
UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

2015

Time Series Similarity Search in Distributed Key-
Value Data Stores Using R-Trees
Aleksey Charapko
University of North Florida

This Master's Thesis is brought to you for free and open access by the
Student Scholarship at UNF Digital Commons. It has been accepted for
inclusion in UNF Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more information, please
contact Digital Projects.
© 2015 All Rights Reserved

Suggested Citation
Charapko, Aleksey, "Time Series Similarity Search in Distributed Key-Value Data Stores Using R-Trees" (2015). UNF Graduate Theses
and Dissertations. 565.
https://digitalcommons.unf.edu/etd/565

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNF Digital Commons

https://core.ac.uk/display/71999159?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu
https://digitalcommons.unf.edu
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu

TIME SERIES SIMILARITY SEARCH IN DISTRIBUTED KEY-VALUE DATA

STORES USING R-TREES

by

Aleksey Charapko

A thesis submitted to the

School of Computing

 in partial fulfillment of the requirements for the degree of

Master of Science in Computer and Information Sciences

UNIVERSITY OF NORTH FLORIDA

SCHOOL OF COMPUTING

April, 2015

ii

Copyright (©) 2015 by Aleksey Charapko

All rights reserved. Reproduction in whole or in part in any form requires the prior

written permission of Aleksey Charapko or designated representative.

iii

The thesis, “Time Series Similarity Search in Distributed Key-Value Data Stores Using

R-trees,” submitted by Aleksey Charapko in partial fulfillment of the requirements for the

degree of Master of Science in Computing and Information Sciences has been

Approved by the thesis committee: (Date)

Dr. Ching-Hua Chuan

Thesis Advisor and Committee Chairperson

Dr. Behrooz Seyed-Abbassi

Dr. Sanjay Ahuja

Dr. Roger Eggen

Accepted for the School of Computing:

Dr. Asai Asaithambi

Director of the School

Accepted for the College of Computing, Engineering, and Construction:

Dr. Mark Tumeo

Dean of the College

Accepted for the University:

Dr. John Kantner

Dean of the Graduate School

iv

CONTENTS

List of Figures ... vii

Chapter 1: Introduction ... 1

1.1 Problem Statement ... 3

Chapter 2: Literature Review .. 7

2.1 Similarity Functions... 7

2.2 Approximate Techniques for Similarity Search ... 8

2.3 Exact Time Series Similarity Search and Retrieval ... 9

2.4 Multidimensional Indexing in Distributed Key-Value Data Stores 13

2.5 Music Systems Relying on Time Series Data .. 15

Chapter 3: An Initial Attempt Using Relational Database .. 17

3.1 Sequence Indexing and Retrieval .. 17

3.1.1 Basic Model ... 18

3.1.2 Model for Long Time Series .. 20

3.1.3 Retrieving Sequences and Continuations ... 22

3.2 Experiments and Results.. 22

3.3 Conclusions and Discussions on the Initial Solution ... 24

Chapter 4: Methodology ... 26

v

4.1 System Architecture ... 26

4.1.1 The Proposed System ... 27

4.1.2 Performance Evaluation ... 29

4.1.3 Search and Retrieval Criteria ... 30

4.2 Background .. 31

4.2.1 HBase ... 31

4.2.2 R-tree .. 34

4.3 Time Series Preprocessing ... 37

4.4 Index Construction... 39

4.4.1 Basic R-tree Index .. 40

4.4.2 R-tree in HBase .. 49

4.5 Search and Retrieval .. 50

4.6 R-tree Node Cache ... 54

Chapter 5: Experiments And Results .. 56

5.1 Testbed ... 56

5.2 Impact of R-tree Dimensionality on Performance ... 57

5.3 Impact of Node Capacity on Performance ... 60

5.4 Impact of Dataset Properties on Performance ... 62

5.5 Impact of Dataset Size on Performance... 64

Chapter 6: Future Work ... 69

vi

6.1 R-tree Node Overlap .. 69

6.2 Dimensionality Reduction ... 71

6.3 Parallel Retrieval ... 71

Chapter 7: Conclusions ... 74

References ... 77

Vita .. 80

vii

FIGURES

Figure 1. Representing time series as a sequence of n-dimensional points.11

Figure 2. Initial approach model ... 19

Figure 3. Initial approach on longer input sequences ... 21

Figure 4. Average search time for varying sizes of query strings 23

Figure 5. Average search time versus number of results with query size of two. 24

Figure 6. System Diagram .. 28

Figure 7. HBase table structure. .. 32

Figure 8. Simplified schematic representation of BigTable. ... 33

Figure 9. R-tree structure and visualization in the 2-dimensional space. 36

Figure 10. Segmentation overlaps... 39

Figure 11. Adding a new segment to an R-tree. .. 42

Figure 12. R*-tree node insertion algorithm. .. 44

Figure 13. ADD_TO_LEAF algorithm ... 46

Figure 14. OVERFLOW_TREATMENT algorithm ... 47

Figure 15. Algorithm REINSERT ... 48

Figure 16. Algorithm SPLIT ... 49

Figure 17. Exact and approximate k-NN examples. ... 51

Figure 18. Exact k-NN search algorithm. ... 52

Figure 19. Testing environment. ... 56

Figure 20. The impact of index dimensionality on R*-tree performance 58

viii

Figure 21. Linear correlation between execution time and the number of HBase scans .. 59

Figure 22. The impact of node capacity on system performance measured 61

Figure 23. Performance difference in average search time and average number of HBase

requests for datasets generated using uniform distribution, normal

distribution, and symmetric random walk. ... 63

Figure 24. Performance in average search time with respect to dataset size. 65

Figure 25. Effect of cache size on the amount of database requests. 67

ix

ABSTRACT

Time series data are sequences of data points collected at certain time intervals. The

advance in mobile and sensor technologies has led to rapid growth in the available

amount of time series data. The ability to search large time series datasets can be

extremely useful in many applications. In healthcare, a system monitoring vital signals

can perform a search against the past data and identify possible health threatening

conditions. In engineering, a system can analyze performances of complicated equipment

and identify possible failure situations or needs of maintenance based on historical data.

Existing search methods for time series data are limited in many ways. Systems utilizing

memory-bound or disk-bound indexes are restricted by the resources of a single machine

or hard drive. Systems that do not use indexes must search through the entire database

whenever a search is requested.

The proposed system uses multidimensional index in the distributed storage environment

to break the bound of one physical machine and allow for high data scalability. Utilizing

an index allows the system to locate the patterns similar to the query without having to

examine the entire dataset, which can significantly reduce the amount of computing

resources required. The system uses an Apache HBase distributed key-value database to

store the index and time series data across a cluster of machines. Evaluations were

conducted to examine the system’s performance using synthesized data up to 30 million

x

data points. The evaluation results showed that, despite some drawbacks inherited from

an R-tree data structure, the system can efficiently search and retrieve patterns in large

time series datasets.

-1-

Chapter 1

INTRODUCTION

Recent advances in mobile and sensor technologies have led to rapid growth in the

amount of time series data. Time series data are sequences of data points collected over

certain time intervals. In time series, two consecutive data points differ not only in their

respective values, but also in the time they were obtained. Time series data exist in many

fields of knowledge, including but not limited to music, engineering, natural sciences and

medicine.

Many vital signals collected by medical sensors are time series. Cardiograph (ECG) is

one example of time series data used frequently in medicine. The amount of ECG data

can be enormous; just one day worth of ECG reflects approximately one hundred

thousand heart beats in a day, making an analysis of the entire cardiograph nearly

impossible by a doctor [Buza11].

In engineering, data collected from various sensors are often used in testing and

analyzing new designs. Such tests can produce enormous amounts of data, depending on

the design factors. For instance, during the flutter testing of the Airbus A380, engineers

used over a hundred different sensors to capture the oscillation frequencies that were

stored for later offline analysis [LMS Test.Lab14]. The data obtained from these sensors

are a typical representation of a real-valued time series. Since flutter can potentially

-2-

destroy an aircraft, data collected from many tests must be analyzed before the plane is

considered safe for further tests and commercial use. Therefore, a system that supports a

high quality analysis as quickly as possible is needed.

In music, various features can be represented as real valued parameters progressing over

time. For instance, musical notes in a composition can be represented as their MIDI pitch

value and duration that change over time to express different musical ideas. Music

improvisation systems utilize music represented in such numeric formats to generate new

material based on the learned patterns. For example, Pachet used pitch and pitch duration

to build a system capable of real time learning and improvising in the style of the

musician interacting with the system [Pachet03].

In all of the examples mentioned above, time series data are first collected and then

stored for analysis at a later time. The speed of the system used for such analysis is

critical for many applications. While researchers may be interested in different

information needed in their particular use, the capacity to quickly search the dataset for

patterns is useful in many applications. For example, the ability to search for and identify

similar subsequences in large datasets is useful for extracting patterns associated with

potentially critical conditions, like an equipment failure or important medical state, that

require immediate attention.

-3-

1.1 Problem Statement

The goal of this research is to design a system that provides a fast search and retrieval

backbone for large amount of time series data. Existing search methods for time series

data are limited in many ways. Generally, systems are designed based on two different

approaches to support time series data search. One type of system creates indexing

structures to record data in such a way that fast retrieval can be achieved by examining

the index structure without scanning through the original time series. But such systems

utilizing memory-bound or disk-bound indexes are restricted by the resources of a single

machine or a hard drive. The other types of systems that do not use indexes must search

through the entire database whenever a search is requested. In this study, a system that

takes the advantage of indexing but eliminates the storage limitation by operating in a

distributed environment is proposed.

In order to design the search system, the manner in which time series data are used must

be examined. In many cases, one might want to search the historical data against the new

data coming into the system in order to identify whether the new input fits an existing

pattern. This is important when analyzing a performance on complicated equipment by

identifying possible failure situations based on the operational history. Similar concepts

can be applied to the medical field, in which new data can potentially signal serious

health conditions. In music improvisation systems, historical training data provide the

basis for improvisation. When a new sequence arrives, the system can find similar

-4-

sequences in the training set, and use the existing patterns that follow the similar

sequence to generate new musical content [Pachet03].

Most search systems are required to perform search to locate exact patterns in the dataset.

Exact search is defined in literature as guaranteed to return all relevant results to the

query [Keogh01A] or a search that produces the same results as a sequential scan

algorithm for a given similarity metric [Keogh05]. Consider a sequence S = {2, 3, 1, 5, 4,

2, 4, 1, 3} and a search query Q = {5, 4, 2}. The search for Q in S results in the discovery

of a single match M = {si | i = 3, 4, 5}, where si is an element in S with a zero-based index

i. Unfortunately in many cases such perfect matches do not exist. For example, the

recording equipment may have a degree of error and can produce slightly different values

while the actual parameter being measured stays the same. Also it is often necessary to

identify a condition that can lead to a particular event, but such a condition may produce

distinct yet similar patterns from time to time. Perfect match is a bad choice for

identifying such conditions, because it will produce a small number of isolated instances

for the condition.

A search based on similarity allows us to retrieve patterns that are similar to the query to

different extents. This solves the problem of sensor fluctuations and isolated instances of

perfect match. One of the most widely used similarity searches is known as the k Nearest

Neighbors (k-NN) search. A k-NN query (Q, k) will retrieve a match set M consisting of k

time series segments that are the most similar to the query segment Q. The similarity

between Q and the segments in M is often defined through a distance function D. For any

-5-

two time series segments C M, E M, D(Q, C) ≤ D(Q, E) [Keogh01A]. Consider time

series S = {2, 3, 1, 5, 4, 2, 4, 3, 3, 1} with a k-NN query Q = {2, 3, 1} and k = 2. Such a

query will return a set M of k time series sequences that are closest to the time series Q.

Taking Euclidean distance as the similarity function D, we can expect M to have two

segments: {2, 3, 1}and {3, 3, 1}. In order for k-NN to produce the exact search, it needs

to return k most similar sequences to the query entered. For instance, for k = 3, the system

needs to retrieve the first, second and third most similar sequences based on the defined

similarity function. If an algorithm finds the first, second and fourth closest match, it can

no longer be called exact search algorithm because it has not found exactly three most

similar sequences.

As the amount of data increases, the need to have faster perfect and k-NN searches in the

time series sequences becomes increasingly more important. In this thesis, the proposed

system uses R*-tree multidimensional index stored in a distributed key value data store in

order to fulfill these requirements. R*-tree is a multidimensional index in the R-tree

family of data structures, and it is commonly used for spatial data analysis. Existing

usages of R-tree indexes for time series search have been limited to non-distributed

systems. This study extends the limit by storing the search index in Apache HBase, a

NoSQL distributed database used for storing key-value data pairs. HBase enables to

distribute the index structure across a cluster of computers to provide high data

scalability.

-6-

The proposed system was evaluated by studying the impact made by various factors on

the system's performance. Index dimensionality is known to affect the performance of R-

tree indexes. Thus, the effect of dimensionality was tested on the R*-tree index in the

distributed environment. Maximum R*-tree node capacity was also tested in another

experiment. Each R-tree node can have multiple children nodes. The maximum number

of children per node controls the depth of a tree, which can affect the performance of a

model. The scalability of the proposed system was evaluated by comparing to the

sequential file scan algorithm. In addition, experiments were conducted to examine how

data distributions, namely uniform and normal distributions and random walks, affect the

performance. Finally, different cache mechanisms were also examined.

The proposed system showed promising results; it was able to outperform the sequential

scan algorithm in many of the conducted tests. The system demonstrated the ability to

search and index large datasets of millions of data points with high scalability potential,

and it also showed many possibilities for further refinement and improvement.

Chapter 2 of this thesis discusses the literature on the subject of time series retrieval. An

initial attempt using relational databases for time series search is described in chapter 3.

Chapter 4 provides the details on the design and implementation of the proposed system

in a distributed environment. The experiments and results for the system evaluation are

presented in chapter 5. Finally, possible enhancements for future work are proposed in

chapter 6, followed by the conclusions in chapter 7.

-7-

Chapter 2

LITERATURE REVIEW

2.1 Similarity Functions

Similarity between two sequences can be defined in various ways. In addition, the

similarity measure is also application dependent. For example, Kahveci and Singh

[Kahveci01] pointed out that Euclidean distance, being one of the most widely used

distance metrics for time series similarity, can be insufficient for applications in which

some time series sequences are constant multiples of each other and should be considered

similar.

Non-Euclidean distance functions have been used for establishing time series similarity

as well. Perng proposed a new similarity model and an indexing technique based on the

'landmark' events, such as local minimums and maximums, and used these events to

reconstruct the time series based on these events [Perng00]. The model supports basic

time series transformations, such as scaling, shifting and time warping, and these

transformations are then used to compute the similarity between two time series. The

authors did not indicate whether the system performs well when trying to find the

similarity in a subsequence matching, or finding similarities between subsequences in a

large time series dataset.

-8-

Chebyshev distance was used fairly often in calculating time series similarity. Agrawal

argued that Euclidean-based similarity metric is more sensitive to outliers and used L∞

distance metric instead for the time series similarity [Argawal95].

Dynamic Time Warping (DTW) is another popular similarity metric used in time series

similarity search [Rakthanmanon13]. DTW reduces the impact of different time scales

between two sequences. Significant research has been devoted to developing similarity

metrics based on DTW; some of the resulting approaches outperform the original DTW

[Rakthanmanon13]. According to Keogh et al. in [Keogh05] Dynamic Time Warping

cannot be indexed easily because it does not obey triangular inequality.

Some of the similarity measures described in earlier this section are used with specific

search algorithms. For example, Dynamic Time Warping measure is used in DTW

searches. Others can be used in various contexts. Euclidean distance is mostly universal

and can be utilized in various indexing and search systems. Many other similarity

measures are described in the time series literature, but the ones mentioned above are

most widely used and/or serve as the basis for many other metrics.

2.2 Approximate Techniques for Similarity Search

Many researchers have been using approximate techniques for similarity search, claiming

that most applications do not need an exact search and that certain error or underreporting

is permissible in favor of the improved performance [Keogh01A].

http://en.wikipedia.org/wiki/Lp_space
http://en.wikipedia.org/wiki/Lp_space

-9-

Wang argued that it is not critical to retrieve all matches to the query at the beginning

stages for certain time series applications. The exact search is only added after users have

refined and narrowed down their search [Wang00]. The authors used least squares

approximation to fit the time series subsequences into consecutive line segments. The

approximation used in Wang's research allowed for a great speed up at the expense of

precision and recall: a speed up of one order of magnitude compared to the exact search

yield the result achieving a 60%-70% precision and recall levels. However, the datasets

used for this research were fairly small, about 101 thousand data points [Wang00].

Therefore, it is unknown how well the method will scale up.

Park [Park99] used string matching techniques to carryout approximate similarity search.

The time series is first broken up into segments. A set of feature vectors is then generated

from each segment. Similar feature vectors are grouped together and each group is

assigned a symbol to represent it. The sequences of symbols are then used to create suffix

tree on which the search is carried out later. The authors claimed that their system

performed 6.5 times better than the sequential search, although the dataset of less than a

million data points was limited by the modern standards. As a result, it is unclear how the

system will perform with more data.

2.3 Exact Time Series Similarity Search and Retrieval

Unlike the approximate time series similarity search solutions, the result set of exact

search must contain all existing relevant matches and no irrelevant ones. In the case of a

-10-

perfect match, the exact search solution finds all time series identical to the query. In

contrast, the exact solution in a k-NN search retrieves k most similar sequences. For

example, in the case of a k-NN search with k = 5, the result set is guaranteed to hold 5

most relevant matches.

For exact search, the retrieval time is the major concern for the system. Many different

techniques have been proposed for the problem. Researchers have used various indexing

schemes to speed up retrieval at a search time [Keogh01A], [Loh00], [Kahveci01], while

others work on improving the performance of immediate solutions that do not require an

underlying indexing structure [Rakthanmanon13].

Keogh used a multidimensional indexing structure, namely R-tree, to index time series

data [Keogh01A]. Multidimensional indexes are widely used for time series similarity

search. A time series subsequence S of size n can be treated as a point in n-dimensional

space, making multidimensional indexing techniques viable for searching and retrieving

subsequences from large time series datasets [Keogh01A]. Figure 1 illustrates this

concept: (a) a raw time series, (b) the segments of equal size from the raw sequence, and

(c) n-dimensional points that can be used in various multidimensional indexing

algorithms.

-11-

Figure 1. Representing time series as a sequence of n-dimensional points.

The most commonly used multidimensional indexing structures for time series indexing

are R-trees and variations of R-trees, such as R+-tree and R*-tree [Loh00]. The

performance of these structures tend to degrade as the dimensionality increases

[Keogh01], [Zhou13], and the degradation becomes significant when the number of

dimensions reaches 8 to 12 [Keogh01A]. Unfortunately, many applications require search

queries of fairly large size; for example, the queries of 1000 data points are quite

common. This requirement will mandate the segment size and the number of dimensions

for the indexing structure to be large as well [Keogh01A]. In order to improve the

performance of indexing techniques, dimensionality reduction is commonly used

[Keogh01, Loh00].

Keogh et al. presented a survey of common dimensionality reduction techniques used for

time series indexing and similarity searching in [Keogh01B]. These methods include

-12-

Discrete Fourier Transform, Singular Value Decomposition (SVD) and Discrete Wavelet

Transform (DWT). In addition, the authors proposed a different method for

dimensionality reduction called Piecewise Aggregate Approximation (PAA), which

breaks down the sequence into equal-sized segments and calculates the mean value for

the data in the segment. The vector formed from such mean values becomes the reduced

representation of the original sequence. In the paper later published by Keogh, the

technique was improved by allowing the segments to be of varying size [Keogh01A].

Multidimensional indexing allows us to easily search a set of sequences for ones that

match a query sequence. This type of matching, called whole matching, assumes that all

sequences and queries are the same length [Keogh01A]. Because the size of the query is

known beforehand, an index can be constructed to tailor the query of that particular size.

Subsequence matching is a more difficult problem because of the numerous offsets that

the query must be compared in the matching sequence. Keogh [Keogh01B] used a sliding

window to match the query to a subsequence of the time series. In [Kahveci01], Kahveci

created a multiresolution index. Kahveci used DFT and wavelets to reduce the

dimensionality of the time series to a number of different dimensions, and constructed an

index for each of these dimensions. The author created a system that indexes information

at different resolutions, which allow for a more efficient use of information contained in

the query [Kahveci01]. The author claimed that the proposed system addresses another

important issue in sequence matching: the query length can be unknown in many

applications. In order to solve the problem of the unknown query length, the proposed

method is then required to store multiple indexes: a separate index structure needs to be

-13-

computed for each resolution level. As a result, the requirement of storage space

increases because of the multiple index structures.

Dynamic Time Warping (DTW) has been used as the similarity metric for the time series,

but many researchers have neglected the approach due to the general notion of DTW

being slow on large datasets [Rakthanmanon13]. DTW relies on dynamic programming

and a general DTW algorithm performs in O(n2) time [Lemire09], which seems less than

ideal when scalability is important. However, Rakthanmanon applied a number of

optimizations to the DTW algorithm. The optimizations include various data

preprocessing and normalization improvements and early abandoning of the computation

when no match is possible [Rakthanmanon13]. These changes led to the ability to

perform exact k-NN searches on the dataset of one trillion data points in reasonable time

on a single server built with common hardware [Rakthanmanon13].

2.4 Multidimensional Indexing in Distributed Key-Value Data Stores

Distributed Key-Value data stores such as Apache Cassandra and Apache HBase gained a

lot of popularity in recent years. HBase is an open source implementation of Google's

BigTable, it builds on top of the Apache Hadoop and HDFS to provide scalable and fault

tolerant big data store [HBase14].

Research has been carried out in using such data stores for indexing of multidimensional

data. Wei used KR*-tree, which is a variant of an R-tree, to index user generated spatial

-14-

data [Wei13]. Authors stated that key-value data stores work most efficiently when

performing a scan operation and retrieving multiple items whose keys are in the range of

the scan operation. With this concept in mind, the authors broke the search space into

non-overlapping squares of equal size and used Hilbert space-filling curve to assign each

of these squares a Hilbert value. When building the R*-tree, the authors mapped tree

nodes with the squares, essentially creating an index underneath the R*-tree index

structure and allowing faster retrieval of multiple R-tree nodes that might be relevant to

the search. The authors claimed that their approach outperforms the state-of-the-art

multidimensional indexing techniques for distributed systems. It is worth noting that Wei

et al. focused on two-dimensional spatial data, therefore it is unclear how well the

proposed system will perform as the dimensionality increases.

On the contrary, Zhou et al. claimed that R-trees and the variants are not meant for being

used in the distributed key-value data stores [Zhou13]. The authors indicated that

distributed environments such as Apache HBase are not suitable for R-trees due to their

relatively poor performance on random access of a single record in the database. Instead

of using traditional multidimensional indexing techniques, the authors used Location

Sensitive Hash that is capable of operating on multidimensional data. The authors

claimed that their system performs better than traditional multidimensional indexing

approaches, especially as the data dimensionality increases. They also stated that the

proposed system is capable of handling data with thousands of dimensions, although this

claim was not tested in the paper [Zhou13].

-15-

2.5 Music Systems Relying on Time Series Data

Musical improvisation systems represent another application domain for systems

operating on time series data. Pachet in the Continuator system used real valued

sequences obtained from musical features as the data for the improvisation system

[Pachet03]. Continuator is a real time music improvisation system. It learns from the

input provided by the musician and is able to generate new music of a similar style in

response to the musician’s query. The system constructs in-memory prefix trees as the

user plays into the system. At the query time, system searches the trees for all matches

and identifies all ways the query was continued in the past. It then selects one of the

possible continuations, transforms it in one of the predefined ways and plays it back as

the improvisation to the query sequence [Pachet03]. The biggest disadvantage of the

Continuator is its limited space for storing historical data. The system learns from the

input user provides at the moment, but historical data can be too much for the system to

store.

Other improvisation systems utilize data mining techniques to extract important

information from the training set for music generation. Halkiopoulos extracted pitch and

note duration from the training input, divided the extracted data into variable size

segments, and produced feature vectors for each segment [Halkiopoulos12].

Halkiopoulos et al. then grouped the vectors based on their similarity and applied

association mining to establish a set of association rules. Such mined rules were later

applied to the query to provide a continuation to the query. The authors claimed that the

-16-

proposed system, called POLYHYMNIA, produced high quality improvisations such that

the human listeners were unable to tell whether the improvisation were produced by a

machine or a professional musician. POLYHYMNIA was trained on a fairly small data set

(101 jazz melodies and 414 Bach’s Chorales), and it is unknown how bigger training sets

will impact the performance of the system and the quality of the improvisation. In

addition, the similarity metric developed for the system allows authors to add exceptions

to the similarity manually, which can be used as a tool to “fine-tune” the system to a

specific dataset.

The two music improvisation systems mentioned earlier in this section differ in the

approach taken to solve the problem. But both systems have some common attributes,

such as having to utilize real valued sequential data and define similarity between data

segments.

-17-

Chapter 3

AN INITIAL ATTEMPT USING RELATIONAL DATABASE

The Continuator system utilizes the prefix search trees in order to perform the lookup on

the time series the system has encountered [Pachet03]. As the system learns more

information, it needs to maintain larger tree structures that degrade the performance. The

Continuator is a real time system and it does not need to maintain any historical

information.

A search algorithm of the Continuator was used as a basis for developing the initial

solution to the time series similarity search problem. The algorithm was modified not to

rely on main memory but to use relational database instead. Using the database for

storing the search trees was intended to improve the scalability beyond the limitations of

physical memory installed in the machine. Similar to the original indexing and search

model in the Continuator, the initial solution was designed to retrieve all possible

continuations to the query.

3.1 Sequence Indexing and Retrieval

The initial solution expanded the Continuator model in many ways. In addition to the

relying on relational database for storage, the model was also changed to have lesser

number of trees and reuse existing trees or branches whenever possible to save space.

-18-

Compound hash digest was created in order to speed up locating the right branch of the

needed tree without having to traverse the entire tree structure. The following sections

describe the proposed solution for improving the indexing and search model in

Continuator. More details about the proposed approach can be found in [Charapko14].

3.1.1 Basic Model

The process of building a model begins by segmenting the input sequences and assigning

a unique identifier to each segment in the incremental order. A reduction function is

applied to each segment to allow searching for similar subsequences. For instance, if a

reduction function R is applied to sequences S and S’ and produces two identical

sequences, then S is similar to S’:

if R(S) ≡ R(S′), then S is similar to S′.

 The result of the reduction function for each segment is parsed from right to left to

construct the prefix trees. Every tree node represents an atomic element of the input

sequence and maintains a list of continuations from the original sequences. Each node

also stores path information in order to identify the branch of the tree when the search is

performed. The path information is hashed at each node as well. Storing the path data

along with the hash of such path may seem redundant, but such data allows the model to

reduce the amount of unnecessary tree traversals and improve look up speed.

-19-

Let’s consider the input sequence: {a b c d}. The proposed model builds the trees

containing all possible prefixes for the input. Model construction starts from the right of

the sequence by examining node d. Element c is the prefix of d, so node c becomes the

root of a tree with element d in its continuation list. Node b, being the prefix of c

becomes a child of c and for similar reason the node a becomes a child of b, all with node

d in the continuation lists. For every created edge, a path hash value is computed by

producing a small hash digest of the two nodes that make up the vertices of the edge. The

digest is then appended to the path hash of the previously examined edge in the path. The

built tree for the input sequence is illustrated in Figure 2 (a). In the figure, hash digests

are labeled as “h” followed by a number to designate different digests. For example, the

edge c-b is labeled as “h1” and the edge b-a as “h2”. As a result, the hash digest for the

entire path from node c to node a is “h1h2”. At this point, nodes a, b and c all have a

continuation index of 4, which corresponds to the segment d from the input.

Figure 2. Initial approach model

-20-

Parsing of the input sequence continues since not all prefixes have been accounted yet.

So far only the prefix structure for node d has been placed into the model. The parsing

resumes without the last element of the segment, i.e., the sequence {a b c} is parsed now.

The original Continuator model will create a new tree as shown in Figure 2 (b) because

no other trees with root b exist so far [Pachet03]. The proposed model reuses the existing

structure and does not create a new tree. As it can be observed, branch b-a already exists

in the tree created in the previous step with only one difference being the continuation

lists. The model reuses the existing tree structure, but keeps the continuations separate for

each case. It is important not to mix the continuation lists from various iterations. For

example, the continuations recorded during the parse of {a b c d} should not be mixed

with those for {a b c}. Similarly, we parse sequence {a b} and add the appropriate

continuations to the corresponding node in order to build the complete tree with all

prefixes for the input as shown in Figure 2 (c).

3.1.2 Model for Long Time Series

The basic model is limited by the length of the input. In particular, the input length

determines the depth of the trees. Therefore, a very deep tree with limited branching can

be expected from a very long sequence. A sliding window approach was utilized in order

to control the depth of the trees. The goal is to increase the breadth of the trees and to

improve the reusability of branches. The input sequence was first divided into half-

overlapping windows and the basic model was then used on each window for indexing.

-21-

Figure 3. Initial approach on longer input sequences

Suppose a longer input sequence {a b c d a d b c} is processed using a sliding window of

size four. The window {a b c d} is parsed first, producing the model as shown in Figure 3

Figure 3(a). The same mechanism is applied to the next window, except the newly

produced tree is merged with trees already existing in the database. For example,

considering the second window {c d a d}, the node d has a prefix of {c d a}. Instead of

creating a new tree with root node a, an existing tree is continued from the node a. The

process is repeated until all the prefixes of {c d a d} are processed as shown in Figure 3

(b). Note that the node d has hash digest “h3” instead of “h1h2h3”. This is because edge

a-d was the first edge created while processing the input window {c d a d}. Similarly, the

model is updated as in Figure 3 (c) after the last window {a d b c} is processed.

-22-

3.1.3 Retrieving Sequences and Continuations

The original Continuator model scans the all the root nodes of the trees created in search

for the tree which defining the prefixes of the last element of the query. The tree is then

traversed down until following the query from right to left. Unlike the original model, the

proposed approach does not traverse the trees; instead it computes the digest for the hash

path from the query and uses such digest to retrieve all candidate branches. Once the

candidate branches are retrieved they are checked for hash collisions, leaving only the

branches that represent the query in the result set. The last element of the branch will

contain the list of continuations from the original sequence.

3.2 Experiments and Results

The initial solution was tested against a few different datasets. The model is very generic

and does not restrict to a certain data type. The performance of the model was studied on

the textual data. The compilation of Wikipedia articles was used for the performance

evaluation with the smaller dataset consisting of 13.5 thousand words and larger one

being 47.8 thousand words. Each word was treated as an atomic value, thus each node in

the model represented one word from the articles. The model was built on top of MySQL

database running on the windows machine. Sequential scan was chosen as the

benchmark, as it is easy to implement and is commonly used for search tasks.

-23-

The performance impact from the query length was studied for both intuitive and file

scan approaches. A set of 100 queries of same length guaranteed to have at least one

match in the input sequence was generated. The same set of queries was tested on both

search algorithms and search times recorded. The process was repeated ten times and the

average time was computed for each query size. Figure 4 shows the results for the test

runs. The intuitive solution outperforms the sequential scan algorithms queries of larger

size. Poor performance on the search on queries of length two is most likely due to the

very large number sequences and continuations returned, as each sequence had to be

checked for hash collisions.

Figure 4. Average search time for varying sizes of query strings

The impact of the result set size was studied in a different experiment. A set of queries of

size two was generated where each query was guaranteed to return the same number of

results. The performance was measured on both systems and repeated five times for each

result set size. The results of this experiment are presented in Figure 5. As can be seen,

-24-

increasing the number of results returned by a query negatively impacts the performance

of the system. It is also worth noting that the initial solution performed better compared

to the sequential file scan on larger dataset.

Figure 5. Average search time versus number of results with query size of two.

3.3 Conclusions and Discussions on the Initial Solution

The initial approach based on the model used in the Continuator has a number of

advantages compared to the other solutions to the problem. In particular, it is capable of

handling textual and categorical sequences. It was implemented using the free and open

source software easily available online without the need of complex configuration or any

special knowledge of such software products. The initial approach was faster in most

cases compared to regular sequential file scan algorithm working with files stored on a

disk.

-25-

Unfortunately, this solution is lacking the scalability and performance needed by many

applications. The size of the build model is another issue; in the best-case scenario it was

four times larger than the raw data. The need to reduce the database interactions for any

system relying on the database storage became evident first hand while developing the

initial solution, as reducing the number of database read operations played the big role in

making the system perform faster than the sequential search.

-26-

Chapter 4

METHODOLOGY

This chapter first describes the overall architecture of the proposed system, evaluation

goals, search and retrieval criteria for the system, and the key components including

HBase and R*-tree. It then explains how time series data are processed and indexed in

this study. Algorithms for search and retrieval are presented next, followed by the

discussion of cache strategies that can potentially speed up the search process.

4.1 System Architecture

Existing time series search systems generally suffer from two major problems: inability

to scale up or inability to use past computations to speed up future searches. Many of the

existing time series systems create an index structure in memory or local disk and

perform a search using the index. Such systems are generally limited to the capability of a

single machine they reside on, and even disk bound indexes are limited by the main

memory limitations of a single machine. For example, the size of the entire indexing

structure must be smaller than the size of the memory. Other systems, such as the ones

relying on DTW generally do not have indexing capabilities and instead perform database

scan whenever a search is requested. These systems heavily utilize early abandoning

techniques in order to provide fast retrievals. In many cases, both limitations are present.

-27-

For instance, a DTW method proposed in [Rakthanmanon13] uses the resources of a

single machine and requires a full data scan for each search.

Many applications require near real-time search performance against large datasets. Such

a system generally performs frequent searches against the database with queries that

might have a high degree of similarity. For example, a music improvisation system is

designed to interact with the musician in real time, and is expected to receive multiple

queries within a short time interval. Therefore, a system capable of indexing large time

series data and performing fast retrievals is needed.

4.1.1 The Proposed System

In this study, a new system is constructed with the capability of indexing multiple large

time series and performing fast searches in the indexed space in order to retrieve both

perfect and similar matches. The proposed system utilizes distributed key value data store

as a backbone to ensure data scalability. An R*-tree index is built on top of the

distributed database in order to facilitate the time series search. R-trees and similar

structures including R*-trees have been widely used in past research on time series data

analysis [Keogh01A].

The system consists of data segmentation component, R*-tree index structure, HBase

distributed key value stores and a caching mechanism. R*-tree is a variant of an R-tree

optimized for improved performance by building a better quality tree [Beckmann90]. As

-28-

a matter of fact, R*-tree adheres to the same rules as the simple R-tree, and the

differences are merely in the implementation. Data segmentation is vital for the

construction of multidimensional index for time series data, because it breaks time series

data into a set of multidimensional points. Since the focus of this study is to evaluate the

R*-tree index in the distributed environment, no other data preprocessing such as

dimensionality reduction or normalization is performed. HBase serves as a data storage

backbone for the system, as such the performance of the HBase is a key factor for the fast

operation of the entire system. Caching schemes of the index in the main memory can

potentially improve the search time by reducing the number of costly HBase interactions.

Figure 6. System Diagram

-29-

The system diagram is shown in Figure 6. The index construction of a time series starts in

a preprocessing phase, during which a time series is segmented into the subsequences of

a fixed size. The segments are then treated as index points for constructing the R*-tree

index. The resultant index structure is at last written to the HBase storage. Searching for

similar subsequences starts at the same preprocessing stage: segmentation. Currently a

query length is restricted to the segment length used for index construction. The query is

then sent to the search sub-system that seeks similar subsequences in the R*-tree index

space. The search interacts with the cache when a tree traversal is needed. If the

requested tree nodes are not found in the cache, the search system performs retrievals

from the HBase store and updates the cache as needed. At the completion of a search, a

set of index points matching the query is returned along with information on where the

matches occur in the original time series.

4.1.2 Performance Evaluation

Similar index systems in the distributed environments are also utilized for searching

spatial data. Comparing with spatial data that contain two-dimensional information, time

series data have a much higher dimensionality. Since the performance of the R-trees and

its variants is known to degrade in high-dimensionality, the extent of search time

deterioration in the key-value data store must be evaluated. In addition to high

dimensionality, other properties of time series datasets, such as data distribution and

presence of repeated patterns, can have an impact on the performance as well. The

proposed system is evaluated with various time series distributions, including uniform

-30-

and normal distributions. Since normally distributed data pack most data points relatively

close to the mean, it is expected to have negative impact on the performance due to the

large number of index node overlaps.

The proposed system is evaluated via the following aspects:

1. Impact of index dimensionality on system performance.

2. Impact of R*-tree node capacity on system performance.

3. Impact of data distribution on system performance.

4. Data scalability of a system in comparison with sequential file scan approach

under different index capacities.

4.1.3 Search and Retrieval Criteria

A similarity-based search system must be capable of answering at least two types of

queries: exact perfect match and exact k-NN query. In perfect match, the system is

looking for the same subsequence in the database as presented in the query. k-NN queries

retrieve k most similar subsequences ordered by their resemblance to the query.

Similarity between the query q and a subsequence c is determined by similarity distance

function D(q, c):

D(q, c) = a distance measure related to dissimilarity.

-31-

Given the choice of R-tree as multidimensional indexing tool, using Euclidean distance

as similarity metric is appropriate. Thus D(q, c) computes Euclidean distance between

query q and a potential match c. Given the similarity function, perfect match queries can

be thought of as searches producing all matches with distance to the query D(q, c) = 0.

4.2 Background

The proposed system utilizes an R*-tree data structure as its indexing technique. The data

structure is built on top of Apache HBase, a distributed key-value database. The rest of

this section discusses two crucial components of the proposed system: HBase and R-trees

family of indexes

4.2.1 HBase

Apache HBase is a NoSQL distributed key-value database built on top of Apache

Hadoop and HDFS. HBase is an open source implementation of Google’s BigTable

[HBase14]. Similar to other key-value databases, HBase can be viewed as mappings

between a key and a row with information identified by that key. A collection of rows

make up an HBase table and each row in the table has a third dimension generally used to

store the previous version of a row. This dimension is often called the time dimension, as

it indexes the revision of the record stored in the same row by the time of a record

creation. Users have the ability to override the time dimension and use it for purposes not

related to revision or history tracking [HBase14].

-32-

HBase rows are broken up into column families and a column family consists of

columns. Column families and columns allow partial retrieval of a row when not all of its

information is required. For instance, an HBase table can have “name” and “address”

column families with each column family containing one or more columns. Depending

on the situation, a user may choose to retrieve only one of the two column families from

the database. Each column family can contain multiple columns, but not every column

can be presented in each row. In fact, HBase columns are not specified in advance.

Columns are declared at the time data are placed into an HBase table, allowing different

rows of the same table to have different columns [HBase14]. Column families on the

contrary are defined beforehand and essentially make up the schema of a table. Figure 7

provides an illustration of an HBase table structure.

Figure 7. HBase table structure.

-33-

Because HBase is a distributed system, it resides on multiple machines and can be scaled

up if more computers become available. The system is fault tolerant, meaning that the

malfunctions in a certain number of machines will not cause the entire database to go

offline. According to Mathur, Google’s BigTable can be viewed as a B-tree, where nodes

of a tree can be distributed across multiple computers [Mathur11]. Figure 8 shows a

simplified structure of the BigTable with omitted time dimension for data and indexes.

All the data in such a storage system are located in the leaf nodes of the tree, while other

nodes are used to route the request to manipulate the data to the leaf nodes. Since HBase

is an open source implementation of BigTable, its structure is similar to the one in Figure

8.

Figure 8. Simplified schematic representation of BigTable with time dimension omitted.

-34-

4.2.2 R-tree

R-tree is a tree data structure commonly used for storing and indexing of spatial data. It

has also been used as a tool for indexing multidimensional data. Since time series can be

easily represented as a set of n-dimensional data points, R-trees have been extensively

used in prior research for time series similarity search. However, such usages almost all

resided in a single machine, not in a distributed environment.

The original R-tree was presented by Guttman in [Guttman84] as a tool to index complex

spatial objects consisting of multiple n-dimensional points. In an R-tree, leaf nodes

contain a set of records in the form of:

(R, data-pointer),

where R is the n-dimensional minimum bounding rectangle (MBR) for the object referred

by the data-pointer. Non-leaf nodes slightly differ from leaf nodes, containing records in

the form of:

(R, child-node-pointer),

where R is the minimum bounding rectangle covering all rectangles in the child node and

the child-node-pointer is a link to a child node.

-35-

As defined by Guttman in the original work [Guttman84], R-tree must satisfy the

following properties:

Property [1]. Every node can contain between m and M records, where m and M are

respectively minimum and maximum node capacity, unless it is also a root node.

Property [2]. For each entry in the node, R is the smallest rectangle that contains the

multidimensional objects or rectangles in the child node.

Property [3]. The root node must contain at least two children nodes, unless the root is

also a leaf node.

Property [4]. All leaf nodes are on the same level of the tree.

Figure 9 illustrates an R-tree structure and provides a visualization of the index in 2-

dimensional space. For instance, it can be observed in (a), rectangle R3 points to the leaf

nodes R8 and R9, and in (b), rectangles R8 and R9 are inside the rectangle R3.

R-tree was originally developed to be used in the disk storage, but it has been

successfully ported to other environments, such as main memory. Some success with R-

trees was achieved in the distributed key-value stores as well. Wei built R-tree index on

top of the Apache Cassandra [Wei13]. The trick to using any R-tree variants in

distributed database like HBase and Cassandra is in the key choice for the tree nodes,

since it is significantly more efficient to retrieve a range of objects with keys located

nearby in the key space than retrieve multiple objects one at a time [Wei13]. It is

extremely important to have proper assignment of keys to the tree nodes in a way to

allow for retrieval of all children nodes in one database scan.

-36-

Figure 9. (a) R-tree structure and (b) visualization in the 2-dimensional space.

In addition, reducing the number of traversed tree nodes can improve the performance.

One way to accomplish this is by allowing the tree to grow broader to reduce the depth of

the tree. The maximum number of items each node can hold was originally

predetermined by the size of the disk block in order to minimize the number of disk I/O

operations. In distributed key-value stores, the tree is more limited by the network latency

-37-

and synchronization costs of the distributed system. Therefore, reducing the number of

times the database is accessed by making the tree broader than originally designed for

disk storage can improve the performance. Another way to reduce database access is by

selecting the correct branch of the tree without having to traverse from the root node each

time. Wei proposed an additional index based on the Hilbert space-filling curve to allow

querying the rectangles only from the region in which a query point is located [Wei13].

In [Beckman90], a system using R*-tree version of the index is proposed to optimize the

node split algorithm in order to produce splits with smaller overlaps. Another

implementation change is the addition of node reinsertions into the algorithm. Node

reinsertion happens when a child is being added to the parent node already at its

maximum capacity. Instead of performing a node split, R*-tree algorithm removes certain

children nodes from the parent node and adds these children back to the tree using regular

tree insertion algorithm. Such reinsertion allows some children that were generally added

earlier in the construction process to find a better parent node to reduce the node overlap.

Reinsertions can be done only once on each tree level per data point in order to prevent

infinite loops. Because of the reinsertion policy, tree node splits can only happen during

reinsertion and never occur when new data points are added.

4.3 Time Series Preprocessing

Incoming data can be processed in many different ways before the construction of an

index structure. The data reprocessing has a major impact on the system performance in

-38-

terms of both efficiency and accuracy. The most common steps to process incoming time

series data include segmentation, normalization and dimensionality reduction.

Segmentation partitions the time series into manageable subsequences that are later used

to construct index structures. Normalization can be applied to the entire series or

segments in order to reduce the negative effects of outliers and noise, and it also allows

for similarity search on sequences in different scales or with constant up or down shifts

[Loh00]. Dimensionality reduction is often used in the field of time series similarity

search in order to reduce the index size and improve search performance [Keogh01A]. In

the scope of this work, the effects of normalization and dimensionality reduction are not

studied.

 Unlike dimensionality reduction or normalization, segmentation of time series is a

necessary step for the construction of multidimensional index structures such as R-trees.

Since the R-tree index is constructed from a set of multidimensional objects, the time

series S = {s1, s2, s3,...,sm} of arbitrary length m needs to be broken up into a set of

segments of length n, where n is the number of dimension in the R-tree index, n ≤ m. As a

result, each segment of the form C = {c1, c2, c3,..., cn} can be seen as an n-dimensional

point that can be used for constructing the n-dimensional indexing structure [Keogh01A].

Segments obtained from the original sequence can overlap with each other. The overlap

is usually achieved by the means of a sliding window approach. In order to make sure

the R-tree model can find all subsequences for a given query, the segmentation has to be

performed with a window sliding by one data point at a time. In contrast, if segmentation

-39-

is done without overlaps, each segment can be seen as an independent entity or a point of

a multidimensional time series. Figure 10 shows how segmentation overlaps can affect

the search results. As shown in (a), segmentation with no overlaps produces less

segments. It does not capture all subsequences of the original time series, and thus

segment {4,3} is found only once. Segmentation shown in (b) uses overlaps to create

segments for all subsequences from the inputs. Thus segment {4, 3} can be found twice,

just as subsequence {4, 3} is present twice in the input.

Figure 10. Segmentation overlaps. (a) Segmentation with no overlaps. Only one segment

{4,3} is found despite the fact that sequence {4,3} occurs twice. (b) Segmentation with

overlap. Two segments {4,3} are found.

4.4 Index Construction

The indexing structure is constructed from the input data previously segmented into a set

of subsequences. Depending on the application, subsequences can have various degrees

-40-

of overlaps. Once the input sequence is segmented, an R-tree index is constructed and

saved to the database. The rest of this section discusses the construction of a basic R-tree

and the manner in which the R-tree is saved to an HBase distributed data store.

4.4.1 Basic R-tree Index

The proposed indexing system uses R*-tree variant of the basic R-tree multidimensional

index structure. Both versions of the tree are very similar. Both adhere to the same rules

outlined in [Guttman84] and the properties described in the previous section. R*-tree

mainly differs from the basic R-tree in the implementation. Understanding the index

construction of an R-tree is important for the comprehension of the changes introduced

by R*-tree optimizations.

The proposed indexing system implements R*-tree variant of the indexing structure, but

the generic structure of the model remains identical to the R-tree. Non-leaf (or general)

nodes group children nodes located close to each other. Unlike the generic R-tree and R*-

tree models, the leaf nodes in the proposed system do not store pointers to the data items.

Instead, the pointers to data nodes are contained in the leaf nodes. Data nodes are capable

of storing multiple data pointers. This design allows the system to use the same node to

index multiple identical segments so that the size of the tree can be reduced to improve

overall performance. Both general and leaf nodes of the index structure must store a few

key pieces of information needed for the index construction and operation: a list of

pointers to child nodes, the position of the MBR for a node and the dimension of the

-41-

MBR. Data nodes contain the indexed point and a list of references to the actual data

represented by the node.

Both leaf and general nodes can be seen as records in the form of:

(MBR-location, MBR-dimension, List of child-node-pointers),

where MBR-location and MBR-dimension are the position and dimension of the

minimum bounding rectangle for a node, and child-node-pointer is pointer to a child of a

node.

The basic R-tree model is constructed one data segment at a time. Each segment is treated

as a multidimensional point. Generally, the addition of a new segment to an index

consists of finding the most suitable leaf node for storing the segment and then adding the

segment to the leaf node. In the case where a segment addition causes an MBR of the leaf

to change, the change is propagated upwards to the parent node and eventually reaches

the root node if needed. Sometimes the most suitable node for a segment can be at its

maximum capacity. In this case, the node is split in two nodes and the split nodes replace

the old one at the parent level. The split propagates upwards by dividing any parent nodes

along the way as needed. Figure 11 illustrates the process of adding a segment S to an

existing R-tree. In Figure 11 (a) the existing model is searched for a leaf node to hold

newly added segment S. Node R6 is such a node in the example, because it requires the

smallest MBR increase to contain S. Node R6 is at the maximum capacity and cannot

-42-

hold segment S. A node split is performed in Figure 11 (b) producing nodes R6 and R6'.

The node split is propagated to R2, a parent node of R6 in Figure 11 (c). MBR of R2 is

increased to cover R6 and R6'. At this time the propagation stops, since the root node is

reached and no root split is needed.

Figure 11. Adding a new segment to an R-tree.

-43-

The proposed system takes advantage of a few R*-tree optimization techniques aimed at

improving the quality of the tree by minimizing the overlap between the nodes on the

same level. One of the biggest changes introduced by an R*-tree is a better node split

algorithm. The improved node split algorithm that minimizes the overlap between the

rectangles leads to a smaller number of visited nodes when performing the search.

Another optimization aims to improve the quality of the tree by deleting and reinserting

certain nodes back to the tree. The optimization triggers when the node overfills and

needs to be split. A predefined percentage p of nodes is removed from the overfilled node

and reinserted to the tree again. This node reinsertion allows many of the nodes to be

placed in a better spot within the index structure, which reduces the overlap and

eventually improves the search performance [Beckmann90]. The process allows only

one reinsertion per tree level for each added segment, eliminating the possibility of

entering an infinite loop of node reinsertions. Node reinsertion occurs only when a node

reaches its maximum capacity. After the reinsertion completes, a node that triggered the

reinsertion is no longer full, because a portion of its children has been removed and

placed into different nodes of a tree, thus the node starting the reinsertion procedure is not

split. However, node splits happen when a node reaches its capacity and reinsertion

procedure cannot be invoked because the procedure has been used prior on the same tree

level. The nodes for reinsertion are picked from an overfilled node by calculating the

distances of child nodes from the center of an overfilled node and selecting certain

percentage p of nodes with highest distances from the center. In the original R*-tree

research, the authors claimed that p = 30% gives the best improvement in search

performance [Beckmann90].

-44-

The algorithms used for index construction are presented below. More information on

building R-trees can be found in [Guttman84] and [Beckmann90]. Figure 12 lists an

algorithm used as an entry point for adding a new index point. The algorithm resets any

node reinsertion restriction that could have been set by the previous data insertion (lines

1-3). On lines 4 to 7, it is decided whether there is a necessity to proceed and to create a

new index point or simply to add new data pointer to the list of pointers in the matching

index node, in case the index for the data point already exists. On line 8, ADD_TO_LEAF

algorithm is invoked and the data-node S is added to the index. If needed, the tree is

grown on lines 9 to 12.

Figure 12. R*-tree node insertion algorithm.

Figure 13 shows the ADD_TO_LEAF algorithm. This algorithm is responsible for

Algorithm INSERT (inserts a data segment to the R-tree)

Input: R-tree root R, Data-node S,

 Maximum number of children per node MAX,
 Minimum number of children per node MIN

Output: updated R-tree
Method:

1. if not reinserting node then

2. reset reinsert restriction for all levels

3. end if

 //check if index for S already exists

4. matchNode = Node M such that D(M, S) = 0

5. if matchNode ≠ empty then

6. add pointer to data of S to list of data pointers of

matchNode

7. else

8. splitNodes = ADD_TO_LEAF(R, R, S, 1, MAX, MIN)

9. if |splitNodes| == 2 then

 //root node has split, grow the tree.

10. R = new Root Node

11. make splitNodes be children of R

12. end if

13. end if

14. return R //return back the root of modified R-tree

-45-

traversing the tree to the most appropriate leaf node for a data node being inserted. Lines

2 to 9 are recursive base case of the algorithm and are responsible for adding new data

point to the leaf node. Line 8 invokes the OVERFLOW_TREATMENT procedure when

the leaf node reaches its maximum capacity. The recursive section of the algorithm is on

lines 10 through 26. The next traversal step is computed on line 11 by finding the

children that require the smallest rectangle increase to accommodate the new node. A

recursive call is made on line 12, while lines 13 to 25 update the traversed nodes as the

algorithm unwraps the recursion calls. Similar to reaching the capacity at the leaf level,

non-leaf nodes can be subjected to overflow. Therefore, the overflow treatment is

invoked for non-leaf nodes on line 23.

-46-

Figure 13. ADD_TO_LEAF algorithm recursively reaches leaf node and adds data to it.

When an R-tree node reaches its maximum capacity, an OVERFLOW_TREATMENT

routine is invoked. During the overflow treatment, a subset of children of a full node can

be removed from the model and resinserted again. This node reinsertion can only be done

once per tree level for each new data node. Lines 2 to 9 of the

Algorithm ADD_TO_LEAF (inserts a data segment to leaf node)

Input: R-tree root R, R-tree node N, Data-node S, Current tree level L,

 Maximum number of children per node MAX,
 Minimum number of children per node MIN

Output: list of modified nodes T
Method:

1. T = {Ø}

2. if N is leaf node then

 //we reached leaf node, so add data node for segment S

3. create new data node D for segment S

4. add S to children of N

5. if |N.children| <= MAX then

6. add N to T

7. else

 //adding a child caused node to overfill

8. T = OVERFLOW_TREATMENT(N, L, R, MAX, MIN)

9. end if

10. else

 //Non leaf node, so go down to the leaf

11. C = child of N requiring smallest MBR increase to fit S

12. splitNodes = ADD_TO_LEAF(R, C, S, L + 1, MAX, MIN)

13. if |splitNodes| == 1 then

 //no nodes have split

14. recompute dimensions and position of MBR of N

15. add N to T

16. else

 //deal with consequences of node split

17. delete C from children of N

18. add each node of splitNodes to children of N

19. if |N.children| <= MAX then

 //split stops here

20. recompute dimensions and position of MBR of N

21. add N to T

22. else

 //handle overflow of N

23. T = OVERFLOW_TREATMENT(N, L, R, MAX, MIN)

24. end if

25. end if

26. end if

27. return T

-47-

OVERFLOW_TREATMENT algorithm shown in Figure 14 enforces reinsertion rules

and select the best candidates for reinsertion. Line 4 sorts children of the full node by the

distance from the node’s center, then a certain percentage P of the children furthest from

the full node’s center is removed and reinserted back into the indexing model. The

reinsertion identifies a better place for nodes that have been added early in the model

construction and may no longer fit well with their current parent [Beckman90].

Figure 14. OVERFLOW_TREATMENT algorithm performs reinsertions or node splits.

Node reinsertion is accomplished in a recursive manner. Since only data nodes can be

inserted into the tree, when a REINSERT procedure, shown in Figure 15, is called on a

non-data node, the algorithm recursively reaches all data nodes in the current R*-tree

branch and reinserts such nodes back to the model. Lines 1 to 3 show the recursive base

case where a data node is inserted back to the index. Lines 3 to 7 represent the recursive

case: REINSERT procedure is invoked for each child of a node N.

Algorithm OVERFLOW_TREATMENT (handles overflow in a node)

Input: Overflowing node N, Node level in R-tree L, Root Node R

 Reinsertion percentage P,
 Maximum number of children per node MAX,

 Minimum number of children per node MIN
Output: list of modified nodes

Method:

1. List of nodes for reinsertion I = {Ø}
2. if L > 0 AND can reinsert on level L then

3. restrict reinsertion on level L

4. sort children of N by distance from center of N
5. add MAX * (P / 100) nodes to I

6. remove I from children of N

7. REINSERT (R, I, MAX, MIN)
8. return empty

9. end if
10. return SPLIT(MAX, MIN, N)

-48-

Figure 15. Algorithm REINSERT. Reinserts some of the nodes back to R-tree.

Figure 16 presents a basic overview of an algorithm used for splitting two nodes. In order

to carry out a node split, we first choose the axis or dimension along which to perform the

split. Generally, a metric is used to pick the best axis to ensure that the split along the

chosen axis has the least amount of overlap. Two groups of nodes are chosen by

separating the nodes along the axis of split on line 2. The groups are selected to have

minimum overlap among all other groups along the split axis. Lines 3 to 6 finalize the

split and return two resultant tree nodes that can be added to the model.

Algorithm REINSERT (reinserts a data node to the R-tree)

Input: R-tree root R, Node N,

 Maximum number of children per node MAX,
 Minimum number of children per node MIN

Output: modified R-tree with Segment node S
Method:

1. if N is data node then

2. INSERT(R, N, MAX, MIN)
3. else

 //not a data node, so traverse to closer to data node
4. for each child in children of N

5. REINSERT(R, child, MAX, MIN)
6. end for

7. end if
8. return R //return back the root of modified R-tree

-49-

Figure 16. Algorithm SPLIT breaks a full node into two smaller nodes.

4.4.2 R-tree in HBase

Storing the R-tree model in a distributed key value data-store such as HBase is in fact

very similar to disk storage. Instead of storing nodes in the disk pages, tree nodes are

saved into the HBase rows, and each row can be found by a unique identifier. Similar to

disk storage, the index in HBase must be grouped together for faster retrieval. The

proposed system groups records by their identification numbers to have all children of a

node occupy a block of consecutive identification numbers. This allows faster retrieval of

child nodes using HBase scan operation. However, unlike the disk storage, each node

stores the pointer to the children and not the children MBRs and locations. This allows us

to retrieve all children at once and then perform in memory processing to decide which

children nodes are expanded next. This approach is intended to reduce the number of

Algorithm SPLIT (splits node in two)

Input: Node N,

 Maximum number of children per node MAX,
 Minimum number of children per node MIN

Output: list of two resultant nodes with all children of N split
Method:

1. choose axis along which the node is to going to be split.

2. assign children of N to two groups such that the overlap

 between two groups is minimal along the chosen axis, while

 ensuring each group has between MIN and MAX nodes.

3. create empty nodes S1 and S2 of the same node type as N

4. assign first group to be children of S1

5. assign second group to be children of S2

6. return {S1, S2}

-50-

HBase interactions. In addition, performing a scan operation in order to get a range of

records is far more efficient than returning the same number of records one record at a

time [Wei13].

Unique identifiers for HBase rows are reserved in advance for each tree level. Since the

maximum number of nodes at each level can be calculated in advance, knowing the

maximum node capacity allows each level of the tree to have its HBase identifiers

reserved in advance. Even when the level is not full, it is guaranteed to have enough

identifier space available to reach the maximum level capacity while still preserving the

continuous nature of the identifiers.

4.5 Search and Retrieval

The main purpose of building an indexing structure like R-tree is to support

multidimensional data search and retrieve. In this study, such data are segments from a

time series sequence. Generally, there are few kinds of queries a search system can

answer: perfect match and k-NN. In this work, k-NN searches are discussed the most,

since a perfect match can be seen as a special case of the k-NN search where all results

have the same similarity to the query. The searches are formally defined as follows.

Definition [1]. Exact perfect match search is a search returning all subsequences of the

original input with similarity distance D(q, c) = 0 between a query q and a potential

match c.

-51-

Definition [2]. Exact k-NN search is a search returning k closest segments to the query q

as defined by the similarities distance function D in ascending order starting from the

match c with the smallest distance D(q, c). The results set must contain k closest matches

without any omissions.

Figure 17. Exact and approximate k-NN examples. (a) Exact k-NN with k = 2. (b)

Approximate k-NN with k = 2

Exact perfect match and k-NN searches should not be confused with an approximate

search. In the approximate perfect search, the result set might not contain all matching

subsequences of the original time series. Approximate k-NN search can omit some of the

relevant results. Figure 17 illustrates the difference between exact and approximate

search results. In Figure 17 (a), the exact k-NN search is performed against a dataset with

k=2. Two closest matches {2, 3, 1} and {3, 3, 1} are retrieved. Figure 17 (b) illustrates

-52-

what an approximate k-NN search can return. As can be seen, segment {2, 4, 2} is

returned instead of {3, 3, 1} even though the distance of segment {3, 3, 1} to the query is

smaller than the distance from {2, 4, 2}. The proposed system focuses on exact searches,

making the results in Figure 17 (b) unacceptable.

Figure 18. Exact k-NN search algorithm.

Algorithm KNNSEARCH (performs a k-NN search)
Input: R-tree root R, number of results to return k, Query Q;
Output: a list of closest index points I;
Method:

 //initialize
1. MinPriorityQueue PQ = empty
2. List candidates = empty
3. List results = empty

4. PQ.add(R, 0) //adding root to queue with priority 0
5. while PQ not EMPTY
6. top = PQ.pop
7. foreach subsequence cs in candidates
8. if D(Q, cs) <= MINDIST(Q, top) then
9. results.add(cs) //adding item to the result list
10. candidates.remove(cs) //removing item from candidate list
11. if |results| == k then return results //we are done here
12. end if
13. end foreach
14. if top is DATANODE then candidates.add(top)
15. else if top is LEAFNODE then
16. foreach child data node cdn in top
 //add child to queue with priority of D(Q, cdn)

17. PQ.add(cdn, D(Q, cdb))
18. end foreach
19. else // top is general, non-leaf node
20. foreach child node cn in top
 //add child to queue with priority of MINDIST(cn, Q)
 //where MINDIST is minimal distance from Q to MBB of cn

21. PQ.add(cn, MINDIST(cn, Q))
22. end foreach
23. end if
24. end while
25. return results //return results in case we never got k matches

-53-

In order to perform searches in the indexed space, a slightly modified version of the

algorithm in [Keogh01A] is used. The modified algorithm is presented in Figure 18. The

algorithm operates by always starting from the root of the tree. The root node is added to

the minimal priority queue in line 4. The algorithm iterates as long as there are items left

in the priority queue. In each iteration of the main loop, the top node of the queue is

either expanded with all the children added to the queue in lines 15 to 23, or added to the

list of potential candidates on line 14, in case the top node is a data node. Each iteration

of the main loop also causes the list of candidates to be checked in lines 7 to 13. If the

distance from the query to the candidate is smaller or equal to the distance from the query

to the top node of the queue, then the candidate is added to the list of results.

The condition in line 7 is a very crucial part of the algorithm. The algorithm performs a

search satisfying the exact k-NN search criteria only if an indexing structure can

guarantee that all children of the top node of the priority queue have greater or equal

distance from the query than that the distance to the top node from the query. Since no

dimensionality reduction is used in the proposed system, all the children of the top node

are at least as far away from the query as the node itself. MINDIST(node, query) function

is very similar to the similarity distance function D(q, c) and it computes the minimal

Euclidean distance from the axis aligned MBR of a node to the query. Since non-data

nodes contain multiple points in the multidimensional space, it is no longer possible to

use function D(q,c) to compute the distance between a query and a node, because D(q, c)

only computes Euclidean distance between two points.

-54-

Once k matches are found, the algorithm returns the list of results in line 11. If no k

results are reached, then the index structure does not contain k indexed points and the

algorithm returns with the full list of indexed points ordered by their similarity to the

query in line 25.

4.6 R-tree Node Cache

The proposed system employs a simple caching mechanism to minimize the number of

interactions in HBase data store to improve system performance. The cache operates by

storing several number of cache pages in the main memory. As the cache gets full, the

least recently used pages are removed from the cache to free up space for the other pages.

Each cache page represents a list of children of some other node. When requested to

retrieve the children nodes, the system performs a cache look-up and tries to find the page

with children nodes. If such a page does not exist in the cache, an HBase scan operation

is performed to retrieve the list of children nodes. The retrieved list is then placed into a

cache page and its usage time is marked.

When the maximum number of pages is reached, cache pages not used recently are

removed. The cache system protects certain cache pages from ever being deleted.

Generally, protected cache tables store tree nodes located close to the root of the tree.

These cache pages have a high chance of being used on subsequent queries, thus their

removal needs to be avoided. Cache pages farther away from the root are not protected

from deletion Cache pages with nodes farther from the root have higher chance of being

-55-

removed from cache, because these cache tables represent specific branches of the

traversed tree and have smaller chance of being used in subsequent searches.

Cache size is one of the most prominent and important parameters as it regulates the

maximum number of nodes cached by the system. Higher capacity allows for more

indexes to be stored in the memory, which reduces the need to request data from an

HBase and further improves the overall performance. Unfortunately, high node capacity

might not always be beneficial as it will boost the performance only when being utilized

close to the maximum capacity. Working with small datasets or doing small number of

searches might not fill the cache to its capacity; therefore, there are no benefits when

compared to smaller caches.

-56-

Chapter 5

EXPERIMENTS AND RESULTS

5.1 Testbed

All the experiments were carried out on the Hadoop cluster of 7 Dell Optiplex 755

machines with dual core Intel CPUs, and 2GB of RAM. The computers were running

under Linux CentOS 6.4 operating system. Apache Hadoop and HBase systems were

running under Java version 7. A client application was running on the gateway computer

connected to the same local network as the cluster. Figure 19 illustrates the schematic

layout of the Hadoop environment used as the testbed.

Figure 19. Testing environment.

-57-

5.2 Impact of R-tree Dimensionality on Performance

R-tree based indexes are susceptible to significant performance degradation as the

number of dimensions in the tree grows [Keogh01A]. In this experiment, the impact of

increasing dimensionality on the R*-tree stored in the distributed key-value database is

tested.

A uniformly distributed time series of 5 million integers was used for this experiment.

The dataset was preprocessed into the overlapping segments of controlled length. The

segments were overlapped in such a way to guarantee exact search. For example, for the

segment size of n items, the overlap is n-1 elements, thus each consecutive segment

contains n-1 last data points of the previous segment. Six models were constructed with

dimensions ranging from n=4 to n=9. Other parameters of the tree, such as minimum and

maximum node capacities and reinsertion percentage, remained constant. A set of 100

random queries was generated for each dimensionality tested. Due to the restriction of

query size being equal to the dimensionality of the tree, queries with different sizes must

be created for R-trees with different dimensionality. However, queries were constructed

in such a way to ensure common properties for all dimensions: each of the generated

queries used for testing was guaranteed to be found once in the dataset. It is also worth

noting that despite the different dimensionality of the tested models, each indexing

-58-

structure had the same number of data nodes stored. k-NN exact search with k=5 was

performed for each query to measure the execution time and the number of HBase

communication of the six models. All caching mechanisms were disabled for this test.

Figure 20. The impact of index dimensionality on R*-tree performance in the distributed

key-value data store: (a) the average search time for different index dimensionalities, and

(b) the average number of HBase scans for different index dimensionalities.

Figure 20 shows the average search time and average number of HBase interactions for

each tested model. It can be observed that the performance degrades very quickly as the

number of dimensions increases as shown in Figure 20 (a). Figure 20 (b) also shows that

the number of HBase scans grows quickly as the dimensionality increases. Because all

the models index the same number of data-points with the same number of data nodes

used, the increasing number of HBase interactions suggests higher overlap of the

multidimensional rectangles when the number of dimensions increases. Higher overlap

-59-

means that a potential match can be located in a larger number of rectangles, making the

algorithm examine larger index space. The result of this experiment explains the main

reason why R-trees and derivatives have not been used as often for data with higher

dimensionality. Since time series indexing requires processing large segments, R-tree

based structures often employ certain dimensionality reduction techniques to stay within

a more optimal performance range for the index. The average search time at n = 7 slightly

improves compared to the dimensionality of n=6, despite the increase in the average

number of HBase scans. Such behavior can be attributed to a number of factors, such as

tasks running in the background in the operating system, Hadoop and HBase, and/or

activities from other users accessing the shared cluster used for testing.

Figure 21. Linear correlation between execution time and the number of HBase scans: (a)

linear correlation at different number of dimensions in the index and (b) simple linear

regression between average search time and average number of HBase scans at number

of dimensions n=9

-60-

Figure 21 (a) shows the linear correlation between the average time and the number of

database interactions needed to perform the query. Strong correlation, reaching above 0.9

in some cases, suggests that the execution time is highly and positively related to the

number of database interactions. Such a relation is expected because each database

interaction takes a significant amount of time to complete. It is important to mention that

the execution time can be impacted by other parameters as well. Figure 21 (b) plots all

data points for queries executed on the model with dimensionality n=9. Strong linear

dependence can be observed between the search time and the number of HBase scan

operations.

5.3 Impact of Node Capacity on Performance

The capacity of a node in the R-tree based index can play a major role in the system

performance. Traditionally, the capacity was regulated by the disk page size so that the

index node can only occupy one page to reduce the disk read and write overheads. In

contrast, increasing the node capacity in the distributed key-value stores can improve

retrieval efficiency. Nodes with higher capacity enable retrieving more index points at

once, thus shortening the time it takes for the search task to complete by reducing the

number of database interactions.

In this experiment, the same uniformly distributed five million data point integer time

series was used. The time series was preprocessed into segments of size n=5 with an

overlap o=4. Individual models were built for each of the tested maximum node

-61-

capacities. The minimum node capacity was set to always be a half of the maximum

capacity to ensure similar conditions for node splits. Index dimensionality at n=5 and

reinsertion percentage p=30% were kept constant for all tested models in this experiment.

100 random queries were generated for the evaluation, and the same set of queries was

used for each node capacity. Similar to the previous experiment, all caching was disabled

and execution time and number of database interactions were recorded.

Figure 22. The impact of node capacity on system performance measured by (a) the

average search time and (b) the average number of HBase scans.

The average search time and number of HBase requests are shown in Figure 22. The

performance improves as the node capacity increases until it reaches 140 children per

node as shown in Figure 22 (a). A noticeable slowdown can be observed at 160 children

per node. The initial performance improvement can be explained by the dramatic

reduction in the number of database interaction as the node capacity increases. This is

because higher capacity nodes create a broader tree, which generally reduces the number

-62-

of nodes that must be traversed down to reach data nodes. As the node capacity continues

to increase, the tree becomes too broad and each node contains many children that are too

far away from each other. As a result, each HBase scan retrieves large volumes of

information not needed for the search, even for a fairly small number of database

requests. The large unnecessary volume of information increases network loads and

computation costs, and ultimately degrades the overall performance of an index.

5.4 Impact of Dataset Properties on Performance

In this section, three datasets with different distributions were tested to learn about how

the nature of the data impact on the performance of a system. A time series similarity

search system can be exposed to datasets with different properties, and the system

performance can vary due to the different nature of the dataset. In this experiment, three

data sets (each consisting of five million data points) were generated to represent three

different properties: uniform distribution, normal distribution and simple symmetric

random walk time series. Random walk time series have been used to approximate

certain types of financial time series [Rakthanmanon13]. For each dataset, the indexes

were constructed with same node capacity max=140 and min=70, reinsertion percentage

p=30% and index dimensionality n=5. All caching mechanisms were disabled during this

test.

As can be seen in the Figure 23, dataset properties can play a very dramatic role in the

performance of an R-tree based index system in the distributed key-value environments.

-63-

The performance of the system is almost an order of magnitude slower for normally

distributed time series than uniformly distributed data. Such system’s behavior is likely

due to the fact that most of normally distributed data tend to reside in the same section of

the multidimensional indexed space, thus more overlaps occur closer to the center of an

index space. This hypothesis of having high overlaps is confirmed by the large number of

database interactions. The large number of interactions tends to happen when multiple

neighboring nodes are examined, suggesting an overlap between such neighbors.

Figure 23. Performance difference in (a) average search time and (b) average number of

HBase requests for datasets generated using uniform distribution, normal distribution,

and symmetric random walk.

However, the system demonstrated outstanding performance on random walk dataset.

Such result can be explained by the presence of high number of repeated subsequences in

the simple symmetric random walk data. For example, there were only 72,995 unique

-64-

segments of length n=5 in the tested sample of five million data points. This small

number of unique segments results in a construction of a very small index tree that

consequently is able to provide very fast search times.

5.5 Impact of Dataset Size on Performance

In this experiment various data sizes have been tested against the R-tree based indexing

system. For a comparison reason, the same dataset was tested against a simple sequential

file scan algorithm performing k-NN search on a time series under the Euclidean

distance. Several various cache capacities for the HBase R-tree index were evaluated as

well. For the experiment, a uniform time series of 30 million integer data points was

used. The indexing models were constructed in five million increments, starting with a

model of just five million numbers. All models were constructed with the same node

capacities max=140 and min=70, reinsertion percentage p=30% and dimensionality n=5.

A set of 100 test queries was generated for each test size and the same set was used for all

tests on a given time series size. Each query was guaranteed to have at least one perfect

match in the dataset. In addition, perfect matches were uniformly distributed across the

five million blocks of data points. For example, in a ten million dataset, half of the

perfect matches to the queries are found in the first block of five million numbers while

the other half of the quires has perfect matches in the second five million block of data

points.

-65-

The cache can play significant role in the performance of a system, as it allows a big

reduction in the number of database look-ups. Multiple cache parameters can be

configured and tested, but the cache size is by far one of the most important ones. In this

experiment, three different cache size were used: small with just 1000 pages, moderate

cache with maximum capacity of 5000 pages and big cache capable of holding up to

10000 cache pages. All other cache parameters were kept at the default values.

Figure 24. Performance in average search time with respect to dataset size.

The average search time of the system with various cache schemes and of the sequential

file scan is shown in the Figure 24. As can be seen, the R-tree index in HBase generally

performs better than the sequential k-NN algorithm. As the data size increases, the R-tree

based model outperforms the sequential file scan. At 30 million data points cached

-66-

models show poor search performance compared to the non-cached version, yet the

number of HBase scans decreased due to the cache as can be observed on the Figure 25.

Such performance fluctuation can be attributed to a combination of reasons. The system

used for testing is a shared cluster with other users being able to access the cluster. In

addition a handful of jobs are performed on the background by Hadoop, HBase and

possibly even operating system. These background activities can cause some variation in

the network latency and HBase requests queue performance. It is also important to

consider the overhead of managing cache, which could have contributed to the

performance artifact observed. An overall trend for performance change is observed to

follow a linear pattern. Such linear scalability can be explained by the nature of tree

construction process for such large time series. As the dataset size increases, the model

starts to be built by parts, where each part is independent of each other. Such process

causes high overlap between branches created from different parts resulting in the need to

examine all such independent branches.

-67-

Figure 25. Effect of cache size on the amount of database requests.

In general, the models with cache outperformed the one without cache as shown in Figure

25. Even the model with the small cache option is cable of producing noticeable

reduction in the number of HBase interactions as demonstrated in Figure 25. Increasing

cache size may not always result in performance leaps. For instance, if cache size is very

large and the number of requested queries is relatively small, the cache can take a long

time to fill-up. Another example in which cache may not be helpful involves small

dataset size. Small dataset size can reduce the benefit a larger cache may have on the

performance of a system, because small dataset allows to cache a higher portion of non-

data nodes without even reaching the maximum number of pages. Such effect can be

observed when comparing moderate and big maximum cache capacities on a smaller

dataset of five million numbers. Both cache size have enough capacity to keep adding

-68-

new pages to cache without ever having a need to reclaim cache space. As a result, the

number of HBase interactions for a set of a hundred queries stays the same for moderate

and big cache sizes on a dataset of five million, effectively having the same impact on the

performance of a system.

It is worth mentioning the fact that both algorithms, HBase R*-tree and file scan, are

sequential in their nature. The tested model uses HBase merely as a storage mechanism,

and no computations are performed in parallel or concurrent manner while searching

except for those that might happen internally in the HBase. Both the HBase system and

file scan k-NN were tested on the same gateway machine. Both approaches can be

transformed into parallel solutions by traditional methods, like threading or Message

Passing Interface (MPI), and by the utilization of MapReduce. However, since the focus

of this work is on evaluating the pure performance of R-tree structures in the HBase

database, it was decided not to make such parallel adaptations because parallelization of

the algorithms would have masked the core algorithmic traits and deficiencies of the R-

tree and R-tree derived indexes in the distributed key-value data stores.

-69-

Chapter 6

FUTURE WORK

As was demonstrated, an R-tree base time series search and retrieval system running in

the distributed key-value data store can handle large time series. However, the

performance of such systems greatly vary on a number of parameters, ranging from the

property of the input sequences to the limitation of the implementation, such as

construction of large indexes by parts and the limitation of the multidimensional indexing

used in the system. The indexing method adopted in the proposed system restricts the

queries to be the size of index dimensionality. R-tree can be constructed for any number

of dimensions, but the performance degrades noticeably at high index dimensionality.

The future work must be done in the direction of minimizing or entirely eliminating the

limitations of the indexing technique. Certain non-index level optimizations, such as

dimensionality reduction can mitigate some of the drawbacks of the index. Unfortunately,

such optimizations can mask underlying index problems and are not the solutions to the

unstable performance. Possible changes and improvements for the continuing work are

discussed in the chapter.

6.1 R-tree Node Overlap

R-tree is a dynamic structure and it performs many update operations when adding new

indexing points. Unfortunately, such operations are costly when the structure is stored in

-70-

the distributed environment such as HBase. As a result, R-trees used in such

environments are typically constructed by parts and then the built small sub-trees are

saved into the database [Cary09]. However, by doing so the R-tree index loses its

dynamic nature: once the tree is written to the database its structure cannot be efficiently

modified. Inability to alter the index structure after it has been placed into the key-value

store leads to high node overlap. High node overlap occurs because each of the small sub-

trees is likely to have significant if not complete overlap with each other, resulting in the

need to inspect more branches while performing search operations.

Even without such piece-by-piece tree constructions, nodes in the tree can still overlap.

The overlap becomes greater as the dimensionality of the tree increases. Both R-tree and

R*-trees are susceptible for such behaviors. Even considering R*-tree optimizations

aimed at reducing the node overlap, the overlaps cannot be eliminated entirely without

knowing all the data beforehand and performing some additional preprocessing

[Sellis87]. High overlap is one of the main reasons behind the dramatic performance

degradation as the number of dimensions increases. As a result, a better mechanism to

control node overlaps in R-tree derived structures is needed.

R+-tree and its variants offer a partial solution to a problem at the expense of storage

required for the index. R+-trees address the overlap issues by disallowing node overlaps

and enabling nodes on the same level to share children [Sellis87]. Traversing the tree

while performing search does not incur the negative costs of scanning neighboring nodes

and the original R+-tree research claims 50% reduction in disk access compared to the

-71-

regular R-tree [Sellis87], although it is not known how well R+-tree variant will perform

in the distributed key value data store environment.

6.2 Dimensionality Reduction

Dimensionality reduction offers many benefits to the time series search system using

multidimensional indexing techniques. When applied to the R-tree based system,

dimensionality reduction allows indexing time series broken up into large segments while

staying in the optimal dimensionality of the indexing structure. This approach can

significantly boost the performance of the index structure and reduce the size of an index.

Unfortunately, dimensionality reduction cannot be considered an ultimate solution to the

R-tree high dimensionality problems, as it simply maps the high dimensional data points

to a lower dimensional index, allowing more optimal index operations. In addition,

searching the index space of dimensionality reduced data requires a few extra steps to

ensure the proper operation of an exact perfect match and k-NN searches.

6.3 Parallel Retrieval

Choosing a distributed storage system like HBase allows for the creation of a highly

parallelized algorithm for both storage and retrieval of data. As mentioned in the

previously chapters, a time series is broken into large chunks and each chunk is then used

to build a tree. Therefore, parallel processing can take the advantage of the independence

between chunks in the piece-by-piece construction of the tree for large sequences.

-72-

Because of this nature in the tree construction, it is very easy to perform parallel

computation on each of the trees and aggregate the results. HBase can be a source of data

for MapReduce [HBase14] tasks, allowing for work to be distributed in the cluster.

Alternatively, the distributed nature of HBase key-value data store should allow for

multiple concurrent searches from different clients to be performed at the same time. The

ability to serve multiple searches in parallel is especially important for commercial

applications targeted at serving multiple users at any given point of time.

6.4 Dynamic Query Length

In the experiments conducted in this work, the query length was always fixed to the

dimensionality of an index. This is a common problem of indexes using variations of R-

tree structures. Commonly multiple indexes are built to support various resolutions and

query size, but such approaches consume a lot of storage space and require the search to

be performed on different indexes [Rakthanmanon13]. Perfect match searches utilizing

partial queries are possible. However, since the search can only be performed for a query

of a predefined size, any query of a longer length will be truncated to match the

dimensionality of the index. This causes some portion of the query never being used to

search the index space, since the truncated part is only utilized in results validation

process.

-73-

6.5 Caching

Main memory of a computer generally operates faster than disk storage. As it has been

shown, utilizing cache can improve the performance of the system and reduce the amount

of HBase scan operations. Improving the caching subsystem to be smarter at what cache

pages must be kept and what pages can be discarded will increase the overall

performance of the system, since it will be possible to keep more useful R-tree nodes in

the main memory of a computer.

In addition to cache improvements, it is important to study how various cache parameters

impact the performance of a time series similarity search system. Many various

parameters, such as cache capacity, the amount of tables cleared each time cache needs to

reclaim memory, various priorities for cache reclamation and others must be tested.

Simply testing the impact of these cache variables and their combination is an immersive

task that can help to establish optimal cache configurations for various data sizes.

-74-

Chapter 7

CONCLUSIONS

In this thesis, an R-tree based indexing system in a distributed data store was proposed

and evaluated for searching and retrieving time series data. The system was constructed

using HBase distributed NoSQL database, which runs on top of an Apache Hadoop

cluster, to store and retrieve R*-tree multidimensional index. This design not only

eliminates the limitation of memory/disk space but also provides scalability. Similar

index structures have been used in the past for time series search and retrieval, but these

systems typically reside on a single machine and not in distributed environment.

The proposed system can perform efficient similarity search against large time series. For

instance, the average search time for a uniform dataset of five million data points was

0.799 seconds, almost twice as fast as the sequential scan algorithm. However, it was

observed in the experiment result that the R-tree implementation in the distributed

environment suffers from performance degradation at high dimensionality, which is a

common limitation of the R-tree family of multidimensional indexes. Data distribution

and the presence of repeated patterns in the time series also have major impact on the

performance of the system.

-75-

The performance degradation due to the high dimensionality in the index is probably the

most prominent reason why most researchers limit the usage of R-tree to spatial, 2-

dimensional data. Very little literature was found showing that R-tree is used for time

series data because time series data in most cases require higher index dimensionality.

Although techniques in dimensionality reduction have a potential to mitigate the problem

of inefficiency at higher index dimensionality, such approaches do not address the root of

the performance degradation but only mask and delay the appearance of an issue.

The system is also impacted by the properties of the input data. Certain datasets

containing large number of repeated subsequences were reported with exceptional

performance. Other datasets that exhibit higher data concentration in smaller regions of

index space, such as normally distributed data, tend to receive poor performances with R-

trees because of the high node overlap issue. Big performance variability due to the data

distribution and the presence of repeated patterns implies the need of evaluating whether

an R-tree or similar structure can be used efficiently with a dataset. .

Many improvements and optimizations can be done to mitigate the shortcoming of the

indexing structure. Utilizing dimensionality reduction techniques can allow indexing

larger datasets at higher dimensionality while keeping the index at its optimal

performance for a wider set of operating conditions. Algorithms used to retrieve the

similar segments can be changed to allow parallel execution improving resource

-76-

utilization and retrieval speed for low-tenant systems. A caching system can help speed

up the performance significantly by reducing the number of database interactions while

searching and retrieving, but it is at the expense of using more main memory.

In addition to the improvements mentioned above, solving a node overlap problem is

likely to provide the most scalable solution to the issues of performance degradation and

performance variability. The usage of R+-trees or similar approaches can potentially

address the overlap problem at the expense of increasing storage space consumption.

The R-tree index in the HBase environment is a feasible solution for time series search,

especially if the improvements outlined above are implemented. HBase offers a number

of advantages over other methods, such as the ability to easily distribute and parallelize

algorithms and to provide concurrent accesses to multiple users. R-tree index is fairly

easy to construct. It can achieve very good performance on certain kind of data, and stays

flexible enough to handle time series with various properties.

-77-

REFERENCES

Print Publications:

[Agrawal95]

Agrawal R., Lin K., Sawhney H. S., & Shim K., “Fast similarity search in the presence of

noise, scaling, and translation in time series databases,” VLDB, Zurich, Switzerland,

1995.

[Beckmann90]

Beckmann, N., Kriegel, H. P., Schneider, R., & Seeger, B. (1990). “The R*-tree: an

efficient and robust access method for points and rectangles” (Vol. 19, No. 2, pp. 322-

331). ACM.

[Buza11]

Buza, K., Nanopoulos, A., Schmidt-Thieme, L., & Koller, J., “Fast classification of

electrocardiograph signals via instance selection,” Healthcare Informatics, Imaging

and Systems Biology (HISB), First IEEE International Conference on (pp. 9-16).

IEEE, 2011.

[Charapko14]

Charapko, A. and Chuan, C.-H., “Indexing and retrieving continuations in musical time

series data using relational databases,” the 10th IEEE International Workshop on

Multimedia Information Processing and Retrieval, in conjunction with IEEE

International Symposium on Multimedia, December 10-12, 2014.

[Cary09]

Cary, A., Sun, Z., Hristidis, V., & Rishe, N. “Experiences on processing spatial data with

mapreduce,” Scientific and statistical database management (pp. 302-319). Springer

Berlin Heidelberg, 2009.

[Halkiopoulos12]

Halkiopoulos, C., & Boutsinas, B., “Automatic Interactive Music Improvisation Based on

Data Mining,” International Journal on Artificial Intelligence Tools, 21(04), 2012.

[Guttman84]

Guttman, A. R-trees: a dynamic index structure for spatial searching, ACM, Vol. 14, No.

2, pp. 47-57, 1984.

-78-

[Kahveci01]

Kahveci, T., & Singh, A. “Variable length queries for time series data,” Data

Engineering. Proceedings. 17th International Conference on, IEEE, pp. 273-282,

2001.

[Keogh01A]

Keogh, E., Chakrabarti, K., Pazzani, M., & Mehrotra, S., “Locally adaptive

dimensionality reduction for indexing large time series databases”. ACM SIGMOD

Record, 30(2), pp. 151-162, 2001.

[Keogh01B]

Keogh, E., Chakrabarti, K., Pazzani, M., & Mehrotra, S., “Dimensionality reduction for

fast similarity search in large time series databases,” Knowledge and information

Systems, vol. 3, no. 3, pp. 263-286, 2001.

[Keogh05]

Keogh, E., & Ratanamahatana, C. A., “Exact indexing of dynamic time warping.”

Knowledge and information systems, 7(3), pp. 358-386, 2005.

[Lemire09]

Lemire, D., “Faster retrieval with a two-pass dynamic time warping lower bound,”

Pattern Recognition vol. 42 no 9, pp. 2169-2180, 2009.

[Loh00]

Loh, W. K., Kim, S. W., & Whang, K. Y., “Index interpolation: an approach to

subsequence matching supporting normalization transform in time series databases,”

Information and Knowledge Management. Proceedings. Ninth International

Conference on, ACM, pp. 480-487, 2000.

[Mathur11]

Mathur, A., Mathur, M., & Upadhyay, P., “Cloud Based Distributed Databases: The

Future Ahead,” International Journal on Computer Science and Engineering, 3(6), 2477-

2481, 2011.

[Pachet03]

Pachet, F., “The continuator: Musical interaction with style,” Journal of New Music

Research, 32(3), pp. 333-341, 2003.

[Perng00]

Perng, C. S., Wang, H., Zhang, S. R., & Parker, D. S., “Landmarks: a new model for

similarity-based pattern querying in time series databases,” Data Engineering.

Proceedings. 16th International Conference on, IEEE, pp. 33-42, 2000.

-79-

[Rakthanmanon13]

Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q., Zakaria,

J. & Keogh, E, “Addressing big data time series: Mining trillions of time series

subsequences under dynamic time warping”. ACM Transactions on Knowledge

Discovery from Data (TKDD), 7(3), 10, 2013.

[Sellis87]

Sellis, Timos, Nick Roussopoulos, and Christos Faloutsos. "The R+-tree: A dynamic

index for multi-dimensional objects," 1987.

[Wang00]

C. Wang, S. Wang, "Supporting content-based searches on time series via approximation,"

Scientific and Statistical Database Management. Proceedings. 12th International

Conference on, 2000.

[Wei13]

Wei, L. Y., Hsu, Y. T., Peng, W. C., & Lee, W. C., “Indexing spatial data in cloud data

managements,” Pervasive and Mobile Computing, 2013.

[Zhou13]

W. Zhou, J. Han, Z. Zhang. Z. Xu, J. Dai. “HDKV: Supporting efficient high-dimensional

similarity search in key-value stores,” Concurrency and Computation: Practice and

Experience, 25(12), pp. 1675–1698, 2013.

Electronic Sources:

[Hbase14]

Apache, “Apache HBase” http://hbase.apache.org/, 2014, last accessed October 12, 2014.

[LMS Test.Lab14]

Siemens, “Airbus uses LMS Test.Lab to improve and streamline its flutter analysis

process”,

http://www.plm.automation.siemens.com/CaseStudyWeb/dispatch/viewResource.html

?resourceId=40536, 2014, last accessed October 5, 2014.

http://hbase.apache.org/

-80-

VITA

Aleksey Charapko expects to receive his Master of Science in Computer and Information

Sciences degree in the spring of 2015. Aleksey has been working as a graduate research

assistant for Dr. Ching-Hua Chuan for over two years. The work performed as a research

assistant resulted in a number of conference and journal publications in the field of music

information retrieval. Aleksey has been working as an application developer since 2012.

He has been responsible for designing, developing and maintaining custom software

products using the technologies such as PHP, Java, Xojo, ASP, MySQL and SQL Server.

	UNF Digital Commons
	2015

	Time Series Similarity Search in Distributed Key-Value Data Stores Using R-Trees
	Aleksey Charapko
	Suggested Citation

	Title - Time Series Similarity Search in Distributed Key-Value Data Stores Using R-Trees
	Contents
	Figures
	Abstract
	Chapter 1. Introduction
	1.1 Problem Statement

	Chapter 2. Literature Review
	2.1 Similarity Functions
	2.2 Approximate Techniques for Similarity Search
	2.3 Exact Time Series Similarity Search and Retrieval
	2.4 Multidimensional Indexing in Distributed Key-Value Data Stores
	2.5 Music Systems Relying on Time Series Data

	Chapter 3. An Initial Attempt Using Relational Database
	3.1 Sequence Indexing and Retrieval
	3.1.1 Basic Model
	3.1.2 Model for Long Time Series
	3.1.3 Retrieving Sequences and Continuations

	3.2 Experiments and Results
	3.3 Conclusions and Discussions on the Initial Solution

	Chapter 4. Methodology
	4.1 System Architecture
	4.1.1 The Proposed System
	4.1.2 Performance Evaluation
	4.1.3 Search and Retrieval Criteria

	4.2 Background
	4.2.1 HBase
	4.2.2 R-tree

	4.3 Time Series Preprocessing
	4.4 Index Construction
	4.4.1 Basic R-tree Index
	4.4.2 R-tree in HBase

	4.5 Search and Retrieval
	4.6 R-tree Node Cache

	Chapter 5. Experiments and Results
	5.1 Testbed
	5.2 Impact of R-tree Dimensionality on Performance
	5.3 Impact of Node Capacity on Performance
	5.4 Impact of Dataset Properties on Performance
	5.5 Impact of Dataset Size on Performance

	Chapter 6. Future Work
	6.1 R-tree Node Overlap
	6.2 Dimensionality Reduction
	6.3 Parallel Retrieval
	6.4 Dynamic Query Length
	6.5 Caching

	Chapter 7. Conclusions
	References

