoo = <$D, Did, ltpkD, stpkD>

clog = Cuckoo+rest

in

[

L_LocalRecord($D, Did, rgx, record),

L_Clog($C, clogid, rgx, clog)

,StDone($D, Did, n, rgx, ltpkD, stpkD)

]

--[

NotIn(Cuckoo, record),

CheckedLog($D, Did, rgx, ltpkD, ‘bad’, stpkD) // a bad key is found in

// clog

]->

[

L_LocalRecord($D, Did, rgx, record),
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L_Clog($C, clogid, rgx, clog)

]

axiom only_one:

"(All x #i #j. (Only_One(x)@i & Only_One(x)@j) ==> (#i = #j))"

axiom types_distinct:

"(All t1 t2 x #i #j. (Is_Type(t1,x)@i & Is_Type(t2,x)@j) ==> (t1 = t2))"

axiom eq_check_succeed:

"All x y #i. Eq(x,y) @ i ==> x = y"

axiom neq_check_succeed:

"All x y #i. Neq(x,y) @ i ==> not (x = y)"

axiom notin_check_succeed:

"All x l #i. NotIn(x,l) @ i ==> not (Ex rest. x+rest = l)"

axiom in_check_succeed:

"All x l #i. IsIn(x,l) @ i ==> Ex rest. x+rest = l"

axiom subseteq_check_succeed:

"All l m #i. SubsetEq(l,m) @ i ==> ( ( l = m ) | (Ex rest. l+rest = m) )"

axiom one_role_instance:

"(All #i #j role param1 param2 .

(

Start_Role(role,param1) @ i &

Start_Role(role,param2) @ j

)

==>

( #i = #j )

)"

/* We can run this protocol correctly without having any compromised party*/

lemma protocol_correctness:

exists-trace

" /* It is possible that */

Ex D Did n rgx ltpkD stpkD #i1.

/* The user received a confirmation, i.e. hashed secret the user

has sent, from the network */

Com_Done(D, Did, n, rgx, ltpkD, stpkD) @ #i1

/* without the adversary compromising any party. */

& not (Ex #i2 CA ltkCA.

Compromise_CA(CA,ltkCA) @ #i2)
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& not (Ex #i3 C ltkC.

Compromise_CLM(C,ltkC) @ #i3)

& not (Ex #i4 M ltkM.

Compromise_MLM(M,ltkM) @ #i4)

"

lemma message_secrecy_no_compromised_party:

"

All D Did m rgx ltpkD stpkD #i1.

/* If a user received a confirmation, i.e. hashed secret the user

has sent, from the network */

(Com_Done(D, Did, m, rgx, ltpkD, stpkD) @ #i1

/* and no party has been compromised */

& not (Ex #i2 CA ltkCA.

Compromise_CA(CA,ltkCA) @ #i2)

& not (Ex #i3 C ltkC.

Compromise_CLM(C,ltkC) @ #i3)

& not (Ex #i4 M ltkM.

Compromise_MLM(M,ltkM) @ #i4)

)

==>

( /* then the adversary cannot know m */

not (Ex #i5. K(m) @ #i5)

)

"

lemma message_secrecy_compromise_all_domain_verified_master_cert:

"

All D Did m rgx ltpkD stpkD #i1.

/* If a user received a confirmation, i.e. hashed secret the user

has sent, from the network */

(Com_Done(D, Did, m, rgx, ltpkD, stpkD) @ #i1

/* and at an earlier time, the domain server has verified his master

certificate */

& Ex #i2.

VerifiedMasterCert(D, Did, rgx, ltpkD) @ #i2 &

#i2 < #i1

/* and all parties can be compromised*/

)
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==>

( /* then the adversary cannot know m */

not (Ex #i3. K(m) @ #i3)

)

"

/* Sanity check on verification: can finish trace with good log*/

lemma protocol_can_finish_with_good_log:

exists-trace

"/* It is possible that */

Ex D Did n rgx ltpkD stpkD #i1 #i2.

/* The user received a confirmation, i.e. hashed secret the user

has sent, from the network */

Com_Done(D, Did, n, rgx, ltpkD, stpkD) @ #i1

/* and we check the log afterwards and find no fake records */

& #i1 < #i2

& CheckedLog(D, Did, rgx, ‘nil’, ‘good’, ‘nil’) @ #i2

/* and the adversary did not compromise any party */

& not (Ex #i3 CA ltkCA.

Compromise_CA(CA,ltkCA) @ #i3)

& not (Ex #i4 C ltkC.

Compromise_CLM(C,ltkC) @ #i4)

& not (Ex #i5 M ltkM.

Compromise_MLM(M,ltkM) @ #i5)

"

lemma detect_bad_records_in_the_log_when_master_cert_not_verified:

"

All D Did m rgx ltpkD flag stpkD #i1 #i2 #i3.

/* If a user received a confirmation, i.e. hashed secret the user

has sent, from the network */

(Com_Done(D, Did, m, rgx, ltpkD, stpkD) @ #i1

/* and all parties can be compromised*/

/* and the master certificate of the domain was not initially verified */

/* and the adversary knows m */

& K(m) @ #i2
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/* and we afterwards check the log */

& CheckedLog(D, Did, rgx, ltpkD, flag, stpkD) @ #i3

& #i1 < #i3)

==>

( /* then we can detect a fake record in the log */

(flag = ‘bad’)

)

"

end



APPENDIX B

TAMARIN CODE FOR KUD

The complete work for modeling and proving the detailed KUD protocol contains

seven files:

• Makefile (see § B.1).

The Makefile is used to generate “spthy” files from each “m4” file. To run

Makefile, put all files in the same directory, and run “make” in the terminal.

• kud-base.inc (see § B.2).

This file contains the modeling of the detailed KUD protocol, as presented in

§ 5.

• kud-correctness.m4 (see § B.3).

The corresponding spthy file proves the correctness of our modeling.

• kud-secrecy.m4 (see § B.4).

The corresponding spthy file proves the basic secrecy property.

• kud-trace-log-good.m4 (see § B.5).

The corresponding spthy file provides a sanity check on our verification, to

show that it can find trace with a non-corrupted log.

• kud-trace-log-bad.m4 (see § B.6).

The corresponding spthy file provides a sanity check on our verification, to

show that the detection of attacks will raise an alert.

• kud-detect.m4 (see § B.7).

The corresponding spthy file proves the key usage detection property.

174
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B.1 Makefile

SOURCES := $(shell find . -name ’*.m4’)

OBJECTS := $(SOURCES:%.m4=%.spthy)

DEPENDS := kud-base.inc

all: $(OBJECTS)

%.spthy: %.m4 $(DEPENDS)

m4 $< >$@

clean:

\rm -f $(OBJECTS)

B.2 kud-base.inc

//theory KUD

begin

builtins: multiset

functions: adec/2, aenc/2, fst/1, h/1, pair/2, pk/1, sdec/2, senc/2,

sign/2, snd/1, false/0, true/0, verify/3

equations:

adec(aenc(x.1, pk(x.2)), x.2) = x.1,

fst(<x.1, x.2>) = x.1,

sdec(senc(x.1, x.2), x.2) = x.1,

snd(<x.1, x.2>) = x.2,

verify(sign(x.1, x.2), x.1, pk(x.2)) = true

/*Initialisation: key owner. */

rule INIT_R:

[ Fr(~ltkR),

Fr(~devid) ]

--[ Is_Type(’KeyOwner’, $R),

R_Key($R, pk(~ltkR), ~ltkR),

LogDeviceStatus(~devid, $R, ’nil’),

Start_Role(’R’,~devid)

]->

[ !Ltk($R, ~ltkR),

!Pk($R, pk(~ltkR)),

Out(pk(~ltkR)),

Device(~devid, $R, ~ltkR, ’secure’), // a user’s device is initially secure,

// i.e. no vulnerability found so far.

LogDevice(~devid, $R, ’nil’) // the log stored in Robert’s device

]

/*Initialisation: log server. */
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rule INIT_L:

[ Fr(~ltkL) ]

--[ Is_Type(’LogMaintainer’, $L),

Only_One(’INITL’) // we only allow one log maintainer $L

]->

[ !Ltk($L, ~ltkL),

!Pk($L, pk(~ltkL)),

Out(pk(~ltkL))

]

rule INIT_LOG:

[

Fr(~lcid)

]

--[ Is_Type(’LogMaintainer’, $L),

Is_Type(’KeyOwner’, $R),

Only_One(’INITLOG’), // each user can only have one log with the

// log maintainer; which is a reasonable

// restriction.

LogCloudStatus(~lcid, $R, ’nil’,’start’)

]->

[

LogCloud(~lcid, $R, ’nil’) // the log maintained by the log maintainer

// in the cloud

]

/* Robert generates short-term keys, signs them, sends a request to the

log maintainer.*/

rule UPDATE_EPHEMERAL_KEY_R_1:

let cert_R = sign( <’cert’, pk(~stk), $R>, ltkR)

Req = sign( <’UpdateRequest’, cert_R, h(LogD) >, ltkR)

in

[ Fr(~stk), //stk is the short term (ephemeral) key

!Ltk($R, ltkR),

LogDevice(devid, $R, LogD)

]

--[ Is_Type(’LogMaintainer’, $L),

Is_Type(’KeyOwner’, $R),

DeviceSecret(devid, $R, ~stk),

Start_Role(<’UE’,’B’>,<$R,$L>)

]->

[ LogToAdd($R, cert_R),

LogDevice(devid, $R, LogD),

StUpdateEphKeyR1(~stk, $R, ltkR, $L, ~stk, devid),

Out(Req),

Out(<pk(~stk),h(LogD)>) // [USS] Unfold potential secrets in signature

]
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/* The log maintainer verifies the signed request, signs the

confirmation that he has inserted the data into the log; */

rule UPDATE_EPHEMERAL_KEY_L_1:

let

cert_R = sign( <’cert’, stpk, $R> , ltkR)

LogCNew = LogC+<$R, cert_R>

Req = sign( <’UpdateRequest’, cert_R, h(LogD) >, ltkR)

Confirmation = sign( (< ’Confirmation’, $R, $L, h(LogCNew), cert_R> ), ltkL)

in

[ In(Req),

!Ltk($L, ltkL),

!Pk($R, ltpkR),

LogCloud(lcid, $R, LogC)

]

--[ Eq(verify(cert_R, <’cert’,stpk, $R>, ltpkR), true ),

Eq(verify(Req, <’UpdateRequest’, cert_R, h(LogD)>, ltpkR), true ),

Is_Type(’LogMaintainer’, $L),

Is_Type(’KeyOwner’, $R),

LogCloudStatus(lcid, $R, LogCNew, ’update’),

Start_Role(<’UE’,’L’>,<$R,$L>)

]->

[

Out(Confirmation),

CurrentCert($R, cert_R), // this fact shows the current valid

// certificate of Robert

LogCloud(lcid, $R, LogCNew),

Out(h(LogCNew)) // [USS] Unfold potential new secrets in signature

]

/* Robert verifies the confirmation, and updates keys and log in the

device; */

rule UPDATE_EPHEMERAL_KEY_R_2:

let

cert_R = sign(<’cert’,stpk, $R>, ltkR)

Req = sign( <’UpdateRequest’, cert_R, h(LogD)>, ltkR)

Confirmation = sign( <’Confirmation’, $R, $L, h(LogC), cert_R>, ltkL)

LogDNew = LogD+<$R, cert_R>

in

[ StUpdateEphKeyR1(tid, $R, ltkR, $L, stk, devid),

In(Confirmation),

!Pk($L, ltpkL),

LogToAdd($R, cert_R),

LogDevice(devid, $R, LogD)

]

--[ Is_Type(’KeyOwner’, $R),

Is_Type(’LogMaintainer’, $L),

Eq(verify(Confirmation, <’Confirmation’, $R, $L, h(LogC), cert_R>, ltpkL), true),
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Eq(h(LogC), h(LogD+<$R, cert_R>)),

Eq(stpk,pk(stk)),

LogDeviceStatus(devid, $R, LogDNew)

]->

[

StoresKey(devid, $R, stk, cert_R), //this fact represents that Robert

//stores the short-term key in his

//device, the associated certificate

//is cert_R

LogDevice(devid, $R, LogDNew) // append the new cert into

// his log

]

/* An attacker is allowed to compromised a device, and then get the

long term secret and short term secret stored in it.

We also add two individual rules to simplify some of the property

specifications.

*/

rule COMPROMISE_DEVICE_BOTH:

let

cert_R = sign(<’cert’,pk(stk), R>, ltkR)

in

[ !Ltk(R, ltkR),

StoresKey(devid, R, stk, cert_R),

Device(devid, R, ltkR, ’secure’)

]

--[ Compromise_Device(devid, R, ltkR, stk),

Is_Type(’KeyOwner’, R),

Start_Role(’Compromise’,<R,devid>)

]->

[ Out(<stk,ltkR>),

StoresKey(devid, R, stk, cert_R),

Device(devid, R, ltkR, ’compromised’)

]

rule COMPROMISE_DEVICE_LTKEY:

[ !Ltk(R, ltkR),

Device(devid, R, ltkR, ’secure’)

]

--[ Compromise_Device(devid, R, ltkR, ’none’),

Is_Type(’KeyOwner’, R),

Start_Role(’Compromise’,<R,devid>)

]->

[ Out(ltkR),

Device(devid, R, ltkR, ’compromised’)

]

/* Device can be patched. To reduce the verification space and the

number of open chains, we only allow to fix the device once. In
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other words, rather than having a repected cycle

Secure--compromised--fixed--compromised again -- fixed...

we have only one part of the cycle, namely

secure--compromised--fixed--compromised

and the device will remain to be broken. In theory, the

verification should remain the same.*/

rule FIX_DEVICE:

[ !Ltk(R, ltkR),

Device(devid, R, ltkR, ’compromised’)

]

--[ Is_Type(’KeyOwner’, R),

Only_One(’FIXDEVICE’)

]->

[ Device(devid, R, ltkR, ’secure’) ]

/* Sally gets a short-term public key stpk of Robert from the log,

verifies the signature, encrypts message m by using stpk, then

sends the ciphertext to Robert. */

rule SECURE_COMMUNICATION_S_1: // Sally requests cert

let

m_1=<’CertReq’, $R, ~N>

in

[ Fr(~N),

!Pk($R, ltpkR),

!Pk($L, ltpkL)

]

--[ Is_Type(’KeyOwner’, $R),

Is_Type(’LogMaintainer’, $L),

Start_Role(<’SC’,’S’>,<$R,$L>)

]->

[ Out(m_1),

StSecureCommS1(~N, $L, $R, ~N, ltpkR, ltpkL)

]

rule SECURE_COMMUNICATION_L_1: // Log maintainer finds the current valid

// cert, and gives it to Sally.

let

m_1=<’CertReq’, $R, N>

cert_R = sign(<’cert’,stpk, $R>, ltkR)

m_2=sign(<’CertResp’,$R, cert_R, N>, ltkL)

in

[ In(m_1),

CurrentCert($R, cert_R),

!Ltk($L, ltkL)

]

--[ Is_Type(’KeyOwner’, $R),
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Is_Type(’LogMaintainer’, $L),

Start_Role(<’SC’,’L’>,<$R,$L>)

]->

[ Out(m_2)

]

rule SECURE_COMMUNICATION_S_2: // Sally verifies the cert, and sends m

// encrypted with the associated stpk

let

cert_R = sign(<’cert’,stpk, $R>, ltkR)

m_2 = sign(<’CertResp’,$R, cert_R, N>, ltkL)

m_3 = aenc{~m}stpk

in

[ Fr(~m),

StSecureCommS1(tid, $L, $R, N, ltpkR, ltpkL),

In(m_2)

]

--[ Eq(verify(m_2, <’CertResp’,$R, cert_R, N>, ltpkL), true ),

Eq(verify(cert_R, <’cert’,stpk, $R>, ltpkR), true ),

Is_Type(’KeyOwner’, $R),

Is_Type(’LogMaintainer’, $L),

MsgSent($R, ltkR, stpk, ~m)

]->

[

Out(m_3)

]

rule SECURE_COMMUNICATION_B_1: // Robert uses the current valid short

// term key to decrypt the received

// message.

let

cert_R = sign(<’cert’,stpk, $R>, ltkR)

m_3 = aenc{m}stpk

in

[ !Ltk($R, ltkR),

StoresKey(devid, $R, stk, cert_R),

In(m_3)

]

--[ Is_Type(’KeyOwner’, $R),

MsgReceived(devid, $R, ltkR, stk, m),

Start_Role(<’SC’,’B’>,<$R,$L>)

]->

[ ]

rule PERIODICAL_VERIFICATION_GOOD:

[

LogCloud(lcid, $R, LogC),

LogDevice(devid, $R, LogD)

]
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--[ CheckedLog(devid, $R, ’good’, ’null’),

SubsetEq(LogC, LogD) // LogC is a subset of LogD

]->

[

LogCloud(lcid, $R, LogC),

LogDevice(devid, $R, LogD)

]

rule PERIODICAL_VERIFICATION_BAD:

let

cert_R = sign( <’cert’,stpk, $R> , ltkR)

Cuckoo = <$R, cert_R>

LogC = Cuckoo+rest

in

[ LogCloud(lcid, $R, LogC),

LogDevice(devid, $R, LogD)

]

--[ NotIn(Cuckoo, LogD),

CheckedLog(devid, $R, ’bad’, stpk) // a bad key is in LogC but not in LogD

]->

[

LogCloud(lcid, $R, LogC),

LogDevice(devid, $R, LogD)

]

axiom only_one:

"(All x #i #j. (Only_One(x)@i & Only_One(x)@j) ==> (#i = #j))"

axiom types_distinct:

"(All t1 t2 x #i #j. (Is_Type(t1,x)@i & Is_Type(t2,x)@j) ==> (t1 = t2))"

axiom eq_check_succeed:

"All x y #i. Eq(x,y) @ i ==> x = y"

axiom neq_check_succeed:

"All x y #i. Neq(x,y) @ i ==> not (x = y)"

axiom notin_check_succeed:

"All x l #i. NotIn(x,l) @ i ==> not (Ex rest. x+rest = l)"

axiom subseteq_check_succeed:

"All l m #i. SubsetEq(l,m) @ i ==> ( ( l = m ) | (Ex rest. l+rest = m) )"

// vi:ft=spthy

B.3 kud-correctness.m4

/* Provide hints for Tamarin’s heuristics.
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In this case, we tell Tamarin to delay (make "Last", "L_") finding the

sources for the LogDevice fact, since it doesn’t provide useful information

and can lead to non-termination. It is similar for LogCloud, but the trace

is found faster if we don’t use L_ for that. */

define(‘LogCloud’,‘L_LogCloud($*)’)

define(‘LogDevice’,‘L_LogDevice($*)’)

theory kud_protocol_correctness

/* Include kud model */

include(‘kud-base.inc’)

// To find the basic trace faster, we first exclude the verification protocol

axiom no_checks:

"not (Ex #i devid A f k.

CheckedLog(devid, A, f, k) @ i )"

/* The protocol can run correctly. */

lemma protocol_correctness:

exists-trace

" /* It is possible that */

Ex d R skR dkR m #i.

/* R received an encrypted message m on device d */

MsgReceived(d, R, skR, dkR, m) @ #i

/* without the adversary compromising any device. */

& not (Ex d2 A ltk dkR #j.

Compromise_Device(d2, A, ltk, dkR) @ #j)

"

end

// vi:ft=spthy

B.4 kud-secrecy.m4

/* Provide hints for Tamarin’s heuristics.

In this case, we tell Tamarin to delay (make "Last", "L_") finding the

sources for the LogCloud and LogDevice facts, since they don’t provide useful information

and can lead to non-termination. */

define(‘LogCloud’,‘L_LogCloud($*)’)

define(‘LogDevice’,‘L_LogDevice($*)’)

define(‘Device’,‘F_Device($*)’)

theory kud_secrecy

/* Include kud model */

include(‘kud-base.inc’)
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/* Basic secrecy property */

lemma message_secrecy:

"All R skR ekR m #i.

/* If S sent a message m to R */

( MsgSent(R, skR, ekR, m) @ #i &

/* without the adversary compromising any device */

not (Ex #j d sk dkR.

Compromise_Device(d, R, sk, dkR) @ #j)

)

==>

( /* then the adversary cannot know m */

not ( Ex #j. K(m) @ #j)

)

"

end

// vi:ft=spthy

B.5 kud-trace-log-good.m4

/* Provide hints for Tamarin’s heuristics.

In this case, we tell Tamarin to delay (make "Last", "L_") finding the

sources for the LogCloud and LogDevice facts, since they don’t provide useful information

and can lead to non-termination. */

define(‘LogCloud’,‘L_LogCloud($*)’)

define(‘LogDevice’,‘L_LogDevice($*)’)

//

changequote‘’changequote(‘’,‘’)dnl

define(DeviceStatus,F_DeviceStatus($*))

define(Cert,sign(<’cert’,pk($2),$1>,$3)) // Cert(R,stk,ltk)

// Fix vim syntax coloring mixup: ’)

theory kud_log_good_trace

/* Include kud model */

include(kud-base.inc)

// To find the basic trace faster, we only have one instance of each

// role.

axiom one_role_instance:

"(All #i #j role param1 param2 .

(

Start_Role(role,param1) @ i &

Start_Role(role,param2) @ j

)

==>

( #i = #j )

)"
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// Similarly, we restrict to only one log check

axiom one_check:

"(All #i1 #i2 devid1 devid2 A1 A2 f1 f2 k1 k2.

(

CheckedLog(devid1, A1, f1, k1) @ i1 &

CheckedLog(devid2, A2, f2, k2) @ i2

)

==>

( #i1 = #i2 )

)"

/* Sanity check on verification: can finish trace with good log

*/

lemma log_good_trace2:

exists-trace

"Ex devid ltkR stk m #i1 #i2 R.

( /* If S sent to R an encrypted message m */

MsgReceived(devid, R, ltkR, stk, m) @ #i1 &

/* and we check the log afterwards and find no compromise */

( #i1 < #i2 ) &

CheckedLog(devid, R, ’good’, ’null’ ) @ #i2 &

/* and the adversary did not compromise anything */

not (Ex #j devid2 R2 ltkR2 stk2.

Compromise_Device(devid2, R2, ltkR2, stk2) @ j

)

)

"

end

// vi:ft=spthy

B.6 kud-trace-log-bad.m4

/* Provide hints for Tamarin’s heuristics.

In this case, we tell Tamarin to delay (make "Last", "L_") finding the

sources for the LogCloud and LogDevice facts, since they don’t provide useful information

and can lead to non-termination. */

define(‘LogCloud’,‘L_LogCloud($*)’)

define(‘LogDevice’,‘L_LogDevice($*)’)

//

changequote‘’changequote(‘’,‘’)dnl

define(DeviceStatus,F_DeviceStatus($*))

define(Cert,sign(<’cert’,pk($2),$1>,$3)) // Cert(R,stk,ltk)

// Fix vim syntax coloring mixup: ’)

theory kud_log_bad_trace
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/* Include kud model */

include(kud-base.inc)

// To find the basic trace faster, we only have one instance of each

// role.

axiom one_role_instance:

"(All #i #j role param1 param2 .

(

Start_Role(role,param1) @ i &

Start_Role(role,param2) @ j

)

==>

( #i = #j )

)"

// Similarly, we restrict to only one log check

axiom one_check:

"(All #i1 #i2 devid1 devid2 A1 A2 f1 f2 k1 k2.

(

CheckedLog(devid1, A1, f1, k1) @ i1 &

CheckedLog(devid2, A2, f2, k2) @ i2

)

==>

( #i1 = #i2 )

)"

axiom one_compromise:

"(All #i1 #i2 devid1 devid2 R1 R2 ltkR1 ltkR2 stk1 stk2.

( Compromise_Device(devid1, R1, ltkR1, stk1) @ #i1 &

Compromise_Device(devid2, R2, ltkR2, stk2) @ #i2 )

==>

( ( #i1 = #i2 ) & ( stk1 = ’none’) )

)

"

/* Sanity check on verification: detection may raise an alert

*/

lemma log_bad_trace2:

exists-trace

" Ex devid ltkR stpk m #i1 #i2 #i3 #i4 R k stkalt.

( /* If S sent to R an encrypted message m */

MsgSent(R, ltkR, stpk, m) @ #i1 &

/* and the adversary knows m */

K(m) @ #i2 &

/* compromise the long-term key, not the specific ephemeral

key */

Compromise_Device(devid, R, ltkR, stkalt) @ #i3 &

not (pk(stkalt) = stpk) &

/* and we check the log and find a compromise */

CheckedLog(devid, R, ’bad’, k ) @ #i4
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)

"

end

// vi:ft=spthy

B.7 kud-detect.m4

/* Provide hints for Tamarin’s heuristics.

In this case, we tell Tamarin to delay (make "Last", "L_") finding the

sources for the LogCloud and LogDevice facts, since they don’t provide useful information

and can lead to non-termination. */

//xdefine(‘LogCloud’,‘L_LogCloud($*)’)

define(‘LogDevice’,‘L_LogDevice($*)’)

//

changequote‘’changequote(‘’,‘’)dnl

define(Device,F_Device($*))

define(StoresKey,F_StoresKey($*))

define(Cert,sign(<’cert’,pk($2),$1>,$3)) // Cert(R,stk,ltk)

// Fix vim syntax coloring mixup: ’)

theory kud_detect

/* Include kud model */

include(kud-base.inc)

axiom only_one_device:

" All devid1 devid2 #i #j.

( Start_Role(’R’,devid1) @ i &

Start_Role(’R’,devid2) @ j )

==>

( #i = #j )

"

axiom only_one_Lora:

" All l1 l2 #i #j.

( Is_Type(’LogMaintainer’,l1) @ i &

Is_Type(’LogMaintainer’,l2) @ j )

==>

( l1 = l2 )

"

axiom at_most_two_of_a_role:

" All r p1 p2 p3 #i1 #i2 #i3 .

( Start_Role(r,p1) @ #i1 &

Start_Role(r,p2) @ #i2 &

Start_Role(r,p3) @ #i3 )

==>
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( ( #i1 = #i2 ) | ( #i1 = #i3 ) | ( #i2 = #i3 ) )

"

axiom limit_receives:

" All devid a1 a2 b1 b2 c1 c2 d1 d2 #i1 #i2 .

( MsgReceived(devid, a1, b1, c1, d1) @ #i1 &

MsgReceived(devid, a2, b2, c2, d2) @ #i2 )

==>

( #i1 = #i2 )

"

// We want this to hold even if there is only one compromise

axiom one_compromise:

"(All #i1 #i2 devid1 devid2 A1 A2 ltk1 ltk2 k1 k2.

(

Compromise_Device(devid1, A1, ltk1, k1) @ i1 &

Compromise_Device(devid2, A2, ltk2, k2) @ i2

)

==>

( #i1 = #i2 )

)"

// Similarly, we restrict to only one check

axiom one_check:

"(All #i1 #i2 devid1 devid2 A1 A2 f1 f2 k1 k2.

(

CheckedLog(devid1, A1, f1, k1) @ i1 &

CheckedLog(devid2, A2, f2, k2) @ i2

)

==>

( #i1 = #i2 )

)"

/* Sanity check: can we actually reach the situation we aim for in the

* ’detect’ check? */

lemma detect_usage_trace_flag2:

exists-trace

" Ex devid ltkR stk m #i1 #i3 #i4 flag R k.

( /* If an honest paty sent to R an encrypted message m */

( MsgSent(R, ltkR, pk(stk), m) @ #i1 &

/* and the adversary knows m */

K(m) @ #i3 &

/* and this stk was not specifically compromised */

/* in other words, the compromise was in a different epoch

*/

not (Ex #j ltk . Compromise_Device(devid, R, ltk, stk) @ j ) &

/* and we afterwards check the log */

CheckedLog(devid, R, flag, k ) @ #i4 &

#i1 < #i4

)
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)

"

/* Basic secrecy property, proven elsewhere */

axiom message_secrecy2:

" All R ltkR stpk m #i.

( /* If S sent a message m to R */

( MsgSent(R, ltkR, stpk, m) @ i &

/* without the adversary having compromised a device of R at

some point */

not (Ex #r devid stk. Compromise_Device(devid, R, ltkR, stk) @ r)

)

==>

( /* then the adversary does not know it */

not ( Ex #j. K(m) @ j)

)

)

"

/* Main detection of usage property.

*/

lemma detect_usage_S_sends:

"All d skR dkR m #i1 #i2 #i3 detectionresult R k.

/* If S sent to R an encrypted message m,

where pk(dkR)=ekR */

( MsgSent(R, skR, pk(dkR), m) @ #i1 &

/* and the adversary knows m */

K(m) @ #i2 &

/* and the ephemeral key used by the sender

was not compromised, i.e., the compromise

occurred in a different epoch

*/

not (Ex #j sk .

Compromise_Device(d, R, sk, dkR) @ #j ) &

/* and Robert afterwards checks the log */

CheckedLog(d, R, detectionresult, k ) @ #i3 &

#i1 < #i3

)

==>

( /* then we detect a compromise */

(detectionresult = ’bad’)

)

"

/* Main detection of usage property.

*/

lemma detect_usage_R_receives:

"All d skR dkR dkR2 m #i1 #i2 #i3 #i4 detectionresult R k.

/* If S sent to R an encrypted message m,
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where pk(dkR)=ekR */

( MsgSent(R, skR, pk(dkR), m) @ #i1 &

MsgReceived(d, R, skR, dkR2, m) @ #i2 &

/* and the adversary knows m */

K(m) @ #i3 &

/* and the ephemeral key used by the sender was

not compromised, i.e., the compromise was in

a different epoch then when m was sent.

*/

not (Ex #j sk .

Compromise_Device(d, R, sk, dkR) @ #j ) &

/* and Robert afterwards checks the log */

CheckedLog(d, R, detectionresult, k ) @ #i4 &

#i2 < #i4

)

==>

( /* then we can detect a compromise */

(detectionresult = ’bad’)

)

"

end

// vi:ft=spthy
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