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The relationship between anxiety, gaze direction and increased falls risk in 

walking older adults 

Looking (directing gaze) in the right place at the right time is crucial for safe walking, 

and there are age-related changes to gaze behaviour which increase falls-risk in older 

adults. For example, older adults at a high risk of falling tend to look away from a 

stepping target that they are still stepping towards in order to look at potentially 

challenging obstacles ahead. This early gaze transfer impairs the accuracy of stepping 

and increases the likelihood of tripping. It has previously been shown that this 

maladaptive gaze behaviour is associated with increased task-specific anxiety and may 

be a consequence of older adults spending insufficient time previewing the route ahead 

during the approach to the target. This thesis aims to elucidate the causal relationships 

between anxiety, sub-optimal gaze behaviour and increased falls risk in older adults. 

In separate experiments we manipulated experimental conditions to: 1) temporarily 

increase older participants anxiety via Social Evaluative Threat 2) reduce anxiety via 

relaxation exercises and 3) alter the extent to which participants previewed obstacles 

and walking goals via a gaze training intervention. We studied the effects of these 

manipulations on measures of anxiety (self-report and physiological measures), eye 

movement characteristics (eye tracking devices) and stepping accuracy (3D motion 

capture). 

Results showed that increasing older adults’ anxiety resulted in reduced stepping 

performance, and a measured reduction in anxiety was accompanied by increased 

stepping performance. There were few effects on eye movement timing characteristics 

suggesting that these changes in stepping behaviour were not mediated by altered gaze 

strategies. 



 vii 

The  route  previewing  intervention  resulted  in  significant  changes  to  older  adults’  gaze  

behaviour. Following the intervention, the duration of target fixation during walking 

more closely resembled that of younger participants. Route previewing also led to 

increased self-confidence and reduced stepping errors. 

These studies have demonstrated a link between anxiety and stepping inaccuracies 

contributing to falls-risk in older adults. The mechanisms underlying the effects of 

anxiety on behaviour remain unclear; however, the effects seem largely independent of 

the timing of gaze transfer. It is likely that the relative timing between eye and stepping 

movements may be less important for visuomotor control than the total time for which a 

target or obstacle is viewed during its approach. These findings highlight the possibility 

of using interventions aimed at reducing anxiety and/or guiding gaze behaviour to 

address falls-risk in older adults. 
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Chapter 1 

General Introduction 

1.1 The general problem 

Falls are a common cause of injury in older adults and the leading cause of death from 

injury among people aged over 75 in the UK. Around one in three over 65s will 

experience a fall each year (Blake et al., 1988) and those who survive a fall will often 

suffer ongoing problems such as injury and infection, increasing risk for loss of 

mobility, depression, anxiety and an increased mortality risk. The treatment and long 

term care of these unintentional falls costs the NHS and Personal Social Services nearly 

£1 billion annually in the UK (Scuffham et al., 2003). Therefore, understanding the 

ageing process and factors contributing to fall-risk is important in order to improve the 

quality of later life through falls prevention, and reduce the financial burden on health 

services. 

 

1.2 Why are older people more susceptible to falls? 

The majority of falls occur during walking and result from slips or trips (Berg et al., 

1997; Blake et al., 1988) which represent a failure to place the feet appropriately to 

meet environmental demands usually specified by visual information describing the 

locations of features such as stair tread edges, the location and dimensions of obstacles 

and safe areas in the terrain. The reasons for failing to adapt to environmental demands 

can be due to: impaired neuromuscular function, cognitive processing or sensorimotor 

function, or a combination of these factors. Impaired neuromuscular function as a factor 



 2 

of falling is an inability to generate the necessary torque about a joint or force against 

external objects to maintain an upright posture. Cognitive processing relates to the 

speed and accuracy that an appropriate motor response can be selected by the central 

nervous system based on sensory information. The accuracy of this sensory information 

is  based  on  our  sensory  receptors’  ability  to  receive  environmental  information.  Vision  

is our primary source of sensory information used in order to navigate our environment 

and avoid obstacles, and therefore visual impairment has repercussions for motor 

planning and execution. 

Visual impairment is common in older age (Branch et al., 1989), and is a significant risk 

factor for falls (Lord & Dayhew, 2001). However, recent research suggests that older 

adults, particularly those deemed to be at a high risk of falling, also exhibit different 

gaze behaviour patterns during locomotion compared to younger adults which are 

independent of visual deficits. Chapman and Hollands (2007) found that older adults 

with a history of falls tended to transfer gaze to future stepping constraints rather than 

maintain online guidance of current steps. These changes in gaze behaviour were 

accompanied by reduced target stepping accuracy, which has since been causally linked 

with falls risk (Yamada et al., 2011). Furthermore, this stepping inaccuracy was reduced 

when older adults were instructed to maintain gaze fixation on current stepping targets 

until foot contact in the target box (Young & Hollands, 2010). These studies suggest 

that there is a reversible, maladaptive mechanism driving high-risk older adults to 

prioritise planning of future stepping actions over guiding ongoing stepping actions. 

The reason that older adults behave in this manner still needs elucidating. 

Research has shown a correlation of early gaze transfer with self-reported state anxiety 

(Young et al., 2011) and that early gaze transfer was accompanied by less frequent 
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fixations of future targets during the approach of the first target (see Figure 1-1, Young 

& Williams, 2015). 

Figure 1-1 Schematic example of gaze behaviours and fixation order when 

approaching a series of obstacles of (a) a low-risk older adult, and (b) a high-risk 

older adult. Bar chart (c) shows the duration of fixations represented above. 

(Figure from Young & Williams (2015)). 

These results offer a potential mechanistic explanation for maladaptive gaze and 

stepping behaviour based on anxiety-related failure to adequately plan future actions.  
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The work presented in this thesis aimed to provide evidence of a causal link between 

anxiety and early gaze transfer from current stepping targets, and also explore how 

increased planning time might alter gaze behaviour, state anxiety and stepping accuracy. 

In order to explore these relationships, it is important to first understand how ageing can 

affect the sensory and motor systems involved with walking, and also how 

psychological factors can influence these systems. 

1.3 Age-related changes to gait and neuromuscular decline 

As we age there is a significant reduction of walking speed in general, this is more 

pronounced in older adults that have recently fallen, and who also exhibit shorter step 

length, a more uneven stepping frequency, and narrower step width (Guimaraes & 

Isaacs, 1980). However, more recent research has found that wider stepping is also 

associated with a fear of falling and falls, and that this, along with increases in double 

support time and reduced speed, are adaptations to the gait pattern in order to increase 

stability (Maki, 1997). Stride time variability has been shown to be a good predictor of 

falls (Hausdorff et al., 2001; Maki, 1997), however some research suggests that 

mediolateral step variability is more pertinent as an indicator of falls risk (Owings & 

Grabiner, 2004). It is likely that these fall predictors are a product of a decline in the 

quality of visual and somatosensory information due to degeneration of sensory and 

motor nerve fibres (Shaffer & Harrison, 2007). Nerve conduction shows a curvilinear 

reduction of velocity with ageing over 40 (Taylor, 1984), this could be due to a 

reduction in the number of myelinated nerve fibres, and also a reduction in the size of 

these fibres (Mittal & Logmani, 1987). The consequence of these reductions, is an 

increase in reaction times with age (Porciatti et al., 1999) which can have important 
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consequences when responding to unexpected perturbations to stability (Pijnappels et al., 

2005). 

Another factor that related to falls-risk is age-related decline in muscle strength. Lexell 

et al. (1988) took muscle biopsies from a selection of participants from the ages of 15 to 

83 and found that muscle atrophy started at around 25 years old, and increased with age. 

This atrophy was mainly due to a decrease in the number of muscle fibres, but they also 

found some reduction in fibre size. This decrease in muscle mass with age, termed 

sarcopenia, has been associated with a decreased, and delayed peak in anteroposterior 

force generation when performing voluntary rapid forward steps (Melzer et al., 2010). 

The implications of this reduction in strength and speed have been previously 

highlighted by Pijnappels et al. (2005). They conducted a study in which an obstacle 

suddenly appeared from the floor and caused young and older adults to trip. They 

reported that while young participants managed to regain balance, some older 

participants fell due to a delayed, and insufficient reduction of the knee angle velocity, 

and errors in placement of the recovery limb. The impact of neuromuscular problems 

and their implications for falls risk can be amplified if an individual has arthritis 

(Sturnieks et al., 2004); a condition prevalent in 24 – 48% of the population over 75 

years old (Dunlop et al., 2001). Arthritis  can  also  impact  older  adults’  range  of  motion,  

which is associated with impaired performance of physical tasks (Beissner et al., 2000). 

Rehabilitative strength training programmes show good results in increasing muscle 

strength in the elderly, however these improvements tend to focus on specific muscle 

groups and can show a quick reversal if the programme is not adhered to  (see Liu & 

Latham (2009) for a review). Training programmes that also incorporate balance, 

stretching and endurance have shown more promising results (Means et al., 2005). 
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The reduction of muscle strength and increased reaction times associated with normal 

ageing have implications for functional mobility of older adults during locomotion. 

However appropriate motor outputs usually rely on the reception of accurate sensory 

information to adjust to the environmental demands of everyday life. The next section 

looks at how the quality of the information provided by these sensory inputs is 

attenuated with age. 

1.4 Sensory systems and ageing 

The sensory information we receive when moving through our environment allows us to 

adjust to our surroundings and make appropriate motor responses in order to maintain 

balance and navigate successfully. We receive a combination of proprioceptive, 

kinaesthetic, cutaneous, and vestibular signals that allow us to determine our body 

position and movement relative to our head. There are various sensory inputs that allow 

us to achieve this: Golgi tendon organs located in our muscle tendons sense changes in 

muscle tension, muscle spindle fibres are located within the muscle and detect changes 

in the length of the muscle, and cutaneous mechanoreceptors and nociceptors are 

located in the dermis of the skin and detect pressure and pain respectively. 

Muscle spindles are important in maintaining postural stability, as they detect postural 

sway and are part of reflex pathways to make appropriate balance adjustments. Hurley 

et al. (1998) showed that there is an age-related decline in the acuity of joint position 

sense, and postural stability when testing young, middle-aged and older adults. 

Feedback from cutaneous mechanoreceptors in the feet is also important in maintaining 

postural stability and balance (Kavounoudias et al., 1998), and reduced function of these 

receptors is associated with a reduction in balance in the elderly (Menz et al., 2005). 
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The vestibular system also contributes to sensory input during balance and postural 

control. It is located in the inner ear and detects information regarding head movement 

and rotation, and spatial orientation. Degeneration of the vestibular system occurs with 

age (Johnsson, 1971), however there is evidence that vestibular habituation head 

movement exercises, such as repeatedly rotating the head through various planes at a 

variety of speeds over a certain period, can reduce vertigo and improve vestibular 

function in patients (Cohen & Kimball, 2003).  

In healthy functioning individuals, visual information can override vestibular 

information. This has been shown through allowing vision during galvanic vestibular 

stimulation, and measuring the resulting changes to posture and gait deviations; 

however this overriding ability is reduced with age (Deshpande & Patla, 2007). 

Furthermore, older adults deemed to be at a higher risk of falling have been shown to 

have a reduced ability to supress the vestibulo-ocular reflex when going from sitting to 

standing (Di Fabio et al., 2001), and showed overcompensation in gaze movements 

related to head pitch. This suggests that there in an unbalanced weighting of vestibular 

input with visual image stabilisation, which might compromise the quality and clarity of 

visual information while walking. 

Image stabilisation also requires compensatory head stabilising movements. Cromwell 

et al. (2002) showed that denying visual information decreased head stabilisation during 

gait in older adults to a greater extent than in young adults. This suggests that older 

adults rely more on vision to stabilise the head through neck stiffening due to age-

related decrements in other sensory systems (such as the vestibular system). This 

reliance on vision in older adults in the absence of sufficient vestibular input can cause 
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further problems, due to an age-related reduction in the quality of visual information 

received. 

1.5 Visual input with ageing 

Visual information is the primary means of gathering spatial information about our 

environment, and we rely on it more than any other sensory input in order to maintain 

balance and posture. When the visual environment is artificially moved around a person 

without any real changes to their orientation or movement, there is initially a 

complementary postural alteration that results from visual proprioception (Lee & 

Lishman, 1975). Sundermier et al. (1996) used this environmental visual stimulus to 

measure changes in centre of foot pressure in young adults, healthy older adults, and 

older adults with balance problems. They found that older adults with balance problems 

had the greatest response to these stimuli, and used a maladaptive compensatory 

strategy that paradoxically led to greater instability. However, in addition to perceiving 

motion, vision is also used to detect obstacles and spatially map our surroundings in 

order to navigate through our environment. The next section will describe studies that 

have investigated how and when we require vision to effectively navigate our 

environment. 

Studies of intermittent visual sampling behaviours have shown that even over novel and 

challenging terrain we require less than a 50% sampling rate of the environment (i.e. we 

only require visual information about our surroundings for 50% of the time) to safely 

navigate our way through (Patla et al., 1996). Hollands et al. (1995) demonstrated that 

saccadic eye movements to a stepping target invariably preceded the initiation of the 

step. Further research then demonstrated that during intermittent visual denial when 

stepping on an illuminated series of targets, visual information during stance was 
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enough to guide the foot to the required destination (Hollands & Marple-Horvat, 1996). 

However if vision of the target was removed during the stance phase, then there was a 

delay in the initiation of the step onto the target. This suggests that vision is used in a 

feedforward manner, and once the stepping action is planned there is a tight coupling 

between directional saccades and stepping responses. Furthermore, after initiation of 

these target fixations prior to stepping, in young adults it has been shown that gaze 

fixation is maintained until foot contact (Hollands & Marple-Horvat, 2001; Chapman & 

Hollands, 2006a), suggesting a possible role for online visual guidance to fine-tune foot 

placement on a target. 

The extent to which online adjustments can be made to stepping trajectories during the 

swing phase was recently investigated in young adults, older adults deemed to be at a 

high-risk of falling, and older adults deemed to be at a low-risk of falling by Young and 

Hollands (2012a). They found that when responding to targets that unexpectedly 

changed position in the swing phase, older adults at a high-risk of falling made 

significantly later deviations in their stepping trajectory than young adults, and 

consequently had a higher final foot placement error which could be accounted for by 

the delay. Interestingly, they also showed delays in the onset of gaze refixation toward 

the new target location, suggestive of delays in visuomotor processing. These delays in 

visuomotor processing time measured in high-risk older adults might be a contributing 

factor to their prioritisation of future stepping constraints (Chapman & Hollands, 2007) 

i.e. they need more time to generate coordinated eye and stepping movements.  

1.6 Age-related changes in visual sampling  

The way in which we gather visual information about our surrounding changes as we 

age. Di Fabio et al. (2003b) showed that elderly participants initiated downward 
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saccades prior to stepping on to a platform earlier than younger adults. They suggested 

that this earlier movement was part of a strategy by the CNS to accommodate for age-

related processing delays. This earlier fixation of an intended stepping target was also 

found during locomotion. Chapman and Hollands (2006b; 2007) identified that older 

adults fixated upcoming obstacles earlier than younger adults. This was also the case 

when multiple stepping constraints were present, which resulted in prioritisation of 

upcoming obstacles over current stepping constraints. This early gaze transfer was 

found to be associated with decreased stepping accuracy, presumably due to a lack of 

online visual guidance of the ongoing step. This notion is supported by the finding that, 

when older adults deemed to be at a high risk of falling were instructed to delay gaze 

transfixion until foot contact, there was a significant improvement in stepping 

performance (Young & Hollands, 2010). Research from the same group identified that 

this early transfer from a stepping target, was correlated with self-reported state anxiety 

(Young et al., 2011), and suggested that anxiety may be a mediating factor in this 

maladaptive gaze behaviour. In addition to this, Young & Hollands (2012b), found that 

following two falls, an individual who previously displayed characteristics of an adult 

with a low-risk of falling (i.e. later gaze transfer and more accurate stepping) reported 

an increased fear of falling, and exhibited corresponding earlier gaze transfer and 

decreased stepping accuracy. Elucidating this mechanism by which anxiety influences 

the timing of gaze transfer in older adults was one of the main aims of this thesis. 

However it is important to understand the attentional requirements of older adults, and 

why they might prioritise future stepping constraints. 



 11 

1.7 Executive function and attentional demands during gait 

Attention is the focus of one or more sensory inputs toward a stimulus of interest; 

regardless of whether that interest is voluntary or not. The attentional capacity of an 

individual describes the maximum cognitive load that can be allocated for attentional 

demands. It is within this attentional capacity that multiple processes compete for 

cognitive processing power, and if the capacity is not great enough to accommodate 

these processes, errors or delays may occur in the selected responses. Gait is a 

sensorimotor task that requires attention and uses varying amounts of attentional 

resources   dependent   on   task   complexity   and   an   individual’s   cognitive   capacity.   This  

capacity for attention is part of a larger cognitive system called executive function, 

which is the combination of several higher cognitive components that receive, prioritise 

and process sensory information for goal oriented tasks. These cognitive components 

can be subcategorised as volition, self-awareness, planning, response inhibition, 

response monitoring, and attention (Yogev-Seligmann et al., 2008).  

While walking, an individual must attend to a variety of hazards and objects that must 

be navigated in order to retain postural stability. As vision is our primary sense for 

gathering information regarding our surroundings, healthy individuals will look towards 

a stimulus, obstacle, or goal of interest in order to gather information about it and select 

an appropriate response (Herman et al., 1981; Hollands & Marple-Horvatt, 1995; 1996). 

This processing of visual information requires attentional capacity, which is limited if 

the individual is engaged in additional concurrent tasks that share the same attentional 

resources. Furthermore, when vision is denied the attentional demand of postural tasks 

increases (Teasdale et al., 1993). 



 12 

The   “dual-task”   protocol   is   a   commonly   used   study   intervention   that   challenges   and  

tests   a   participant’s   attentional   capacity   by   making   them   complete   multiple   tasks  

simultaneously. The primary task during these studies when researching the relationship 

between attention and posture and gait relates to a postural control and/or gait stepping 

performance task, with the secondary task being one that might compete for attentional 

resources. Kerr et al. (1985) were the first group to demonstrate the attentional demands 

of standing in young adults. Participants stood on a force plate while wearing a 

blindfold, and changes in their centre of pressure were measured while they completed 

two separate secondary memory tasks. In one condition they completed the Brooks 

spatial memory test in which they were asked to place numbers in an imaginary matrix 

and remember their locations (spatial memory), and a second memory task in which 

they remembered similar sentences (non-spatial memory). There was no increase in 

postural sway during either task, however they found an increase in the number of 

memory task errors during the spatial memory task, but not in the non-spatial task. They 

concluded that postural control is attentionally demanding, and that the attentional 

capacity for a secondary task is dependent on the type of task.  

Lajoie et al. (1993) found that increasing the postural difficulty of a task increased 

participants’   reaction   times   to   an   auditory   cue.   Participants   sat,   stood  normally,   stood  

with a narrow base of support, and walked while responding the cues. They found that 

standing and walking require more attentional capacity than sitting, that standing 

reaction times were longer when participants had a narrow base of support, and that 

walking reaction times were longer during the single support compared to the double 

support phases of walking.  
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The anatomical areas involved with this attentional capacity have also been studied in 

patients to better understand how damage and atrophy might affect our attentional 

resources. The prefrontal cortex is activated during visuospatial and verbal dual-tasks 

(D’Esposito  et  al.,  1995;;  Szameitat  et  al.,  2002). Impairment of this region can result in 

decreased executive function task-related performance (Barbey et al., 2012), and more 

specifically, dual-task performance (Baddeley et al., 1997). However, Vilkki et al. 

(1996) found that focal frontal lobe damage alone did not impact dual-task performance, 

and suggest wider brain pathology is involved with attenuation of dual-tasks in patients. 

Deterioration of anterior white matter is associated with ageing (Head et al., 2004), and 

accompanied by variable levels of reduced memory and executive function (O’Sullivan  

et al., 2001; for a review see Buckner, 2004). Zelazo et al. (2004) conducted a cross-

sectional study demonstrating a decline of executive function in older adults. They 

found an inverted U relationship between age and executive function – executive 

function being greater in young adults when compared to children and older adults.  

During simultaneous memory and walking tasks, Lindenberger et al. (2000) showed 

that there are increased dual-task costs (both memory and stepping performance 

decrease) with age. Li et al. (2001) then went on to show that older adults prioritise gait 

stabilisation and walking performance over memory performance when compared to 

young adults. However, older adults are able to consciously improve cognitive 

performance at the cost of stepping performance when instructed to do so (Verghese et 

al., 2007), and there is also attenuation of stepping performance in individuals that show 

significant age-related impairments of executive function (Coppin et al., 2006).  

Hawkes et al. (2012) conducted a study in which older adults at a high-risk and low-risk 

of falling completed a visuo-spatial task switching test in which reaction times to the 
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appearance of a high or low dot were measured. Participants pressed spatially 

corresponding or opposing buttons on a keypad during two conditions, and then 

alternately switched between response type in a third condition. The high-risk  group’s  

reaction times were significantly greater than the low-risk group during the switching 

task. The high-risk group also completed an obstacle walk while responding to an 

auditory Stroop test in a dual-task condition. Gait velocity was negatively correlated 

with the switching task reaction times. The authors suggest that reduced neuromuscular 

and attention switching capacities might contribute towards the gait instability of high-

risk adults, however the low-risk group did not complete the dual-task obstacle walk, so 

a direct comparison of this interaction between the two groups cannot be made. 

The affect of age on appropriate attentional prioritisation during gait has been the 

subject of much research. Hausdorff et al. (2008) found significant reductions in gait 

speed, and increases in swing time variability in older adults during dual-task walking. 

In a recent systematic review, Ruffieux et al. (2015) compared seventy-nine studies that 

measured dual-task performance of postural tasks across a range of age groups from 

children to older adults. They concluded that older adults require greater cognitive input 

to maintain posture due to the degradation of neural structures. The results of the studies 

reviewed in this section support the findings of Ruffieux et al. (2015), but also suggest a 

more complex relationship between attention and the nature of the secondary task (i.e. 

spatial vs. non-spatial), and the balance ability (i.e. those at a high-risk vs. low-risk of 

falling) of older adults. The research suggests that older adults who are at a high-risk of 

falling have the most limited attentional capacity, and require the most cognitive input 

to maintain balance. This already limited attentional capacity can also be further 
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impacted by the effects of anxiety. The nature of anxiety, and methods of quantification 

are discussed in the next section. 

1.8 Psychological and physiological measurements of anxiety 

The   term  “anxiety”   is  used   to  describe  an  emotional   state  of  unease  or  worry   about  a  

particular circumstance, task, or event with an uncertain outcome. Lazarus and Averill 

(1972) define anxiety in the following terms:  

“Anxiety   is   an   emotion   based   on   the   appraisal   of   threat,   an   appraisal  

which entails symbolic, anticipatory, and uncertain elements. These 

characteristics, broadly conceived, mean that anxiety results when 

cognitive systems no longer enable a person to relate meaningfully to the 

world  about  him.” 

The symbolic nature of anxiety defined above relates to concepts that may or may not 

pose a real threat, but to which an individual is nonetheless invested in. The anticipatory 

and uncertain elements refer to the unknown nature of forthcoming perceived threats, 

however Lazarus and Averill go on to state that these threats can also exist in the 

present. 

Anxiety can be split in to two catagories: state anxiety, which is an acute, transitional 

feeling of anxiety; and trait anxiety, which is a consitent state associated with 

personality. When faced with external stimuli, these two aspects of anxiety variably 

influence the cognitive evaluation and behavioural outcomes that are selected dependent 

on the individual's psychological and physical state (Spielberger, 1966). 

In order to measure state and trait anxeity, Spielberger et al. (1970) originally developed 

the 40-item State-Trait Anxiety Inventory (STAI) to quantify self-reported anxiety; and 
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since, the shorter "Form Y" 20-item STAI (Spielberger, 1983). Thousands of studies 

have used the STAI to asses anxiety, and it is considered the "gold standard" within its 

field (Kain et al., 1997). Multiple, shortened versions of this inventory have been 

developed in order to save time while testing, however Marteau and Bekker (1992) 

developed the first standardised 6-item short-form questionnaire that highly correlates 

with the 20-item STAI (r < .90). 

When an individual experiences acute, state anxiety, there is increased activation of 

sympathetic nerve pathways that cause physiological changes that are sometimes 

categorised   as   the   “flight-or-fight”   response   (Hoehn-Saric & McLeod, 1988). An 

increase in heart rate and contraction force, dilation of blood vessels in skeletal muscle, 

and dilation of bronchioles in the lungs occur from the release of local adrenaline and 

noradrenaline from various afferent neurons, and circulatory adrenaline and 

noradrenaline from the adrenal cortex (Triposkiadis et al., 2009). These responses cause 

a state of alertness and readiness, and are thought to have had evolutionary benefits 

when confronting danger or hunting (Bracha, 2004).  

In addition to these adrenergic responses, several other hormones are released when an 

individual experiences anxiety. Cortisol in particular has been the subject of much 

anxiety-related research due to its relative ease of measurement and correlation with 

self-reported anxiety measures (Bohnen et al., 1991). Levels of salivary cortisol are 

raised during acute stress tasks, and remain elevated for around 20 to 30 minutes 

following the stressor (Nater et al., 2005). However in recent years, salivary α-amylase 

has started to receive greater attention as a more reactive, non-invasive index measure 

of sympathetic activity (Rohleder et al., 2004). Following a rise in salivary α-amylase 

production due to a stress task, the measured concentration of salivary α-amylase is 
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largely reduced within 10 minutes (Nater et al., 2005). That being said, the extent to 

which salivary α-amylase, sympathetic nervous system activity, and anxiety correlate is 

unclear. Saliva production is stimulated by parasympathetic nervous activity, and 

protein secretion is stimulated by sympathetic nervous activity; both of which influence 

measured concentrations of salivary α-amylase (Bosch et al., 2011). Furthermore, the 

standard method of saliva collection via a Salivette being moved around in the mouth 

also stimulates the production of salivary α-amylase as a digestive protein. This method 

of collection might provide inaccurate measurements of salivary α-amylase, however a 

study by Rohleder et al. (2006) found that valid measurements could be obtained this 

way. The studies presented in this thesis are the first to use salivary α-amylase as 

measure of anxiety in the elderly during adaptive locomotion tasks. The next section 

looks at how anxiety affects attention and task prioritisation during gait. 

 

1.9 Anxiety and fear of falling during locomotion 

As previously mentioned, gait is an attentionally demanding task that requires greater 

attention as we age (Chapter 1.7). Anxiety is another factor influencing the attentional 

requirements of gait. Gage et al. (2003) looked at how increasing the height, and 

decreasing the width of a walkway can instil anxiety and alter attentional demands of 

locomotion in both young and older adults. They found reaction times to an auditory 

signal were greater for older adults compared to young, and that the younger group 

allocated more attention to single-limb support than double-limb support periods of gait. 

This phase dependent allocation of attention was not found in older adults. The authors 

suggest that this is due to an increased attentional demand during double-limb support 

in older adults. They also found that increasing anxiety increased reaction times to a 
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secondary task in both age groups, and that attention was prioritised to the task that 

posed the most threat. 

Anxiety and old age both increase the attentional demands of gait (Gage et al., 2003), 

and changes in the gait cycle are also associated with anxiety. Using a similar 

methodology to Gage et al., (2003), Brown et al. (2006) found that a conservative gait 

pattern was adopted in anxiety inducing trials, and this resulted in a reduced obstacle 

contact frequency. However, some older adults develop a fear of falling, which can 

further reduce balance performance and is associated with a higher fall risk 

(Hadjistavropoulos et al., 2011). During periods of anxiety, there is increased activation 

of postural muscles, which stiffens the movement about joints and reduces the range of 

motion in the lower limbs of older adults (Brown et al., 2002). This stiffening strategy 

might be beneficial during activities that are of a low postural threat, but limits the 

adaptability of the lower limbs to respond to an unexpected perturbation (i.e. tripping on 

a raised pavement). 

In order to avoid potential hazards, a visuospatial map of the surroundings must be 

obtained. During an unexpected perturbation, stored visuospatial information can be 

used to guide corrective steps without online visual guidance (Zettel et al., 2007). 

However, older adults, particularly those deemed to be at a high risk of falling, 

inadequately gather information about future stepping constraints on the approach to a 

target step (Young & Williams, 2015). Furthermore, high-risk older adults look away 

from a target step earlier than young adults to gather visual information about upcoming 

constraints (Chapman & Hollands, 2007). This might be due to the insufficient 

gathering of visuospatial information on the approach to the target step (see Figure 1-1). 

In a case study of a elderly faller, Young and Hollands (2012b) found that prior to 
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falling the participant delayed gaze transfer from the current stepping target, but 

following two falls she displayed gaze characteristics consistent with those of high-risk 

older adults and looked to future constraints earlier. This premature gaze transfer is also 

correlated with task-specific anxiety (Young et al., 2011). The work presented in this 

thesis aimed to explore the relationship of anxiety and the visual allocation of attention 

during adaptive locomotion, and how anxiety influences stepping performance. 

 

1.10 Aims  

This work in this thesis aimed to experimentally manipulate anxiety in order to see if it 

is the underlying cause of altered gaze behaviour and associated stepping errors 

demonstrated by older adults during adaptive locomotion. Firstly, we aimed to see if 

social evaluative threat could be used as a successful method of increasing anxiety 

during locomotion in young adults (Chapter 3). We then used this method to 

experimentally increase anxiety in older adults, and measured changes in their gaze 

behaviour and stepping performance (Chapter 4). We then investigated whether an 

intervention aimed at reducing anxiety in older adults was effective in improving gaze 

behaviour and stepping performance (Chapter 5). Finally, we investigated the effects of 

previewing   the   walking   path   on   older   adults’   allocation of attention during adaptive 

locomotion and the impact on gaze behaviour, anxiety and stepping performance 

(Chapter 6).  
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Chapter 2 

General Methods 

Whilst each study differed according to its aims, many of the same instruments and 

protocols were used in the collection of data. This chapter covers the methods that were 

consistent throughout studies presented in this thesis, unless otherwise stated. 

2.1 Participant Recruitment 

Participants in these studies were classified as either young adults or older adults. All 

recruitment   methods   were   given   full   approval   from   the   University   of   Birmingham’s  

ethical review committee. Participants all read study information sheets and signed a 

consent form knowing that they were free to withdraw from the study at any time 

without reason. An example information sheet and consent form can be found in 

Appendix A. 

2.1.1 Young Adults 

Young   adults   were   recruited   either   from   the   School   of   Sport   &   Exercise   Sciences’  

research hours programme in return for course credit, or from the school’s  postgraduate  

research student cohort. All young adults were between the ages of 18 and 30, and were 

healthy with no known mental or physical impairments.  

2.1.2 Older Adults 

All older adults were over 65 and able to walk independently. They were recruited from 

the local community via poster advertisements, from visits to local assisted living 

homes, or from a university research pool of elderly people interested in taking part in 
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research. They were offered between £10 and £20 (depending on the study) for taking 

part in this research in addition to their travel expenses. 

2.2 General Study Protocol 

The general protocol and task-specific equipment used throughout the studies presented 

here remains constant, and is fundamentally based on that of Young, Wing, and 

Hollands (2011).  

Participants were required to walk a 7-metre path starting with their right foot. On their 

second right step they had to accurately step into a target box and then over a varying 

number of obstacles until they reached the end of the course (Figure 2-1). The target 

box was a raised black rectangular outline that was 4cm high and 5cm wide all the way 

around. The length of the inside stepping area was 8cm plus the length at the longest 

part  of  the  participant’s  right  shoe,  and  the  width  was  8cm  plus  the  width  at  the  widest  

point of the right shoe. This meant that each participant had the same spatial stepping 

constraints as each other. The target box (Figure 2-2) was made from solid corner 

blocks, and joined with collapsible sides to reduce the risk of falling if accidentally 

stepped on. The obstacles used were 60cm x 2cm x 20cm (width x depth x height) 

wooden boards with two stabilising blocks at either end to allow it to stand upright. This 

meant that if the obstacle was knocked in the direction of walking that it would fall flat 

and not cause a trip or fall. Participants were required to step over these obstacles with 

their right foot first.  
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Figure 2-1 A schematic diagram of a trial with two obstacles. 

 

 

Figure 2-2 A 3D example of the stepping target used in all studies presented in this 

thesis. The inside length (L) was 8cm plus the length of the participants shoe, the 

inside width (W) was 8cm plus the width of the shoe. The height (H) of the target 

box was 4cm, and the depth of the perimeter (P) was 5cm. The box was black and 

its sides collapsed if it were stepped on. The four spheres on each of the corners 

represent reflective kinematic marker positions.  
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Prior to starting the trials, each participant completed two walks from the start line 

without the target or obstacles present so the investigators could identify the correct 

position for the target box. Participants initiated stepping with their right foot, and the 

average heel strike of their second right step was used as a distance marker to position 

the target box so that their heel would have landed 4cm from the rear had it been present. 

The target box was positioned so that the left exterior edge was in line with the centre of 

the walkway. It was then moved: 8cm forward, 12cm to the right, or a combination of 

the two from the original location to marginally alter step positions and reduce any 

effects of learning. These target box locations were evenly counterbalanced throughout 

each  study’s  trials  and  participants  could  not  see  their  position  until   they  opened  their  

eyes at the beginning of each trial. 

There were a maximum of two obstacles positioned after the target box in any one trial, 

these were placed 180cm and 280cm past the rear edge of the target box. Participants 

completed several practice trials before testing began in order to familiarise themselves 

with the task. The specific arrangements of these obstacles are described in each 

experimental chapter.  
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2.3 Psychological Evaluation 

2.3.1 Cognitive Wellbeing and Function 

Participants completed a series of cognitive tests to evaluate their well-being and 

suitability for these experiments prior to taking part. The 28-question General Health 

Questionnaire (GHQ-28,   see   Appendix   B.1)   was   used   to   assess   participants’  

psychological state in four areas: somatic symptoms, anxiety and insomnia, social 

dysfunction and severe depression (Goldberg & Hillier, 1979). This allowed 

identification of any psychological problems that could confound experimental findings 

or render participants unsuitable for testing.  

In order to assess each  participant’s  ability  to  follow  instructions,  the  Mini-Mental State 

(MMS, see Appendix B.2) examination was used to test for signs of dementia that 

might compromise the participants understanding of the task (Folstein et al., 1975). The 

MMS   is   a   series   of   verbal   instructions   and   questions   that   evaluate   the   participant’s  

orientation, registration, attention and calculation, memory, and language. Out of a 

possible 30 points, a score of 27 or above is considered normal, while a score of 20 or 

below is indicative of dementia. 

Another  aspect  of  cognitive  function  relevant  to  the  following  studies  is  an  individual’s  

ability to scan their environment, process that information and make informed decisions 

based on it. The widely used trail-making A and B tests assess these characteristics, and 

are a commonly used method of assessing executive function (Tombaugh, 2004, see 

Appendix B.3). Part A involves the participant taking a pen and joining a line from one 

numbered circle to another on an A4 sheet of paper whilst timed. Part B involves a 

similar task, however the circles are alternate numbers and letters (e.g. 1-A-2-B-3-C 
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etc.). The difference between the times that participants took to complete the two tasks 

was calculated as a measure of executive function. 

2.3.2 Task Efficacy 

Due to the wide range of physical capabilities in the older population, it was important 

to   identify   participants’   perception   of   their   physical   ability   in   order   to   assess   task  

confidence.  The Activities-specific Balance Confidence (ABC - Appendix B.4) scale 

lists 16 common daily tasks and asks the participant to state how confident they are 

about doing the task without losing their balance (Powell & Myers, 1995). In addition to 

this, the International Falls Efficacy Scale (FES-I – Appendix B.5) is a 16 question 4-

point Likert scale questionnaire asking how concerned the participant is about falling 

whilst completing specific daily tasks (Yardley et al., 2005). These questionnaires allow 

determination   of   an   individual’s   balance   confidence  while   completing   common   daily  

tasks. 

2.3.3 Self-Reported Anxiety 

Anxiety was measured throughout the experiments using a short state-version of 

Spielberger’s  Trait-State Anxiety Inventory (Marteau & Bekker, 1992; Spielberger et al., 

1970). Participants completed this questionnaire as a baseline measure to start, and then 

following each set of trials. There were four state anxiety questions (1, 3, 4 and 6) and 

two additional questions (2 and 5 - N.B. not included in Chapter 3) that were not taken 

in   to   account   when   scoring   participants’   anxiety.   Each   question   was   worded   to   be  

relevant to the stepping task they had just completed and answers were on a Likert scale 

from 1 (not at all) to 4 (very much). The questions were:  
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1. I feel calm about completing the task 

2. I am frustrated by the task 

3. I feel tense about stepping into the box 

4. I feel relaxed about stepping into the box 

5. I feel embarrassed about completing the task 

6. I am worried that I will lose my balance 

Questions 1 and 4 were reverse scored and then the sum of the four anxiety related 

questions minus 4 gave their final anxiety score, ranging from 0 (no anxiety) to 12 

(extreme anxiety). This questionnaire allowed measurement of a participant’s   self-

reported anxiety before and during each experiment. Typical scores reported in this 

thesis ranged from around 0 to 7. 

The Profile of Mood States (POMS – Chapter 3 – Appendix C.1) and Immediate 

Anxiety Measurement Scale (IAMS – Chapters 3 and 6 – Appendix C.2) questionnaires 

were used in two of the studies presented in this thesis, and are explained in further 

details within their separate methods sections. 

2.3.4 Physiological Anxiety 

2.3.4.1 Heart Rate 

Heart rate was measured using an Oregon Scientific strapless heart rate monitor 

(Oregon Scientific, UK). This was a watch that participants wore around their wrist that 

measures heart rate through a finger-based ECG system. They had to place two fingers 

on the metal parts of the watch face and hold them there for several seconds for the 

watch to give a reading.  
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Participants were asked to wear the watch throughout the testing period. During that 

time, heart rate was measured at baseline levels following a 5-minute (Chapter 6) or 20-

minute (Chapters 3 to 5) rest period, and then immediately following each set of trials to 

give a measurement relative to the trials just completed. 

2.3.4.2 Salivary α-amylase 

During the first three studies presented in this thesis, salivary α-amylase was used as a 

cursor to represent physiological anxiety. To measure this, a timed, passive drooling 

collection technique was used. A Salimetrics salivary -amylase assay was used to 

determine salivary -amylase activity (Salimetrics Europe Ltd., UK). 

Prior to testing, participants were not allowed alcohol or non-prescription drugs in the 

24 hours leading up to the experiment. They were also asked to refrain from exercise 

that morning, and from brushing their teeth, caffeine, acidic drinks and eating during the 

hour before. These measures were taken to ensure the most stable levels of salivary -

amylase (Nater et al., 2005). 

50ml Corning centrifuge tubes were used to collect saliva from participants. They were 

asked to void their mouths of saliva, and then with their heads tipped forward, allow 

saliva to naturally pool in the bottom of their mouths. Participants refrained from 

speaking and moving the muscles around their mouths to avoid stimulating more saliva 

production. After one minute, the participants emptied the collected pool of saliva from 

their mouths into a pre-weighed sterile tube. This process was repeated 2 more times in 

to the same tube, so that 3 minutes worth of saliva had been collected in total. 
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The saliva collection process was practiced once before testing to familiarise the 

participants with the collection protocol. Once testing had begun a baseline sample was 

collected following a 20-minute rest period, then after each set of trials further samples 

were collected. Once all samples for a participant had been collected, the tubes were 

weighed again, vortex mixed and then centrifuged at 4000 g for 10 minutes. Two 500µl 

samples of supernatant were then pipetted into sterile eppendorphs for freezing at -20°C 

until further analysis. 

A Salimetrics salivary α-amylase assay kit (Salimetrics Europe, Ltd., UK) was used to 

determine the kinetic measurement of α-amylase activity in the saliva. A 1:200 dilution 

of each saliva sample was made using the provided diluent, 8µl of this solution was then 

pipetted into the provided plate wells. The substrate provided with the kit was heated to 

37°C, and then 320µl was added simultaneously to the sample wells. The plate was then 

mixed at 37°C and read on a plate reader with a 405nm filter at 1-minute and 3-minutes 

following the addition of the substrate. 

The final equation used to determine the α-amylase activity considering the assay 

volumes and properties was: 

∆Absorbance (3min – 1min  reading)  x  328  =  U/ml  of  α-amylase activity 

  



 29 

2.4 Physical Evaluation 

2.4.1 Visual Function 

A Snellen eye chart was used to determine visual acuity. Participants stood at a distance 

of 6ft from the chart and read out each letter while covering their left eye, then their 

right eye, and then with both eyes open. In addition to this, the Pelli-Robson contrast 

sensitivity test was completed at a distance of 1 metre, with the letters at eye level in left, 

right, and both eyes (Pelli et al., 1988). These test were of particular importance in the 

older adult group, due to the varied decline in visual performance with age (Branch et 

al., 1989).   If   needed,   the   participants’   own   corrective   glasses   or   contact   lenses   were  

worn during their participation. 

2.4.2 Mobility Assessment 

The Berg Balance Scale was used  to  assess  participants’  balance  and  mobility  (Berg et 

al., 1989).  It consists of 14 mobility tasks that the participant is asked to complete, such 

as move from standing to sitting, or stand on one leg for 10 seconds. Each task is scored 

from 0 to 4 according to the level of independence and ability shown. A score of 0 to 20 

is indicative of someone who cannot walk, 21 to 40 is someone who needs assistance 

walking, over 40 is someone who can walk independently, and the maximum score is 

56 (Appendix B.6). 

In Chapters 5 and 6, the Timed Up-and-Go (TUG) test was used as an additional 

measure of mobility (Podsiadlo & Richardson, 1991). This required participants to start 

seated in a comfortable firm backed chair with armrests, and upon hearing a verbal 

signal, stand up and walk 3m to a mark on the floor, turn through 180°, walk back to the 
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chair, turn 180° and sit back down. They did this at a comfortable pace, and the time 

taken to complete it was recorded. 

2.5 Kinematic Recording 

Full body movement was recorded using a 100Hz 13-camera Vicon MX system running 

on Vicon Nexus 1.7.1 software (Vicon Oxford, UK). The cameras were calibrated using 

a 3-point calibration wand to an accuracy of <1mm. Four 14mm reflective markers were 

placed centrally on each corner of the target box. Four more markers were placed on 

each obstacle, two on top and two by the floor at either side. An adapted version of the 

Vicon lower-body plug-in gait model was used for labelling participants. Marker 

placement was mirrored on both left and right sides with variations in height of the 

upper and lower leg markers to distinguish between sides. Markers were placed on the 

anterior and posterior super iliac spines, the lateral thighs, lateral epicondyle of the 

knees,  and  the  lateral  tibias.  The  foot  markers  were  placed  on  the  outside  of  participants’  

shoes on the calcaneus of the heel, on the middle of the front, top surface of the shoes 

(toe marker), and equidistant between these two markers on the medial and lateral sides 

of the shoe (see Appendix E). In Chapter 3 the toe marker was placed on the head of the 

3rd metatarsal rather than on the front edge of the shoe, this was subsequently changed 

in further studies to provide a more central measurement of foot placement (Figure 2-3). 

A headband with 4 reflective markers was also worn to mark the lateral forehead and 

posterior head on both sides. 
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2.5.1 Gait Event Detection 

Trials were labelled in Vicon Nexus using custom models for each study.  Each  marker’s  

(x, y, z) position coordinates were then exported to a CSV format, and then analysed in 

Matlab (The Mathworks, Inc. MA, USA, see Appendix F for scripts). In Chapter 3, the 

flat-foot frame was manually exported using visual frame-by-frame playback in the 

Vicon Nexus suite. In Chapters 4 to 6, gait events were detected using the methods in 

this section, and foot contact time was verified against manual identification (results 

below).  

Data were filtered with a zero-phase fourth-order Butterworth Filter with a cut-off 

frequency of 7Hz. An adapted method of foot contact identification used by O’Connor  

et al. (2007) was used to detect separate heel and toe contact rather than general foot 

contact. Foot-contact and toe-off events were identified by using the vertical 

acceleration profile of heel and toe markers. A large acceleration peak in the respective 

traces coincided with heel and toe contact with the floor. To isolate the foot contact 

peak, a window of 400ms following the heel crossing the rear edge of the target box 

was used to identify the range of data in this area for both heel and toe markers. A 

Figure 2-3  

An example of foot placement 

markers relative to target box 

markers. 
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window size of 400ms was chosen as it would include the contact peaks, but would not 

include the peaks generated by toe off and heel off events. 30% of the y-axis range of 

this 400ms window was chosen to be a suitable cut-off point to isolate the contact peaks. 

If contact peaks were not identified, or if multiple peaks occurred in the isolated section, 

the trials were flagged for manual data extraction. The local maximum of the earliest 

occurring peak identified the foot contact time and also the participants stepping 

strategy. During these studies it was noted that some participants stepped into the target 

box with their toe first instead of heel first; the frequency of this is reported in each 

relevant chapter. Adoption of this alternate stepping strategy might represent an 

adaptation to compensate for the perceived postural threat of the stepping target. Our 

chosen method of foot contact identification allowed us to identify and record the 

stepping strategy (i.e. heel-first or toe-first) in addition to the timing of foot contact. (see 

Appendix F.1 for Matlab script)   

In Chapter 4 foot contact time was also visually exported using frame-by-frame 

playback of each trial in order to validate the accuracy of the acceleration peak foot 

contact identification method described above. As  expected,  Pearson’s  product  moment 

correlation revealed a very strong correlation between the manually selected contact 

frame number and the heal/toe acceleration peak frame number (r(432) = 0.99, p <.001). 

The difference between each of the two frames was calculated, and the mean difference 

was less than a single video frame (-8 ± 17ms (M ± SD), N.B. 1 frame = 10ms). 

Heel off and toe off events were identified as the second peaks that exceeded 30% of 

the y-axis range within the 400ms following the heel crossing the rear edge; however, 

only the toe off peak was necessary as it would be impossible for the toe to leave the 

ground before the heel during normal gait (Figure 2-4).  
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Figure 2-4 A schematic of how foot contact and toe off were identified. The x-axis 

represents time and the y-axis represents vertical marker acceleration (a), and 

vertical marker postion (b). The time at which the heel marker crossed the rear 

edge of the target box flagged the correct step (Heel Cross - HC). The window to 

identify foot contact was set to 400ms (HC + 400ms). TC indicates when the toe 

marker moved beyond the front target edge. Data was isolated if it was greater 

than 30% of the range of this 400ms window. The earliest heel acceleration (Heel 

Acc - red) or toe acceleration (Toe Acc - blue) peak was then identified as foot 

contact (FC - heel first or toe first stepping identified). Toe off (TO) was the 2nd toe 

acceleration peak above the isolation point. The middle section represents stance. 
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2.5.2 Identifying Anteroposterior and Mediolateral Stepping Errors 

Position data from a flat foot frame midway between foot contact and toe off was used 

to identify stepping accuracy. The centre point of the box was determined by finding the 

average   of   the   four   corners’   (x,   y)   coordinates.   The   centre   of   the   foot   was   found 

similarly but using the (x, y) coordinates of the four foot markers. In order to account 

for any misalignment of the target box within the Vicon capture field, anteroposterior 

and mediolateral displacements were calculated relevant to the target box orientation. 

To do that, a line crossing through the midpoint of the rear edge and centre of the box 

was calculated. The x-coefficient and y-intercept from that line were applied to the foot 

centre coordinates to create a parallel line running through the centre of the foot. 

Another perpendicular line running through the centre of the box, and subsequently its 

point  of  crossing   the  central   foot   line,  were   calculated.  Pythagoras’   theorem  was   then  

used to determine the anteroposterior, and mediolateral displacement of the foot relative 

to the target box (Figure 2-5). This latter step was probably unnecessary as the box was 

placed straight during the trials, but it improved accuracy consistency between 

participants (see Appendix D for equation details). 

 

 

 

 

Figure 2-5 A visual representation of how the Mediolateral (ML) and 

Anteroposterior  (AP)  errors  were  calculated  using  Pythagoras’  theorem.  
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2.6 Visual Data Capture 

2.6.1 Electrooculography (EOG) 

EOG data was recorded using a BlueGain EOG Biosignal Amplifier at 1000Hz 

(Cambridge Research Systems Ltd., UK). Horizontal eye movements were recorded by 

placing  two  surface  electrodes  adjacent  to  either  eye’s  lateral  canthi.  To  record  vertical  

eye movements, electrodes were placed centrally on the upper and lower orbital rim of 

the left eye socket. An earthing electrode was placed in the centre of the forehead 

(Figure 2-6).  

 

Figure 2-6 A diagram showing the position of EOG electrodes on the face.  

Electrodes fed in to an arm mounted biomedical amplifier, which wirelessly transferred 

the data in real-time to a computer. A manually operated infrared trigger sent pulses of 

infrared light to a receptor channel on the BlueGain amplifier, and fed in to the Vicon 

system at 1000Hz allowing for accurate temporal alignment between the EOG and 

kinematic data. The electrodes detected the potential difference between the positively 
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charged cornea and negatively charged retina of each eyeball. When the eyes rotated in 

their socket, the corneas moved closer to an electrode altering the potential difference 

between the electrode pairs. This was detected and recorded on an electrooculogram as 

vertical and horizontal eye position within the head. 

Prior to testing, each participant was asked to fixate gaze on a central point straight 

ahead and rotate their head from side-to-side and then up and down.  Head rotation in 

any direction was accompanied by eye counter-rotation driven by the vestibuloocular 

reflex. The eye movement signal generated was then correlated with the angle of the 

head segment to produce a scale-factor by which their EOG data could be translated 

into degrees. Raw EOG data was filtered using a zero-phase second-order Butterworth 

filter with a cut-off frequency of 30Hz, and then converted to degrees (see Appendix 

F.2 for Matlab script). Saccade initiation was identified as when the velocity of the eye 

movement was greater than 100°s-1 (Young et al., 2011). The time of these eye 

movement onsets were marked on the EOG trace with a vertical line depicting foot 

contact time and the saccade closest to the foot contact time being highlighted by 

default. In some trials, small deviations in the EOG trace could result in incorrect 

identification of a saccade; therefore each trial was visually examined to ensure the 

largest, closest saccade to foot contact time was identified (see Appendix F.3 for Matlab 

script). The time difference between the saccade initiation and foot contact time was 

then calculated (Figure 2-7). Due to some technical errors with the synchronisation 

pulses it was not possible to temporally align the EOG and kinematic data in the study 

presented in Chapter 3, therefore saccade timings were excluded from this study.  
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Figure 2-7 An example of trial EOG data showing how gaze transfer time was 

calculated. The x-axis represents time and the y-axis represents vertical eye 

rotation within the head. The vertical red line indicates foot contact in the stepping 

target (F.C.). Participants generally looked at the target box during the final part 

of their approach as can be seen as the trace drops. Their gaze transfixion changes 

around foot contact time to focus further obstacles or steps (the saccade). Saccade 

initiation (S.I.) was highlighted when velocity surpassed 100°s-1. The time 

difference between foot contact time and saccade initiation was used to measure 

gaze transfer time. In this example gaze transfer occurred following foot contact, 

so the value would be positive. 

 

2.6.2 Video Eye Tracking 

In the final study presented in this thesis (Chapter 6), a 25Hz Dikablis wireless head-

mounted monocular eye tracker was used (Ergoneers GmbH, Manching, Germany). 

This system used a small infrared camera pointing back in to the subjects left eye to 

correlate relative pupil position to locations from a scene-view forward facing camera. 

The luminance of the infrared view of the eye was adjusted such that the pupil was the 
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darkest area of the image (Figure 2-8). The built in Dikablis algorithm then isolated the 

pupil and found the centre point, meaning that the pupil could be tracked within the 

image. Participants were then asked to stand facing the obstacle course while four small 

reflective vicon markers were placed near the corners of the scene view capture area to 

identify a calibration area. To calibrate the pupil position to the scene view, participants 

were asked to stand with their head still and to only move their eyes as they looked at 

each of the 4 calibration points. When focused on these points, the respective points on 

the scene view image were selected, allowing calibration of the area between them 

using the Dikablis software. Once the calibration was complete, a crosshair could be 

recorded on the scene view to identify where each participant was looking. 

 

Throughout the trials in this study, 20cm square black and white markers were placed 

throughout the trial area (Figure 2-9a); two parallel to the near and far left edge of the 

target box, and two on either side of each obstacle. These markers were automatically 

detected in each trial by the D-Lab software (Ergoneers GmbH, Manching, Germany). 

This means that areas specific to the target and obstacles could be marked out within the 

video recordings (Figure 2-9b), and gaze fixations and timings within these areas 

throughout each trial could be measured. Sectioned events (i.e. preview time start and 

Figure 2-8  

An example of the image 

used by Dikablis to 

isolate the pupil. 
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finish, and walk time start and finish) were marked on the video recording in D-Lab. 

The output variables of D-Lab were total fixation time, mean fixation time, number of 

fixations, percentage fixation time of the section (preview or walk), and fixation 

frequency (Hz).  

 

 

Figure 2-9 a) An example of a marker image automatically detected in the D-Lab 

software, and b) a screenshot of the marker images being identified (outlined in 

red), and the areas which were anchored to them (blue) while the scene view 

moved. The green crosshair represents current fixation.  

a) b) 
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Chapter 3 

Using social evaluative threat as a novel method of increasing task-

specific state anxiety during locomotion in young adults. 

3.1 Introduction 

In order to safely navigate across challenging terrain, we must safely guide our feet to 

pre-selected step locations that we deem to be safe. When falls occur, they are usually 

due to a trip or slip that interrupts the gait cycle, and either causes the centre of mass to 

move beyond the centre of pressure without proper stabilisation, or causes the centre of 

pressure to move from beneath a person (Wright et al., 2015). A trip occurs during the 

swing phase of a step, and a slip usually occurs when placing the foot (Lockhart, 2008). 

Therefore when walking on uneven or wet ground, inaccuracy and variability of a 

planned step are significant risk factors for falls, and are characteristic of older adults 

identified to be at a high risk of falling (Chapman & Hollands, 2006b). 

The aim of this first experimental chapter was to pilot a method to experimentally 

increase anxiety in the laboratory in order to determine whether the previously observed 

changes to stepping inaccuracies (Chapman & Hollands, 2006b; 2007; Young et al., 

2011) could be elicited. In order to gauge the effectiveness of our anxiety inducing 

intervention we also needed a reliable method of measuring anxiety levels. The next 

section briefly reviews previously used methods of inducing anxiety.  

The Trier Social Stress Test is a common method of manipulating state anxiety in a 

controlled laboratory setting (Kirschbaum et al., 1993). The test usually requires 

participants to deliver improvised free speech and mental arithmetic while an audience 
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watches. Participants are also told that their performance of the task is being judged and 

marked, the legitimacy of which is irrelevant as long as anxiety is successfully induced 

(Mansell et al., 1999; Mansell et al., 2002). This increases anxiety through fear of social 

evaluation and social comparison (Festinger, 1954; Taylor & Lobel, 1989), however 

state   anxiety   cannot   be   directly  measured   and  must   rely   on   a   participant’s   perception  

and truthfulness about their anxiety (self-reported anxiety), or biochemical analysis of 

proteins that are released during stress.  

The State-Trait Anxiety Inventory is a commonly used measure of anxiety (Spielberger 

et al., 1970; Spielberger, 1983). In order to test its reliability, and its ability to 

distinguish between state and trait anxiety, Metzger (1976) used it to measure anxiety 

pre- and post-examination. He found that state anxiety increased prior to examination, 

whereas  trait  anxiety  didn’t.  Furthermore,  he  found  no  changes  in  either  form  of  anxiety  

for a control group. This provides evidence that this self-reported measure of anxiety 

can offer reliable results, and can also distinguish between the state and trait forms. 

However, participant truthfulness and understanding can vary when using self-reported 

measures of anxiety, which might result in inaccurate measurements. 

When an individual is stressed there is an increase in sympathetic nervous activity 

(Hoehn-Saric & McLeod, 1988), which also increases heart rate directly. Salivary -

amylase has shown promise as an index measurement of sympathetic activity (Rohleder 

et al., 2004), and levels of the enzyme are increased by stress tasks within several 

minutes (Takai et al., 2004). During the Trier Social Stress Test, salivary -amylase 

was shown to increase almost immediately after the test started, and returned to baseline 

levels within 10 minutes (Nater et al., 2005). Therefore salivary -amylase was selected 
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as our chosen measure of biochemical physiological anxiety, due to the reactive time 

frame, and the stress-task conditions in which it is seen to increase being applicable in 

this study. 

Young et al. (2011) have recently shown evidence that self-reported anxiety is 

correlated with an early gaze transfer from a current stepping target in older adults 

deemed to be at a high risk of falling. This early gaze transfer observed in high-risk 

older adults has also been shown to correlate with mediolateral foot placement 

variability (Chapman & Hollands, 2006; 2007).  

We hypothesise that stepping performance during precision stepping tasks is mediated, 

in part, by task specific anxiety. This study aimed to validate social evaluative threat, 

through use of a judging panel, as an effective method of increasing task specific 

anxiety during a precision walking task. It also served to validate salivary -amylase as 

a useful tool when assessing physiological anxiety levels in young adults, with intention 

for future use in older populations. We predicted that under the social evaluative threat 

condition, participants would show increased anxiety, and a moderate reduction in 

precision stepping performance when compared to normal walking conditions. 
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3.2 Methods 

3.2.1 Participants 

Eight undergraduate students (4 male, 4 female) were recruited from the Sport & 

Exercise Sciences School at the University of Birmingham in exchange for course credit 

contributing towards their final grade. The University of Birmingham Ethical 

Committee gave written permission for this protocol prior to data collection. Each 

participant also gave written consent indicating his or her understanding and willingness 

to take part in the current study. 

Testing took place in the afternoon between 1pm and 5pm in order to control for daily 

fluctuations in salivary α-amylase (Nater et al., 2007). Participants were asked to 

abstain from alcohol and non-prescription drugs during the 24 hours prior to testing, and 

to not take part in any exercise on the morning of testing as this might increase salivary 

α-amylase levels (Nexø et al., 1988; Kivlighan & Granger, 2006). In the hour prior to 

testing, participants were instructed to avoid consuming caffeine, acidic drinks and food, 

and to avoid brushing their teeth as this might cause slight bleeding of the gums and 

contaminate the saliva samples. All females involved in the study were tested during the 

luteal phase of the menstrual cycle. 

 Participants underwent Snellen and Pelli-Robson eye tests to measure visual acuity and 

contrast sensitivity respectively.  All  participants  had  ≥  20/25  visual  acuity  when  tested  

using  both   eyes,   and  contrast   sensitivity  ≥  1.95  with  both   eyes   (see  Chapter  2.4.1   for  

details of measures).  
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3.2.2 Data Collection 

Motion capture was carried out using a 13-camera Vicon MX Motion Capture system 

collecting at 100Hz, and Vicon Nexus 7.2 was used for analysis of the data (Vicon 

Oxford, UK). Reflective markers were attached to the participants clothing following 

the Vicon Plug-In Gait model with adapted foot marker placement to include additional 

markers placed at the medial and lateral midpoints of each foot (see Appendix E). 

Participants wore tight fitting clothes to minimize marker movement with respect to 

clothing, and flat-soled shoes that they felt comfortable walking in. Details of target box 

marker placement and size can be found in Chapter 2.5. 

Saliva samples were collected before and during testing to assess salivary -amylase 

concentrations over a 3-minute period. During the saliva collection time, heart rate was 

taken using an Oregon Scientific SE138 strapless heart rate monitor (Oregon Scientific, 

Oregon, USA) (see Chapter 2.3.4 for details on saliva and heart rate collection).  

Participants also completed a series of questionnaires to measure self-reported anxiety. 

The Profile of Mood States (POMS – see Appendix C-1) was completed for all eight 

participants, and the State Anxiety Inventory (SAI) and the Immediate Anxiety 

Measurement Scale (IAMS – see Appendix C-2) were completed for five participants. 

The latter two questionnaires were added after data collection had started in order to 

explore a greater variety of questionnaires that would be suitable for further research.  

The POMS consisted of 32 mood-related words and asked on a Likert scale of 1 to 5, 

how much they felt each mood in relation to the task (1 = not at all, 5 = extremely). 

These answers were then split in to 6 categories: Tension/Anxiety, Anger/Hostility, 

Depression/Dejection, Vigour/Activity, Fatigue/Inertia, and Confusion/Bewilderment. 
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The sum of each of these categories was then divided by the mean to get a ratio figure 

used in analysis. 

The IAMS consisted of three questions with two parts each. Participants had to indicate 

on a scale of 1 to 7 how cognitively anxious, somatically anxious and self-confident 

they were about the task. They then answered on a scale of -3 to 3 how their levels of 

each anxiety subcategory and confidence affected their task performance (-3 = very 

debilitative, +3 = very facilitative). 

The SAI consisted of 4 statements relating to how they felt when stepping in to the 

target box. These were: 

1. I feel calm about completing the task. 

2. I feel tense about stepping into the box. 

3. I feel relaxed about stepping into the box. 

4. I am worried that I will lose my balance. 

Participants then indicated on a scale of 1 to 4 how much they agreed with each 

statement (1 = not at all, 4 = very much so). During analysis, questions 1 and 3 were 

reverse coded, then all answer values were summed and had 4 subtracted to give a final 

anxiety score between 0 and 12. 

3.2.3 Protocol 

Prior to starting the walking tasks, participants completed the Snellen and Pelli-Robson 

visual tests followed by a 20-minute rest period, after which baseline measures of 

salivary -amylase and heart rate were obtained. 
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The set-up and positioning of the target box and obstacles is explained in Chapter 2.2. 

There were four experimental conditions: Target Only (TO), Far Obstacle (FO), Near 

Obstacle (NO), and Both Obstacles (BO). These conditions are listed in order of 

difficulty based on the proximity and number of obstacles. The target box was present 

in all conditions. The TO condition had no further obstacles following the target box, 

FO had one obstacle following the target box placed at the 280cm mark, NO had one 

obstacle placed at the 180cm mark, and BO had two obstacles, one at each mark (Figure 

3-1). There were 6 trials in each condition, which were blocked together, making 24 

trials for each session. There were 2 sessions: a control session and a judged session. 

The order of the sessions was randomised and equally balanced across participants, the 

order of the condition blocks were randomised within each session, and the acute target 

box position in each trial was randomised across each participant. 

Figure 3-1 Schematic of the four trial difficulties used in this study 
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Participants were required to face away from the walkway while the target and obstacles 

were positioned. They then had to close their eyes and turn to face the obstacles. On a 

verbal cue, participants then opened their eyes and walked down the walkway starting 

with their right foot. They then stepped into the target box with their right foot, stepped 

over any obstacles that were present with their right foot leading and progressed to the 

end of the walkway. Participants completed several familiarisation trials for each 

experimental condition so that they were comfortable with the protocol before starting 

the recorded trials. They also completed a baseline POMS questionnaire (all 

participants), as well as IAMS and SAI (5 participants). 

Between each set of 6 trials, heart rate, POMS, IAMS and SAI questionnaires were 

taken, and saliva samples were collected to measure salivary -amylase. These 

measures were taken to represent the set of trials just completed by the participant. 

During the judged trials, social evaluative threat was used with the aim of increasing 

anxiety in participants. Four PhD students were brought in to lab and sat behind a desk 

and computer screens facing the walkway from behind the start line. Participants were 

told that these four individuals were gait researchers and would be receiving accurate, 

live information about the accuracy and consistency of participant stepping performance, 

and would be scoring them out of 100 on their performance. A board showing a list of 9 

fictitious   names   and   scores  was   placed   next   to   the   judges,  with   the   participants’   real  

name also being ranked with a consistently low fictitious score on the board. 

Participants were told that the other names on the board were averages from previous 

participants and it was their job to try and score as highly as possible. They were also 

told that the results would be made public following the experiment, and that there was 

a prize for the top score. The judges and score board were positioned so the participants 
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could not see them whilst walking so that this did not interfere with visual data 

collection during the trials. Participants could see the judges and their score when 

returning to the start line between trials. Random false scores were updated every 2 

trials and never moved the participant above 6th place. Once all data collection was 

complete, participants were informed that the judges and scores were false, and that 

they were present to raise anxiety levels during those trials. 

3.2.4 Data Analysis 

Stepping accuracy was determined by manually labelling and exporting right-foot mid-

stance frames for each trial from Vicon Nexus, and analysed using a custom-built 

MATLAB script (The MathWorks, Inc., MA, USA). The script located the centre of the 

foot markers and target box markers relative to the exact orientation of the target box 

and returned separate anteroposterior and mediolateral foot offsets measured in 

millimetres (see Chapter 2.5.2) 

Salivary -amylase concentration was analysed using a Salimetrics Kinetic Enzyme 

Assay kit (Salimetrics Europe, Ltd., UK). Following saliva collection, each saliva 

sample was weighed and centrifuged at 4000 g for 10 minutes. Two 500µL samples of 

the resulting supernatant for each set of trials were collected and stored in epindorph 

tubes at -20°C until assayed (see Chapter 2.3.4.2 for details on assay). 

A 2 x 4 (session x difficulty) repeated measures ANOVA was carried out on means 

from the 6 trials of each condition and participant for (1) anteroposterior step error, (2) 

mediolateral step error, (3) salivary -amylase, (4) heart rate, (5) SAI, (6) IAMS, and 

(7) POMS. Items 3 to 7 were analysed as a change from baseline measures obtained 

prior to each session. The standard deviation of anteroposterior and mediolateral step 
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accuracy was also analysed using this method as a measure of step variability. All post-

hoc tests, where required, used the Bonferroni correction for multiple comparisons. 

Correlations   were   carried   out   using   Pearson’s   product-moment correlation for 

continuous  data,  and  Spearman’s  rank  correlation  for  non-parametric questionnaire data. 

3.3 Results 

A summary of results can be found in Table 3-1. All values presented are mean ± 

standard error unless otherwise specified. 

3.3.1 Self-Reported Anxiety Measures 

There was a main effect of task difficulty on self-reported cognitive anxiety represented 

in the IAMS (F(3, 12) = 2.636, p < .05). Mean values (± standard error) were 0.2 ± 0.3 for 

TO, -0.1 ± 0.4 for FO, 0.3 ± 0.3 for NO and 0.6 ± 0.3 for BO. There was also a trend for 

IAMS cognitive anxiety to be greater in the judged session when compared to the 

control session (0.65 ± 0.27 and -0.15 ± 0.37 respectively), however this difference fell 

just outside of our accepted boundary for statistical significance (F(1, 4) = 7.64, p = .051, 

Figure 3-2). There were no significant differences for session or condition in the SAI, 

nor in any of the six POMS sub-categories (see Table 3-1).  
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Figure 3-2. The change in IAMS self-reported cognitive anxiety between control 

and judged trial sessions. 

3.3.2 Physiological Anxiety Measures 

There was a greater change in heart rate from baseline in judged trials when compared 

to control (2.9 ± 1.7 and -2.0 ± 0.7bpm respectively), however this was not statistically 

significant at the .05 level (F(1, 7) = 5.07, p = .059). There were no significant differences 

in salivary -amylase levels. Five out of 8 participants did show a moderate increase in 

salivary -amylase between control (6.8 ± 23.9 U/mL) and judged sessions (65.2 ± 39.1 

U/mL); however this was not significant (p = .061).  

3.3.3 Step Accuracy and Variability 

There was a main effect of task difficulty on mean mediolateral stepping error (F(3, 21) = 

3.12, p < .05 – TO:-10.2 ± 1.6mm, FO: -13.2 ± 1.8mm, NO: -9.9 ± 1.7mm and BO: -
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11.5 ± 1.5mm), however post-hoc analysis revealed no significant differences between 

conditions. There was also a main session x difficulty interaction effect of mean 

anteroposterior step variability (F(3, 21) = 3.44, p < .05). During FO trials, there was 

greater step variation during judged trials compared to control (20.1 ± 2.5 and 15.7 ± 

1.6mm respectively, Figure 3-3). There were no significant main effects of session on 

mean mediolateral variability, nor were there any main effects of session or difficulty 

on mean anteroposterior error or mediolateral variability. 

Figure 3-3 Mean mediolateral step variability of each task difficulty and session. * 

Sig. difference between sessions for the near obstacle (NO) trial difficulty p < .05. 

Error bars represent standard error. 
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Table 3-1 Means and standard deviations across sessions and difficulties 
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3.3.4 Correlations 

Using the Bonferroni correction, p values for correlations were only considered 

significant at the .003 level. Salivary -amylase levels were not correlated with any 

measures of self-reported anxiety that were taken; they were however moderately 

correlated with mediolateral step variability (rs (64) = .45, p < .001, Figure 3-4). Table 3-

2 shows self-reported anxiety and self-confidence correlations.  

The IAMS measure of somatic anxiety was correlated with heart rate (rs (40) = .51, p 

< .001), and IAMS cognitive anxiety was associated with mediolateral step variability, 

although it was just outside of our adjusted value of significance (rs (40) = .44, p = .004). 

The tension/anxiety subsection of the POMS was correlated with both anteroposterior 

and mediolateral stepping error (p < .003). 

Table 3-2 Spearman’s  correlations  between self-reported anxiety measures 

Measure: (n = 40) (1) (2) (3) (4) 

(1) IAMS Cognitive Anxiety     
   

(2) IAMS Somatic Anxiety r = .676* 
   p < .001 

  
(3) IAMS Self Confidence r = -.536* r = -.425 

  p < .001 p = .006 
 

(4) State Anxiety Inventory r = .328 r = .711* r = -.282 
 p = .039 p < .001 p = .078 

(5) POMS Anxiety/Tension 
r = .585* r = .750* r = -.217 r = .466* 
p < .001 p < .001 p = .179 p = .002 

* p < .003 – the Bonferroni-corrected value of significance  
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Figure 3-4 Correlation of salivary -amylase change from baseline and 

mediolateral step variability in the target box. 

 

3.4 Discussion 

The aim of this study was to validate the use of social evaluative threat during adaptive 

locomotion to experimentally increase state anxiety in young adults for future use on 

older populations. Moderate, but non-significant increases in IAMS self-reported 

cognitive anxiety (Figure 3.2) and heart rate were observed. An increase in salivary -

amylase concentrations was observed in 5 out of 8 participants, however this increase 

was not statistically verified at the p < .05 level. We also observed greater IAMS 

cognitive anxiety scores during the BO condition, however post hoc tests did not show 

this to be significantly greater than the other conditions.  
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Although the effects of our intervention on younger adult anxiety were fairly modest, 

the increase in the self-reported anxiety  measure  is  encouraging  given  the  participants’  

age, education and familiarity with the lab environment. Participants were 

undergraduates with a background in sports science and may have known about or 

studied social evaluative threat in their course. In addition to this, their relative walking 

confidence during this simple stepping task may have lessened their overall anxiety 

about the study. While this stepping task might prove challenging to older adults, it 

would be relatively easy for this young subject group. Therefore the moderate anxiety 

effects observed in this study show promise for future research in older adults who, we 

predict, would show greater susceptibility to the experimental protocol. 

We also demonstrated an increase in step variability under the social evaluative threat 

paradigm in the NO task complexity,   despite   the   intervention’s   subtle   effects.  During  

near obstacle trials, participants exhibited greater mediolateral step variability in the 

judged trials when compared to control trials (Figure 3-3), even though the effects of 

our social evaluative threat paradigm were modest. However, this effect was not 

observed in the both obstacle trials as would be expected if the evaluative threat 

differences were due to a simple relationship with increasing task complexity. We 

speculate that this may have been due to the apparent simple nature of the NO task 

causing an initial overconfidence of step placement which then increased step 

variability as participants felt they were being watched by the judges. The same effect 

may not have been observed in the BO condition as participants saw that the task was 

harder and concentrated more on stepping consistently. We suggest that the slight 

anxiety induced by social evaluation had negligible effects on participants during the 
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easier task complexities (TO and FO), but then had effect during NO trials as 

participants had a more immediate threat of the upcoming obstacle.  

In summary, this preliminary validation of methods failed to show social evaluative 

threat as a useful tool in increasing task specific anxiety during locomotion in younger 

adults. However it did produce effects on stepping performance in a confident group of 

walkers. We predict that in an older group, the effects of this intervention will be greater. 

The next chapter looks at how social evaluative threat induces anxiety in older adults 

and its consequent influences on gaze behaviour and stepping performance.   
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Chapter 4 

The effects of increasing anxiety on eye-stepping coordination and 

stepping performance in older adults during adaptive locomotion. 

4.1 Introduction 

We have previously shown how social evaluative threat can be used in an adaptive 

walking task to increase the mediolateral step variability when an obstacle immediately 

follows the target step. A modest, but non-significant increase in self-reported anxiety 

was also observed in the conditions of social evaluative threat in young adults. We also 

identified a correlation between salivary -amylase concentration and mediolateral step 

variability in young adults (see Figure 3-4) which suggests that this biological marker of 

sympathetic nerve activity might be somewhat associated with the decreased stepping 

performance observed. Having developed a methodology that shows a modest effect of 

social evaluative threat on some of the measured variables in young adults, we now 

apply these techniques to an older population. 

 In this chapter, we expand the scope of our preliminary findings to measure changes in 

temporal gaze transfer that are typically associated with reduced stepping performance 

(Chapman & Hollands, 2006b; 2007; Young & Hollands, 2012b), and the relationship 

between this seemingly maladaptive gaze behaviour and anxiety (Young et al., 2011). 

The majority of falls occur during locomotion (Prince et al., 1997). In order to avoid 

obstacles while walking, a spatial map of potential future steps is gathered by fixating 

an obstacle during the steps leading up to it. When stepping over an obstacle, gaze 

fixation is transferred to plan follow up steps rather than focusing on the current 
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obstacle (Patla & Vickers, 1997). However, compared to young and middle-aged adults, 

older adults require longer periods of visual input in order to plan motor responses 

during obstacle avoidance (Chandra et al., 2011), and saccade-step latencies are greater 

in older adults than in young adults when initially transferring gaze to the target area 

prior to stepping on to a platform (Di Fabio t al., 2003b). These findings suggest an age-

related delay in cognitive processing when planning steps, potentially due to slower 

activation patterns in the motor cortex that are associated with age (Yordanova et al., 

2004). 

Young adults are still able to complete a target step accurately when visual information 

is denied during the swing phase (Hollands & Marple-Horvat, 1996; Chapman & 

Hollands, 2006a), suggesting that a spatial map is retained in order to plan future steps. 

Chapman & Hollands (2006a) found that older adults missed a higher percentage of 

steps when vision was only available during the swing phase of the target step 

compared to when vision was only available during the stance phase, and when vision 

was not restricted. These finding indicate the importance of visual information for older 

adults when planning steps in a feedforward manner, rather than relying solely on 

online visual guidance. That being said, visual guidance is an important factor when 

fine-tuning a step during the swing phase. Reynolds and Day (2005) found a greater 

stepping error when vision was occluded at step initiation. Furthermore, when vision 

was available, participants initiated a correction to their step when the foot was ~64mm 

away. This implies that while steps are ballistic, and rely on predetermined visual 

information prior to step initiation, online visual guidance is important when trying to 

step accurately on to a target. Young & Hollands (2012a) conducted an experiment in 

which they measured the latency of a saccade, and of the time taken to significantly 
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adjust an ongoing step to a stepping target that moved at an unpredictable time, to an 

unpredictable location during the swing phase of the step. They found that both saccade 

latency and the time to a significant deviation in foot swing trajectory towards a moving 

target was greater for older adults compared to young, particularly those deemed to be 

at a high risk of falling. Older adults also had greater stepping error compared to young 

adults. These findings provide further evidence of an age-related reduction in 

visuomotor cognitive processing speed during adaptive locomotion. 

When completing a obstacle walk with stepping targets, older adults tend to prioritise 

gathering information about future stepping constraints rather than maintaining fixation 

on the current step to fine-tune stepping accuracy when compared to young adults 

(Chapman & Hollands, 2006b; 2007; Young & Hollands, 2010; 2012b; Young et al., 

2011). This is presumably to allow them extra time to process visual information about 

further constraints. This age-related change in gaze behaviour has been shown to 

correlate with self-reported anxiety (Young et al., 2011). In this chapter we observe the 

effects that social evaluative threat exerts on eye movement behaviour and movement 

characteristics in order to test existing theories regarding the mechanisms underlying the 

influence of anxiety on stepping performance. 

We hypothesize that: 1) there is a causal relationship between raised anxiety and 

increased stepping errors in older adults during locomotion and 2) that altered 

visuomotor control due to altered gaze behaviour is one of the mechanisms responsible. 

This study aimed to: 1) increase anxiety in older adults using social evaluative threat 

during a precision walking task, and 2) measure associated changes to eye-stepping 

coordination and stepping performance. We predicted that increased anxiety would 
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result in earlier gaze transfer from the target, resulting in increased stepping error and 

variability. 

4.2 Methods 

This study was based on the study detailed in Chapter 3 and uses many of the same 

techniques and measurements. The following methods section describes the adaptions 

made to the methods of Chapter 3 for suitability with an older subject pool. 

4.2.1 Participants 

Eleven (8 female, 3 male) community-dwelling adults over the age of 65 were recruited 

from posters advertising the study placed on local notice boards and in shops and 

churches. They received £20 for their participation as well as reimbursement of travel 

expenses. Potential participants received a study outline through the post detailing what 

would be required of them. Once participants were in the laboratory, they read the 

information sheet again and signed a consent form indicating that they understood the 

study and that they could drop out at any time without giving a reason. There was no 

mention of anxiety or stress in the study outline, and participants were told that the 

judges would be marking their stepping performance. Participants were excluded from 

taking part if they wore a pacemaker, reported having musculoskeletal or 

neurophysiological impairments, required a walking aid for short distances, or had 

diabetes as this might interfere with salivary -amylase measurements. The University 

of Birmingham Ethics Committee granted approval for the current study. Participant 

details can be found in Table 4-1. 
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Table 4-1 Participant Information and Test Scores 

Measure: Mean Standard Deviation 
Age (years) 68.82 4.51 

Height (cm) 163.65 7.49 
Weight (kg) 66.15 15.70 

Body Mass Index 24.70 3.83 

Foot Length (cm) 27.38 2.18 
Foot Width (cm) 9.75 1.13 
Snellen Visual Acuity 
(min score)   

Left Eye Only ≥20/40 

Right Eye Only ≥20/40 

Both Eyes ≥20/40 
Pelli-Robson Contrast 
Sensitivity (max 2):   

Left Eye Only 1.49 0.24 

Right Eye Only 1.53 0.11 

Both Eyes 1.69 0.14 

Berg Balance (/56) 55.91 0.30 

Trail Making A (s) 38.37 10.70 
Trial Making B (s) 84.31 26.78 

Δ  Trail  Making  (s) 45.94 25.44 
Mini-Mental State (/30) 28.64 0.92 

FES-I (/48) 2.45 1.92 

ABC (%) 93.30 5.04 
GHQ-28 (max 21 each):     

Somatic Symptoms 2.09 1.58 

Anxiety/Insomnia 3.45 2.07 

Social Dysfunction 6.91 0.54 

Severe Depression 0.73 1.27 
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Participants were tested in the afternoon between 1pm and 5pm, and were asked to 

abstain from alcohol and non-prescription drugs 24 hours prior to testing, exercise on 

the morning of testing, and caffeine, acidic drinks, food and brushing their teeth one 

hour before testing. All female participants were post-menopausal, and thus did not 

have a specific window of time available for testing as described with younger female 

subjects in Chapter 3. 

Participants completed Snellen and Pelli-Robson tests to measure visual acuity and 

contrast sensitivity prior to testing. If participants normally wore glasses to walk then 

these were also used in the visual tests and for the walking trials. Berg balance, trail 

making and mini-mental state tests were carried out to assess balance, executive 

function and cognitive function respectively (see Chapter 2.3 and 2.4 for further details). 

4.2.2 Data Collection 

A 100Hz 13-camera Vicon MX motion capture system was used to record kinematic 

data. Reflective markers were placed according to the full body plug-in gait model, 

however four markers were used on each foot. One marker was placed centrally on the 

posterior   heel   of   the   participants’   shoes,   a   toe   marker   was   placed   centrally   on   the  

anterior top of the participants’   shoes,   and   a   lateral   and   medial   marker   placed  

equidistant from the toe and heel markers. The toe marker used in this study is in a 

slightly different position to that used in Chapter 3. This was done to acquire a more 

accurate centre of the standing foot whilst wearing a shoe, as opposed to simply 

marking the 2nd metatarsal of the foot. Markers were also placed on the four corners of 

the target box, and laterally on the top of the two obstacles used.   
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Electrooculography was used to record saccadic eye movements. A 1000Hz BlueGain 

EOG Bluetooth system (Cambridge Research Systems, UK) was used with electrodes 

placed  above  and  below  the  participants’  left  eye,  and  next  to  the  lateral  canthus  of  each  

eye to measure vertical and horizontal eye movements. A calibration trial that required 

participants to stare at a dot directly in front of them while rotating their head slowly 

side-to-side and up-and-down was carried out prior to testing. This elicited a vestibulo-

ocular reflex characterized by an automatic counter-rotation of the eyes in the opposite 

direction to head rotation to maintain a stable image of the target dot, and allowed the 

angle changes of the Vicon head markers to be correlated with the EOG signal in order 

to convert eye rotation in to degrees for analysis (see Chapter 2.6.1). 

Unstimulated, passive saliva samples were collected for 3 minutes using the techniques 

described previously (see Chapter 2.3.4.2). Following each lab session, samples were 

centrifuged at 4000 g for 10 minutes. Two 500 µL samples of the supernatant were 

stored at -20°C until assayed. Heart rate was recorded periodically using an Oregon 

Scientific strapless heart rate monitor (Oregon Scientific, MA, USA). 

Self-reported anxiety was assessed using a 6-question version of the State Anxiety 

Inventory (SAI). The questions used were the same as those used in Chapter 3, however 

two additional questions were added which were not related to anxiety (see Chapter 

2.3.3). This was done to reduce participant awareness of the anxiety-related aims of the 

study. The same reasoning was used when removing the IAMS questionnaire from this 

study despite previous results showing promise as a measure, as it explicitly mentions 

both cognitive and somatic anxiety. The POMS questionnaire was also dropped from 

this study due to the time needed to complete it, and the relative excess of information 

acquired that is not directed towards the aims of the study. 
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4.2.3 Protocol 

Participants stood at the start line of a 7-metre walkway and walked, starting with their 

right foot, at a self-selected speed. After two walks, the average position of the 2nd right 

heel strike was marked on the floor and 4 target box positions, and 2 obstacle positions 

were marked around this as explained in Chapter 2.2. The target box was made from 

four solid corners connected with black tape on the top and sides that would collapse if 

stepped on. The target was made so that the inside area was 8cm longer and wider than 

the longest and widest parts of the participants right shoe, leaving a 4cm clearing around 

the foot when the foot was placed centrally. Obstacles were 20cm high, 60cm wide and 

2cm deep, and were designed to fall over in the direction of travel if the participants 

made contact with them during the trials. 

In this study there were 3 task difficulties: target only (TO), one obstacle (OO), and 

both obstacles (BO). For the TO trials, only the target box was present on the walkway. 

In the OO trials an obstacle was placed 180cm anteriorly from the rear outer edge of the 

target box (referred to as near obstacle (NO) in Chapter 3). In the BO condition there 

were two obstacles placed 180cm and 280cm ahead of the rear outer edge of the target 

box. This is different from the previous study as there was no far obstacle (FO) 

condition (Figure 4-1). This condition was removed to save time and prevent fatigue in 

older adults as there were minimal differences in stepping performance between this 

condition and the target only (TO) condition in our previous findings. 

Participants completed several practice runs of each trial difficulty to familiarise 

themselves with the task. Following a 20-minute   rest   period,   participants’   saliva  

samples, heart rate and baseline SAI scores were collected. 
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There were 6 trials of each task difficulty (TO, OO and BO), and these were completed 

in both control and judged sessions (total of 36 trails). The four acute target box 

positions   were   randomised   and   counterbalanced   throughout   each   participant’s   data  

collection. Trial difficulty order was randomised within each session, and the order of 

each session was counterbalanced across all participants. 

Following each set of 6 trials, saliva samples, heart rate, and SAI scores were collected 

in relation to the set of trials just completed. There was a 30-minute break between 

sessions to allow salivary -amylase and heart rate levels to return to normal. 

 

 

Figure 4-1 A schematic showing the three trial conditions used in the current study. 

Participants stepped into the target box with their right foot, and over each 

obstacle with the right foot first. 

During the judged session, social evaluative threat was used in an attempt raise 

participant task-related anxiety. The social evaluative threat technique used in this study 

was also used in the study described in Chapter 3. Four doctorate researchers entered 
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the room and sat behind a desk and computer screens. The participants were told that 

the researchers were gait research experts and would be receiving accurate information 

about their stepping performance in real time and marking them compared to previous 

study participants. A live scoreboard displayed on a computer screen was visible to the 

participants between trials. The scoreboard displayed their name, age, and a made-up 

performance score amongst 9 fictional names, ages and scores. They were told that the 

scores had been adjusted to their Berg balance scores from earlier, that the top place 

should be achievable, and that there was a prize if they came first. Their fictional scores 

were updated every two trials and never moved them above 6th place. Once all data 

collection for each participant was complete, they were informed that the judges and 

scores were fictional and were present in order to raise anxiety. 

4.2.4 Data Analysis 

Gait events and accuracy were detected using exported comma-separated variable files 

from Vicon Nexus and analysed using the techniques described in Chapter 2.5.1. 

Vertical acceleration peaks of heel and toe markers were used to identify foot-contact 

and toe-off. Anteroposterior and mediolateral stepping error of the mid-stance frame, 

stance duration, and leading (right foot) and trailing (left foot) toe clearance over the 

near obstacle were determined from the kinematic data. Step technique was also 

identified indicating whether the participant stepped with their heel or toe making first 

contact with the floor of the target step. The percentage of trials in each task difficulty 

that toe-first stepping occurred is reported. 

Hit frequency was calculated as the number of times the target box was visually 

contacted by the right foot in each set of 6 trials. 



 67 

EOG data was temporally aligned with the kinematic data using a near infrared 

synchronisation pulse emitted from a trigger box connected to a 1000Hz analogue input 

channel of the Vicon MX system. The pulse was detected by an infrared sensor on the 

BlueGain EOG unit and produced an event marker in the data stream. Using the 

vestibulo-ocular reflex calibration trial, the vertical EOG signal was converted in to 

degrees. Saccade onset was identified when the eye movement velocity surpassed 

100°s-1. The difference between foot contact time and saccade onset was then analysed 

(see Chapter 2.6.1). 

Saliva samples were analysed for salivary -amylase using a Salimetrics enzyme assay 

kit (Salimetrics Europe, Ltd., UK) (see Chapter 2.3.4.2). Salivary -amylase, heart rate 

and SAI scores were all analysed as a change from baseline measures. 

Trial data was analysed with a 2 x 3 (session x task difficulty) repeated measures 

ANOVA using the means of each group of 6 trials for each participant. The variables 

analysed were (1) mean anteroposterior step error and variability, (2) mean mediolateral 

step error and variability, (3) stance duration, (4) hit frequency, (5) step technique, (6) 

saccade timing relative to foot contact, (7) salivary -amylase levels, (8) SAI score, and 

(9) heart rate. Leading and trailing toe clearance over the first obstacle were analysed 

using a 2 x 2 repeated measures ANOVA as there were no obstacles in the target only 

trials. The Bonferroni correction was applied to all post-hoc pairwise comparisons. 

Correlations involving a non-parametric variables were   carried   out   using   Spearman’s  

rank   correlation.   Correlations   of   continuous   parametric   data   used   Pearson’s   product  

moment correlation. All correlation analyses were two-tailed. 

4.3 Results 
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A summary of results can be found in Table 4-2. All values are mean ± standard error 

unless otherwise stated. 

4.3.1 Anxiety 

There was a main effect of session on SAI scores change from baseline (F(1, 10) = 5.24, p 

< .05). Participants SAI score was higher during judged trials (0.49 ± 0.25) than during 

control trials (-0.18 ± 0.10, Figure 4-2). There were no main effects of session or task 

difficulty on salivary -amylase levels or heart rate (see Table 4-2). 

Figure 4-2 The change from baseline State Anxiety Inventory (SAI) scores for 

control trials, and the social evaluative threat trials (judged). * Sig. difference 

between the conditions, p < .05. Error bars represent standard error. 

 

4.3.2 Stepping Accuracy and Variability 

There was a main effect of session on mean mediolateral stepping error (F(1, 10) = 6.98, p 

< .05), indicating that participants stepped more medially in the judged session than 
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during the control trials (-6.4 ± 2.2mm and -3.0 ± 2.5mm respectively, Figure 4-3a). 

There was also a main effect of difficulty on mean mediolateral stepping error (F(2, 20) = 

5.18, p < .05). Post hoc tests revealed that there was significantly less mediolateral error 

during TO (-2.9 ± 2.2mm) than OO trials (-6.2 ± 2.5mm); mediolateral error in the BO 

trials was -5.0 ± 2.3. 

There was a main effect of session on mean anteroposterior step variability (F(1, 10) = 

7.19, p < .05), which was reduced during the judged trials compared to control (12.0 ± 

0.7 and 14.0 ± 0.9mm respectively). However, there was no main effect of session on 

mean anteroposterior stepping accuracy (Control: -21.9 ± 2.5mm and Judged: -22.6 ± 

2.4mm) There was a main effect of difficulty on mean anteroposterior stepping error 

using the Greenhouse-Geisser correction   for   violating   Mauchley’s   test   of   sphericity    

(F(1.30, 14.01) = 6.61, p < .01). Post hoc analysis revealed that during the BO trials 

participants stepped more posteriorly in the target than during TO trials (-25.7 ± 2.4mm 

and -21.3 ± 2.5mm respectively, p < .05, Figure 4-3b). There were no significant 

differences in hit frequency or stance duration between sessions or difficulties. 
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Figure 4-3 Graph a) indicates the mean mediolateral stepping error in each session 

across all task difficulties; negative numbers indicate that the centre of the foot 

was medial to the centre of the target box. Graph b) shows the anteroposterior 

stepping error of each task difficulty across both sessions; negative numbers 

indicate that the centre of the foot was posterior to the centre of the target box. * 

Sig. difference between indicated conditions, p < .05. Error bars represent 

standard error. 

4.3.3 Gaze Transfer from Stepping Target 

Three of the EOG data files were unable to be analysed due to synchronisation channel 

errors and stepping artefacts that rendered it impossible to identify saccadic eye 

movements; 8 out of the 11 subjects were included in the analysis. There was a main 

effect of task difficulty on mean gaze transfer time relative to foot contact in the target 

box (F(2, 14) = 4.25, p < .05). Post hoc tests revealed that gaze transfer from the stepping 

target was significantly later during TO trials compared to BO trials (61 ± 56ms and -7 

a) b) 
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± 53ms respectively, p < .05). The mean transfer time for OO trials was 8 ± 50ms. 

Negative values indicate gaze transfer prior to foot contact in the target. 

4.3.4 Toe Clearance Over First Obstacle 

There was a main effect of session on trailing foot toe clearance (F(1, 10) = 4.97, p = .05). 

Participants cleared the obstacle by 14.8 ± 1.8mm in the control session, and 13.3 ± 

1.9mm in the judged session. There was also a main effect of task difficulty on leading 

toe clearance (F(1, 10) = 6.23, p < .05) and trailing toe clearance (F(1, 10) = 10.79, p < .01). 

During OO trials, participants cleared the near obstacle by a greater distance with their 

leading right foot (13.2 ± 1.1mm) and trailing left foot (15.9 ± 2.0mm) when compared 

to the near obstacle in BO trials (12.4 ± 1.1mm and 12.2 ± 1.8mm respectively). 

4.3.5 Target Box Stepping Technique 

Task difficulty had a main effect on the percentage of trials in which participants 

stepped with their toe first in to the target box (F(2, 20) = 10.01, p < .01). Post hoc 

analysis   revealed   that   participants   used   the   ‘toe-first’   technique   significantly less 

frequently during TO trials (34.1 ± 9.2%) compared to OO (54.5 ± 9.7%) and BO trials 

(57.6 ± 10.1%, p < .01 for both). 
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Table 4-2 Means and standard deviations of variables across session and task 

difficulty. 
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4.3.6 Correlations 

Stance duration showed a strong correlation with gaze transfer time (r(47) = .478, p 

= .001, Figure 4-4a) and toe-first stepping occurrence (rs (66) = -.473, p < .001, Figure 4-

4b). SAI scores showed a relatively weak negative relationship with mediolateral step 

variability (r(66) = -.286, p < .05). 

 

Figure 4-4 Correlations between stance duration and a) the timing of saccade 

initiation away from the current stepping target relative to foot contact, and b) the 

occurrence of toe-first stepping in each set of six trials as a percentage. 

 

4.3.7 Comparing young and older adults 

The study in this chapter used a similar protocol to that presented in Chapter 3, 

therefore an additional 2 x 2 x 3 (age x session x difficulty) mixed design ANOVA was 

used in order to analyse age-related differences in stepping performance and anxiety. 

The  ‘far  obstacle’  (FO)  task  difficulty  used  for  young  adults  in  Chapter 3 was removed 

from this analysis in order to directly compare results between groups. There was a 

a) b) 
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main effect of age on anteroposterior stepping error (F(1, 14) = 11.10, p < .05), 

anteroposterior step variability (F(1, 14) = 7.83, p < .05) and mediolateral step variability 

(F(1, 14) = 6.01, p < .05). Older adults stepped more towards the rear of the box than 

young adults (-23.2 ± 2.4mm and -8.9 ±3.6mm respectively), however young adults 

stepped with greater anteroposterior variability (18.4 ± 1.6mm) compared to older 

adults (13.0 ± 1.1mm). There was also greater mediolateral step variability in the older 

group (9.0 ± 0.5mm) compared to the young (6.8 ± 0.7mm). There were no significant 

main effects of age on mediolateral stepping error, salivary -amylase, or state anxiety 

inventory scores. Comparison values for young and older adults in both control and 

judged sessions can be found in Table 4-3. 

 

Table 4-3 A comparison table of stepping performance and anxiety measures for 

young (Chapter 3) and older adults (Chapter 4) 

  Control Judged 
mean ± standard 
deviation YA OA YA OA 

A/P Stepping Error 
(mm)                        * -9.68 ± 12.07 -22.73 ± 9.52 -13.75 ± 6.47 -23.70 ± 9.03 

A/P Stepping 
Variability (mm)      * 17.01 ± 6.83 14.02 ± 6.10 18.08 ± 6.84 12.00 ± 4.33 

M/L Stepping Error  
(mm)                         -11.50 ± 4.07 -3.02 ± 8.79 -9.55 ± 6.12 -6.38 ± 7.88 

M/L Stepping 
Variability (mm)       * 8.13 ± 3.91 9.28 ± 3.64 7.94 ± 2.92 8.63 ± 4.38 

State Anxiety 
Inventory 0.13 ± 0.92 -0.18 ± 0.53 0.67 ± 2.09 0.48 ± 0.91 

Salivary  α-amylase 
(U/mL/min) 6.27 ± 17.67 11.33 ± 39.76 14.47 ± 24.50 8.25 ± 41.73 

* = sig. main effect of age 
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4.4 Discussion 

This study aimed to apply the techniques of experimentally increasing task-specific 

state anxiety previously used in Chapter 3 to an older population and measure the 

effects on eye-stepping coordination and stepping performance. In this study we have 

demonstrated that older adults report a significant increase in psychological self-

reported anxiety during social evaluative threat (SAI, Figure 4-2), and that this was 

accompanied by increased mediolateral stepping error (Figure 4-3a). We did not, 

however, find evidence of early gaze transfer away from current stepping targets during 

the evaluative threat condition, which suggests that this visual behaviour observed in 

previous research (Chapman & Hollands, 2006; 2007; Young & Hollands, 2010; Young 

et al., 2011) may not be entirely driven by state anxiety and might be due to a more 

complex interaction of anxiety and task perception. 

4.4.1 The effectiveness of social evaluative threat and anxiety measures 

As previously mentioned, we successfully increased the state anxiety inventory measure 

of self-reported anxiety by telling participants they were being judged (Figure 4-2). Our 

specific 6-item questionnaire was based on Marteau and Bekker's (1992) shortened 6-

item version of the Spielberger State-Trait Anxiety Inventory (STAI - Spielberger et al., 

1970). Marteau and Bekker correlated their shortened version at various anxiety 

intensities with the 20-item STAI and found a correlation coefficient of .91. This 

suggests that our measure of state anxiety was reliable and was a true reflection of 

participant anxiety. 

We also measured salivary -amylase as an indicator for physiological anxiety. We 

found no differences in amylase concentration between sessions or task difficulties. 
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This result could be due to slight variations in time and length that each task difficulty 

took. Salivary -amylase shows quick adaptation to the current stress levels, and also a 

quick reduction following the stress stimulus (Nater et al., 2005). Due to the physical 

nature of the task, we were unable to collect saliva samples during the trial blocks. 

While there is a several minute delay in the increase and decrease of amylase 

concentrations, the collection period was 3-minutes long, and levels of amylase not 

relating to the trial blocks could have been included in analysis. Further to this, 

Kivlighan and Granger (2006) showed that pre-competition amylase levels in women 

were significantly lower than their baseline measure; a gender difference that could 

have elicited some effects in the current study as 8 out of 11 participants were female.  

Heart rate was measured as a secondary measure of physiological anxiety, and also 

showed no main effects from task difficulty or session. For similar reasons to the -

amylase variable, this measure was highly susceptible to other influencing factors such 

as physical fitness and ageing-related impairment of vagal function (Tulppo et al., 1998).  

The results of the anxiety measures presented in this chapter show that social evaluative 

threat affected an increase of psychological, but not physiological anxiety in older 

adults. We therefore conclude that the lack of change in -amylase and heart rate 

between sessions and difficulties does not invalidate the main effect of the SAI measure 

of anxiety, and that the social evaluative threat methodology successfully induced 

higher psychological state-anxiety during the judged condition. 

4.4.2 Target Box Stepping Accuracy and Variability 

As can be seen from the Berg balance scale, FES-I and ABC results presented in Table 

4-1, the participants of this study were relatively competent and confident walkers, and 
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would be considered to be at a low-risk of falling. Despite this, during the social 

evaluative threat trials, we observed a significant increase in mediolateral stepping error, 

and a reduction in anteroposterior step variability. Our findings that the higher anxiety 

trials produced more medial steps suggest an anxiety-based stiffening strategy which is 

characteristic of older adults who have experienced a fall. This provides support that 

state anxiety contributes to poor stepping performance (Young et al., 2011). We also 

observed more medial stepping in the more complex OO trials compared to TO. This 

could be due to the increased attentional demand necessary in OO trials, resulting in 

poorer stepping accuracy (Gage et al., 2003). 

Our finding that increased anxiety reduced anteroposterior step variability suggests that 

social evaluative threat made participants step at more consistent lengths during the 

target step. This could have been a product of the intervention which explicitly told 

participants to step with greater consistency and precision. However, there was no main 

effect of session on A/P error. The mean values of mean A/P error showed minimal 

change from -22.6 ± 2.4mm during judged trials, compared to -21.9 ± 2.5mm during 

control. The reduction in A/P variability during judged trials suggests that they were 

stepping inaccurately with less variability under social evaluative threat. This might be 

due to an anxiety-mediated postural stiffening reducing the range of motion of the ankle 

and reducing acute variability of the foot placement in the direction of stepping (Brown 

et al., 2002), however we did not measure lower leg EMG to confirm this theory.  

We observed a decrease in anteroposterior step accuracy as trial difficulty increased 

(Figure 4-3b), which shows the expected effects of increased attentional demand 

reducing stepping accuracy. Young et al. (2011) suggest that the effects of task 
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difficulty may be due to increased anxiety. Our results support this, but our anxiety 

measured lacked the clarity to show direct evidence of this. 

There was a significant reduction in trailing toe clearance over the first obstacle from 

14.8 ±1.8mm in judged trials, compared to 13.3 ±1.9mm in control. Although this 

difference is small, and unlikely to cause a fall in a real world situation, the finding that 

acute psychological anxiety reduces the clearance of the trailing toe could be 

detrimental to those with more severe anxiety, assuming that toe clearance might reduce 

further with greater anxiety. Trajectory of the trailing foot is important in planning the 

next step, and if it were held back unexpectedly the forward momentum might cause an 

individual to continue forwards without the trailing foot being able to prevent a fall. Di 

Fabio et al. (2004) demonstrated that older adults at a high-risk of falling showed 

reduced trailing foot clearance compared to low-risk older adults and young adults. 

They suggested the observed foot lift asymmetry could be due to limited hip extension 

or to reduced executive cognitive function. Here we have demonstrated a reduction in 

trailing toe clearance in low-risk older adults, and provided evidence of state anxiety 

being another contributing factor due to fear-of-falling being commonly present in high-

risk older adults (Friedman et al., 2002). We speculate that anxiety drives this behaviour 

through attentional prioritisation of future tasks, much like that demonstrated during 

target stepping by Young et al. (2011). 

There were task difficulty related changes in toe-obstacle clearance also for both 

leading and trailing feet. Participants cleared the obstacles with less space during BO 

compared to OO trials. The increased attentional demands of the BO condition could 

have reduced toe clearance, however this could also have been due to the layout of the 

course. There was a relatively small space between obstacles (100cm) in the BO 
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condition where participants had to step once with each foot in order to step over the 

second obstacle with a leading right step. This could have contributed to the decrease in 

toe clearance observed during BO trials, and therefore a direct comparison between task 

difficulties would be confounded. 

The percentage of trials in which toe-first stepping occurred was much lower during TO 

trials than the other two task difficulties. To our knowledge this is the first study to look 

at step technique while stepping into a raised target. During regular gait, heel-first foot 

contact is the normal method of stance initiation, however the postural threat of the 

target box (see Chapter 2.2, Figure 2.2) interrupted the normal gait pattern and 

participants either chose to continue with the heel-first gait technique, or step with their 

toe first for reasons that are currently unclear. It is our assumption that participants felt 

there was a benefit to this toe-first stepping, probably due to an increased ability to 

visually judge the anteroposterior distance from the front inside edge of the target box 

to the front edge of their foot. The increase of its occurrence during more complex tasks 

suggests that there are attentional processes involved and that it might be a more 

cautious method of stepping when planning additional steps. The occurrence of this 

technique was also negatively correlated with stance duration in the target box 

indicating that stance duration was generally shorter when this technique was more 

common (Figure 4-4b). This could have been due to heel-first steps involving a transfer 

of pressure along the length of the foot, compared to maintaining pressure in the ball of 

the foot during steps using the toe-first technique. 
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4.4.3 Gaze-stepping relationship 

Our results show an incremental relationship between the delay of gaze transfer and the 

reduction of task complexity, with TO trials exhibiting significantly later gaze transfer 

than BO trials. This is probably due to the lack of obstacles to fixate during the TO 

trials. This finding is consistent with previous research and suggests that participants 

looked up from the current stepping target earlier during more complex trials in order to 

plan for future stepping constraints (Chapman & Hollands, 2006; 2007), and was 

accompanied by increased anteroposterior stepping error (Figure 4-3b). We also found a 

positive correlation between gaze transfer and stance duration suggesting that longer 

stance duration might be necessary when gaze transfer is delayed in order to sufficiently 

plan for future steps (Figure 4-4a).  

We did not, however, elicit an augmented earlier gaze transfer by increasing task-

specific anxiety in low-risk older adults as we predicted. We therefore propose that the 

earlier gaze transfer observed in high-risk individuals in previous research by Young et 

al. (2011) might be due to a complex synergy of anxiety and other factors, such as 

attentional allocation capacity, specific to high-risk older adults. As mentioned 

previously, the participants in this study were low-risk, therefore direct comparisons 

with the anxiety relationships of other studies involving high-risk individuals would be 

invalid. 

4.4.4 Comparisons between young and older adults 

As expected, young adults stepped significantly more accurately with regards to 

anteroposterior stepping error, and also had slightly less mediolateral step variability 

than older adults (Table 4-3). Interestingly, older adults stepped with significantly less 
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anteroposterior step variability compared to young. We suggest that this was partially 

due to the rear edge of the target box reducing the amount of variation possible, as older 

adults stepped more towards to rear of the target box in both conditions. It is also worth 

noting that young adults stepped slightly more towards the medial line of the walkway 

than older adults. This could have been due to overconfidence during foot placement in 

young adults, however we are unable to confidently explain this non-significant finding. 

When interpreting these comparisons, it is important to note that toe marker positions 

were changed slightly between studies (see Chapter 4.2.2). 

4.4.5 Limitations 

The fact that physiological measures of anxiety were not increased along with 

psychological measures suggests that a greater anxiety inducing intervention might have 

yielded more promising results. Due to the nature of the intervention used, and the 

walking proficiency of those tested, most participants would not have felt a high form of 

anxiety comparable to a fear of falling. Previous research has used a raised and 

narrowed platform to experimentally increase anxiety (Gage et al., 2003; Brown et al., 

2006), however this method of intervention was not available to us at the time of testing. 

We predict that if the participants tested in this study completed the judged trials on a 

raised platform, there would have been an increase in the physiological measures of 

anxiety, and a greater reduction in stepping performance. The psychological increase in 

anxiety that we observed was fairly small, however it was still large enough to affect 

changes in stepping performance. 
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4.4.6 Conclusions 

We were able to induce greater psychological, self-reported task-specific state anxiety 

through use of social evaluative threat in low-risk older adults. We found that this 

increased anxiety subsequently increased medial stepping error, increased the 

consistency of inaccurate anteroposterior error, and reduced trailing toe obstacle 

clearance. We also showed that experimentally increasing state anxiety did not induce 

earlier gaze transfer from current stepping targets in low-risk older adults. This study 

provides new evidence that experimentally induced anxiety can decrease stepping 

performance in older adults during adaptive locomotion, however the mechanisms by 

which it does remain unclear.  
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Chapter 5 

The effects of reduced anxiety  on  older  adults’  eye  stepping  

coordination and stepping accuracy during adaptive locomotion. 

5.1 Introduction 

Having demonstrated that increased psychological anxiety is associated with decreased 

stepping performance in older adults, our next aim was to experimentally reduce 

participant task-related anxiety during locomotion in older adults, and measure the 

extent of any improvements in stepping performance and gaze behaviour. To achieve 

this we needed a suitable intervention for reducing anxiety. Progressive muscle 

relaxation  has  shown  previous  success  in  reducing  anxiety  in  patients  with  Alzheimer’s  

disease (Suhr, 1999), and diaphragmatic breathing exercises have also shown some 

promise in avoiding panic  (Eifert & Heffner, 2003).  

Dendato and Diener (1986) found that a programme of progressive muscle relaxation 

and diaphragmatic breathing was effective in lowering anxiety in pre-examination 

undergraduates. Participants completed six 1-hour sessions in which they completed 30-

minutes of muscle relaxation and breathing exercises, followed by 30-minutes of 

cognitive therapy. The results show that the anxiety reducing exercises were more 

effective at reducing anxiety than a control group, and a group who completed six 1-

hour study-skills sessions. Furthermore, an additional group who completed both the 

anxiety reduction and study-skills sessions showed a significant improvement on exam 

scores when compared to other groups, including the study-skills only group. Muscle 

relaxation and breathing exercises have also been shown to reduce anxiety in pregnant 
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women. Bastani et al. (2005) found that over a 7-week course of weekly 90-minute 

sessions, participants showed a reduction in both state and trait anxiety scores, as well 

as a reduction in perceived stress when compared to a control group. 

Cognitive-behavioural therapy has also been shown to be effective at reducing state and 

trait anxiety in patients with anxiety disorders. It usually involves multiple one-on-one 

sessions with a trained therapist, with the idea of breaking down an overwhelming 

anxiety in to smaller parts, and helping the patient to reduce or remove the negative 

thoughts to lower an  individual’s  anxiety. In two separate systematic reviews, cognitive-

behavioural therapy was found to be an effective intervention for adults with anxiety 

disorders when compared to placebo trials (Hofmann & Smits, 2008), and for reducing 

anxiety sensitivity in adults compared to control trials (Smits et al., 2008).  

While computerised cognitive-behavioural therapy has shown promising results in those 

with more severe anxiety and depression (Proudfoot et al., 2004), the most effective 

cognitive therapy requires a trained therapist to deliver it over a number of weeks. One 

of the benefits of muscle relaxation and diaphragmatic breathing is that once an 

individual is familiar with the therapy, they can perform their own sessions when they 

feel necessary. Furthermore, muscle relaxation and breathing exercises have been 

shown to be equally effective in the treatment of generalised anxiety disorder (Öst & 

Breitholtz, 2000). We therefore used these techniques in order to implement an anxiety-

reduction intervention applicable to locomotor tasks in the elderly. 

Following on from the previous chapters, in this study we investigate whether reducing 

anxiety in older adults leads to improved stepping performance. We hypothesise that 
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lower anxiety levels mediate improvements in stepping performance and are associated 

with delayed gaze transfer from the current stepping target. 

This study aimed to 1) evaluate progressive muscle relaxation and diaphragmatic 

breathing over a one-week period as a useful method of reducing task-specific anxiety 

in older adults during a precision walking task, and 2) measure changes in stepping 

performance associated with reduced anxiety to provide support that task specific 

anxiety contributes to falls risk in a healthy elderly population. We predicted to find a 

reduction from pre- to post-intervention anxiety levels that would be associated with 

improvements in stepping performance. 

5.2 Methods 

This study used the same basic study protocol described in Chapter 4. Participant 

information, session differences, and intervention techniques that vary from the 

previous study are described below. 

 5.2.1 Participants 

Twelve community dwelling older adults (11 female, 1 male) were recruited from 

posters displayed in the local area, and through visits to local assisted living facilities. 

All participants were sent information sheets describing the study, what would be 

required of them, and signed consent forms indicating that they understood the protocol 

and that they could withdraw from the study at any time without having to give a reason. 

They were reimbursed any travel costs and given £20 on completion of the study. Full 

ethical approval was granted for this study from the University of Birmingham Ethics 

Committee. Participants were excluded if they wore a pacemaker, had diabetes, had 

musculoskeletal or neurological disorders, or required walking aids to travel short 
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distances. A list of any prescription medication was recorded, and all participants were 

tested in the afternoon between 1pm and 5pm in order to control for daily fluctuations in 

salivary -amylase levels. 

Balance, vision, balance confidence, general mental heath, executive function and 

cognitive function were assessed using tests described in Chapter 2. Participants also 

completed the timed up-and-go test (TUG test) as an indicator of mobility (Podsiadlo & 

Richardson, 1991). The TUG test required participants to sit in a firm chair that had 

armrests and a back support at a start line. Upon hearing a verbal signal they had to 

stand from the chair, walk 3-metres to a line on the floor, turn through 180°, return to 

the seat, turn 180° and sit down whilst being timed. Mean participant scores for all these 

tests can be found in Table 5-1. 

Participants were randomly assigned to a control group or an intervention group before 

taking part in this study. In total, 20 participants were initially tested in this study, 

however due participant withdrawals and errors during data collection, only 12 could be 

used in analysis. Both groups had to attend the laboratory one afternoon and complete 

18 adaptive walking trials, and then return a week later for repeat testing. Following the 

first session, the intervention group were given MP3 audio players with recorded 

relaxation exercise instructions loaded on them. They were asked to complete these 

exercises twice a day and record their progress before returning for the 2nd session one 

week later. The control group were given no instructions. 



 87 

 

Table 5-1 General Participant Information and Scores 

Measure: Mean (Std dev) Intervention (n = 8) Control (n = 4) 
Age (years) 78.38 (7.58) 71.75 (4.57) 

Height (cm) 161.30 (6.63) 164.08 (12.58) 

Weight (kg) 62.82 (11.54) 63.16 (8.11) 

Body Mass Index 24.15 (2.26) 23.55 (3.14) 

Shoe Length (cm) 26.75 (1.65) 26.13 (1.44) 

Shoe Width (cm) 9.88 (1.13) 9.63 (0.48) 
Snellen Visual Acuity  
(min score):     

Left Eye Only ≥20/50 ≥20/50 

Right Eye Only ≥20/50 ≥20/50 

Both Eyes ≥20/40 ≥20/40 
Pelli-Robson Contrast 
Sensitivity Score (max 2):     

Left Eye Only 1.46 (0.16) 1.54 (0.14) 

Right Eye Only 1.31 (0.34) 1.46 (0.08) 

Both Eyes 1.58 (0.25) 1.65 (0.12) 

Berg Balance (/56) 51.25 (2.87) 52.75 (2.75) 

TUG Test (s) 11.89 (2.48) 9.48 (3.24) 

FES-I (/48) 9.50 (4.90) 4.00 (1.63) 

ABC (%) 77.66 (12.20) 91.88 (4.05) 

Trail Making A (s) 52.23 (13.91) 35.67 (7.53) 

Trial Making B (s) 121.71 (64.26) 72.53 (13.17) 

Δ  Trail  Making  (s) 69.49 (60.99) 36.86 (19.24) 

Mini-Mental State (/30) 28.38 (1.06) 29.50 (0.58) 

GHQ-28 (/21):      

Somatic Symptoms 3.13 (1.06) 3.25 (2.87) 

Anxiety/Insomnia 4.88 (4.79) 3.25 (2.63) 

Social Dysfunction 7.63 (0.74) 3.50 (2.38) 

Severe Depression 1.13 (2.10) 3.25 (2.22) 
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5.2.2 Data Collection 

Kinematic data was recorded using a 100Hz 13-camera Vicon MX system (Vicon 

Oxford, UK). A 1000Hz BlueGain EOG biosignal amplifier was used to record 

horizontal and vertical eye movements. Salivary -amylase levels were measured in 3-

minute passive saliva sample collections, and heart rate was taken between blocks of 

trials. A 6-question State Anxiety Inventory (SAI) questionnaire was used to measure 

immediate self-reported task specific anxiety. Further details of these data collection 

methods can be found in Chapter 2. 

It was also necessary to collect information regarding the progress of the participants in 

the intervention group, and the effectiveness of the relaxation recordings during the 

week between sessions. Participants were given a daily progress sheet with space to 

record how anxious they were before, and after, each relaxation exercise session. They 

rated their anxiety on a scale from 1 to 10; 1 representing the most relaxed and 10 

representing   “the   most   anxious   they   had   ever   been”.   Participants   in   the   intervention  

group completed the relaxation exercises twice per day for the one-week between trials. 

5.2.3 Protocol 

Each session was carried out using the same protocol as the control trials from Chapter 

4, and is described in greater detail in Chapter 2. All participants completed 18 adaptive 

walking trials per session. There were 6 trials consisting of a target box only (target 

only – TO), 6 trials with one obstacle present (one obstacle – OO), and 6 trials with two 

obstacles on the walking path (both obstacles – BO). Initial target box position was 

determined  from  each  participant’s  second right heel strike during a comfortably paced 

previous walk with no stepping constraints.  
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Immediately following each set of 6 trials, salivary -amylase samples and heart rate 

were collected, after which participants completed the SAI with respect to the trials they 

had just completed. Baseline measures of these variables were also collected prior to 

each session following a 20-minute rest period, and analysis was carried out using the 

mean change from baseline for each task difficulty. 

After the first session, participants in the intervention group were given an MP3 player 

and headphones with a 15-minute relaxation audio file pre-loaded. They then listened to 

the recording and completed the exercises along with one of the researchers. The first 5-

minutes of the recording were verbal instructions on progressive muscle relaxation. The 

participants were instructed to sit in a firm-backed chair with armrests and slowly 

contract and relax muscle-groups one at a time. This started in their hands, progressed 

up their arms and in to their face, then down their body to their toes. A researcher did 

these exercises with the participants to make sure they understood the instructions and 

were doing it correctly.  

Following the progressive muscle relaxation exercises, participants were asked to carry 

out 10 minutes of diaphragmatic breathing. This technique required participants to sit up 

straight and breathe while maximising use of the diaphragm. Participants were taught 

how to do this, and were asked to inhale for 4 seconds, hold for 2 seconds, and exhale 

for 6 seconds. Verbal instructions on the recording gave cues on when to inhale, hold 

and exhale for the first 2-minutes, then the participants continued this technique for 

another 8 minutes with no instructions. There was soft gentle music playing in the 

background of the recording throughout the exercises. Intervention participants took the 

MP3 player home with them and were instructed to complete these exercises once in the 
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morning, and once in the afternoon/evening. They rated how anxious and tense they felt 

on a daily progress sheet before and after the relaxation exercises throughout the week.  

On the day of the second session, prior to testing, the intervention group completed the 

relaxation exercises one last time as part of the 20-minute rest period, before having 

baseline measures of heart rate, salivary -amylase and SAI taken. Control participants 

did not do any relaxation exercises, but still had 20 minutes of rest before baseline 

measures were taken. The second session was the same as the first. Task difficulty order 

was randomised within each session, and acute placements of the target box and 

obstacles  were  randomised  over  each  participant’s  data  collection.   

5.2.4 Data Analysis 

Gait events in the target box were detected using kinematic data and a custom script 

built in MATLAB (The MathWorks Inc., MA, USA), which has been detailed in 

Chapter 2, and can be found in Appendix F.  The  script’s  foot  contact  identification  has  

been previously verified to within 1 frame of accuracy when compared to manual 

identification (see Chapter 4). Anteroposterior and mediolateral stepping error, stance 

duration, toe-first stepping occurrence, and leading and trailing toe clearance over the 

first obstacle were identified from the data. Researchers visually identified target box hit 

frequency when the stepping foot connected with the target box during trials. 

Gaze transfer from the stepping target was automatically identified and visually verified 

in MATLAB as the nearest vertical saccade to foot contact time. Saccade onset was 

categorised as when eye rotation velocity surpassed 100°s-1. 
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Salivary -amylase levels were measured using a Salimetrics enzyme assay kit 

(Salimetrics Europe, Ltd., UK) and a plate reader set at 405nm (see Chapter 2). 

The mean difference in self-reported anxiety scores between pre- and post-relaxation 

exercises was calculated. To do this, the mean pre-relaxation exercise anxiety scores for 

all intervention participants was calculated, in effect creating a zero point. The 

difference between each of the individual pre- and post-relaxation scores was calculated 

and added to the mean pre-relaxation score, and then compared using a paired samples 

t-test. This was done to standardise the pre-exercise anxiety scores of participants, 

which was expected to change throughout the week and vary between participants. The 

first and last exercises were compared in a paired samples t-test to see if the relaxation 

exercises had altered anxiety throughout the week.  

A 2 x 2 x 3 (group x session x task difficulty) mixed design ANOVA was initially used 

to analyse trial data, however there was a lack of statistical evidence supporting the 

effectiveness of the relaxation intervention in comparison to the control group (this is 

reviewed further in the discussion section). However, since there was a main effect of 

session on salivary α-amylase suggesting that anxiety was significantly reduced for both 

groups (see results), we decided that our hypothesis regarding the effects of reducing 

anxiety on our measures could still be tested if we collapsed the group data to avoid the 

unbalanced design resulting from our uneven group sizes. Therefore a 2 x 3 (session x 

task difficulty, whereby change from baseline was used where appropriate) repeated 

measures ANOVA was used to analyse (1) anteroposterior stepping error, (2) 

mediolateral stepping error, (3) target box hit frequency, (4) stance duration, (5) toe-first 

stepping occurrence, (6) gaze transfer time from the current stepping target, (7) salivary 

-amylase levels, (8) SAI scores and (9) heart rate. Leading and trailing toe clearances 
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over the first obstacle were also analysed using a 2 x 2 ANOVA as there were no 

obstacles present in the target only condition. 

 

5.3 Results 

A summary of results can be found in Table 5-2. All values presented in this section are 

mean ± standard error unless otherwise specified.  

5.3.1 State Anxiety Measures 

The initial 2 x 2 x 3 (group x session x task difficulty) mixed design ANOVA revealed 

that there were no main effects or interactions of group on salivary -amylase, SAI or 

heart rate anxiety measures. However, there was a significant main effect of session on 

salivary -amylase levels (F(1, 10) = 11.20, p < .005). Therefore, since we aimed to study 

the effect of reduced anxiety on eye and stepping behaviour, the between-subject group 

factor was removed from further analyses to simplify the statistical design in order to 

maximise power. 

The 2 x 3 (session x task difficulty) repeated measures ANOVA revealed a main effect 

of session on salivary -amylase change-from-baseline measures revealed that levels 

were higher in the first session (12.9 ± 10.5 U/mL/min) than in the second (-15.4 ± 12.4 

U/mL/min). A paired samples t-test  was  also  carried  out  on  each  session’s  baseline  -

amylase measures and found that they were not significantly different from each other 

(t(11) = 1.41, p = .19). 
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Effects of task order on salivary -amylase were analysed using an additional 2 x 4 

(session x baseline and task difficulty) repeated measures ANOVA within each 

participant. There was a main effect of session (F(1, 11) = 12.46, p < .01), and an 

interaction effect of session and time (F(3, 33) = 3.06, p < .05). Overall, salivary -

amylase was higher in session 1 than session 2, and post hoc analysis of the interaction 

revealed that levels were significantly higher during the first and third sets of trials in 

the first session compared to the second (Figure 5-1). There were no significant within 

session differences. 

 

Figure 5-1 Mean baseline (BL) and trial levels of salivary -amylase in the order 

they were collected, independent of task difficulty. Each bar representing trials 

(‘1st  6’,  ‘2nd  6’  and  ‘3rd  6’)  represents  the  6  trials  preceding  collection.  There  was  

a significant overall difference between sessions. * sig. different from 

corresponding levels during session 1, p < .05. Error bars represent standard error.  
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There was also a main effect of task difficulty on -amylase levels (F(2, 22) = 10.7, p 

< .01). Post hoc analysis showed that -amylase change-from-baseline was higher in 

BO trials (19.1 ± 11.5 U/mL/min) compared to both OO and TO trials (-11.5 ± 11.0 and 

-11.5 ± 12.1 U/mL/min respectively, p < .05). 

There were no significant effects of session or task difficulty on heart rate or SAI scores 

(see Table 5-2). 

5.3.2 Stepping Performance 

There was a main effect of session on target box hit frequency (F(1, 11) = 6.06, p < .05). 

Participants hit the target box with their stepping foot less often in the second session 

compared to the first (0.77 ± 0.14 and 0.52 ± 0.13 respectively). There was also an 

interaction effect of session and difficulty on M/L step variability (F(2, 22) = 3.56, p 

< .05). Post hoc tests showed that there was significantly less step variability during BO 

trials in session 2 compared to session 1 (Figure 5-2).  

There was a main effect of difficulty on the percentage of toe-first stepping trials per set 

of   6.  Mauchely’s   test   of   sphericity  was   violated   (p < .05), therefore the Greenhouse-

Geisser correction was applied to the degrees of freedom (F(1.21, 13.27) = 5.33, p < .05). 

However, post-hoc analysis revealed no significant differences between sessions or 

difficulties (Figure 5-3). There were no other significant differences in kinematic data 

between sessions or task complexity. 
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Figure 5-2 Mediolateral stepping variability in each session and task difficulty. * 

Sig. difference from corresponding value in session 1. Error bars represent 

standard error.  

Figure 5-3 Occurrence of toe-first stepping technique across sessions and task 

difficulty. Error bars represent standard error.   
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5.3.3 Gaze Transfer Time 

There was a main effect of difficulty on the timing of gaze transfer from the current 

stepping target (F(2, 22) = 11.22, p < .001). During TO trails (87 ± 50ms), participants 

transferred gaze significantly later than in OO and BO trials (-25 ± 27 and -45 ± 35ms 

respectively, p < .01 for both comparisons). 

5.3.4 Self-Reported Anxiety During the Intervention Week  

There was a significant reduction from standardised pre-relaxation exercise scores when 

compared to individual post-exercise anxiety reduction (t(101) = 13.81, p < .001). Overall, 

post-relaxation exercise anxiety scores were 2.0 ± 0.1 (M ± SE) less than pre-exercise 

scores. However, there was no significant difference between the mean score of the first 

two relaxation exercises compared to the last two relaxation exercises that intervention 

participants completed during the week between sessions (t(7) = 1.52, p = .17).  



 97 

Table 5-2 Means and standard deviations across each task difficulty in each session. 
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5.3.5 Correlations 

Timing of gaze transfer showed a moderate correlation with M/L stepping error (r(72) = -

.38, p = .001, Figure 5-4) and toe-first stepping technique (r(72) = -.32, p < .01). SAI 

scores also showed a moderate correlation with toe-first stepping technique (r(72) = .32, 

p < .01). Salivary -amylase was not significantly correlated with any other variable 

measured. Separate correlation analysis was run between salivary -amylase and 

mediolateral step variability during the BO condition only and was also found not to be 

significant. 

 

Figure 5-4 Correlation of mediolateral foot stepping error and timing of gaze 

transfer from the stepping target relative to foot contact. Negative M/L error 

values represent medial stepping. Negative gaze transfer values represent a gaze 

transfer away from the target prior to foot contact.  
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5.4 Discussion 

The main aim of the current study was to reduce state anxiety in older adults and 

measure the consequent changes to stepping performance. Our intended method of 

reducing anxiety through use of a weeklong course of progressive muscle relaxation and 

diaphragmatic breathing did not result in significantly lower anxiety than the control 

group. This may have been due to the relatively short time frame, and less time-

intensive method of the intervention when compared to previous research (Dendato & 

Diener, 1986; Bastani et al., 2005). We did however find a significant reduction in 

salivary -amylase concentrations between the first and second sessions for all 

participants. Full statistical analysis was also run on the intervention group alone (n = 8, 

results not shown). This analysis revealed that there was a significant reduction in 

salivary -amylase change from baseline from the first session (16.8 ± 12.4U/mL/min) 

compared to the second (-4.9 ± 13.1U/mL/min, F(1,7) = 5.84, p < .05). However, there 

were no other significant between session differences in any other anxiety, stepping 

performance, or gaze related variables. Therefore we collapsed the groups in order to 

maximise statistical power. During the second session we found a reduction in target 

box hit frequency, and less mediolateral step variability during the greatest task 

complexity; the implications of which are discussed further in this section. 

5.4.1 Anxiety Reduction 

The use of progressive muscle relaxation (5mins) and diaphragmatic breathing (10mins) 

twice a day for one week was an ineffective method of reducing participant anxiety 

compared to the control group. There were no significant differences between baseline 

measures of SAI scores, heart rate, or salivary -amylase concentration between 
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sessions. However, there was a significant reduction in salivary -amylase measures 

between sessions regardless of participant group (intervention or control). When -

amylase concentrations were organised by task presentation order, we were able to see 

that there were no within session differences (Figure 5-1). There was however, a 

significant -amylase reduction between sessions, suggesting that participants were less 

anxious during their second lab visit. This reduction may have been due to familiarity 

with the laboratory environment and researchers, however we argue that this general 

familiarity is not the only mediating factor in the improvement of stepping performance, 

as there were no significant reductions of anxiety within sessions over the course of the 

experiment. 

We did not see any response in the self-reported state anxiety inventory scores to task 

complexity  or  to  session.  We  suggest  that  this  is  due  to  the  individuals’  anxiety  of  the  

task in the first session being relatively low to begin with, and the limited possible 

reduction in scores from the first to second sessions. 

Heart rate also showed no change between sessions or task difficulties, this may be due 

to the variability of heart rate as a measure between subjects as discussed in Chapter 

4.4.1, and its suitability as a consistent measure between older adults following physical 

walking tasks. 

5.4.2 Progressive Muscle Relaxation and Diaphragmatic Breathing 

Although there were no group differences between the intervention and control groups, 

our self-reported measure of pre- and post-relaxation exercises in the intervention group 

showed that participants did feel more relaxed following the exercises. However, we 
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found no evidence that this acute state relaxation significantly reduced overall self-

reported anxiety over the course of a week (see section 5.3.4). 

5.4.3 Improvements to Stepping Performance 

There was a significant reduction in target box hit frequency from the first session to the 

second session, and a reduction in mediolateral step variability during the most complex 

task difficulty in session 2 (Figure 5-2). We suggest that these improvements in 

stepping performance are influenced by the reduced anxiety we observed in the second 

session. This supports our previous research that stepping performance is somewhat 

influenced by state anxiety, and when observing an increase in anxiety we have shown 

corresponding responses in performance (Chapter 4). However, these improvements 

could also be due to familiarity with the task since the measured reduction in anxiety 

was not specifically due to our relaxation intervention. Young and Hollands (2010) 

previously used a similar protocol to the one presented in this study to measure the 

effects of training specific gaze behaviours during precision stepping in older adults. 

They showed that control participants who received no training, but were familiar with 

the task from a previous session, elicited no significant changes in mediolateral step 

variability, or target box hit frequency. We therefore suggest that while task familiarity 

during these adaptive locomotion tasks definitely plays a role, the improvements in 

stepping performance during the second session are partially mediated by the observed 

reduction in physiological anxiety. However, since we failed to manipulate anxiety 

through relaxation techniques in order to compare to a control group, we cannot draw a 

definite conclusion as to the role that reduced anxiety plays compared to the effects of 

learning. Furthermore, the lack of correlation between salivary -amylase and stepping 
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performance indicators add strength the argument that improvements were due to 

familiarity 

We also observed a main effect of difficulty on toe-first stepping technique. The 

technique was more prevalent in more complex trials, however showed no response to a 

reduction of anxiety or task familiarity (Figure 5-3). This supports our previous findings 

that toe-first stepping is selected during trials when the attentional demand of future 

stepping constraints is higher (Chapter 4). The timing of gaze transfer was moderately 

negatively correlated with toe-first stepping occurrence, suggesting that the technique 

was more common with earlier gaze transfer. We previously suggested that toe-first 

stepping could be used as a method of verifying the foot position within the target. This 

correlation suggests that when foveal visual information was not available, this method 

was used, presumably as a clearer peripheral stimulus to maintain stepping accuracy. 

We also observed a moderate correlation of SAI scores with toe-first stepping, however 

there was no correlation with salivary -amylase, which showed greater fluctuations 

throughout the study. Therefore the nature of the relationship between anxiety and 

stepping strategy remains unclear. We propose that task difficulty and increased 

planning requirements are the main factors driving adoption of the toe-first strategy. 

5.4.4 Gaze Transfer 

We found a significant delay between the timing of gaze transfer during TO, and more 

complex trials (section 5.3.3). This supports previous research suggesting that earlier 

gaze transfer occurs at increasing task difficulties in order to allow additional time for 

step planning (Chapman & Hollands, 2006; 2007, Chapter 4). We also found a negative 

correlation of gaze transfer time and M/L stepping error (Figure 5-4), which contradicts 
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our stated hypothesis, and previous findings by Young and Hollands (2010). However, 

the r2 value of this correlation was 0.14, suggesting that only 14% of the variability 

between gaze transfer and M/L stepping error was accounted for. In addition to this, the 

participants in the Young and Hollands study were more high-risk than the participants 

in the current study, thus partially confounding a direct comparison.  

We did not observe a significant delay in gaze transfer with reduced anxiety. Young and  

Hollands (2010) found that instructing participants to delay gaze transfer improves 

stepping performance, and the extent of this gaze transfer was correlated with state 

anxiety. In the current study we provide further evidence to our previous findings 

(Chapter 4) that early gaze transfer is not the mechanistic explanation for the effect of 

state anxiety on stepping errors. Instructing participants to delay gaze could have 

decreased anxiety by instilling a sense of confidence about stepping into the target box, 

and the consequent improvements to stepping performance could have been due to a 

combination of this decreased anxiety and improved online feedback. We suggest that 

appropriate allocation of attention and gaze fixations in general might be more pertinent 

than the specific timing of gaze transfer from the current stepping target. In the next 

chapter we explore age-related differences in visuospatial mapping prior to and during 

walking, and its consequent effect on anxiety. 

5.4.5 Conclusions 

In this study we demonstrated that reduced task-specific physiological anxiety is 

associated with an increased stepping performance in older adults, although effects due 

to learning must also be considered, as our initial study design was unsuccessful. We 

did not identify relaxation exercises as a useful intervention to reduce stepping error for 
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older adults. The relationship between gaze transfer time from current stepping targets 

and anxiety remains unclear, however we suggest that anxiety influences the broader 

allocation of visuospatial mapping as a whole, which we explore in further detail in the 

next chapter.  



 105 

Chapter 6 

Effects of route previewing on gaze behaviour, anxiety and stepping 

performance during adaptive locomotion. 

6.1 Introduction 

Evaluation of the environment to identify obstacles and traversable paths is essential for 

walking individuals to safely move through our cluttered world. Visual information is 

continuously gathered and processed along with proprioceptive and vestibular feedback 

in order to maintain balance and generate the most appropriate motor response to our 

locomotive needs (Uiga et al., 2015).  

A close relationship between saccade onset timing and swing phase initiation has been 

demonstrated in young individuals walking a path of illuminated stepping targets 

(Hollands & Marple-Horvat, 2001). This consistent coupling of oculomotor and 

locomotor movements is thought to represent a feedforward control process that relies 

on visual information describing target location prior to step initiation in order to pre-

programme step trajectory. Once step trajectory is initiated it remains constant during 

the lead foot swing phase (Lyon & Day, 2005) with visually-guided fine-tuning when 

precision stepping is required during the final part of the swing (Reynolds & Day, 2005). 

However, older adults, particularly those deemed to be at a high risk of falling, show 

greater latencies in both onset of gaze refixation towards a new target, and trajectory 

deviations when adjusting their steps to target translocation during the swing phase 

(Young & Hollands, 2012a). Therefore, this age-related reduction in ability to make 

online stepping adjustments is a result of delays in central processes in addition to any 

musculoskeletal decline. 
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As we age, our visual sampling strategy (i.e. the times at which we look at 

environmental features) changes; presumably to allow more time to plan steps (Di Fabio 

et al., 2003a; 2003b; Chapman & Hollands, 2007; Zietz & Hollands, 2009;  Young & 

Hollands, 2012b). For example, Chapman and Hollands (2007) compared the timing of 

gaze transfer from a stepping target in two groups of older adults, deemed to be at a 

high-risk and a low-risk of falling, and in young adults during a precision stepping task. 

They found that high-risk adults transferred gaze to future stepping constraints earlier 

than the low-risk group and young adults. This early gaze transfer occurred before heel 

contact with the stepping target and the extent of early gaze transfer correlated with 

increased mediolateral foot placement variability. These findings are in line with those 

of Reynolds & Day (2005) who found that visual occlusion of a pre-planned step at 

foot-off can lead to decreased step accuracy and increased step variability. This decline 

in stepping performance indicates that visual information is used in an online manner to 

fine-tune foot placement during target stepping. 

Gage et al. (2003) showed that anxiety induced by manipulating the postural threat 

posed to participants (i.e. raising the height of the walking surface) led to decreased 

performance on a secondary task. They concluded that anxiety led to a greater 

allocation of attentional resources to the walking task.  Furthermore, it has been recently 

shown that high-risk older adults prematurely transfer their gaze from current stepping 

targets toward future obstacles. This early gaze transfer is correlated with state anxiety, 

and there is a consequent reduction of stepping performance (Young et al., 2011). 

Instructing older adults to delay gaze transfer until after foot contact during a precision 

stepping task can improve stepping performance (Young & Hollands, 2010). However, 

in a fixed laboratory environment there are no unexpected variables to adapt to, and 
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instructing older adults to fixate their current steps during daily activities might not be a 

practical method of reducing falls risk when external factors require attention. 

When planning a strategy for obstacle avoidance, Patla and Vickers (1997) showed that 

during a 10-metre walk with a single obstacle, participants primarily visually sampled 

the upcoming obstacle during the approach phase. Gaze direction was also focussed on 

future step areas when stepping over the obstacle, rather than the concurrent task. This 

gathering of visual information before stepping allows time to plan appropriate 

responses to stepping constraints. In the current study, we ask how allowing increased 

planning time will affect precision stepping and gaze behaviour during an obstacle 

avoidance task. 

Crowdy et al. (2002) have shown that route rehearsal by saccadic eye movements 

improved locomotor performance in cerebellar patients, however the improvements 

shown in this study might be due to an increase in oculomotor function, rather than 

better spatial mapping. To our knowledge, no previous studies have examined the effect 

of visual route previewing of stepping obstacles on stepping accuracy and variability in 

a healthy older population. A prolonged planning phase could reduce the attentional 

load of concurrent stepping and planning, and allow greater focus on stepping precision 

and maintaining balance. 

We hypothesise that altered gaze behaviour observed in older adults is due to an 

anxiety-mediated reduction in the amount to which they pre-plan their locomotor 

adjustments. 

This study aimed to assess if 1) previewing the route results in changes to older adult 

gaze behaviour during walking to more closely resemble that of younger adults, 2)  
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whether changes to gaze behaviour are mediated by state anxiety, and 3) whether 

changes to gaze behaviour are accompanied by improvements in stepping accuracy. 

We predicted that route previewing would reduce the instances and extent of premature 

gaze transfer from the stepping target in older adults and that this would result in more 

accurate and less variable stepping. We also expected altered gaze behaviour to be 

accompanied by a reduction in anxiety and increased self-confidence.  
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6.2 Methods 

6.2.1 Participants 

Nine healthy young adults and nine community-dwelling healthy older adults were 

recruited to take part in this study. Young adults were volunteer PhD students from The 

University  of  Birmingham’s  Sport  &  Exercise  Sciences  department  (23  – 29 years old). 

Older adults (65 – 87 years old) were recruited from local assisted living homes, and 

from poster advertisements placed around the local area. Older adults were 

compensated £20 for their time plus travel expenses. All participants received a study 

information sheet prior to attending the lab and signed consent forms on arrival stating 

that they understood the study, what was required of them, and that they could drop out 

at any time. Full ethics approval was granted by The University of Birmingham Ethics 

Committee for the study. 

Participants were excluded if they had any self-reported musculoskeletal or neurological 

impairment, or if they were on prescription medication for anxiety or vestibular 

problems. The use of corrective lenses was allowed in this study if the participant 

usually wore them for everyday locomotion, however participants were excluded if they 

wore bifocals or varifocals due to incompatibility with the Dikablis head-mounted eye-

tracker, and their suitability for lower-field walking tasks (Davies et al., 2001; Lord et 

al., 2002). 

A series of visual and psychophysiological tests were completed prior to any walking 

trials to ensure participants were suitable to take part (Table 6-1, see Chapter 2.3 for 

details on each test). 
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Table 6 – 1: General Participant Characteristics and Test Scores 

Measure: Mean (Std dev) Young Adults (n = 9) Older Adults (n = 9) 

Age (years) 25.44 (1.81) 77 (8.29) 

Height (cm) 177.44 (7.30) 162.67 (10.22) 

Weight (kg) 75.24 (8.50) 67.60 (9.00) 

Body Mass Index 23.54 (1.45) 25.56 (2.67) 

Shoe Length (cm) 29.11 (2.42) 27.11 (1.62) 

Shoe Width (cm) 10.44 (1.16) 9.83 (0.87) 

Snellen Visual Acuity  
(min score):     

Left Eye Only ≥20/30 ≥20/50 

Right Eye Only ≥20/30 ≥20/50 

Both Eyes ≥20/20 ≥20/40 

Pelli-Robson Contrast 
Sensitivity Score (max 2):     

Left Eye Only 1.73 (0.13) 1.48 (0.19) 

Right Eye Only 1.78 (0.12) 1.5 (0.20) 

Both Eyes 1.88 (1.11) 1.74 (0.19) 

Berg Balance (/56) 56 (0) 52.78 (6.51) 

TUG Test (secs) 7.45 (0.36) 11.11 (2.33) 

FES-I (/48) 1.33 (1.00) 5.22 (7.07) 

ABC (%) 98.19 (2.11) 88.46 (19.10) 

Trail Making A (s) 21.98 (4.13) 47.66 (24.67) 

Trail Making B (s) 42.12 (6.10) 148.77 (142.7) 

Δ  Trail  Making  (s) 20.14 (4.26) 101.29 (112.29) 

Mini-Mental State (/30) 29.78 (0.44) 27.33 (1.94) 

GHQ-28 (/21 each):      

Somatic Symptoms 4.44 (2.65) 4.56 (2.92) 

Anxiety/Insomnia 4.22 (2.86) 5.44 (2.65) 

Social Dysfunction 4.22 (2.44) 5.78 (0.97) 

Severe Depression 0.33 (1.00) 0.56 (1.33) 
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6.2.2 Data Collection 

An adapted version of the Vicon lower-body plug-in gait model was used in this study with 

an additional 2 markers on the medial and lateral sides of each foot, and the toe markers 

were moved forward to the upper front edge of each shoe. Additional details of marker 

placement can be found in Chapter 2.5. A 100Hz 13-camera Vicon MX motion capture 

system was used to record body kinematics (Oxford Metrics, England). 

A head mounted Dikablis monocular eye-tracker was used to record spatial and temporal 

gaze behaviour, sampling at 25Hz. The Dikablis system generated a video image of the 

visual scene with gaze direction superimposed as a crosshair for each trial. Saccadic 

timings were recorded using a BlueGain EOG Biosignal Amplifier (Cambridge Research 

Systems, England), sampling at 1000Hz across separate vertical and a horizontal channels. 

This signal was synced to the Vicon kinematic recordings via a near infrared input channel 

using a custom Matlab script (The Mathworks Inc., United States, see Chapter 2.6). Heart 

rate was recorded using an Oregon Scientific strapless heart rate monitor (Oregon 

Scientific, UK).  

6.2.3 Protocol 

The general protocol for each session follows the same principles mentioned in previous 

chapters (see Chapter 2.2 for more detail). There were three trial difficulties used in this 

study, these were: (1) no obstacles following the target box (Target Only – TO), (2) one 

obstacle following the target box (One Obstacle – OO), and (3) two obstacles following the 

target box (Both Obstacles – BO). Participants completed 6 trials of each difficulty in two 

separate sessions on the same day, and were allowed four familiarisation trials of each 

difficulty prior to starting the recorded trials.  In each session, participants were required to 



 112 

stand on a start line facing away from the course, then turn 180° to face the course with 

their   eyes   shut   and,  when   instructed,   either   open   their   eyes   and   start   immediately   (‘Go’  

trials), or open their eyes and preview the route for 10 seconds before being told to start 

walking  (‘Preview’  trials).  When  previewing  the  route,  participants  were  told  to  plan  their  

steps and examine the course in order to step most accurately and avoid the obstacles. 

Preview and Go trials were completed in separate sessions on the same day, and their order 

was randomised and counterbalanced across all participants. The three trial difficulty 

blocks within each session (TO, OO and BO) were also completed in a random order. 

Following each set of 6 trials,  participants’  heart  rate  was  recorded  and  they  were  asked  to  

complete a State Anxiety Inventory (SAI) of 6 questions, and the Immediate Anxiety 

Measurement Scale (IAMS) in relation to how they felt during the trials they had just 

completed. These responses were later compared against baseline measures taken at the 

start of the session following the familiarisation trials. 

6.2.4 Data Analysis 

Step accuracy was calculated in both mediolateral and anteroposterior planes with relation 

to the orientation of the target box using the foot markers and markers placed on the 

corners of the target box (see Chapter 2.5.1). Both the mean (step accuracy) and the 

standard deviation (step variability) of target box steps were analysed. 

Occurrences of the right foot visibly touching or hitting the target box were recorded as 

frequency per set of 6 trials. 

Foot contact and toe off events within the target box were identified using the heel and toe 

markers’  vertical  acceleration  profile  as  explained  in  Chapter  2.5.1.  This  method allowed 

differentiation of the target box stepping strategy used by each participant on a trial-to-trial 
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basis. Participants either made floor contact with their heel or toe first. The percentage of 

toe-first steps was recorded for each set of 6 trials. 

Stance duration inside the target box was also calculated as the time between foot contact 

and toe-off.  

A 3 x 2 x 2 (task difficulty x preview condition x age) mixed design ANOVA was used to 

identify any main effects or interactions of stepping characteristics relating to the target 

box. Leading and trailing foot toe clearance on the near obstacle was measured for trials 

where the near obstacle was present. 

Spatial and temporal visual behaviour analysis was carried out using the D-Lab Eye-

Tracking suite (Ergoneers GmbH, Germany). Blink artefacts were removed prior to 

analysis  using   the   software’s   in-built algorithm. Three areas of interest (target box, near 

obstacle and far obstacle) were marked out on-screen in relation to real-world adjacent 

visual markers identified by the software, and fixation periods within these areas were 

calculated. Fixation was classified at 3 frames of video, which is equivalent to 120ms and 

falls within the normally accepted range of fixation period (Patla & Vickers, 1997). 

Preview and walking sections were separated into different outputs. Two dependent 

variables were extracted from these data: (1) total duration spent fixating an area, and (2) 

percentage of the trial or section spent fixating an area. Mixed-design repeated measures 

ANOVAs were used to analyse the Dikablis eye-tracking data. Within subject differences 

of task difficulty was removed from ANOVA analysis as each difficulty had a different 

number of visual targets to fixate, and comparisons between these would be invalid. 

Therefore, independent t-tests were used to analyse between-subject differences in preview 

fixation periods on the target box, near obstacle and far obstacles. The Bonferroni 

correction was applied to all p values analysed in the t-tests. 
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Saccadic timings were calculated by temporally synchronising the EOG signal to the 

Vicon data, then by using the previously identified foot contact time as a reference for the 

appropriate saccadic eye movement (see Chapter 2.6.1), averaged for each set of 6 trials, 

and analysed in a 3 x 2 x 2 repeated measures ANOVA. 

The anxiety score from the SAI was scored out of a possible 12 (see Chapter 2.3.3). The 

Immediate Anxiety Measurement Scale (IAMS) was also used. The questionnaire directly 

asks participants to rate their anxiety, and was excluded from the studies presented in 

Chapters 4 and 5 due to the explicit nature in which it asks participants to rate their anxiety 

levels, which might have alerted participants to our anxiety manipulations. Any changes in 

anxiety in the current study would be due to indirect influences; therefore it was included 

in order to examine self-reported anxiety and self-confidence in greater detail. IAMS 

scores were split in to two sections. Section A was on a Likert scale of 1 – 7 and related to 

cognitive anxiety, somatic anxiety and self-confidence. Section B described on a scale of -

3 to +3 whether that person found their relative presence or lack of each item in section A 

to be debilitative or facilitative. These scores were also based on change from baseline 

levels and gave 6 variables for each of the 6 sets of trials. Change from baseline for heart 

rate data following each set of trials was also calculated. SAI, IAMS and heart rate data 

were all analysed using a 3 x 2 x 2 repeated measures ANOVA. 

Correlation analysis comparing at least one non-parametric variable (IAMS, SAI, target hit 

frequency and toe-first   stepping   percentage)   was   carried   out   using   Spearman’s   Rank  

Correlation Coefficient. If both variables were parametric (stepping error and variability, 

stance   duration,   gaze   transfer   time   and   target   fixation   time)   then   Pearson’s   Product-

Moment Correlation Coefficient was used. All correlation analyses were two-tailed. P 
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values were adjusted using the Bonferroni correction for multiple comparisons; only 

correlations with a p value less than .003 are reported. 

6.3 Results 

A summery of the results can be found in Table 6-2. All values presented in this section 

are means ± standard error unless otherwise stated. 

6.3.1 Anxiety 

There was a main effect of session on self-reported IAMS self-confidence change from 

baseline score (F(1, 16) = 6.84, p < .05). Self-confidence was significantly higher in 

‘preview   trials’   compared   to   ‘go   trials’   (.44   ±   .27   and   .13 ± .30 respectively (mean ± 

standard error), Figure 6-1).  

There were no main effects for somatic and cognitive anxiety IAMS scores (Table 6-2), 

however there was a significant age x session interaction for cognitive anxiety direction 

change from baseline (F(1, 16) = 4.75, p < .05). Older adults rated their current level of 

cognitive anxiety (regardless of value) to be more beneficial to their stepping performance 

during  ‘preview  trials’  than  during  ‘go  trials’  (0.26  ±  0.32  and  -0.37 ± 0.31 respectively), 

young adults showed no difference between sessions (Figure 6-2b). 

There was a main effect of task difficulty on heart rate change from baseline (F(1, 16) = 3.78, 

p < .05). Post hoc tests showed that heart rate during TO trials (0.06 ± 1.11bpm) was 

significantly lower than the OO (2.1 ± 1.2bpm) difficulty, but not from BO (1.6 ± 1.4bpm).  

There were no between-subject or within-subject significant differences in scores on the 

state anxiety inventory. 
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Figure 6-1 IAMS self-confidence scores as a change from baseline for each session 

and both age groups. Error bars represent standard errors (SE). * Sig. session 

difference p < .05 
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Figure 6-2 a) IAMS cognitive anxiety change from baseline for age and session.  

b) The change from baseline measures of the psychological direction that participants 

perceived their cognitive anxiety to be assisting them with their stepping performance. 

If it was facilitating performance the score was positive, and if it was debilitating 

performance the score was negative. Graph a) has been included to show the levels of 

anxiety to which graph b) was scored. * main effect of session within the age group, p 

< .05. Error bars show standard error.  

a) b) 
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6.3.2 Kinematic Measurements  

There was a main effect of age (F(1, 16) = 8.58, p = .01) and difficulty (F(1, 16) = 120.43, p 

< .001) on trial walk duration. Older adults took significantly longer to complete the course 

than young adults (9.96 ± 0.57 and 7.62 ± 0.57s respectively). Increasing task difficulty 

produced longer walk durations (TO = 8.13 ± 0.39s, OO = 8.69 ± 0.39s and BO = 9.54 ± 

0.42s). All walk duration under different difficulties were significantly different from each 

other (p < .001).  

There were also main effects of age, session and difficulty on mean walking speed (F(1, 16) 

= 3.78, p < .05, F(1, 16) = 5.74, p < .05, and F(2, 32) = 125.62, p < .001). Young adults were 

significantly quicker than older adults (0.93 ± 0.04 and 0.74 ± 0.04ms-1 respectively), 

‘preview  trials’  were  slower  than  ‘go  trials’  (0.82  ±  0.03  and  0.86 ± 0.03ms-1 respectively), 

and each task difficulty was significantly different from the other two, with decreasing 

speeds as difficulty increase (TO: 0.90 ± 0.03ms-1, OO: 0.84 ± 0.03ms-1, BO: 0.77 ± 

0.03ms-1, p < .001). Walking speed was added as a covariate to the indicated analyses 

below, to account for any changes in speed between groups or conditions.   
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6.3.2.1 Mediolateral and Anteroposterior Stepping Accuracy and Variability  

Repeated measures ANCOVA showed a main interaction of session and difficulty on 

mediolateral (M/L) stepping variability within the target box (F(2, 30) = 4.115, , p < .05) . 

Compared   to   the   ‘go   trials’,   ‘preview   trials’   showed   significantly   less   M/L   stepping  

variability in each individual task difficulty (Figure 6-3).  

 

 

Figure 6-3 Mediolateral stepping variability of each session within each task 

difficulty. * Sig. difference between sessions, p < .01. Error bars represent standard 

error (SE).  
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There were no significant differences between age groups, sessions or difficulties in mean 

M/L stepping error, however there was a main effect of age on anteroposterior (A/P) 

stepping error (F(1, 15) = 7.08, p < .05). Older adults (-23.0 ± 3.3mm) stepped significantly 

further back than young adults (-9.3 ± 3.3mm). There was also an interaction effect of age 

and session on A/P stepping error (F(1, 15) = 5.30, p < .05). Post hoc tests revealed a 

significant difference between young and older adults during go trials, and older adults 

stepped  with  significantly  less  error  in  ‘preview  trials’  compared  to  ‘go  trials’  (Figure  6-4). 

There was no significant effect of any variable on A/P stepping variability. 

Figure 6-4 Anteroposterior stepping error in each session for young and older adults. 

Negative numbers indicate posterior stepping. * p < .05 for indicated conditions and 

groups. Error bars represent standard error.  
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6.3.2.2 Target Box Hit Frequency 

When walking speed was added as a covariate, we found no significant differences 

between age group, session or task difficulty on target box hit frequency. 

6.3.2.3 First Obstacle Toe Clearance 

An independent t-test showed older adults to be significantly shorter than young adults 

(t(16) = 3.53,  p < .005), therefore a repeated-measures ANCOVA with height (valued at 

170.6cm) and walking speed as covariates was used to compare differences in obstacle toe 

clearance in OO and BO task difficulties. There was a main effect of difficulty on lead toe 

clearance (F(1, 14) = 5.49, p < .05) showed slightly greater toe clearance during OO trials 

(15.6 ± 0.9mm) than BO trials (15.4 ±.08mm) when adjusted for height and walking speed. 

There were no significant differences for group, session or difficulty on trailing toe 

clearance with height and walking speed as covariates. 

6.3.2.4 Target Box Step Technique 

Some participants  approached  the  precision  stepping  task  using  a  ‘toe-first’  strategy  rather  

than  the  usual  ‘heel-first’  strategy  generally  observed  in  normal  locomotion  (heel  contact).  

Converting   the   frequency   of   ‘toe-first’   steps   in   each   set   of   trials   to   a   percentage, a 

repeated-measures ANCOVA revealed a main effect of age on the technique used (F(1, 15) = 

4.788, p <   .05).   Older   adults   used   the   ‘toe-first’   technique   in   69.4   ±   13.1%   of   trials,  

whereas young adults only used this approach in 24.4 ± 13.1% of trials. However, 

previewing the route did not change the step technique used in young or older adults 

(Figure 6-5). 
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Figure 6-5 The occurrence of heel-first and toe-first foot contact in the target box as a 

percentage of each session. There was a significant difference of age, but no 

significant within-subject variations. Error bars represent standard error. 
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6.3.3 Gaze Behaviour 

6.3.3.1 Target Box and Obstacle Fixations While Previewing 

Task difficulty was excluded from gaze fixation analysis due to the nature of the task. 

Previewing trials with more obstacles require participants to fixate more visual targets; 

therefore comparisons between these task difficulties would be invalid. 

There were slight variations in preview times due to the reaction times of verbally 

signalling participants to start walking, however these variations were not significantly 

different between age groups (t(52) = 0.50, p = .62). Independent t-tests using the 

Bonferroni correction for multiple comparisons showed no significant differences of age 

on target box, near obstacle, or far obstacle fixation times. Figure 6-6 shows fixation 

differences between young and older adults.  
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Figure 6-6 Pie charts summarising the percentage of preview time spent fixating the 

target, near and far obstacles (where present). Values represent percentage of 

preview time. 

 

6.3.3.2 Target Box Fixations While Walking 

In order to compare the relative fixation times due to the difference between young and 

older  adults’  walk  times,  total  target  fixation  was  calculated as a percentage of total walk 

time. There was a main effect of session on target fixation percentage (F(1, 16) = 11.67, p 

<  .01),  with  ‘preview  trials’  resulting  in  a  longer  fixation  percentage  than  ‘go  trials’  (26.0  ±  

1.0% and 22.8 ± 1.1% respectively). This time-relative fixation analysis reveals that during 
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preview trials older adults fixate the target box for a similar percentage of walk time as 

young adults (Figure 6-7). 

 

Figure 6-7 Total target box fixation period while walking and as a percentage of total 

walk time for young and older adults in both sessions. Dashed lines represents 

collapsed mean for each session. * Sig. difference between sessions, p < .05. Error 

bars represent standard error. 

 

There was also a main effect of difficulty on target box fixation time (F(2, 32) = 44.65, p 

< .001). Post hoc analysis revealed that the target box was fixated for longer in the TO 

(27.7 ± 1.0%) trials compared to OO (23.6 ± 1.1%) and BO trials (22.0 ± 0.8%) p < .001).   
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6.3.3.3 Obstacle Fixations While Walking 

As expected there was a main effect for difficulty on near obstacle total fixation time 

between OO (12.0 ± 0.8%) and BO (8.9 ± 0.7%) conditions (F(1, 16) = 28.04, p < .001). TO 

trials were not included as there was no near obstacle present to fixate on.  

There were no significant differences between far obstacle fixations for age group, session 

or difficulty. 

6.3.3.4 Gaze Transfer Time From Stepping Target 

The start of saccadic eye movements were identified from the vertical EOG trace when 

angular velocity was over 100°s-1. Temporal differences between saccade initiation and 

foot contact are reported. Negative numbers indicate that gaze transfer took place before 

foot contact, and positive numbers indicate that it took place after (Figure 6-8). 

There was a main effect of age on gaze transfer time with respect to foot contact in the 

target with walking speed as a covariate (F(1, 15) = 7.44, p < .05). Older adults (-105 ± 

41ms) transferred gaze significantly earlier than young adults (71 ± 41ms). 

Standard deviation of gaze transfer time was used as a measure of gaze transfer variability. 

When walk speed was added as a covariate, there was a main effect for age (F(1, 15) = 6.44, 

p < .05). Older adults had a higher gaze transfer standard deviation (167 ± 21ms) compared 

to  younger  adults  (84  ±  20ms)  meaning  that  older  adults’  had  a  more  variable  saccade  time  

relative to foot contact. There was also a main effect of session on gaze transfer variability 

with walk speed as a covariate (F(1, 15) = 10.88, p < .01). Interestingly, participants had 

greater  gaze  transfer  variability  during  ‘preview  trials’  (131  ±  16ms)  than  during  ‘go  trials’  

(120 ± 11ms).  
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Figure 6-8 Example EOG data for a young adult (a) and an older adult (b). The x-axis 

represents time, and the y-axis represents eye rotation within the head. The vertical 

red line represents foot contact (F.C.) in the stepping target. The green dot represents 

saccade initiation (S.I.), identified as when the rotational velocity of the eye surpassed 

100°s-1. Figure a) shows an example of gaze transfer occurring after foot contact, 

figure b) shows and example of gaze transfer occurring before foot contact. 

 

6.3.4 Anxiety, Gaze Behaviour and Stepping Performance Correlations 

The following sections show correlations between variables of different types for older 

adults and young adults separately. Correlations between similar variables (i.e. SAI and 

IAMS as measures of anxiety) are not shown. 

6.3.4.1 Older Adults 

A/P stepping error was correlated with IAMS cognitive anxiety scores (rs (54) = .43, p 

= .001, Figure 6-9a), and with target fixation duration during walking (r(54) = .50, p < .001, 

Figure 6-9b) and target fixation during preview (r(27) = .58, p = .001). 

a) b) 
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Gaze transfer time was correlated with IAMS somatic anxiety scores (rs (54) = -.49, p < .001, 

Figure 6-9c). Target fixation percentage during preview and walking was also positively 

correlated (r(27) = .65, p < .001, Figure 6-9d). 

 

Figure 6-9 Older adult correlations between: a) mean anteroposterior stepping error 

and IAMS cognitive anxiety score change from baseline, b) mean anteroposterior 

stepping error and the percentage of total target fixation while walking relative to 

walk time, c) gaze transfer time (saccade initiation) from the current stepping target 

and IAMS somatic anxiety score change from baseline, and d) percentage of total 

target fixation while walking and percentage of total target fixation while previewing. 
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6.3.4.2 Young Adults 

A/P stepping error was correlated with toe-first stepping technique (rs (54) = -.43, p = .001, 

Figure 6-10a), and target box hit frequency was correlated with SAI scores (rs (54) = .54, p 

< .001). Time spent fixating the target during preview was correlated with walking target 

fixation time (r(54) = .62, p = .001, Figure 6-10b). 

Figure 6-10 Young adult correlations between a) mean anteroposterior stepping error 

and the percentage of trials in which the toe-first stepping technique was used, and b) 

percentage of total target fixation while walking and percentage of total target 

fixation while previewing. 
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Table 6-2 Means and standard errors for anxiety measures, gaze behaviour and 

stepping performance. 

 
Go Preview 

means ± standard 
deviation YA OA YA OA 

Anxiety Measures         
IAMS Cognitive Anxiety -0.22 ± 0.42 0.37 ± 1.24 -0.33 ± 0.48 0.11 ± 0.93 
- Direction 0.15 ± 0.46 -0.37 ± 1.52 4 0.04 ± 0.52 0.26 ± 1.26 
IAMS Somatic Anxiety -0.19 ± 0.40 -0.11 ± 0.58 -0.26 ± 0.45 0.00 ± 0.96 
- Direction -0.04 ± 0.44 -0.04 ± 0.98 0.00 ± 0.39 0.07 ± 1.52 
IAMS Self-Confidence    1 0.30 ± 0.72 -0.04 ± 1.65 0.37 ± 0.63 0.52 ± 1.55 
- Direction 0.07 ± 0.27 0.11 ± 1.09 0.07 ± 0.27 0.26 ± 1.35 
SAI 0.04 ± 1.45 -0.04 ± 1.74 -0.15 ± 1.06 -0.41 ± 2.52 

Gaze Behaviour         
Saccade Timing (ms)      2 50 ± 138 -77 ± 114 44 ± 142 -86 ± 174 
Saccade Variability       1 2 
(ms)  89 ± 51 151 ± 109 96 ± 78 166 ± 152 

Walking Target Fixation 1  
23.98 ± 6.00 21.71 ± 4.74 26.02 ± 5.92 26.02 ± 4.20 

(%) 
Stepping Performance         
A/P Stepping Error (mm) -6.66 ± 6.74 3 -27.76 ± 12.64 4 -7.38 ± 8.22 -22.64 ± 13.58 
A/P Stepping Variability 
(mm) 14.71 ± 6.48 14.43 ± 5.77 6.09 ± 5.66 7.31 ± 5.89 

M/L Stepping Error (mm) -7.83 ± 8.06 -7.40 ± 10.87 -8.99 ± 6.59 -11.36 ± 7.92 
M/L Stepping Variability 
(mm) 9.32 ± 2.80 12.03 ± 4.47 3.52 ± 3.94 4.28 ± 4.84 

Stance Duration (s) 0.77 ± 0.07 0.87 ± 0.11 0.82 ± 0.08 0.96 ± 0.22 
Toe First Stepping           2 24.07 ± 35.00 68.52 ± 38.49 24.07 ± 36.49 70.99 ± 34.77 
(% of trials) 
Leading Foot Toe 
Clearance (mm) 18.77 ± 4.98 12.49 ± 2.17 17.67 ± 5.83 13.17 ± 4.21 

Trailing Foot Toe 
Clearance (mm) 17.95 ± 6.40 10.92 ± 4.24 15.35 ± 5.29 9.60 ± 7.05 

Target Hit Frequency  
0.22 ± 0.51 1.07 ± 1.17 0.04 ± 0.19 0.63 ± 0.97 

(per 6 trials) 
Walk Time 7.47 ± 0.89 9.58 ± 2.14 7.77 ± 0.82 10.33 ± 2.80 

1 = sig. overall difference  between  ‘Go’  and  ‘Preview’  trials 
2 = sig. overall difference between age groups 
3 = sig. difference between age groups within the same session  
4 = sig. difference between sessions within the same age group 

N.B. Raw values only – changes to the due to covariance analysis are not presented 
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6.4 Discussion 

This study investigated the effects of previewing a route prior to walking on anxiety levels, 

stepping performance, and gaze behaviour in young and older adults performing an 

adaptive locomotor task. Improvements in these measures following route previewing 

would suggest that the effects of anxiety on visually guided walking is mediated by 

reduced visuomotor planning due to inadequate visual scanning of the environment during 

walking. We observed a significant increase in self-confidence during preview trials, as 

well as a directional change in the facilitatory perception of cognitive anxiety for older 

adults (older adults felt that their anxiety levels were more beneficial to their performance). 

These changes were accompanied by a reduction in mediolateral stepping variability for 

both groups (Figure 6-3) and a reduction of anteroposterior stepping error for older adults 

(Figure 6-4), as well as and increase in target fixation duration during walking (Figure 6-7). 

We also showed a negative correlation between gaze transfer time and somatic anxiety in 

older adults, indicating that earlier gaze transfer from the current stepping target occurred 

more when participants were more anxious (Figure 6-9c). 

6.4.1 Previewing Effects on Anxiety 

During preview trials we measured a significant increase in the IAMS self-confidence 

change from baseline score across all participants (Figure 6-3). This indicates that during 

preview trials participants were more confident about the walking task, presumably due to 

the increased spatial information acquired allowing a spatial map to be formed. Zettel et al. 

(2007) have previously shown that during unexpected perturbations, previous spatial 

information can be used to make appropriate motor corrections to maintain balance. Our 

results suggest that this spatial mapping can be utilised from the preview time to allow 
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increased focus on the task at hand, hence increasing self-confidence. We also showed that 

older adults perceived their current level of cognitive anxiety to be more beneficial to their 

stepping performance (Figure 6-4); a trait that has been previously shown to be beneficial 

to putting performance in golfers (Chamberlain & Hale, 2007). There were no significant 

differences in IAMS somatic or cognitive anxiety, or state anxiety inventory scores 

between sessions or task difficulties. We suggest that the absence of a significant change in 

anxiety, compared to the measured increased in self-confidence is due to the possible 

variance available for each measure at baseline. If a participant reported low anxiety 

during  the  ‘go  trials’,  the  amount  that  anxiety  scores  can  reduce  during  ‘preview  trials’  is  

limited. The same could be said for self-confidence, however due to the novelty of the task, 

most participants did not report maximum self-confidence   during   the   ‘go   trials’. 

Furthermore, both the young and older adults in this study would classify as being at a 

low-risk of falling (Berg et al., 1992; Podsiadlo & Richardson, 1991), and therefore would 

not exhibit as much anxiety regarding this task as previously found in high-risk older 

adults (Young et al., 2011).  

We also found a main effect of task complexity on heart rate, indicating that participants 

had less physiological arousal in TO trials compared to OO trials; this might be due to 

greater exertion from more stepping obstacles. As mentioned in previous chapters, heart 

rate is a very crude measure of sympathetic CNS activity, and must be interpreted with 

caution as a measure of anxiety, especially as there were no accompanying changes in self-

reported anxiety measures.  
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6.4.2 Previewing Gaze Behaviour 

There were no main effects of age on target or obstacle fixation times during route 

previewing. However when interpreting mean total percentage of fixation time (Figure 6-

6) we can see a trend that older adults fixated with a bias towards more immediate stepping 

constraints (a greater percentage of time fixating the target box) when compared to 

younger adults. This trend has previously been identified in high-risk older adults with 

increased state anxiety compared to low-risk individuals (Young et al., 2011; Young & 

Hollands, 2012b) and supports the idea that there is an age-related prioritisation of more 

immediate stepping constraints, even prior to initiating locomotion. 

6.4.3 Walking Gaze Behaviour 

There was an increase in target box fixation as a percentage of total walk time following 

preview trials (Figure 6-7).  This suggests that during previewing time participants were 

able to gather and store spatial information about the course (Zettel et al., 2007), and 

consequently allow a longer fixation time on more immediate constraints. It has previously 

been shown that balance and locomotion are more attentionally demanding for older adults 

than for young adults (Brown et al., 1999; Li et al., 2012). We observed that following 

preview trials, younger and older adults fixated the target for similar proportions of their 

total walk time. It is possible that previewing the route alleviates  some  of  the  older  adults’  

cognitive load during walking, resulting in gaze behaviour that more closely resembles that 

of younger adults. 

We also found effects of task difficulty on target box and near obstacle fixation time. 

Target box fixation duration was significantly reduced in OO and BO trials compared to 

TO presumably because there are more constraints to look at in the more complex tasks. 
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This trend was also observed in near obstacle fixation time, as participants fixated the near 

obstacle more during OO than BO trials. These results demonstrate that increasing the 

number of stepping constraints splits the attentional load as would be expected. 

We found a main effect of age on gaze transfer time relative to foot contact which was 

independent of walking speed; older adults transferred gaze significantly earlier than 

younger adults. This finding is supported by the current literature and suggests that older 

adults prioritise gathering information about future stepping constraints over visually 

guiding ongoing stepping actions (Chapman & Hollands, 2006; 2007). We also found that 

older adults exhibited a higher variability in the timing of gaze transfer from the target box 

compared to young adults (see section 6.3.3.4). 

6.4.4 Stepping Performance 

As expected, we found that young adults walked significantly faster than older adults 

throughout the study (Kerrigan et al., 1998). Therefore we used walking speed as a 

covariate for analysis of stepping-related variables in order to account for any speed-

related differences in the data. We found a significant interaction effect of session and task 

difficulty on mediolateral stepping variability (Figure 6-3). Post hoc analysis revealed that 

mediolateral stepping variability was significantly decreased in all task complexities 

during preview trials. We also found an interaction of age and session that revealed that 

older adults significantly reduced their anteroposterior stepping error following previewing. 

This provides evidence that allowing more time to gather spatial information about the task 

results in improved stepping performance. We suggest that this is due to improved spatial 

awareness about where the target and obstacles are, which allows greater focus on the 
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current stepping tasks, as is supported by our finding that previewing increased target 

fixation during walking. 

We also found a main effect of task difficulty on leading toe clearance. However, as 

previously mentioned in Chapter 4, comparisons of toe clearance between task 

complexities could be influenced by the design of the course. There is a relatively small 

stepping area between the two obstacles during BO trials that may alter the foot trajectory; 

therefore comparisons between task difficulties are difficult to draw clear conclusions from. 

There was a difference between age groups in percentage of toe-first stepping trials. We 

found that young adults used this strategy significantly less often than older adults. We 

suggest that it is used as a method of trying to judge central stepping from the distance 

between the inside front of the target box and the front of the stepping foot. However, 

correlations between toe-first stepping prevalence and anteroposterior stepping error in 

young adults suggest that this technique might lead to more posterior stepping. If this study 

were repeated with a target that did not impose any postural threat, such as a box marked 

on the floor with tape, or a singular mark on the floor, we would not expect to see such a 

high adoption rate of this toe-first stepping technique. We propose that older adults 

exercise an increased caution when stepping over the rear edge and into the target area, as 

a potential trip or fall may be more challenging to recover from compared to their younger 

counterparts. Guiding a foot to the floor with the toe does not initially commit as much 

pressure to the step compared with a normal heel strike (Dufek & Bates, 1991), and allows 

for better visual guidance, and easier withdrawal of the foot should an unexpected 

perturbation occur underfoot. However, the benefits of adopting this toe-first stepping 

technique appear to be limited, if not detrimental to stepping accuracy, and future research 
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should examine the mechanisms and potential benefits of this selection process in further 

detail. 

6.4.5 Conclusions 

We have shown evidence that previewing a walking route allowed increased allocation of 

attentional resources to current steps, which produced greater online visual guidance of the 

foot and increased stepping accuracy. We suggest that this is due to improved spatial 

mapping of the environment and stepping constraints. We have also shown that preview 

time increases self-confidence (an aspect of anxiety), and suggest that this, along with a 

greater spatial map of the environment, is driving this improved allocation of gaze.  
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Chapter 7 

General Discussion 

This thesis was based on previous work that has shown that older adults display different 

gaze behaviour to younger adults during everyday tasks such as standing and walking 

from a seated position (Di Fabio et al., 2001), stepping over and on to obstacles (Di Fabio 

et al., 2003b; Chapman & Hollands, 2006b), and negotiating stairs (Zietz & Hollands, 

2009). In particular it builds on the literature relating to suboptimal visual sampling 

strategies that impair stepping performance in older adults (Chapman & Hollands, 2007). 

Young et al. (2011) found that there is a relationship between the timing of gaze transfer 

from a current stepping target, and state anxiety in high-risk older adults. They found that 

self-reported anxiety was strongly correlated with the timing of gaze transfer, and 

suggested that high-risk   older   adults’   prioritisation   of   future   stepping   constraints  

(Chapman & Hollands, 2007) was based on this anxiety-driven allocation of attention. We 

hypothesized that there were causal relationships between increased levels of anxiety, 

sub-optimal gaze behaviour and increased falls risk in older adults walking through 

complex terrain. This thesis aimed to elucidate the causal nature of these relationships by 

studying  the  effects  of  manipulating  individuals’  levels  of  anxiety  (Chapters  4  and  5)  and  

the extent that they previewed the route ahead (Chapter 6), on eye movements and 

stepping characteristics. The effects of exercises aimed at reducing anxiety and promoting 

optimal gaze behaviour on stepping performance were assessed. 
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7.1 Experimentally increasing anxiety 

The first study presented in this thesis investigated whether the use of social evaluative 

threat during adaptive locomotion could raise state anxiety in young adults, with the 

intention of subsequent use on older adults. This proof of concept study aimed to see if we 

could (i) experimentally increase anxiety, (ii) find an appropriate physiological measure of 

anxiety, and (iii) show consequent effects of this increase anxiety on stepping. Social 

evaluative threat is a term used to describe an increase of anxiety that has been instilled 

from a form of social evaluation; a common method of experimentally increasing anxiety 

in this way is the Trier Social Stress Test (Kirschbaum et al., 1993). This involves making 

participants make unplanned speeches and perform mental arithmetic in front of an 

audience. In Chapter 3 we adapted this test to instil a more task-specific form of anxiety 

about stepping performance on a group of young adults. We used a panel of judges to 

monitor and provide feedback on walking performance during various complexities of 

short adaptive locomotion tasks. We also used salivary -amylase, a biomarker of 

sympathetic nervous system activity, to measure physiological changes of anxiety. In this 

study we measured a moderate response in self-reported cognitive anxiety during judged 

trials, and showed a modest correlation between this cognitive anxiety and mediolateral 

stepping variability, with an increase in variability during the judged trials (Figure 3-3). 

Although the increase in anxiety during social evaluative threat trials was non-significant, 

these results were promising, given that young adults generally show less mediolateral 

variability than older adults during adaptive locomotion (Chapman & Hollands, 2006b), 

and show fewer anxiety-mediated errors in walking performance during increased anxiety 

(Brown et al., 2006). The implications of our study suggested that social evaluative threat 

could be used in further research with older adults to test whether anxiety-associated 
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attentional changes (Gage et al., 2003) would alter gaze transfer time. We also found an 

increase of salivary -amylase in 5 out of 8 participants, which suggested that this measure 

might show an augmented response in older adults. 

Our next study applied our previously described methods of inducing task-specific state 

anxiety to an older population (Chapter 4). Using a similar protocol to that of Chapter 3 

and Young et al. (2011), we also used electrooculography (EOG) to measure the timing of 

gaze transfer from the target of an on-going step.  

We successfully increased state anxiety during social evaluative trials as measured by self-

reported SAI scores. This increase in anxiety was accompanied by increased mediolateral 

stepping error (Figure 4-3a), however we found no change in gaze transfer time from the 

current stepping target. This suggests that the increased mediolateral error may not have 

been due to an inappropriate allocation of attention towards future stepping constraints 

(Chapman & Hollands, 2007), but may have been due to other factors associated with 

anxiety, such as postural stiffening. Previous research has shown that postural control is 

tightened when participants are subject to standing at increasing platform heights, resulting 

in a decreased centre of pressure variability (Adkin et al., 2000; Tersteeg et al., 2012). This 

stiffening strategy associated with anxiety is also apparent during locomotion, and 

produces increased leg muscle activation, especially in older adults, that decreases stepping 

range (Brown et al., 2002). The anxiety induced in the current study may have caused a 

similar stiffening strategy during locomotion that consequently produced more medial 

stepping.  

We also found that there was increased anteroposterior error as trial difficulty increased 

(Figure 4-3b), this was preceded by premature gaze transfer from the stepping target. This 
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finding suggest that a lack of online visual guidance of foot placement reduced 

anteroposterior accuracy, and is supported by previous research (Chapman & Hollands, 

2006a; 2007; Reynolds & Day, 2005). Due to the relatively low-risk nature of our 

participant group with regards to falling, we suggest that our measures of anxiety were not 

able to detect increases of anxiety that have been previously associated with high-risk 

groups and increased task difficulty (Young et al., 2011). This suggestion is based on our 

previous finding in young adults (Chapter 3), and we predict that we would have seen an 

increase in anxiety with more challenging task complexities in older adults. Young et al. 

(2011) suggested that the anxiety-driven change in the allocation of attention (Gage et al., 

2003) directs gaze to future stepping constraints. Another contributing factor to this 

anxiety-based stepping inaccuracy could be postural stiffening as previously mentioned 

(Adkin et al., 2000; Brown et al., 2002). More medial and posterior steps indicate a tighter 

control of posture during the step that may have contributed to the errors that we identified. 

We were unable to identify changes in anxiety between task complexities, but did show 

that increased task difficulty produced earlier gaze transfer and decreased anteroposterior 

accuracy.  

To summarise, we were able to increase task-specific self-reported anxiety through use of 

social evaluative threat in older adults, and observed associated changes in mediolateral 

stepping accuracy that are indicative of a stiffening strategy. However, we did not find an 

associated earlier gaze transfer with increased anxiety, and suggest that gaze transfer in 

low-risk older adults is mediated more by a combination of task complexity and anxiety, 

than anxiety alone. 
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7.2 Reducing task-specific anxiety during locomotion 

In Chapter 5 we experimentally reduced task specific anxiety in order to further understand 

the relationship between anxiety, gaze transfer and stepping performance. We initially 

intended to reduce task anxiety through use of diaphragmatic breathing and progressive 

muscle relaxation techniques; however, we found that these were ineffective in decreasing 

task specific anxiety compared to a control group. We did observe a reduction in salivary 

-amylase (a measure of sympathetic nervous activity and anxiety (Nater et al., 2005)) 

between sessions for all participants, which still allowed us to test our original hypothesis, 

despite the ineffectiveness of our intervention. However, effects of learning must also be 

taken in to account when interpreting the results of this study as the control group was 

combined with the intervention group.  

We found that reduced anxiety was associated with a reduction in the number of target box 

hits (Figure 5-2),   suggesting   that   participants’   stepping   performance   improved   under  

conditions with less anxiety. However, these improvements may also have had influence 

from previously stored information about the task due to participant familiarity. We did not 

find that this improvement in stepping performance was accompanied by a delay in the 

timing of gaze transfer from the current stepping target, as would be expected if premature 

gaze transfer offered the explanation for the effects of anxiety on reduced stepping 

performance.  

The older adults tested in this study could be considered to be at a relatively low risk of 

falling, as is evident from their Berg balance scores (Table 5-1). Whereas high-risk 

individuals are thought to exhibit earlier gaze transfer in order to plan for future steps 

(Chapman & Hollands, 2007), there may still be a limit to how late older adults in general 
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can delay their gaze transfer when compared to young adults. Yordanova et al. (2004) 

analysed the strength and timing of event related potentials at different stages of 

information processing in the brain, and demonstrated that a behavioural age-related 

slowing during sensorimotor tasks originates in the motor cortex, suggesting a cognitive 

decline with age. Therefore this cognitive decline might have created a ceiling effect that 

limited the possible lateness at which older adults could transfer gaze while still safely 

planning for further steps. It is possible then, that the reduced-anxiety related stepping-

performance improvement we identified in Chapter 5 could be due to a reduction in extent 

to which the stiffening strategy discussed earlier in relation to increased anxiety is 

employed (Brown et al., 2006; Adkin et al., 2000). This means that upon returning for the 

second session of testing, participants were less anxious and more relaxed about the 

stepping task, and consequently showed improved performance regardless of any changes 

in gaze behaviour. However, we must also consider that this improved stepping 

performance may also be due to task familiarity. 

7.3 The effects of previewing on stepping performance 

Our results from Chapters 4 and 5 suggest that it is likely that previously identified 

relationships between anxiety and stepping performance are mediated by allocation of 

attention to environmental constraints, rather than solely mediated by gaze transfer time 

from the stepping target. We therefore used gaze tracking in Chapter 6 to further explore 

the relationship of stepping constraint fixation time between young and older adults, and 

how allowing a route preview time might alter gaze behaviour during walking. 

Our results showed that   following   previewing   trials,   all   participants’   had   greater   self-

confidence (Figure 6-1), and older adults found that their current level of cognitive anxiety 
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was more facilitative to their performance following previewing (Figure 6-2b). Although 

there was  no  significant  decrease  in  older  adults’  previewing  cognitive  anxiety  compared  

to control trials, there was some reduction (Figure 6-2a). This reduction presumably was 

part of the reason for their increase in their perception of how their current level of 

cognitive anxiety was beneficial to their performance. 

Previewing the route increased target box fixation duration while walking. This increase 

suggests participants were able to utilise the preview time to successfully generate a spatial 

map of stepping constraints, which facilitated greater focus on more immediate stepping 

demands while walking. Zettel et al. (2007) have previously demonstrated in both young 

and older adults, that visual scanning of an unfamiliar environment creates a spatial map, 

which is then utilised during an unexpected balance perturbation to produce compensatory 

steps to regain balance without online visual guidance of the foot. We suggest that our 

experimental preview time allowed participants sufficient time to create a spatial map of 

the walkway, and retain it while completing the trial. This knowledge of the course layout 

then increased self-confidence, and reduced attentional demands, allowing better allocation 

of attention towards the execution of ongoing actions rather than planning future actions. 

This attentional strategy was evidently beneficial to stepping performance as all 

participants showed reduced mediolateral stepping variability, and older adults showed 

reduced anteroposterior stepping error. 

The practical applications of route previewing for older adults in day-to-day life are very 

promising, however and the extent to which spatial map can be retained might be affected 

by age and interference from external sources. Lustig et al. (2001) showed that there is a 

decline in functional working memory as we age. This might transfer to retention of spatial 

maps during locomotion, especially in high-risk groups that exhibit higher anxiety, as this 
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increases the attentional demand required for locomotion (Gage et al., 2003). We therefore 

suggest that further research in to the effects of previewing in high-risk older adults, and 

under conditions of social evaluative threat needs to be carried out in order to ascertain 

whether the advantages of previewing can ameliorate the negative effects of anxiety. If 

previewing still produces a more optimal allocation of attention toward current stepping 

tasks (Chapter 6) under conditions of increased anxiety, then the negative effects of 

anxiety on locomotion (Chapter 4) can be at least partially explained by a disruption to 

cognitive processes associated with spatial mapping. More work needs to be done 

exploring the acquisition of these spatial maps in high-risk elderly, in order to develop an 

intervention that improves their retention by decreasing task-specific anxiety, and 

ultimately reduces the risk of falls in older adults. 

7.4 Limitations 

7.4.1 Anxiety measures 

Throughout the studies presented in this thesis, anxiety was measured using various 

psychological and physiological measures.  In Chapter 3 we found a moderate, but non-

significant increase for judged trials in IAMS cognitive anxiety measures, but no such 

increase for the anxiety/tension subsection of the POMS, SAI, or salivary -amylase 

(Table 3-1). Using the same protocol with older adults in Chapter 4, we measured a 

significant increase in self-reported SAI, but not for salivary -amylase (Table 4-2). In 

Chapter 5 there was a reduction in salivary -amylase between sessions, but not for the 

SAI (Table 5-2). And in Chapter 6 we found a significant increase in IAMS self-

confidence, but no corresponding reductions in IAMS cognitive or somatic anxiety, and no 

reduction in SAI (Table 6-2). 
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This inconsistency between anxiety measures is a limitation to the research presented in 

this thesis. Each questionnaire offered a different way for participants to record their levels 

of anxiety. The IAMS used a very direct method of asking participants to rate aspects of 

their anxiety on a 7-point Likert scale, and showed the most promise as a reliable indicator 

of anxiety. However, due to this direct questioning it was not used in Chapters 4 and 5, as 

it was important that participants did not think the primary purpose of these studies was to 

manipulate anxiety. The SAI was chosen as a substitute as it asked participants questions 

relating to anxiety on a 4-point Likert scale, but not to rate their anxiety directly. This 

questionnaire showed promise when anxiety was increased in older adults due to 

experimental manipulation, however in the later chapters it did not show much change 

when participant anxiety was presumably reduced. We suggest that this was due to a 

combination of a ceiling effect limiting the possible reduction from a relatively low initial 

anxiety level, and the lower 4-point resolution of the scale when compared to the 7-point 

IAMS. The POMS was used in the first experiment, however, due to its length (32-items) 

it became apparent that participants were treating it as a box ticking exercise rather than 

thinking about each item following each set of trials, and was therefore dropped from 

further studies. 

Salivary -amylase was measured as a physiological indicator of anxiety in all but the final 

study presented in this thesis. While it has shown promise as a reliable measure of 

sympathetic nervous activity, and shown increases in response to acute psychological 

stressors (Rohleder et al., 2004; Nater et al., 2005; Nater & Rohleder, 2009), there is still 

some doubt in the reliability of these findings due to inconsistent sampling methods, 

participant variability, and its usefulness as a measure of anxiety (Bosch et al., 2011). 

While every effort was made in the studies presented in this thesis to maintain consistent 
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sample collection and analysis, fluctuations due to participant physical fitness and non-

anxiety related emotional responses might have influenced our results. We did find a 

significant reduction in post-trial salivary -amylase when participants visited the 

laboratory for a second time, and we suggest this was due to familiarity with the 

environment reducing the anxiety of participants. However we measured no significant 

changes in self-reported anxiety so we cannot verify that that was the reason. 

A method that has previously been used as a measure of anxiety in walking older adults is 

galvanic skin conductance (Gage et al., 2003; Young et al., 2011). While this method of 

measurement is a reactive indicator of anxiety, it has shown limited practicality as a 

measure of low-level anxiety in low-risk older adults during similar adaptive locomotor 

tasks to those presented here (Young et al., 2011). For this reason it was not used as a 

measure of anxiety in the studies presented in this thesis. However, due to the relatively 

non-invasive methodology, and the ability measure galvanic skin conductance while 

walking, future studies should consider this as an alternative physiological anxiety measure 

to salivary -amylase.  

7.4.2 Low-risk older adults 

The studies presented in this thesis only tested low-risk older adults due to participant 

availability and ability. Some high-risk participants were tested in Chapter 5, however due 

to the severe nature of their mobility impairments the data was confounded by having to 

assist them throughout the trials, also blocking Vicon markers recording limb position in 

the process. In order to safely test these high-risk individuals, a harness would have been 

necessary to stop potential falls from occurring. In addition to this, a mobile laboratory 
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would also have been useful in order to test individuals that did not feel safe commuting to 

the university, however this was not available to us at the time of testing. 

7.4.3 Reducing anxiety 

The anxiety reduction intervention presented in Chapter 5 did not work effectively and 

thus compromised the quality of the conclusions drawn. With the collapsed data across 

intervention and control groups, there is a confound of learning effects. While we have 

argued that anxiety levels were reduced in the second session, there is no direct way we 

can distinguish between effects of anxiety and effects of learning on stepping performance 

measures. Future studies should try a more intensive course of relaxation techniques, 

combined with cognitive therapy from a trained therapist over a number of weeks in older 

adults exhibiting a fear of falling. We expect that these techniques might show more 

promising results as is found in adults suffering from anxiety disorders (Dendato & Diener, 

1986; Bastani et al., 2005). 

7.4.4 Task specificity and the implications of changes to stepping performance 

The design of the protocol presented in these experiments is very specific to these studies. 

While it is a useful method of drawing conclusions relating to the potential mechanisms of 

how anxiety and previewing influence gait and gaze, few direct real world applications of 

these findings can be implemented due to the varying conditions of everyday life. During 

normal walking, it is unlikely that anyone would keep their gaze fixated on their current 

steps, however these methods are useful for exploring the cognitive pathways that are used 

when stepping precisely. In addition to this, the stepping error and variability we measured 

is relatively small and would be unlikely to cause a stepping perturbation during day-to-
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day tasks, nonetheless it is useful to measure these changes in low-risk individuals to 

understand how trips or falls might occur. 

7.5 Summary 

The work presented in this thesis has provided support that increased anxiety increases 

stepping errors in older adults. These errors were not directly attributable to the timing of 

gaze transfer from specific targets as has been suggested in high-risk older adults (Young 

et al., 2011). We then provided some evidence that decreased task-related anxiety 

improved stepping performance which was again, independent of timing of gaze transfer 

from targets. We therefore suggest that the mechanism by which anxiety influences 

stepping performance is likely to be due changes in the allocation of attention to 

environmental features relevant to safe progression.  In our final study we assessed how 

previewing the walking path would address this attentional capacity deficit and allow 

better development of a visuospatial map. We found that previewing the route increased 

self-confidence, presumably as more time had been allowed to generate a spatial map of 

the path. This confidence was associated with longer fixation durations on relevant 

stepping constraints. This change in visual behaviour resulted in lengthened visual fixation 

on the stepping target which presumably facilitated online guidance of step placement, and 

consequently improved stepping performance. These findings suggest that: 1) there is an 

anxiety-induced age-related change in gaze behaviour that decreases the ability to generate 

spatial maps of our surroundings and 2) that route previewing counteracts the effects of, 

and ameliorates, this anxiety. Further research should aim to see how experimentally 

induced anxiety effects the quality and usefulness of this increased timeframe in which 

spatial maps are produced, and the consequent changes in allocation of attention during 

locomotion.  
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