
UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

2012

Empirical Performance Analysis of High
Performance Computing Benchmarks Across
Variations in Cloud Computing
Sindhu Mani
University of North Florida

This Master's Thesis is brought to you for free and open access by the
Student Scholarship at UNF Digital Commons. It has been accepted for
inclusion in UNF Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more information, please
contact Digital Projects.
© 2012 All Rights Reserved

Suggested Citation
Mani, Sindhu, "Empirical Performance Analysis of High Performance Computing Benchmarks Across Variations in Cloud
Computing" (2012). UNF Graduate Theses and Dissertations. 418.
https://digitalcommons.unf.edu/etd/418

http://digitalcommons.unf.edu
http://digitalcommons.unf.edu
https://digitalcommons.unf.edu
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu

Empirical Performance Analysis of High Performance Computing Benchmarks Across

Variations in Cloud Computing

by

Sindhu Mani

A thesis submitted to the

School of Computing

in partial fulfillment of the requirements for the degree of

Master of Science in Computer and Information Sciences

UNIVERSITY OF NORTH FLORIDA

SCHOOL OF COMPUTING

December 2012

ii

Copyright © 2012 by Sindhu Mani

All rights reserved. Reproduction in whole or in part in any form requires the prior

written permission of Sindhu Mani or designated representative.

iii

The thesis “Empirical Performance Analysis of High Performance Computing

Benchmarks Across Variations in Cloud Computing” submitted by Sindhu Mani in partial

fulfillment of the requirements for the degree of Master of Science in Computer and

Information Sciences has been

Approved by the thesis committee: Date

_________________________________ ________________________

Dr. Sanjay P. Ahuja

Thesis Advisor and Committee Chairperson

_________________________________ ________________________

Dr. Roger Eggen

Committee Chairperson

_________________________________ ________________________

Dr. Saurabh Gupta

Committee Chairperson

Accepted for the School of Computing:

_________________________________ ________________________

Dr. Asai Asaithambi

Director of the School

Accepted for the College of Computing, Engineering, and Construction:

_________________________________ ________________________

Dr. Mark A. Tumeo

Dean of the College

Accepted for the University:

_________________________________ ________________________

Dr. Len Roberson

Dean of the Graduate School

iv

ACKNOWLEDGEMENT

This thesis would not have been possible without the direction and support of my thesis

advisor Dr. Sanjay P. Ahuja. I thank my committee members Dr. Saurabh Gupta and Dr.

Roger Eggen for providing valuable suggestions. In addition, thank you to the support

teams of various cloud computing tools provided for Amazon EC2 and Microsoft

Windows Azure for patiently answering my questions when faced with several

challenges. I also thank Dr. Asai Asaithambi and Dr. Karthikeyan Umapathy for being

present at my thesis defense and providing suggestions. I would also like to thank James

Littleton for providing valuable editorial suggestions on the thesis write up.

Finally, I thank my husband and my family for their continuous support, encouragement

and love during the long process in achieving this important milestone. This thesis

presented a great opportunity for me to learn about the currently evolving cutting edge

cloud computing platforms.

v

CONTENTS

List of Figures ... x

List of Tables ... xii

Abstract .. xiv

Chapter 1: Introduction .. 1

1.1 Services in the Cloud .. 2

1.2 Cloud Architectures .. 3

1.2.1 Amazon EC2 ... 3

1.2.2 Windows Azure ... 4

1.3 HPC in the Cloud .. 6

1.4 Examples of HPC Applications .. 6

1.5 Thesis Layout .. 7

Chapter 2: Literature review .. 8

2.1 Communication and Computational Performance .. 10

2.2 Memory Bandwidth ...11

2.3 Input/Output Performance .. 12

Chapter 3: Research Methodology.. 15

vi

3.1 STREAM Benchmark ... 15

3.2 Interleaved Or Random Benchmark ... 17

3.3 NAS Parallel Benchmarks .. 17

3.4 Amazon Web Service EC2 Platform ... 18

3.4.1 Master and Compute Nodes .. 19

3.4.2 EBS Volume and Instance Storage .. 20

3.5 Microsoft Windows Azure Platform ... 21

3.5.1 Web and Worker Roles .. 21

3.5.2 Head Node and Compute Node .. 22

3.5.3 Windows Azure Storage: .. 22

Chapter 4: Hardware and Software Specifications .. 24

4.1 Software Specifications .. 24

4.2 Benchmarks... 25

4.3 Hardware Specifications ... 26

Chapter 5: Setting up, Configuring and Benchmarking EC2 .. 29

5.1 Pre-requisites on the Local Windows Development Machine 29

5.2 Installing StarCluster to Build the Cluster .. 29

5.3 Edit StarCluster Configuration File .. 30

5.3.1 Amazon Machine Image ... 30

5.3.2 Plugins - Message Passing Interface ... 31

vii

5.3.3 Scaling... 31

5.4 Starting the Cluster with MPICH2 .. 32

5.4.1 AWS Management Console .. 32

5.5 Transfer the Benchmark Files to the Cluster .. 33

5.5.1 Network File System... 33

5.6 Execute Benchmarks on the Master Node .. 34

5.6.1 STREAM Benchmark ... 34

5.6.2 Interleaved Or Random Benchmark ... 35

5.6.3 NAS Parallel Benchmarks .. 37

Chapter 6: Setting up, Configuring and Benchmarking Windows Azure 43

6.1 Building Windows Binaries .. 43

6.2 Pre-requisites on the Local Windows Development Machine 44

6.3 Deploy Windows Azure HPC Scheduler via PowerShell 44

6.3.1 Service Configuration and Service Definition Files 45

6.4 Connect to HeadNode on the Cluster on Windows Azure 46

6.5 Windows Azure Firewall Configuration for MPI Communication 46

6.6 Create and Submit MPI Jobs for Executing Benchmarks 48

6.6.1 STREAM Benchmark ... 48

6.6.2 Interleaved Or Random Benchmark ... 49

6.6.3 NAS Parallel Benchmarks .. 50

viii

Chapter 7: Analysis of Results .. 54

7.1 STREAM Benchmark ... 54

7.1.1 EC2 Standard Small Instance (m1.small) Versus Azure Small 55

7.1.2 EC2 Standard Medium Instance (m1.medium) Versus Azure Medium........ 59

7.1.3 EC2 High-CPU Medium instance (c1.medium) Versus Azure Medium 62

7.2 Interleaved Or Random Benchmark ... 65

7.2.1 EC2 Standard Small Instance (m1.small) Versus Azure Small 66

7.2.2 EC2 Standard Medium Instance (m1.medium) Versus Azure Medium........ 68

7.2.3 EC2 High-CPU Medium Instance (c1.medium) Versus Azure Medium 70

7.3 NAS Parallel Benchmarks (NPB-CG, FT, EP) ... 71

7.3.1 EC2 Standard Small Instance (m1.small) Versus Azure Small 72

7.3.2 EC2 Standard Medium Instance (m1.medium) Versus Azure Medium........ 76

7.3.3 EC2 High-CPU Medium Instance (c1.medium) Versus. Azure Medium 80

Chapter 8: Conclusion.. 85

8.1 Future Research .. 88

References ... 90

Appendix A: Metrics .. 94

Appendix B: Configuration File and Benchmark Commands ... 96

Appendix C: Sample Results ... 104

ix

Appendix D: EC2 Screenshots..110

Appendix E: Azure Screenshots..116

Vita .. 121

x

LIST OF FIGURES

Figure 1: Connecting to EC2 Cluster From Client Machine Installed With StarCluster .. 19

Figure 2: Microsoft Windows Azure Roles .. 23

Figure 3: STREAM Copy - m1.small and Azure Small Instance Average 56

Figure 4: STREAM Scale - m1.small and Azure Small Instance Average 56

Figure 5: STREAM Add - m1.small and Azure Small Instance Average 58

Figure 6: STREAM Triad - m1.small and Azure Small Instance Average 58

Figure 7: STREAM Copy - m1.medium and Azure Medium Instance 61

Figure 8: STREAM Scale - m1.medium and Azure Medium Instance 61

Figure 9: STREAM Add- m1.medium and Azure Medium Instance 61

Figure 10: STREAM Triad - m1.medium and Azure Medium Instance........................... 62

Figure 11: STREAM Copy - c1.medium and Azure Medium Instance 64

Figure 12: STREAM Scale - c1.medium and Azure Medium Instance 64

Figure 13: STREAM Add - c1.medium and Azure Medium Instance 65

Figure 14: STREAM Triad - c1.medium and Azure Medium Instance 65

Figure 15: IOR - m1.small and Azure Small Instance .. 67

Figure 16: IOR - m1.medium and Azure Medium Instance .. 69

Figure 17: IOR - c1.medium and Azure Medium Instance ... 70

Figure 18: CG - m1.small and Azure Small Instance ... 73

Figure 19: FT - m1.small and Azure Small Instance .. 74

xi

Figure 20: EP - m1.small and Azure Small Instance .. 75

Figure 21: CG - m1.medium and Azure Medium Instance ... 76

Figure 22: FT - m1.medium and Azure Medium Instance .. 78

Figure 23: EP - m1.medium and Azure Medium Instance .. 79

Figure 24: CG - c1.medium and Azure Medium Instance .. 81

Figure 25: FT - c1.medium and Azure Medium Instance ... 82

Figure 26: EP - c1.medium and Azure Medium Instance ... 83

xii

LIST OF TABLES

Table 1: Major Contributions .. 9

Table 2: Hardware Specifications of EC2 and Azure Instance Types 27

Table 3: STREAM - m1.small and Azure Small Instance Average MB/S 57

Table 4: STREAM - m1.small and Azure Small Instance Average Time in S 57

Table 5: STREAM - m1.medium and Azure Medium Instance Average MB/S 60

Table 6: STREAM - m1.medium and Azure Medium Instance Average Time in S 60

Table 7: STREAM - c1.medium and Azure Medium Instance Average MB/S 63

Table 8: STREAM - c1.medium and Azure Medium Instance Average Time in S 63

Table 9: IOR - m1.small and Azure Small Instance Average MiB/S 67

Table 10: IOR - m1.medium and Azure Medium Instance Average MiB/S 69

Table 11: IOR - c1.medium and Azure Medium Instance Average MiB/S 71

Table 12: CG - m1.small and Azure Small Instance ... 73

Table 13: FT - m1.small and Azure Small Instance .. 74

Table 14: EP - m1.small and Azure Small Instance .. 75

Table 15: CG - m1.medium and Azure Medium Instance .. 77

Table 16: FT - m1.medium and Azure Medium Instance ... 78

Table 17: EP - m1.medium and Azure Medium Instance ... 79

Table 18: CG - c1.medium and Azure Medium Instance .. 81

Table 19: FT - c1.medium and Azure Medium Instance ... 82

xiii

Table 20: EP - c1.medium and Azure Medium Instance ... 83

xiv

ABSTRACT

High Performance Computing (HPC) applications are data-intensive scientific software

requiring significant CPU and data storage capabilities. Researchers have examined the

performance of Amazon Elastic Compute Cloud (EC2) environment across several HPC

benchmarks; however, an extensive HPC benchmark study and a comparison between

Amazon EC2 and Windows Azure (Microsoft’s cloud computing platform), with metrics

such as memory bandwidth, Input/Output (I/O) performance, and communication

computational performance, are largely absent. The purpose of this study is to perform

an exhaustive HPC benchmark comparison on EC2 and Windows Azure platforms.

We implement existing benchmarks to evaluate and analyze performance of two public

clouds spanning both IaaS and PaaS types. We use Amazon EC2 and Windows Azure as

platforms for hosting HPC benchmarks with variations such as instance types, number of

nodes, hardware and software. This is accomplished by running benchmarks including

STREAM, IOR and NPB benchmarks on these platforms on varied number of nodes for

small and medium instance types. These benchmarks measure the memory bandwidth,

I/O performance, communication and computational performance. Benchmarking cloud

platforms provides useful objective measures of their worthiness for HPC applications in

addition to assessing their consistency and predictability in supporting them.

1

Chapter 1

INTRODUCTION

The increasing levels of research and IT investment in cloud computing indicate that

cloud computing is fast emerging as the next generation technology for computational

needs. The “cloud” refers to a combination of both hardware and software applications

available over the Internet as services. The cloud also provides applications as services to

store, retrieve, and share data from systems connected to the Internet. In other words, the

applications themselves need not be installed on the client machine.

Large data centers used to build this “cloud” are designed to support highly scalable

applications. These data centers usually consist of several thousand interconnected

computing devices capable of handling remote requests to run large and small

applications. The companies housing these data centers (Google, Amazon, Sun

Microsystems, and Microsoft, to name a few) actually bear the costs associated with them

in addition to providing software updates. This type of service is called Public Cloud

[Gillam10]. On the other hand, if the service is solely used within an organization and

not shared with people outside of the organization it is called Private Cloud [Velte10].

There is also a third kind, a combination of public and private cloud. It is referred to as

Hybrid cloud [Velte10].

2

Choosing which one to deploy purely depends on the organization’s needs. Two of the

most important concerns in a cloud-based environment are security and performance.

Performance has been particularly a topic of interest for researchers as it heavily impacts

their applications that require high CPU and data storage capacities.

1.1 Services in the Cloud

Before getting into HPC it is important to understand what type of services are currently

out there in cloud computing and how they fit into the above-mentioned models. These

are categorized as Software as a Service (SaaS), Platform as a Service (PaaS) and

Infrastructure as a Service (IaaS) [SunMicrosystems09].

Organizations provide SaaS on demand. An example of a software application that is

offered as a service is Google Apps that manages pictures, email service, or calendar.

Another example is salesforce.com, which provides software solutions for sales and

marketing on the cloud. SaaS can be provided to individuals as well as organizations as

needed.

PaaS provides developers a platform to build and deploy software applications. The

support is provided in the form of OS, development environment and middleware. APIs

(Application Program Interfaces) are provided so that developers can interact with the

environment to connect and deploy their applications. In addition, PaaS also provides

tools to maintain these applications. Google App Engine is an example of PaaS that

3

provides an infrastructure and environment for application developers.

Finally, IaaS provides the storage, data center spaces, servers and other networking

devices such as routers and the provisioning computer clusters as needed. The primary

purpose of IaaS is to handle the workload for computational needs. Amazon Elastic

Compute Cloud (EC2) platform is an example of IaaS.

The cloud provides the architecture of hardware and software for computational needs for

both organizations and consumers. Many consumer services focus on web services that

rely on relatively less intensive tasks and hence performance is not necessarily an issue in

these situations.

1.2 Cloud Architectures

While quite a few cloud architectures exist, this thesis focuses on benchmarking Amazon

EC2’s (Elastic Compute Cloud) and Windows Azure with STREAM, IOR and NPB

benchmarks. These two platforms are of IaaS and PaaS types and hence present a great

opportunity for performance comparison.

1.2.1 Amazon EC2

While Amazon EC2 provides the web services to its instances, its S3, also referred to as

Simple Storage Service, provides a storage service. Together they provide the compute

4

cluster and storage capacity needed for cloud servicing. These clusters can be created

and destroyed per demand [Evangelinos08].

Primarily, EC2 is built on Linux and Xen [Sun Microsystems09, Evangelinos08].

However, it supports wide range of Operating Systems including Red Hat Linux,

Windows Server, Amazon Linux Amazon Machine Image (AMI), Oracle Enterprise

Linux, and OpenSolaris. EC2 provides infrastructure for scalable compute capacity in

the cloud. Amazon provides it as Infrastructure as a Service (IaaS). The applications it

supports can be highly scalable, which is one of the requirements for the HPC

applications in the cloud.

Amazon uses a variety of measures to provide a consistent and predictable amount of

CPU capacity (GHz, clock speed). This is for the developers to compare the CPU

capacities among different instances types. For this purpose, Amazon has defined an

Amazon EC2 Compute Unit. The amount of CPU for a particular instance is expressed

in terms of these EC2 Compute Units. According to Amazon.com, “One EC2 Compute

Unit provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon

processor” [AWS12A].

1.2.2 Windows Azure

Windows Azure is Microsoft’s application platform for public cloud and is offered as

PaaS. This platform can also be used for parallel processing which is the basis of High-

5

Performance computing (HPC). On Windows Azure, this means running many role

instances simultaneously, all working in parallel to perform tasks. Windows Azure

provides the HPC Scheduler for distributing their work across the instances. The HPC

Scheduler can be used with so-called embarrassingly parallel applications and with HPC

applications built to use the industry-standard Message Passing Interface (MPI)

[WindowsAzure12].

There are various roles provided by Azure that make up the complete application. They

are Web Roles and Compute Roles. For each role, the desired Virtual Machine (VM) size

that the instances of that role should use is indicated. The various VM sizes available are

Extra Small, Small, Medium, Large and Extra Large.

1.2.2.1 Windows HPC Server 2008 R2

Windows HPC Server 2008 R2 is an Operating System provisioned on the Head and

compute nodes on Windows Azure platform. It supports both 32-bit and 64-bit programs.

It provides powerful virtualization capabilities and supports MS-MPI (Microsoft-

Message Passing Interface) for scalable applications. MS-MPI is Microsoft’s

implementation of MPICH. MPI is an essential feature for computing in clusters. It is

installed with Windows HPC Pack 2008 R2 that has utilities to submit and monitor HPC

MPI (Message Passing Interface) jobs [Microsoft12].

6

1.3 HPC in the Cloud

The challenge for the cloud is when the computational needs of applications are increased

manifold such as the needs of scientific applications warranting supercomputer

capabilities. Examples could be building 3D models from large amount of data for

scientific research and development and grid computing. Today HPC systems use

supercomputers and computer-clusters to solve advanced problems. These computer-

clusters involve network of systems with parallel programming capabilities in multiple

disciplines such as system software, architecture and computational techniques.

The traditional HPC technologies provide the tools to build HPC systems. Adequate

hardware and software services may have to be provisioned in the cloud in order to

handle its high performance needs as the applications running on these systems may

require hundreds of thousands of CPU-hours [Hazelhurst08].

1.4 Examples of HPC Applications

As mentioned above, HPC applications are mostly of scientific nature in areas of

mathematics, weather, and life sciences, and extensive data processing occurs in such

applications. Examples include solving sparse real and complex linear equations,

scientific prototyping and extensive data processing, and solving complex algebraic

equations; weather forecasting models including 3D models; and recognize protein

signatures.

7

1.5 Thesis Layout

This thesis evaluates and analyzes performance of two public clouds spanning both IaaS

and PaaS types. EC2 and Windows Azure are used as platforms for hosting HPC

benchmarks and executing them with variations such as instance types, number of nodes,

hardware and software. The metrics used to analyze these public clouds are memory

bandwidth, I/O performance, and Computational and Communication performance.

The rest of this thesis is structured as follows. Following this Introduction will be the

chapter on Literature Review in which the works of other researchers in the area of HPC

in the cloud are surveyed. The Literature Review chapter also helped identify the

benchmarks for this thesis. Following the Literature Review chapter is the chapter on

Research Methodology. This chapter describes in detail the methodology used in this

study and the types of benchmarks used. Chapters detailing the setup of the cloud

environments and execution of the HPC benchmarks in these environments are presented

next. Finally, the chapter on the Analysis of Results presents a detailed analysis of the

results obtained.

8

Chapter 2

LITERATURE REVIEW

This chapter provides a survey of the works of other researchers who have investigated

the performance of HPC benchmarks in cloud environments. HPC benchmarks were

originally designed to assess the performance of traditional supercomputers and

distributed computing systems. In this thesis, these benchmarks are used for the same

purpose to compare the performance of two public clouds, Amazon EC2 and Windows

Azure platforms for HPC applications.

Previous performance studies have used some standard HPC benchmarks and metrics

such as memory bandwidth, input/output capabilities, communication and computational

performances. In this chapter, we highlight works related to the standard HPC

benchmarks along with the metrics used for benchmarking cloud platforms. The

following table summarizes the relevant information.

9

M
aj

o
r

C
o
n
cl

u
si

o
n
s

E
x
ec

u
te

d
 o

n
 1

 n
o
d
e.

 C
lu

st
er

 i
s

n
o
t

u
se

d
.

M
1
.m

ed
iu

m
 i

n
st

an
ce

 t
y
p
e

is
 n

o
t

b
en

ch
m

ar
k

ed
.

E
x
ec

u
te

d
 o

n
 1

 n
o
d
e.

 C
lu

st
er

 i
s

n
o
t

u
se

d
.

M
1
.m

ed
iu

m
 i

n
st

an
ce

 t
y
p
e

is
 n

o
t

b
en

ch
m

ar
k

ed
.

E
x
ec

u
te

d
 o

n
 1

 n
o
d
e.

 C
lu

st
er

 i
s

n
o
t

u
se

d
.

M
1
.m

ed
iu

m
 i

n
st

an
ce

 t
y
p
e

is
 n

o
t

b
en

ch
m

ar
k

ed
.

T
h
es

e
b
en

ch
m

ar
k
s

ar
e

n
o

t

in
v
es

ti
g
at

ed
 o

n
 W

in
d
o
w

s

C
lo

u
d
 E

n
v
ir

o
n
m

en
t.

B
en

ch
m

ar
k
s

U
se

d

 N
P

B

S
T

R
E

A
M

IO
R

N
P

B

 S
T

R
E

A
M

 IO
R

P
la

tf
o
rm

 I
n
v
es

ti
g
at

ed

E
C

2

E
C

2

E
C

2

W
in

d
o
w

s
A

zu
re

S
tu

d
y

C
o
m

p
u
ta

ti
o
n
 &

C
o
m

m
u
n
ic

at
io

n

P
er

fo
rm

an
ce

M
em

o
ry

 B
an

d
w

id
th

I/
O

 P
er

fo
rm

an
ce

C
o
m

p
u
ta

ti
o
n
 &

C
o
m

m
u
n
ic

at
io

n

P
er

fo
rm

an
ce

M

em
o
ry

 B
an

d
w

id
th

 I/
O

 P
er

fo
rm

an
ce

Table 1: Major Contributions

10

2.1 Communication and Computational Performance

Amedro et al. launched the MPI NAS Parallel benchmarks on four different architectures:

Private cluster, Amazon small instance, High-CPU Medium instance and High-CPU X-

Large instance [Amedro10]. The throughput and latency for both the small and medium

instances reflected moderate EC2 I/O performance whereas XLarge instance had high

EC2 I/O performance. However, there is a large gap for latency when compared to the

private cloud.

Amedro’s research team also conducted tests to determine the performance in mflops of

the following three NAS Parallel benchmarks. For up to 32 processes, one process is run

per machine and then the number of processes is increased [Amedro10].

Embarrassingly Parallel (EP) Benchmark: In EP problem there is no communication

between processes, hence it proves to be a test for pure computational speed. The

XLarge running at 2.3 GHz and eight cores has almost the same speed compared to the

private cluster.

Conjugate Gradient (CG) Benchmark: This benchmark is a test for communication

performance. It computes Conjugate Gradient involving large number of small messages.

In both EP and CG benchmarks, the private cluster performance is much higher than

Amazon EC2 instances.

11

Fourier Transform (FT) Benchmark: The FT benchmark is to test for both computational

and communication speed involving large data transfers. In the benchmark the

performance difference between private, XLarge and medium instances are narrow.

The experiments conducted by Amedro et al. show that EC2 does not offer good

performance for communication intensive applications, compared to local cluster.

However, CPU intensive applications do not present significant performance hit. The

study also concluded that when dealing with a complex application mixing

communications and computations, it would be interesting to have a part on a cloud and

another on a cluster depending on the application characteristics.

Evangelinos et al. employed the serial version of the NAS Parallel Benchmarks (NPB

v.3.3) using the workstation class (W) and smallest of parallel classes (A) to test the

computational performance on a wide set of model applications and kernels

[Evangelinos08]. The results showed that the geometric mean of (BT, CG, FT, IS, LU,

MG, SP, UA-excluding DC) as well as the value of the EP tested was between 2.2 and 2.4

times faster on the High-CPU instances.

2.2 Memory Bandwidth

With the CPU processing speeds increasing more quickly than computer memory speeds,

the high performance computing systems will be especially limited in performance by

memory bandwidth rather than by the computational performance of the CPU. The ratio

12

of CPU speed to memory speed is growing rapidly in high performance systems. The

CPU speed of the fastest available microprocessor is increasing by 80% per year where as

the memory speed is increasing by only 7% every year [McCalpin95B].

The STREAM benchmark is a benchmark program that measures sustainable memory

bandwidth (in MB/s) and the corresponding computation rate for simple vector kernels

[McCalpin95A]. This benchmark is specifically used for measuring memory bandwidth

of very large datasets such as in scientific computing. Both serial and MPI versions of

the benchmark are available.

Evangelinos et al. tested the memory bandwidth of EC2 instance using the STREAM

benchmark [Evangelinos08]. The results showed high bandwidth for the standard

instance type. The High-CPU medium instance delivered bandwidth better than what one

would expect from two cores sharing the same socket’s pins to main memory.

2.3 Input/Output Performance

Input/Output (I/O) is very fundamental to HPC applications to store output for later

analysis, to store the state of an application in case of failure, and to implement

algorithms that process large amount of data. Typically, HPC applications have parallel

file systems that greatly increase their scalability and capacity.

13

Interleaved or Random (IOR) is an I/O benchmark that is useful for characterizing the

performance of parallel/cluster file systems. In particular, it can perform parallel reads

and writes to/from either a single file, or multiple files, using MPIIO. The IOR software

is used for benchmarking parallel file systems also using POSIX or HDF5 interfaces

[Ghoshal11].

IOR benchmark leverages the scalability of MPI to easily and accurately calculate the

aggregate bandwidth of unlimited number of client machines. In addition, IOR can

utilize the POSIX, MPI-IO, and HDF5 I/O interfaces. The downside is that it is quite

limited in its capabilities, focusing on reading and writing a file from beginning to end in

a sequential manner [Ghoshal11].

Evangelinos et al. tested the I/O subsystem performance on the IOR benchmark in

POSIX mode and tested large read and write requests on both the local /tmp disk and the

remote home directory on standard small instance [Evangelinos08]. The results showed

that there is an appreciable difference between the write and read performance of the

standard and the High-CPU instances to/from local disk. In addition, the results showed

that while the read performance from local disk appears to be close between the two

instance types (standard and high CPU instance), most measurements were in the range

of 800MB/s for the standard one.

Ghoshal et al. presented results on benchmarking the I/O performance over different

clouds and HPC platforms to identify the major bottlenecks in the existing infrastructure

14

[Ghoshal11]. This work also compared the I/O performance using IOR benchmarks on

two cloud platforms - Amazon and the Magellan cloud test bed. For evaluation purposes

and in order to understand the effects of buffering caches, the study measured both

buffered I/O and direct I/O.

In this thesis, we extend the previous research by conducting an empirical performance

analysis of two public clouds of IaaS and PaaS types. Our methodology, results, and an

analysis of results are presented in the subsequent chapters.

15

Chapter 3

RESEARCH METHODOLOGY

This thesis compares benchmark results on cluster of nodes for two public cloud-

computing platforms that span both Infrastructure as a Service (IaaS) and Platform as a

Service (PaaS). The Amazon Web Service EC2 and Windows Azure cloud computing

platforms were used for this purpose. The methodology involved implementation of

existing benchmarks STREAM, IOR and NAS Parallel Benchmarks (NPB) on both the

cloud platforms with variations such as number of nodes (1, 2, 4, 6, and 8), small and

medium instance types in the cluster that have comparable hardware and software

specifications. At the conclusion of the literature review, we decided to include a new

EC2 medium instance type (m1.medium) in the study.

3.1 STREAM Benchmark

As indicated in the literature review, STREAM benchmark primarily measures the

sustainable memory bandwidth. MPI version of STREAM is run on EC2’s Standard

small instance (m1.small), High-CPU medium instance (c1.medium) and standard

medium (m1.medium) instance to measure their memory bandwidths. In each case, the

number of EC2 instances is varied as 1, 2, 4, 6, and 8 nodes. It is also run on small and

medium instances of Windows Azure platform. The benchmark comes in several

16

versions but MPI version is executed since it provides the parallel processing capabilities

required in a cluster. STREAM is run on each core of a node using the MPI

programming paradigm [McCalpin95A].

The sustained memory bandwidth is measured for four computational kernels:

 Copy: Copy measures transfer rates in the absence of arithmetic.

a(i) = b(i), where a and b are arrays

 Scale: Adds a simple arithmetic operation

a(i) = q * b(i), where a and b are arrays and q is a constant.

 Add: Adds a third operand to allow multiple load/store ports on vector machines

to be tested.

a(i) = b(i) + c(i), where a, b, and c are arrays.

 Triad: Allows chained/overlapped/fused multiply/add operations.

a(i) = b(i) + q* c(i), where a, b, and c are arrays and q is a constant.

The STREAM benchmark generally expects the array size to be at least four times the

size of the sum of all the last-level caches or 1 million elements whichever is larger

during execution [McCalpin95C].

For each vector kernel, a memory bandwidth rate, average time, minimum time, and

maximum time are measured for each choice of thread count. On all modern systems, the

rate of execution is determined by the access to memory rather than the peak FLOP rate

(i.e., the clock rate). The size of the arrays, n,can be varied to get sensible timings

17

[McCalpin95A]. If n is very large then the program will be accessing main memory. If it

is small enough, then data may fit into cache, leading to an increased bandwidth for

multiple iterations.

3.2 Interleaved Or Random Benchmark

While there has been research done for I/O performance in general, there is a limited

understanding of its behavior in the cloud environments particularly from a cluster

perspective. Understanding the I/O performance is critical to understanding the

performance of HPC applications in the cloud [Ghoshal11]. Hence, we have chosen in

this thesis to evaluate the I/O performance of Amazon EC2’s standard small instance,

High-CPU medium instance and standard medium instance with respect the handling of

IOR benchmarks and compare it to Windows Azure’s small and medium instances. The

number of instances is varied as 1, 2, 4, 6, and 8 nodes and I/O performance is measured

on both EC2 and Azure platforms. The amount of CPU that is allocated to a particular

instance is expressed in terms of these EC2 Compute Units.

3.3 NAS Parallel Benchmarks

NAS Parallel Benchmarks (NPB3.3) measure the communication and computational

performance of parallel machines such as clusters of nodes. All the NAS benchmarks

communicate via MPI [Wong99], and the NPB suite consists of EP, CG and FT

benchmarks and several others. For the purposes of this thesis, these benchmarks were

18

run on Amazon EC2’s High-CPU Medium Instance (c1.medium), standard small instance

(m1.small) and standard medium instance (m1.medium) and Windows Azure’s small and

medium instance types. CG and FT benchmarks could only be run on number of nodes

in powers of two. EP is run with 1, 2, 4, 6, and 8 nodes.

 EP: Embarrassingly Parallel benchmark is used to test the computational speed of

the nodes.

 CG: Conjugate Gradient is used to test the communication performance.

 FT: Fourier Transform benchmark is used to test both the computational and

communication performances involving large data transfers.

3.4 Amazon Web Service EC2 Platform

In order to accomplish the EC2 cluster provisioning, StarCluster [StarCluster12A, 12B],

an open-source command line utility developed at MIT is installed on the local

development machine. StarCluster is a cluster-computing toolkit capable of configuring,

creating, managing and terminating the cluster of VMs on Amazon EC2 instances on

demand [StarCluster12A]. It is released under LGPL license [StarCluster12A].

StarCluster is capable of enabling MPICH2 communication between the nodes in a

cluster in addition to creating and submitting MPI jobs to the cluster. Amazon provides

AWS Management Console to monitor the status of the instance nodes, Elastic Block

Storage (EBS) volumes, creating AMIs and other several other features for the Amazon’s

cloud related utilities.

19

3.4.1 Master and Compute Nodes

An EC2 node is a VM that has a hardware configuration that includes local instance

storage and memory. The hardware configurations are different depending on the type of

instance. When a cluster is built in EC2 platform, a master node and several compute

nodes are created. The cluster is provisioned with an Operating System, EBS Storage,

Network File System (NFS), MPICH2 and necessary compilers to execute the

benchmarks.

Figure 1: Connecting to EC2 Cluster From Client Machine Installed With StarCluster

[StartCluster12A]

Each cluster in EC2 is configured with a master node and one or more compute nodes

depending on the size of the cluster. The file and folder structure in each node is exactly

20

same. For the MPI jobs to be executed, MPI communication and password-less login are

established between the master and compute nodes. Most of the functions including the

submission of MPI jobs (benchmarks) for execution occur from the master node as

shown in Figure 1. Once the execution begins, the master node coordinates the job

execution with compute nodes in the cluster and uses the NFS shared EBS volume to

store data. The cluster size is controlled using the StarCluster Configuration File during

the cluster creation.

3.4.2 EBS Volume and Instance Storage

Each node in the cluster is attached with a default Elastic Block Store (EBS) volume in

EC2. It persists regardless of the life of the instance. Persistent storage means data in the

volume are not lost or deleted if the cluster is stopped. They range from 1 GB to 1 TB

and can be mounted as devices to any EC2 instances. By default, Amazon attaches a 10

GiB (1GiB ≈ 1.074GB) EBS volume to each node of an instance. This volume is

attached to the instance in addition to local instance storage for an instance. For example,

a c1.medium instance comes with a default 10 GiB of EBS volume storage and a 350 GB

of local instance storage. EBS volume provides highly available, highly reliable block

storage. These are placed in a specific availability zone and can be attached to instances

in the same region [AWS12B]. The local instance storage on the other hand is not

persistent; it is ephemeral. Any data stored is deleted or removed automatically if the

cluster is stopped. Termination of a cluster however has the same effect on the data in

both EBS and Instance storage.

21

3.5 Microsoft Windows Azure Platform

Windows Azure is Microsoft’s platform for cloud services. Currently it is offered with

Platform-as-a-Service capabilities. Hence, it supports organizations that would like to

run Windows applications [Marquand10]. Microsoft is continuously making important

updates to this platform introducing new instances and Operating Systems support.

Windows Azure cloud platform provides compute instances and a shared storage account

to store data from these instances.

3.5.1 Web and Worker Roles

A compute node in the Windows Azure environment is a virtual server and is categorized

into web roles and worker roles. A web role offers support for front-end portion of an

application and consumes http requests via IIS [Marquand10]. A worker role is similar to

a web role but does not take the http request. A cluster when built is configured

according to the needs and the type of application being run on it. For running the HPC

benchmarks there is no need to select a web role compute unit as there is no front end

involved. So, the cluster is built with worker roles. Windows Azure loaded Windows

HPC Server 2008 R2 as the OS on these compute nodes.

22

3.5.2 Head Node and Compute Node

A cluster in Windows Azure cloud platform always has a head node and one or more

compute nodes. Both these node types are worker roles. Windows HPC Server 2008 R2

comes with HPC Pack and support for MPI which is MS-MPI (Microsoft’s

implementation of MPI). MPI is necessary for compute nodes to support the MPI jobs

such as HPC benchmarks and to communicate with each other for parallel code

processing. The head node passes on all the necessary parameters and instructions to the

compute nodes to execute an MPI job. Once the job is complete, the results are sent back

to the head node.

3.5.3 Windows Azure Storage:

Windows Azure’s storage feature is accomplished with SQL Azure and Windows Azure

storage account. The process of building the cluster allows the user to create an Azure

Storage account for the cluster. This account is shared across all the compute nodes of a

cluster. These components are illustrated in the Figure 2 below.

23

Figure 2: Microsoft Windows Azure Roles [MSDN12B]

24

Chapter 4

HARDWARE AND SOFTWARE SPECIFICATIONS

The benchmarks are executed in Linux and Windows environments installed with MPI

implementations of C and Fortran compilers. These compilers are necessary for

compiling and running MPI versions of the benchmarks. We describe below the

Software and Hardware specifications used.

4.1 Software Specifications

StarCluster Amazon Machine Image (AMI) is used to build a Cluster on EC2 loaded with

Linux Ubuntu 11.10 operating system. This AMI enables several components necessary

to run MPI jobs in a cluster. It is loaded with MPICC, MPIF77 and MPIF90 compilers.

Since the benchmarks are written in C and Fortran languages, appropriate compilers are

used.

On Windows Azure cluster Windows HPC Server 2008 R2 operating system is loaded. It

is loaded with Microsoft implementations of MPICC, MPIF77 & MPIF90 compilers.

These compilers run the windows binaries created for the benchmarks.

25

These windows binaries are created in a VM loaded with HPC Linux guest operating

system on 64-bit Windows 7 Home Premium host machine. The VM is created via

VirtualBox. HPC Linux OS comes with tools such as PToolsWin and x86_64-w64-

mingw32-gcc cross compiler.

Other software used to accomplish files transfer between the guest OS and the host OS is

WinSCP. WinSCP is also used to connect and transfer files between the cloud platforms

and local windows machine. Puttygen is employed to create private key used to connect

to master node on EC2.

4.2 Benchmarks

The URLs used for downloading the MPI versions of STREAM, IOR and NPI

benchmarks are available in Appendix A.

STREAM Benchmark:

STREAM is an HPC benchmark that measures the sustainable memory bandwidth and is

written in C and Fortran languages for single and multi-processors.

26

Interleaved or Random Benchmark:

IOR is an HPC benchmark that measures the input/output performance of HPC systems

and is written in Fortran.

NAS Parallel Benchmarks:

NAS Parallel benchmarks are HPC benchmarks written in Fortran that measure

computation and communication performance of the HPC systems.

4.3 Hardware Specifications

The hardware on EC2 instance types includes a RAM of 1.7 GB on Standard small and

High-CPU Medium instances. The EBS volume (persistent storage) is 10 GiB on all the

three instance types. The I/O performance is Moderate on all three EC2 instance types.

The differences between these three instance types are highlighted in Table 2 below.

27

W
in

d
o
w

s

A
zu

re
 M

ed
iu

m

- A
M

D
 O

p
te

ro
n

(t
m

)
P

ro
ce

ss
o
r

4
1
7
1
 H

E
 2

.0
9

G
H

z
(2

 c
o
re

s)

4
9
0
 G

B

3
.5

0
 G

B

W
in

d
o
w

s

A
zu

re
 S

m
al

l

- Q
u
ad

-C
o
re

A
M

D
 O

p
te

ro
n

(t
m

)
P

ro
ce

ss
o
r

2
3
7
2
 E

E
 2

.1
0

G
H

z

2
2
5
 G

B

1
.7

5
 G

B

E
C

2
 H

ig
h
-

C
P

U
 M

ed
iu

m

c1
.m

ed
iu

m

5
 E

C
2

C
o
m

p
u
te

 U
n
it

(2
 v

ir
tu

al
 c

o
re

w
it

h
 2

.5
 E

C
2

C
o
m

p
u
te

 U
n
it

)

3
5
0
 G

B

1
.7

 G
B

E
C

2
 S

ta
n
d
ar

d

M
ed

iu
m

 m
1
.m

ed
iu

m

 2
 E

C
2

C
o
m

p
u
te

 U
n
it

(1
 v

ir
tu

al
 c

o
re

w
it

h
 2

 E
C

2

C
o
m

p
u
te

 U
n
it

)

4
1
0
 G

B

3
.7

5
 G

B

E
C

2
 S

ta
n
d
ar

d

S
m

al
l

m
1
.s

m
al

l

1
 E

C
2

C
o
m

p
u
te

 U
n
it

(1
 v

ir
tu

al
 c

o
re

w
it

h
 1

 E
C

2

C
o
m

p
u
te

 U
n
it

)

1
6
0
 G

B

1
.7

 G
B

 A
P

I
N

am
e

P
ro

ce
ss

o
r1

L
o
ca

l
In

st
an

ce

S
to

ra
g
e

R
A

M

Table 2: Hardware Specifications of EC2 and Azure Instance Types

1
1 EC2 Compute Unit provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007

Opteron or 2007 Xeon processor.

28

The EC2 High-CPU medium instance (c1.medium) has proportionally more CPU

resources (see processor details above for c1.medium and m1.medium) than memory

(RAM) and is well suited for compute-intensive applications such as NPB benchmarks,

whereas the EC2 standard instance (m1.medium) is well suited for most applications. On

the other hand, Azure provides only a single medium instance type, which seems to be

comparable with the EC2 standard instance m1.medium based on the RAM

configuration. The experiments hence used the same Windows Azure medium instance

wherever applicable. Both the Windows Azure instances have Windows HPC Server

2008 R2 (64-bit) operating System.

29

Chapter 5

SETTING UP, CONFIGURING AND BENCHMARKING EC2

The benchmarking of EC2 involves several carefully executed complex steps including

building the cluster. Each step is explained in the subsections below. Chapter 6 details

the procedure for Windows Azure.

5.1 Pre-requisites on the Local Windows Development Machine

Before getting started to executing the benchmarks in the EC2 cloud platform the local

Windows Development machine is installed with some pre-requisite software StarCluster.

Python 2.7 is installed on the local machine first as it is required for StarCluster

installation on Windows platform. The installer is available at

www.python.org. Python 2.7 is again dependent on Setuptools 0.6rc11 and Pycrypto 2.3

to be installed first [StartCluster12E].

5.2 Installing StarCluster to Build the Cluster

After the necessary pre-requisite software installation is complete, StarCluster is installed

using the following command in the command window.

http://www.python.org/

30

C:\> easy_install StarCluster

5.3 Edit StarCluster Configuration File

StarCluster uses a configuration file that has all the necessary information and instructs

StarCluster to create and start a new or existing cluster. It has sections and fields within

the sections for EC2’s AWS Subscription, Private Key, instance type for master node and

compute node, Amazon Machine Image (AMI), NFS, EC2 region. A plugins section is

added to the configuration file to enable MPICH2 on all the nodes in the cluster. MPI

communication is an important component for the nodes to communicate with each other

in a cluster. The CLUSTER_SIZE parameter is edited to build a cluster of size (1, 2, 4, 6,

and 8 nodes) for an instance type before benchmarking. An example StarCluster

configuration file used for creating an eight-node m1.small cluster is available in

Appendix B under StarCluster Configuration. Some of the important sections and fields

of the configuration file are discussed below.

5.3.1 Amazon Machine Image

An AMI in EC2 is a pre-configured Operating System and virtual application software

that is used for building VMs in EC2 for parallel and distributed computing. Several

public AMIs that already have the necessary software stacked up are available to be used.

StarCluster uses some public AMIs that are both 32-bit and 64-bit. StarCluster AMI,

ami-999d49f0 (x86_64) is used for m1.small, m1.medium and c1.medium instance types

31

for cluster creation for node sizes 1, 2, 4, 6, 8. This AMI constitutes Ubuntu 11.10

operating system [StarCluster12C] and is loaded with necessary compilers as part of

compatible MPICH2.

5.3.2 Plugins - Message Passing Interface

MPICH2 is a freely available high-performance and portable implementation of MPI

(Message Passing Interface) [MPICH12]. MPI is a standard communication method used

on distributed computing systems including clusters. StarCluster Configuration File has a

PLUGIN section that configures MPICH2 on each node of an EC2 cluster.

MPICH2 configures and installs the mpicc, mpif77 and mpif90 compilers on all the

nodes in the cluster. Mpicc compiler is for benchmarks written in C language and mpif77

and mpif90 compile the benchmarks in Fortran language. These compilers compile the

STREAM, IOR and NPB benchmarks in MPI mode. MPICH2 also installs mpiexec,

which is a command to run an executable created from mpicc compilation in a distributed

computer network or cluster.

5.3.3 Scaling

Although EC2 provides auto-scaling features, for the purposes of this thesis, the nodes

are incremented using the StarCluster Configuration File. CLUSTER_SIZE parameter is

32

assigned the values of 1, 2, 4, 6, and 8 to build the appropriate cluster size before

executing the benchmarks. Example: CLUSTER_SIZE = 4

5.4 Starting the Cluster with MPICH2

Following is the command used in the command prompt to start a new EC2 cluster with

small instance type nodes:

C:\>starcluster start m1.small-AMI-cluster

This command creates and provisions the cluster with the configuration specified in the

configuration file created in section 5.3 including NFS sharing across all nodes. In

addition, the cluster is configured with password-less login so that nodes can

communicate without any login issues. An example of successful start of an eight-node

cluster is shown in Appendix D under EC2 screenshots.

5.4.1 AWS Management Console

Once the cluster is created and is ready, the user can logon to Amazon AWS Management

Console to ensure the nodes are in fact in ‘Running’ State as shown in Appendix C under

EC2 screenshots. Other states of a cluster in EC2 are ‘Stopped’ and ‘Terminated’.

Amazon AWS Subscription is required to monitor the instances on AWS Management

33

Console. Issuing appropriate StarCluster command from the local machine can restart a

stopped cluster.

Each node in the cluster is assigned a unique name, Public DNS and Instance ID. This

public DNS and the private key created using Puttygen are used to connect and login to a

particular node.

5.5 Transfer the Benchmark Files to the Cluster

Secure Shell (SSH) tool WinSCP is installed on the local machine and is used to connect

to the master node of the cluster using the private key to transfer the necessary

benchmark files before execution. Example screenshots of file transfer to the master

node of m1.medium instance using WinSCP are shown in Appendix D under EC2

screenshots. After successful connection, the benchmark files are transferred from the

local system to /home/ec2-user of the master node.

5.5.1 Network File System

NFS is a protocol used by UNIX/Linux computer systems to share the disk space in a

cluster/network. When provisioning the EC2 cluster it is important to enable the disk

sharing across all the nodes. StarCluster by default configures /home folder of the master

node and NFS shares it with other nodes in the cluster [StarCluster12D]. Any benchmark

related files copied or transferred to /home/ec2-user on the master node is copied

34

instantly to all the nodes in the cluster in the directory structure automatically since they

are NFS shared. This is confirmed by connecting and logging into each node using

PuTTY.

5.6 Execute Benchmarks on the Master Node

Because of NFS sharing, the benchmark files are copied to /home/ec2-user folder on each

node of the cluster from the master node automatically. It is necessary that the

benchmark files are available at the same location on each node so they are executed in

parallel. Sections 5.6.1, 5.6.2, and 5.6.3 detail the execution procedures used for

STREAM, IOR and NPB benchmarks.

5.6.1 STREAM Benchmark

The benchmark consists of two files, stream_mpi.c and mysecond.c. These files are

transferred to the master node’s /home/ec2-user folder. PuTTY is used to connect and

login as root into the master node with authentication using a private key. The following

command is executed to compile the stream_mpi.c file:

root@master:/home/ec2-user/STREAM-MPI# mpicc -DPARALLEL_MPI

-O3 -o stream_mpi stream_mpi.c

35

This command builds a UNIX/Linux executable file stream_mpi that can be run in a

parallel computing environment. Following command is then executed to run the

executable on all the nodes of the cluster. This example shows the execution on four-

node of c1.medium instance type. This is ensured by specifying the name of the nodes in

the -host argument of mpiexec command:

root@master:/home/ec2-user/STREAM-MPI# mpiexec -host

master, node001, node002, node003 ./stream_mpi >

output/c1.m_n4.1.txt

The benchmark execution is now complete and output is redirected to a text file in a

folder named Output. Before the execution of the benchmark, the configuration file’s

CLUSTER_SIZE parameter is updated to 1, 2, 4, 6, and 8 to build the cluster of that size.

In addition, MASTER _INSTANCE_TYPE and NODE_INSTANCE_TYPE parameters

are updated to m1.small, c1.medium m1.medium instance types as necessary. The output

for all the executions are redirected to text files for later analysis. Sample result of the

execution is copied to Appendix C. The analysis of the STREAM benchmark is in

chapter 7.

5.6.2 Interleaved Or Random Benchmark

Execution of the IOR benchmark involved several steps. The first step is to ensure the

cluster of required number of nodes is in place for an instance type. Instance types used

36

are m1.small, c1.medium and m1.medium. Number of nodes used on each of these

instance types is 1, 2, 4, 6, and 8. The necessary benchmark files are transferred to the

master node of the cluster. NFS shares them with all the nodes in the cluster

automatically.

One of the important steps for building the IOR executable in UNIX/Linux environment

is the make command. The sample output of this command when compiled on a four-

node cluster of c1.medium instance type is copied to Appendix B under Benchmarks

Commands. This executable is created using the POSIX interface.

root@master:/mnt/ec2-user/IOR/src/C# make

Following is a sample command that is run to execute the IOR executable in parallel on a

four-node cluster of c1.medium instance type:

root@master:/mnt/ec2-user/IOR/src/C# mpiexec -host master,

node001, node002, node003 ./IOR -b 1g -t 4m >

output/c1.m_n4.1.txt.

Buffering plays a very important part in IOR benchmarking. The first time when the

benchmark is executed, the data from the testfile (1 GB) is buffered and hence the results

for Read is higher.

37

The benchmark execution is now complete and output is redirected to a text file in a

folder named Output. Before the execution of the benchmark, the configuration file’s

CLUSTER_SIZE parameter is updated to 1, 2, 4, 6, and 8 to build the cluster of that size.

In addition, MASTER _INSTANCE_TYPE and NODE_INSTANCE_TYPE parameters

are updated to m1.small, c1.medium m1.medium instance types as necessary. The output

from each execution is redirected to text files for later analysis. Sample result of the

execution is copied to Appendix C under Sample Results. The analysis of the IOR

benchmark is in chapter 7.

5.6.3 NAS Parallel Benchmarks

We consider three NPB 3.3 benchmarks: Conjugate Gradient (CG), Fourier Transform

(FT), and Embarrassingly Parallel (EP) benchmark.

5.6.3.1 Conjugate Gradient Benchmark

CG is written in Fortran and comes in different classes. CG is compiled for Class A on

the master node of the cluster. Following is a sample command that is run to build

UNIX/Linux CG executable for four-node on c1.medium instance type.

root@master:/home/ec2-user/NPB3.3/NPB3.3-MPI# make cg

NPROCS=4 CLASS=A

38

The output for this command is shown in Appendix B under Benchmark Commands.

This command creates an executable cg.A.4 that can be successfully run on a cluster of

four nodes. Unlike other benchmarks, NPB benchmarks must be compiled specifically to

build executable for a cluster size. For example, when the executable file cg.A.4 is run

on a three-node cluster, a run time error is received indicating the number of processes

(nodes) is not matching with the executable. So, in order to build an executable file for a

six-node cluster the above command is run with NPROCS=6 in command line argument

that created cg.A.6.

Once the compilations are complete, all these are executed using mpiexec command

and the results are redirected to text files for later analysis. Below is the sample

command that is executed on a four-node cluster of c1.medium cluster for class A.

root@master:/home/ec2-user/NPB3.3-MPI# mpiexec -host

master, node001, node002, node003 bin/cg.A.4 >

output/cg.A.4_3.txt

The configuration file’s CLUSTER_SIZE parameter is updated to 1, 2, 4, and 8 to build

the cluster of that size before the above steps. CG can only be compiled in cluster size

that is a power of two. In addition MASTER_INSTANCE_TYPE and

NODE_INSTANCE_TYPE parameters are updated to m1.small, c1.medium and

39

m1.medium instance types as necessary. Sample result of the execution is copied to

Appendix C. The analysis of the CG benchmark is in chapter 7.

5.6.3.2 Fourier Transform Benchmark

FT is written in Fortran language and comes in different classes. FT is compiled for

Class A on the master node of the cluster. A sample make command output that is run to

build UNIX/Linux CG executable for four-node on c1.medium instance type is shown in

Appendix B under Benchmark Commands.

root@master:/home/ec2-user/NPB3.3-MPI# make FT NPROCS=4

CLASS=A

This command creates an executable ft.A.4 that can be successfully run on a cluster of

four nodes. Unlike other benchmarks, NPB benchmarks must be compiled specifically to

build executable for a cluster size. For example, when the executable file ft.A.4 is run on

a three-node cluster, a run time error is received indicating the number of processes

(nodes) is not matching with the executable. So, in order to build an executable file for

an eight-node cluster the above command is run with NPROCS=8 in command line

argument that created ft.A.8.

40

Once the compilations are complete, all these are executed using mpiexec command

and the results are redirected to text files for later analysis. Below is the sample

command that is executed on a four-node cluster of c1.medium cluster for class A:

root@master:/home/ec2-user/NPB3.3-MPI# mpiexec -host

master, node001, node002, node003 bin/ft.A.4 >

output/ft.A.4_3.txt

The configuration file’s CLUSTER_SIZE parameter is updated to 1, 2, 4, and 8 to build

the cluster of that size before the above steps. FT can only be compiled in cluster size

that is a power of two. In addition, MASTER _INSTANCE_TYPE and

NODE_INSTANCE_TYPE parameters are updated to m1.small, c1.medium and

m1.medium instance types as necessary. Sample result of the execution is copied to

Appendix C. The analysis of the CG benchmark is in chapter 7.

5.6.3.3 Embarrassingly Parallel Benchmark

EP is written in Fortran language and comes in different classes. EP is compiled for

Class A on the master node of the cluster. A sample output of the make command that is

run to build UNIX/Linux EP executable for four-node on c1.medium instance type is

shown in Appendix B under Benchmark Commands.

41

root@master:/home/ec2-user/NPB3.3-MPI# make EP NPROCS=4

CLASS=A

This command creates an executable ep.A.4 that can be successfully run on a cluster of

four nodes. Unlike other benchmarks, NPB benchmarks must be compiled specifically to

build executable for a cluster size. For example, when the executable file ep.A.4 is run

on a three-node cluster, a run time error is received indicating the number of processes

(nodes) is not matching with the executable. So, in order to build an executable file for

an eight-node cluster the above command is run with NPROCS=8 in command line

argument that created ep.A.8.

Once the compilations are complete, all these are executed using mpiexec command

and the results are redirected to text files for later analysis. Below is the sample

command that is executed on a four-node cluster of c1.medium cluster for class A:

root@master:/home/ec2-user/NPB3.3-MPI# mpiexec -host

master, node001, node002, node003 bin/ep.A.4 >

output/ep.A.4_3.txt

The configuration file’s CLUSTER_SIZE parameter is updated to 1, 2, 4, 6, and 8 to

build the cluster of that size before the above steps. In addition, MASTER

_INSTANCE_TYPE and NODE_INSTANCE_TYPE parameters are updated to

42

m1.small, c1.medium m1.medium instance types as necessary. Sample result of the

execution is copied to Appendix C. The analysis of the EP benchmark is in chapter 7.

5.6.3.4 Stop/Terminate the cluster

SSH tool WinSCP is used to transfer the result files on to the local development machine

for analysis. Secure connection is established with the master node for transferring the

files. After the output text files are transferred back to the local windows development

machine the cluster is stopped. A stopped cluster can be restarted at any time as

necessary. An example screenshot of stopping an eight-node cluster is available in

Appendix D under EC2 screenshots.

43

Chapter 6

SETTING UP, CONFIGURING AND BENCHMARKING WINDOWS AZURE

The benchmarking of Windows Azure consists of several steps, which are explained in

the subsections below.

6.1 Building Windows Binaries

The prerequisite software for building the windows binaries on the local Windows

machine is VirtualBox and the HPC Linux guest OS on the VM is created with

VirtualBox.

Since the executable files created out of Amazon EC2 processes are for UNIX/Linux,

they could not be directly executed on the Windows Azure platform. Therefore, windows

binaries had to be built using a cross-compiler. In order to achieve this task VirtualBox is

installed on the local Windows machine (host machine). VirtualBox created a VM (guest

machine). This VM had an IP address that is later used to connect to it using WinSCP for

file transfers. HPC Linux Operating System, a Linux distribution is installed on this VM.

The link to download HPC Linux is available in Appendix A. HPC Linux comes with

components called PToolsWin and x86_64-w64-mingw32-gcc cross-compiler. When the

windows binaries (.exe) are created using PToolsWin and the cross-compiler for each of

the benchmarks, some dll files are also created in the process. These dll files along with

44

 the benchmark executable (.exe) are zipped and the entire package is transferred back to

the Windows host machine. The entire package is necessary for the benchmark to be

executed on the Windows platform. WinSCP is used to transfer the files back and forth

between the guest OS and the host OS.

6.2 Pre-requisites on the Local Windows Development Machine

 Windows Azure HPC Scheduler SDK 64-bit

 Windows Azure Subscription

 Windows PowerShell

 Microsoft Silverlight

6.3 Deploy Windows Azure HPC Scheduler via PowerShell

Windows Azure HPC Scheduler [MSDN12A] includes the components that enable the

user to launch and manage HPC applications in Windows Azure platform. The scheduler

supports submitting and managing HPC MPI jobs and processes, and hence works with

MPI versions of STREAM, IOR and NPB benchmarks. The HPC Scheduler SDK

package (version 1.6) is available for download from

http://www.microsoft.com/en-us/download/details.aspx?id=28015. Once the Windows

Azure HPC Scheduler is deployed, it creates a Hosted Service containing a cluster of

VMs (nodes) in the Windows Azure platform [Paratools12A] containing a head node and

45

several compute nodes. The size of the cluster depended on configurations in the

configuration and definition files.

The screenshot of a successful creation of an eight-node cluster is shown in Appendix E

under Windows Azure Screenshots. PowerShell also lets the user create a certificate file

(.cer) that is uploaded to the Management Certificates in Windows Azure Management

Portal. In addition, it also creates the SQL Azure persistent database for storage. The

process creates Azure storage along with the Hosted Service that is later used for

benchmarking synchronizing in a cluster.

6.3.1 Service Configuration and Service Definition Files

During the Windows Azure HPC scheduler deployment Windows PowerShell uses

service configuration (.cscfg) and service definition (.csdef) files to create a cluster. The

service definition file defines all the roles in the cluster such as HeadNode and

ComputeNode. It also defines the types of instance needed for these roles. Service

configuration file on the other hand defines the number of instances needed for both head

node and compute nodes.

After the HPC Scheduler is deployed successfully, the Windows Azure Management

Portal appears with all the nodes in the ready state as shown in Appendix E under

Windows Azure Screenshots.

46

6.4 Connect to HeadNode on the Cluster on Windows Azure

Remote Desktop Protocol (RDP) connection utility is used to connect to the HeadNode of

the cluster. As shown in the screenshot of Windows Azure Management Portal in

Appendix E, the ‘connect’ button is used to connect to the head node. It starts a remote

connection with the node after a secure login. The Windows Azure Screenshots in

Appendix E shows an example RDP connection to a head node.

After a successful connection, the desktop of the head node as shown under Windows

Azure Screenshots in Appendix E is displayed on the local machine. From the Windows

local machine, the benchmark zipped package is copied over to the head node of the

cluster.

6.5 Windows Azure Firewall Configuration for MPI Communication

This is a very important step in making the benchmark ready for execution in the cluster.

It involves running some commands using the PowerShell in a sequence on the

HeadNode that unzipped and uploaded the benchmark files to the Azure storage and

made them available for all the nodes in the cluster to execute. In order to run MPI jobs

in a cluster it is important to open the firewall between the compute nodes

[Paratools12B]. First step is run ‘hpcpack create’ command that created a package

in a compressed format [TechNet12A]. The command is as shown below:

47

PS C:\approot> hpcpack create C:\approot\benchmarks.zip

C:\approot\benchmarks

The next step is to run the ‘hpcpack upload’ command. It uploads the compressed

package to the Azure storage. As mentioned above the dependent dll files are also part of

the package.

The next step is to synchronize the package from the Azure storage to all the nodes in the

cluster. This is done by running the following command:

PS C:\approot>clusrun /nodegroup:computenode hpcsync

Finally the following ‘clusrun’ command is run. This command registered the

benchmark binary to all nodes of the cluster and opens up the firewall for MPI

communications. Below is the command run on a small instance eight-node cluster for

IOR benchmark:

PS D:\Users\sinadmin> clusrun /nodegroup:ComputeNode

hpcfwutil register IOR.exe

The output of the clusrun command is shown in Appendix B under Benchmark

Commands.

48

The IOR.exe file is now successfully registered to on all the nodes so it can run on them

in parallel. They all returned code 0 indicating success.

6.6 Create and Submit MPI Jobs for Executing Benchmarks

The HPC Job Manager utility is used to create, submit and monitor the MPI jobs from the

head node. HPC Job Manager presents an easy to use User Interface (UI) and is part of

HPC Pack 2008. The UI takes command lines as input to execute the benchmark. HPC

Pack 2008 is part of Windows HPC Server 2008 R2 OS. It allows the user to monitor the

progress of the jobs and categorizes them as failed, active, cancelled and finished. The

status of all jobs that are successfully executed are automatically changed from ‘active’ to

‘finished’ state. The job is in active state for as long as it is running. The screenshot of

the finished jobs in HPC Job Manager is shown in Appendix E under Windows Azure

Screenshots.

6.6.1 STREAM Benchmark

STREAM is run from the HeadNode of the cluster. STREAM benchmark’s executable

file along with dependent dll files are synced to all the nodes before execution.

Following is an example command that is used to run the benchmark on a four-node

cluster of small instance type in the HPC Job Manager UI.

49

mpiexec -np 4 C:\Resources\ Directory\

c6b0e3213a6649099e59530e7834fb4b.

ComputeNode.Microsoft.Hpc.Azure.LocalStorage.Application\be

nchmarks\2012-05-29T232012.0000000Z\stream_mpi.exe

The argument -np is the number of processes (nodes) the benchmark is run on in

parallel. The results of the execution are copied to a text file and later moved to the local

Windows machine for analysis.

Service configuration and service definition files are used to control the size and the

instance type. Thus, the benchmark is run on cluster sized with 1, 2, 4, 6, and 8 nodes for

small and medium instance types as required. Sample result of the execution is copied to

Appendix C. The analysis of the STREAM benchmark is in chapter 7.

6.6.2 Interleaved Or Random Benchmark

IOR is run from the HeadNode of the cluster. IOR benchmark’s executable file along

with dependent dll files are synced to all the nodes before execution. Following is an

example command that is used to run the benchmark on a four-node cluster of small

instance type in the HPC Job Manager UI.

50

mpiexec -np 4 C:\Resources\ Directory\

c6b0e3213a6649099e59530e7834fb4b.

ComputeNode.Microsoft.Hpc.Azure.LocalStorage.Application\be

nchmarks\2012-05-29T232012.0000000Z\IOR.exe -b 1g -t 4m

The argument -np is the number of processes (nodes) the benchmark is run on in

parallel. The results of the execution are copied to a text file and later moved to the local

windows machine for analysis.

Service configuration and service definition file are used to control the size and the

instance type. Thus, the benchmark is run on cluster sized with 1, 2, 4, 6, and 8 nodes for

small and medium instance types as required. Sample result of the execution is copied to

Appendix C. The analysis of the IOR benchmark is in chapter 7.

6.6.3 NAS Parallel Benchmarks

As with EC2, we consider three NPB 3.3 benchmarks to execute on Windows Azure

platform: Conjugate Gradient (CG), Fourier Transform (FT), and Embarrassingly Parallel

(EP) benchmark.

51

6.6.3.1 Conjugate Gradient Benchmark

NBP CG is run from the HeadNode of the cluster. CG benchmark’s executable file along

with dependent dll files are synced to all the nodes before execution. Following is an

example command used to run the benchmark on a four-node cluster of small instance

type in the HPC Job Manager UI.

mpiexec -np 4 C:\Resources\ Directory\

c6b0e3213a6649099e59530e7834fb4b.

ComputeNode.Microsoft.Hpc.Azure.LocalStorage.Application\be

nchmarks\2012-05-29T232012.0000000Z\ CG.A.4.exe

The argument -np is the number of processes (nodes) the benchmark is run on in

parallel. The results of the execution are copied to a text file and later moved to the local

windows machine for analysis.

CG can only be compiled in cluster size that is a power of two. Service configuration and

service definition file are used to control the size and the instance type. Thus, the

benchmark is run on cluster sized with 1, 2, 4, and 8 nodes for small and medium

instance types as required. Sample output of the mpiexec command is available in

Appendix C. The analysis of the CG benchmark is in chapter 7.

52

6.6.3.2 Fourier Transform Benchmark

NBP FT is run from the HeadNode of the cluster. FT benchmark’s executable file along

with dependent dll files are synced to all the nodes before execution. Following is an

example command used to run the benchmark on a four-node cluster of small instance

type in the HPC 2008 R2 Job Manager UI:

mpiexec -np 4 C:\Resources\ Directory\

c6b0e3213a6649099e59530e7834fb4b.

ComputeNode.Microsoft.Hpc.Azure.LocalStorage.Application\be

nchmarks\2012-05-29T232012.0000000Z\ FT.A.4.exe

The argument -np is the number of processes (nodes) the benchmark is run on in

parallel. The results of the execution are copied to a text file and later moved to the local

windows machine for analysis.

FT can only be compiled in cluster size that is a power of two. Service configuration and

service definition file are used to control the size and the instance type. Thus, the

benchmark is run on cluster sized with 1, 2, 4, and 8 nodes for small and medium

instance types as required. Sample output of the mpiexec command is available in

Appendix C. The analysis of the FT benchmark is in chapter 7.

53

6.6.3.3 Embarrassingly Parallel Benchmark

NPB EP is run from the HeadNode of the cluster. EP benchmark’s executable file along

with dependent dll files are synced to all the nodes before execution. Following is an

example command used to run the benchmark on a four-node cluster of small instance

type in the HPC Job Manager UI:

mpiexec -np 4 C:\Resources\ Directory\

c6b0e3213a6649099e59530e7834fb4b.

ComputeNode.Microsoft.Hpc.Azure.LocalStorage.Application\be

nchmarks\2012-05-29T232012.0000000Z\ EP.A.4.exe

The argument -np is the number of processes (nodes) the benchmark is run on in

parallel. The results of the execution are copied to a text file and later moved to the local

windows machine for analysis.

Service configuration and service definition file are used to control the size and the

instance type. Thus, the benchmark is run on cluster sized with 1, 2, 4, 6, and 8 nodes for

small and medium instance types as required. Sample output of the mpiexec command

is available in Appendix C. The analysis of the EP benchmark is in chapter 7.

54

Chapter 7

ANALYSIS OF RESULTS

The Microsoft Excel 2010 built-in function T-TEST was used and a statistical analysis of

the results obtained was performed. The T-TEST function was used with two datasets as

input, one for EC2 and one for Windows Azure that gave a p-value as output. The p-

value is a number that is frequently used as a measure of comparison of two datasets. A

p-value not exceeding 0.05 is considered as indication of statistically significant

difference between the datasets and a p-value exceeding 0.05 indicating statistically

insignificant difference. Each dataset for a benchmark was run with increasing number

of nodes 1, 2, 4, 6 and 8. And each benchmark inherently ran several iterations before

giving an average value. These average values were used to create the datasets for

comparison for T-TEST.

7.1 STREAM Benchmark

STREAM benchmark primarily measures the memory bandwidth. The MPI version of

STREAM benchmark was used to run the benchmark on multiple processors. The

sustained memory bandwidth was measured for four computational kernels: copy, scale,

add, and triad. However, the analysis was mainly focused on stream triad as it performs a

55

combination of vector multiplication by a constant, and a sum on two source and one

destination vectors thus allowing both scale and add operations.

The STREAM benchmark by default ran for 10 iterations and gave an output of average

values when executed in a cluster for both small and medium instance types. For

example in the below matrix a value of 4344.1400 for a two-node cluster on EC2 was the

average of 10 iterations for Copy operation. The Add and Triad operations also ran for

10 iterations. An example of such an output is available in Appendix C.

7.1.1 EC2 Standard Small Instance (m1.small) Versus Azure Small

The STREAM benchmark is mainly used to analyze the memory bandwidth of EC2 and

Azure. Hence, the focus is mainly on how the trends of average megabytes per second

(MB/s) vary between the two public clouds rather than the average time for specific

operations, which seem to be inconsistent most of the time.

The average MB/s for the copy operation as shown in Figure 3 was higher for the EC2

small instance even as the number of nodes was varied as 1, 2, 4, 6 and 8. Though the

average time taken for this operation seemed to be slightly inconsistent, the Azure small

instance took more time than the EC2 instance did.

56

Figure 3: STREAM Copy - m1.small and Azure Small Instance Average

Figure 4: STREAM Scale - m1.small and Azure Small Instance Average

Scale adds a simple arithmetic operation. Similar to the copy operation, the average

MB/s for EC2 was higher than the Azure instance for all the nodes as shown in Figure 4.

Though the average time was inconsistent for most of the runs, the Azure instance took

less time for most nodes.

2000

2500

3000

3500

4000

4500

5000

1 2 4 6 8

A
vg

 M
B

/S

No. of Nodes

Stream - Copy
EC2 - m1.small

Azure - small

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

1 2 4 6 8

A
vg

 T
im

e
 (

S)

No. of Nodes

Stream - Copy

EC2 - m1.small

Azure - small

2000

3000

4000

5000

1 2 4 6 8

A
vg

 M
B

/S

No. of Nodes

Stream - Scale

EC2 - m1.small

Azure - small

0.0000

0.0050

0.0100

0.0150

0.0200

1 2 4 6 8

A
vg

 T
im

e
 (

S)

No. of Nodes

Stream - Scale

EC2 - m1.small

Azure - small

57

of

Nodes Copy Scale Add Triad

 EC2 Azure EC2 Azure EC2 Azure EC2 Azure

1 4677.0648 2823.5417 4555.1579 2839.9931 4724.8672 2732.7379 4526.2273 2588.2466

2 4344.1400 2861.4200 4229.2200 2916.2400 4369.2400 2718.8900 4217.0000 2518.5000

4 4006.1600 2897.0100 3906.7900 2894.7800 3990.6200 2715.4600 3891.3600 2513.3200

6 4142.4000 2853.2100 4034.4600 2876.0200 4135.5500 2732.6400 4015.7100 2582.7300

8 4022.2300 2870.1800 3973.8700 2897.7400 4052.0600 2743.3300 3938.8500 2574.3300

P-value 0.000358437 0.000384909 0.00033495 0.000145284

Table 3: STREAM - m1.small and Azure Small Instance Average MB/S

of

Nodes Copy Scale Add Triad

 EC2 Azure EC2 Azure EC2 Azure EC2 Azure

1 0.0136 0.0144 0.0139 0.0138 0.0236 0.0232 0.0240 0.0242

2 0.0170 0.0117 0.0138 0.0115 0.0203 0.0238 0.0207 0.0286

4 0.0137 0.0137 0.0138 0.0134 0.0236 0.0236 0.0241 0.0244

6 0.0135 0.0144 0.0137 0.0145 0.0169 0.0188 0.0240 0.0198

8 0.0070 0.0120 0.0138 0.0116 0.0270 0.0218 0.0307 0.0235

P-value 0.877795774 0.235662165 0.984262524 0.787531899

Table 4: STREAM - m1.small and Azure Small Instance Average Time in S

58

Figure 5: STREAM Add - m1.small and Azure Small Instance Average

Figure 6: STREAM Triad - m1.small and Azure Small Instance Average

A stastistical analysis was performed to determine if the difference in throughput between

the two clouds was significant. The difference in throughput (avg MB/s) for all four

operations copy, scale, add and triad between EC2 and Azure were found to be

statistically significant with a p-value of 0.0001 for STREAM Triad (Table 3).

Graphically, the add and triad operations as shown in Figure 5 and Figure 6 also indicated

that the average throughput for EC2 were higher than Azure for small instance types.

The througput in EC2 was much higher than Windows Azure cloud for the small instance

2000

2500

3000

3500

4000

4500

5000

1 2 4 6 8

A
vg

 M
B

/S

No. of Nodes

Stream - Add
EC2 - m1.small

Azure - small

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

1 2 4 6 8

A
vg

 T
im

e
 (

S)

No. of Nodes

Stream - Add
EC2 - m1.small

Azure - small

2000

2500

3000

3500

4000

4500

5000

1 2 4 6 8

A
vg

 M
B

/S

No. of Nodes

Stream - Triad
EC2 - m1.small

Azure - small

0.0000

0.0100

0.0200

0.0300

0.0400

1 2 4 6 8

A
vg

 T
im

e
 (

S)

No. of Nodes

Stream - Triad
EC2 - m1.small

Azure - small

59

type. This might be because of the different processors provided in EC2’s small instance

and Azure’s small instance (section 4.3).

The difference in the average time taken by both EC2 and Azure for small instance type

was found to be statisticaly insignificant with a p-value of 0.79 for STREAM Triad for

the small instance type (Table 4).

7.1.2 EC2 Standard Medium Instance (m1.medium) Versus Azure Medium

When the STREAM benchmark was run on the medium instance type, EC2 m1.medium

instance type provided higher throughput (MB/s) for all the four computational kernels

while the number of nodes were being varied as 1, 2, 4, 6, and 8. This is shown in Figure

7, Figure 8, Figure 9 and Figure 10 for copy, scale, add and triad operations respectively

below. In addition, the average time taken for each of the operations by EC2 medium

instance was much less compared to the Azure medium instance. This might also be

because EC2’s m1.medium instance has a processor of two EC2 compute units

(equivalent to CPU capacity of 1.0-1.2 GHz 2007 Opteron or Xeon processor) as opposed

to the quad-core AMD Opteron processor of Azure medium instance.

The RAM size plays a key role for measuring the memory bandwidth using STREAM

benchmark. Evidently, m1.medium instance type of EC2 outperformed Azure medium

instance that has an equivalent hardware configuration of 3.75 GB.

60

of Nodes Copy Scale Add Triad

 EC2 Azure EC2 Azure EC2 Azure EC2 Azure

1 4019.5780 3280.6003 3854.0625 3266.85 3975.1726 2905.03 3862.2325 2680.64

2 4008.3000 3253.7200 3844.3500 3275.60 4039.0700 2912.85 3900.6300 2686.60

4 3988.0100 3395.3300 3892.5000 3405.06 3965.9000 3012.19 3873.1200 2780.18

6 4090.2200 3396.2000 3986.4100 3421.25 4083.1400 3017.80 3942.8500 2789.75

8 4073.4800 3364.6700 3945.0800 3378.15 4047.3700 2969.25 3947.1000 2741.68

P-value 2.62036E-07 1.50158E-06 9.53245E-10 4.57339E-10

Table 5: STREAM - m1.medium and Azure Medium Instance Average MB/S

of Nodes Copy Scale Add Triad

 EC2 Azure EC2 Azure EC2 Azure EC2 Azure

1 0.0082 0.0109 0.0085 0.0119 0.0176 0.0226 0.0179 0.0249

2 0.0084 0.0135 0.0112 0.0128 0.0150 0.0215 0.0181 0.0207

4 0.0113 0.0129 0.0087 0.0108 0.0178 0.0186 0.0156 0.0218

6 0.0086 0.0106 0.0116 0.0120 0.0157 0.0215 0.0158 0.0238

8 0.0107 0.0116 0.0082 0.0099 0.0152 0.0167 0.0153 0.0181

P-value 0.021299775 0.075432341 0.019157137 0.007508744

Table 6: STREAM - m1.medium and Azure Medium Instance Average Time in S

The statistical analysis performed on the datasets for average MB/s and Average time

showed that the difference between the two instance types were statistically significant

for all the four operations with a p-value of 4.5E-10 for the average MB/s of STREAM

Triad (Table 5) and 0.007 for the average time of STREAM Triad (Table 6).

61

Figure 7: STREAM Copy - m1.medium and Azure Medium Instance

Figure 8: STREAM Scale - m1.medium and Azure Medium Instance

Figure 9: STREAM Add- m1.medium and Azure Medium Instance

2200

2700

3200

3700

4200

1 2 4 6 8

A
vg

 M
B

/S

No. of Nodes

Stream - Copy
EC2 - m1.medium

Azure - medium

0.0000

0.0050

0.0100

0.0150

1 2 4 6 8

A
vg

 T
im

e
(S

)

No. of Nodes

Stream - Copy
EC2 - m1.medium

Azure - medium

2200

2700

3200

3700

4200

1 2 4 6 8

A
vg

 M
B

/S

No. of Nodes

Stream - Scale
EC2 - m1.medium

Azure - medium

0.0000

0.0050

0.0100

0.0150

1 2 4 6 8

A
vg

 T
im

e
 (

S)

No. of Nodes

Stream - Scale
EC2 - m1.medium

azure - medium

2200

2700

3200

3700

4200

1 2 4 6 8

A
vg

 M
B

/S

No. of Nodes

Stream - Add
EC2 - m1.medium

Azure - Medium

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

1 2 4 6 8

A
vg

 T
im

e
 (

S)

No. of Nodes

Stream - Add
EC2 - m1.medium

Azure - medium

62

Figure 10: STREAM Triad - m1.medium and Azure Medium Instance

7.1.3 EC2 High-CPU Medium instance (c1.medium) Versus Azure Medium

The STREAM benchmark was also run on another medium instance type c1.medium of

EC2 and compared with the Azure medium instance. This was done to analyze if

c1.medium performed better than Azure medium instance. C1.medium has five times

better computing power than m1.medium but has less RAM (1.75 GB) than m1.medium

(section 4.3).

The results showed that the average time taken by c1.medium was less than Azure

medium instance, which means c1.medium was faster than Azure. However, the

throughput (average MB/s) of c1.medium was less than Azure medium for the copy and

scale operations as shown in the graphs in Figure 11 and Figure 12 respectively and more

than Azure medium instance type for Add and Triad operations as shown in the graphs in

Figure 13 and Figure 14 respectively.

2200

2700

3200

3700

4200

1 2 4 6 8

A
vg

 M
B

/S

No. of Nodes

Stream - Triad
EC2 - m1.medium

Azure - medium

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

1 2 4 6 8

A
vg

 T
im

e
 (

S)

No. of Nodes

Stream - Triad

EC2 - m1.medium

Azure - medium

63

of Nodes Copy Scale Add Triad

 EC2 Azure EC2 Azure EC2 Azure EC2 Azure

1 3699.3944 3280.6003 3576.5643 3266.85 3743.5912 2905.03 3679.2813 2680.64

2 3125.1700 3253.7200 3258.4500 3275.60 3480.2400 2912.85 3207.8600 2686.60

4 3294.3600 3395.3300 3245.5400 3405.06 3334.8800 3012.19 3345.7000 2780.18

6 3173.5200 3396.2000 3147.3600 3421.25 3225.1600 3017.80 3204.8600 2789.75

8 3051.7000 3364.6700 3020.9300 3378.15 3178.9600 2969.25 3187.1500 2741.68

P-value 0.586556499 0.354999199 0.012026079 0.002426183

Table 7: STREAM - c1.medium and Azure Medium Instance Average MB/S

of Nodes Copy Scale Add Triad

 EC2 Azure EC2 Azure EC2 Azure EC2 Azure

1 0.0101 0.0109 0.0094 0.0119 0.0133 0.0226 0.0137 0.0249

2 0.0107 0.0135 0.0103 0.0128 0.0149 0.0215 0.0154 0.0207

4 0.0097 0.0129 0.0094 0.0108 0.0134 0.0186 0.0134 0.0218

6 0.0097 0.0106 0.0103 0.0120 0.0149 0.0215 0.0152 0.0238

8 0.0106 0.0116 0.0109 0.0099 0.0148 0.0167 0.0145 0.0181

P-value 0.033210533 0.04892193 0.003889974 0.002175783

Table 8: STREAM - c1.medium and Azure Medium Instance Average Time in S

From these results, it can also be seen that the throughput for c1.medium was more than

that of m1.medium. This might be because of the higher CPU capacity provided by the

EC2’s High-CPU medium instance than the Azure medium instance (section 4.3).

64

The difference between the Azure medium instance and c1.medium were also found to be

statistically significant for both average MB/s and average time for STREAM triad (Table

7 and Table 8).

Figure 11: STREAM Copy - c1.medium and Azure Medium Instance

Figure 12: STREAM Scale - c1.medium and Azure Medium Instance

2500

2700

2900

3100

3300

3500

3700

1 2 4 6 8

A
vg

 M
B

/S

No. of Nodes

Stream - Copy

EC2 - c1.medium

Azure - medium

0.0000

0.0050

0.0100

0.0150

1 2 4 6 8
A

vg
 T

im
e

 (
S)

No. of Nodes

Stream - Copy
EC2 - c1.medium

Azure - medium

2500

2700

2900

3100

3300

3500

3700

1 2 4 6 8

A
vg

 M
B

/S

No. of Nodes

Stream - Scale

EC2 - c1.medium

Azure - medium

0.0000
0.0020
0.0040
0.0060
0.0080
0.0100
0.0120
0.0140

1 2 4 6 8

A
vg

 T
im

e
 (

S)

No. of Nodes

Stream - Scale

EC2 - c1.medium

Azure - medium

65

Figure 13: STREAM Add - c1.medium and Azure Medium Instance

Figure 14: STREAM Triad - c1.medium and Azure Medium Instance

7.2 Interleaved Or Random Benchmark

IOR benchmark tests the system performance by focusing on parallel/sequential

read/write operations that are typical of scientific applications. The data are written and

read using independent parallel transfers of equal-sized blocks of contiguous bytes that

2500

2700

2900

3100

3300

3500

3700

1 2 4 6 8

A
vg

 M
B

/S

No. of Nodes

Stream - Add

EC2 - c1.medium

Azure - medium

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

1 2 4 6 8

A
vg

 T
im

e
 (

S)

No. of Nodes

Stream - Add

EC2 - c1.medium

Azure - medium

2500

2700

2900

3100

3300

3500

3700

1 2 4 6 8

A
vg

 M
B

/S

No. of Nodes

Stream - Triad

EC2 -
c1.medium

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

1 2 4 6 8

A
vg

 T
im

e
 (

S)

No. of Nodes

Stream - Triad

EC2 - c1.medium

Azure - medium

66

cover the file with no gaps and that do not overlap each other. The test consists of

creating a new file, writing it with data, then reading the data back.

Caching appeared to have a big impact on READ/WRITE performance on both EC2 and

Windows Azure platforms. Therefore, the READ/WRITE values appeared to be higher

after the first iteration of the execution. For this reason, this benchmark was run for one

iteration only so non-cached data could be analyzed from a performance perspective.

7.2.1 EC2 Standard Small Instance (m1.small) Versus Azure Small

The graph in Figure 15 shows the read and writes performance on Amazon EC2 m1.small

instance type and Azure small instance type. A block size of 1 GiB was used during the

execution, which means that a test file of 1 GiB was written and then read while the

benchmark was executed. A transfer size of 4 MB was used which implies that each read

operation will read the data in the chunks of 4 MB until the entire file of 1 GiB was read.

Since the block size was 1 GiB and the RAM size in both the small instances was 1.7 GB

this test had the benefit of buffered caching. When large HPC applications are run on the

Cloud, it is important to understand how well the buffered caching would help in the

performance of the applications.

67

Figure 15: IOR - m1.small and Azure Small Instance

of Nodes Write Read

 EC2 Azure EC2 Azure

1 35.39 114.11 1620.84 949.15

2 69.78 165.59 1851.46 736.30

4 155.11 263.74 3717.61 1561.50

6 199.97 629.11 3199.55 2725.77

8 285.51 645.70 4311.75 4894.71

P-value 0.069476615 0.217196694

Table 9: IOR - m1.small and Azure Small Instance Average MiB/S

The write performance in EC2 was better than that in Azure. This was because the

Amazon EC2 instance VM and the local instance store volumes are located in the same

physical server; interaction with this storage was very fast, particularly for sequential

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

1 2 4 6 8

A
vg

 M
iB

/S

No. of Nodes

Write/Read (m1.small Vs Azure small)

Write EC2

Write Azure

Read EC2

Read Azure

68

access. Local instance store volumes are ideal for temporary storage of information that

is continually changing, such as buffers, caches, scratch data, and other temporary

content. Amazon EC2 instance storage is designed for this purpose.

A statistical analysis was performed and the values showed that the difference for both

the write and read performance between the two instance types was found to be

statistically insignificant with a p-value of 0.06 for Write operation and 0.92 for Read

operation (Table 9).

7.2.2 EC2 Standard Medium Instance (m1.medium) Versus Azure Medium

In Figure 16, the read performances of Azure and EC2 were seen to be better than the

write performances of the two clouds (Table 8). Azure write performance was slightly

better than EC2 write performance and was found to be statistically significant.

However, the read performance of EC2 was higher than Azure’s read performance. Both

the medium instances had similar hardware configuration with EC2 having 3.75 GB

RAM and Azure having 3.5 GB RAM. In EC2 the test file was created and read from the

local instance storage, which was located on the same server as of the VM itself, whereas

in Azure it was read from the windows storage account. This might have been the reason

for the difference in read performances on the two clouds.

69

 Figure 16: IOR - m1.medium and Azure Medium Instance

of Nodes Write Read

 EC2 Azure EC2 Azure

1 12.52 500.67 1629.23 699.25

2 54.87 702.84 3292.59 1624.49

4 145.92 950.5 6279.59 3088.93

6 209.56 1082.62 9359.45 4365.26

8 283.09 1075.59 12446.01 5262.51

P-value 0.001564276 0.149689864

Table 10: IOR - m1.medium and Azure Medium Instance Average MiB/S

The difference between m1.medium and Azure medium instances was found to be

significant statistically for the write performance with a p-value of 0.0015 (Table 10)

unlike the small instance types.

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

14000.00

1 2 4 6 8

A
vg

 M
iB

/S

No. of Nodes

Write/Read (m1.medium Vs Azure medium)

Write EC2

Write Azure

Read EC2

Read Azure

70

7.2.3 EC2 High-CPU Medium Instance (c1.medium) Versus Azure Medium

As in Figure 17, again the read performances were better than write performances. The

difference in write performance between the two clouds was comparatively less than the

difference between their read performances. The read performance of EC2 cloud was

better than Azure Read performance. This was because of the fact that in EC2, the file

was accessed from the local instance storage that was faster to access. Also, since the

RAM size in c1.medium was only 1.7 GB compared to 3.75 GB in m1.medium it

appeared that the read performance was better in m1.medium than c1.medium due to

better buffering effect.

Figure 17: IOR - c1.medium and Azure Medium Instance

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

7000.00

8000.00

9000.00

10000.00

1 2 4 6 8

A
vg

 M
iB

/S

No. of Nodes

Write/Read (c1.medium Vs Azure medium)

Write EC2

Write Azure

Read EC2

Read Azure

71

of Nodes Write Read

 EC2 Azure EC2 Azure

1 92.50 500.67 1658.09 699.25

2 189.77 702.84 2906.45 1624.49

4 345.24 950.5 5922.35 3088.93

6 320.45 1082.62 7485.01 4365.26

8 435.07 1075.59 8851.69 5262.51

P-value 0.003723622 0.185188569

Table 11: IOR - c1.medium and Azure Medium Instance Average MiB/S

The statistical analysis performed showed that the difference in write performance

between c1.medium and Azure medium instance type was statistically significant with a

p-value of 0.0037 (Table 11).

7.3 NAS Parallel Benchmarks (NPB -CG, FT, EP)

In EP benchmark there was no communication between the nodes, hence it was a pure

test for computation performance of the instance and the CPU capacity of the small

instances would play a vital role. The CG benchmark was quite memory intensive and it

proved to be a test for communication performance. The FT benchmark was used to test

both the computation and communication performance of the instances. For each of the

benchmarks both the execution time and Mop/s (Millions of Operations/s) were

measured.

72

The NPB benchmarks CG inherently ran 15 iterations and gave an output of average

values when executed in a cluster. For example in the below matrix for NPB-CG

benchmark, a value of 6.86 for a two-node cluster on EC2 was the average of 15

iterations.

7.3.1 EC2 Standard Small Instance (m1.small) Versus Azure Small

Though both EC2 and Azure small instance types used for this experiment had equivalent

hardware configurations, Azure small instance was found to be faster than EC2 m1.small.

The difference in the underlying architecture and implementation of MPI in the two

clouds might have attributed to this behavior. MPI impacts the communication

performance. The execution time taken by m1.small increased as the number of nodes

was varied and was highest when CG was run on 8 nodes as shown in the graph below in

Figure 18, whereas in Azure the execution time did not vary much even when the nodes

were varied as 1, 2, 4, 6, and 8 nodes. In all the cases, execution time of CG on Azure

small instance was less compared to m1.small. Also, the Millions of Operations

generated per second (Mop/s) by Azure small instance was greater than m1.small for all

the number of nodes as shown in graph below in Figure 18. The EC2 standard small

instance did not seem to perform well for the communication intensive task.

73

Figure 18: CG - m1.small and Azure Small Instance

of Nodes Time (S) Mop/s

 EC2 Azure EC2 Azure

1 4.80 3.77 311.65 397.45

2 6.86 4.33 218.21 345.86

4 30.53 4.43 49.02 338.03

8 90.64 4.13 16.51 362.59

P-value 0.242657801 0.053827059

Table 12: CG - m1.small and Azure Small Instance

The FT benchmark inherently ran 6 iterations and gave an output of average values when

executed in a cluster. For example in Table 13 below for NPB-FT benchmark, a value of

27.03 for a two-node cluster on EC2 was the average of six iterations.

0.00

20.00

40.00

60.00

80.00

100.00

1 2 4 8

Ti
m

e
 (

S)

No. of Nodes

CG - Time
EC2 - m1.small

Azure - small

0.00

100.00

200.00

300.00

400.00

500.00

1 2 4 8

M
o

p
/s

No. of Nodes

CG - Mop
EC2 - m1.small

Azure - small

74

Figure 19: FT - m1.small and Azure Small Instance

of Nodes Time (S) Mop/s

 EC2 Azure EC2 Azure

1 20.86 10.90 342.05 654.68

2 27.03 13.73 264.04 519.95

4 29.88 13.47 238.82 529.92

8 29.61 9.17 241.05 778.64

P-value 0.00 0.01

Table 13: FT - m1.small and Azure Small Instance

In small instance type, Azure instance was found to be much faster than the EC2 instance.

Though both instance types have equivalent configurations, Azure small instance took

much less time than EC2 m1.small for the execution of FT benchmark as shown in Figure

19 above. This might be because of the processor type used in EC2 versus Windows

Azure. The details of hardware specifications are outlined in section 4.3 for both the

cloud architectures. It was also observed that the mop generated per second was higher

for Azure medium instance than m1.small for all the 1, 2, 4, 6, and 8 nodes.

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00

1 2 4 8

Ti
m

e
 (

S)

No. of Nodes

FT - Time

EC2 - m1.small

Azure - small

0.00

200.00

400.00

600.00

800.00

1000.00

1 2 4 8

M
o

p
/s

No. of Nodes

FT - Mop

EC2 - m1.small

Azure - small

75

Figure 20: EP - m1.small and Azure Small Instance

of Nodes Time (S) Mop/s

 EC2 Azure EC2 Azure

1 58.42 36.44 9.19 14.73

2 30.59 18.05 17.55 29.75

4 15.48 9.35 34.68 57.44

6 10.56 6.55 50.83 81.93

8 8.09 4.93 66.37 108.97

P-value 0.413384128 0.294118542

Table 14: EP - m1.small and Azure Small Instance

In both EC2 and Azure small instance types, the execution time for EP benchmark kept

decreasing as the number of nodes were being increased and it took the least time when

run on eight nodes and maximum time when run on one node. This is shown in the graph

in Figure 20 above. In addition, the Mop/s increased as the number of nodes increased

with the highest Mop/s obtained when the benchmark was run on eight nodes on both the

Azure and EC2 small instance types. When the two instance types are compared it

0.00

20.00

40.00

60.00

80.00

1 2 4 6 8

Ti
m

e
 (

S)

No. of Nodes

EP - Time

EC2 - m1.small

Azure- small

0.00

20.00

40.00

60.00

80.00

100.00

120.00

1 2 4 6 8

M
o

p
/s

No. of Nodes

EP - Mop

EC2 - m1.small

Azure - small

76

appears that Azure small instance was faster than the EC2 small instance and also Azure

small instance generates more Mop/s than the EC2 small (m1.small) instance type. This

was because of the difference in the type of underlying processor that the two small

instances provide. M1.small has 1 virtual core with 1 EC2 compute unit (section 4.3),

whereas Azure small instance provides quad-core processor of 2.10 GHz.

Though graphically there seemed to be much difference between the EC2 and Azure

small instance types, a statistical analysis was performed to see if these differences were

significant. This analysis showed that the difference in values between the two small

instance types were statistically significant for CG benchmark with a p-value of 0.05

(Table 12) and for FT benchmark with a p-value of 0.01 for Mop/s (Table 13).

7.3.2 EC2 Standard Medium Instance (m1.medium) Versus Azure Medium

Figure 21: CG - m1.medium and Azure Medium Instance

0.00

2.00

4.00

6.00

8.00

1 2 4 8

Ti
m

e
 (

S)

No. of Nodes

CG - Time

EC2 - m1.medium
Azure - medium

0.00

100.00

200.00

300.00

400.00

500.00

600.00

1 2 4 8

M
o

p
/s

No. of Nodes

CG - Mop
EC2 - m1.medium
Azure - medium

77

of Nodes Time (S) Mop/s

 EC2 Azure EC2 Azure

1 3.03 3.80 494.02 393.77

2 3.26 3.04 458.82 492.04

4 3.93 3.98 380.37 375.71

8 7.57 2.73 197.57 547.98

P-value 0.40 0.41106823

Table 15: CG - m1.medium and Azure Medium Instance

Both Azure medium instance and EC2’s m1.medium have equivalent configurations.

M1.medium performed better on one node, taking less execution time than Azure

medium instance and generating more mop per second as shown in the graph in Figure 21

above. The performance of m1.medium deteriorates as the number of nodes was varied

as 2, 4, 6, and 8 nodes. Azure medium instance performed better than m1.medium

instance on all other nodes. The difference in the MPI implementations (MS-MPI and

MPICH2) between Windows Azure and EC2, which is required for communication

performance in a cluster might have contributed to this behavior. The differences seemed

to be statistically insignificant when a statistical analysis was performed with the values

in Table 15 above.

For the FT benchmark it was observed that Azure medium instance performed better than

EC2 standard medium instance (m1.medium) only when the benchmark was executed on

one node as shown in the graph below in Figure 22 below. The difference in the

processor type (section 4.3) and implementation of MPI (MS-MPI and MPICH2) in EC2

78

and Windows Azure might have contributed to this behavior. When the number of nodes

were varied as 2, 4, 6, and 8, the performance of m1.medium got better and was found to

be faster than Azure medium instance.

Figure 22: FT - m1.medium and Azure Medium Instance

of Nodes Time (S) Mop/s

 EC2 Azure EC2 Azure

1 12.71 11.06 561.52 645.40

2 10.35 14.02 689.66 509.00

4 7.14 11.02 999.00 647.52

8 5.02 7.23 1421.80 987.38

P-value 0.39 0.36

Table 16: FT - m1.medium and Azure Medium Instance

0.00

5.00

10.00

15.00

1 2 4 8

Ti
m

e
 (

S)

No. of Nodes

FT - Time

EC2 - m1.medium

Azure - medium

0.00

500.00

1000.00

1500.00

1 2 4 8

M
o

p
/s

No. of Nodes

FT - Mop

EC2 - m1.medium

Azure - medium

79

Figure 23: EP - m1.medium and Azure Medium Instance

of Nodes Time (S) Mop/s

 EC2 Azure EC2 Azure

1 32.32 40.70 16.61 13.19

2 16.16 23.87 33.23 22.49

4 8.40 11.97 63.90 44.85

6 5.46 7.69 98.29 69.83

8 4.22 6.08 127.30 88.24

P-value 0.582828501 0.442356217

Table 17: EP - m1.medium and Azure Medium Instance

Unlike the small instance type, in medium instance type the EC2’s m1.medium was faster

and performed better than the Azure medium instance. The time taken for the EP

benchmark kept decreasing as the number of nodes was increased from one to eight for

both m1.medium instances and the Azure medium instances. Also, the Mop/s generated

was least when the benchmark was run on one single node and increased as the number

0.00

10.00

20.00

30.00

40.00

50.00

1 2 4 6 8

Ti
m

e
 (

S)

No. of Nodes

EP - Time

EC2 - m1.medium

Azure - medium

0.00

50.00

100.00

150.00

1 2 4 6 8

M
o

p
/s

No. of Nodes

EP - Mop

EC2 - m1.medium

Azure -medium

80

of nodes were varied from one to eight and was maximim when run on eight nodes.

These behaviors are shown in the graphs in Figure 23 above. The EC2 m1.medium

instance type took less time than Azure medium instance and generated greater Mop/s

than Azure Medium instance type. The difference in the processor types in EC2 and

Azure medium instances seems to affect the performance. M1.medium has one virtual

core with 2 EC2 compute units (section 4.3) while Azure medium instance provides 2.09

GHz processor speed and has two cores.

A statistical analysis was performed to determine how significant the difference between

m1.medium and Azure medium instance types was. This difference was found to be

statistically insignificant as shown from the p-values in Table 15, Table 16 and Table 17.

For CG benchmark, EC2 performed better on one node and for FT benchmark Azure

performed better on one node only with its performance deteriorating for rest of the

nodes.

7.3.3 EC2 High-CPU Medium Instance (c1.medium) Versus Azure Medium

C1.medium was found to be faster than the Azure medium instance. The performance of

c1.medium got better as the number of nodes was increased. The execution time taken by

c1.medium was less than that taken by Azure medium instance and also the the Mop

generated per second by c1.medium was higher than Azure medium instance. This is

reflected in the graph in Figure 24 below. Though c1.medium has a RAM of 1.7 GB

compared to 3.75 GB RAM size of Azure medium instance, c1.medium performs better

81

than the latter. So, the high cpu power of c1.medium compared to Azure medium

instance seemed to contribute towards the better performance of c1.medium.

Figure 24: CG - c1.medium and Azure Medium Instance

of Nodes Time (S) Mop/s

 EC2 Azure EC2 Azure

1 2.56 4.33 583.53 345.24

2 2.1 3.13 714.1 478.06

4 1.54 4.12 969.91 363.38

8 1.53 3.38 974.97 443.09

P-value 0.003321119 0.020320918

Table 18: CG - c1.medium and Azure Medium Instance

0.00

1.00

2.00

3.00

4.00

5.00

1 2 4 8

Ti
m

e
 (

S)

No. of Nodes

CG - Time

EC2 - c1.medium

Azure - medium

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1 2 4 8

M
o

p
/s

No. of Nodes

CG - Mop

EC2 - c1.medium

Azure - medium

82

Figure 25: FT - c1.medium and Azure Medium Instance

of Nodes Time (S) Mop/s

 EC2 Azure EC2 Azure

1 10.86 11.06 657.03 645.40

2 8.75 14.02 815.47 509.00

4 6.36 11.02 1121.55 647.52

8 5.14 7.23 1387.23 987.38

P-value 0.16 0.47

Table 19: FT - c1.medium and Azure Medium Instance

It appeared that EC2 high-CPU medium instance (c1.medium) was faster than the Azure

medium instance. It shows that the high CPU power provided by EC2 c1.medium

instance has helped in this behavior (section 4.3). FT depends on both the computaion

power of the instances and also the communication performance. As the number of

nodes were varied from 1, 2, 4, 6, and 8 the execution time for FT decreased for

c1.medium and was also found to be less than that of Azure medium instance. Similarly,

0.00

5.00

10.00

15.00

1 2 4 8

Ti
m

e
 (

S)

No. of Nodes

FT - Time

EC2 - c1.medium
Azure - medium

0.00

500.00

1000.00

1500.00

1 2 4 8

M
o

p
/s

No. of Nodes

FT - Mop

EC2 - c1.medium

Azure - medium

83

the Mop generated per second was higher for c1.medium than Azure medium instance for

all the nodes. The graphs in Figure 25 reflect this behavior.

Figure 26: EP - c1.medium and Azure Medium Instance

of Nodes Time (S) Mop/s

 EC2 Azure EC2 Azure

1 27.34 40.70 19.63 13.19

2 13.66 23.87 39.30 22.49

4 6.83 11.97 78.65 44.85

6 4.58 7.69 117.21 69.83

8 3.70 6.08 144.93 88.24

P-value 0.410045319 0.278304561

Table 20: EP - c1.medium and Azure Medium Instance

C1.medium was faster than EC2’s m1.medium instance type (section 7.3.2). C1.medium

has five times more CPU power than m1.medium. C1.medium has two virtual cores and

5 EC2 compute units whereas Azure medium instance has two virtual cores with 2.09

0.00

10.00

20.00

30.00

40.00

50.00

1 2 4 6 8

Ti
m

e
 (

S)

No. of Nodes

EP - Time

EC2 - c1.medium

Azure - medium

0.00

50.00

100.00

150.00

200.00

1 2 4 6 8

M
o

p
/s

No. of Nodes

EP - Mop

EC2 - c1.medium

Azure - medium

84

GHz processing power. The EC2 c1.medium was much faster than Azure medium

instance. C1.medium took much less time than Azure medium instance. The time taken

by EP benchmark kept decreasing as the number of nodes were varied and was least

while it was run on 8 nodes. The Mop generated per second was found to be increasing

in both c1.medium and Azure medium instance types as the nodes were varied as 1, 2, 4,

6, and 8 nodes with m1.medium generating more mop per second than Azure medium

instance. These behaviors are reflected in the graphs in Figure 26 above. This difference

in the mop generated per second was found to be larger than the difference between

m1.medium and Azure medium instance. This might be because of the higher computing

power provided by the c1.medium instance type than m1.medium.

The statistical analysis performed showed that the difference between c1.medium and

Azure medium instance types was found to statistically significant for the CG benchmark

with a p-value of 0.003 for the execution time and a p-value of 0.02 for Mop/s (Table 18).

The p-values for FT (Table 19) and EP (Table 20) benchmarks were found to be

statistically insignificant.

85

Chapter 8

CONCLUSION

The conclusions are categorized by the following output types: Memory bandwidth, I/O

Performance and Communication & Computational performance for Amazon EC2 and

Windows Azure cloud platforms and are based on the detailed analysis performed in

Chapter 7.

Memory bandwidth appeared to be more for EC2’s standard small instance m1.small

when compared to Windows Azure’s small instance type. The graphs in the detail

analysis indicated that memory bandwidth was consistently higher for EC2 than

Windows Azure when cluster size increased. Further statistical analysis confirmed the

same behavior. Memory bandwidth fared better for EC2 compared to Windows Azure.

Though a detailed analysis was performed on the STREAM benchmark, it was hard to

conclude which of the two small instances was faster between Amazon EC2 and

Windows Azure when execution time was considered as a measure.

The detailed analysis of EC2’s standard medium instance m1.medium and Azure’s

medium instance type clearly showed that m1.medium was faster and provided much

better memory bandwidth compared to Azure’s medium instance type. As the cluster size

86

 increased the shared memory bandwidth showed increased performance for EC2

compared to Azure. In comparison of EC2’s High-CPU medium instance (c1.medium)

and Azure’s medium, EC2 clearly showed better memory bandwidth.

I/O comparison involved measuring READ and WRITE operations with varied number

of nodes on both Amazon EC2 and Windows Azure. From the detailed analysis it

appeared that difference for both read and write performances was insignificant in both

the platforms for EC2’s m1.small and Azure’s small instance types. This means that

small instances performed almost same for read and write in EC2 and Windows Azure.

This behavior was further confirmed from the statistical analysis that proved it

insignificant.

For the medium instances, Azure’s medium instance appeared to have better write

performance than EC2’s m1.medium write performance. At the same time, EC2

performed better for read operation over Azure’s medium instance. Detailed analysis

proved this behavior. This was because on EC2, the data was written and read from the

local instance storage. EC2’s other medium instance c1.medium showed similar behavior

when compared to Azure’s medium instance.

It was clear that Windows Azure performed better than EC2 in both communication and

computational performances for small instance types with increasing number of nodes in

a cluster. Problem Class A was selected to run the NPB benchmarks on both the

platforms. The communication and computational power consistently increased with the

87

increasing number of nodes in both the platforms. However, Windows Azure

performance was better in all the cases when compared to EC2.

On the medium instances communication performance (CG) of Azure (medium instance)

appeared to have performed better than EC2’s m1.medium instance when the number of

nodes was varied as 2, 4, 6, and 8 nodes except on one node where m1.medium

performed better. Nevertheless, the Computational performance (EP) of m1.medium

instance was better than Azure’s medium instance for all the nodes.

The communication performance of EC2’s High-CPU medium instance, c1.medium

appeared to be better than Azure’s medium instance. Same behavior was observed for

computational power also. EC2’s c1.medium instance computational performance was

better compared to Azure’s medium instance because of the high CPU power of

c1.medium instance.

Overall, it appeared that Amazon EC2 was well suited for memory intensive applications.

Both Small and Medium Amazon instance types showed this behavior. Windows Azure

on the other hand appeared to be better for communication performance for both small

and medium instance types. For computational and communication performance

perspective Amazon EC2’s c1.medium instance type appeared to be more suitable over

Window’s Azure’s comparable instance types.

88

8.1 Future Research

From the research accomplished during the course of this thesis, there appeared to be a

lot of scope for benchmarking and comparing performances of various public cloud

computing platforms. The scope of this thesis was limited to benchmarking Amazon EC2

and Windows Azure with STREAM, IOR and NPB benchmarks. NPB3.3 benchmark

alone has 12 benchmarks with six Problem Classes. Each problem class is a level of

complexity of the benchmark problem. These problem classes can be further explored to

benchmark the cloud platforms. Amazon and Microsoft are innovating and regularly

implementing newer instance types and are supporting Operating Systems that were not

supported earlier. Windows Azure particularly is evolving at the time of writing this

thesis and is adding new Operating Systems. So, it presents a lot of scope for research on

assessing performance both from commercial and scientific perspective.

This thesis benchmarked the small and medium instance types of both Amazon EC2 and

Windows Azure. A cluster of 8 nodes was used for this purpose and HPC benchmarks

were executed on the same by increasing the number of nodes that measured memory

bandwidth, I/O performance and Communication & Computational performance of these

two cloud platforms. This helped in understanding how the performance was impacted

when the number of nodes in the cluster was increased and how it was impacted when the

instance types were varied from small to medium at the same time. But, since HPC

89

applications require clusters with really high computing power, the large and extra-large

(or the cluster compute instance type in EC2) instance types and also larger cluster sizes

could be used to get significant performance improvements.

There are organizations and researchers who have performed experiments on Amazon

EC2 but not many are out there working on Windows Azure. So the benchmarking

process presented some challenges including building the windows binaries that are

compatible with MS-MPI for Azure platform. These benchmarks were written in C and

Fortran languages and are inherently supported by GCC and MPICC compiler for MPI

versions. They were not written for benchmarking Windows platform. Cross-compilers

had to be used to build the windows binaries. This area can be further explored for

benchmarking Windows Platforms.

90

REFERENCES

Print Publications:

[Amedro10]

Amedro, B., F.O. Baude, D. Caromel, C. Delbe ́, I. Filali, F. Huet, E. Mathias, and O.

Smirnov, Cloud Computing: Principles, Systems and Applications, Springer, Guildford,

2010.

[Evangelinos08]

Evangelinos, C. and Hill, C. N., “Cloud Computing for Parallel Scientific HPC

Applications: Feasibility of Running Coupled Atmosphere-Ocean Climate Models on

Amazon’s EC2”, Proceedings of Cloud Computing and Its Applications, ACM Workshop

(CCA’08), New York ACM, (October 2008).

[Gillam10]

Gillam, L. and N. Antonopoulus, Cloud Computing: Principles, Systems and

Applications, Springer, Guildford, 2010.

[Ghoshal11]

Ghoshal, D., Canon, R, C, and Ramakrishnan, N., “I/O performance of virtualized cloud

environments”, Proceedings of the second international workshop on Data intensive

computing in the clouds, pp. 71-80, NY, 2011.

[Hazelhurst08]

Hazelhurst, S., “Scientific computing using virtual high-performance computing: a case

study using the Amazon elastic computing cloud”, SAICSIT. Proceedings of the Annual

Research Conference of the South African Institute of Computer Scientists and

Information Technologists on IT Research in Developing Countries: Riding the Wave of

Technology. ACM, New York.

2008, pp. 94-103.

[SunMicrosystems09]

“Sun Microsystems Introduction to Cloud Computing Architecture”, White Paper, 1st

Edition, June 2009.

[Velte10]

Velte, A., T. J. Velte, and R.C. Elsenpeter, Cloud Computing: A Practical Approach,

McGraw Hill Professional, San Francisco, 2010.

91

[Wong99]

Wong, C.F., Martin, R. P., Arpaci-Dusseau, R.H. and Culler, D.E., Architectural

Requirements and Scalability of the NAS Parallel Benchmarks, 99 Proceedings of the

1999 ACM/IEEE conference on Supercomputing (CDROM) Article No.41, New York,

1999.

Electronic Publications:

[AWS12A]

“What was a EC2 Compute Unit and why did you introduce it?”,

http://aws.amazon.com/ec2/faqs/#What_is_an_EC2_Compute_ Unit_and_why_did_you_

introduce_it, last accessed April 10, 2012.

[AWS12B]

“Amazon Elastic Block Storage”, http://aws.amazon.com/ebs/, last accessed June 14,

2012.

[Marquand10]

Alan Le Marquand, “Windows Azure Platform. Inside the Cloud. Microsoft's Cloud

World Explained Part 2”, http://technet.microsoft.com/en-us/video/windows-azure-

platform-inside-the-cloud-microsofts-cloud-world-explained-part-2.aspx, May 5 2010.

[McCalpin95C]

“Adjust the Problem Size”,

https://asc.llnl.gov/computing_resources/purple/archive/benchmarks/memory/membench

_bm_readme.html#STREAMS, last accessed June14, 2012.

[McCalpin95A]

“Multiprocessor Runs”, Department of Computer Science,

http://www.cs.virginia.edu/stream/ref.html, last accessed February 12, 2012.

[McCalpin95B]

McCalpin, John D., "Memory Bandwidth and Machine Balance in Current High

Performance Computers", IEEE Computer Society Technical Committee on Computer

Architecture (TCCA) Newsletter, December 1995.

[Microsoft12]

“Windows HPC Server 2008 R2”, http://www.microsoft.com/en-us/server-

cloud/windows-server/high-performance-computing-hpc.aspx, last accessed July 14,

2012.

 [MPICH12]

“MPICH2”, http://www.mcs.anl.gov/research/projects/mpich2/, last accessed Jan15,

2012.

92

[MSDN12A]

“Windows Azure HPC Scheduler”, http://msdn.microsoft.com/en-

us/library/windowsazure/hh545593.aspx, last accessed Feb 27, 2012.

[MSDN12B]“Overview of the sample Azure service”, http://msdn.microsoft.com/en-

us/library/hh560251(v=vs.85).aspx#BKMK_tools, last accessed August 13 2012.

[Paratools12]

 “The Windows Azure HPC Scheduler”,

http://www.paratools.com/Azure/HowToHPCScheduler, last accessed May 29, 2012.

[Sourceforge12]

“IOR HPC Benchmark”, http://ior-sio.sourceforge.net/, last accessed Jan 4, 2012.

[StarCluster12A]

“WhatwasStarCluster?”, http://web.mit.edu/star/cluster/docs/latest/overview.html, last

accessed May 14, 2012.

[StarCluster12B]

 ”HPC on AWS”, http://aws.amazon.com/hpc-applications/, last accessed May 14, 2012.

[StarCluster12C]

“StarCluster”, http://web.mit.edu/star/cluster/, Last accessed May 14, 2012.

[StarCluster12D]

 “NFS Shares”, http://web.mit.edu/star/cluster/docs/latest/overview.html#nfs-shares, last

accessed June 15, 2012.

[StarCluster12E]

“Installing on Windows”,

http://web.mit.edu/star/cluster/docs/latest/installation.html?highlight=windows, last

accessed June 15, 2012.

[TechNet12A]

“Deploying Applications to Azure Nodes in Windows HPC Server 2008 R2”,

 http://technet.microsoft.com/en-us/library/hh162018(v=ws.10).aspx, last accessed May

30, 2012.

[TechNet12B]

“Overview of HPC Job Manager”, http://technet.microsoft.com/en-

us/library/cc972829.aspx, last updated May 20, 2009, last accessed May 4, 2012.

[TechNet12C]

“7 Things to Know About Windows Azure Capacity”,

http://technet.microsoft.com/en-us/cloud/gg663909.aspx, last accessed July 3, 2012.

http://web.mit.edu/star/cluster/docs/latest/overview.html
http://aws.amazon.com/hpc-applications/

93

[WinFirewall12]

 “Configure Windows Azure Firewall for MPI”,

http://www.paratools.com/Azure/HowToFirewall, last accessed June2, 2012.

[WindowsAzure12]

“The Components of Windows Azure”, http://www.windowsazure.com/en-

us/develop/net/fundamentals/intro-to-windows-azure/#components, last accessed May 4,

2012.

http://www.windowsazure.com/en-us/develop/net/fundamentals/intro-to-windows-azure/#components
http://www.windowsazure.com/en-us/develop/net/fundamentals/intro-to-windows-azure/#components

94

APPENDIX A

Metrics

MPI STREAM Benchmark:

Memory bandwidth rate: Memory bandwidth is typically measured in bytes/sec or

megabytes/sec (MB/s). STREAM benchmark outputs the memory bandwidth in MB/s

and the same unit is also used in graphs and charts as required for Copy, Scale, Add and

Triad for Amazon EC2’s Standard Small instance and High-CPU medium instance.

Also, average time, minimum time and the maximum time for each operation were

calculated and documented in seconds. When multiple cores are used for

experimentation, memory bandwidth will be determined and represented in the same way

as above.

This MPI version of this benchmark is downloaded from the below url:

http://www.cs.virginia.edu/stream/FTP/Code/Versions/

IOR Benchmark (POSIX Mode):

In POSIX mode, the benchmarkwasrun like all other MPI programs. IOR generates a

detailed output file that indicates the parameters used to initiate the runs. The maximum

read and writes are reported in MiB/sec. 1 Mebibytes (MiB) = 1,048,576 bytes. To get

MB/sec MiB/sec must be multiplied by 1.048.

Block Size: Contiguous bytes to write per task (e.g., 8, 4k, 2m, 1g, i.e., the whole size of

the written data)

Transfer Size: Size of transfer in bytes (e.g., 8, 4k, 2m, 1g, i.e., the amount of data of a

single I/O operation)

Repetitions: Number of repetitions of test

File-per-process: Accesses a single file for each processor; defaultwasa single file

accessed by all processors

Example:

Max Write: 106.07 MiB/sec (111.22 MB/sec)

95

Max Read: 87.04 MiB/sec (91.27 MB/sec)

This benchmark is downloaded from the below url:

http://sourceforge.net/projects/ior-sio/

MPI NAS Parallel Benchmarks:

EP, FT and CG benchmarks were run on the Amazon instances on 1, 2, 4, and 8 nodes

and the corresponding execution time in seconds were measured. The Million operations

per second (Mop/s) for each benchmark is also measured.

This benchmark is downloaded from the below url:

https://www.nas.nasa.gov/cgi-bin/software/start

http://sourceforge.net/projects/ior-sio/

96

APPENDIX B

Configuration File and Benchmark Commands

StarCluster Configuration File:

####################################

StarCluster Configuration File ##

####################################

[global]

configure the default cluster template to use when starting a cluster

defaults to 'smallcluster' defined below. this template should be

usable

out-of-the-box provided you've configured your keypair correctly

DEFAULT_TEMPLATE=m1.small-AMI-cluster

enable experimental features for this release

ENABLE_EXPERIMENTAL=True

number of seconds to wait when polling instances (default: 30s)

#REFRESH_INTERVAL=15

specify a web browser to launch when viewing spot history plots

#WEB_BROWSER=chromium

[aws info]

This is the AWS credentials section.

These settings apply to all clusters

replace these with your AWS keys

AWS_ACCESS_KEY_ID = AKIAJVVYYC2QTZVPNCQA

AWS_SECRET_ACCESS_KEY = YOnrYCbg07NvxOcrZkHchpwsATn3MnIEPVJ01Nr5

replace this with your account number

AWS_USER_ID= 390135667176

Uncomment to specify a different Amazon AWS region (OPTIONAL)

(defaults to us-east-1 if not specified)

NOTE: AMIs have to be migrated!

#AWS_REGION_NAME = eu-west-1

#AWS_REGION_HOST = ec2.eu-west-1.amazonaws.com

Uncomment these settings when creating an instance-store (S3) AMI

(OPTIONAL)

#EC2_CERT = /path/to/your/cert-asdf0as9df092039asdfi02089.pem

#EC2_PRIVATE_KEY = /path/to/your/pk-asdfasd890f200909.pem

Uncomment these settings to use a proxy host when connecting to AWS

#aws_proxy = your.proxyhost.com

#aws_proxy_port = 8080

#aws_proxy_user = yourproxyuser

#aws_proxy_pass = yourproxypass

Sections starting with "key" define your keypairs

97

(see the EC2 getting started guide tutorial on using ec2-add-keypair

to learn

how to create new keypairs)

Section name should match your key name e.g.:

[key winkey]

#KEY_LOCATION= ~/.ssh/mykey.rsa

KEY_LOCATION= S:\THESIS\EC2\winkey.rsa

You can of course have multiple keypair sections

[key my-other]

KEY_LOCATION=/home/myuser/.ssh/id_rsa-my-other-gsg-keypair

Sections starting with "cluster" define your cluster templates

Section name is the name you give to your cluster template e.g.:

[cluster smallcluster]

[cluster m1.small-AMI-cluster]

change this to the name of one of the keypair sections defined above

KEYNAME = winkey

number of ec2 instances to launch

CLUSTER_SIZE = 8

create the following user on the cluster

CLUSTER_USER = ec2-user

PLUGINS = mpich2

optionally specify shell (defaults to bash)

(options: tcsh, zsh, csh, bash, ksh)

CLUSTER_SHELL = bash

AMI to use for cluster nodes. These AMIs are for the us-east-1

region.

Use the 'listpublic' command to list StarCluster AMIs in other

regions

The base i386 StarCluster AMI is ami-899d49e0

The base x86_64 StarCluster AMI is ami-999d49f0

The base HVM StarCluster AMI is ami-4583572c

NODE_IMAGE_ID = ami-999d49f0

instance type for all cluster nodes

(options: cg1.4xlarge, c1.xlarge, m1.small, c1.medium, m2.xlarge,

t1.micro, cc1.4xlarge, cc2.8xlarge, m1.large, m1.xlarge, m2.4xlarge,

m2.2xlarge)

NODE_INSTANCE_TYPE = m1.small

Uncomment to disable installing/configuring a queueing system on the

cluster (SGE)

#DISABLE_QUEUE=True

Uncomment to specify a different instance type for the master node

(OPTIONAL)

(defaults to NODE_INSTANCE_TYPE if not specified)

98

MASTER_INSTANCE_TYPE = m1.small

Uncomment to specify a separate AMI to use for the master node.

(OPTIONAL)

(defaults to NODE_IMAGE_ID if not specified)

MASTER_IMAGE_ID = ami-999d49f0

availability zone to launch the cluster in (OPTIONAL)

(automatically determined based on volumes (if any) or

selected by Amazon if not specified)

#AVAILABILITY_ZONE = us-east-1c

list of volumes to attach to the master node (OPTIONAL)

these volumes, if any, will be NFS shared to the worker nodes

see "Configuring EBS Volumes" below on how to define volume sections

#VOLUMES = myvol1

[plugin mpich2]

setup_class = starcluster.plugins.mpich2.MPICH2Setup

list of plugins to load after StarCluster's default setup routines

(OPTIONAL)

see "Configuring StarCluster Plugins" below on how to define plugin

sections

#[cluster t1-micro-trial-cluster]

#PLUGINS = mpich2

#KEYNAME = mykey

#NODE_INSTANCE_TYPE = t1.micro

#CLUSTER_SIZE = 2

#NODE_IMAGE_ID = ami-31814f58

list of permissions (or firewall rules) to apply to the cluster's

security

group (OPTIONAL).

#PERMISSIONS = ssh, http

Uncomment to always create a spot cluster when creating a new cluster

from

this template. The following example will place a $0.50 bid for each

spot

request.

#SPOT_BID = 0.50

Defining Additional Cluster Templates ##

You can also define multiple cluster templates.

You can either supply all configuration options as with smallcluster

above,

or create an EXTENDS=<cluster_name> variable in the new cluster

section to

use all settings from <cluster_name> as defaults. Below are a couple

of

example cluster templates that use the EXTENDS feature:

99

[cluster mediumcluster]

Declares that this cluster uses smallcluster as defaults

EXTENDS=smallcluster

This section is the same as smallcluster except for the following

settings:

KEYNAME=my-other-gsg-keypair

NODE_INSTANCE_TYPE = c1.xlarge

CLUSTER_SIZE=8

VOLUMES = biodata2

[cluster largecluster]

Declares that this cluster uses mediumcluster as defaults

EXTENDS=mediumcluster

This section is the same as mediumcluster except for the following

variables:

CLUSTER_SIZE=16

#############################

Configuring EBS Volumes ##

#############################

A new [volume] section must be created for each EBS volume you wish

to use

with StarCluser. The section name is a tag for your volume. This tag

is used

in the VOLUMES setting of a cluster template to declare that an EBS

volume is

to be mounted and nfs shared on the cluster. (see the commented

VOLUMES

setting in the example 'smallcluster' template above)

Below are some examples of defining and configuring EBS volumes to be

used

with StarCluster:

Sections starting with "volume" define your EBS volumes

Section name tags your volume e.g.:

[volume myvol1]

(attach 1st partition of volume vol-c9999999 to /home on master node)

VOLUME_ID = vol-c9999999

MOUNT_PATH = /home

Same volume as above, but mounts to different location

[volume biodata2]

(attach 1st partition of volume vol-c9999999 to /opt/ on master node)

VOLUME_ID = vol-c999999

MOUNT_PATH = /opt/

Another volume example

[volume oceandata]

(attach 1st partition of volume vol-d7777777 to /mydata on master

node)

VOLUME_ID = vol-d7777777

MOUNT_PATH = /mydata

100

Same as oceandata only uses the 2nd partition instead

[volume oceandata]

(attach 2nd partition of volume vol-d7777777 to /mydata on master

node)

VOLUME_ID = vol-d7777777

MOUNT_PATH = /mydata

PARTITION = 2

#####################################

Configuring StarCluster Plugins ##

#####################################

Sections starting with "plugin" define a custom python class which

can

perform additional configurations to StarCluster's default routines.

These

plugins can be assigned to a cluster template to customize the setup

procedure when starting a cluster from this template

(see the commented PLUGINS setting in the 'smallcluster' template

above)

Below is an example of defining a plugin called 'myplugin':

[plugin myplugin]

myplugin module either lives in ~/.starcluster/plugins or is

in your PYTHONPATH

SETUP_CLASS = myplugin.SetupClass

extra settings are passed as arguments to your plugin:

SOME_PARAM_FOR_MY_PLUGIN = 1

SOME_OTHER_PARAM = 2

Configuring Security Group Permissions ##

[permission ssh]

protocol can be: tcp, udp, or icmp

protocol = tcp

from_port = 22

to_port = 22

cidr_ip = <your_ip>/32

example for opening port 80 on the cluster to a specific IP range

[permission http]

protocol = tcp

from_port = 80

to_port = 80

cidr_ip = 18.0.0.0/24

STREAM Commands:

root@master:/home/ec2-user/STREAM-MPI# mpicc -DPARALLEL_MPI -O3 -o

stream_mpi stream_mpi.c

101

root@master:/home/ec2-user/STREAM-MPI# mpiexec -host master, node001,

node002, node003 ./stream_mpi > output/c1.m_n4.1.txt

IOR Commands:

root@master:/mnt/ec2-user/IOR/src/C# make

mpicc -g -D_LARGEFILE64_SOURCE -D_FILE_OFFSET_BITS=64 -c IOR.c

mpicc -g -D_LARGEFILE64_SOURCE -D_FILE_OFFSET_BITS=64 -c utilities.c

mpicc -g -D_LARGEFILE64_SOURCE -D_FILE_OFFSET_BITS=64 -c

parse_options.c

mpicc -g -D_LARGEFILE64_SOURCE -D_FILE_OFFSET_BITS=64 -c aiori-POSIX.c

mpicc -g -D_LARGEFILE64_SOURCE -D_FILE_OFFSET_BITS=64 -c aiori-

noMPIIO.c

mpicc -g -D_LARGEFILE64_SOURCE -D_FILE_OFFSET_BITS=64 -c aiori-

noHDF5.c

mpicc -g -D_LARGEFILE64_SOURCE -D_FILE_OFFSET_BITS=64 -c aiori-

noNCMPI.c

mpicc -o IOR IOR.o utilities.o parse_options.o \

 aiori-POSIX.o aiori-noMPIIO.o aiori-noHDF5.o aiori-

noNCMPI.o \

root@master:/mnt/ec2-user/IOR/src/C# mpiexec -host master, node001,

node002, node003 ./IOR -b 1g -t 4m > output/c1.m_n4.1.txt.

NPB Commands:

CG:

root@master:/home/ec2-user/NPB3.3/NPB3.3-MPI# make cg NPROCS=4 CLASS=A

The output for this command appears as below.

root@master:/home/ec2-user/NPB3.3-MPI# make CG NPROCS=4 CLASS=A

===

 = NAS Parallel Benchmarks 3.3 =

 = MPI/F77/C =

===

cd CG; make NPROCS=4 CLASS=A

make[1]: Entering directory `/home/ec2-user/NPB3.3-MPI/CG’

make[2]: Entering directory `/home/ec2-user/NPB3.3-MPI/sys’

make[2]: Nothing to be done for `all’.

make[2]: Leaving directory `/home/ec2-user/NPB3.3-MPI/sys’

../sys/setparams CG 4 A

mpif77 -c -I/usr/local/include -O CG.f

mpif77 -O -o ../bin/CG.A.4 CG.o ../common/randi4.o

../common/print_results.o ../common/timers.o -L/usr/local/lib -lmpi

make[1]: Leaving directory `/home/ec2-user/NPB3.3-MPI/CG’

root@master:/home/ec2-user/NPB3.3-MPI# mpiexec -host master, node001,

node002, node003 bin/cg.A.4 > output/cg.A.4_3.txt

102

FT:

root@master:/home/ec2-user/NPB3.3-MPI# make FT NPROCS=4 CLASS=A

 ===

 = NAS Parallel Benchmarks 3.3 =

 = MPI/F77/C =

===

cd FT; make NPROCS=4 CLASS=A

make[1]: Entering directory `/home/ec2-user/NPB3.3-MPI/FT’

make[2]: Entering directory `/home/ec2-user/NPB3.3-MPI/sys’

make[2]: Nothing to be done for `all’.

make[2]: Leaving directory `/home/ec2-user/NPB3.3-MPI/sys’

../sys/setparams FT 4 A

mpif77 -c -I/usr/local/include -O FT.f

mpif77 -O -o ../bin/FT.A.4 FT.o ../common/randi4.o

../common/print_results.o ../common/timers.o -L/usr/local/lib -lmpi

make[1]: Leaving directory `/home/ec2-user/NPB3.3-MPI/FT’

root@master:/home/ec2-user/NPB3.3-MPI# mpiexec -host master, node001,

node002, node003 bin/ft.A.4 > output/ft.A.4_3.txt

EP:

root@master:/home/ec2-user/NPB3.3-MPI# make EP NPROCS=4 CLASS=A

 ===

 = NAS Parallel Benchmarks 3.3 =

 = MPI/F77/C =

===

cd EP; make NPROCS=4 CLASS=A

make[1]: Entering directory `/home/ec2-user/NPB3.3-MPI/EP’

make[2]: Entering directory `/home/ec2-user/NPB3.3-MPI/sys’

make[2]: Nothing to be done for `all’.

make[2]: Leaving directory `/home/ec2-user/NPB3.3-MPI/sys’

../sys/setparams EP 4 A

mpif77 -c -I/usr/local/include -O EP.f

mpif77 -O -o ../bin/EP.A.4 EP.o ../common/randi4.o

../common/print_results.o ../common/timers.o -L/usr/local/lib -lmpi

make[1]: Leaving directory `/home/ec2-user/NPB3.3-MPI/EP’

root@master:/home/ec2-user/NPB3.3-MPI# mpiexec -host master, node001,

node002, node003 bin/ep.A.4 > output/ep.A.4_3.txt

Windows Azure Firewall Configuration for MPI Communication:

PS C:\approot> hpcpack create C:\approot\benchmarks.zip

C:\approot\benchmarks

PS C:\approot>clusrun /nodegroup:computenode hpcsync

103

PS D:\Users\sinadmin> clusrun /nodegroup:ComputeNode hpcfwutil register

IOR.exe C:\Resources\Directory\bbc7bb0ba58942cdb

9c6785d69c92464.ComputeNode.Microsoft.Hpc.Azure.LocalStorage.Applicatio

n\benchmarks\2012-05-29T232012.0000000Z\IOR.exe

-------------------------- COMPUTENODE8 returns 0 ---------------------

Successfully registered application IOR.exe

-------------------------- COMPUTENODE7 returns 0 ---------------------

Successfully registered application IOR.exe

-------------------------- COMPUTENODE6 returns 0 ---------------------

Successfully registered application IOR.exe

-------------------------- COMPUTENODE5 returns 0 ---------------------

Successfully registered application IOR.exe

-------------------------- COMPUTENODE4 returns 0 ---------------------

Successfully registered application IOR.exe

-------------------------- COMPUTENODE3 returns 0 ---------------------

Successfully registered application IOR.exe

-------------------------- COMPUTENODE2 returns 0 ---------------------

Successfully registered application IOR.exe

-------------------------- COMPUTENODE1 returns 0 ---------------------

Successfully registered application IOR.exe

-------------------------- Summary --------------------------

8 Nodes succeeded

0 Nodes failed

PS D:\Users\sinadmin>

104

APPENDIX C

Sample Results

Sample Result for STREAM benchmark run on a four-node cluster:

STREAM version $Revision: 5.8 $

This system uses 8 bytes per DOUBLE PRECISION word.

Array size = 2000000, Offset = 0

Total memory required = 45.8 MB.

Each test is run 10 times, but only

the *best* time for each is used.

Printing one line per active thread....

Your clock granularity/precision appears to be 1 microseconds.

Each test below will take on the order of 5850 microseconds.

 (= 5850 clock ticks)

Increase the size of the arrays if this shows that you are

not getting at least 20 clock ticks per test.

WARNING -- The above is only a rough guideline.

For best results, please be sure you know the precision of

your system timer.

Function Rate (MB/s) Avg time Min time Max time

Copy: 3699.8023 0.0091 0.0086 0.0107

Scale: 3563.4602 0.0094 0.0090 0.0107

Add: 3754.6921 0.0134 0.0128 0.0155

Triad: 3775.6051 0.0134 0.0127 0.0154

Solution Validates

No. of nodes 4; nodes with errors: 0

Minimum Copy MB/s 3146.88

Average Copy MB/s 3313.54

Maximum Copy MB/s 3699.80

Minimum Scale MB/s 3109.27

Average Scale MB/s 3245.54

Maximum Scale MB/s 3563.46

Minimum Add MB/s 3154.40

Average Add MB/s 3334.88

Maximum Add MB/s 3754.69

Minimum Triad MB/s 3170.40

Average Triad MB/s 3345.70

Maximum Triad MB/s 3775.61

105

Sample Result for IOR run on a four-node cluster:

IOR-2.10.3: MPI Coordinated Test of Parallel I/O

Run began: Wed Jun 6 16:12:19 2012

Command line used: ./IOR -b 1g -t 4m

Machine: Linux master

Summary:

 api = POSIX

 test filename = testFile

 access = single-shared-file

 ordering in a file = sequential offsets

 ordering inter file= no tasks offsets

 clients = 4 (1 per node)

 repetitions = 1

 xfersize = 4 MiB

 blocksize = 1 GiB

 aggregate filesize = 4 GiB

Operation Max (MiB) Min (MiB) Mean (MiB) Std Dev Max (OPs) Min

(OPs) Mean (OPs) Std Dev Mean (s)

--------- --------- --------- ---------- ------- --------- ---

------ ---------- ------- --------

write 345.24 345.24 345.24 0.00 86.31

86.31 86.31 0.00 11.86424 EXCEL

read 5922.35 5922.35 5922.35 0.00 1480.59

1480.59 1480.59 0.00 0.69162 EXCEL

Max Write: 345.24 MiB/sec (362.01 MB/sec)

Max Read: 5922.35 MiB/sec (6210.04 MB/sec)

Run finished: Wed Jun 6 16:12:32 2012

Sample Result for NBP-CG run on a four-node cluster:

NAS Parallel Benchmarks 3.3 -- CG Benchmark

 Size : 14000

 Iterations : 15

 Number of active processes : 4

 Number of nonzeroes per row : 11

 Eigenvalue shift : .200E+02

 iteration ||r|| zeta

 1 0.30634143529489E-12 19.9997581277040

 2 0.31096276403002E-14 17.1140495745506

 3 0.30804037245735E-14 17.1296668946143

 4 0.31368886171027E-14 17.1302113581193

 5 0.30931762620174E-14 17.1302338856353

 6 0.30711211120903E-14 17.1302349879482

 7 0.30014434726280E-14 17.1302350498916

 8 0.30091464390590E-14 17.1302350537510

 9 0.30845738922029E-14 17.1302350540101

106

 10 0.30464804270749E-14 17.1302350540284

 11 0.30356703468820E-14 17.1302350540298

 12 0.30110387739490E-14 17.1302350540299

 13 0.29937783924423E-14 17.1302350540299

 14 0.30298504149112E-14 17.1302350540299

 15 0.30223982636897E-14 17.1302350540299

 Benchmark completed

 VERIFICATION SUCCESSFUL

 Zeta is 0.1713023505403E+02

 Error is 0.5226337199892E-13

 CG Benchmark Completed.

 Class = A

 Size = 14000

 Iterations = 15

 Time in seconds = 4.12

 Total processes = 4

 Compiled procs = 4

 Mop/s total = 363.38

 Mop/s/process = 90.84

 Operation type = floating point

 Verification = SUCCESSFUL

 Version = 3.3

 Compile date = 20 Apr 2012

 Compile options:

 MPIF77 = mpif77

 FLINK = $(MPIF77)

 FMPI_LIB = (none)

 FMPI_INC = -I/usr/local/include

 FFLAGS = -O

 FLINKFLAGS = -O

 RAND = randi8

 Please send the results of this run to:

 NPB Development Team

 Internet: npb@nas.nasa.gov

 If email is not available, send this to:

 MS T27A-1

 NASA Ames Research Center

 Moffett Field, CA 94035-1000

 Fax: 650-604-3957

107

Sample Result for NBP-FT run on a four-node cluster:

NAS Parallel Benchmarks 3.3 -- FT Benchmark

 No input file input ft.data. Using compiled defaults

 Size : 256x 256x 128

 Iterations : 6

 Number of processes : 4

 Processor array : 1x 4

 Layout type : 1D

 T = 1 Checksum = 5.046735008193D+02 5.114047905510D+02

 T = 2 Checksum = 5.059412319734D+02 5.098809666433D+02

 T = 3 Checksum = 5.069376896287D+02 5.098144042213D+02

 T = 4 Checksum = 5.077892868474D+02 5.101336130759D+02

 T = 5 Checksum = 5.085233095391D+02 5.104914655194D+02

 T = 6 Checksum = 5.091487099959D+02 5.107917842803D+02

 Result verification successful

 class = A

 FT Benchmark Completed.

 Class = A

 Size = 256x 256x 128

 Iterations = 6

 Time in seconds = 11.02

 Total processes = 4

 Compiled procs = 4

 Mop/s total = 647.52

 Mop/s/process = 161.88

 Operation type = floating point

 Verification = SUCCESSFUL

 Version = 3.3

 Compile date = 21 Apr 2012

 Compile options:

 MPIF77 = mpif77

 FLINK = $(MPIF77)

 FMPI_LIB = (none)

 FMPI_INC = -I/usr/local/include

 FFLAGS = -O

 FLINKFLAGS = -O

 RAND = randi8

 Please send the results of this run to:

 NPB Development Team

 Internet: npb@nas.nasa.gov

 If email is not available, send this to:

108

 MS T27A-1

 NASA Ames Research Center

 Moffett Field, CA 94035-1000

 Fax: 650-604-3957

Sample Result for NBP-EP run on a four-node cluster:

NAS Parallel Benchmarks 3.3 -- EP Benchmark

 Number of random numbers generated: 536870912

 Number of active processes: 4

EP Benchmark Results:

CPU Time = 11.9713

N = 2^ 28

No. Gaussian Pairs = 210832767.

Sums = -4.295875165634796D+03 -1.580732573678614D+04

Counts:

 0 98257395.

 1 93827014.

 2 17611549.

 3 1110028.

 4 26536.

 5 245.

 6 0.

 7 0.

 8 0.

 9 0.

 EP Benchmark Completed.

 Class = A

 Size = 536870912

 Iterations = 0

 Time in seconds = 11.97

 Total processes = 4

 Compiled procs = 4

 Mop/s total = 44.85

 Mop/s/process = 11.21

 Operation type = Random numbers generated

 Verification = SUCCESSFUL

 Version = 3.3

 Compile date = 21 Apr 2012

 Compile options:

 MPIF77 = mpif77

 FLINK = $(MPIF77)

 FMPI_LIB = (none)

 FMPI_INC = -I/usr/local/include

109

 FFLAGS = -O

 FLINKFLAGS = -O

 RAND = randi8

 Please send the results of this run to:

 NPB Development Team

 Internet: npb@nas.nasa.gov

 If email is not available, send this to:

 MS T27A-1

 NASA Ames Research Center

 Moffett Field, CA 94035-1000

 Fax: 650-604-3957

110

APPENDIX D

EC2 Screenshots

Example of successful start of an eight-node cluster:

111

Example of successful start of an eight-node cluster:

112

Stopping a cluster:

113

AWS Management Console showing a cluster of six nodes:

114

WinSCP session screen connecting to master node on m1.medium as root:

115

WinSCP screen with files in local system on left and master node on the right:

116

APPENDIX E

Azure Screenshots

An RDP connection to the HeadNode:

117

Desktop of the HeadNode of a Cluster:

118

Windows Azure HPC scheduler deployment and eight-node cluster:

119

Windows Azure Management Portal with an eight-node cluster:

120

Finished jobs in HPC Job Manager:

121

VITA

Sindhu Mani earned the Bachelor of Technology degree in Information Technology from

Anna University, Chennai, India, in 2007 and expects to receive her Master of Science in

Computer Science with Information Systems as major from the University of North

Florida in Fall 2012. Sindhu worked as a Project Engineer for two years at Wipro

Technologies for JP Morgan Chase as client, in Bangalore, India using Java/ J2EE

technologies prior to starting graduate studies. Sindhu worked as a Research Assistant at

the University of North Florida for Dr. Sanjay P. Ahuja. During this period she also had

three journal publications related to cloud computing. She was also inducted into Upsilon

Pi Epsilon and Phi Kappa Phi honor societies because of her academic excellence.

Sindhu’s academic work included use of C#, ASP.Net, Java, and SQL. She is also a Sun

Certified Java Programmer.

Sindhu aspires to work for a technology company that is involved in developing mobile

and cloud computing based applications. She is married and enjoys outdoor fun and

adventurous activities such as travelling, camping and sky-diving.

	UNF Digital Commons
	2012

	Empirical Performance Analysis of High Performance Computing Benchmarks Across Variations in Cloud Computing
	Sindhu Mani
	Suggested Citation

	Title Page
	ACKNOWLEDGEMENT
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Chapter 1: INTRODUCTION
	1.1 Services in the Cloud
	1.2 Cloud Architectures
	1.2.1 Amazon EC2
	1.2.2 Windows Azure
	1.2.2.1 Windows HPC Server 2008 R2

	1.3 HPC in the Cloud
	1.4 Examples of HPC Applications
	1.5 Thesis Layout

	Chapter 2: LITERATURE REVIEW
	2.1 Communication and Computational Performance
	2.2 Memory Bandwidth
	2.3 Input/Output Performance

	Chapter 3: RESEARCH METHODOLOGY
	3.1 STREAM Benchmark
	3.2 Interleaved Or Random Benchmark
	3.3 NAS Parallel Benchmarks
	3.4 Amazon Web Service EC2 Platform
	3.4.1 Master and Compute Nodes
	3.4.2 EBS Volume and Instance Storage

	3.5 Microsoft Windows Azure Platform
	3.5.1 Web and Worker Roles
	3.5.2 Head Node and Compute Node
	3.5.3 Windows Azure Storage

	Chapter 4: HARDWARE AND SOFTWARE SPECIFICATIONS
	4.1 Software Specifications
	4.2 Benchmarks
	4.3 Hardware Specifications

	Chapter 5:SETTING UP, CONFIGURING AND BENCHMARKING EC2
	5.1 Pre-requisites on the Local Windows Development Machine
	5.2 Installing StarCluster to Build the Cluster
	5.3 Edit StarCluster Configuration File
	5.3.1 Amazon Machine Image
	5.3.2 Plugins - Message Passing Interface
	5.3.3 Scaling

	5.4 Starting the Cluster with MPICH2
	5.4.1 AWS Management Console

	5.5 Transfer the Benchmark Files to the Cluster
	5.5.1 Network File System

	5.6 Execute Benchmarks on the Master Node
	5.6.1 STREAM Benchmark
	5.6.2 Interleaved Or Random Benchmark
	5.6.3 NAS Parallel Benchmarks
	5.6.3.1 Conjugate Gradient Benchmark
	5.6.3.2 Fourier Transform Benchmark
	5.6.3.3 Embarrassingly Parallel Benchmark
	5.6.3.4 Stop/Terminate the cluster

	Chapter 6:SETTING UP, CONFIGURING AND BENCHMARKING WINDOWS AZURE
	6.1 Building Windows Binaries
	6.2 Pre-requisites on the Local Windows Development Machine
	6.3 Deploy Windows Azure HPC Scheduler via PowerShell
	6.3.1 Service Configuration and Service Definition Files

	6.4 Connect to HeadNode on the Cluster on Windows Azure
	6.5 Windows Azure Firewall Configuration for MPI Communication
	6.6 Create and Submit MPI Jobs for Executing Benchmarks
	6.6.1 STREAM Benchmark
	6.6.2 Interleaved Or Random Benchmark
	6.6.3 NAS Parallel Benchmarks
	6.6.3.1 Conjugate Gradient Benchmark
	6.6.3.2 Fourier Transform Benchmark
	6.6.3.3 Embarrassingly Parallel Benchmark

	Chapter 7:ANALYSIS OF RESULTS
	7.1 STREAM Benchmark
	7.1.1 EC2 Standard Small Instance (m1.small) Versus Azure Small
	7.1.2 EC2 Standard Medium Instance (m1.medium) Versus Azure Medium
	7.1.3 EC2 High-CPU Medium instance (c1.medium) Versus Azure Medium

	7.2 Interleaved Or Random Benchmark
	7.2.1 EC2 Standard Small Instance (m1.small) Versus Azure Small
	7.2.2 EC2 Standard Medium Instance (m1.medium) Versus Azure Medium
	7.2.3 EC2 High-CPU Medium Instance (c1.medium) Versus Azure Medium

	7.3 NAS Parallel Benchmarks (NPB -CG, FT, EP)
	7.3.1 EC2 Standard Small Instance (m1.small) Versus Azure Small
	7.3.2 EC2 Standard Medium Instance (m1.medium) Versus Azure Medium

	Chapter 8:CONCLUSION
	8.1 Future Research

	REFERENCES
	APPENDIX AMetrics
	APPENDIX BConfiguration File and Benchmark Commands
	APPENDIX CSample Results
	APPENDIX DEC2 Screenshots
	APPENDIX EAzure Screenshots

