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ABSTRACT 

 

Understanding the life history of marine wildlife is essential for the management of both 

commercial and recreational fisheries. Bonnetheads (Sphyrna tiburo) are a component of the 

small coastal shark (SCS) fishery complex, and are caught regularly in both types of fisheries. 

Despite being well studied in the Gulf of Mexico, little is known about bonnetheads from the 

U.S. Atlantic coast.  The goal of the first component of this study was to provide new, key 

information on their life history to improve management of U.S. Atlantic populations, 

particularly by identifying reproductive seasonality, periodicity and fecundity. This was 

accomplished by examining sexually mature male and female bonnetheads, collected monthly 

(2012-2014) from South Carolina, Georgia, and Florida waters, and monitoring changes in 

reproductive tract morphology. Changes reflected a seasonal reproductive cycle with an annual 

breeding periodicity. Histology was used to confirm events and identify other important periods 

in the reproductive cycle, such as sperm storage in females. Overall, Atlantic coast bonnetheads 

were found to exhibit reproductive patterns similar to those reported in the Gulf with slight 

temporal shifts in the time of mating and ovulation and slightly lower fecundity ranging between 

1 and 12 with an average (±SE) of 7±3.8. Additionally, the second component of this study 

aimed to understand gonadal sex hormone regulation in S. tiburo reproduction with a particular 

focus on female sperm storage. Circulating plasma sex hormones increased in association with 

specific reproductive events.  Plasma 17β-estradiol and testosterone concentrations increased 

during sperm storage, whereas progesterone levels increased near the end of this stage. 

Immunocytochemical analysis of androgen, estrogen, and progesterone receptors in the oviducal 
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gland, the organ that stores sperm in female bonnetheads, demonstrated that epithelial cells of 

sperm storage tubules and spermatozoa itself are direct targets for these hormones, playing a role 

in regulating this poorly understood process.  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

COMPONENT I: 

Reproductive biology of the bonnethead (Sphyrna tiburo) from the southeastern 

U.S. Atlantic Coast 

 

INTRODUCTION 

 

The bonnethead is the smallest living member of the hammerhead family, Sphyrnidae, generally 

ranging from about 0.91-1.5 m (Chapman et al., 2004; Lombardi-Carlson, 2007).  Bonnetheads 

commonly reside in the tropical and subtropical coasts of the Western Atlantic and Eastern 

Pacific oceans and undergo short seasonal migrations typically in groups of about 5 to 15 

individuals (Driggers et al., 2014). Despite their movements towards warmer waters during 

autumn and winter and to cooler waters during spring and summer, bonnetheads exhibit both 

intra and inter-annual philopatry, resulting in long-term residency of coastal estuarine systems 

(Heupel et al., 2006; Driggers et al., 2014).  Their diet primarily consists of crustaceans, 

especially portunid crabs, although cephalopods have also been shown to be important prey in 

certain regions (Cortes et al., 1996; Chapman et al., 2004; Heupel et al., 2006, Bethea et al., 

2007).   

 

The bonnethead is one of the most extensively studied shark species on the U.S. east coast, 

especially in the eastern Gulf of Mexico.  Studies on reproduction in the Gulf of Mexico 

population show that male spermatogenesis occurs from late spring to early autumn annually and 

copulation occurs from November through December (Parsons, 1993; Marine et al., 1995; 



2 
 

Manire and Rasmussen, 1997; Gelsleichter et al., 2003; Nichols et al., 2003; Lombardi- Carlson, 

2007; Castro, 2009).  Females are believed to store sperm for several months afterwards (Manire 

et al., 1995). Ovulation and fertilization take place from mid-March to early April and parturition 

occurs in late summer-early autumn after a gestation period of about 4-5 months.  S. tiburo has 

the shortest known gestation period in sharks and are placental viviparous (Parsons, 1993; 

Marine et al., 1995; Manire and Rasmussen, 1997; Gelsleichter et al., 2003; Nichols et al., 2003; 

Lombardi-Carlson et al., 2007; Castro, 2009).    

 

Although Gulf of Mexico bonnetheads have been well studied, much less is known about U.S. 

Atlantic populations of this species.  This raises concern as the U.S. bonnethead fishery stock has 

long been defined as occurring from North Carolina through the Straits of Florida and to the Gulf 

of Mexico as a single population yet it is managed solely based on life history data from the 

Gulf.   S. tiburo are a component of the small coastal shark (SCS) fisheries complex and this 

species has high capture rates in gillnets and trawls, placing members of this group at risk of 

overexploitation. Therefore, it is necessary to understand their reproductive periodicity and 

seasonality as well as their fecundity to understand how quickly the population can grow.  To 

address lack of knowledge regarding these populations, Frazier et al (2014) recently conducted a 

study of age, growth, and maturity of Atlantic bonnethead populations. They found that Atlantic 

bonnetheads mature at twice the age of their Gulf of Mexico counterparts and may live twice as 

long. Considerable differences in life history may result in differences in population growth 

between these two locales. Given age, growth and maturity differences between bonnetheads in 

the Atlantic and the Gulf of Mexico, it is critical to also examine whether differences occur in 



3 
 

reproduction between the bonnethead populations in these areas to ensure that the species is 

managed using the best available data.   

 

The purpose of this study was to characterize reproductive patterns of bonnetheads from the 

southeastern U.S. Atlantic and compare these data to Gulf of Mexico populations.  In particular, 

the main goals of this study were to identify the timing of reproductive events, as well as 

determine reproductive periodicity and fecundity. To accomplish this, we conducted 

morphological and histological assessments of reproductive activity in mature male and female 

bonnetheads collected through a large portion of their southeastern U.S. Atlantic range.  The goal 

is to provide this life history data to fisheries managers in an effort to improve management of 

the species.  

 

 

 

 

 

 

 

 

 

 

 

 



4 
 

 

METHODOLOGY 

 

Collections 

Mature male and female bonnetheads were collected from April 2012 to October 2014 from 

estuarine, nearshore, and offshore locations in South Carolina (SC), Georgia (GA), and east 

Florida (FL) waters (Fig.1.1).  This area makes up a large portion of the species’ U.S. southeast 

Atlantic range.  Fish were sampled using bottom longline fishing and set gill nets in fishery-

independent surveys and commercial fishing trips.  

 

Biological sampling 

Following capture, sharks were sexed, weighed (kg), and measured (precaudal length (PCL), 

fork length (FL), total length (TL) and stretched total length (STL) in mm).  Afterwards, blood 

(~3 mL) was sampled via caudal venipuncture using sterile syringes and needles, transferred to 

vacuum tubes containing anticoagulant, and kept on ice until returned to the laboratory and 

centrifuged to separate plasma, which was stored at -80°C until used in a companion study on 

reproductive endocrinology.  Male maturity was determined based on the degree of clasper 

calcification and rotation, whereas female maturity was gauged using published data from 

Frazier et al. (2014) and later confirmed via dissection.  External characteristics indicative of 

reproductive activity, such as the presence of mating wounds in females, were also examined.   
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Figure 1.1.  Map of South Carolina, Georgia and Florida demonstrating sites where animals were 
collected in the present study. 
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Sharks were dissected to determine reproductive stage.  Length, width, and weight of each testis 

and width of the head epididymis were measured in males.  The seminal vesicles were also 

examined for the presence of semen.  Female ovarian follicles were categorized by color and 

texture with regards to egg development or reabsorption (i.e., pre-vitellogenic, vitellogenic, 

atretic) and enumerated, and maximum follicle diameter (MFD) was measured.  Width of the 

oviducal glands and the uteri were also measured.  If present, uterine ova or embryos were 

counted and embryo stretched total length (mm) and mode of nourishment (yolk-dependent or 

placenta-dependent) were recorded.  

 

After obtaining morphological measurements of gonads and other reproductive structures, 

sections (~2-3 mm) of components of the reproductive tract were fixed in 10% formalin in 

elasmobranch-modified saline for 48 hours, rinsed in water and transferred to 70% ethanol for 

long-term storage until used in histology. 

 

Histology  

Fixed tissue samples were embedded in paraffin for routine histology as described in 

Gelsleichter et al. (2003).  Following this, they were sectioned (5 µm) using a rotary microtome, 

mounted on poly-L-lysine coated slides, and stained with Harris hematoxylin and eosin to 

examine cellular architecture.  In particular, histological sections from the male testis and female 

oviducal gland were examined for the presence of mature spermatozoa to confirm when 

individuals were undergoing spermatogenesis or sperm storage, respectively. 

Data analysis 
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Morphological data on testis width and head epididymis width in males, and maximum follicle 

diameter, oviducal gland width, and embryo stretched total length in females were grouped by 

time of collection to characterize temporal patterns.  To determine if significant differences were 

present, mean values for these measures were compared using one-way ANOVA followed by 

Tukey Post-Hoc multiple comparisons test if data passed tests for normality and equal variance. 

Normality assumptions were tested by reviewing descriptive statistics, histograms and skewness 

and kurotosis for the given data. Data that did not fulfill these criteria were analyzed using 

Kruskal-Wallis analysis of variance followed by Dunn-Bonferroni posthoc test based on data 

homogeneity at a significance level of 0.05. Data such as histological observations were 

analyzed using microscopy, following procedures described in previous studies (Parsons and 

Grier, 1992; Maruska et al., 1996; Gelsleichter et al., 2003).  Patterns of Atlantic bonnethead 

reproduction were qualitatively compared with published data on S. tiburo from the Gulf coast to 

determine if patterns were similar.  
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RESULTS 

 

Males 

Morphological and histological analyses of reproductive condition were conducted on a total of 

67 and 32 males, respectively.  Testis width and head epididymis width varied seasonally in male 

S. tiburo, in which testes were significantly larger (Kruskal-Wallis and Dunn-Bonferroni, 

F=46.3, df=8, p=0.000) in late summer (August to September), then declined steadily from 

October to June (Fig. 1.2).  Histological assessments of testis architecture demonstrated that 

sperm production occurred between July and September, as demonstrated by progressive 

increases in the abundance of late-stage germ cells such as secondary spermatocytes, elongating 

spermatids and mature spermatozoa (Fig. 1.3).  Spermiation appeared to occur between August 

and September, based on increased presence of evacuated spermatocysts in the testis (Fig. 1.3).  

Semen was also present in the reproductive tract of all males captured during August and 

September, confirming that it was the period of peak sperm production and expression (Fig. 1.4).  

Testes were largely composed of early-stage germ cells in animals collected between February 

and June, suggesting that males are reproductively inactive during this time frame (Fig. 1.3).   
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Figure 1.2.  Width of a) testis and b) head epididymis in mature male bonnetheads from the U.S. 
Atlantic coast (n=67). Values are means (±SE). Sample size per month is shown in bars. 
Significance was determined using a) Kruskal-Wallis test of variance with Dunn-Bonferroni 
stepwise comparison (p=0.000) and b) one-way ANOVA with Tukey’s post-test (p=0.085) 
where letters above the bars represent Homogeneous subgroups. 
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Figure 1.3.  Histological transverse sections of testes from male bonnetheads collected 
throughout the different stages of the reproductive cycle. Images include a) 40x magnification 
view of a testis section of an individual from April exhibiting the presence of primary (SG1) and 
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secondary spermatogonia (SG2); b) 100x magnification of the box in a; c) 40x magnification of 
testis of animal collected in June additionally containing primary (SC1) and secondary 
spermatocytes (SC2); d) 100x magnification of the box in c; e) 40x magnification of  testis 
examined in September demonstrating spermatid (St) elongation and some spermatocysts 
containing mature spermatozoa (Sz); f) 100x magnification of the box in e; g) 40x magnification 
view of testis of a November individual containing several spermatocysts with mature 
spermatozoa (Sz), evacuated (Ev) spermatocysts and primary spermatogonia; h) 100x 
magnification view of  the box in g.   
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Figure 1.4.  Reproductive tract of a male bonnethead caught in early October demonstrating a) 
the location of the seminal vesicle (arrow), and b) expression of semen from the seminal vesicle 
(arrow, circle). 
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Females 

Morphological and histological assessments of reproductive condition were conducted on a total 

of 177 and 84 females, respectively.  Mating wounds were observed in female bonnetheads 

collected during late September, demonstrating the occurrence of copulatory activity (Fig. 1.5). 

Sizeable amounts of well-defined spermatozoa were observed in the oviducal glands of females 

collected between September and April using histology (Fig. 1.6).  Sperm were also present in 

oviducal glands of females collected between April and August, but were less abundant and 

appeared non-viable (Fig. 1.6).  Maximum follicle diameter and oviducal gland width varied 

seasonally, both significantly peaking in April-May (Kruskal-Wallis and Dunn-Bonferroni, 

F=82.9, df=9, p=0.000 and F=103.6, df=9, p=0.000, respectively) and then progressively 

declining to their significantly lowest sizes in July-August (Fig. 1.7).  Ovulated ova were present 

in the oviducts of some female S. tiburo (n=5) collected in mid-April, suggesting that the 

presence of spermatozoa in the oviducal gland between September and April reflected a sperm 

storage period of approximately 6-7 months (Fig. 1.8).  Ova or embryos were present in uteri 

from late April to early September, indicating that gestation requires approximately 4.5-5 months 

(Fig. 1.9).  Embryos grew rapidly during pregnancy from an average size (STL ±SE) of 51±1.7 

in June to 302±5.2 in early September (n=596, Fig. 1.10).  Litter size (number of embryos ±SE) 

ranged from 1-12 with an average of 7±0.1 (of n = 81 pregnant females examined). Non-fertile 

ova (n = 16) and embryos that underwent early death (n = 6) were observed in a total of 12 of the 

81 pregnant females, and the overall rate of ova fertilization failure, including nonviable or 

partially developed embryos was 3.56%.  Only 16 of the 133 mature females collected between 

May and September were non-pregnant, indicating that reproduction is largely annual in these 

populations.  Of the 16, nine were noted as postpartum based on uterine scarring and one was 

noted to be maturing. It is possible that the remaining six non-pregnant females may have newly 
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matured and were captured before having the opportunity to mate or may have undergone 

parturition without experiencing any noticeable internal scarring of the uteri. 
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Figure 1.5.  Presence of mating wounds in a female bonnethead (arrows). 
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Figure 1.6.  Histological architecture of oviducal gland (OG) from female bonnetheads collected 
during different reproductive stages.  a) Transverse section of OG from a recently mated 
individual collected in early September, observed at 40x. At 400x the following were observed: 
b) close-up of sperm becoming integrated into invaginations of cells from the lumen in a recently 
mated individual; c) OG of individual exhibiting sperm storage in the periphery of the organ with 
packed sperm enclosed in tubules; d) OG of an individual collected during late winter/early 
spring demonstrating continuation of sperm storage; e) OG of gestating individual with residual 
sperm in fluid-filled matrix that appear not to be viable and clearly disassociated from vesicle 
epithelial cells;  f) image of a non-storing tubule within the OG of a female collected in August. 
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Figure 1.7.  a) Maximum follicle diameter (MFD) in mature female bonnetheads from the U.S. 
Atlantic coast (n=155) and b) oviducal gland (OG) width (n=177). Values are means (±SE). 
Sample size per month is shown in bars. Significance was determined using Kruskal-Wallis 
analysis of variance with Dunn-Bonferroni stepwise comparisons (each with p=0.000). 
Homogeneous subgroups are shown using letters above the bars. 
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Figure 1.8. Reproductive tract of female bonnetheads caught prior to and during ovulation: a) 
reproductive tract of an immature female and a mature, ovulatory female including the oviducal 
gland, and paired uteri; b) reproductive tract of a pre-ovulatory female with enlarged, 
vitellogenic ova still in the ovary; c) reproductive tract of a female that is undergoing ovulation 
in which vitellogenic ova are present inside the uteri and some ova in the ovary appear as a 
mixture of vitellogenic and atretic eggs; d) reproductive tract of a postovulatory female with 
elongated, vitellogenic ova in the uteri.  
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Figure 1.9.  Ovarian status and transitional stages of embryonic development following 
fertilization within the reproductive tract of pregnant female bonnetheads. Images include: a) 
ovary of a female that is newly pregnant, containing atretic ova; b) ovary of a female bonnethead 
during late pregnancy just prior to parturition, containing small, non-vitellogenic ova; c) uteri 
containing ova that were recently ovulated and fertilized; d) small embryo attached to its yolk 
sac; e) a larger, yolk-dependent embryo; f) embryos that have depleted their yolk sac reserves 
while formation of the placenta has begun during implantation; g) embryo that is further in 
development that is larger in size and relies on a maternal placenta for nutrition uptake; h) 
placental embryos in condition just prior to parturition.  
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Figure 1.10.  Stretched total length (STL) of embryonic bonnetheads (n=596) in the uteri of 
southeastern U.S. Atlantic female bonnetheads collected during pregnancy (n=81). Data includes 
sizes of both placental and yolk-dependent pups.  Bars are means (±SE).  n per month are shown 
in bars. Significance determined using Kruskal-Wallis followed by Dunn-Benferroni (p=0.000). 
Homogeneous subgroups are shown using letters above the bars. 
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Figure 1.11.  Examples of reproductive failure observed in pregnant female bonnetheads. Images 
include: a) early embryonic death; b) two embryos attached to a single egg; c) two ova that were 
never fertilized or experienced early embryo death during blastocyst formation; d) embryo that 
partially underwent development.  
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DISCUSSION 

 

Reproductive patterns of bonnetheads from the southeastern U.S. Atlantic demonstrated a 

seasonal cycle and annual periodicity (Fig. 1.12).  Changes in the morphology of the 

reproductive tract clearly reflected temporal trends in both the male and female cycles. 

Spermatogenesis was shown to occur from late spring to late summer using morphological and 

histological analysis of the male reproductive tract.  Synchronized copulation in 

September/October was shown to be followed by storage of viable spermatozoa inside the 

female oviducal gland until the following spring via morphological and histological evaluation of 

this organ.  Follicle growth occurred at the same in preparation for ovulation around late 

April/May.  Gravid females were found to gestate for about 4-4.5 months with an average 

fecundity of approximately 7±3.84 pups per litter.  Following sperm transfer to female 

bonnetheads, the male reproductive tract gradually regresses and early-stage cells dominate the 

testes. Sexual inactivity is believed to occur in males during this time until the next annual 

mating season takes place. 

 

The current assessment of southeast Atlantic bonnethead populations showed very similar 

reproductive patterns to those described in their Florida Gulf coast counterparts with slight 

temporal shifts. Parsons (1993) reported that males in Florida Bay and Tampa Bay underwent 

sperm production from May through August, which peaked during the autumn and then 

decreased in December.  These events occur in Atlantic males from mid-summer through early 

autumn, peaking earlier in the year than the Florida Bay and  
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Figure 
1.12.  Outline of the monthly reproductive events observed to be occurring in both male and 
female southeastern U.S. Atlantic bonnethead sharks examined between 2012 and 2014. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 
 

Tampa Bay populations and showing a reduction in testis size as early as October. Parsons 

(1993) and Manire et al. (1995) found that females from Florida Bay, Tampa Bay and Pine 

Island Sound ovulate from March to April, are pregnant throughout the summer, and give birth 

in August through September, although recently postpartum females are noted as late as October.  

Female bonnetheads from the Atlantic ovulate later from April through June, experiencing 

parturition before the end of September. Additionally, both Gulf studies found that mating 

occurred from October to November where Atlantic female bonnetheads contained mating 

wounds beginning in September and throughout October.  

 

The present study is unique in that southeast Atlantic male S. tiburo were captured in the month 

of February where earlier published studies contained little to no samples from the winter 

months.  The low levels of spermatozoa observed in males during this time and the 

underdeveloped status of testes confirms that sexual activity is not occurring during this period.  

Therefore, female sperm storage rather than “sperm presence” is confirmed in this species as 

there is little likelihood that females would be capable of mating with males during the winter.  

Although this event clearly occurs, more research is needed to better understanding the process 

of sperm storage in this species.  

 

In addition to understanding the mechanisms and regulation of sperm storage and its advantages 

for successful reproduction, it is important to also address the topic of reproductive failure. 

Previous studies conducted on bonnethead populations from the Gulf of Mexico noted 

differences in reproductive success, even among bonnethead sharks from geographically close 

ranges. Specifically, Parsons (1993) reported a rate of unfertilized ova and/or early embryonic 
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death of 27% in female S. tiburo in Tampa Bay while fertilization/embryonic failure occurred as 

low as 4.3% in Florida Bay. The present study determined that Atlantic female bonnetheads 

undergo unsuccessful reproduction at a rate of about 3.6% which include unsuccessful 

fertilization of ova and early embryonic death. Varying degrees of unsuccessful fertilization can 

reduce fecundity and lower population growth rates. A demographic study conducted by Cortes 

and Parsons (1996) calculated population growth rates of S. tiburo assuming complete successful 

fertilization and offspring in both Florida Bay and Tampa Bay and noted that such rates may 

impact population growth from 3.5% to as high as 22%. More studies, however, are necessary to 

better understand the overall implications for this on population replenishment in order to 

properly improve the species management in an effort to prevent species overexploitation. 

 

In conclusion, important life history information was acquired for bonnethead populations in the 

U.S. Atlantic. Using quantitative and qualitative morphological and histological assessments of 

animals collected throughout a large portion of their Atlantic distribution, the current study 

determines that Atlantic bonnetheads are mating annually, have distinct seasonal reproductive 

patterns and bear about 7 offspring per mature female on average. The reproductive cycles 

described for both male and females are very similar to Gulf of Mexico bonnetheads previously 

studied. The time of certain reproductive events between the two locations are slightly shifted, 

specifically in mating and ovulation. Mating occurs during winter in the Gulf and occurs in late 

autumn in the Atlantic while females undergo ovulation in the spring versus in the Gulf (with a 

fecundity of about 10±3) and in early summer in the Atlantic (with a fecundity of about 7±4). 

This information will be provided to fisheries managers and will contribute to the assessment of 

S. tiburo stocks and current management regimes.  
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COMPONENT II: 

Reproductive endocrinology of the bonnethead (Sphyrna tiburo) with a focus on 

sperm storage regulations in females  

 

INTRODUCTION 

 

Female sperm storage is an evolutionary adaptation that exists across several disparate 

taxonomic groups as the ability of storing spermatozoa within the female reproductive tract for 

an extended period of time following copulation (Holt and Lloyd, 2010).  The independent 

evolution of this phenomenon throughout different animal lineages include insects, fish, 

amphibians, reptiles, birds and mammals, suggesting that its benefits are considerable (Calsbeek, 

et al. 2007; Holt and Lloyd, 2010; Moura et al., 2011).   

 

There are several hypotheses concerning the evolutionary benefits of this modified form of 

reproductive biology.  It is proposed that female sperm storage may have evolved as a means for 

maximizing reproductive success in species whose social systems require males and females to 

be largely solitary, and/or for those with asynchronous reproductive cycles (Holt and Lloyd, 

2010).  Sperm storage may also benefit species in which males and females lack sufficient spatial 

coexistence and for those for which energy costs must be optimized due to low or irregular food 

availability. Additionally, female sperm storage may have developed due to genetic advantages 

from long-term access to spermatozoa (Bretman et al., 2009). For instance, studies investigating 

paternity bias in female field crickets suggested that females prevent inbreeding by selectively 
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storing sperm that will optimize genes of the offspring (Bretman et al., 2009).  Such studies 

would indicate that an advantage to female sperm storage includes maximizing the genetic 

quality of offspring as well as ensuring maximum number of offspring and possibly may be 

coupled with sexual selection, such as cryptic female choice. Conversely, female sperm storage 

in Anolis lizards is believed to have evolved as a means for increasing genetic diversity of 

progeny through polyandry (Calsbeek et al., 2007).  Although the process of storing sperm in 

females may be similar across different animal groups, mechanistic variations in the duration of 

sperm storage, sperm survival and overall benefits exist for different organisms. For example, the 

duration of sperm storage may range from decades in female insects to as low as up to 11 days in 

uterine glands of dogs after copulation (Holt and Lloyd, 2010).  

 

In addition to studies about its evolutionary benefits, a number of recent publications have 

addressed the physiological factors that may play an important role in regulating various aspects 

of sperm storage within the female reproductive tract. In particular, it has been proposed that 

gonadal steroid hormones (i.e. androgens, estrogens, and progesterone) are involved in the 

regulation of long-term survival of sperm and their release near the end of the storage period 

(Holt and Lloyd, 2010; Awruch, 2013). Work conducted by Yoshimura et al. (2000) shows that 

estrogen receptors (ER) and progesterone receptors (PR) were present in the cells of the sperm 

storage tubules in the utero-vaginal junction of mature hens, as well as in immature hens treated 

with diethylstilbestrol, a synthetic form of estrogen.  However, ERs were not present in the 

reproductive tract of untreated immature individuals.  These results suggest that estrogens induce 

expression of these receptors, which may be important for the development and maintenance of 

sperm storage tubules (SST) as well as the regulation of sperm storage (Yoshimura et al., 2000; 
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Das et al., 2005).  More recently, progesterone has been specifically implicated in the cessation 

of sperm storage in birds. Ito et al. (2011) demonstrated that progesterone stimulates 

morphological changes in the SST of Japanese quail that result in the release of stored 

spermatozoa.  Recent studies have demonstrated a potential role for androgens in regulating 

sperm storage in some mammals, particularly in the greater Asiatic yellow bat Scotophilus 

heathii (Roy and Krishna, 2010; 2011).  These studies have demonstrated that higher 

testosterone levels occur during the storage period in S. heathii, and decrease with sperm release.  

In addition, androgen receptors (AR) have been localized within the epithelial cells of SST 

within S. heathii, and treatment with anti-androgens has been shown to reduce sperm survival, 

likely by influencing expression of pro-survival and pro-apoptotic genes (Roy and Krishna, 

2010; 2011).    

 

Many shark species have been shown to be capable of female sperm storage including the 

dogfish shark (Scyliorhinus canicula), the Oman shark (Iago omanensis), the Portuguese dogfish 

shark (Centroscymnus coelolepis), and 9 of 11 North Atlantic shark species, including the 

bonnethead (Sphyrna tiburo) (Parsons et al., 2007; Moura et al., 2011). Furthermore, tangential 

evidence for associations between plasma sex steroid hormone concentrations and female sperm 

storage has been observed in some of these species; for example, increases in both estradiol and 

testosterone have been observed to occur during sperm storage in S. tiburo (Manire et al., 1995).  

However, to date, no published studies have investigated the hormone regulation of sperm 

storage in the female elasmobranch reproductive tract.  Therefore, as a companion to research on 

the reproductive biology of the U.S. Atlantic bonnethead population, the main focus of this study 

was to examine the reproductive endocrinology of Atlantic bonnethead populations with a 
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particular focus on hormone regulation of female sperm storage. To accomplish this, the author 

validated previously described seasonal patterns in reproductive endocrinology for S. tiburo by 

examining changes in plasma testosterone (T) in males and T, 17β-estradiol (E2), and 

progesterone (P4) in females throughout the reproductive cycles. This second component of the 

study also examined the presence of intracellular receptors for these hormones in the oviducal 

gland (OG), as well as in the male testis. The purpose of the current study was to increase the 

understanding of the regulation of the poorly understood process of sperm storage in S. tiburo.  
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METHODOLOGY 

 

Biological data and sample collections 

Sharks were collected from South Carolina to south Florida using longlines and gillnets. All 

sharks captured were sexed, weighed (kg), and measured (precaudal length (PCL), fork length 

(FL), total length (TL) and stretched total length (STL) in millimeters). Blood (~3 mL) was 

collected via caudal venipuncture using sterile syringes and needles, transferred to vacuum tubes 

containing anticoagulant, and temporarily kept on ice until centrifuged to separate plasma, which 

was stored at -80°C until use for hormone analysis of testosterone (T) in males, and T,  17β- 

estradiol (E2) and progesterone (P4) in females. A sub-sample of animals were dissected to obtain 

morphological measurements of reproductive structures to assess reproductive stage at time of 

capture for a comparative reproductive study. Organ samples of the reproductive tract (including 

the testes from the males and the oviducal glands from the females) were collected from 

euthanatized individuals and fixed in 10% formalin in elasmobranch-modified saline for 48h, 

rinsed in water and transferred to 70% ethanol. Bonnethead organ sections (~2-3 mm) were 

embedded in paraffin for routine histology as described in Gelsleichter et al. (2003). 

Immunocytochemistry was used to examine presence of AR, PR, and estrogen receptor α (ERα) 

in histological sections.  

 

Hormone analysis  

Chemiluminescence immunoassays (CLIA) were used to measure plasma sex steroid hormone 

concentrations.  Plasma concentrations of T in males and T, E2 and P4 in females were analyzed 

using AccuLite CLIA kits (Monobind, Lake Forest, CA) following the manufacturer’s 
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instructions as performed by Anderson and Gelsleichter (unpublished). Luminescence in assay 

wells was measured using the Synergy HT Multi-Mode Microplate Reader (BioTek Instruments, 

Winooski, VT). Shark plasma was diluted in HAS Calibrator Matrix (Monobind, Lake Forest, 

CA) prior to conducting CLIA, following validated dilution levels by Anderson and Gelsleichter 

(unpublished): 1/50 for measuring T in males, and 1/25 and 1/10 for measuring E2 and P4/T in 

females, respectively.    

 

Immunocytochemistry  

Immunocytochemistry was performed on the oviducal gland of female and the testis of male 

bonnetheads using polyclonal rabbit anti-human AR (Millipore, AR-21), polyclonal rabbit anti-

human ERα (Millipore, C1355), and monoclonal mouse anti-human PR (Thermo Scientific, 

alpha PR-22) as primary antibodies. Tissue sections were incubated in a limonene-based solvent 

for deparaffinization, re-hydrated via incubation in a descending series of graded alcohols (100-

95%), and rinsed in tap water.  Sections were incubated at 95˚C in antigen retrieval solution (10 

mM sodium citrate, pH 6.0) for a duration of 20 minutes with the goal of exposing any epitopes 

of the specialized target receptors that may have been masked by the fixation process.  After 

sections were brought to room temperature, they were rinsed in reverse osmosis water and 

phosphate buffered saline (PBS), then blocked for nonspecific reactivity with primary antibodies 

via incubation in 2% normal goat serum in PBS (Vector) in PBS overnight at 4°C.  

 

Following blocking, slides were rinsed in PBS and endogenous peroxidase activity was 

quenched by incubation in 1:1 hydrogen peroxide:methanol for 15 min.  After rinsing twice in 
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PBS, sections were incubated overnight at 4°C in primary antibody diluted 1/100 in PBS 

containing 0.1% gelatin and 0.1% sodium azide (G-PBS). 

 

On the final day of the procedure, sections were rinsed with PBS containing 0.05% Tween-20 

(PBS-T), rinsed twice with PBS, and incubated for 30 min with secondary antibody: Anti-Rabbit 

Ig for AR and ER or Anti-Mouse Ig for PR (ImmPRESS HRP Anti-Rabbit or Anti-Mouse Ig 

(Peroxidase) Polymer Detection Kits, Vector). Afterwards, slides were rinsed with PBS three 

times and then incubated with the chromogen 3,3'-diaminobenzidine (ImmPACT DAB 

Peroxidase (HRP) Substrate, Vector) following the manufacturer’s instructions.  Following color 

development, slides were rinsed with tap water, then counter-stained with 2% methyl green 

(Vector) for 15-60 min at 37°C.  Sections were then rinsed in tap water, dehydrated in an 

ascending series of graded alcohols (95-100%), cleared in a limonene-based solvent, and 

coverslipped using Cytoseal 60.    

 

Immunocytochemical controls were performed via: 1) stepwise deletion of all stages of the 

immunocytochemical procedure; 2) replacement of the primary antibody with nonimmune rabbit 

IgG or diluent; and, for AR, 3) pre-absorption of the primary antibody with a 10-fold excess of 

the AR21 protein (the antigen used to make the PG-21 antibody). 
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Data analysis 

Hormone concentrations in males and females were grouped by month of capture or reproductive 

stage, respectively, to examine temporal, stage-associated changes. Mean hormone 

concentrations per month or stage were compared using Kruskal-Wallis nonparametric statistics 

followed by Dunn-Bonferroni multiple comparisons test at a significance level of 0.05 to 

determine if significant differences were present between time periods, as data generally did not 

pass tests for normality and/or equal variance. Normality assumptions were tested by reviewing 

descriptive statistics, histograms and skewness and kurotosis for the given data. Data that did not 

fulfill these criteria were analyzed using Kruskal-Wallis analysis of variance followed by Dunn-

Bonferroni posthoc test based on data homogeneity at a significance level of 0.05. 

Immunocytochemistry was examined using light microscopy and analyzed qualitatively.  To 

assess changes in hormone receptor localization patterns, females were separated into 3 major 

stages based on the reproductive stage of animals at time of capture: a) mating and early sperm 

storage; b) mid-late sperm storage through ovulation (OV); c) post-ovulation (Post-OV) to late 

pregnancy (LP) and through post-parturition (PP). 
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RESULTS 

 

Plasma hormone concentrations 

Plasma testosterone concentrations in the mature male bonnetheads (n=57) varied seasonally 

(Fig. 2.1).  The highest concentrations occurred from July through September with levels 

significantly peaking in August (Kruskal-Wallis and Dunn-Bonferroni, F=24.5, df=8, p=0.002), 

a period that coincided with increases in testes and epididymis size and the presence of mature 

spermatozoa in the testes in the same individuals, reflecting peak spermatogenesis. Plasma T 

concentrations were significantly lower in males collected from late autumn through the winter 

(Kruskal-Wallis and Dunn-Bonferroni, F=24.5, df=8, p=0.002), a time of reproductive inactivity 

based on reductions in testis size and the lack of mature spermatozoa in the same animals.    
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Figure 2.1. Plasma testosterone concentrations in southeastern U.S. Atlantic male bonnethead 
sharks (n = 57).  Values are means (±SE). Sample size per month is shown in bars. Significance 
was determined using Kruskal-Wallis test of variance with Dunn-Bonferroni stepwise 
comparison (p=0.002). Homogeneous subgroups are shown using letters above the bars. 
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Plasma E2 concentrations were also found to vary temporally in female bonnetheads (n=82) in 

relation to the reproductive cycle.  Circulating E2 concentrations (Fig. 2.2) were low in females 

collected just prior to and during the mating period, but exhibited significantly elevated levels in 

individuals collected during the sperm storage and pre-ovulatory periods (Kruskal-Wallis and 

Dunn-Bonferroni, F=48.2, df=7, p=0.000). Lower levels of E2 were observed during ovulation 

and throughout much of the gestation with the slight exception of the post-ovulatory period, 

during which 1 of the 2 females collected during this stage exhibited high concentrations.   
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Figure 2.2.  Plasma E2 concentrations in southeastern U.S. Atlantic female bonnethead sharks 
(n=82). Values are means (±SE). Sample size per reproductive stage is shown in or above bars. 
Reproductive stages include: storing, the period after mating when females are inseminated and 
retain viable sperm in the oviducal glands until fertilization can take place during ovulation; pre-
ovulation (Pre-OV); ovulation (OV); post-ovulation (Post-Ov); early pregnancy (EP), when 
embryos are yolk dependent; late pregnancy (LP), when embryos are placental; post-partum 
(PP); and mating. Significance was determined using Kruskal-Wallis test of variance with Dunn-
Bonferroni stepwise comparison (p=0.000). Homogeneous subgroups are shown using letters 
above the bars. 
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Plasma P4 concentrations in female bonnetheads (n=77) were also associated with different 

reproductive stages (Fig. 2.3).  Circulating P4 levels were low prior to and after copulation and 

remained low in females collected throughout much of the sperm storage period. Significant 

increases in plasma P4 levels were observed in females collected during the late stages of sperm 

storage and follicular development, and ovulation (Kruskal-Wallis and Dunn-Bonferroni, 

F=28.8, df=7, p=0.000). With the possible exception of the immediate post-ovulatory period 

when a single female with high plasma P4 concentrations was observed, circulating P4 levels 

remained low throughout most of gestation.  
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Figure 2.3.  Plasma P4 concentrations in southeastern U.S. Atlantic female bonnethead sharks 
(n=77). Values are means (±SE). Sample size per reproductive stage is shown in or above bars. 
Reproductive stages include: storing, the period after mating when females are inseminated and 
retain viable sperm in the oviducal glands until fertilization can take place during ovulation; pre-
ovulation (Pre-OV); ovulation (OV); post-ovulation (Post-Ov); early pregnancy (EP), when 
embryos are yolk dependent; late pregnancy (LP), when embryos are placental; post-partum 
(PP); and mating. Significance was determined using Kruskal-Wallis test of variance with Dunn-
Bonferroni stepwise comparison (p=0.000). Homogeneous subgroups are shown using letters 
above the bars. 

 

 

 

 

 

 

 



40 
 

Last, plasma T concentrations in mature females (n=37) also showed clear patterns throughout 

different reproductive stages (Fig. 2.4).  Concentrations were slightly elevated in females 

collected during the mating period and reached significantly higher levels (Kruskal-Wallis and 

Dunn-Bonferroni, F=25.4, df=7, p=0.001) in individuals collected throughout the period of 

sperm storage and folliculogenesis.  Hormone concentrations were markedly lower in females 

collected during ovulation and throughout gestation, reaching the lowest concentrations post 

partum.   
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Figure 2.4.  Plasma T concentrations in southeastern U.S. Atlantic female bonnethead sharks 
(n=37). Values are means (±SE).  Sample size per reproductive stage is shown in or above bars. 
Reproductive stages include: storing, the period after mating when females are inseminated and 
retain viable sperm in the oviducal glands until fertilization can take place during ovulation; pre-
ovulation (Pre-OV); ovulation (OV); post-ovulation (Post-Ov); early pregnancy (EP), when 
embryos are yolk dependent; late pregnancy (LP), when embryos are placental; post-partum 
(PP); and mating. Significance was determined using Kruskal-Wallis test of variance with Dunn-
Bonferroni stepwise comparison (p=0.001). Homogeneous subgroups are shown using letters 
above the bars.  
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Immunocytochemistry 

Immunocytochemistry was conducted on oviducal glands of 49 female bonnetheads representing 

3 stages: mating/early sperm storage (n=19, September-January), middle to late sperm storage 

(n=16, February-May), and the post-storage period (n = 14, June-August).  Presence of AR was 

most prominent in the oviducal gland during the early to late stages of sperm storage, exhibiting 

strong immunoreactivity in both the epithelial cells of sperm storage tubules, as well as the 

secretory tubules that are involved in producing eggshell membranes and various components of 

the post-ovulated egg. During post-ovulation, AR was strongly present in the apical and 

basolateral portions of the secretory tubules.  
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Figure 2.5.  Immunocytochemical analyses of oviducal gland from female bonnethead sharks 
collected during various stages of sperm storage. Arrows point to sites of positive 

AR ER PR 
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immunolocalization. All sections were observed at 400x. Hormone receptor types are organized 
by column from left to right (AR, ERα, PR) and oviducal gland components are organized by 
row (1: storage tubules/sperm, 2: secretory tubules, 3: luminal epithelium). a) Animals collected 
between the stages of PP and Mating (from September to January) and undergoing initial stages 
of sperm storage; b) oviducal gland of animals caught in February through May, demonstrating 
sperm being stored until OV; c) animals collected between June and August that were classified 
Post-OV through LP, which exhibit residual, seemingly nonviable sperm shortly after 
fertilization. 
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Immunoreactivity of ERα was also present throughout all reproductive stages in the epithelial 

cells of sperm storage and secretory tubules, as well as in the luminal epithelium although 

immunostaining was faint in females that were undergoing ovulation and gestation (Fig. 2.5).  

Most notably, ERα was consistently observed within the spermatozoa itself during all stages of 

sperm storage. 

 

Presence of PR was observed primarily in the secretory tubules and the luminal epithelium of 

females undergoing ovulation (Fig. 2.5). Localized PR was strong in sperm storage tubules in 

females collected during gestation. During mating, PR was not detected in the secretory tubules 

and only showed light staining in SST during much of the sperm storage period. 

 

Because of positive detections of ERα in stored spermatozoa, immunocytochemistry was also 

conducted on testes from 43 male bonnetheads to determine if ERα receptor localization patterns 

in pre-spermiated cells were consistent with those observed in the female oviducal glands.  

Androgen, progesterone and estrogen receptors were all present in the testis of all mature males 

examined.  Testes exhibited positive immunostaining for AR in Leydig-like interstitital cells of 

pre-meiotic and peri-meiotic spermatocysts, as well as in the Sertoli cells of spermatocysts 

containing spermatids and mature sperm. PR immunoreactivity was most prominent in males 

undergoing spermiation, particularly in Sertoli cells of spermatocysts containing mature 

spermatozoa (Fig. 2.6). ERα was present in spermatocysts containing mature spermatozoa (Fig. 

2.6). Although ER was present in Sertoli cells lining the spermatocyst epithelium, localization 

was strongest in the tail end of spermatozoa.   
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Figure 2.6. Immunocytochemical analyses of testis transverse sections from a male bonnethead 
collected in November 2013. Arrows point to sites of positive immunolocalization. a) Several 
spermatocysts containing mature sperm and exhibiting PR; observed at 100x; b) immunoreactive 
PR present in Sertoli cells in spermatocysts containing mature spermatozoa; observed at 400x; c) 
several spermatocysts containing immunoreactive ERα in the mitochondrial portion and sperm 
tails as well as Sertoli cells; observed at 100x; d) densely packed sperm exhibits deep 
immunoreactivity for ERα in the sperm tails; observed at 400x.  
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DISCUSSION 

 

The results of this study show associations between temporal patterns in circulating sex steroid 

hormone concentrations and reproductive stages in both male and female bonnetheads from the 

southeast Atlantic Ocean, confirming earlier suggestions of stage-specific roles for these 

hormones in regulating reproduction. Plasma T concentrations in males peaked during late 

spermatogenesis, validating earlier work by Manire and Rasmussen (1997) and confirming a role 

for this hormone in regulating male gametogenesis. In females, E2 levels peaked during the pre-

ovulatory period, also corroborating previous observations (Manire et al. 1995) and reflecting a 

well-established role for this hormone in regulating vitellogenesis.  Plasma progesterone 

concentrations in females increased during the late stages of follicular development and peaked 

during ovulation, suggesting a long-hypothesized role for P4 in regulating this process. Most 

importantly for this study, both testosterone and estradiol were elevated in females during sperm 

storage, suggesting roles for both of these hormones in regulating this process.  In contrast, 

progesterone levels only increased during late stages of sperm storage. Receptors for all three sex 

hormones were detected in the oviducal gland of female bonnetheads, suggesting that epithelial 

cells of sperm storage tubules and in the case of estradiol, stored sperm itself are target cells for 

direct actions of these hormones.   

 

Previous research by Manire et al. (1995) demonstrates an increase in circulating T levels in 

female bonnetheads between copulation and ovulation, leading the authors to hypothesize that 

androgens may be directly involved in regulating certain aspects of sperm storage. The results of 
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this study have both corroborated these findings and provided evidence for direct effects of 

androgens on epithelial cells of oviducal gland sperm storage tubules, which likely play a role in 

maintaining sperm vitality. This hypothesis is also supported by comparable work on some 

sperm-storing mammals, particularly S. heathii, which have also been shown to exhibit increased 

circulating androgen levels during sperm storage as well as AR immunoreactivity in epithelial 

cells of sperm storage tubules in the female reproductive tract. Furthermore, Roy and Krishna 

(2010; 2011) demonstrated that treatment of female S. heathii with the anti-androgen flutamide 

can result in a loss of viability in stored spermatozoa, possibly due to AR-mediated changes in 

the expression of pro-apoptotic versus pro-survival genes by sperm storage tubule epithelial 

cells, which may release these factors into the tubular lumen.  A similar mechanism may 

function to maintain sperm vitality in the bonnethead oviducal gland, warranting future studies 

on expression of mediators of cell death and survival in sperm storage tubules of this organ.   

 

Although it has not been directly addressed in past studies, increases in plasma estradiol levels 

during sperm storage have been reported to occur in female bonnetheads, suggesting that this 

hormone may play a regulatory role in this process along with its well-known role in stimulating 

follicular development (Manire et al., 1995).  Like androgens, this function may be mediated 

through effects on epithelial cells of sperm storage tubules based on patterns of ERα 

immunoreactivity in the oviducal gland.  However, it is also possible that E2 may directly affect 

stored spermatozoa, perhaps by influencing cell metabolism, motility, and/or other traits that 

may contribute to its fertilizing capacity. In fact, estrogens have been found to affect sperm 

capacitation and acrosomal reactions in mammals (Aquila and De Amicis, 2014).   
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Unlike T and E2, P4 did not appear to be greatly involved in regulating sperm survival in female 

bonnetheads, as circulating levels of this hormone are low during the early to middle stages of 

sperm storage. However, based on increases in plasma P4 concentrations during the late sperm 

storage period and ovulation, as well as PR immunoreactivity in epithelial cells of the sperm 

storage tubules, it is logical to suggest that P4 may be involved in the release of stored 

spermatozoa.  Progesterone has been proposed to affect sperm motility in some vertebrates as 

well as be capable of inducing the expression of sperm releasing factors in oviducal sperm 

storage tubules of birds (Ito et al., 2011; Aquila and De Amicis, 2014).  

 

In conclusion, hormone receptor localization suggests that T, E2 and P4 all appear to contribute to 

the regulation of sperm storage in female S. tiburo. All 3 hormones likely regulate the function of 

sperm storage tubule epithelial cells where E2 also exhibits direct effects on stored sperm.  All 3 

hormones appear to also regulate secretory activity and luminal function in the oviducal gland.  

This study provides a better understanding of hormone regulation in reproduction of the 

bonnethead (Sphyrna tiburo). Moreover, it provides the first thorough investigation of receptor 

localization in female sharks to include T, P4, and E2.  Understanding the regulation of sperm 

storage in females can lead to a greater understanding of how these populations benefit from this 

unique physiological ability, it can shed light on the overall advantages from an evolutionary 

perspective, and more importantly, more reliable data in this matter can ultimately provide great 

implications for future conservation. It is possible that sperm storage in female bonnetheads has 

evolved as an adaptation for cryptic female choice, possibly consisting of attempts to assuage 

sexual conflict by producing near equal fit offspring of both sexes.  Studies have suggested other 

possible techniques for sustaining sperm, such as decreasing body temperatures to optimize the 
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environment for sperm survival, or self-sperm sustenance from mitochondria and cytoplasm 

while encased in a cytoplasmic storage bag within the epithelial follicle or ova.  With this wide 

array of processes that manifest evolution at its finest, there is much need for further research on 

the subject (Holt and Lloyd, 2010).  
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