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Abstract

This thesis starts with the fundamentals of matrix theory and ends with appli-

cations of the matrix singular value decomposition (SVD). The background matrix

theory coverage includes unitary and Hermitian matrices, and matrix norms and

how they relate to matrix SVD. The matrix condition number is discussed in rela-

tionship to the solution of linear equations. Some inequalities based on the trace of

a matrix, polar matrix decomposition, unitaries and partial isometies are discussed.

Among the SVD applications discussed are the method of least squares and im-

age compression. Expansion of a matrix as a linear combination of rank one partial

isometries is applied to image compression by using reduced rank matrix approxima-

tions to represent greyscale images. MATLAB results for approximations of JPEG

and .bmp images are presented. The results indicate that images can be represented

with reasonable resolution using low rank matrix SVD approximations.

ix



1 Introduction

The singular value decomposition (SVD) of a matrix is similar to the diagonalization

of a normal matrix. Diagonalization of a matrix decomposes the matrix into factors

using the eigenvalues and eigenvectors. Diagonalization of a matrix A is of the form

A = V DV ∗, where the columns of V are eigenvectors of A and form an orthonormal

basis for Rn or Cn, and D is a diagonal matrix with the diagonal elements consisting of

the eigenvalues. On the other hand, the SVD factorization is of the form A = UΣV ∗.

The columns of U and V are called left and right ‘singular’ vectors for A, and the matrix

Σ is a diagonal matrix with diagonal elements consisting of the ‘singular’ values of A.

The SVD is important and has many applications. Unitary matrices are analogous to

phase factors and the singular values matrix is similar to the magnitude part of a polar

decomposition of a complex number.



2 Background matrix theory

A matrix A ∈ Mm,n(C) denotes an m × n matrix A with complex entries. Similarly

A ∈Mn(C) denotes an n×n matrix with complex entries. The complex field (C) will be

assumed. In cases where real numbers apply, the real field (R) will be specified. When

the real field is considered, unitary matrices are replaced with real orthogonal matrices.

We will often abbreviate Mm,n(C) , Mn(C) to Mm,n and Mn, respectively.

We remind the reader of a few basic definitions and facts.

Definition 1. The Hermitian adjoint or adjoint A∗ of A ∈ Mm,n is defined by

A∗ = ĀT , where Ā is the component-wise conjugate, and T denotes the transpose. A

matrix is self-adjoint or Hermitian if A∗ = A.

Definition 2. A matrix B ∈ Mn such that 〈Bx, x〉 ≥ 0 for all x ∈ Cn is said to

be positive semidefinite; an equivalent condition is that B be Hermitian and have all

eigenvalues nonnegative.

Proposition 1. Let A be a self-adjoint (Hermitian) matrix. Then every eigenvalue of

A is real.

Proof. Let λ be an eigenvalue and let x be a corresponding eigenvector. Then

λ 〈x, x〉 = 〈λx, x〉 = 〈Ax, x〉

= 〈x,A∗x〉 = 〈x,Ax〉 = 〈x, λx〉 = λ̄ 〈x, x〉 ,

λx = A(x) = A∗(x) = λ̄x.

Thus λ = λ̄. So, the eigenvalue λ is real.

Definition 3. A matrix U ∈Mn is said to be unitary if U∗U = UU∗ = In, with In the

n× n identity matrix. If U ∈Mn(R), U is real orthogonal.

Definition 4. A matrix A ∈Mn is normal if A∗A = AA∗, that is if A commutes with

its Hermitian adjoint.
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Both the transpose and the Hermitian adjoint obey the reverse-order law : (AB)∗ =

B∗A∗ and (AB)T = BTAT , if the products are defined. For the conjugate of a product,

there is no reversing: AB = ĀB̄.

Proposition 2. Let a matrix U ∈ Mn be unitary. Then (a) UT , (b) U∗, (c) Ū are all

unitary.

Proof. (a) Given UU∗ = U∗U = In, then UT times the Hermitian conjugate of UT is as

follows:

UT (UT )∗ = UT Ū = (U∗U)T = (In)T = In,

and since it results in an identity matrix In, then UT is unitary, given U is unitary.

Similarly,

U∗(U∗)∗ = U∗U = In

and

Ū(Ū)∗ = ŪUT = UU∗ = Īn = In.

Proposition 3. The eigenvalues of the inverse of a matrix are the reciprocals of the

matrix eigenvalues.

Proof. Let λ be an eigenvalue of an invertible matrix A and let x be an eigenvector.

Then

Ax = λx,

so that

A−1(λx) = x

by the definition of a matrix inverse. Then

λA−1x = x

and

A−1x =
1
λ
x.

3



Definition 5. A matrix B ∈ Mn is said to be similar to a matrix A ∈ Mn if there

exists a nonsingular matrix S ∈ Mn such that B = S−1AS. If S is unitary then A and

B are unitarily similar.

Theorem 1. Let A ∈Mn(C). Then AA∗ and A∗A are self-adjoint, and have the same

eigenvalues (including multiplicity).

Proof. We have

(AA∗)∗ = ((A∗)∗A∗) = AA∗,

and so AA∗ is self-adjoint. Similarly,

(A∗A)∗ = A∗(A∗)∗ = A∗A,

and so A∗A is also self-adjoint.

Let λ be an eigenvalue of AA∗ with eigenspace Eλ. For v ∈ Eλ, we have

AA∗v = λv.

Premultiplying by A∗ leads to

A∗AA∗v = A∗λv = λA∗v.

Thus, A∗v is an eigenvector of A∗A with eigenvalue λ since

A∗A(A∗v) = λ(A∗v).

Moreover, for λ 6= 0, the map which sends eigenvector v of AA∗ to eigenvector A∗v

of A∗A is one-to-one. This is because if v, w ∈ Eλ with A∗v = A∗w

AA∗v = AA∗w,

then

λv = λw

v = w.

4



Similarly, any eigenvalue of A∗A is an eigenvalue of AA∗ with eigenvector Av such

that the corresponding map from the eigenspace Eλ of A∗A is one-to-one, for λ 6= 0.

Thus, for any non-zero eigenvalue λ of A∗A and AA∗, their corresponding eigenspaces

have the same dimension. Since A∗A and AA∗ are self-adjoint and have the same

dimensions, it follows that the eigenspaces corresponding to an eigenvalue of zero also

have the same dimension. Thus the multiplicities of a zero eigenvalue are the same, as

well.

Corollary 1. The matrices AA∗ and A∗A are unitarily similar.

Proof. Since A∗A and AA∗ have the same eigenvalues and are both self-adjoint, they

are unitarily diagonizable as follows:

AA∗ = U∗


λ1

. . .

λn

U
and

A∗A = V ∗


λ1

. . .

λn

V
with the same eigenvalues and possibly different unitary matrices U and V . Then

UAA∗U∗ =


λ1

. . .

λn

 = V A∗AV ∗.

Thus,

AA∗ = U∗V A∗AV ∗U,

where U∗V and V ∗U are unitary matrices.

5



Lemma 1. Suppose that H, K are positive semidefinite and that H2 = K2, where H2

and K2 are also positive semidefinite. Then H = K.

Proof. Let U be a unitary matrix and D a diagonal matrix such that

H2 = U∗DU.

Let
√
D denote the matrix obtained from D by taking the entry-wise square root. Let

A = U∗
√
DU.

Then

A2 = U∗
√
DUU∗

√
DU = U∗DU = H2.

To prove the result, it suffices to show H = A. Let d1, . . . , dn be the diagonal entries of

D. Then there is a polynomial P such that

P (di) =
√
di

for i = 1, . . . , n. (The polynomial P may be obtained from the Lagrange Interpolation

Formula.) Then

P (H2) = P (U∗DU) = U∗P (D)U = U∗
√
DU = A.

Thus

HA = HP (H2) = P (H2)H = AH.

Thus H and A commute and both are positive semidefinite. It follows that they are

simultaneously diagonalizable. Thus there exists a unitary V and diagonal matrices D1

and D2 such that H = V ∗D1V and A = V ∗D2V. Also, since H2 = A2, we have

V ∗D2
1V = V ∗D2

2V,

D2
1 = D2

2,

D1 = D2,

and so

H = A.

6



Definition 6. The Euclidean norm (or `2-norm) on Cn is

‖x‖2 ≡ (|x1|2 + · · ·+ |xn|2)
1
2 .

Moreover, ‖x− y‖2 measures the standard Euclidean distance between two points

x, y ∈ Cn. This is also derivable from the Euclidean inner product; that is

‖x‖22 = 〈x, x〉 = x∗x.

We call a function ‖•‖ : Mn → R a matrix norm if for all A,B ∈ Mn it satisfies the

following:

1. ‖A‖ ≥ 0

2. ‖A‖ = 0 iffA = 0

3. ‖cA‖ = |c| ‖A‖ for all complex scalars c

4. ‖A+B‖ ≤ ‖A‖+ ‖B‖

5. ‖AB‖ ≤ ‖A‖ ‖B‖ .

Definition 7. Let A be a complex (or real) m× n matrix. Define the operator norm,

also known as the least upper bound norm (lub norm), of A by

‖A‖ ≡ max
(
‖Ax‖
‖x‖

)
x 6= 0.

We assume x ∈ Cn or x ∈ Rn. We will use the ‖ ‖ notation to refer to a generic matrix

norm or the operator norm depending on the context.

Definition 8. The matrix Euclidean norm ‖•‖2 is defined on Mn by

‖A‖2 ≡

 n∑
i,j=1

|aij |2
 1

2

.

7



This matrix norm defined above is sometimes called the Frobenius norm, Schur

norm, or the Hilbert-Schmidt norm. If, for example, A ∈Mn is written in terms of

its column vectors ai ∈ Cn, then

‖A‖22 = ‖a1‖22 + · · ·+ ‖an‖22 .

Definition 9. The spectral norm is defined on Mn by

|‖A‖|2 ≡ max{
√
λ : λ is an eigenvalue of A∗A.}

Each of these norms on Mn is a matrix norm as defined above.

Definition 10. Given any matrix norm ‖ ‖, the matrix condition number of A,

cond(A), is defined as

cond(A) ≡


∥∥A−1

∥∥ ‖A‖ , if A is nonsingular;

∞, if A is singular.
Usually ‖•‖ will be the lub-norm.

In mathematics, computer science, and related fields, big O notation (also known

as Big Oh notation, Landau notation, Bachmann–Landau notation, and asymptotic

notation) describes the limiting behavior of a function when the argument tends towards

a particular value or infinity, usually in terms of simpler functions.

Definition 11. Let f(x) and g(x) be two functions defined on some subset of the real

numbers. One writes

f(x) = O(g(x)) as x→∞

if and only if, for sufficiently large values of x, f(x) is at most a constant times g(x) in

absolute value. That is, f(x) = O(g(x)) if and only if there exists a positive real number

M and a real number x0 such that

|f(x)| ≤ M |g(x)| for all x > x0.

Big O notation allows its users to simplify functions in order to concentrate on their

growth rates: different functions with the same growth rate may be represented using

the same O notation.

8



3 The singular value decomposition

3.1 Existence of the singular value decomposition

For convenience, we will often work with linear transformations instead of with matrices

directly. Of course, any of the following results for linear transformations also hold for

matrices.

Theorem 2 (Singular Value Theorem [2]). Let V and W be finite-dimensional inner

product spaces, and let T : V → W be a linear transformation of rank r. Then there

exist orthonormal bases {v1, v2, · · · , vn} for V and {u1, u2, · · · , um} for W and positive

scalars σ1 ≥ σ2 ≥ · · · ≥ σr such that

T (vi) =


σiui if 1 ≤ i ≤ r

0 if i > r.

Conversely, suppose that the preceding conditions are satisfied. Then for 1 ≤ i ≤ n,

vi is an eigenvector of T ∗T with corresponding eigenvalue of σ2
i if 1 ≤ i ≤ r and 0 if

i > r. Therefore the scalars σ1, σ2, · · · , σr are uniquely determined by T .

Proof. A basic result of linear algebra says that rank T = rank T ∗T . Since T ∗T is

a positive semidefinite linear operator of rank r on V , there is an orthonormal basis

{v1, v2, · · · , vn} for V consisting of eigenvectors of T ∗T with corresponding eigenvalues

λi, where λ1 ≥ λ2 ≥ · · · ≥ λr > 0, and λi = 0 for i > r. For 1 ≤ i ≤ r, define σi =
√
λi

and

ui =
1
σi
T (vi).

Suppose 1 ≤ i, j ≤ r. Then

〈ui, uj〉 =
〈

1
σi
T (vi),

1
σj
T (vj)

〉
=

1
σiσj

〈λivi, vj〉 =
σ2
i

σiσj
〈vi, vj〉 = δij ,

where δij = 1 for i = j, and 0 otherwise. Hence, {u1, u2, · · · , ur} is an orthonormal

subset of W . This set can be extended to an orthonormal basis {u1, u2, · · · , ur, · · · , um}

for W. Then T (vi) = σivi if 1 ≤ i ≤ r, and T (vi) = 0 if i > r.

9



Suppose that {v1, v2, · · · , vn} and {u1, u2, · · · , um} and σ1 ≥ σ2 ≥ · · · ≥ σr > 0

satisfy the properties given in the first part of the theorem. Then for 1 ≤ i ≤ m and

1 ≤ j ≤ n,

〈T ∗(ui), vj〉 = 〈ui, T (vj)〉 =

 σi if i = j ≤ r

0 otherwise
.

Thus,

T ∗(ui) =
n∑
j=1

〈T ∗(ui), vj〉 vj =

 σivi if i = j ≤ r

0 otherwise
.

For i ≤ r,

T ∗T (vi) = T ∗(σiui)) = σiT
∗(ui) = σ2

i ui,

and for i > r

T ∗T (vi) = T ∗(0) = 0.

Each vi is an eigenvector of T ∗T with eigenvalue σ2
i if i ≤ r and 0 if i > r. Thus the

scalars σi are uniquely determined by T ∗T.

Definition 12. The unique scalars σ1, σ2, · · · , σr in the theorem above (Theorem 2) are

called the singular values of T. If r is less than both m and n, then the term singular

value is extended to include σr+1 = · · · = σk = 0, where k is the minimum of m and n.

Remark 1. Thus for an m × n matrix A, by Theorem 2, the singular values of A are

precisely the square roots of the the eigenvalues of A∗A.

Theorem 3 (Singular Value Decomposition). If A ∈ Mm,n has rank r with positive

singular values σ1 ≥ σ2 ≥ · · · ≥ σr, then it may be written in the form

A = V ΣW ∗

where V ∈Mm and W ∈Mn are unitary and the matrix Σ = [Σij ] ∈Mm,n is given by

Σij =

 σi if i = j ≤ r

0 otherwise
.

10



The proof of this is given in the proof Theorem 4, which contains this result.

Definition 13. If A ∈Mm,n has rank r with positive singular values σ1 ≥ σ2 ≥ · · · ≥ σr,

then a singular value decomposition of A is a factorization A = UΣW ∗, where U

and W are unitary and Σ is the m× n matrix defined as in Theorem 3.

Example 1.

A =

 i+ 1 1

1− i −i

 ,
A∗A =

 4 2(1− i)

2(1 + i) 2


The eigenvalues of A∗A are obtained from

det

∣∣∣∣∣∣ 4− λ 2(i− 1)

2(i+ 1) 2− λ

∣∣∣∣∣∣ = 0,

leading to the characteristic polynomial

(4− λ)(2− λ)− 8 = 0.

Then λ = 6 and λ = 0 are the eigenvalues. The singular values are respectively σ1 =
√

6

and σ2 = 0. Thus

Σ =

 √6 0

0 0

 .

A normalized eigenvector for the eigenvalue 6 is 2√
6

1+i√
6

 .

Then

w1 =

 2√
6

1+i√
6

 ,

and a normalized eigenvector that corresponds to λ2 = 0 is

w2 =

 1−i√
6

−2√
6

 ,

11



which leads to

W =

 2√
6

1−i√
6

1+i√
6

−2√
6

 .

The columns of W span C2 and the matrix U is found as follows:

u1 =
1√
6
Aw1 =

 1+i
2

1−i
2

 ,

and

u2 =
1√
6
Aw2 =

 1+i
2

−1+i
2

 .

A singular value decomposition is then

A =

 1+i
2

1+i
2

1−i
2

−1+i
2

 √6 0

0 0

 2√
6

1−i√
6

1+i√
6

−2√
6

∗ .
In the example above, the singular values are uniquely defined by A, but the or-

thonormal basis vectors which form the columns of the unitary matrices V and W are

not uniquely determined as there is more than one orthonormal basis consisting of eigen-

vectors of A∗A.

Proposition 4. Let A = UΣW ∗, where U and W are unitary and Σ is diagonal matrix

with positive diagonal entries σ1, . . . , σq. Then σ1, . . . , σq are the singular values of A

and UΣW ∗ is a singular value decomposition of A.

Proof. Let A = UΣW ∗. Then

A∗A = WΣ∗ΣW ∗.

Then Σ∗Σ is diagonal with diagonal entries σ2
1, σ

2
2, . . . , σ

2
q , which are the eigenvalues of

A∗A. Therefore, the singular values of A are σ1, σ2, . . . , σq.

12



Most treatments of the existence of the SVD follow the argument in the example

above. Below are the details of the first proof sketched out by Autonne [1]. We use

matrix diagonalization below as a means to perform singular value decomposition for a

square matrix A ∈Mn(C) and extend this to an m× n matrix.

Theorem 4. Let A ∈Mn(C) and let U ∈Mn(C) be unitary such that

A∗A = U(AA∗)U∗.

Then,

(a.) UA is normal and

A = V ΣW ∗,

where V and W are unitary matrices, and Σ is the diagonal matrix consisting of

the singular values of A along the diagonal.

(b.) This can be extended to A ∈Mm,n(C)

Proof. (a.)

(UA)(UA)∗ = (UA)A∗U∗ = A∗A

and

(UA)∗(UA) = A∗U∗UA = A∗A.

Since UA is normal it is diagonalizable. Thus, there is a unitary X ∈Mn and a diagonal

matrix Λ ∈ Mn such that UA = XΛX∗. Using the polar form of a complex number

λ = |λ| eiθ, we can write Λ = ΣD, where Σ = |Λ| has nonnegative entries ( |Λ| is the

matrix consisting of the entrywise absolute values [|aij |] of the matrix Λ) and D is a

diagonal unitary matrix. Explicitly,

Λ =


λ1

λ2

. . .

λn

 =


|λ1|

|λ2|
. . .

|λn|




eiθ1

eiθ2

. . .

eiθn

 .

13



The first matrix is identified as Λ, the second as Σ, and the third as D making up

Λ = ΣD. With UA = XΛX∗ and Λ = ΣD, this leads to

UA = XΣDX∗.

Left multiplying by U∗ results in:

U∗UA = U∗XΣDX∗

and

A = V ΣW ∗

with V = U∗X, and W = XD∗.

(b.) If A ∈ Mm,n with m > n, let u1, · · · , uν be an orthonormal basis for the null

space N(A∗) ⊆ Cm of A∗. The matrix A∗ ∈ Mn,m and nullity A∗ + rank A∗ = m. So

the nullity ν of A∗ satisfies

ν = m− rankA∗ ≥ m− n,

since rank A∗ ≤ n. Let U2 = [u1 · · ·um−n] ∈Mm,m−n. Extend {u1, · · · , um−n} to a basis

of Cm:

B = {u1, · · · , um−n, w1, · · · , wn} .

Let U1 = [w1 · · ·wn] and let U = [U1 U2] ∈Mm which is unitary. Then

A∗U = A∗[U1 U2] = [A∗U1 A∗U2] = [0 A∗U2]

and so

U∗A =

 A1

0

 ,
where A1 = U∗2A, with A1 ∈ Mn. By the previous part, there are unitaries V and W

and a diagonal matrix Σ such that

A1 = V ΣW ∗.

14



Then

A = U

 A1

0

 = U

 V ΣW ∗

0

 = U

 V 0

0 I

 Σ

0

W ∗.
Let

Ũ ≡ U

 V 0

0 I


and

Σ̃ ≡

 Σ

0

 .
This leads to the singular value decomposition

A = Ũ Σ̃W ∗.

If A ∈ Mm,n and n > m, then A∗ ∈ Mn,m, the argument above applies to A∗ ∈ Mn,m,

to get A∗ = V ΣW ∗, and so A = WΣV ∗.

3.2 Basic properties of singular values and the SVD

Proposition 5. For a matrix A ∈Mm,n the rank of A is exactly the same as the number

of its nonzero singular values.

Proof. Let A = V ΣW ∗ be the SVD with V , W unitary. Since V and W are unitary

matrices, multiplication by V and W ( which is equivalent to elementary row and column

operations) does not change the rank of a matrix.

As a result rank A= rank AW = rank V Σ =rank Σ, which is exactly the number of

the nonzero singular values.

Remark 2. Suppose A ∈Mn is normal, the spectral decomposition

A = UΛU∗

with unitary U ∈Mn,

Λ = diag (λ1, · · · , λn) ,

15



and

|λ1| ≥ · · · ≥ |λn| .

If we let

Σ ≡ diag(|λ1| , · · · , |λn|)

then Λ = DΣ, where

D = diag(eiθ1 , · · · , eiθn)

is a diagonal matrix. Thus

A = UΛU∗ = (UD)ΣU∗ = V ΣW ∗,

which is a singular value decomposition of A with V = UD and W = U. The singular

values are just the absolute values of the eigenvalues for a normal matrix.

Proposition 6. The singular values of U1AU2 are the same as those of A whenever U1

and U2 are unitary matrices.

Proof. Let B = U1AU2. Then,

B∗B = (U1AU2)∗(U1AU2) = (U∗2A
∗U∗1U1AU2) = U∗2A

∗AU2.

Thus, B∗B and A∗A are unitarily similar, with U∗2 = U−1
2 since U2 is unitary. By

similarity, B∗B and A∗A have the same eigenvalues, and so by Theorem 2 and the

definition of singular value, A and B have the same singular values.

We note again that the nonzero singular values of A = V ΣW ∗ are exactly the

nonnegative square roots of the nonzero eigenvalues of either

A∗A = WΣTΣW ∗ or AA∗ = V ΣΣTV ∗.

Consequently the ordered singular values of A are uniquely determined by A, and they

are the same as the singular values of A∗. The singular values of U1AU2 are the same as

those of A, whenever U1 and U2 are unitary matrices that respectively left multiply and

right multiply into A. There is therefore, unitary invariance of the set of singular values

of a matrix.
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Theorem 5. Let A ∈Mm,n and A = V ΣW ∗, a singular value decomposition of A. Then

the singular values of A∗, AT , Ā are all the same, and if m = n and A is nonsingular,

the singular values of A are the reciprocals of the singular values of A−1.

Proof. First,

A∗ = (V ΣW ∗)∗ = (W ∗)∗Σ∗V ∗ = WΣ∗V ∗,

which shows A∗ and A have the same singular values since the entries of Σ are real.

This is the same singular value decomposition except for W taking the role of V since if

A ∈Mm,n, A
∗ ∈Mn,m, and Σ∗ has the same nonzero singular values as Σ. Similarly,

AT = (V ΣW ∗)T = (W ∗)TΣTV T .

Since ΣT has the same nonzero entries as Σ, it follows that A and AT have the same

singular values. For Ā, we have

Ā = V̄ Σ̄W̄ ∗.

Since Σ is a real matrix, Σ̄ = Σ, and so A and Ā have the same singular values. For

A−1, we have

A−1 = (W ∗)−1Σ−1V −1 = WΣ−1V ∗

since V and W are unitary. Then

A−1 = (W ∗)−1Σ−1V −1 = WΣ−1V ∗ = W


1
σ1

. . .

1
σn

V ∗.
Hence, the singular values of A−1 are 1

σ1
, 1
σ2
· · · , 1

σn
.

Theorem 6. The singular value decomposition of a vector v ∈ Cn (viewed as an n× 1

matrix) is of the form:

v = UΣW ∗

17



with U an n× n unitary matrix with the first column vector the same as the normalized

given vector v,

Σ =


‖v‖

0
...

0

 ,

and

W = [1].

Proof. For a vector v ∈ Cn,

v∗v = ‖v‖2 .

The eigenvalues of v∗v are then obtained by

‖v‖2 − λ = 0.

This leads to λ = ‖v‖2, and the singular value σ =
√
‖v‖2 = ‖v‖ . Extend

{
v
‖v‖

}
to an

orthonormal basis
{

v
‖v‖ , w2, w3, . . . , wn

}
of Cn. Let U be the matrix whose columns are

members of this basis with v
‖v‖ the first column. Let W = [1] and

Σ =


‖v‖

0
...

0

 .

Then the singular value decomposition of the vector v is given by

v =
[
v w2 · · · wn

]

‖v‖

0
...

0


[

1
]
.
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Proposition 7. A matrix A ∈ Mn is unitary if and only if all the singular values ; σi

of the matrix are equal to 1 for all i = 1, · · · , n.

Proof. (⇒) Assume A ∈ Mn is unitary. Then A∗A = In has all eigenvalues equal to 1.

Hence, the singular values of A are equal to 1. (⇐)Let A = UΣW ∗ be a singular value

decomposition. Assume σi = 1 for 1 ≤ i ≤ n. Then

A = UInW
∗ = UW ∗,

a product of unitary matrices. So A is unitary.

3.3 A geometric interpretation of the SVD

Suppose A is an m × n real matrix of rank k with singular values σ1, . . . , σn. Then

there exist orthonormal bases {v1, . . . , vn} and {u1, . . . , um} such that Avi = σiui for

1 ≤ i ≤ k, and Avi = 0 for k < i ≤ n.

Now consider the unit ball in Rn. An arbitrary element x of the unit ball can be

represented by x = x1v1 + x2v2 + · · · + xnvn , with
∑n

i=1 x
2
i ≤ 1. Thus, the image of x

under A is

Ax = σ1x1u1 + . . .+ σkxkuk.

So the image of the unit sphere consists of the vectors y1u1 + y2u2 + . . . + ykuk, where

yi = σixi and
y2
1

σ2
1

+
y2
2

σ2
2

+ . . .+
y2
k

σ2
k

=
k∑
i=1

x2
i ≤ 1.

Since k ≤ n this shows that A maps the unit sphere in Rn to a k-dimensional ellip-

soid with semi-axes in the directions ui, and with the magnitudes σi. The image of A

first collapses n− k dimensions of the domain, then distorts the remaining dimensions,

stretching and squeezing the unit k-sphere into an ellipsoid, and finally it embeds the

ellipsoid in Rm.
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3.4 Condition numbers, singular values and matrix norms

We next examine the relationship between singular values of a matrix, condition number

and a matrix norm.

We start with some theorems that relate matrix condition numbers to matrix norms

and singular values. We then later give an example of an ill conditioned A for which all

the rows and columns have nearly the same norm. This affects computational stability

when solving systems of equations as digital storage can vary depending on machine

precision.

In solving a system of equations

Ax = b,

experimental errors and computer errors occur. There are systematic and random errors

in the measurements to obtain data for the system of equations, and the computer

representation of the data is subject to the limitations of the computer’s digital precision.

We would wish that small relative changes in the coefficients of the system of equations

should cause small relative errors in the solution. A system that has this desirable

property is called well-conditioned, otherwise it is ill-conditioned. As an example, the

system

x1 + x2 = 5

x1 + x2 = 1

(1)

has the solution  3

2

 .
Changing

b =

 5

1
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by a small percent leads to

x1 + x2 = 5

x1 + x2 = 1.0001.

(2)

The change in b is

δb =

 0

0.0001

 .
This has the solution  3.00005

1.99995

 .
So this is an example of a well-conditioned system.

Define the relative change in b as

‖δb‖
‖b‖

, where ‖b‖ =
√
〈b, b〉.

Definition 14. Let B be an n× n self-adjoint matrix. The Rayleigh quotient for x 6= 0

is defined to be the scalar

R(x) =
〈Bx, x〉
‖x‖2

.

Theorem 7. For a self-adjoint matrix B ∈ Mn,n, max(R(x)) is the largest eigenvalue

of B and min(R(x)) is the smallest eigenvalue of B.

Proof. Choose an orthonormal basis {v1, v2, · · · , vn} consisting of the eigenvectors of B

such that Bvi = λivi (1 ≤ i ≤ n) where λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of B.

The eigenvalues of B are real since it is self-adjoint.

For x ∈ Cn, there exists scalars a1, a2, · · · , an such that

x =
n∑
i=1

aivi.

Therefore

R(x) =
〈Bx, x〉
‖x‖2

=

〈∑n
i=1 aiλivi,

∑n
j=1 ajvj

〉
‖x‖2

=
∑n

i=1 λi |ai|
2

‖x‖2
≤
λ1
∑n

i=1 |ai|
2

‖x‖2
= λ1.
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It follows that max(R(x)) ≤ λ1. Since R(v1) = λ1, max(R(x)) = λ1.

The second half of the theorem concerning the least eigenvalue follows by

R(x) =
∑n

i=1 λi |ai|
2

‖x‖2
≥
λn
∑n

i=1 |ai|
2

‖x‖2
= λn.

It follows that minR(x) ≥ λn. and since R(vn) = λn, minR(x) = λn.

Corollary 2. For any square matrix A, ‖A‖ (the lub norm)is finite and equals σ1, the

largest singular value of A.

Proof. Let B be the self-adjoint matrix A∗A, and let λ be the largest eigenvalue of B.

Assuming x 6= 0 then

0 ≤ ‖Ax‖
2

‖x‖2
=
〈Ax,Ax〉
‖x‖2

=
〈A∗Ax, x〉
‖x‖2

=
〈Bx, x〉
‖x‖2

= R(x).

Since

‖A‖ = max
‖Ax‖
‖x‖

x 6= 0

‖A‖2 = max
‖A‖2

‖x‖2
= max R(x) = λ

by Theorem 7. Then

‖A‖ =
√
λ.

Corollary 3. Let A be an invertible matrix . Then

∥∥A−1
∥∥ =

1
σ1(A)

.

Proof. For an invertible matrix, λ is an eigenvalue iff λ−1 is an eigenvalue of the inverse

(Corollary 2). Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of A∗A. Then

∥∥A−1
∥∥2

equals the square root of the largest eigenvalue of

A−1(A−1)∗ = (A∗A)−1
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and this is
1
λn

=
1

σn(A)
.

Theorem 8. For the system Ax = b where A is invertible and b 6= 0

(a.)
1

cond(A)
‖δb‖
‖b‖

≤ ‖δx‖
‖x‖

≤ cond(A)
‖δb‖
‖b‖

.

(b.) If ‖•‖ is the operator norm, then

cond(A) =
√
λ1

λn
=
σ1(A)
σn(A)

where λ1 and λn are the largest and smallest eigenvalues, respectively of A∗A.

Proof. Assuming A is invertible and b 6= 0 with Ax = b, for a given δb, let δx be the

vector that satisfies

A(x+ δx) = b+ δb.

Since Ax = b and δx = A−1(δb), we have

‖b‖ = ‖Ax‖ ≤ ‖A‖ ‖x‖ ,

and

‖δx‖ ≤
∥∥A−1

∥∥ ‖δb‖ .
Therefore,

‖δx‖
‖x‖

≤ ‖δx‖
‖b‖ / ‖A‖

=
‖A‖ ‖δx‖
‖b‖

≤
‖A‖

∥∥A−1
∥∥ ‖δb‖

‖b‖
=

cond(A) ‖δb‖
‖b‖

.

Since A−1b = x and δb = A(δx), we have

‖x‖ ≤
∥∥A−1

∥∥ ‖b‖
and

‖δb‖ ≤ ‖A‖ ‖δx‖ .
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Therefore,
‖δx‖
‖x‖

≥ ‖δx‖
‖A−1‖ ‖b‖

≥ ‖δb‖
‖A−1‖ ‖A‖ ‖b‖

=
1

cond(A)
‖δb‖
‖b‖

.

Statement (a.) in the theorem above follows immediately from the inequalities above,

and (b.) follows from the corollaries above and Theorem 7:

cond(A) =
√
λ1

λn
.

Corollary 4. For any invertible matrix A, cond(A) ≥ 1.

Proof.

cond(A) = ‖A‖
∥∥A−1

∥∥ ≥ ∥∥AA−1
∥∥ = ‖In‖ = 1.

Corollary 5. For A ∈Mn,

cond(A) = 1

if and only if A is a scalar multiple of a unitary matrix.

Proof. (⇒) Assume

1 = cond(A) =
σ1

σn
.

Then σ1 = σn and all singular values are equal. There are unitaries U and W such that

A = U


σ1

. . .

σ1

W ∗

= σ1UInW
∗ = σ1UW

∗

which is a scalar multiple of a unitary.

(⇐) Suppose

A = σU
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where σ ∈ C and U is unitary. Then σ = |σ| eiθ and

A = In


|σ|

. . .

|σ|

W ∗,

where W = e−iθU∗. Hence, the singular values of A are all equal to |σ|, and therefore

cond(A) = 1.

Let A ∈Mn be given. From Theorem 7, it follows that σ1, the largest singular value

of A, is greater than or equal to the maximum Euclidean norm of the columns of A,

and σn, the smallest singular value of A, is less than or equal to the minimum Euclidean

norm of the columns of A by Corollary 6 and Corollary 2. If A is nonsingular we have

shown that

cond(A) =
σ1

σn
,

which is thus bounded from below by the ratio of the largest to the smallest Euclidean

norms of the set of columns of A. Thus if a system of linear equations

Ax = b

is poorly scaled (that is the ratio of the largest to the smallest row and column norms

is large), then the system must be ill conditioned. The following example indicates that

this sufficient condition for ill conditioning is not necessary, however. An example of an

ill conditioned matrix for which all the rows and columns have nearly the same norm is

the following.

Example 2.

A =

 1 −1

−1 1 + x


B =

 1 −1

1 −1 + x
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A−1 =

 1+x
x

1
x

1
x

1
x



B−1 =

 −1+x
x

1
x

−1
x

1
x


The inverses indicate that as x approaches 0 the matrix conditions for A and B are

of order 1
x .

cond(A) = O(x−1)

cond(B) = O(x−1)

This is because the inverses diverge as x approaches zero.

lim
x→0

(A−1) = O(x−1)

and

lim
x→0

(B−1) = O(x−1)

since cond(A) ≡


∥∥A−1

∥∥ ‖A‖ , if A is nonsingular;

∞, if A is singular
.

This example shows that A and B are ill conditioned since a small perturbation (x)

causes drastic change in the inverses of the matrices. This is in spite of all the rows and

columns having nearly the same norm.

Least squares optimization application of the SVD will be discussed later and a

computation example carried out using MATLAB to demonstrate the effect of the matrix

condition on least squares approximation.
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3.5 A norm approach to the singular values decomposition

In this section we establish a singular value decomposition using a matrix norm argu-

ment.

Theorem 9. Let A ∈ Mm,n be given, and let q = min(m,n). There is a matrix Σ =

[σi,j ] ∈ Mm,n with σi,j = 0 for all i 6= j, and σ11 ≥ σ22 · · · ≥ σqq ≥ 0, and there are two

unitary matrices V ∈Mm and W ∈Mn such that A = V ΣW ∗. If A ∈Mm,n(R), then V

and W may be taken to be real orthogonal matrices.

Proof. The Euclidean unit sphere in Cn is a compact set (closed and bounded) and the

function f(x) = ‖Ax‖2 is a continuous real-valued function. Since a continuous real-

valued function attains its maximum on a compact set, there is some unit vector w ∈ Cn

such that

‖Aw‖2 = max{‖Ax‖2 : x ∈ Cn, ‖x‖2 = 1}.

If ‖Aw‖ = 0, then A = 0 and the factorization is trivial with Σ = 0 and any unitary

matrices V ∈Mm, W ∈Mn. If ‖Aw‖2 6= 0, set σ1 ≡ ‖Aw‖2 and form the unit vector

v =
Aw

σ1
∈ Cm.

There are m − 1 orthonormal vectors v2, · · · , vm ∈ Cm so that V1 ≡ [v v2 · · · vm] ∈ Mm

is unitary and there are n − 1 orthonormal vectors vectors w2, · · · , wn ∈ Cn so that
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W1 ≡ [ww2 · · · wn] ∈Mn is unitary. Then

Ã1 ≡ V ∗1 AW1 =


v∗

v∗2
...

v∗m


[
Aw Aw2 · · · Awn

]

=


v∗

v∗2
...

v∗m


[
σ1v Aw2 · · · Awn

]

=


σ1 v∗Aw2 · · · v∗Awn

0
... A2

0


=

 σ1 z∗

0 A2

 ,
where

z =


w∗2A

∗v
...

w∗nA
∗v

 ∈ Cn−1,

and A2 ∈Mm−1,n−1.

Now consider the unit vector

ξ ≡ 1

(σ2
1 + z∗z)

1
2

 σ1

z

 ∈ Cn.

Then

Ã1ξ =
1

(σ2
1 + z∗z)

1
2

 σ1 z∗

0 A2

 σ1

z


=

1

(σ2
1 + z∗z)

1
2

 σ2
1 + z∗z

A2z

 ,
28



so that ∥∥∥Ã1ξ
∥∥∥2

=
(σ2

1 + z∗z)2 + ‖A2z‖2

σ2
1 + z∗z

.

Since V1 is unitary, it then follows that

‖A(W1ξ)‖2 = ‖V ∗1 AW1ξ‖2 =
∥∥∥Ã1ξ

∥∥∥2
=

(σ2
1 + z∗z)2 + ‖A2z‖2

σ1 + z∗z
≥ σ2

1 + z∗z.

This is greater than σ2
1 if z 6= 0. This contradicts the construction assumption of

σ1 = max{‖Ax‖2 : x ∈ Cn, ‖x‖2 = 1}

and we conclude that z = 0. Then

Ã1 = V ∗1 AW1 =

 σ1 0

0 A2

 .
This argument is repeated on A2 ∈ Mm−1,n−1 and the unitary matrices V and W

are the direct sums (⊕) of each step’s unitary matrices:

A = V1(I1 ⊕ V2)


σ1

σ2

A3

 (I1 ⊕W ∗2 )W ∗1

= V1(I1 ⊕ V2)(I2 ⊕ V3)


σ1

σ2

σ3

A4

 (I2 ⊕W ∗3 )(I1 ⊕W ∗2 )W ∗1 ,

etc. Since the matrix is finite dimensional, this process necessarily terminates, giving

the desired decomposition. The result of this construction is Σ = [σij ] ∈ Mm,n with

σii = σi for i = 1, · · · , q.

If m ≤ n,

AA∗ = V ΣΣTV ∗

and

ΣΣT = diag(σ2
1, · · · , σ2

q ).

If m ≥ n, then A∗A leads to the same results.
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When A is square and has distinct singular values the construction in the proof of

Theorem 9 shows that

σ1(A) = max {‖Ax‖2 : x ∈ Cn, ‖x‖2 = 1} = ‖Aw1‖2

for some unit vector w1 ∈ Cn,

σ2(A) = max {‖Ax‖2 : x ∈ Cn, ‖x‖2 = 1, x ⊥ w1} = ‖Aw2‖

for some unit vector w2 ∈ Cn with w2 ⊥ w1. In general,

σk(A) = max {‖Ax‖2 : x ∈ Cn, ‖x‖2 = 1, x ⊥ w1, · · · , wk−1} ,

so that σk = ‖Awk‖ for some unit vector wk ∈ Cn such that wk ⊥ w1, · · · , wk−1. This

indicates that the maximum of ‖Ax‖2 , with ‖x‖ = 1, and the the spectral norm of A

coincide and are both equal to σ1. Each singular value is the norm of A as a mapping

restricted to a suitable subspace of Cn.

3.6 Some matrix SVD inequalities

In this section we next examine some singular value inequalities.

Theorem 10. Let A = [aij ] ∈Mm,n have a singular value decomposition

A = V ΣW ∗

with unitaries V = [vij ] ∈Mm and W = [wij ] ∈Mn, and let q = min(m,n). Then

(a.)

aij = vi1w̄j1σ1(A) + · · · + vikw̄jkσk(A);

(b.)
q∑
i=1

|aii| ≤
q∑

k=1

q∑
i=1

|vikwik|σk(A) ≤
q∑

k=1

σk(A);

(c.)

Re trA ≤
n∑
i=1

σi(A) for m = n,

with equality if and only if A is positive semidefinite;
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Proof. (a.) Below we will use the notation 0 to indicate a block of zeros within a matrix.

We first assume m > n so q = n.

A = V ΣW ∗

is of the form

A = [vij ] Σ [wij ]
∗

with

Σ =



σ1(A)

σ2(A)
. . .

σq(A)

0 0 · · · 0


.

A =


v11 v12 · · · v1m
...

...
...

vm1 vm2 · · · vmm





σ1(A)

σ2(A)
. . .

σq(A)

0 0 · · · 0




w̄11 w̄21 · · · w̄n1

...
...

...

w̄1n w̄2n · · · w̄nn



The first matrix (V ) is an m×m matrix , the second (Σ) is an m× n matrix, and the

third (W ∗) is an n× n matrix. Multiplying Σ and W ∗ gives

A =


v11 v12 · · · v1m
...

...
...

vm1 vm2 · · · vmm





σ1(A)w̄11 · · · σ1(A)w̄n1

σ2(A)w̄12 · · · σ2(A)w̄n2

...
...

σq(A)w̄1q · · · σq(A)w̄nq

0 · · · 0


.

The first matrix above is V and the second one is an m × n matrix. If n > m the last
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matrix above is of the form
σ1(A)w̄11 · · · σ1(A)w̄n1 0

σ2(A)w̄12 · · · σ2(A)w̄n2 0
...

... 0

σq(A)w̄1q · · · σq(A)w̄nq 0

 .

The matrix product above leads to:

a11 = v11σ1(A)w̄11 + v12σ2(A)w̄12 + · · · v1kσq(A)w̄1q

and

a12 = v11σ1(A)w̄21 + · · ·+ v1qσq(A)w̄2q.

In general,

aij = vi1σ1(A)w̄j1 + · · ·+ viqσq(A)w̄jq,

where q is the rank of the matrix A. This gives (a.).

For (b.), set i = j in

aij = vi1σ1(A)w̄j1 + · · ·+ viqσq(A)w̄jq

to get

aii = vi1σ1(A)w̄i1 + · · ·+ viqσq(A)w̄iq

or

aii =
q∑

k=1

vikw̄ikσk(A).

Taking magnitudes, the magnitude of a sum is less than or equal to the sum of the

magnitudes (triangle inequality):

|aii| ≤
q∑

k=1

|vikw̄ik|σk(A).

summing both sides
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q∑
i=1

|aii| ≤
q∑

k=1

q∑
i=1

|vikw̄ik|σk(A).

From the polar form of a complex number,

|vikw̄ik| = |vikwik|

since
∣∣eiθ∣∣ =

∣∣e−iθ∣∣ = 1. This leads to

q∑
i=1

|aii| ≤
q∑

k=1

q∑
i=1

|vikwik|σk(A) =
q∑

k=1

q∑
i=1

|vik| |wik|σk(A).

For any k,

q∑
i=1

|vik| |wik|σk(A) = σk(A)
q∑
i=1

|vik| |wik| = σk(A) [|v1k| · · · |vqk|]


|w1k|

...

|wqk|



= σk(A)

〈
|v1k|

...

|vqk|

 ,

|w1k|

...

|wqk|


〉
.

By the Cauchy-Schwartz inequality, this is less than or equal to

σk(A)

∥∥∥∥∥∥∥∥∥


|vik|

...

|vqk|


∥∥∥∥∥∥∥∥∥

∥∥∥∥∥∥∥∥∥


|w1k|

...

|wqk|


∥∥∥∥∥∥∥∥∥ ≤ σk(A) · 1 · 1 = σk(A).

Therefore,

q∑
i=1

|aii| ≤
q∑

k=1

q∑
i=1

|vikwik|σk(A) =
q∑

k=1

q∑
i=1

|vik| |wik|σk(A) ≤
q∑

k=1

σk(A),

which proves (b.).

For (c.),

trA =
n∑
i=1

aii.
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Then,

Re trA =
n∑
i=1

Re(aii) ≤
n∑
i=1

|aii| ≤
n∑
i=1

σi(A)

from (b.). This leads to

Re trA ≤
n∑
i=1

σi(A).

For the second statement in part (c.), by part (a.)

trA =
n∑
i=1

aii =
n∑
i=1

n∑
k=1

vikw̄ikσk(A) =
n∑
k=1

(
n∑
i=1

vikw̄ik

)
σk(A) =

n∑
k=1

〈vk, wk〉σk(A),

where vk and wk are the kth columns of V and W , respectively. Now, if

Re tr A =
n∑
i=1

σi(A),

then

n∑
k=1

σk(A) =
n∑
k=1

Re 〈vk, wk〉σk(A) =

∣∣∣∣∣
n∑
k=1

Re 〈vk, wk〉σk(A)

∣∣∣∣∣
≤

∑
|Re 〈vk, wk〉|σk(A) ≤

∑
|〈vk, wk〉|σk(A)

≤
n∑
k=1

‖vk‖ ‖wk‖σk(A) ≤
n∑
k=1

σk(A)

by the triangle inequality and Cauchy-Schwarz inequality, respectively. Since the far

left and the far right sides of this string of inequalities are equal, it follows that all the

expressions are equal. Hence,

n∑
k=1

Re 〈vk, wk〉σk(A) =
∑
|Re 〈vk, wk〉|σk(A) =

n∑
k=1

σk(A).

Since |Re 〈vk, wk〉| ≤ 1 and σk(A) ≥ 0, it follows that Re 〈vk, wk〉 = 1. It also follows that

〈vk, wk〉 = 1 = ‖vk‖ ‖wk‖ . Equality in the Cauchy-Schwarz inequality implies that vk is

a scalar multiple of wk, where the constant is of modulus one. Since also 〈vk, wk〉 = 1,

we must have vk = wk. Therefore V = W and A = V ΣW ∗ = V ΣV ∗, which is positive

semidefinite since it is Hermitian and all eigenvalues are positive.
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Conversely, if A is positive semidefinite, then the singular values are the same as the

eigenvalues. Hence,

Re trA = tr A =
n∑
i=1

σi(A).

3.7 Matrix polar decomposition and matrix SVD

We next examine the polar decomposition of a matrix using the singular value decom-

position, and deduce the singular value decomposition from the polar decomposition of

a matrix.

A singular value decomposition of a matrix can be used to factor a square matrix in a

way analogous to the factoring of a complex number as the product of a complex number

of unit length and a nonnegative number. The unit-length complex number is replaced

by a unitary matrix and the nonnegative number by positive semidefinite matrix.

Theorem 11. For any square matrix A there exists a unitary matrix W and a positive

semidefinite matrix P such that

A = WP.

Furthermore, if A is invertible, then the representation is unique.

Proof. By the singular decomposition, there exists unitary matrices U and V and a

diagonal matrix Σ with nonnegative diagonal entries such that

A = UΣV ∗.

Thus

A = UΣV ∗ = UV ∗V ΣV ∗ = WP,

where W = UV ∗ and P = V ΣV ∗. Since W is the product of unitary matrices, W is

unitary, and since Σ is positive semidefinite and P is unitarily equivalent to Σ, P is

positive semidefinite.
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Now suppose that A is invertible and factors as the products

A = WP = ZQ,

where W and Z are unitary, and P and Q are positive semidefinite (actually definite,

since A is invertible). Since A is invertible it follows that P and Q are invertible and

therefore,

Z∗W = QP−1.

Thus QP−1 is unitary , and so

I = (QP−1)∗(QP−1) = P−1Q2P−1.

Hence by multiplying by P twice, this leads to P 2 = Q2. Since both are positive definite

it then follows that P = Q by Lemma 1. Thus W = Z and the factorization is unique.

The above factorization of a square matrix A as WP where W is unitary and P is

positive definite is called a polar decomposition of A.

We use another theorem below to extend the polar decomposition to a matrix A ∈

Mm,n.

Theorem 12. Let A ∈Mm,n be given.

(a) If n ≥ m, then A = PY , where P ∈Mm is positive semidefinite , P 2 = AA∗, and Y ∈

Mm,n has orthonormal rows.

(b) If m ≥ n, then A = XQ, where Q ∈Mn is positive semidefinite , Q2 = A∗A, andX ∈

Mm,n has orthonormal columns.

(c) If m = n, then A = PU = UQ, where U ∈ Mn is unitary, P, Q ∈ Mn are positive

semidefinite, P 2 = AA∗, and Q2 = A∗A.

The positive semidefinite factors P and Q are uniquely determined by A and their eigen-

values are the same as the singular values of A.
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Proof. (a) If n ≥ m and

A = V ΣW ∗

is a singular value decomposition , write

Σ = [S 0],

with S the first m columns of Σ, and write

W = [W1 W2],

where W1 is the first m columns of W . Hence, S = diag(σ1(A) · · ·σm(A)) ∈ Mm and

W1 ∈Mn,m and has orthonormal columns. Then

A = V [S 0][W1 W2]∗ = V SW ∗1 = (V SV ∗)(VW ∗1 ).

Define P = V SV ∗, so that A = PVW ∗1 and P is positive semidefinite. Also let Y =

VW ∗1 . Then

Y Y ∗ = VW ∗1W1V
∗ = V ImV

∗ = Im

and so Y has orthonormal rows. Multiplying A by A∗ yields

AA∗ = (V SV ∗)(VW ∗1 )(VW ∗1 )∗(V SV ∗)∗ = (V SV ∗)2 = P 2,

since

(VW ∗1 )(VW ∗1 )∗ = I.

For (b), the case m ≥ n, we apply part (a) to A∗, so that A∗ = PY where P 2 =

A∗(A∗)∗ = A∗A, P is positive semidefinite, and Y has orthonormal rows. Then A = Y ∗P.

Let X = Y ∗ and Q = P. Then A = XQ, X has orthonormal columns, Q2 = A∗A and is

positive semidefinite.

For (c),

A = V ΣW ∗ = (V ΣV ∗)(VW ∗) = (VW ∗)(WΣW ∗).

Take P = V ΣV ∗, Q = WΣW ∗, and U = VW ∗ with

A = PU = UQ.
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Moreover, U is unitary, P and Q are positive semidefinite, and P 2 = AA∗ and Q2 = A∗A.

We next consider a theorem and corollaries that examine some of the special matrix

classes by using singular value decomposition.

3.8 The SVD and special classes of matrices

Definition 15. A matrix C ∈ Mn is a contraction if σ1(C) ≤ 1 (and hence 0 ≤

σi(C) ≤ 1 for all i = 1, 2, · · · , n).

Definition 16. A matrix P ∈Mm,n is said to be a rank r partial isometry if σ1(P ) =

· · · = σr(P ) = 1 and σr+1(P ) = · · · = σq(P ) = 0, where q ≡ min(m,n). Two partial

isometries P,Q ∈Mm,n (of unspecified rank) are said to be orthogonal if P ∗Q = 0 and

PQ∗ = 0.

Theorem 13. Let A ∈ Mm,n have singular value decomposition A = V ΣW ∗ with V =

[v1 · · · vm] ∈ Mm and W = [w1 · · ·wn] ∈ Mn unitary, and Σ = [σij ] ∈ Mm,n with

σ1 = σ11 ≥ · · · ≥ σq = σqq ≥ 0 and q = min(m,n).

Then

(a.) A = σ1P1 + · · ·+ σqPq is a nonnegative linear combination of mutually orthogonal

rank one partial isometries, with Pi = viw
∗
i for i = 1, · · · , q.

(b.) A = µ1K1 + · · ·+ µqKq is a nonnegative linear combination of mutually orthogonal

partial isometries Ki with rank i = 1, · · · , q, such that

(i.) µi = σi − σi+1 for i = 1, · · · , q − 1, µq = σq.

(ii.) µi + · · ·+ µq = σi for i = 1, · · · , q, and

(iii.) Ki = V EiW
∗ for i = 1, · · · , q in which the first i columns of Ei ∈ Mm,n are

the respective unit basis vectors e1, · · · , ei and the remaining n − i columns

are zero.
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Proof. (a) From Theorem 10, we have shown that for a matrix A ∈Mm,n

[aij ] = [vi1w̄j1σ1(A) + · · ·+ vikw̄jkσk(A)], where A = V ΣW ∗ with unitary V =

[vij ] ∈Mm and W = [wij ] ∈Mn, and with q = min(m,n). Let

v1 =


v11

...

vm1


and

w1 =


w11

...

wn1

 .
Then

w∗1 =
[
w̄11 · · · w̄n1

]
.

Let

P1 = v1w
∗
1 =


v11

...

vm1

[ w̄11 · · · w̄n1

]
=


v11w̄11 · · · v11w̄n1

...
...

vm1w̄11 · · · vm1w̄n1

 .
More generally, let

Pi = viw
∗
i =


v1i
...

vmi

[ w̄1i · · · w̄ni

]
=


v1iw̄1i · · · v1iw̄ni

...
...

vmiw̄1i · · · vmiw̄ni


for i = 1, · · · , q. The above Pi matrices are all m× n matrices and the (i, j)-entry of

σ1P1 + · · ·+ σqPq,

is given by

vi1w̄j1σ1(A) + · · ·+ vikw̄jkσk(A),
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where k is the rank of the matrix A. Since k ≤ q, if q > k there will be q−k zero singular

values and summation to k will give the same results as summation to q. Therefore

A = [aij ] = [vi1w̄j1σ1(A) + · · ·+ viqw̄jqσq(A)],

and

A = σ1P1 + · · ·+ σqPq.

To show that Pi is a rank one partial isometry,

P1 = v1w
∗
1 = V


1 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 · · · 0 0

 .

In general,

Pi = V FiW
∗,

where Fi is the matrix with a 1 in the ith diagonal entry and zeros everywhere else.

Thus, Pi is a rank 1 partial isometry. For i 6= j,

P ∗i Pj = (V FiW ∗)(V FjW ∗) = WFiFjW
∗ = 0.

Thus the Pi’s are mutually orthogonal. For (b.), let µi = σi − σi+1 for i = 1, · · · , q − 1,

and µq = σq. This leads to a telescoping sum:

µi + · · ·+ µq = σq +
q−1∑
j=i

(σj − σj+1) = σ1 for i = 1, · · · , q,

because of mutual cancelation of the middle terms. Now define

Ki = V EiW
∗.

Then each Ki is a rank i partial isometry. By part (a.) (and it’s proof),

A = σ1P1 + · · ·+ σqPq

= (µ1 + · · ·+ µq)P1 + (µ2 + · · ·+ µq)P2 + · · ·+ µqPq

= µ1P1 + µ2(P1 + P2) + µ3(P1 + P2 + P3) + · · ·+ µq(P1 + · · ·+ Pq)

= µ1K1 + · · ·+ µqKq,

40



since Ki = P1 + · · ·+ Pi.

Corollary 6. The unitary matrices are the only rank n (partial) isometries in Mn.

Proof. Let A ∈Mn be unitary. Then

A∗A = In,

and the eigenvalues of In = A∗A are n ones. Then taking the square root leads to n

singular values σi(A)= 1 for all i = 1, . . . , n. Thus, A is a rank n partial isometry.

On the other hand, let B ∈Mn be any rank n partial isometry. Then

B = V InW
∗

is the singular value decomposition of B. It follows that

B = VW ∗,

which is unitary (a product of unitaries). Thus B is unitary. Since any unitary matrix

A ∈ Mn is unitary and any rank n partial isometry matrix B ∈ Mn is unitary, then it

follows that the unitary matrices are the only rank n (partial) isometries in Mn.

Theorem 14. If C ∈ Mn is a contraction and y ∈ Cn with ‖y‖ ≤ 1, then ‖Cy‖ ≤ 1.

Conversely, if ‖Cy‖ ≤ 1, for any y ∈ Cn with ‖y‖ ≤ 1, then C is a contraction.

Proof. Let

C = V ΣW ∗

be a singular value decomposition. Since W ∗ is unitary,

‖W ∗y‖ = ‖y‖ ≤ 1.

Let zi be the ith component of W ∗y. Then

ΣW ∗y =


σ1z1

...

σnzn

 .
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Hence,

‖ΣW ∗y‖ =
√
|σ1z1|2 + · · ·+ |σnzn|2 ≤

√
|z1|2 + · · ·+ |zn|2 ≤ 1.

Since V is unitary,

‖V ΣW ∗y‖ = ‖ΣW ∗y‖ ≤ 1.

Thus,

‖Cy‖ ≤ 1.

For the converse, let y ∈ Cn such that W ∗y = e1. Then ‖y‖ = 1 and

σ1 =

∥∥∥∥∥∥∥∥∥∥∥∥


σ1

0
...

0



∥∥∥∥∥∥∥∥∥∥∥∥
= ‖Σe1‖ = ‖ΣW ∗y‖ = ‖V ΣW ∗y‖ = ‖Cy‖ ≤ 1.

Thus C is a contraction.

Corollary 7. Any finite product of contractions is a contraction.

Proof. Let ‖y‖ ≤ 1, and let C1 and C2 be any contractions, then

‖C1C2y‖ ≤ ‖C2y‖ ≤ ‖y‖ ≤ 1.

By the converse of the theorem above,

σ1(C1C2) ≤ 1.

By induction, the result holds for any finite product of contractions.

Corollary 8. C ∈ Mn is a rank one partial isometry if and only if C = vw∗ for some

unit vectors v, w ∈ Cn.

Proof. (⇒) Assume C ∈Mn is a rank one partial isometry. Then
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C = V ΣW ∗ = V


1

0
. . .

0

W
∗

=


v11 v12 · · · v1n

v21 v22 · · · v2n
...

...
...

vn1 vn2 · · · vnn




1 · · · 0
...

...

0 · · · 0



w̄11 w̄21 · · · w̄n1

w̄12 w̄22 · · · w̄n2

...
...

...

w̄1n w̄2n · · · w̄nn



=


v11 0 · · · 0

v21 0 · · · 0
...

...

vn1 · · · 0



w̄11 · · · w̄n1

...
...

w̄1n · · · w̄nn



=


v11w̄11 v11w̄21 · · · v11w̄n1

...
...

...

vn1w̄11 vn2w̄21 · · · vn1w̄n1



=


v11

v21

...

vn1


[
w̄11 w̄21 · · · w̄n1

]

= vw∗.

This proves that if C ∈ Mn is a rank one partial isometry, then C = vw∗ for some unit

vectors v, w ∈ Cn.

(⇐) Suppose C = vw∗, for unit vectors v, w ∈ Cn. Extend {v} and {w} to or-

thonormal bases {v1, v2 · · · , vn} and {w1, w2, · · · , wn} of Cn. Let V = [v1 v2 · · · vn] and
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W = [w1 w2 · · ·wn] . Then

C = VW ∗ = V



1

0

0
. . .

0


W,

so C is a rank one partial isometry.

Corollary 9. For 1 ≤ r < n, every rank r partial isometry in Mn is a convex combina-

tion of two unitary matrices in Mn.

Proof. Let A be a rank r partial isometry in Mn. There exist unitaries V, W such that

A = V ErW
∗,

with

Er =

 Ir 0

0 0

 ∈Mn.

Then

Er =
1
2

[(Ir ⊕ In−r) + (Ir ⊕ (−In−r))]

so that

A = V

{
1
2

[(Ir ⊕ In−r) + (Ir ⊕ (−In−r))]
}
W ∗

=
1
2
V (Ir ⊕ In−r)W ∗ +

1
2
V (Ir ⊕ (−In−r))W ∗.

Since V (Ir⊕In−r)W ∗ and V (Ir⊕(−In−r))W ∗ are unitary, the proof is complete.

Corollary 10. Every matrix in Mn is a finite nonnegative linear combination of unitary

matrices in Mn.

44



Proof. From Theorem 13

A = σ1P1 + · · ·+ σnPn,

where each Pi is a partial isometry. This leads to a nonnegative linear combination of

unitary matrices in Mn, since each Pi is a convex combination of unitary matrices by

Corollary 9, and the singular values σi are nonnegative.

Corollary 11. A contraction in Mn is a finite convex combination of unitary matrices

in Mn.

Proof. Assume that A ∈Mn is a contraction. By Theorem 13,

A = µ1K1 + · · ·+ µnKn

where µ1 + · · ·+ µn = σ1 and each Ki is a rank i partial isometry in Mn. By Corollary

9 and its proof, we can write

Ki =
(

1
2
Ui +

1
2
Vi

)
,

where Ui and Vi are unitaries. Since A is a contraction, then σ1(A) ≤ 1. Since µ1 + · · ·+

µn = σ1, if σ1 = 1, then A is a convex combination of unitary matrices in Mn:

A =
n∑
i=1

µi

[
1
2
Ui +

1
2
Vi

]
=

n∑
i=1

µi
2
Ui +

µi
2
Vi.

If σ1 < 1, then we can write

A =
n∑
i=1

[µi
2
Ui +

µi
2
Vi

]
+ (1− σi)

[
1
2
In +

1
2

(−In)
]
.

The sum of the coefficients is

n∑
i=1

µi
2

+
µi
2

+ (1− σ1) = σ1 + (1− σ1) = 1.

Hence, A is a convex combination of unitaries.
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3.9 The pseudoinverse

Let V and W be finite-dimensional inner product spaces over the same field, and let

T : V →W be a linear transformation. We recall that for a linear transformation to be

invertible, it must be a one-to-one function and also onto. If the null space (N(T )) has

one or more nonzero vectors x ∈ N(T ) such that

T (x) = 0,

then T is not invertible. Since being invertible is a desirable property, a simple approach

to dealing with noninvertible transformations or matrices is to focus on the part of

T that is invertible by restricting T to N(T )⊥. Let L : N(T )⊥ → R(T ) be a linear

transformation defined by

L(x) = T (x) for x ∈ N(T )⊥.

Then L is invertible since it is restricted to N(T )⊥. We can use the inverse of L to

construct a linear transformation from W to V , in the reverse direction, that has some

of the benefits of an inverse of T .

Definition 17. Let V and W be finite-dimensional inner product spaces over the same

field, and let T : V → W be a linear transformation. Let L : N(T )⊥ → R(T ) be the

linear transformation defined by

L(x) = T (x) ∀x ∈ N(T )⊥.

The pseudoinverse (or Moore-Penrose generalized inverse) of T , denoted T †, is defined

as the unique linear transformation from W to V such that

T †(y) =


L−1(y), for y ∈ R(T )

0, y ∈ R(T )⊥.

The pseudoinverse of a linear transformation T on a finite-dimensional inner product

space exists even if T is not invertible. If T is invertible, then T † = T−1 because

N(T )⊥ = V and L, as defined above, coincides with T.
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Theorem 15. Let T : V → W be a linear transformation and let σ1 ≥ · · · ≥ σn be

the nonzero singular values of T. Then there exist orthonormal bases {v1, . . . , vn} and

{u1, . . . , um} for V and W , respectively, and a number r, 0 ≤ r ≤ m, such that

T †(ui) =


1
σi
vi, if 1 ≤ i ≤ r

0, if r < i ≤ m.

Proof. By Theorem 3 (Singular Value Theorem), there exist orthonormal bases {v1, . . . , vn}

and {u1, . . . , um} for V and W , respectively, and nonzero scalars σ1 ≥ · · · ≥ σr (the

nonzero singular values of T), such that

T (vi) =


σiui, if 1 ≤ i ≤ r, and

0, if i > r.

Since the σi are nonzero, it follows that {v1, · · · , vr} is an orthonormal basis for N(T )⊥

and that {vr+1, · · · , vn} is an orthonormal basis for N(T ). Since T has rank r, it also

follows that {u1, · · · , ur} and {ur+1, · · · , um} are orthonormal bases forR(T ) andR(T )⊥,

respectively. Here R(T ) denotes the range of T.

Let L be the restriction of T to N(T )⊥. Then

L−1(ui) =
1
σi
vi for 1 ≤ i ≤ r.

Therefore

T †(ui) =


1
σi
vi, if 1 ≤ i ≤ m

0, if r < i ≤ m.

We will see quite a bit more of the pseudoinverse in Section 5.

3.10 Partitioned matrices and the outer product form of the SVD

This subsection is an application of Theorem 13 and Corollary 8. The outer rows and

columns of the matrix Σ can be eliminated if the matrix product A = UΣV T is expressed
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using partitioned matrices as follows:

A =
[
u1 · · · uk | uk+1 · · · um

]


σ1 |
. . . | 0

σk |

− − − − −

0 | 0





v1
T

...

vk
T

−

vk+1
T

...

vn
T



When the partitioned matrices are multiplied, the result is

A =
[
u1 . . . uk

]
σ1

. . .

σk




vT1
...

vk
T

⊕ [ uk+1 . . . um

] [
0
]

vk+1
T

...

vn
T


It is clear that only the first k of the ui and vi make any contribution to A. We can

shorten the equation to

A =
[
u1 . . . uk

]
σ1

. . .

σk




vT1
...

vk
T


The matrices of ui and vi are now rectangular (m × k) and (k × n) respectively. The

diagonal matrix is square. This is an alternative formulation of the SVD. Thus we have

established the following proposition.

Proposition 8. Any m×n matrix A of rank k can be expressed in the form A = UΣV T

where U is an m × k matrix such that UTU = Ik, Σ is a k × k diagonal matrix with

positive entries in decreasing order on the diagonal, and V is an n× k matrix such that

V TV = Ik.

Usually in a matrix product XY , the rows of X are multiplied by the columns of Y .

In the outer product expansion, a column is multiplied by a row, so with X an m × k
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matrix and Y a k × n matrix

XY =
k∑
i=1

xiyi
T ,

where the xi are the columns of X and yTi are the rows of Y . Let

X =
[
u1 . . . uk

]
σ1

. . .

σk

 =
[
σ1u1 . . . σkuk

]

and

Y =


v1
T

...

vk
T

 .
Then A = XY can be expressed as an outer product expansion

A =
k∑
i=1

σiuiv
T
i .

Thus, for a vector x,

Ax =
k∑
i=1

σiuivi
Tx,

since viTx is a scalar, this leads to (change of order)

Ax =
k∑
i=1

vi
Txσiui

Ax is expressed as a linear combination of the vectors ui. Each coefficient is a product

of the two factors, viTx and σi, with vi
Tx = 〈x, vi〉, which is the ith component of x

relative to the orthonormal basis {v1, . . . , vn}. Under the action of A each v component

of x becomes a u component after scaling by the appropriate σ.
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4 The SVD and systems of linear equations

4.1 Linear least squares

For the remaining sections we will work exclusively with the real scalar field. Suppose we

have a linearly independent set of vectors and wish to combine them linearly to provide

the best possible approximation to a given vector. If the set is {a1, a2, . . . , an} and the

given vector is b, we seek coefficients x1, x2, . . . , xn that produce a minimal error∥∥∥∥∥b−
n∑
i=1

xiai

∥∥∥∥∥ .
Using finite columns of numbers, define an m × n matrix A with columns given by ai,

and a vector x whose entries are the unknown coefficients xi. We want to choose x

minimizing

‖b−Ax‖ .

Equivalently, we seek an element of the subspace S spanned by the ai that is closest to

b. This is given by the orthogonal projection of b onto S. This projection of b onto S is

characterized by the fact that the vector difference between b and its projection should

be orthogonal to S. Thus the solution vector x must satisfy

〈ai, (Ax− b)〉 = 0, for i = 1, · · · , n.

In matrix form this becomes

AT (Ax− b) = 0.

This leads to

ATAx = AT b.

This set of equations for the xi are referred to as the normal equations for the linear least

squares problem. Since ATA is invertible (due to linear independence of the columns of

A) this leads to

x = (ATA)−1AT b.

Numerically, the formation of (ATA)−1 can degrade the accuracy of a computation, since

the formation of the inverse numerically is often only an approximation.
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Turning to an SVD solution for the least squares problem, we can avoid the need for

calculating the inverse of ATA.

We again wish to choose x so that we minimize

‖Ax− b‖ .

Let

A = UΣV T

be a SVD for A, where U and V are are square orthogonal matrices, and Σ is rectangular

with the same dimensions as A (m× n). Then

Ax− b = UΣV Tx− b

= U(ΣV Tx)− U(UT b)

= U(Σy − c),

where y = V Tx and c = UT b.

Since U is orthogonal (preserves length),

‖U(Σy − c)‖ = ‖Σy − c‖ .

Hence,

‖Ax− b‖ = ‖Σy − c‖ .

We now seek y to minimize the norm of the vector Σy − c.

Let the components of y be yi for 1 ≤ i ≤ n. Then

Σy =



σ1y1

...

σkyk

0

0
...

0


,
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so that

Σy − c =



σ1y1 − c1
...

σkyk − ck
−ck+1

−ck+2

...

−cm


.

It is easily seen that, when

yi =
ci
σi

for 1 ≤ i ≤ k, Σy − c assumes its minimal length which is given by[
n∑

i=k+1

c2i

] 1
2

.

To solve the least squares problem:

1. Determine the SVD of A and calculate c as

c = UT b

2. Solve the least squares problem for Σ and c that is find y so that

‖Σy − c‖

is minimal. The diagonal nature of Σ makes this easy.

3. Since

y = V Tx,

which is equivalent to to

x = V y,
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by left multiplying the above equation with V , this gives the solution x. The error

is

‖Σy − c‖ .

The SVD has reduced the least squares problem to a diagonal form. In this form the

solution is easily obtained.

Theorem 16. The solution to the least squares problem described above is

x = V Σ†UT b,

where

A = UΣV T

is a singular value decomposition.

Proof. The solution from the normal equations is

x = (ATA)
−1
AT b.

Since

ATA = V ΣTΣV T ,

then

x = (V ΣTΣV T )−1(UΣV T )T b.

The inverse

(V ΣTΣV T )−1

is equal to

V (ΣTΣ)−1V T .

The product

ΣTΣ

is a square matrix whose k diagonal entries are the σ2
i . Hence,

x = V (ΣTΣ)−1V T (UΣV T )T b

= V (ΣTΣ)−1V TV ΣTUT b.
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Since V TV = In,

x = V (ΣTΣ)−1ΣTUT b

= V Σ†UT b.

The last equality follows because(ΣTΣ)−1 is equal to a square matrix whose diagonal

elements are equal to 1
σ2

i
combined with ΣT = Σ which has σi as the diagonal elements.

The matrix Σ† has diagonal elements of 1
σi

and is the pseudoinverse of the matrix Σ.

4.2 The pseudoinverse and systems of linear equations

Let A ∈Mm,n(R) be a matrix. For any b ∈ Rm

Ax = b

is a system of linear equations. The system of linear equations either has no solution,

has a unique solution, or has infinitely many solutions. A unique solution exists for every

b ∈ Rm if and only if A is invertible. In this case, the solution is

x = A−1b = A†b.

If we do not assume that A is invertible, but suppose that Ax = b has a unique solution

for a particular b, then that solution is given by A†b (Theorem 17).

Lemma 2. Let V and W be finite-dimensional inner product spaces, and let T : V →W

be linear. Then

(a.) T †T is the orthogonal projection of V onto N(T )⊥

(b.) TT † is the orthogonal projection of W onto R(T ).

Proof. Define L : N(T )⊥ →W by

L(x) = T (x) for x ∈ N(T )⊥.

Then for x ∈ N(T )⊥, T †T (x) = L−1L(x) = x. If x ∈ N(T ), then T †T (x) = T †(0) = 0.

Thus T †T is the orthogonal projection of V onto N(T )⊥, which gives (a.).
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If x ∈ N(T )⊥ and y = T (x) ∈ R(T ), then TT †(y) = T (x) = y. If y ∈ R(T )⊥, then

T †(y) = 0, so that then TT †(y) = 0. This gives (b.).

Theorem 17. Consider the system of linear equations Ax = b, where A is an m × n

matrix and b ∈ Rm. If z = A†b, then z has the following properties.

(a.) If Ax = b is consistent, then z is the unique solution to the system having minimum

norm. That is, z is a solution to the system and if y is any solution to the system,

then ‖z‖ ≤ ‖y‖ with equality if and only if z = y.

(b.) If Ax = b is inconsistent, then z is the unique best approximation to a solution

having minimum norm. That is, ‖Az − b‖ ≤ ‖Ay − b‖ for any y ∈ Rn, with equality

if and only if Az = Ay. Furthermore, if Az = Ay, then ‖z‖ ≤ ‖y‖ with equality if

and only if z = y.

Proof. For (a.), suppose Ax = b is consistent, and z = A†b. Since b ∈ R(A), the range

of A, then Az = AA†b = b., by the lemma above. Thus z is a solution of the system. If

y is any solution to the system, then

A†A(y) = A†b = z.

Since z is the orthogonal projection of y onto N(A)⊥, then ‖z‖ ≤ ‖y‖ with equality if

and only if z = y.

For (b.), suppose Ax = b is inconsistent, then by the above lemma Az = AA†b, which

is the orthogonal projection of b onto R(A). Thus Az is the vector in R(A) nearest to

b. Similarly, as in (a.), if Ay is any vector in R(A), then ‖Az − b‖ ≤ ‖Ay − b‖ with

equality if and only if Az = Ay. If Az = Ay, then ‖z‖ ≤ ‖y‖, with equality if and only

if z = y.

4.3 Computational considerations

Note the vector z = A†b in the above theorem is the vector x = V Σ†UT b, where x = A†b

using the SVD of A in the SVD application to the least squares problem above. From
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this discussion the result using the normal equations

x = (ATA)−1AT b

and the result using the SVD

x = V Σ†UT b

should give the same result for the solution of the least squares problem. It turns out

that in computations with matrices, the effects of limited precision (due to machine

representation of numbers with a limited precision or number of digits) depend on the

condition number of a matrix. A large condition number for a matrix is a sign that a

numerical instability will occur in solutions of linear systems.

In the computation using the SVD

Σ†

is multiplied by UT b. In comparison; using the normal equations

(ATA)−1

is multiplied by AT b.

The eigenvalues of ATA (λi) are the squares of the singular values of A (σi)

Thus
λ1

λn
=
(
σ1

σn

)2

.

The condition number of ATA is the square of the condition number of A.

Thus when computing with ATA you need roughly twice as many digits to be as accurate

as when you compute with the SVD of A (see Kalman(1996) [6]).

At this point we need to emphasize that there are algorithms for determining the SVD of

a matrix without using eigenvalues and eigenvectors; one such algorithm is the Rayleigh-

Ritz principle. See [4]. This is essential to avoid the pitfall of the instability that

may occur from the larger condition number of ATA in comparison to that of A for

some matrices as described above. There are algorithms for computing the SVD using

implicit matrix computation methods. The basic idea of one of such algorithms for
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computing the SVD of A is to use the EVD of ATA. A sequence of approximations

for Ai = UiΣiV
T
i to the desired correct SVD of A are made. The validity of the SVD

algorithm is then established by ensuring that after each iteration , the product ATi Ai is

what is produced by a well known algorithm for the EVD of ATA. The convergence of the

SVD is determined by the EVD, without computing ATA in full. The SVD algorithm

is then an implicit method for the EVD of ATA. The operations on A are seen to

implicitly form the EVD algorithm for ATA, without ever explicitly forming ATA. See

[6]. We illustrate this condition number discussion. Starting with an example with a

very high matrix condition number ([6]), we then modify the data to obtain a lower

condition number. A comparison of the errors is made by calculating the magnitude of

the residual

‖b−Ax‖

using the SVD and then using the normal equations (via ATA). We do the calculations

in MATLAB. First define (in MATLAB notation)

c1 = [1 2 4 8]′

and

c2 = [3 6 9 12]′.

Then define a third vector as:

c3 = c1− 4 ∗ c2 + 0.0000001 ∗ rand((4, 1)− 0.5 ∗ [1 1 1 1]′)

and the matrix A is defined to have these three vectors as its columns

A = [c1 c2 c3]

The command rand(4,1) returns a four entry column vector with entries randomly chosen

between 0 and 1. Subtracting 0.5 from each entry shifts them between −1
2 and 1

2 . The b

vector is defined in a similar way by adding a small random vector to a specified linear

combination of columns of A.

b = 2 ∗ c1− 7 ∗ c2 + 0.0001 ∗ (rand(4, 1) − 0.5 ∗ [1 1 1 1]′)
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The SVD of A is determined by the MATLAB command

[U, S, V ] = svd(A)

Here, the three matrices U , S (S ≡ Σ), and V are displayed on the screen and also kept

in the computer memory.

59.810, 2.5976 and 1.0578× 10−8

are the singular values (σi) resulting from running the commands. This indicates a

condition number (
σ1

σn

)
=

59.810
1.0578× 10−8

= 6× 109.

To compute Σ†, we need to transpose the diagonal matrix S and invert the non-zero

diagonal entries. This matrix is denoted by G. The matrix G consists of the diagonal

reciprocal of the diagonal elements of matrix S. The matrix S represents the matrix of

singular values Σ as defined above. Thus G represents the pseudoinverse of Σ denoted

by Σ† above.

G = S′ (3)

G(1, 1) =
1

S(1, 1)

G(2, 2) =
1

S(2, 2)

G(3, 3) =
1

S(3, 3)

The SVD solution is given as:

x = V Σ†UT b
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Multiply this by A to get Ax and see how far this is from b; using the commands:

r1 = b−A ∗ V ∗G ∗ U ′ ∗ b (4)

e1 = sqrt(r1′ ∗ r1)

e1 = 2.5423× e−005 (5)

This small magnitude indicates a satisfactory solution of the least squares problem using

the SVD. The normal equations solution, in comparison, is as follows:

x = (ATA)−1AT b

The MATLAB commands are:

r2 = b− A ∗ inv(A′ ∗A) ∗A′ ∗ b

e2 = sqrt(r2′ ∗ r2)

and MATLAB responds

e2 = 28.7904

The e2 is of the same order of magnitude as |b| = 97.2317. The solution using the normal

equations does a poor job, in comparison to the SVD solution.

On the other hand, if we modify the starting vectors as follows

c4 = [24816]′

and

c5 = [481320]′

then using the same procedure in MATLAB we get the following siglular values

90.2178, 3.5695, and 0.0632.
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This results in a condition number(
σ1

σn

)
=

90.2178
0.0632

= 1.428× 103.

This condition number is 106 order of magnitude less than the one above (6× 109).

The resulting errors calculated by SVD and by the normal equations are

e2 = 3.2414× e−006

and the same value by the normal equations

e3 = 3.2514× e−006.

This small magnitude indicates a satisfactory solution of the least squares problem using

both the SVD and the normal equations in the case where the matrix condition number

is not too high.

We next consider our last application, data compression.
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5 Image compression using reduced rank approximations

5.1 The Frobenius norm and the outer product expansion

We recall the expression of the SVD in the outer product form, an application of Theorem

13 and section 3.10:

A =
k∑
i=1

σiuiv
T
i

This is directly applicable to data compression. The above equation is applicable in

a situation where an m × n matrix is approximated by using fewer numbers than the

original m × n elements. Suppose a photograph is represented by an m × n matrix of

pixels, each pixel assigned a gray level on a scale of 0 to 1. The rank of the matrix

specifies the number of linearly independent columns (or rows). A matrix that has a low

rank implies linear dependence of some of the rows (or columns). The linear dependence

(redundancy) allows the matrix to be expressed more efficiently without storing all the

matrix elements. Consider a rank one matrix. Instead of the m × n matrix, we can

represent the matrix by m+ n numbers. A matrix B of rank one can be represented as:

B = [v1u v2u · · · vnu],

where u ∈ Rm and v1, . . . , vn ∈ R. Thus B = uvT , where

v =


v1
...

vn

 .
This is a product of a column and a row, an outer product, as defined in section 3.10.

The m entries of the column and the n entries of the row (m+n numbers) represent the

rank one matrix. If B is the best rank one approximation to A the error B − A has a

minimal Frobenius norm. The Frobenius norm of a matrix is defined as the square root

of the sums of squares of its entries and is denoted by ‖ · ‖2. The inner product of two

matrices

X = [xij ] and Y = [yij ] ,

61



X · Y =
∑
ij

xijyij

can be thought of as the sum of the mn products of the corresponding entries.

Theorem 18. The Frobenius norm of a real matrix is unaffected by multiplying either

on the left or the right by an orthogonal matrix.

Proof. Considering rank one matrices xyT and uvT :

xyT · uvT = [xy1 · · ·xyn] · [uv1 · · ·uvn]

=
∑
i

xyi · uvi

=
∑
i

(x · u)yivi

= (x · u)(y · v).

From the outer product expansion

XY =
∑
i

XiY
T
i

(with Xi being the columns of X and Y T
i the rows of Y ), this leads to

(XY ) · (XY ) = (
∑
i

xiy
T
i ) · (

∑
j

xjy
T
j )

=
∑
ij

(xi · xj)(yi · yj),

or

‖XY ‖2 =
∑
i

‖xi‖2‖yi‖2 +
∑
i 6=j

(xi · xj)(yi · yj).

If the xi are orthogonal, then

‖XY ‖2 =
∑
‖xi‖2‖yi‖2.

If the xi are both orthogonal and of unit length, then

‖XY ‖2 =
∑
i

‖yi‖2 = ‖Y ‖2 .
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A similar argument works when Y is orthogonal. The argument above indicates that

Frobenius norm of a matrix is unaffected by multiplying on either the left or the right

by an orthogonal matrix.

Corollary 12. Given a matrix A with SVD A = V ΣW T , then

‖A‖22 =
∑
i

σ2
i .

Proof. Let A = V ΣW T be a singular value decomposition. Then

‖A‖2 = ‖V ΣW T ‖2 = ‖Σ‖2 =
∑
i

√
σ2
i ,

since V and W are orthogonal matrices and make no difference to the Frobenius norm.

5.2 Reduced rank approximations to greyscale images

A greyscale image of a cell

As discussed in the previous section, we may represent a greyscale image by a matrix.

For example, the matrix representing the JPEG image above is a 512 × 512 matrix A

which has rank k = 512. By using the outer product form

A =
k∑
i

σiuiv
T
i ,

63



we obtain a reduced rank approximation by just summing the first r ≤ k terms. The

images given below are a result of a MATLAB SVD program which makes reduced rank

approximations of a greyscale picture. A graph of the magnitude of the singular values

is also given. It indicates that the singular values decrease rapidly from the maximum

singular value. By rank 12, the approximation of the picture begins to show enough

structure to represent the original.
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Rank 1 cell approximation

Rank 2 cell approximation
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Rank 4 cell approximation
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Rank 8 cell approximation

Rank 12 cell approximation
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More detailed iterations resulting into higher rank for the cell picture are indicated

below:

Rank 20 cell approximation

Rank 40 cell approximation
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Rank 60 cell approximation

σi vs. i for the cell picture
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Two other images are processed by the MATLAB program indicated as Appendix 1.

The first is a photograph of the thesis author in Fort Collins Colorado State University

during AP Calculus reading ( 2007). The last image is a picture of waterlilies. It is

necessary to have a MATLAB image processing tool box to run the MATLAB code

provided in the appendix.

Calculus grading photograph

Grayscale image of the photograph
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Rank 1 approximation of the image

Rank 2 approximation of the image

Rank 4 approximation of the image
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Rank 8 approximation of the image

Rank 12 approximation of the image
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Rank 20 approximation of the image

Rank 40 approximation of the image
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Rank 60 approximation of the image

Singular value graph of the gray scale calculus grading photograph
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Sample photograph of waterlilies

Gray scale image of waterlilies

Rank 1 approximation of lilies image
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Rank 2 approximation of lilies image

Rank 4 approximation of lilies image

Rank 8 approximation of lilies image
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Rank 12 approximation of lilies image

Rank 20 approximation of lilies image
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Rank 40 approximation of lilies image

Rank 60 approximation of lilies image

Singular values graph for the lilies image

5.3 Compression ratios

The images looked at so far have been stored as JPEG (.jpg) images which are already

compressed. It is more appropriate to start with an uncompressed bitmap (.bmp) image
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to determine the efficiency of compression. The efficiency of compression can be quan-

tified using the compression ratio, compression factor, or saving percentage. These are

defined as follows:

1. compression ratio:
size after compression

size before compression
;

2. compression factor :
size before compression
size after compression

;

3. saving percentage:

compression ratio× 100.

Consider the following image (bitmap) below. The image is 454 pixels long by 454

pixels wide, for a total of 206, 116 pixels.

Original image of the EWC Lab photograph

For a rank 16 approximation, the compression ratio is equal to

14544
454× 454

= 0.07056,

which corresponds to a compression factor of 14.17189, and a saving percentage of about

7.1 %. The table below indicates the compression ratio and compression factor for eight

ranks ranging from 1 to 128.
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Rank Compression Ratio Saving Percentage

1 0.00441 0.441%

2 0.00882 0.82 %

4 0.0176 1.76 %

8 0.0353 3.53 %

16 0.0706 7.06 %

32 0.141 14.1 %

64 0.282 28.2 %

128 0.564 56.4 %

The corresponding images are given below.
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Grayscale image of the EWC Lab bit map photograph

Rank 1

81



Rank 2

Rank 4
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Rank 8

Rank 16
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Rank 32

Rank 64
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Rank 128
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6 Conclusion

We have discussed some of the mathematical background to the singular value factoriza-

tion of a matrix. There are many applications of the singular value decomposition. We

have discussed three of those applications: least squares approximation, digital image

compression using reduced rank matrix approximation, and the role of the pseudoinverse

of a matrix in solving equations. The least squares approximation depends on the matrix

condition number as demonstrated by computation using two different matrix condition

numbers. The results of reduced rank image compression using MATLAB indicate that

low rank image approximations produce reasonably identifiable images. The SVD low

rank approximation provides a compressed image with reduced storage compression ra-

tio of ten to fifty percent of the original file storage size. Our results for a .bmp image

indicate that there is a large range of choice from an identifiable but poor image of rank

16 approximation to a high quality rank 128 image. The original input matrix for com-

pression has full rank of 454. This corresponds to a choice of compression factors ranging

from 7 % to 50%. Image fidelity sensitive applications like medical imaging can use the

high end rank approximation. Other less fidelity sensitive applications, where it is just

required to identify the image, can take advantage of the low end of the approximation.

This is possible since the matrices Σ for all the images decay very fast as indicated by the

graphs of the singular values σi as a function of i. Low rank approximations based on

the largest first few singular values provide a sufficient approximation to the full matrix

representation of the image.
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A The MATLAB code used to perform rank approxima-

tion of the JPEG images

clear; close all;

fname=input(’Give file name within single quotes: ’); colorflag=input(’Enter 1 for a

color image, 0 otherwise: ’);

I=imread(fname); if colorflag == 1 I=rgb2gray(I); end I=double(I);

figure(1) imshow(mat2gray(I)) title([’Gray scale version of ’ fname])

disp(’=============================================’)

disp(’We will now study the singular value decomposition of the image.’) disp(’ ’)

disp(’Press any key to compute the singular value decomposition.’) pause disp(’Please

wait...’)

[U S V]=svd(I,0);

disp(’The singular value decomposition has been computed.’) disp(’The output con-

tains three matrices U, S and V.’) whos disp(’ ’) disp(’Press any key to continue’) pause

disp(’=============================================’)

disp(’We will now look at the singular values.’) disp(’The singular values are given along

the diagonal of S.’) disp(’Notice the rapid decay!’)

figure(2) plot(diag(S)) title(’The singular values of the image’) ylabel(’Magnitude of

singular values’)

disp(’ ’) disp(’Press any key to continue.’) pause

disp(’=============================================’)

disp(’The columns of U contain an orthogonal basis for the ’) disp(’column space of the

image.’) disp(’The columns of V contain an orthogonal basis for the ’) disp(’row space

of the image.’) disp(’ ’) disp(’Press any key to continue.’) pause

disp(’=============================================’)

disp(’Let us look at a rank one approximation of the image.’)

Ssp=sparse(S);

[M,N]=size(U); Utemp=zeros(M,N); Utemp(:,1)=U(:,1);
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[M,N]=size(V); Vtemp=zeros(M,N); Vtemp(:,1)=V(:,1);

Irank1=Utemp*Ssp*Vtemp’; figure(3) imshow(mat2gray(Irank1)) title(’A rank one

approximation of the image’)

disp(’Note that all columns are just multiples of a single column vector!’)

disp(’ ’) disp(’Press any key to continue.’) pause

disp(’=============================================’)

disp(’Let us look at a rank two approximation of the image.’)

[M,N]=size(U); Utemp=zeros(M,N); Utemp(:,1:2)=U(:,1:2);

[M,N]=size(V); Vtemp=zeros(M,N); Vtemp(:,1:2)=V(:,1:2);

Irank2=Utemp*Ssp*Vtemp’; figure(4) imshow(mat2gray(Irank2)) title(’A rank two

approximation of the image’)

disp(’All columns are linear combination of just two column vectors.’)

disp(’ ’) disp(’Press any key to continue.’) pause

disp(’=============================================’)

disp(’Let us look at a rank four approximation of the image.’)

[M,N]=size(U); Utemp=zeros(M,N); Utemp(:,1:4)=U(:,1:4);

[M,N]=size(V); Vtemp=zeros(M,N); Vtemp(:,1:4)=V(:,1:4);

Irank4=Utemp*Ssp*Vtemp’; figure(5) imshow(mat2gray(Irank4)) title(’A rank four

approximation of the image’)

disp(’All columns are linear combination of just four column vectors.’) disp(’Despite

using only four basis vectors, you should be able ’) disp(’to see some structure in your

image.’)

disp(’ ’) disp(’Press any key to continue.’) pause

disp(’=============================================’)

disp(’Let us look at a rank eight approximation of the image.’)

[M,N]=size(U); Utemp=zeros(M,N); Utemp(:,1:8)=U(:,1:8);

[M,N]=size(V); Vtemp=zeros(M,N); Vtemp(:,1:8)=V(:,1:8);

Irank8=Utemp*Ssp*Vtemp’; figure(6) imshow(mat2gray(Irank8)) title(’A rank eight

approximation of the image’)
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disp(’All columns are linear combination of eight column vectors.’)

disp(’ ’) disp(’Press any key to continue.’) pause

disp(’===========================================’)

disp(’Now choose your own rank!’) Nrank=input(’Enter rank you want to study: ’)

Ssp=sparse(S);

[M,N]=size(U); Utemp=zeros(M,N); Utemp(:,1:Nrank)=U(:,1:Nrank);

[M,N]=size(V); Vtemp=zeros(M,N); Vtemp(:,1:Nrank)=V(:,1:Nrank);

Irank=Utemp*Ssp*Vtemp’; figure(7) imshow(mat2gray(Irank))

title([’A rank ’, num2str(Nrank), ’ approximation of the image.’])
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