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ABSTRACT 

 

High Performance Computing (HPC) applications are data-intensive scientific software 

requiring significant CPU and data storage capabilities.  Researchers have examined the 

performance of Amazon Elastic Compute Cloud (EC2) environment across several HPC 

benchmarks; however, an extensive HPC benchmark study and a comparison between 

Amazon EC2 and Windows Azure (Microsoft’s cloud computing platform), with metrics 

such as memory bandwidth, Input/Output (I/O) performance, and communication 

computational performance, are largely absent.  The purpose of this study is to perform 

an exhaustive HPC benchmark comparison on EC2 and Windows Azure platforms. 

 

We implement existing benchmarks to evaluate and analyze performance of two public 

clouds spanning both IaaS and PaaS types.  We use Amazon EC2 and Windows Azure as 

platforms for hosting HPC benchmarks with variations such as instance types, number of 

nodes, hardware and software.  This is accomplished by running benchmarks including 

STREAM, IOR and NPB benchmarks on these platforms on varied number of nodes for 

small and medium instance types. These benchmarks measure the memory bandwidth, 

I/O performance, communication and computational performance.  Benchmarking cloud 

platforms provides useful objective measures of their worthiness for HPC applications in 

addition to assessing their consistency and predictability in supporting them.  
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Chapter 1 

 

INTRODUCTION 

 

 

The increasing levels of research and IT investment in cloud computing indicate that 

cloud computing is fast emerging as the next generation technology for computational 

needs.  The “cloud” refers to a combination of both hardware and software applications 

available over the Internet as services.  The cloud also provides applications as services to 

store, retrieve, and share data from systems connected to the Internet.  In other words, the 

applications themselves need not be installed on the client machine.   

 

Large data centers used to build this “cloud” are designed to support highly scalable 

applications.  These data centers usually consist of several thousand interconnected 

computing devices capable of handling remote requests to run large and small 

applications.  The companies housing these data centers (Google, Amazon, Sun 

Microsystems, and Microsoft, to name a few) actually bear the costs associated with them 

in addition to providing software updates.  This type of service is called Public Cloud 

[Gillam10].  On the other hand, if the service is solely used within an organization and 

not shared with people outside of the organization it is called Private Cloud [Velte10].  

There is also a third kind, a combination of public and private cloud.  It is referred to as 

Hybrid cloud [Velte10].  
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Choosing which one to deploy purely depends on the organization’s needs.  Two of the 

most important concerns in a cloud-based environment are security and performance.  

Performance has been particularly a topic of interest for researchers as it heavily impacts 

their applications that require high CPU and data storage capacities. 

 

1.1 Services in the Cloud 

 

Before getting into HPC it is important to understand what type of services are currently 

out there in cloud computing and how they fit into the above-mentioned models.  These 

are categorized as Software as a Service (SaaS), Platform as a Service (PaaS) and 

Infrastructure as a Service (IaaS) [SunMicrosystems09].   

 

Organizations provide SaaS on demand.  An example of a software application that is 

offered as a service is Google Apps that manages pictures, email service, or calendar.  

Another example is salesforce.com, which provides software solutions for sales and 

marketing on the cloud.  SaaS can be provided to individuals as well as organizations as 

needed.   

 

PaaS provides developers a platform to build and deploy software applications.  The 

support is provided in the form of OS, development environment and middleware.  APIs 

(Application Program Interfaces) are provided so that developers can interact with the 

environment to connect and deploy their applications.  In addition, PaaS also provides 

tools to maintain these applications.  Google App Engine is an example of PaaS that 
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provides an infrastructure and environment for application developers.   

 

Finally, IaaS provides the storage, data center spaces, servers and other networking 

devices such as routers and the provisioning computer clusters as needed.  The primary 

purpose of IaaS is to handle the workload for computational needs.  Amazon Elastic 

Compute Cloud (EC2) platform is an example of IaaS. 

 

The cloud provides the architecture of hardware and software for computational needs for 

both organizations and consumers.  Many consumer services focus on web services that 

rely on relatively less intensive tasks and hence performance is not necessarily an issue in 

these situations.   

 

1.2 Cloud Architectures 

 

While quite a few cloud architectures exist, this thesis focuses on benchmarking Amazon 

EC2’s (Elastic Compute Cloud) and Windows Azure with STREAM, IOR and NPB 

benchmarks.  These two platforms are of IaaS and PaaS types and hence present a great 

opportunity for performance comparison. 

 

1.2.1 Amazon EC2 

 

While Amazon EC2 provides the web services to its instances, its S3, also referred to as 

Simple Storage Service, provides a storage service.  Together they provide the compute 
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cluster and storage capacity needed for cloud servicing.  These clusters can be created 

and destroyed per demand [Evangelinos08].   

 

Primarily, EC2 is built on Linux and Xen [Sun Microsystems09, Evangelinos08].  

However, it supports wide range of Operating Systems including Red Hat Linux, 

Windows Server, Amazon Linux Amazon Machine Image (AMI), Oracle Enterprise 

Linux, and OpenSolaris.  EC2 provides infrastructure for scalable compute capacity in 

the cloud.  Amazon provides it as Infrastructure as a Service (IaaS).  The applications it 

supports can be highly scalable, which is one of the requirements for the HPC 

applications in the cloud. 

 

Amazon uses a variety of measures to provide a consistent and predictable amount of 

CPU capacity (GHz, clock speed).  This is for the developers to compare the CPU 

capacities among different instances types.  For this purpose, Amazon has defined an 

Amazon EC2 Compute Unit.  The amount of CPU for a particular instance is expressed 

in terms of these EC2 Compute Units. According to Amazon.com, “One EC2 Compute 

Unit provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon 

processor” [AWS12A].  

 

1.2.2 Windows Azure  

 

Windows Azure is Microsoft’s application platform for public cloud and is offered as 

PaaS.  This platform can also be used for parallel processing which is the basis of High-
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Performance computing (HPC).  On Windows Azure, this means running many role 

instances simultaneously, all working in parallel to perform tasks.  Windows Azure 

provides the HPC Scheduler for distributing their work across the instances.  The HPC 

Scheduler can be used with so-called embarrassingly parallel applications and with HPC 

applications built to use the industry-standard Message Passing Interface (MPI) 

[WindowsAzure12]. 

 

There are various roles provided by Azure that make up the complete application.  They 

are Web Roles and Compute Roles.  For each role, the desired Virtual Machine (VM) size 

that the instances of that role should use is indicated.  The various VM sizes available are 

Extra Small, Small, Medium, Large and Extra Large. 

 

1.2.2.1 Windows HPC Server 2008 R2  

 

Windows HPC Server 2008 R2 is an Operating System provisioned on the Head and 

compute nodes on Windows Azure platform.  It supports both 32-bit and 64-bit programs.  

It provides powerful virtualization capabilities and supports MS-MPI (Microsoft-

Message Passing Interface) for scalable applications.  MS-MPI is Microsoft’s 

implementation of MPICH.  MPI is an essential feature for computing in clusters.  It is 

installed with Windows HPC Pack 2008 R2 that has utilities to submit and monitor HPC 

MPI (Message Passing Interface) jobs [Microsoft12]. 
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1.3 HPC in the Cloud 

 

The challenge for the cloud is when the computational needs of applications are increased 

manifold such as the needs of scientific applications warranting supercomputer 

capabilities.  Examples could be building 3D models from large amount of data for 

scientific research and development and grid computing.  Today HPC systems use 

supercomputers and computer-clusters to solve advanced problems.  These computer-

clusters involve network of systems with parallel programming capabilities in multiple 

disciplines such as system software, architecture and computational techniques.   

 

The traditional HPC technologies provide the tools to build HPC systems.  Adequate 

hardware and software services may have to be provisioned in the cloud in order to 

handle its high performance needs as the applications running on these systems may 

require hundreds of thousands of CPU-hours [Hazelhurst08].   

 

1.4 Examples of HPC Applications 

 

As mentioned above, HPC applications are mostly of scientific nature in areas of 

mathematics, weather, and life sciences, and extensive data processing occurs in such 

applications. Examples include solving sparse real and complex linear equations, 

scientific prototyping and extensive data processing, and solving complex algebraic 

equations; weather forecasting models including 3D models; and recognize protein 

signatures.   



7 

 

1.5 Thesis Layout 

 

This thesis evaluates and analyzes performance of two public clouds spanning both IaaS 

and PaaS types.  EC2 and Windows Azure are used as platforms for hosting HPC 

benchmarks and executing them with variations such as instance types, number of nodes, 

hardware and software.  The metrics used to analyze these public clouds are memory 

bandwidth, I/O performance, and Computational and Communication performance.   

 

The rest of this thesis is structured as follows. Following this Introduction will be the 

chapter on Literature Review in which the works of other researchers in the area of HPC 

in the cloud are surveyed. The Literature Review chapter also helped identify the 

benchmarks for this thesis.  Following the Literature Review chapter is the chapter on 

Research Methodology.  This chapter describes in detail the methodology used in this 

study and the types of benchmarks used. Chapters detailing the setup of the cloud 

environments and execution of the HPC benchmarks in these environments are presented 

next.  Finally, the chapter on the Analysis of Results presents a detailed analysis of the 

results obtained.   
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Chapter 2 

 

LITERATURE REVIEW 

 

 

This chapter provides a survey of the works of other researchers who have investigated 

the performance of HPC benchmarks in cloud environments.  HPC benchmarks were 

originally designed to assess the performance of traditional supercomputers and 

distributed computing systems.  In this thesis, these benchmarks are used for the same 

purpose to compare the performance of  two public clouds, Amazon EC2 and Windows 

Azure platforms for HPC applications.   

 

Previous performance studies have used some standard HPC benchmarks and metrics 

such as memory bandwidth, input/output capabilities, communication and computational 

performances.  In this chapter, we highlight works related to the standard HPC 

benchmarks along with the metrics used for benchmarking cloud platforms.  The 

following table summarizes the relevant information. 
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2.1 Communication and Computational Performance 

 

Amedro et al. launched the MPI NAS Parallel benchmarks on four different architectures: 

Private cluster, Amazon small instance, High-CPU Medium instance and High-CPU X-

Large instance [Amedro10].  The throughput and latency for both the small and medium 

instances reflected moderate EC2 I/O performance whereas XLarge instance had high 

EC2 I/O performance.  However, there is a large gap for latency when compared to the 

private cloud. 

 

Amedro’s research team also conducted tests to determine the performance in mflops of 

the following three NAS Parallel benchmarks.  For up to 32 processes, one process is run 

per machine and then the number of processes is increased [Amedro10]. 

 

Embarrassingly Parallel (EP) Benchmark: In EP problem there is no communication 

between processes, hence it proves to be a test for pure computational speed.  The 

XLarge running at 2.3 GHz and eight cores has almost the same speed compared to the 

private cluster.   

 

Conjugate Gradient (CG) Benchmark: This benchmark is a test for communication 

performance.  It computes Conjugate Gradient involving large number of small messages.  

In both EP and CG benchmarks, the private cluster performance is much higher than 

Amazon EC2 instances. 
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Fourier Transform (FT) Benchmark: The FT benchmark is to test for both computational 

and communication speed involving large data transfers.  In the benchmark the 

performance difference between private, XLarge and medium instances are narrow. 

 

The experiments conducted by Amedro et al. show that EC2 does not offer good 

performance for communication intensive applications, compared to local cluster.  

However, CPU intensive applications do not present significant performance hit.  The 

study also concluded that when dealing with a complex application mixing 

communications and computations, it would be interesting to have a part on a cloud and 

another on a cluster depending on the application characteristics. 

 

Evangelinos et al. employed the serial version of the NAS Parallel Benchmarks (NPB 

v.3.3) using the workstation class (W) and smallest of parallel classes (A) to test the 

computational performance on a wide set of model applications and kernels 

[Evangelinos08].  The results showed that the geometric mean of (BT, CG, FT, IS, LU, 

MG, SP, UA-excluding DC) as well as the value of the EP tested was between 2.2 and 2.4 

times faster on the High-CPU instances. 

 

2.2 Memory Bandwidth 

 

With the CPU processing speeds increasing more quickly than computer memory speeds, 

the high performance computing systems will be especially limited in performance by 

memory bandwidth rather than by the computational performance of the CPU.  The ratio 
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of CPU speed to memory speed is growing rapidly in high performance systems.  The 

CPU speed of the fastest available microprocessor is increasing by 80% per year where as 

the memory speed is increasing by only 7% every year [McCalpin95B].   

 

The STREAM benchmark is a benchmark program that measures sustainable memory 

bandwidth (in MB/s) and the corresponding computation rate for simple vector kernels 

[McCalpin95A].  This benchmark is specifically used for measuring memory bandwidth 

of very large datasets such as in scientific computing.  Both serial and MPI versions of 

the benchmark are available. 

 

Evangelinos et al. tested the memory bandwidth of EC2 instance using the STREAM 

benchmark [Evangelinos08].  The results showed high bandwidth for the standard 

instance type.  The High-CPU medium instance delivered bandwidth better than what one 

would expect from two cores sharing the same socket’s pins to main memory.  

  

2.3 Input/Output Performance 

 

Input/Output (I/O) is very fundamental to HPC applications to store output for later 

analysis, to store the state of an application in case of failure, and to implement 

algorithms that process large amount of data.  Typically, HPC applications have parallel 

file systems that greatly increase their scalability and capacity. 
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Interleaved or Random (IOR) is an I/O benchmark that is useful for characterizing the 

performance of parallel/cluster file systems.  In particular, it can perform parallel reads 

and writes to/from either a single file, or multiple files, using MPIIO.  The IOR software 

is used for benchmarking parallel file systems also using POSIX or HDF5 interfaces 

[Ghoshal11].   

 

IOR benchmark leverages the scalability of MPI to easily and accurately calculate the 

aggregate bandwidth of unlimited number of client machines.  In addition, IOR can 

utilize the POSIX, MPI-IO, and HDF5 I/O interfaces.  The downside is that it is quite 

limited in its capabilities, focusing on reading and writing a file from beginning to end in 

a sequential manner [Ghoshal11]. 

 

Evangelinos et al.  tested the I/O subsystem performance on the IOR benchmark in 

POSIX mode and tested large read and write requests on both the local /tmp disk and the 

remote home directory on standard small instance [Evangelinos08].  The results showed 

that there is an appreciable difference between the write and read performance of the 

standard and the High-CPU instances to/from local disk.  In addition, the results showed 

that while the read performance from local disk appears to be close between the two 

instance types (standard and high CPU instance), most measurements were in the range 

of 800MB/s for the standard one. 

 

Ghoshal et al. presented results on benchmarking the I/O performance over different 

clouds and HPC platforms to identify the major bottlenecks in the existing infrastructure 
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[Ghoshal11].  This work also compared the I/O performance using IOR benchmarks on 

two cloud platforms - Amazon and the Magellan cloud test bed.  For evaluation purposes 

and in order to understand the effects of buffering caches, the study  measured both 

buffered I/O and direct I/O.   

 

In this thesis, we extend the previous research by conducting an empirical performance 

analysis of two public clouds of IaaS and PaaS types.  Our methodology, results, and an 

analysis of results are presented in the subsequent chapters.  
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Chapter 3 

 

RESEARCH METHODOLOGY 

 

This thesis compares benchmark results on cluster of nodes for two public cloud-

computing platforms that span both Infrastructure as a Service (IaaS) and Platform as a 

Service (PaaS).  The Amazon Web Service EC2 and Windows Azure cloud computing 

platforms were used for this purpose.  The methodology involved implementation of 

existing benchmarks STREAM, IOR and NAS Parallel Benchmarks (NPB) on both the 

cloud platforms with variations such as number of nodes (1, 2, 4, 6, and 8), small and 

medium instance types in the cluster that have comparable hardware and software 

specifications.  At the conclusion of the literature review, we decided to include a new 

EC2 medium instance type (m1.medium) in the study.  

 

3.1 STREAM Benchmark 

 

As indicated in the literature review, STREAM benchmark primarily measures the 

sustainable memory bandwidth.  MPI version of STREAM is run on EC2’s Standard 

small instance (m1.small), High-CPU medium instance (c1.medium) and standard 

medium (m1.medium) instance to measure their memory bandwidths.  In each case, the 

number of EC2 instances is varied as 1, 2, 4, 6, and 8 nodes.  It is also run on small and 

medium instances of Windows Azure platform.  The benchmark comes in several
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versions but MPI version is executed since it provides the parallel processing capabilities 

required in a cluster.  STREAM is run on each core of a node using the MPI 

programming paradigm [McCalpin95A]. 

 

The sustained memory bandwidth is measured for four computational kernels: 

 Copy: Copy measures transfer rates in the absence of arithmetic. 

a(i) = b(i), where a and b are arrays 

 Scale: Adds a simple arithmetic operation 

a(i) = q * b(i), where a and b are arrays and q is a constant. 

 Add: Adds a third operand to allow multiple load/store ports on vector machines 

to be tested. 

a(i) = b(i) + c(i), where a, b, and c are arrays. 

 Triad: Allows chained/overlapped/fused multiply/add operations. 

a(i) = b(i) + q* c(i), where a, b, and c are arrays and q is a constant.   

 

The STREAM benchmark generally expects the array size to be at least four times the 

size of the sum of all the last-level caches or 1 million elements whichever is larger 

during execution [McCalpin95C]. 

 

For each vector kernel, a memory bandwidth rate, average time, minimum time, and 

maximum time are measured for each choice of thread count. On all modern systems, the 

rate of execution is determined by the access to memory rather than the peak FLOP rate 

(i.e., the clock rate).  The size of the arrays, n,can be varied to get sensible timings 
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[McCalpin95A].  If n is very large then the program will be accessing main memory.  If it 

is small enough, then data may fit into cache, leading to an increased bandwidth for 

multiple iterations.  

 

3.2 Interleaved Or Random Benchmark 

 

While there has been research done for I/O performance in general, there is a limited 

understanding of its behavior in the cloud environments particularly from a cluster 

perspective.  Understanding the I/O performance is critical to understanding the 

performance of HPC applications in the cloud [Ghoshal11]. Hence, we have chosen in 

this thesis to evaluate the I/O performance of Amazon EC2’s standard small instance, 

High-CPU medium instance and standard medium instance with respect the handling of 

IOR benchmarks and compare it to Windows Azure’s small and medium instances.  The 

number of instances is varied as 1, 2, 4, 6, and 8 nodes and I/O performance is measured 

on both EC2 and Azure platforms. The amount of CPU that is allocated to a particular 

instance is expressed in terms of these EC2 Compute Units.   

 

3.3 NAS Parallel Benchmarks 

 

NAS Parallel Benchmarks (NPB3.3) measure the communication and computational 

performance of parallel machines such as clusters of nodes.  All the NAS benchmarks 

communicate via MPI [Wong99], and the NPB suite consists of EP, CG and FT 

benchmarks and several others.  For the purposes of this thesis, these benchmarks were 
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run on Amazon EC2’s High-CPU Medium Instance (c1.medium), standard small instance 

(m1.small) and standard medium instance (m1.medium) and Windows Azure’s small and 

medium instance types.  CG and FT benchmarks could only be run on number of nodes 

in powers of two.  EP is run with 1, 2, 4, 6, and 8 nodes.   

 

 EP: Embarrassingly Parallel benchmark is used to test the computational speed of 

the nodes. 

 CG: Conjugate Gradient is used to test the communication performance. 

 FT: Fourier Transform benchmark is used to test both the computational and 

communication performances involving large data transfers. 

 

3.4 Amazon Web Service EC2 Platform 

 

In order to accomplish the EC2 cluster provisioning, StarCluster [StarCluster12A, 12B], 

an open-source command line utility developed at MIT is installed on the local 

development machine.  StarCluster is a cluster-computing toolkit capable of configuring, 

creating, managing and terminating the cluster of VMs on Amazon EC2 instances on 

demand [StarCluster12A].  It is released under LGPL license [StarCluster12A].  

StarCluster is capable of enabling MPICH2 communication between the nodes in a 

cluster in addition to creating and submitting MPI jobs to the cluster.  Amazon provides 

AWS Management Console to monitor the status of the instance nodes, Elastic Block 

Storage (EBS) volumes, creating AMIs and other several other features for the Amazon’s 

cloud related utilities. 
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3.4.1 Master and Compute Nodes 

 

An EC2 node is a VM that has a hardware configuration that includes local instance 

storage and memory.  The hardware configurations are different depending on the type of 

instance.  When a cluster is built in EC2 platform, a master node and several compute 

nodes are created.  The cluster is provisioned with an Operating System, EBS Storage, 

Network File System (NFS), MPICH2 and necessary compilers to execute the 

benchmarks. 

 

 

 

Figure 1: Connecting to EC2 Cluster From Client Machine Installed With StarCluster 

[StartCluster12A] 

 

Each cluster in EC2 is configured with a master node and one or more compute nodes 

depending on the size of the cluster.  The file and folder structure in each node is exactly 
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same.  For the MPI jobs to be executed, MPI communication and password-less login are 

established between the master and compute nodes.  Most of the functions including the 

submission of MPI jobs (benchmarks) for execution occur from the master node as 

shown in Figure 1.  Once the execution begins, the master node coordinates the job 

execution with compute nodes in the cluster and uses the NFS shared EBS volume to 

store data.  The cluster size is controlled using the StarCluster Configuration File during 

the cluster creation.  

 

3.4.2 EBS Volume and Instance Storage 

 

Each node in the cluster is attached with a default Elastic Block Store (EBS) volume in 

EC2.  It persists regardless of the life of the instance.  Persistent storage means data in the 

volume are not lost or deleted if the cluster is stopped.  They range from 1 GB to 1 TB 

and can be mounted as devices to any EC2 instances.  By default, Amazon attaches a 10 

GiB (1GiB ≈ 1.074GB) EBS volume to each node of an instance.  This volume is 

attached to the instance in addition to local instance storage for an instance.  For example, 

a c1.medium instance comes with a default 10 GiB of EBS volume storage and a 350 GB 

of local instance storage.  EBS volume provides highly available, highly reliable block 

storage.  These are placed in a specific availability zone and can be attached to instances 

in the same region [AWS12B].  The local instance storage on the other hand is not 

persistent; it is ephemeral.  Any data stored is deleted or removed automatically if the 

cluster is stopped.  Termination of a cluster however has the same effect on the data in 

both EBS and Instance storage.   
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3.5 Microsoft Windows Azure Platform 

 

Windows Azure is Microsoft’s platform for cloud services.  Currently it is offered with 

Platform-as-a-Service capabilities.  Hence, it supports organizations that would like to 

run Windows applications [Marquand10].  Microsoft is continuously making important 

updates to this platform introducing new instances and Operating Systems support.  

Windows Azure cloud platform provides compute instances and a shared storage account 

to store data from these instances. 

 

3.5.1 Web and Worker Roles 

 

A compute node in the Windows Azure environment is a virtual server and is categorized 

into web roles and worker roles.  A web role offers support for front-end portion of an 

application and consumes http requests via IIS [Marquand10].  A worker role is similar to 

a web role but does not take the http request.  A cluster when built is configured 

according to the needs and the type of application being run on it.  For running the HPC 

benchmarks there is no need to select a web role compute unit as there is no front end 

involved.  So, the cluster is built with worker roles.  Windows Azure loaded Windows 

HPC Server 2008 R2 as the OS on these compute nodes. 
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3.5.2 Head Node and Compute Node 

 

A cluster in Windows Azure cloud platform always has a head node and one or more  

compute nodes.  Both these node types are worker roles.  Windows HPC Server 2008 R2 

comes with HPC Pack and support for MPI which is MS-MPI (Microsoft’s 

implementation of MPI).  MPI is necessary for compute nodes to support the MPI jobs 

such as HPC benchmarks and to communicate with each other for parallel code 

processing.  The head node passes on all the necessary parameters and instructions to the 

compute nodes to execute an MPI job.  Once the job is complete, the results are sent back 

to the head node. 

 

3.5.3 Windows Azure Storage: 

 

Windows Azure’s storage feature is accomplished with SQL Azure and Windows Azure 

storage account.  The process of building the cluster allows the user to create an Azure 

Storage account for the cluster.  This account is shared across all the compute nodes of a 

cluster.  These components are illustrated in the Figure 2 below. 
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Figure 2: Microsoft Windows Azure Roles [MSDN12B]  
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Chapter 4 

HARDWARE AND SOFTWARE SPECIFICATIONS 

 

The benchmarks are executed in Linux and Windows environments installed with MPI 

implementations of C and Fortran compilers.  These compilers are necessary for 

compiling and running MPI versions of the benchmarks.  We describe below the 

Software and Hardware specifications used. 

  

4.1 Software Specifications 

 

StarCluster Amazon Machine Image (AMI) is used to build a Cluster on EC2 loaded with 

Linux Ubuntu 11.10 operating system.  This AMI enables several components necessary 

to run MPI jobs in a cluster.  It is loaded with MPICC, MPIF77 and MPIF90 compilers.  

Since the benchmarks are written in C and Fortran languages, appropriate compilers are 

used. 

 

On Windows Azure cluster Windows HPC Server 2008 R2 operating system is loaded.  It 

is loaded with Microsoft implementations of MPICC, MPIF77 & MPIF90 compilers.  

These compilers run the windows binaries created for the benchmarks.   
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These windows binaries are created in a VM loaded with HPC Linux guest operating 

system on 64-bit Windows 7 Home Premium host machine.  The VM is created via 

VirtualBox.  HPC Linux OS comes with tools such as PToolsWin and x86_64-w64-

mingw32-gcc cross compiler.   

 

Other software used to accomplish files transfer between the guest OS and the host OS is 

WinSCP.  WinSCP is also used to connect and transfer files between the cloud platforms 

and local windows machine.  Puttygen is employed to create private key used to connect 

to master node on EC2. 

 

4.2 Benchmarks 

 

The URLs used for downloading the MPI versions of STREAM, IOR and NPI 

benchmarks are available in Appendix A. 

 

STREAM Benchmark: 

 

STREAM is an HPC benchmark that measures the sustainable memory bandwidth and is 

written in C and Fortran languages for single and multi-processors. 
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Interleaved or Random Benchmark: 

 

IOR is an HPC benchmark that measures the input/output performance of HPC systems 

and is written in Fortran. 

 

NAS Parallel Benchmarks: 

 

NAS Parallel benchmarks are HPC benchmarks written in Fortran that measure 

computation and communication performance of the HPC systems. 

 

4.3 Hardware Specifications 

 

The hardware on EC2 instance types includes a RAM of 1.7 GB on Standard small and 

High-CPU Medium instances.  The EBS volume (persistent storage) is 10 GiB on all the 

three instance types.  The I/O performance is Moderate on all three EC2 instance types.  

The differences between these three instance types are highlighted in Table 2 below. 
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Table 2: Hardware Specifications of EC2 and Azure Instance Types 

                                                 

1
1 EC2 Compute Unit provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 

Opteron or 2007 Xeon processor. 
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The EC2 High-CPU medium instance (c1.medium) has proportionally more CPU 

resources (see processor details above for c1.medium and m1.medium) than memory 

(RAM) and is well suited for compute-intensive applications such as NPB benchmarks, 

whereas the EC2 standard instance (m1.medium) is well suited for most applications.  On 

the other hand, Azure provides only a single medium instance type, which seems to be 

comparable with the EC2 standard instance m1.medium based on the RAM 

configuration.  The experiments hence used the same Windows Azure medium instance 

wherever applicable. Both the Windows Azure instances have Windows HPC Server 

2008 R2 (64-bit) operating System. 
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Chapter 5 

SETTING UP, CONFIGURING AND BENCHMARKING EC2 

 

The benchmarking of EC2 involves several carefully executed complex steps including 

building the cluster.  Each step is explained in the subsections below.  Chapter 6 details 

the procedure for Windows Azure. 

 

5.1 Pre-requisites on the Local Windows Development Machine 

 

Before getting started to executing the benchmarks in the EC2 cloud platform the local 

Windows Development machine is installed with some pre-requisite software StarCluster.  

Python 2.7 is installed on the local machine first as it is required for StarCluster 

installation on Windows platform.  The installer is available at  

www.python.org.  Python 2.7 is again dependent on Setuptools 0.6rc11 and Pycrypto 2.3 

to be installed first [StartCluster12E]. 

 

5.2 Installing StarCluster to Build the Cluster 

 

After the necessary pre-requisite software installation is complete, StarCluster is installed 

using the following command in the command window. 

http://www.python.org/
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C:\> easy_install StarCluster  

 

5.3 Edit StarCluster Configuration File 

 

StarCluster uses a configuration file that has all the necessary information and instructs 

StarCluster to create and start a new or existing cluster.  It has sections and fields within 

the sections for EC2’s AWS Subscription, Private Key, instance type for master node and 

compute node, Amazon Machine Image (AMI), NFS, EC2 region.  A plugins section is 

added to the configuration file to enable MPICH2 on all the nodes in the cluster.  MPI 

communication is an important component for the nodes to communicate with each other 

in a cluster.  The CLUSTER_SIZE parameter is edited to build a cluster of size (1, 2, 4, 6, 

and 8 nodes) for an instance type before benchmarking.  An example StarCluster 

configuration file used for creating an eight-node m1.small cluster is available in 

Appendix B under StarCluster Configuration.  Some of the important sections and fields 

of the configuration file are discussed below. 

 

5.3.1 Amazon Machine Image 

 

An AMI in EC2 is a pre-configured Operating System and virtual application software 

that is used for building VMs in EC2 for parallel and distributed computing.  Several 

public AMIs that already have the necessary software stacked up are available to be used.  

StarCluster uses some public AMIs that are both 32-bit and 64-bit.  StarCluster AMI, 

ami-999d49f0 (x86_64) is used for m1.small, m1.medium and c1.medium instance types 
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for cluster creation for node sizes 1, 2, 4, 6, 8.  This AMI constitutes Ubuntu 11.10 

operating system [StarCluster12C] and is loaded with necessary compilers as part of 

compatible MPICH2.   

 

5.3.2 Plugins - Message Passing Interface 

 

MPICH2 is a freely available high-performance and portable implementation of MPI 

(Message Passing Interface) [MPICH12].  MPI is a standard communication method used 

on distributed computing systems including clusters.  StarCluster Configuration File has a 

PLUGIN section that configures MPICH2 on each node of an EC2 cluster. 

 

MPICH2 configures and installs the mpicc, mpif77 and mpif90 compilers on all the 

nodes in the cluster.  Mpicc compiler is for benchmarks written in C language and mpif77 

and mpif90 compile the benchmarks in Fortran language.  These compilers compile the 

STREAM, IOR and NPB benchmarks in MPI mode.  MPICH2 also installs mpiexec, 

which is a command to run an executable created from mpicc compilation in a distributed 

computer network or cluster.   

 

5.3.3 Scaling 

 

Although EC2 provides auto-scaling features, for the purposes of this thesis, the nodes 

are incremented using the StarCluster Configuration File.  CLUSTER_SIZE parameter is 
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assigned the values of 1, 2, 4, 6, and 8 to build the appropriate cluster size before 

executing the benchmarks. Example: CLUSTER_SIZE = 4 

 

5.4 Starting the Cluster with MPICH2 

 

Following is the command used in the command prompt to start a new EC2 cluster with 

small instance type nodes: 

 

C:\>starcluster start m1.small-AMI-cluster 

 

This command creates and provisions the cluster with the configuration specified in the 

configuration file created in section 5.3 including NFS sharing across all nodes.  In 

addition, the cluster is configured with password-less login so that nodes can 

communicate without any login issues.  An example of successful start of an eight-node 

cluster is shown in Appendix D under EC2 screenshots. 

 

5.4.1 AWS Management Console 

 

Once the cluster is created and is ready, the user can logon to Amazon AWS Management 

Console to ensure the nodes are in fact in ‘Running’ State as shown in Appendix C under 

EC2 screenshots.  Other states of a cluster in EC2 are ‘Stopped’ and ‘Terminated’.  

Amazon AWS Subscription is required to monitor the instances on AWS Management 
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Console.  Issuing appropriate StarCluster command from the local machine can restart a 

stopped cluster. 

 

Each node in the cluster is assigned a unique name, Public DNS and Instance ID.  This 

public DNS and the private key created using Puttygen are used to connect and login to a 

particular node. 

 

5.5 Transfer the Benchmark Files to the Cluster 

 

Secure Shell (SSH) tool WinSCP is installed on the local machine and is used to connect 

to the master node of the cluster using the private key to transfer the necessary 

benchmark files before execution.  Example screenshots of file transfer to the master 

node of m1.medium instance using WinSCP are shown in Appendix D under EC2 

screenshots.  After successful connection, the benchmark files are transferred from the 

local system to /home/ec2-user of the master node.   

 

5.5.1 Network File System 

 

NFS is a protocol used by UNIX/Linux computer systems to share the disk space in a 

cluster/network.  When provisioning the EC2 cluster it is important to enable the disk 

sharing across all the nodes.  StarCluster by default configures /home folder of the master 

node and NFS shares it with other nodes in the cluster [StarCluster12D].  Any benchmark 

related files copied or transferred to /home/ec2-user on the master node is copied 
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instantly to all the nodes in the cluster in the directory structure automatically since they 

are NFS shared.  This is confirmed by connecting and logging into each node using 

PuTTY. 

 

5.6 Execute Benchmarks on the Master Node 

 

Because of NFS sharing, the benchmark files are copied to /home/ec2-user folder on each 

node of the cluster from the master node automatically.  It is necessary that the 

benchmark files are available at the same location on each node so they are executed in 

parallel.  Sections 5.6.1, 5.6.2, and 5.6.3 detail the execution procedures used for 

STREAM, IOR and NPB benchmarks. 

 

5.6.1 STREAM Benchmark 

 

The benchmark consists of two files, stream_mpi.c and mysecond.c.  These files are 

transferred to the master node’s /home/ec2-user folder.  PuTTY is used to connect and 

login as root into the master node with authentication using a private key.  The following 

command is executed to compile the stream_mpi.c file: 

 

root@master:/home/ec2-user/STREAM-MPI# mpicc -DPARALLEL_MPI 

-O3 -o stream_mpi stream_mpi.c 
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This command builds a UNIX/Linux executable file stream_mpi that can be run in a 

parallel computing environment.  Following command is then executed to run the 

executable on all the nodes of the cluster.  This example shows the execution on four-

node of c1.medium instance type.  This is ensured by specifying the name of the nodes in 

the -host argument of mpiexec command:  

 

root@master:/home/ec2-user/STREAM-MPI# mpiexec -host 

master, node001, node002, node003 ./stream_mpi > 

output/c1.m_n4.1.txt 

 

The benchmark execution is now complete and output is redirected to a text file in a 

folder named Output.  Before the execution of the benchmark, the configuration file’s 

CLUSTER_SIZE parameter is updated to 1, 2, 4, 6, and 8 to build the cluster of that size.  

In addition, MASTER _INSTANCE_TYPE and NODE_INSTANCE_TYPE parameters 

are updated to m1.small, c1.medium m1.medium instance types as necessary.  The output 

for all the executions are redirected to text files for later analysis.  Sample result of the 

execution is copied to Appendix C.  The analysis of the STREAM benchmark is in 

chapter 7. 

 

5.6.2 Interleaved Or Random Benchmark 

 

Execution of the IOR benchmark involved several steps.  The first step is to ensure the 

cluster of required number of nodes is in place for an instance type.  Instance types used 



36 

 

are m1.small, c1.medium and m1.medium.  Number of nodes used on each of these 

instance types is 1, 2, 4, 6, and 8.  The necessary benchmark files are transferred to the 

master node of the cluster.  NFS shares them with all the nodes in the cluster 

automatically. 

 

One of the important steps for building the IOR executable in UNIX/Linux environment 

is the make command.  The sample output of this command when compiled on a four-

node cluster of c1.medium instance type is copied to Appendix B under Benchmarks 

Commands.  This executable is created using the POSIX interface.  

 

root@master:/mnt/ec2-user/IOR/src/C# make 

 

Following is a sample command that is run to execute the IOR executable in parallel on a 

four-node cluster of c1.medium instance type: 

 

root@master:/mnt/ec2-user/IOR/src/C# mpiexec -host master, 

node001, node002, node003 ./IOR -b 1g -t 4m > 

output/c1.m_n4.1.txt. 

 

Buffering plays a very important part in IOR benchmarking.  The first time when the 

benchmark is executed, the data from the testfile (1 GB) is buffered and hence the results 

for Read is higher.   
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The benchmark execution is now complete and output is redirected to a text file in a 

folder named Output.  Before the execution of the benchmark, the configuration file’s 

CLUSTER_SIZE parameter is updated to 1, 2, 4, 6, and 8 to build the cluster of that size.  

In addition, MASTER _INSTANCE_TYPE and NODE_INSTANCE_TYPE parameters 

are updated to m1.small, c1.medium m1.medium instance types as necessary.  The output 

from each execution is redirected to text files for later analysis.  Sample result of the 

execution is copied to Appendix C under Sample Results.  The analysis of the IOR 

benchmark is in chapter 7. 

 

5.6.3 NAS Parallel Benchmarks 

 

We consider three NPB 3.3 benchmarks: Conjugate Gradient (CG), Fourier Transform 

(FT), and Embarrassingly Parallel (EP) benchmark. 

 

5.6.3.1 Conjugate Gradient Benchmark 

 

CG is written in Fortran and comes in different classes.  CG is compiled for Class A on 

the master node of the cluster.  Following is a sample command that is run to build 

UNIX/Linux CG executable for four-node on c1.medium instance type. 

 

root@master:/home/ec2-user/NPB3.3/NPB3.3-MPI# make cg 

NPROCS=4 CLASS=A 
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The output for this command is shown in Appendix B under Benchmark Commands. 

 

This command creates an executable cg.A.4 that can be successfully run on a cluster of 

four nodes.  Unlike other benchmarks, NPB benchmarks must be compiled specifically to 

build executable for a cluster size.  For example, when the executable file cg.A.4 is run 

on a three-node cluster, a run time error is received indicating the number of processes 

(nodes) is not matching with the executable.  So, in order to build an executable file for a 

six-node cluster the above command is run with NPROCS=6 in command line argument 

that created cg.A.6. 

 

Once the compilations are complete, all these are executed using mpiexec command 

and the results are redirected to text files for later analysis.  Below is the sample 

command that is executed on a four-node cluster of c1.medium cluster for class A. 

 

root@master:/home/ec2-user/NPB3.3-MPI# mpiexec -host 

master, node001, node002, node003  bin/cg.A.4 > 

output/cg.A.4_3.txt 

 

The configuration file’s CLUSTER_SIZE parameter is updated to 1, 2, 4, and 8 to build 

the cluster of that size before the above steps.  CG can only be compiled in cluster size 

that is a power of two.  In addition MASTER_INSTANCE_TYPE and 

NODE_INSTANCE_TYPE parameters are updated to m1.small, c1.medium and 
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m1.medium instance types as necessary.  Sample result of the execution is copied to 

Appendix C.  The analysis of the CG benchmark is in chapter 7. 

 

5.6.3.2 Fourier Transform Benchmark 

 

FT is written in Fortran language and comes in different classes.  FT is compiled for 

Class A on the master node of the cluster.  A sample make command output that is run to 

build UNIX/Linux CG executable for four-node on c1.medium instance type is shown in 

Appendix B under Benchmark Commands. 

 

root@master:/home/ec2-user/NPB3.3-MPI# make FT NPROCS=4 

CLASS=A 

 

This command creates an executable ft.A.4 that can be successfully run on a cluster of 

four nodes.  Unlike other benchmarks, NPB benchmarks must be compiled specifically to 

build executable for a cluster size.  For example, when the executable file ft.A.4 is run on 

a three-node cluster, a run time error is received indicating the number of processes 

(nodes) is not matching with the executable.  So, in order to build an executable file for 

an eight-node cluster the above command is run with NPROCS=8 in command line 

argument that created ft.A.8. 
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Once the compilations are complete, all these are executed using mpiexec command 

and the results are redirected to text files for later analysis.  Below is the sample 

command that is executed on a four-node cluster of c1.medium cluster for class A: 

 

root@master:/home/ec2-user/NPB3.3-MPI# mpiexec -host 

master, node001, node002, node003  bin/ft.A.4 > 

output/ft.A.4_3.txt 

 

The configuration file’s CLUSTER_SIZE parameter is updated to 1, 2, 4, and 8 to build 

the cluster of that size before the above steps.  FT can only be compiled in cluster size 

that is a power of two.  In addition, MASTER _INSTANCE_TYPE and 

NODE_INSTANCE_TYPE parameters are updated to m1.small, c1.medium and 

m1.medium instance types as necessary.  Sample result of the execution is copied to 

Appendix C.  The analysis of the CG benchmark is in chapter 7. 

 

5.6.3.3 Embarrassingly Parallel Benchmark  

 

EP is written in Fortran language and comes in different classes.  EP is compiled for 

Class A on the master node of the cluster.  A sample output of the make command that is 

run to build UNIX/Linux EP executable for four-node on c1.medium instance type is 

shown in Appendix B under Benchmark Commands. 
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root@master:/home/ec2-user/NPB3.3-MPI# make EP NPROCS=4 

CLASS=A 

 

This command creates an executable ep.A.4 that can be successfully run on a cluster of 

four nodes.  Unlike other benchmarks, NPB benchmarks must be compiled specifically to 

build executable for a cluster size.  For example, when the executable file ep.A.4 is run 

on a three-node cluster, a run time error is received indicating the number of processes 

(nodes) is not matching with the executable.  So, in order to build an executable file for 

an eight-node cluster the above command is run with NPROCS=8 in command line 

argument that created ep.A.8. 

 

Once the compilations are complete, all these are executed using mpiexec command 

and the results are redirected to text files for later analysis.  Below is the sample 

command that is executed on a four-node cluster of c1.medium cluster for class A: 

 

root@master:/home/ec2-user/NPB3.3-MPI# mpiexec -host 

master, node001, node002, node003  bin/ep.A.4 > 

output/ep.A.4_3.txt 

 

The configuration file’s CLUSTER_SIZE parameter is updated to 1, 2, 4, 6, and 8 to 

build the cluster of that size before the above steps.  In addition, MASTER 

_INSTANCE_TYPE and NODE_INSTANCE_TYPE parameters are updated to 
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m1.small, c1.medium m1.medium instance types as necessary.  Sample result of the 

execution is copied to Appendix C.  The analysis of the EP benchmark is in chapter 7. 

 

5.6.3.4 Stop/Terminate the cluster 

 

SSH tool WinSCP is used to transfer the result files on to the local development machine 

for analysis.  Secure connection is established with the master node for transferring the 

files.  After the output text files are transferred back to the local windows development 

machine the cluster is stopped.  A stopped cluster can be restarted at any time as 

necessary.  An example screenshot of stopping an eight-node cluster is available in 

Appendix D under EC2 screenshots. 
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Chapter 6 

 

SETTING UP, CONFIGURING AND BENCHMARKING WINDOWS AZURE 

 

The benchmarking of Windows Azure consists of several steps, which are explained in 

the subsections below.   

 

6.1 Building Windows Binaries 

 

The prerequisite software for building the windows binaries on the local Windows 

machine is VirtualBox and the HPC Linux guest OS on the VM is created with 

VirtualBox. 

 

Since the executable files created out of Amazon EC2 processes are for UNIX/Linux, 

they could not be directly executed on the Windows Azure platform.  Therefore, windows 

binaries had to be built using a cross-compiler.  In order to achieve this task VirtualBox is 

installed on the local Windows machine (host machine).  VirtualBox created a VM (guest 

machine).  This VM had an IP address that is later used to connect to it using WinSCP for 

file transfers.  HPC Linux Operating System, a Linux distribution is installed on this VM.  

The link to download HPC Linux is available in Appendix A.  HPC Linux comes with 

components called PToolsWin and x86_64-w64-mingw32-gcc cross-compiler.  When the 

windows binaries (.exe) are created using PToolsWin and the cross-compiler for each of 

the benchmarks, some dll files are also created in the process.  These dll files along with
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 the benchmark executable (.exe) are zipped and the entire package is transferred back to 

the Windows host machine.  The entire package is necessary for the benchmark to be 

executed on the Windows platform.  WinSCP is used to transfer the files back and forth 

between the guest OS and the host OS. 

 

6.2 Pre-requisites on the Local Windows Development Machine 

 

 Windows Azure HPC Scheduler SDK 64-bit 

 Windows Azure Subscription 

 Windows PowerShell 

 Microsoft Silverlight 

 

6.3 Deploy Windows Azure HPC Scheduler via PowerShell 

 

Windows Azure HPC Scheduler [MSDN12A] includes the components that enable the 

user to launch and manage HPC applications in Windows Azure platform.  The scheduler 

supports submitting and managing HPC MPI jobs and processes, and hence works with 

MPI versions of STREAM, IOR and NPB benchmarks.  The HPC Scheduler SDK 

package (version 1.6) is available for download from             

http://www.microsoft.com/en-us/download/details.aspx?id=28015.  Once the Windows 

Azure HPC Scheduler is deployed, it creates a Hosted Service containing a cluster of 

VMs (nodes) in the Windows Azure platform [Paratools12A] containing a head node and 
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several compute nodes.  The size of the cluster depended on configurations in the 

configuration and definition files.   

 

The screenshot of a successful creation of an eight-node cluster is shown in Appendix E 

under Windows Azure Screenshots.  PowerShell also lets the user create a certificate file 

(.cer) that is uploaded to the Management Certificates in Windows Azure Management 

Portal.  In addition, it also creates the SQL Azure persistent database for storage.  The 

process creates Azure storage along with the Hosted Service that is later used for 

benchmarking synchronizing in a cluster. 

 

6.3.1 Service Configuration and Service Definition Files 

 

During the Windows Azure HPC scheduler deployment Windows PowerShell uses 

service configuration (.cscfg) and service definition (.csdef) files to create a cluster.  The 

service definition file defines all the roles in the cluster such as HeadNode and 

ComputeNode.  It also defines the types of instance needed for these roles.  Service 

configuration file on the other hand defines the number of instances needed for both head 

node and compute nodes.   

 

After the HPC Scheduler is deployed successfully, the Windows Azure Management 

Portal appears with all the nodes in the ready state as shown in Appendix E under 

Windows Azure Screenshots. 
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6.4 Connect to HeadNode on the Cluster on Windows Azure 

 

Remote Desktop Protocol (RDP) connection utility is used to connect to the HeadNode of 

the cluster.  As shown in the screenshot of Windows Azure Management Portal in 

Appendix E, the ‘connect’ button is used to connect to the head node.  It starts a remote 

connection with the node after a secure login.  The Windows Azure Screenshots in 

Appendix E shows an example RDP connection to a head node. 

 

After a successful connection, the desktop of the head node as shown under Windows 

Azure Screenshots in Appendix E is displayed on the local machine.  From the Windows 

local machine, the benchmark zipped package is copied over to the head node of the 

cluster. 

 

6.5 Windows Azure Firewall Configuration for MPI Communication 

 

This is a very important step in making the benchmark ready for execution in the cluster.  

It involves running some commands using the PowerShell in a sequence on the 

HeadNode that unzipped and uploaded the benchmark files to the Azure storage and 

made them available for all the nodes in the cluster to execute.  In order to run MPI jobs 

in a cluster it is important to open the firewall between the compute nodes 

[Paratools12B].  First step is run ‘hpcpack create’ command that created a package 

in a compressed format [TechNet12A].  The command is as shown below: 
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PS C:\approot> hpcpack create C:\approot\benchmarks.zip 

C:\approot\benchmarks 

 

The next step is to run the ‘hpcpack upload’ command.  It uploads the compressed 

package to the Azure storage.  As mentioned above the dependent dll files are also part of 

the package. 

 

The next step is to synchronize the package from the Azure storage to all the nodes in the 

cluster.  This is done by running the following command: 

 

PS C:\approot>clusrun /nodegroup:computenode hpcsync 

 

Finally the following ‘clusrun’ command is run.  This command registered the 

benchmark binary to all nodes of the cluster and opens up the firewall for MPI 

communications.  Below is the command run on a small instance eight-node cluster for 

IOR benchmark: 

 

PS D:\Users\sinadmin> clusrun /nodegroup:ComputeNode 

hpcfwutil register IOR.exe 

 

The output of the clusrun command is shown in Appendix B under Benchmark 

Commands. 
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The IOR.exe file is now successfully registered to on all the nodes so it can run on them 

in parallel.  They all returned code 0 indicating success. 

 

6.6 Create and Submit MPI Jobs for Executing Benchmarks 

 

The HPC Job Manager utility is used to create, submit and monitor the MPI jobs from the 

head node.  HPC Job Manager presents an easy to use User Interface (UI) and is part of 

HPC Pack 2008.  The UI takes command lines as input to execute the benchmark.  HPC 

Pack 2008 is part of Windows HPC Server 2008 R2 OS.  It allows the user to monitor the 

progress of the jobs and categorizes them as failed, active, cancelled and finished.  The 

status of all jobs that are successfully executed are automatically changed from ‘active’ to 

‘finished’ state.   The job is in active state for as long as it is running.  The screenshot of 

the finished jobs in HPC Job Manager is shown in Appendix E under Windows Azure 

Screenshots. 

 

6.6.1 STREAM Benchmark 

 

STREAM is run from the HeadNode of the cluster.  STREAM benchmark’s executable 

file along with dependent dll files are synced to all the nodes before execution.  

Following is an example command that is used to run the benchmark on a four-node 

cluster of small instance type in the HPC Job Manager UI. 
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mpiexec -np 4 C:\Resources\ Directory\ 

c6b0e3213a6649099e59530e7834fb4b.  

ComputeNode.Microsoft.Hpc.Azure.LocalStorage.Application\be

nchmarks\2012-05-29T232012.0000000Z\stream_mpi.exe 

 

The argument -np is the number of processes (nodes) the benchmark is run on in 

parallel.  The results of the execution are copied to a text file and later moved to the local 

Windows machine for analysis. 

 

Service configuration and service definition files are used to control the size and the 

instance type.  Thus, the benchmark is run on cluster sized with 1, 2, 4, 6, and 8 nodes for 

small and medium instance types as required.  Sample result of the execution is copied to 

Appendix C.  The analysis of the STREAM benchmark is in chapter 7.   

 

6.6.2 Interleaved Or Random Benchmark 

 

IOR is run from the HeadNode of the cluster.  IOR benchmark’s executable file along 

with dependent dll files are synced to all the nodes before execution.  Following is an 

example command that is used to run the benchmark on a four-node cluster of small 

instance type in the HPC Job Manager UI. 
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mpiexec -np 4 C:\Resources\ Directory\ 

c6b0e3213a6649099e59530e7834fb4b.  

ComputeNode.Microsoft.Hpc.Azure.LocalStorage.Application\be

nchmarks\2012-05-29T232012.0000000Z\IOR.exe -b 1g -t 4m 

 

The argument -np is the number of processes (nodes) the benchmark is run on in 

parallel.  The results of the execution are copied to a text file and later moved to the local 

windows machine for analysis. 

 

Service configuration and service definition file are used to control the size and the 

instance type.  Thus, the benchmark is run on cluster sized with 1, 2, 4, 6, and 8 nodes for 

small and medium instance types as required.  Sample result of the execution is copied to 

Appendix C.  The analysis of the IOR benchmark is in chapter 7. 

 

6.6.3 NAS Parallel Benchmarks 

 

As with EC2, we consider three NPB 3.3 benchmarks to execute on Windows Azure 

platform: Conjugate Gradient (CG), Fourier Transform (FT), and Embarrassingly Parallel 

(EP) benchmark. 
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6.6.3.1 Conjugate Gradient Benchmark 

 

NBP CG is run from the HeadNode of the cluster.  CG benchmark’s executable file along 

with dependent dll files are synced to all the nodes before execution.  Following is an 

example command used to run the benchmark on a four-node cluster of small instance 

type in the HPC Job Manager UI. 

 

mpiexec -np 4 C:\Resources\ Directory\ 

c6b0e3213a6649099e59530e7834fb4b.  

ComputeNode.Microsoft.Hpc.Azure.LocalStorage.Application\be

nchmarks\2012-05-29T232012.0000000Z\ CG.A.4.exe 

 

The argument -np is the number of processes (nodes) the benchmark is run on in 

parallel.  The results of the execution are copied to a text file and later moved to the local 

windows machine for analysis. 

 

CG can only be compiled in cluster size that is a power of two.  Service configuration and 

service definition file are used to control the size and the instance type.  Thus, the 

benchmark is run on cluster sized with 1, 2, 4, and 8 nodes for small and medium 

instance types as required.  Sample output of the mpiexec command is available in 

Appendix C.  The analysis of the CG benchmark is in chapter 7. 
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6.6.3.2 Fourier Transform Benchmark 

 

NBP FT is run from the HeadNode of the cluster.  FT benchmark’s executable file along 

with dependent dll files are synced to all the nodes before execution.  Following is an 

example command used to run the benchmark on a four-node cluster of small instance 

type in the HPC 2008 R2 Job Manager UI: 

 

mpiexec -np 4 C:\Resources\ Directory\ 

c6b0e3213a6649099e59530e7834fb4b.  

ComputeNode.Microsoft.Hpc.Azure.LocalStorage.Application\be

nchmarks\2012-05-29T232012.0000000Z\ FT.A.4.exe 

 

The argument -np is the number of processes (nodes) the benchmark is run on in 

parallel.  The results of the execution are copied to a text file and later moved to the local 

windows machine for analysis. 

 

FT can only be compiled in cluster size that is a power of two.  Service configuration and 

service definition file are used to control the size and the instance type.  Thus, the 

benchmark is run on cluster sized with 1, 2, 4, and 8 nodes for small and medium 

instance types as required.  Sample output of the mpiexec command is available in 

Appendix C.  The analysis of the FT benchmark is in chapter 7. 
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6.6.3.3 Embarrassingly Parallel Benchmark 

 

NPB EP is run from the HeadNode of the cluster.  EP benchmark’s executable file along 

with dependent dll files are synced to all the nodes before execution.  Following is an 

example command used to run the benchmark on a four-node cluster of small instance 

type in the HPC Job Manager UI: 

 

mpiexec -np 4 C:\Resources\ Directory\ 

c6b0e3213a6649099e59530e7834fb4b.  

ComputeNode.Microsoft.Hpc.Azure.LocalStorage.Application\be

nchmarks\2012-05-29T232012.0000000Z\ EP.A.4.exe 

 

The argument -np is the number of processes (nodes) the benchmark is run on in 

parallel.  The results of the execution are copied to a text file and later moved to the local 

windows machine for analysis. 

 

Service configuration and service definition file are used to control the size and the 

instance type.  Thus, the benchmark is run on cluster sized with 1, 2, 4, 6, and 8 nodes for 

small and medium instance types as required.  Sample output of the mpiexec command 

is available in Appendix C.  The analysis of the EP benchmark is in chapter 7. 
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Chapter 7 

 

ANALYSIS OF RESULTS 

 

 

The Microsoft Excel 2010 built-in function T-TEST was used and a statistical analysis of 

the results obtained was performed.  The T-TEST function was used with two datasets as 

input, one for EC2 and one for Windows Azure that gave a p-value as output.  The p-

value is a number that is frequently used as a measure of comparison of two datasets.  A 

p-value not exceeding 0.05 is considered as indication of statistically significant 

difference between the datasets and a p-value exceeding 0.05 indicating statistically 

insignificant difference.  Each dataset for a benchmark was run with increasing number 

of nodes 1, 2, 4, 6 and 8.  And each benchmark inherently ran several iterations before 

giving an average value.  These average values were used to create the datasets for 

comparison for T-TEST. 

 

7.1  STREAM Benchmark 

 

STREAM benchmark primarily measures the memory bandwidth.  The MPI version of 

STREAM benchmark was used to run the benchmark on multiple processors.  The 

sustained memory bandwidth was measured for four computational kernels: copy, scale, 

add, and triad.  However, the analysis was mainly focused on stream triad as it performs a 
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combination of vector multiplication by a constant, and a sum on two source and one 

destination vectors thus allowing both scale and add operations. 

 

The STREAM benchmark by default ran for 10 iterations and gave an output of average 

values when executed in a cluster for both small and medium instance types.  For 

example in the below matrix a value of 4344.1400 for a two-node cluster on EC2 was the 

average of 10 iterations for Copy operation.  The Add and Triad operations also ran for 

10 iterations.  An example of such an output is available in Appendix C. 

 

7.1.1 EC2 Standard Small Instance (m1.small) Versus Azure Small 

 

The STREAM benchmark is mainly used to analyze the memory bandwidth of EC2 and 

Azure.  Hence, the focus is mainly on how the trends of average megabytes per second 

(MB/s) vary between the two public clouds rather than the average time for specific 

operations, which seem to be inconsistent most of the time. 

 

The average MB/s for the copy operation as shown in Figure 3 was higher for the EC2 

small instance even as the number of nodes was varied as 1, 2, 4, 6 and 8.  Though the 

average time taken for this operation seemed to be slightly inconsistent, the Azure small 

instance took more time than the EC2 instance did. 
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Figure 3: STREAM Copy - m1.small and Azure Small Instance Average 

 

      
 

Figure 4: STREAM Scale - m1.small and Azure Small Instance Average 

 

 

Scale adds a simple arithmetic operation.  Similar to the copy operation, the average 

MB/s for EC2 was higher than the Azure instance for all the nodes as shown in Figure 4.  

Though the average time was inconsistent for most of the runs, the Azure instance took 

less time for most nodes.   
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# of 

Nodes Copy Scale Add Triad 

  EC2 Azure EC2 Azure EC2 Azure EC2 Azure 

1 4677.0648 2823.5417 4555.1579 2839.9931 4724.8672 2732.7379 4526.2273 2588.2466 

2 4344.1400 2861.4200 4229.2200 2916.2400 4369.2400 2718.8900 4217.0000 2518.5000 

4 4006.1600 2897.0100 3906.7900 2894.7800 3990.6200 2715.4600 3891.3600 2513.3200 

6 4142.4000 2853.2100 4034.4600 2876.0200 4135.5500 2732.6400 4015.7100 2582.7300 

8 4022.2300 2870.1800 3973.8700 2897.7400 4052.0600 2743.3300 3938.8500 2574.3300 

P-value 0.000358437 0.000384909 0.00033495 0.000145284 

 

Table 3: STREAM - m1.small and Azure Small Instance Average MB/S 

 

# of 

Nodes Copy Scale Add Triad 

  EC2 Azure EC2 Azure EC2 Azure EC2 Azure 

1 0.0136 0.0144 0.0139 0.0138 0.0236 0.0232 0.0240 0.0242 

2 0.0170 0.0117 0.0138 0.0115 0.0203 0.0238 0.0207 0.0286 

4 0.0137 0.0137 0.0138 0.0134 0.0236 0.0236 0.0241 0.0244 

6 0.0135 0.0144 0.0137 0.0145 0.0169 0.0188 0.0240 0.0198 

8 0.0070 0.0120 0.0138 0.0116 0.0270 0.0218 0.0307 0.0235 

P-value 0.877795774 0.235662165 0.984262524 0.787531899 

 

Table 4: STREAM - m1.small and Azure Small Instance Average Time in S 
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Figure 5: STREAM Add - m1.small and Azure Small Instance Average 

 

    
 

Figure 6: STREAM Triad - m1.small and Azure Small Instance Average 

 

A stastistical analysis was performed to determine if the difference in throughput between 

the two clouds was significant.  The difference in throughput (avg MB/s) for all four 

operations copy, scale, add and triad between EC2 and Azure were found to be 

statistically significant with a p-value of 0.0001 for STREAM Triad (Table 3).  

Graphically, the add and triad operations as shown in Figure 5 and Figure 6 also indicated 

that the average throughput for EC2 were higher than Azure for small instance types.  

The througput in EC2 was much higher than Windows Azure cloud for the small instance 
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type.  This might be because of the different processors provided in EC2’s  small instance 

and Azure’s small instance (section 4.3).   

The difference in the average time taken by both EC2 and Azure for small instance type 

was found to be statisticaly insignificant with a p-value of 0.79 for STREAM Triad for 

the small instance type (Table 4). 

 

7.1.2 EC2 Standard Medium Instance (m1.medium) Versus Azure Medium 

 

When the STREAM benchmark was run on the medium instance type, EC2 m1.medium 

instance type provided higher throughput (MB/s) for all the four computational kernels 

while the number of nodes were being varied as 1, 2, 4, 6, and 8.  This is shown in Figure 

7, Figure 8, Figure 9 and Figure 10 for copy, scale, add and triad operations respectively 

below.  In addition, the average time taken for each of the operations by EC2 medium 

instance was much less compared to the Azure medium instance.  This might also be 

because EC2’s m1.medium instance has a processor of two EC2 compute units 

(equivalent to CPU capacity of 1.0-1.2 GHz 2007 Opteron or Xeon processor) as opposed 

to the quad-core AMD Opteron processor of Azure medium instance. 

 

The RAM size plays a key role for measuring the memory bandwidth using STREAM 

benchmark.  Evidently, m1.medium instance type of EC2 outperformed Azure medium 

instance that has an equivalent hardware configuration of 3.75 GB. 
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# of Nodes Copy Scale Add Triad 

  EC2 Azure EC2 Azure EC2 Azure EC2 Azure 

1 4019.5780 3280.6003 3854.0625 3266.85 3975.1726 2905.03 3862.2325 2680.64 

2 4008.3000 3253.7200 3844.3500 3275.60 4039.0700 2912.85 3900.6300 2686.60 

4 3988.0100 3395.3300 3892.5000 3405.06 3965.9000 3012.19 3873.1200 2780.18 

6 4090.2200 3396.2000 3986.4100 3421.25 4083.1400 3017.80 3942.8500 2789.75 

8 4073.4800 3364.6700 3945.0800 3378.15 4047.3700 2969.25 3947.1000 2741.68 

P-value 2.62036E-07 1.50158E-06 9.53245E-10 4.57339E-10 

 

Table 5: STREAM - m1.medium and Azure Medium Instance Average MB/S 

 

# of Nodes Copy Scale Add Triad 

  EC2 Azure EC2 Azure EC2 Azure EC2 Azure 

1 0.0082 0.0109 0.0085 0.0119 0.0176 0.0226 0.0179 0.0249 

2 0.0084 0.0135 0.0112 0.0128 0.0150 0.0215 0.0181 0.0207 

4 0.0113 0.0129 0.0087 0.0108 0.0178 0.0186 0.0156 0.0218 

6 0.0086 0.0106 0.0116 0.0120 0.0157 0.0215 0.0158 0.0238 

8 0.0107 0.0116 0.0082 0.0099 0.0152 0.0167 0.0153 0.0181 

P-value 0.021299775 0.075432341 0.019157137 0.007508744 

 

Table 6: STREAM - m1.medium and Azure Medium Instance Average Time in S 

 

The statistical analysis performed on the datasets for average MB/s and Average time 

showed that the difference between the two instance types were statistically significant 

for all the four operations with a p-value of 4.5E-10 for the average MB/s of STREAM 

Triad (Table 5) and 0.007 for the average time of STREAM Triad (Table 6). 
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Figure 7: STREAM Copy - m1.medium and Azure Medium Instance 

 

   

Figure 8: STREAM Scale - m1.medium and Azure Medium Instance 

 

 

   

Figure 9: STREAM Add- m1.medium and Azure Medium Instance 
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Figure 10: STREAM Triad - m1.medium and Azure Medium Instance 

 

 

7.1.3 EC2 High-CPU Medium instance (c1.medium) Versus Azure Medium 

 

The STREAM benchmark was also run on another medium instance type c1.medium of 

EC2 and compared with the Azure medium instance.  This was done to analyze if 

c1.medium performed better than Azure medium instance.  C1.medium has five times 

better computing power than m1.medium but has less RAM (1.75 GB) than m1.medium 

(section 4.3). 

 

The results showed that the average time taken by c1.medium was less than Azure 

medium instance, which means c1.medium was faster than Azure.  However, the 

throughput (average MB/s) of c1.medium was less than Azure medium for the copy and 

scale operations as shown in the graphs in Figure 11 and Figure 12 respectively and more 

than Azure medium instance type for Add and Triad operations as shown in the graphs in 

Figure 13 and Figure 14 respectively.   
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# of Nodes Copy Scale Add Triad 

  EC2 Azure EC2 Azure EC2 Azure EC2 Azure 

1 3699.3944 3280.6003 3576.5643 3266.85 3743.5912 2905.03 3679.2813 2680.64 

2 3125.1700 3253.7200 3258.4500 3275.60 3480.2400 2912.85 3207.8600 2686.60 

4 3294.3600 3395.3300 3245.5400 3405.06 3334.8800 3012.19 3345.7000 2780.18 

6 3173.5200 3396.2000 3147.3600 3421.25 3225.1600 3017.80 3204.8600 2789.75 

8 3051.7000 3364.6700 3020.9300 3378.15 3178.9600 2969.25 3187.1500 2741.68 

P-value 0.586556499 0.354999199 0.012026079 0.002426183 

 

Table 7: STREAM - c1.medium and Azure Medium Instance Average MB/S 
 

# of Nodes Copy Scale Add Triad 

  EC2 Azure EC2 Azure EC2 Azure EC2 Azure 

1 0.0101 0.0109 0.0094 0.0119 0.0133 0.0226 0.0137 0.0249 

2 0.0107 0.0135 0.0103 0.0128 0.0149 0.0215 0.0154 0.0207 

4 0.0097 0.0129 0.0094 0.0108 0.0134 0.0186 0.0134 0.0218 

6 0.0097 0.0106 0.0103 0.0120 0.0149 0.0215 0.0152 0.0238 

8 0.0106 0.0116 0.0109 0.0099 0.0148 0.0167 0.0145 0.0181 

P-value 0.033210533 0.04892193 0.003889974 0.002175783 

 

Table 8: STREAM - c1.medium and Azure Medium Instance Average Time in S 

 

 

From these results, it can also be seen that the throughput for c1.medium was more than 

that of m1.medium.  This might be because of the higher CPU capacity provided by the 

EC2’s High-CPU medium instance than the Azure medium instance (section 4.3).   
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The difference between the Azure medium instance and c1.medium were also found to be 

statistically significant for both average MB/s and average time for STREAM triad (Table 

7 and Table 8). 

 

   

 

Figure 11: STREAM Copy - c1.medium and Azure Medium Instance 

 

  

 

Figure 12: STREAM Scale - c1.medium and Azure Medium Instance 
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Figure 13: STREAM Add - c1.medium and Azure Medium Instance 

 

    

 

Figure 14: STREAM Triad - c1.medium and Azure Medium Instance 
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cover the file with no gaps and that do not overlap each other.  The test consists of 

creating a new file, writing it with data, then reading the data back. 

 

Caching appeared to have a big impact on READ/WRITE performance on both EC2 and 

Windows Azure platforms.  Therefore, the READ/WRITE values appeared to be higher 

after the first iteration of the execution.  For this reason, this benchmark was run for one 

iteration only so non-cached data could be analyzed from a performance perspective. 

 

7.2.1 EC2 Standard Small Instance (m1.small) Versus Azure Small 

 

The graph in Figure 15 shows the read and writes performance on Amazon EC2 m1.small 

instance type and Azure small instance type.  A block size of 1 GiB was used during the 

execution, which means that a test file of 1 GiB was written and then read while the 

benchmark was executed.  A transfer size of 4 MB was used which implies that each read 

operation will read the data in the chunks of 4 MB until the entire file of 1 GiB was read. 

 

Since the block size was 1 GiB and the RAM size in both the small instances was 1.7 GB 

this test had the benefit of buffered caching.  When large HPC applications are run on the 

Cloud, it is important to understand how well the buffered caching would help in the 

performance of the applications. 
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Figure 15: IOR - m1.small and Azure Small Instance 

 

 

# of Nodes Write Read 

  EC2 Azure EC2 Azure 

1 35.39 114.11 1620.84 949.15 

2 69.78 165.59 1851.46 736.30 

4 155.11 263.74 3717.61 1561.50 

6 199.97 629.11 3199.55 2725.77 

8 285.51 645.70 4311.75 4894.71 

P-value 0.069476615 0.217196694 

 

Table 9: IOR - m1.small and Azure Small Instance Average MiB/S 

 

   

The write performance in EC2 was better than that in Azure.  This was because the 

Amazon EC2 instance VM and the local instance store volumes are located in the same 

physical server; interaction with this storage was very fast, particularly for sequential 
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access.  Local instance store volumes are ideal for temporary storage of information that 

is continually changing, such as buffers, caches, scratch data, and other temporary 

content.  Amazon EC2 instance storage is designed for this purpose. 

 

A statistical analysis was performed and the values showed that the difference for both 

the write and read performance between the two instance types was found to be 

statistically insignificant with a p-value of 0.06 for Write operation and 0.92 for Read 

operation (Table 9). 

 

7.2.2 EC2 Standard Medium Instance (m1.medium) Versus Azure Medium 

 

In Figure 16, the read performances of Azure and EC2 were seen to be better than the 

write performances of the two clouds (Table 8).  Azure write performance was slightly 

better than EC2 write performance and was found to be statistically significant.  

However, the read performance of EC2 was higher than Azure’s read performance.  Both 

the medium instances had similar hardware configuration with EC2 having 3.75 GB 

RAM and Azure having 3.5 GB RAM.  In EC2 the test file was created and read from the 

local instance storage, which was located on the same server as of the VM itself, whereas 

in Azure it was read from the windows storage account.  This might have been the reason 

for the difference in read performances on the two clouds. 

 

 

 



69 

 

 
   

   Figure 16:  IOR - m1.medium and Azure Medium Instance 

 

 

 
# of Nodes Write Read 

  EC2 Azure EC2 Azure 

1 12.52 500.67 1629.23 699.25 

2 54.87 702.84 3292.59 1624.49 

4 145.92 950.5 6279.59 3088.93 

6 209.56 1082.62 9359.45 4365.26 

8 283.09 1075.59 12446.01 5262.51 

P-value 0.001564276 0.149689864 

 

Table 10: IOR - m1.medium and Azure Medium Instance Average MiB/S 

 

 

  

The difference between m1.medium and Azure medium instances was found to be 

significant statistically for the write performance with a p-value of 0.0015 (Table 10) 

unlike the small instance types. 
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7.2.3 EC2 High-CPU Medium Instance (c1.medium) Versus Azure Medium 

 

As in Figure 17, again the read performances were better than write performances.  The 

difference in write performance between the two clouds was comparatively less than the 

difference between their read performances.  The read performance of EC2 cloud was 

better than Azure Read performance.  This was because of the fact that in EC2, the file 

was accessed from the local instance storage that was faster to access.  Also, since the 

RAM size in c1.medium was only 1.7 GB compared to 3.75 GB in m1.medium it 

appeared that the read performance was better in m1.medium than c1.medium due to 

better buffering effect. 

 

 
 

Figure 17: IOR - c1.medium and Azure Medium Instance 
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# of Nodes Write Read 

  EC2 Azure EC2 Azure 

1 92.50 500.67 1658.09 699.25 

2 189.77 702.84 2906.45 1624.49 

4 345.24 950.5 5922.35 3088.93 

6 320.45 1082.62 7485.01 4365.26 

8 435.07 1075.59 8851.69 5262.51 

P-value 0.003723622 0.185188569 

 

Table 11: IOR - c1.medium and Azure Medium Instance Average MiB/S 

 
 

The statistical analysis performed showed that the difference in write performance 

between c1.medium and Azure medium instance type was statistically significant with a 

p-value of 0.0037 (Table 11). 

 

7.3  NAS Parallel Benchmarks (NPB -CG, FT, EP) 

 

In EP benchmark there was no communication between the nodes, hence it was a pure 

test for computation performance of the instance and the CPU capacity of the small 

instances would play a vital role.  The CG benchmark was quite memory intensive and it 

proved to be a test for communication performance.  The FT benchmark was used to test 

both the computation and communication performance of the instances.  For each of the 

benchmarks both the execution time and Mop/s (Millions of Operations/s) were 

measured. 
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The NPB benchmarks CG inherently ran 15 iterations and gave an output of average 

values when executed in a cluster.  For example in the below matrix for NPB-CG 

benchmark, a value of 6.86 for a two-node cluster on EC2 was the average of 15 

iterations.   

 

7.3.1 EC2 Standard Small Instance (m1.small) Versus Azure Small 

 

Though both EC2 and Azure small instance types used for this experiment had equivalent 

hardware configurations, Azure small instance was found to be faster than EC2 m1.small.  

The difference in the underlying architecture and implementation of MPI in the two 

clouds might have attributed to this behavior.  MPI impacts the communication 

performance.  The execution time taken by m1.small increased as the number of nodes 

was varied and was highest when CG was run on 8 nodes as shown in the graph below in 

Figure 18, whereas in Azure the execution time did not vary much even when the nodes 

were varied as 1, 2, 4, 6, and 8 nodes.  In all the cases, execution time of CG on Azure 

small instance was less compared to m1.small.  Also, the Millions of Operations 

generated per second (Mop/s) by Azure small instance was greater than m1.small for all 

the number of nodes as shown in graph below in Figure 18.  The EC2 standard small 

instance did not seem to perform well for the communication intensive task. 
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Figure 18: CG - m1.small and Azure Small Instance 

  

# of Nodes Time (S) Mop/s 

  EC2 Azure EC2 Azure 

1 4.80 3.77 311.65 397.45 

2 6.86 4.33 218.21 345.86 

4 30.53 4.43 49.02 338.03 

8 90.64 4.13 16.51 362.59 

P-value 0.242657801 0.053827059 

 

Table 12: CG - m1.small and Azure Small Instance 

 

The FT benchmark inherently ran 6 iterations and gave an output of average values when 

executed in a cluster.  For example in Table 13 below for NPB-FT benchmark, a value of 

27.03 for a two-node cluster on EC2 was the average of six iterations. 
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Figure 19: FT - m1.small and Azure Small Instance 

 

# of Nodes Time (S) Mop/s 

  EC2 Azure EC2 Azure 

1 20.86 10.90 342.05 654.68 

2 27.03 13.73 264.04 519.95 

4 29.88 13.47 238.82 529.92 

8 29.61 9.17 241.05 778.64 

P-value 0.00 0.01 

 

Table 13: FT - m1.small and Azure Small Instance 

 

In small instance type, Azure instance was found to be much faster than the EC2 instance.  

Though both instance types have equivalent configurations, Azure small instance took 

much less time than EC2 m1.small for the execution of FT benchmark as shown in Figure 

19 above.  This might be because of the processor type used in EC2 versus Windows 

Azure.  The details of hardware specifications are outlined in section 4.3 for both the 

cloud architectures.  It was also observed that the mop generated per second was higher 

for Azure medium instance than m1.small for all the 1, 2, 4, 6, and 8 nodes.   
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Figure 20: EP - m1.small and Azure Small Instance 

 

 

 
# of Nodes Time (S) Mop/s 

  EC2 Azure EC2 Azure 

1 58.42 36.44 9.19 14.73 

2 30.59 18.05 17.55 29.75 

4 15.48 9.35 34.68 57.44 

6 10.56 6.55 50.83 81.93 

8 8.09 4.93 66.37 108.97 

P-value 0.413384128 0.294118542 

 

Table 14: EP - m1.small and Azure Small Instance 

 

 

In both EC2 and Azure small instance types, the execution time for EP benchmark kept 

decreasing as the number of nodes were being increased and it took the least time when 

run on eight nodes and maximum time when run on one node. This is shown in the graph 

in Figure 20 above.  In addition, the Mop/s increased as the number of nodes increased 

with the highest Mop/s obtained when the benchmark was run on eight nodes on both the 

Azure and EC2 small instance types.  When the two instance types are compared it 
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appears that Azure small instance was faster than the EC2 small instance and also Azure 

small instance generates more Mop/s than the EC2 small (m1.small) instance type.  This 

was because of the difference in the type of underlying processor that the two small 

instances provide.  M1.small has 1 virtual core with 1 EC2 compute unit (section 4.3), 

whereas Azure small instance provides quad-core processor of 2.10 GHz. 

 

Though graphically there seemed to be much difference between the EC2 and Azure 

small instance types, a statistical analysis was performed to see if these differences were 

significant.  This analysis showed that the difference in values between the two small 

instance types were statistically significant for CG benchmark with a p-value of 0.05 

(Table 12) and for FT benchmark with a p-value of 0.01 for Mop/s (Table 13).   

 

7.3.2 EC2 Standard Medium Instance (m1.medium) Versus Azure Medium 

  

           

Figure 21: CG - m1.medium and Azure Medium Instance 
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# of Nodes Time (S) Mop/s 

  EC2 Azure EC2 Azure 

1 3.03 3.80 494.02 393.77 

2 3.26 3.04 458.82 492.04 

4 3.93 3.98 380.37 375.71 

8 7.57 2.73 197.57 547.98 

P-value 0.40 0.41106823 

 

Table 15: CG - m1.medium and Azure Medium Instance 

 

Both Azure medium instance and EC2’s m1.medium have equivalent configurations.  

M1.medium performed better on one node, taking less execution time than Azure 

medium instance and generating more mop per second as shown in the graph in Figure 21 

above.  The performance of m1.medium deteriorates as the number of nodes was varied 

as 2, 4, 6, and 8 nodes.  Azure medium instance performed better than m1.medium 

instance on all other nodes.  The difference in the MPI implementations (MS-MPI and 

MPICH2) between Windows Azure and EC2, which is required for communication 

performance in a cluster might have contributed to this behavior. The differences seemed 

to be statistically insignificant when a statistical analysis was performed with the values 

in Table 15 above. 

 

 

For the FT benchmark it was observed that Azure medium instance performed better than 

EC2 standard medium instance (m1.medium) only when the benchmark was executed on 

one node as shown in the graph below in Figure 22 below.  The difference in the 

processor type (section 4.3) and implementation of MPI (MS-MPI and MPICH2) in EC2 
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and Windows Azure might have contributed to this behavior.  When the number of nodes 

were varied as 2, 4, 6, and 8, the performance of m1.medium got better and was found to 

be faster than Azure medium instance.   

 

    

Figure 22: FT - m1.medium and Azure Medium Instance 

 

 

# of Nodes Time (S) Mop/s 

  EC2 Azure EC2 Azure 

1 12.71 11.06 561.52 645.40 

2 10.35 14.02 689.66 509.00 

4 7.14 11.02 999.00 647.52 

8 5.02 7.23 1421.80 987.38 

P-value 0.39 0.36 

 

Table 16: FT - m1.medium and Azure Medium Instance 
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Figure 23: EP - m1.medium and Azure Medium Instance 

 

# of Nodes Time (S) Mop/s 

  EC2 Azure EC2 Azure 

1 32.32 40.70 16.61 13.19 

2 16.16 23.87 33.23 22.49 

4 8.40 11.97 63.90 44.85 

6 5.46 7.69 98.29 69.83 

8 4.22 6.08 127.30 88.24 

P-value 0.582828501 0.442356217 

 

Table 17: EP - m1.medium and Azure Medium Instance 

 

 

Unlike the small instance type, in medium instance type the EC2’s m1.medium was faster 

and performed better than the Azure medium instance.  The time taken for the EP 
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of nodes were varied from one to eight and was maximim when run on eight nodes.  

These behaviors are shown in the graphs in Figure 23 above.  The EC2 m1.medium 

instance type took less time than Azure medium instance and generated greater Mop/s 

than Azure Medium instance type.  The difference in the processor types in EC2 and 

Azure medium instances seems to affect the performance.  M1.medium has one virtual 

core with 2 EC2 compute units (section  4.3) while Azure medium instance provides 2.09 

GHz processor speed and has two cores. 

 

A statistical analysis was performed to determine how significant the difference between 

m1.medium and Azure medium instance types was.  This difference was found to be 

statistically insignificant as shown from the p-values in Table 15, Table 16 and Table 17.  

For CG benchmark, EC2 performed better on one node and for FT benchmark Azure 

performed better on one node only with its performance deteriorating for rest of the 

nodes. 

 

7.3.3 EC2 High-CPU Medium Instance (c1.medium) Versus Azure Medium 

 

C1.medium was found to be faster than the Azure medium instance.  The performance of 

c1.medium got better as the number of nodes was increased.  The execution time taken by 

c1.medium was less than that taken by Azure medium instance and also the the Mop 

generated per second by c1.medium was higher than Azure medium instance.  This is 

reflected in the graph in Figure 24 below.  Though c1.medium has a RAM of 1.7 GB 

compared to 3.75 GB RAM size of  Azure medium instance, c1.medium performs better 
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than the latter.  So, the high cpu power of c1.medium compared to Azure medium 

instance seemed to contribute towards the better performance of c1.medium. 

 

    

Figure 24: CG - c1.medium and Azure Medium Instance 

 

 

# of Nodes Time (S) Mop/s 

  EC2 Azure EC2 Azure 

1 2.56 4.33 583.53 345.24 

2 2.1 3.13 714.1 478.06 

4 1.54 4.12 969.91 363.38 

8 1.53 3.38 974.97 443.09 

P-value 0.003321119 0.020320918 

 

Table 18: CG - c1.medium and Azure Medium Instance 
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Figure 25: FT - c1.medium and Azure Medium Instance 

 

 

 
# of Nodes Time (S) Mop/s 

  EC2 Azure EC2 Azure 

1 10.86 11.06 657.03 645.40 

2 8.75 14.02 815.47 509.00 

4 6.36 11.02 1121.55 647.52 

8 5.14 7.23 1387.23 987.38 

P-value 0.16 0.47 

 

Table 19: FT - c1.medium and Azure Medium Instance 
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the Mop generated per second was higher for c1.medium than Azure medium instance for 

all the nodes.  The graphs in Figure 25 reflect this behavior. 

 

    

Figure 26: EP - c1.medium and Azure Medium Instance 

 

 

 
# of Nodes Time (S) Mop/s 

  EC2 Azure EC2 Azure 

1 27.34 40.70 19.63 13.19 

2 13.66 23.87 39.30 22.49 

4 6.83 11.97 78.65 44.85 

6 4.58 7.69 117.21 69.83 

8 3.70 6.08 144.93 88.24 

P-value 0.410045319 0.278304561 

 

Table 20: EP - c1.medium and Azure Medium Instance 

 

 

C1.medium was faster than EC2’s m1.medium instance type (section 7.3.2).  C1.medium 

has five times more CPU power than m1.medium.  C1.medium has two virtual cores and 
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GHz processing power.  The EC2 c1.medium was much faster than Azure medium 

instance.  C1.medium took much less time than Azure medium instance.  The time taken 

by EP benchmark kept decreasing as the number of nodes were varied and was least 

while it was run on 8 nodes.  The Mop generated per second was found to be increasing 

in both c1.medium and Azure medium instance types as the nodes were varied as 1, 2, 4, 

6, and 8 nodes with m1.medium generating more mop per second than Azure medium 

instance.  These behaviors are reflected in the graphs in Figure 26 above.  This difference 

in the mop generated per second was found to be larger than the difference between 

m1.medium and Azure medium instance.  This might be because of the higher computing 

power provided by the c1.medium instance type than m1.medium. 

 

The statistical analysis performed showed that the difference between c1.medium and 

Azure medium instance types was found to statistically significant for the CG benchmark 

with a p-value of 0.003 for the execution time and a p-value of 0.02 for Mop/s (Table 18).  

The p-values for FT (Table 19) and EP (Table 20) benchmarks were found to be 

statistically insignificant. 
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Chapter 8 

 

CONCLUSION 

 

The conclusions are categorized by the following output types: Memory bandwidth, I/O 

Performance and Communication & Computational performance for Amazon EC2 and 

Windows Azure cloud platforms and are based on the detailed analysis performed in 

Chapter 7. 

 

Memory bandwidth appeared to be more for EC2’s standard small instance m1.small 

when compared to Windows Azure’s small instance type.  The graphs in the detail 

analysis indicated that memory bandwidth was consistently higher for EC2 than 

Windows Azure when cluster size increased.  Further statistical analysis confirmed the 

same behavior.  Memory bandwidth fared better for EC2 compared to Windows Azure.  

Though a detailed analysis was performed on the STREAM benchmark, it was hard to 

conclude which of the two small instances was faster between Amazon EC2 and 

Windows Azure when execution time was considered as a measure. 

 

The detailed analysis of EC2’s standard medium instance m1.medium and Azure’s 

medium instance type clearly showed that m1.medium was faster and provided much 

better memory bandwidth compared to Azure’s medium instance type.  As the cluster size
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 increased the shared memory bandwidth showed increased performance for EC2 

compared to Azure.  In comparison of EC2’s High-CPU medium instance (c1.medium) 

and Azure’s medium, EC2 clearly showed better memory bandwidth. 

 

I/O comparison involved measuring READ and WRITE operations with varied number 

of nodes on both Amazon EC2 and Windows Azure.  From the detailed analysis it 

appeared that difference for both read and write performances was insignificant in both 

the platforms for EC2’s m1.small and Azure’s small instance types.  This means that 

small instances performed almost same for read and write in EC2 and Windows Azure.  

This behavior was further confirmed from the statistical analysis that proved it 

insignificant. 

 

For the medium instances, Azure’s medium instance appeared to have better write 

performance than EC2’s m1.medium write performance.  At the same time, EC2 

performed better for read operation over Azure’s medium instance.  Detailed analysis 

proved this behavior.  This was because on EC2, the data was written and read from the 

local instance storage.  EC2’s other medium instance c1.medium showed similar behavior 

when compared to Azure’s medium instance. 

 

It was clear that Windows Azure performed better than EC2 in both communication and 

computational performances for small instance types with increasing number of nodes in 

a cluster.  Problem Class A was selected to run the NPB benchmarks on both the 

platforms.  The communication and computational power consistently increased with the 
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increasing number of nodes in both the platforms.  However, Windows Azure 

performance was better in all the cases when compared to EC2. 

 

On the medium instances communication performance (CG) of Azure (medium instance) 

appeared to have performed better than EC2’s m1.medium instance when the number of 

nodes was varied as 2, 4, 6, and 8 nodes except on one node where m1.medium 

performed better.  Nevertheless, the Computational performance (EP) of m1.medium 

instance was better than Azure’s medium instance for all the nodes. 

 

The communication performance of EC2’s High-CPU medium instance, c1.medium 

appeared to be better than Azure’s medium instance.  Same behavior was observed for 

computational power also.  EC2’s c1.medium instance computational performance was 

better compared to Azure’s medium instance because of the high CPU power of 

c1.medium instance. 

 

Overall, it appeared that Amazon EC2 was well suited for memory intensive applications.  

Both Small and Medium Amazon instance types showed this behavior.  Windows Azure 

on the other hand appeared to be better for communication performance for both small 

and medium instance types.  For computational and communication performance 

perspective Amazon EC2’s c1.medium instance type appeared to be more suitable over 

Window’s Azure’s comparable instance types.



88 

 

8.1 Future Research 

 

From the research accomplished during the course of this thesis, there appeared to be a 

lot of scope for benchmarking and comparing performances of various public cloud 

computing platforms.  The scope of this thesis was limited to benchmarking Amazon EC2 

and Windows Azure with STREAM, IOR and NPB benchmarks.  NPB3.3 benchmark 

alone has 12 benchmarks with six Problem Classes.  Each problem class is a level of 

complexity of the benchmark problem.  These problem classes can be further explored to 

benchmark the cloud platforms.  Amazon and Microsoft are innovating and regularly 

implementing newer instance types and are supporting Operating Systems that were not 

supported earlier.  Windows Azure particularly is evolving at the time of writing this 

thesis and is adding new Operating Systems.  So, it presents a lot of scope for research on 

assessing performance both from commercial and scientific perspective.   

 

This thesis benchmarked the small and medium instance types of both Amazon EC2 and 

Windows Azure.  A cluster of 8 nodes was used for this purpose and HPC benchmarks 

were executed on the same by increasing the number of nodes that measured memory 

bandwidth, I/O performance and Communication & Computational performance of these 

two cloud platforms.  This helped in understanding how the performance was impacted 

when the number of nodes in the cluster was increased and how it was impacted when the 

instance types were varied from small to medium at the same time.  But, since HPC 
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applications require clusters with really high computing power, the large and extra-large 

(or the cluster compute instance type in EC2) instance types and also larger cluster sizes 

could be used to get significant performance improvements

 

There are organizations and researchers who have performed experiments on Amazon 

EC2 but not many are out there working on Windows Azure.  So the benchmarking 

process presented some challenges including building the windows binaries that are 

compatible with MS-MPI for Azure platform.  These benchmarks were written in C and 

Fortran languages and are inherently supported by GCC and MPICC compiler for MPI 

versions.  They were not written for benchmarking Windows platform.  Cross-compilers 

had to be used to build the windows binaries.  This area can be further explored for 

benchmarking Windows Platforms. 
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APPENDIX A 

 

Metrics  

 

MPI STREAM Benchmark: 

Memory bandwidth rate: Memory bandwidth is typically measured in bytes/sec or 

megabytes/sec (MB/s). STREAM benchmark outputs the memory bandwidth in MB/s 

and the same unit is also used in graphs and charts as required for Copy, Scale, Add and 

Triad for Amazon EC2’s Standard Small instance and High-CPU medium instance. 

Also, average time, minimum time and the maximum time for each operation were 

calculated and documented in seconds. When multiple cores are used for 

experimentation, memory bandwidth will be determined and represented in the same way 

as above. 

This MPI version of this benchmark is downloaded from  the below url: 

http://www.cs.virginia.edu/stream/FTP/Code/Versions/ 

 

IOR Benchmark (POSIX Mode): 

 

In POSIX mode, the benchmarkwasrun like all other MPI programs. IOR generates a 

detailed output file that indicates the parameters used to initiate the runs. The maximum 

read and writes are reported in MiB/sec. 1 Mebibytes (MiB) = 1,048,576 bytes. To get 

MB/sec MiB/sec must be multiplied by 1.048. 

 

Block Size: Contiguous bytes to write per task (e.g., 8, 4k, 2m, 1g, i.e., the whole size of 

the written data) 

 

Transfer Size: Size of transfer in bytes (e.g., 8, 4k, 2m, 1g, i.e., the amount of data of a 

single I/O operation) 

 

Repetitions: Number of repetitions of test 

 

File-per-process: Accesses a single file for each processor; defaultwasa single file 

accessed by all processors 

Example: 

Max Write: 106.07 MiB/sec (111.22 MB/sec) 
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Max Read: 87.04 MiB/sec (91.27 MB/sec) 

This benchmark is downloaded from the below url: 

http://sourceforge.net/projects/ior-sio/ 

 

MPI NAS Parallel Benchmarks: 

 

EP, FT and CG benchmarks were run on the Amazon instances on 1, 2, 4, and 8 nodes 

and the corresponding execution time in seconds were measured. The Million operations 

per second (Mop/s) for each benchmark is also measured. 

 

This benchmark is downloaded from the below url: 

https://www.nas.nasa.gov/cgi-bin/software/start 

http://sourceforge.net/projects/ior-sio/
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APPENDIX B 

 

Configuration File and Benchmark Commands 

 

 

StarCluster Configuration File: 

 

 
#################################### 

## StarCluster Configuration File ## 

#################################### 

 

[global] 

# configure the default cluster template to use when starting a cluster 

# defaults to 'smallcluster' defined below. this template should be 

usable 

# out-of-the-box provided you've configured your keypair correctly 

DEFAULT_TEMPLATE=m1.small-AMI-cluster 

# enable experimental features for this release 

ENABLE_EXPERIMENTAL=True 

# number of seconds to wait when polling instances (default: 30s) 

#REFRESH_INTERVAL=15 

# specify a web browser to launch when viewing spot history plots 

#WEB_BROWSER=chromium 

 

[aws info] 

# This is the AWS credentials section. 

# These settings apply to all clusters 

# replace these with your AWS keys 

AWS_ACCESS_KEY_ID = AKIAJVVYYC2QTZVPNCQA 

AWS_SECRET_ACCESS_KEY = YOnrYCbg07NvxOcrZkHchpwsATn3MnIEPVJ01Nr5 

# replace this with your account number 

AWS_USER_ID= 390135667176 

# Uncomment to specify a different Amazon AWS region  (OPTIONAL) 

# (defaults to us-east-1 if not specified) 

# NOTE: AMIs have to be migrated! 

#AWS_REGION_NAME = eu-west-1 

#AWS_REGION_HOST = ec2.eu-west-1.amazonaws.com 

# Uncomment these settings when creating an instance-store (S3) AMI 

(OPTIONAL) 

#EC2_CERT = /path/to/your/cert-asdf0as9df092039asdfi02089.pem 

#EC2_PRIVATE_KEY = /path/to/your/pk-asdfasd890f200909.pem 

# Uncomment these settings to use a proxy host when connecting to AWS 

#aws_proxy = your.proxyhost.com 

#aws_proxy_port = 8080 

#aws_proxy_user = yourproxyuser 

#aws_proxy_pass = yourproxypass 

 

# Sections starting with "key" define your keypairs 
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# (see the EC2 getting started guide tutorial on using ec2-add-keypair 

to learn 

# how to create new keypairs) 

# Section name should match your key name e.g.: 

[key winkey] 

#KEY_LOCATION= ~/.ssh/mykey.rsa 

KEY_LOCATION= S:\THESIS\EC2\winkey.rsa 

# You can of course have multiple keypair sections 

# [key my-other] 

# KEY_LOCATION=/home/myuser/.ssh/id_rsa-my-other-gsg-keypair 

 

# Sections starting with "cluster" define your cluster templates 

# Section name is the name you give to your cluster template e.g.: 

# [cluster smallcluster] 

 

[cluster m1.small-AMI-cluster]  

 

# change this to the name of one of the keypair sections defined above 

KEYNAME = winkey 

 

# number of ec2 instances to launch 

CLUSTER_SIZE = 8 

# create the following user on the cluster 

CLUSTER_USER = ec2-user 

 

PLUGINS = mpich2 

 

# optionally specify shell (defaults to bash) 

# (options: tcsh, zsh, csh, bash, ksh) 

CLUSTER_SHELL = bash 

 

# AMI to use for cluster nodes. These AMIs are for the us-east-1 

region. 

# Use the 'listpublic' command to list StarCluster AMIs in other 

regions 

# The base i386 StarCluster AMI is ami-899d49e0 

# The base x86_64 StarCluster AMI is ami-999d49f0 

# The base HVM StarCluster AMI is ami-4583572c 

NODE_IMAGE_ID = ami-999d49f0 

# instance type for all cluster nodes 

# (options: cg1.4xlarge, c1.xlarge, m1.small, c1.medium, m2.xlarge, 

t1.micro, cc1.4xlarge, cc2.8xlarge, m1.large, m1.xlarge, m2.4xlarge, 

m2.2xlarge) 

NODE_INSTANCE_TYPE = m1.small 

 

# Uncomment to disable installing/configuring a queueing system on the 

# cluster (SGE) 

#DISABLE_QUEUE=True 

# Uncomment to specify a different instance type for the master node 

(OPTIONAL) 

# (defaults to NODE_INSTANCE_TYPE if not specified) 
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MASTER_INSTANCE_TYPE = m1.small 

 

# Uncomment to specify a separate AMI to use for the master node. 

(OPTIONAL) 

# (defaults to NODE_IMAGE_ID if not specified) 

MASTER_IMAGE_ID = ami-999d49f0 

 

# availability zone to launch the cluster in (OPTIONAL) 

# (automatically determined based on volumes (if any) or 

# selected by Amazon if not specified) 

#AVAILABILITY_ZONE = us-east-1c 

# list of volumes to attach to the master node (OPTIONAL) 

# these volumes, if any, will be NFS shared to the worker nodes 

# see "Configuring EBS Volumes" below on how to define volume sections 

#VOLUMES = myvol1 

 

[plugin mpich2] 

setup_class = starcluster.plugins.mpich2.MPICH2Setup 

 

# list of plugins to load after StarCluster's default setup routines 

(OPTIONAL) 

# see "Configuring StarCluster Plugins" below on how to define plugin 

sections 

#[cluster t1-micro-trial-cluster] 

#PLUGINS = mpich2 

#KEYNAME = mykey 

#NODE_INSTANCE_TYPE = t1.micro 

#CLUSTER_SIZE = 2 

#NODE_IMAGE_ID = ami-31814f58 

# list of permissions (or firewall rules) to apply to the cluster's 

security 

# group (OPTIONAL). 

#PERMISSIONS = ssh, http 

# Uncomment to always create a spot cluster when creating a new cluster 

from 

# this template. The following example will place a $0.50 bid for each 

spot 

# request. 

#SPOT_BID = 0.50 

 

########################################### 

## Defining Additional Cluster Templates ## 

########################################### 

 

# You can also define multiple cluster templates. 

# You can either supply all configuration options as with smallcluster 

above, 

# or create an EXTENDS=<cluster_name> variable in the new cluster 

section to 

# use all settings from <cluster_name> as defaults. Below are a couple 

of 

# example cluster templates that use the EXTENDS feature: 
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# [cluster mediumcluster] 

# Declares that this cluster uses smallcluster as defaults 

# EXTENDS=smallcluster 

# This section is the same as smallcluster except for the following 

settings: 

# KEYNAME=my-other-gsg-keypair 

# NODE_INSTANCE_TYPE = c1.xlarge 

# CLUSTER_SIZE=8 

# VOLUMES = biodata2 

# [cluster largecluster] 

# Declares that this cluster uses mediumcluster as defaults 

# EXTENDS=mediumcluster 

# This section is the same as mediumcluster except for the following 

variables: 

# CLUSTER_SIZE=16 

############################# 

## Configuring EBS Volumes ## 

############################# 

 

# A new [volume] section must be created for each EBS volume you wish 

to use 

# with StarCluser. The section name is a tag for your volume. This tag 

is used 

# in the VOLUMES setting of a cluster template to declare that an EBS 

volume is 

# to be mounted and nfs shared on the cluster. (see the commented 

VOLUMES 

# setting in the example 'smallcluster' template above) 

# Below are some examples of defining and configuring EBS volumes to be 

used 

# with StarCluster: 

 

# Sections starting with "volume" define your EBS volumes 

# Section name tags your volume e.g.: 

# [volume myvol1] 

# (attach 1st partition of volume vol-c9999999 to /home on master node) 

# VOLUME_ID = vol-c9999999 

# MOUNT_PATH = /home 

 

# Same volume as above, but mounts to different location 

# [volume biodata2] 

# (attach 1st partition of volume vol-c9999999 to /opt/ on master node) 

# VOLUME_ID = vol-c999999 

# MOUNT_PATH = /opt/ 

 

# Another volume example 

# [volume oceandata] 

# (attach 1st partition of volume vol-d7777777 to /mydata on master 

node) 

# VOLUME_ID = vol-d7777777 

# MOUNT_PATH = /mydata 
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# Same as oceandata only uses the 2nd partition instead 

# [volume oceandata] 

# (attach 2nd partition of volume vol-d7777777 to /mydata on master 

node) 

# VOLUME_ID = vol-d7777777 

# MOUNT_PATH = /mydata 

# PARTITION = 2 

##################################### 

## Configuring StarCluster Plugins ## 

##################################### 

 

# Sections starting with "plugin" define a custom python class which 

can 

# perform additional configurations to StarCluster's default routines. 

These 

# plugins can be assigned to a cluster template to customize the setup 

# procedure when starting a cluster from this template 

# (see the commented PLUGINS setting in the 'smallcluster' template 

above) 

# Below is an example of defining a plugin called 'myplugin': 

 

# [plugin myplugin] 

# myplugin module either lives in ~/.starcluster/plugins or is 

# in your PYTHONPATH 

# SETUP_CLASS = myplugin.SetupClass 

# extra settings are passed as arguments to your plugin: 

# SOME_PARAM_FOR_MY_PLUGIN = 1 

# SOME_OTHER_PARAM = 2 

 

############################################ 

## Configuring Security Group Permissions ## 

############################################ 

 

# [permission ssh] 

# protocol can be: tcp, udp, or icmp 

# protocol = tcp 

# from_port = 22 

# to_port = 22 

# cidr_ip = <your_ip>/32 

 

# example for opening port 80 on the cluster to a specific IP range 

# [permission http] 

# protocol = tcp 

# from_port = 80 

# to_port = 80 

# cidr_ip = 18.0.0.0/24 

 

 

 

STREAM Commands: 
 

root@master:/home/ec2-user/STREAM-MPI# mpicc -DPARALLEL_MPI -O3 -o 

stream_mpi stream_mpi.c 
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root@master:/home/ec2-user/STREAM-MPI# mpiexec -host master, node001, 

node002, node003 ./stream_mpi > output/c1.m_n4.1.txt 

 

 

IOR Commands: 
 

root@master:/mnt/ec2-user/IOR/src/C# make 

 

mpicc -g -D_LARGEFILE64_SOURCE -D_FILE_OFFSET_BITS=64  -c IOR.c 

mpicc -g -D_LARGEFILE64_SOURCE -D_FILE_OFFSET_BITS=64  -c utilities.c 

mpicc -g -D_LARGEFILE64_SOURCE -D_FILE_OFFSET_BITS=64  -c 

parse_options.c 

mpicc -g -D_LARGEFILE64_SOURCE -D_FILE_OFFSET_BITS=64  -c aiori-POSIX.c 

mpicc -g -D_LARGEFILE64_SOURCE -D_FILE_OFFSET_BITS=64  -c aiori-

noMPIIO.c 

mpicc -g -D_LARGEFILE64_SOURCE -D_FILE_OFFSET_BITS=64  -c aiori-

noHDF5.c 

mpicc -g -D_LARGEFILE64_SOURCE -D_FILE_OFFSET_BITS=64  -c aiori-

noNCMPI.c 

mpicc -o IOR IOR.o utilities.o parse_options.o \ 

  aiori-POSIX.o aiori-noMPIIO.o aiori-noHDF5.o aiori-

noNCMPI.o \ 

 

 

root@master:/mnt/ec2-user/IOR/src/C# mpiexec -host master, node001, 

node002, node003 ./IOR -b 1g -t 4m > output/c1.m_n4.1.txt. 

 

 

 

NPB Commands: 
 

 

CG: 
 
root@master:/home/ec2-user/NPB3.3/NPB3.3-MPI# make cg NPROCS=4 CLASS=A 

The output for this command appears as below. 

root@master:/home/ec2-user/NPB3.3-MPI# make CG NPROCS=4 CLASS=A 

========================================= 

   =      NAS Parallel Benchmarks 3.3      = 

   =      MPI/F77/C                        = 

========================================= 

 

cd CG; make NPROCS=4 CLASS=A 

make[1]: Entering directory `/home/ec2-user/NPB3.3-MPI/CG’ 

make[2]: Entering directory `/home/ec2-user/NPB3.3-MPI/sys’ 

make[2]: Nothing to be done for `all’. 

make[2]: Leaving directory `/home/ec2-user/NPB3.3-MPI/sys’ 

../sys/setparams CG 4 A 

mpif77 -c -I/usr/local/include -O CG.f 

mpif77 -O -o ../bin/CG.A.4 CG.o ../common/randi4.o 

../common/print_results.o ../common/timers.o -L/usr/local/lib -lmpi 

make[1]: Leaving directory `/home/ec2-user/NPB3.3-MPI/CG’ 

root@master:/home/ec2-user/NPB3.3-MPI# mpiexec -host master, node001, 

node002, node003  bin/cg.A.4 > output/cg.A.4_3.txt 
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FT: 
 

 
root@master:/home/ec2-user/NPB3.3-MPI# make FT NPROCS=4 CLASS=A 

   ========================================= 

   =      NAS Parallel Benchmarks 3.3      = 

   =      MPI/F77/C                        = 

========================================= 

 

cd FT; make NPROCS=4 CLASS=A 

make[1]: Entering directory `/home/ec2-user/NPB3.3-MPI/FT’ 

make[2]: Entering directory `/home/ec2-user/NPB3.3-MPI/sys’ 

make[2]: Nothing to be done for `all’. 

make[2]: Leaving directory `/home/ec2-user/NPB3.3-MPI/sys’ 

../sys/setparams FT 4 A 

mpif77 -c -I/usr/local/include -O FT.f 

mpif77 -O -o ../bin/FT.A.4 FT.o ../common/randi4.o 

../common/print_results.o ../common/timers.o -L/usr/local/lib -lmpi 

make[1]: Leaving directory `/home/ec2-user/NPB3.3-MPI/FT’ 

 

 

root@master:/home/ec2-user/NPB3.3-MPI# mpiexec -host master, node001, 

node002, node003  bin/ft.A.4 > output/ft.A.4_3.txt 

 

EP: 
 
root@master:/home/ec2-user/NPB3.3-MPI# make EP NPROCS=4 CLASS=A 

   ========================================= 

   =      NAS Parallel Benchmarks 3.3      = 

   =      MPI/F77/C                        = 

========================================= 

 

cd EP; make NPROCS=4 CLASS=A 

make[1]: Entering directory `/home/ec2-user/NPB3.3-MPI/EP’ 

make[2]: Entering directory `/home/ec2-user/NPB3.3-MPI/sys’ 

make[2]: Nothing to be done for `all’. 

make[2]: Leaving directory `/home/ec2-user/NPB3.3-MPI/sys’ 

../sys/setparams EP 4 A 

mpif77 -c -I/usr/local/include -O EP.f 

mpif77 -O -o ../bin/EP.A.4 EP.o ../common/randi4.o 

../common/print_results.o ../common/timers.o -L/usr/local/lib -lmpi 

make[1]: Leaving directory `/home/ec2-user/NPB3.3-MPI/EP’ 

 

root@master:/home/ec2-user/NPB3.3-MPI# mpiexec -host master, node001, 

node002, node003  bin/ep.A.4 > output/ep.A.4_3.txt 

 

 

Windows Azure Firewall Configuration for MPI Communication: 
 
PS C:\approot> hpcpack create C:\approot\benchmarks.zip 

C:\approot\benchmarks 

PS C:\approot>clusrun /nodegroup:computenode hpcsync 
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PS D:\Users\sinadmin> clusrun /nodegroup:ComputeNode hpcfwutil register 

IOR.exe C:\Resources\Directory\bbc7bb0ba58942cdb 

 

9c6785d69c92464.ComputeNode.Microsoft.Hpc.Azure.LocalStorage.Applicatio

n\benchmarks\2012-05-29T232012.0000000Z\IOR.exe 

 

-------------------------- COMPUTENODE8 returns 0 ---------------------

----- 

Successfully registered application IOR.exe 

 

-------------------------- COMPUTENODE7 returns 0 ---------------------

----- 

Successfully registered application IOR.exe 

 

-------------------------- COMPUTENODE6 returns 0 ---------------------

----- 

Successfully registered application IOR.exe 

 

-------------------------- COMPUTENODE5 returns 0 ---------------------

----- 

Successfully registered application IOR.exe 

 

-------------------------- COMPUTENODE4 returns 0 ---------------------

----- 

Successfully registered application IOR.exe 

 

-------------------------- COMPUTENODE3 returns 0 ---------------------

----- 

Successfully registered application IOR.exe 

 

-------------------------- COMPUTENODE2 returns 0 ---------------------

----- 

Successfully registered application IOR.exe 

 

-------------------------- COMPUTENODE1 returns 0 ---------------------

----- 

Successfully registered application IOR.exe 

 

-------------------------- Summary -------------------------- 

8 Nodes succeeded 

0 Nodes failed 

PS D:\Users\sinadmin> 
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APPENDIX C 

 

Sample Results 

 
 

Sample Result for STREAM benchmark run on a four-node cluster: 
 
STREAM version $Revision: 5.8 $ 

------------------------------------------------------------- 

This system uses 8 bytes per DOUBLE PRECISION word. 

------------------------------------------------------------- 

Array size = 2000000, Offset = 0 

Total memory required = 45.8 MB. 

Each test is run 10 times, but only 

the *best* time for each is used. 

------------------------------------------------------------- 

Printing one line per active thread.... 

------------------------------------------------------------- 

Your clock granularity/precision appears to be 1 microseconds. 

Each test below will take on the order of 5850 microseconds. 

   (= 5850 clock ticks) 

Increase the size of the arrays if this shows that you are  

not getting at least 20 clock ticks per test. 

------------------------------------------------------------- 

WARNING -- The above is only a rough guideline. 

For best results, please be sure you know the precision of  

your system timer. 

------------------------------------------------------------- 

Function     Rate (MB/s)   Avg time     Min time     Max time 

Copy:        3699.8023       0.0091       0.0086       0.0107 

Scale:       3563.4602       0.0094       0.0090       0.0107 

Add:         3754.6921       0.0134       0.0128       0.0155 

Triad:       3775.6051       0.0134       0.0127       0.0154 

------------------------------------------------------------- 

Solution Validates 

------------------------------------------------------------- 

No. of nodes 4; nodes with errors: 0 

Minimum Copy MB/s 3146.88 

Average Copy MB/s 3313.54 

Maximum Copy MB/s 3699.80 

Minimum Scale MB/s 3109.27 

Average Scale MB/s 3245.54 

Maximum Scale MB/s 3563.46 

Minimum Add MB/s 3154.40 

Average Add MB/s 3334.88 

Maximum Add MB/s 3754.69 

Minimum Triad MB/s 3170.40 

Average Triad MB/s 3345.70 

Maximum Triad MB/s 3775.61 
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Sample Result for IOR run on a four-node cluster: 
 
IOR-2.10.3: MPI Coordinated Test of Parallel I/O 

 

Run began:   Wed Jun  6 16:12:19 2012 

Command line used:  ./IOR -b 1g -t 4m 

Machine:   Linux master 

Summary: 

 api                = POSIX 

 test filename      = testFile 

 access             = single-shared-file 

 ordering in a file = sequential offsets 

 ordering inter file= no tasks offsets 

 clients            = 4 (1 per node) 

 repetitions        = 1 

 xfersize           = 4 MiB 

 blocksize          = 1 GiB 

 aggregate filesize = 4 GiB 

 

Operation   Max (MiB)   Min (MiB)  Mean (MiB)   Std Dev  Max (OPs)  Min 

(OPs)  Mean (OPs)   Std Dev  Mean (s)   

---------   ---------   ---------  ----------   -------  ---------  ---

------  ----------   -------  -------- 

write        345.24     345.24      345.24      0.00      86.31      

86.31       86.31      0.00    11.86424   EXCEL 

read         5922.35    5922.35     5922.35     0.00    1480.59    

1480.59     1480.59      0.00     0.69162   EXCEL 

 

Max Write: 345.24 MiB/sec (362.01 MB/sec) 

Max Read:  5922.35 MiB/sec (6210.04 MB/sec) 

 

Run finished: Wed Jun  6 16:12:32 2012 

 

 

Sample Result for NBP-CG run on a four-node cluster: 
 

NAS Parallel Benchmarks 3.3 -- CG Benchmark 

 

 Size    : 14000 

 Iterations   : 15 

 Number of active processes :   4 

 Number of nonzeroes per row :  11 

 Eigenvalue shift  : .200E+02 

 

   iteration           ||r||                 zeta 

 

        1       0.30634143529489E-12    19.9997581277040 

        2       0.31096276403002E-14    17.1140495745506 

        3       0.30804037245735E-14    17.1296668946143 

        4       0.31368886171027E-14    17.1302113581193 

        5       0.30931762620174E-14    17.1302338856353 

        6       0.30711211120903E-14    17.1302349879482 

        7       0.30014434726280E-14    17.1302350498916 

        8       0.30091464390590E-14    17.1302350537510 

        9       0.30845738922029E-14    17.1302350540101 
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       10       0.30464804270749E-14    17.1302350540284 

       11       0.30356703468820E-14    17.1302350540298 

       12       0.30110387739490E-14    17.1302350540299 

       13       0.29937783924423E-14    17.1302350540299 

       14       0.30298504149112E-14    17.1302350540299 

       15       0.30223982636897E-14    17.1302350540299 

 

 Benchmark completed  

 

 VERIFICATION SUCCESSFUL  

 

 Zeta is     0.1713023505403E+02 

 Error is    0.5226337199892E-13 

 

 CG Benchmark Completed. 

 

 Class           =                        A 

 Size            =                    14000 

 Iterations      =                       15 

 Time in seconds =                     4.12 

 Total processes =                        4 

 Compiled procs  =                        4 

 Mop/s total     =                   363.38 

 Mop/s/process   =                    90.84 

 Operation type  =           floating point 

 Verification    =               SUCCESSFUL 

 Version         =                      3.3 

 Compile date    =              20 Apr 2012 

 

 Compile options: 

 

    MPIF77       = mpif77 

    FLINK        = $(MPIF77) 

    FMPI_LIB     = (none) 

    FMPI_INC     = -I/usr/local/include 

    FFLAGS       = -O 

    FLINKFLAGS   = -O 

    RAND         = randi8 

 

 Please send the results of this run to: 

 

 NPB Development Team 

 Internet: npb@nas.nasa.gov 

 

 If email is not available, send this to: 

 

 MS T27A-1 

 NASA Ames Research Center 

 Moffett Field, CA  94035-1000 

 

 Fax: 650-604-3957 
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Sample Result for NBP-FT run on a four-node cluster: 
 
NAS Parallel Benchmarks 3.3 -- FT Benchmark 

 

 No input file input ft.data. Using compiled defaults 

 

 Size                :  256x 256x 128 

 Iterations          :              6 

 Number of processes :              4 

 Processor array     :         1x   4 

 Layout type         :             1D 

 

 T =    1     Checksum =    5.046735008193D+02    5.114047905510D+02 

 T =    2     Checksum =    5.059412319734D+02    5.098809666433D+02 

 T =    3     Checksum =    5.069376896287D+02    5.098144042213D+02 

 T =    4     Checksum =    5.077892868474D+02    5.101336130759D+02 

 T =    5     Checksum =    5.085233095391D+02    5.104914655194D+02 

 T =    6     Checksum =    5.091487099959D+02    5.107917842803D+02 

 

 Result verification successful 

 

 class = A 

 

 FT Benchmark Completed. 

 

 Class           =                        A 

 Size            =            256x 256x 128 

 Iterations      =                        6 

 Time in seconds =                    11.02 

 Total processes =                        4 

 Compiled procs  =                        4 

 Mop/s total     =                   647.52 

 Mop/s/process   =                   161.88 

 Operation type  =           floating point 

 Verification    =               SUCCESSFUL 

 Version         =                      3.3 

 Compile date    =              21 Apr 2012 

 

 Compile options: 

 

    MPIF77       = mpif77 

    FLINK        = $(MPIF77) 

    FMPI_LIB     = (none) 

    FMPI_INC     = -I/usr/local/include 

    FFLAGS       = -O 

    FLINKFLAGS   = -O 

    RAND         = randi8 

 

 Please send the results of this run to: 

 

 NPB Development Team  

 

 Internet: npb@nas.nasa.gov 

 

 If email is not available, send this to: 
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 MS T27A-1 

 NASA Ames Research Center 

 Moffett Field, CA  94035-1000 

 

 Fax: 650-604-3957 

 

 

Sample Result for NBP-EP run on a four-node cluster: 

 
NAS Parallel Benchmarks 3.3 -- EP Benchmark 

 

 Number of random numbers generated:       536870912 

 Number of active processes:                       4 

 

EP Benchmark Results: 

 

CPU Time   =    11.9713 

N    = 2^   28 

No. Gaussian Pairs  =      210832767. 

Sums    = -4.295875165634796D+03   -1.580732573678614D+04 

 

Counts: 

 

  0      98257395. 

  1      93827014. 

  2      17611549. 

  3       1110028. 

  4         26536. 

  5           245. 

  6             0. 

  7             0. 

  8             0. 

  9             0. 

 

 EP Benchmark Completed. 

 

 Class           =                        A 

 Size            =                536870912 

 Iterations      =                        0 

 Time in seconds =                    11.97 

 Total processes =                        4 

 Compiled procs  =                        4 

 Mop/s total     =                    44.85 

 Mop/s/process   =                    11.21 

 Operation type  = Random numbers generated 

 Verification    =               SUCCESSFUL 

 Version         =                      3.3 

 Compile date    =              21 Apr 2012 

 

 Compile options: 

 

    MPIF77       = mpif77 

    FLINK        = $(MPIF77) 

    FMPI_LIB     = (none) 

    FMPI_INC     = -I/usr/local/include 
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    FFLAGS       = -O 

    FLINKFLAGS   = -O 

    RAND         = randi8 

 

 Please send the results of this run to: 

 

 NPB Development Team  

 Internet: npb@nas.nasa.gov 

 

 If email is not available, send this to: 

 MS T27A-1 

 NASA Ames Research Center 

 Moffett Field, CA  94035-1000 

 

 Fax: 650-604-3957 
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APPENDIX D 

 

EC2 Screenshots 

 

 

Example of successful start of an eight-node cluster: 
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Example of successful start of an eight-node cluster: 
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Stopping a cluster: 
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AWS Management Console showing a cluster of six nodes: 
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WinSCP session screen connecting to master node on m1.medium as root: 
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WinSCP screen with files in local system on left and master node on the right: 
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APPENDIX E 

 

Azure Screenshots 

 
 

An RDP connection to the HeadNode: 
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Desktop of the HeadNode of a Cluster: 
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Windows Azure HPC scheduler deployment and eight-node cluster: 
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Windows Azure Management Portal with an eight-node cluster: 
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Finished jobs in HPC Job Manager: 
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