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Abstract 

Stochastic Calculus has been applied to the problem of pricing financial derivatives since 

1973 when Black and Scholes published their famous paper "The Pricing of Options and 

Corporate Liabilities" in the J oumal of Political Economy. The purpose of this thesis is to 

show the mathematical principles underlying the methods applied to finance and to 

present a new model of the stock price process. 

As part of this paper, we present proofs of Ito's Formula and Girsanov's Theorem which 

are frequently used in financial applications. We demonstrate the application of these 

theorems to calculating the fair price of a European call option. There are two methods 

that result in the same price: the risk neutral valuation and the Black-Scholes partial 

differential equation. 

A new model of the stock price process is presented in Section 4. This model was 

inspired by the model of Cox and Ross published in 1976. We develop the model such 

that a martingale measure will exist for the present value of the stock price. We fit data to 

the traditional geometric Brownian motion model and the new model and compare the 

resulting prices. The data fit some stocks well, but in some cases the new model provided 

a better fit. The price of a European call is calculated for both models for several different 

stocks. 
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1. Introduction 

The purpose of this thesis is to present rigorous mathematical justification for models 

used by financial professionals to price financial derivatives and to present an alternative 

model of the stock price process to be used in pricing derivatives. Derivatives are 

securities with payoffs that depend on the value of some underlying asset. Examples of 

these include European and American calls and puts, forwards, and futures. The 

mathematical models used to price these securities have become quite sophisticated since 

the 1970s and make practical use of advanced mathematical theory. This theory includes 

stochastic calculus and the theory of partial differential equations. This thesis will present 

the mathematical background for these pricing models with comprehensive proofs, show 

the development of the models, and test the reliability of the models with historical data. 

Most of this thesis is an exposition of well established methodologies used in finance 

with the exception of the model presented in section 4.2 which is the work of the author 

and Dr. Denis Bell. Please see the references for suggested reading. 

The thesis is divided into sections as follows: 

Section 2 

The mathematical framework for derivative pricing models is the theory of stochastic 

calculus. In order to develop this theory rigorously, we will present the definition of the 

Ito integral and the proof of its existence for a large class ofintegrands, L 2
• We will then 

prove some fundamental theorems of stochastic calculus including the stochastic product 



rule, Ito's Formula, Girsanov's Theorem, and the conditions for existence and uniqueness 

of solutions of stochastic differential equations. 

Section 3 

Financial models for pricing derivatives will be developed from the mathematical theory. 

To demonstrate the theoretical framework with a simple example, the Black-Scholes 

formula for pricing European call options will be developed. The price of a European call 

will be developed using two methods: 

• Risk Neutral pricing method, and by 

• Solving a Partial Differential Equation with boundary conditions 

The same model of stock prices underlies both of these methodologies and they are 

shown to produce the same result. 

Section 4 

Two alternative stock models will be presented along with the price of a European call 

based on these models. One of these models is based on a paper by Cox and Ross [6] who 

solved for the price of a European call in an infinite series. Their methodology was very 

advanced and beyond the scope of this thesis. The model devised by Bell and Stelljes is 

much easier to implement. 
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Section 5 

Data will be fitted to the stock models presented in sections 3 and 4. The estimated 

parameters will be used to price a European call option. 

Section 6 

Conclusions. 
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2. Mathematical Background 

2.1 The Ito Integral 

In this section, we will present the definition of the Ito integral and prove its existence for 

a class of integrands. The theory presented in this section is taken from Friedman [1] with 

the exception of the proof of Girsanov's Theorem which is the work of Dr. Denis Bell. 

Definition 1: Brownian Motion 

Let (Q,'T,P) be a probability space with sample space Q, sigma-algebra 'T, and 

probability measure P. A Brownian motion is a stochastic process w: [ 0, oo) x Q ~ lR 

with the following properties: 

(1) w(O)=O. 

(2) E[w(t)]=O. 

(3) w(t) has stationary increments: w(t + s)- w( s)- w(t). 

(4) w(t) has independent increments: for 0 s t1 < t2 s t3 < t4 , w(t4 )- w(t3 ) and 

w ( t2 ) - w ( t1 ) are independent. 

(5) The sample path: t ~ w(t) is continuous almost surely. 

The above definition of Brownian motion results in the following additional properties: 

(1) w(t)- N ( 0, ct) where cis a positive constant. We assume throughout that 

c=l. 
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(2) Sample paths are nowhere differentiable almost surely. 

(3) Brownian motion has unbounded variation almost surely on any interval. 

12 

In particular, the stochastic integral J! (s )dw( s) cannot be defined as a 
,, 

Riemann-Stieltjes integral. 

Definition 2: The Class of Integrands for the Ito Integral 

The class of integrands for which the Ito integral will be defined is denoted L 2 
[ 0, T] . It is 

the set of functions, f such that 

(1) f is jointly measurable on [O,T]x.n. i.e. for any Borel set B c lR, 

f-1 (B)E o-([O,T]x'F). 

(2) f is adapted (non-anticipating), i.e. f (t, w) depends only on { w( s): s:::; t}. 

Forany f andgE L2 wedefineaninnerproduct (J,g)=E[f f(s)g(s)ds]anda 

norm llfll = (J, !)112 = ( E[ f j
2 

(s )ds Jr2

• It can be shown that L2 is complete with 

respect to this norm. Thus, L 2 [O,T] is a Hilbert space. 

We now define a subclass 8 c L2 
[ 0, T] of random step functions that have the following 

additional property: 
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(4) There is a deterministic partition, 0 = t0 < t1 < t2 < ... < tn = T such that 

We will need to define a filtration: 

Definition 3: Filtration 

A filtration, <f; = C5 ( w ( s) : s ::S: t) , the a-algebra generated by the random 

Definition of the Ito Integral for Step Functions 

n 

For a function f = L f ( t;) Z(t; ·'i+ll where f ( t;) E 8 , the Ito integral is defined as 
i=O 

T n-! 

fJ(s)dw(s)= Lf(t;)[ w(t;+1)-w(t;)J. 
0 i=O 

Definition 4: The Space L2 

The space L2 is defined as L2 = {X : .Q --7 JR, E [X 2 J < oo} . 

A norm can be defined on L2 as follows: !lXII~ = E[ X2
]. 

The following lemma relates the norm on L2 to the norm on L2 [O,T]. 
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Lemma 2.1.1 

For jE 8 

(i) E [ f fdw J = 0 . 

(ii) E[(f fdwr]=E[f !2 (t)dt]=ll!ll2
• 

i.e. II f fdwll: = 111112 

• 

Proof: 

Using properties (2), (3) and (4) in Definition 1, we have 

n-1 

= L E [ E ( f ( ti ) ( w ( ti+l ) - w ( ti ) ) I <J=;;) J 
i~O 

=0 

because f ( ti ) is <F,. measurable. 
I 

(ii) E[ [ftdw )} E[ f1J (t1 )f(t1 )[ w(t,.,)- w(t1 )][ w(t1",)-w(t1 )] ] 

= LE[f(ti)f(tJL\iwL\jw J 
i,j 
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where !:1iw = w(ti+l)- w(ti). 

Case i =t- j : We assume without loss of generality that i < j . Then, 

since f ( ti ) , f ( t j ) and !:1i w are measurable with respect to~ . Therefore, 

= 0 since E [ 1:1 j w I ~ J = 0 by the independent increment property of Brownian 

motion. 

Case i=j: 

E[f2 (ti )(1:1iw)
2

] = E[ E[f 2 (ti )(1:1iw)
2 1 ~ ]] 

= E [!2 
(ti )E[ (!:1iw )

2 I~]] 

= E[f2 
(ti) E[ ( w(ti+l) -w(ti) f ]] 

= E [ j 2 
( ti) J ( ti+t - ti) also by the properties of Brownian motion. 

Combining the two cases, 
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Lemma2.1.2 

8 is dense in £ 2 [O,T) with respect to Ill In other words, given any 

f E £ 2 [O,T], 3{!,,} c 8 such that 

IIJ- fnii~O asn ~co. (2.1.1) 

Proof: 

See Friedman [ 1]. 

Given Lemma 2.1.1 and Lemma 2.1.2, we can define the Ito integral for any 

f E £ 2 [O,T] as follows. Choose a sequence{!,,} c 8as in Lemma 2.1.2. Then {fn}is a 

Cauchy sequence in £ 2 
[ 0, T] . Thus 

~ E[f{J"- fm )
2 
(t )dt] by Lemma 2.1.1 

= I lin - fn 112 ~ 0 as n, m ~ oo • 

T T 

It follows that J f,,dw is a Cauchy sequence in L2
• Thus J f,,dw has a limit in L2 

• The Ito 
0 0 

T 

integral is defined as lim J!ndw. 
n---;oo 

0 
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The integral is independent of the choice of the approximating sequence, {fn}. To show 

this, let {gn} be another sequence of step functions with II!- gn 11-----7 0. Then 

llfn- gnll-----7 0 and we have 

=IIi,, - g n 11
2 

-----7 o · 

T T 

Thus lim fi,,dw =lim fgndw. 
n--?oo n-too 

0 0 

Properties of the Ito Integral 

( 1) Linearity: let a, b E lR and f, g E .£2 
[ 0, T] . Then af + b g E .£2 and 

T T T 

j(af+bg)dw=a fJdw+b fgdwa. s. 
0 0 0 

~ ~ ~ 

(2) If 0 < t1 < t2 ,J E .£2 then J fdw = J fdw + J fdw . 
0 0 ,, 

( 4) For f E .£2 
[ 0, T], define ; ( s) = r fdw = r f X[o,s]dw. Then there exists a version of 

the process q such that s -----7 q ( s) is continuous almost surely. See Friedman [1] for a 

proof. 

10 



The Ito integral does not follow the same chain rule as the Riemann-Stieltjes integral. For 

G 1 
example, it is not true that Jw( s) dw(s) = -[ ( w(t2 ) f-( w(t1 ) f J. In the next section, we 

~ 2 

will give the correct version of this formula. 

2.2 Ito's Formula 

Ito's Formula, the chain rule for Ito integrals, is central to the theory of stochastic 

calculus. In this section, we will present and prove Ito's Formula. This will require 

several preliminary results, which we now state and prove. 

Lemma2.2.1 

Let w ( t) be a Brownian motion and let IT, be a sequence of partitions of the interval 

m" 2 

[a,b] with mesh liT, I~ 0 as n ~ oo. Define S, = 2.:[ w(t,,j )-w(t,,j_1)] • Then 
j=l 

S, ~ b-a in the mean. 

Proof: 

Let tj = t,,j and m = m, for each n. Then, 

11 



~ E[~~(Yf -!)(t1 -t1_,)(v,' -!)(t, -t,_,)-

~ E[~ (Yf -1)' (t1 -t1_.}' ]+ E[~( Yf -!)(t1 - t1_,)( Y,' -I )(t, -t,_,)] 

Since the Yjs are independent and identically distributed, 

~ E[{~2 -1)
2

](b-a)IITnl· 

Lemma2.2.2 

Let w(t) be a Brownian motion. Then for 0 < t1 < t2 

12 1 2 2 J w ( t) dw ( t) = - [ ( w ( t2 ) ) - ( w ( t1 ) ) - ( t2 - t1 ) J 
t 2 
I 

or stated as a differential 

d(w(t)f =dt+2w(t)dw(t). 
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Proof: 

Let [t1, t2 ] be partitioned with It = {t1 = t1,n < t2,n < · · · < tn,n = t2 } • Then, 

l2 n-1 

Jw(t )dw(t) = ~~L w(tk,n )( w(tk+l,n)- w(tk,n)) 
11 k=l 

= ~ ~~~ {[ ( w(tk+l,n) f-( w(tk,n) f]-[ w(tk+l,n)- w(tk,n) T} 

By Lemma 2.2.1, the limit above is t2 - t1 • 1111 

Lemma2.2.3 

lz lz 

Let w(t )be a Brownian motion. Then Jw(t )dt + Jtdw(t) = t2 w(t2 )- t1w(t1 ) or stated as 
II II 

a differential, d ( tw ( t)) = w ( t) dt + tdw ( t) . 

Proof: 

lz n-1 

Jw(t) dt = ~~n; L w(tk+l,n) (tk+l,n - tk,n) in probability. 
II k=l 

(2.2.1) 

(2.2.2) 

Add (2.2.1) and (2.2.2) 

~ ~ ll~ 

Jw(t )dt + Jtdw(t) = ~J2L[tk+l,n w(tk+l,n)- tk,nw(tk,n)] 
11 11 k=l 
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The next two lemmas will be stated without proof. These are needed in the proof of the 

stochastic product rule. See Friedman [1] for proofs. 

Lemma 2.2.4: 

Let f and fn be in L2 [a, b] and suppose that 

b p 

~ !,, ( t)- f ( t )1
2 

dt -7 0 as n -7 oo 

a 

Then 

b p b 

J !,, ( t) dw ( t) -7 J f ( t) dw ( t) . 
a a 

Lemma 2.2.5: 

T p 

Let f and!,, be in L2 
[ 0, T] and assume that ~ fn ( t) - f ( t )1

2 
dt -7 0 as n -7 oo • Then 

0 

f f p 

sup J fn ( s) dw ( s) - J f ( s) dw ( s) -7 0 as n -7 oo . 
O~t~T O O 

We now have all the facts needed to establish the stochastic product rule. 
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Lemma 2.2.6: Stochastic Product Rule 

Let d q1 ( t) = a1 ( t) dt + h1 ( t) dw ( t) 

and d q2 ( t) = a2 ( t) dt + h2 ( t) dw ( t) on [ 0, T] . 

Proof: 

First, let ai and hi be constant for i = 1, 2 . The result follows from Lemma 2.2.2 and 

Lemma 2.2.3. This is easily extended to step functions, ai and hi, because they are 

constant functions on sub-intervals. 

In the general case, approximate ai and hi by non-anticipative step functions ai,n and hi,n 

so that 

T 

~ai,n (t )- ai (t )idt ~ 0 a.s., 
0 

T 

~hi,n (t) -hi (t )1
2 

dt ~ 0 a.s. 
0 

I I 

Let qi,n (t) = qi ( 0) + Jai,n ( s) ds + Jhi,n ( s )dw( s). Then, by Lemma 2.2.5, 
0 0 

p 

sup I{" (t)-qi (t)l~o as n ~ oo. 
o,;;1g 

Thus, there is a subsequence, qi,n' such that 

12 p 12 

J qi ,n. ( t) h j ,n. ( t) dw ( t) ~ J qi ( t) h j ( t) dw ( t) as n ' ~ oo . 

~ ~ 

We also have: 

15 



12 12 

s~.n (t)aj,n (t)dt ~ f;i (t)aj (t)dt a.s. and 
~ ~ 

G G 
fb,,n(t)b2 , 11 (t)dt~ Jb,(t)b2 (t)dt a.s. 
~ ~ 

The lemma follows from the above three equations. 111 

We now have all the preliminary theory needed to prove Ito's Formula. 

Theorem 2.2.7: Ito's Formula 

Let d; ( t) = a ( t) dt + b ( t) dw ( t) and let f ( x, t) : lR x [ 0, co] ~ lR be a continuous function 

with continuous derivatives fr, fx, andfxx. Then, 

df (; ( t)' t) = [ ft (; ( t) 't) + fx (; ( t)' t) a ( t) + ~ fxr (; ( t)' t) b2 
( t)] dt 

+ fx (; ( t) , t) b ( t) dw ( t) . 

Proof: 

Step 1: For any integer m ~ 2, 

d ( w ( t) r = m ( w ( t) r-l dw ( t) + _!_ m ( m -1) ( w ( t) r-2 
dt ' 

2 

Proof by induction: 

case m = 2 : by Theorem 6, d ( w ( t) t = 2 w ( t) dw ( t) + dt . 

16 
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Suppose the statement is true for some m ~ 2 . Then, 

d(w(t))"'+
1 
=w(t)d(w(t))"' +(w(t))"' dw(t)+m(w(t))"'-

1 
dt 

=m(w(t))"' dw(t)+I_m(m-1)(w(t))"'-
1 
dt 

2 

+ ( w ( t) r dw ( t) + m ( w ( t) r-l dt 

=(m+1)(w(t))"' dw(t)+I_(m+1)m(w(t))"'-
1 
dt. 

2 

Now, let Q ( x) be any polynomial. By the linearity property of the stochastic integral, 

1 dQ ( w(t)) = Q I( w(t) )dw(t )+-Q "( w(t) )dt. 
2 

Step 2: Let G ( x, t) = Q ( x) g ( t) where Q ( x) is a polynomial and g ( t) is a continuously 

differentiable function for t ~ 0. By Lemma 2.2.6 and (2.2.3), 

dG ( w ( t), t) = Q ( w ( t)) dg ( t) + g ( t) dQ ( w ( t)) 

= [ Q ( W ( t)) g I ( t) + ~ g ( t) Q II ( W ( t))] dt 

+ g ( t) Q 1 
( w ( t)) dw ( t) 

or, stated as an integral 

1

2 [ 1 ] G ( w ( t2)- t2)- G ( w ( tl) 'tl) = / Gl ( w ( t)' t) + 2 G XX ( w ( t) 't) dt 

12 

+fox ( w(t ),t )dw(t ). 
II 

m 

(2.2.4) 

Step 3: Equation (2.2.4) holds for G ( x, t) = L h ( x) gi ( t) where hare polynomials and 
i~l 

gi are continuously differentiable functions. 

Now let Gn ( x, t) be polynomials in x, t such that 
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Thus, 

limGn (x,t) = f (x,t) 
n--7~ 

lim~ Gn (X, t) = fx (X, t) 
n--7~ ax 
. a2 
hm-2 Gn (x,t) = fcx (x,t) 
n--7~ ax 
lim aa Gn (x,t) = .t; (x,t) 
n--7~ t 

uniformly on a compact subset of lR X [ O,oo]. 

-Gn(w(t),t)+--2 Gn(w(t),t) dt ~~a 1 a
2 J 

11 
at 2 ax 

. ~~a 
1

2 

hm -G11 (w(t),t)-fx(w(t),t) dt=O a.s. 
n--7~ ax 

It 

Taking the limit as n ~ oo, 

1
2rl 1 ] J ( W ( t2 ) , t2 ) - J ( W ( tl ) , tl ) = } L h ( W ( t) , t) + 2 fx ( W ( t) , t) dt 
I 

lz 

+ Jt,(w(t),t)dw(t). 
It 

Step 4: Equation (2.2.5) extends to the process <I> ( w(t ),t) = f ( q1 +a1t +b1w(t ), t) 

where q1, a1, b1 are random variables measurable with respect to <J=; . In other words, 

(2.2.5) 

<I> ( W ( t2 ) , t2 ) -<I> ( W ( t1), t1 ) = 1[ .t; ( ~ ( t) , t) + a1 /, ( ~ ( t) , t) + ~ b1
2 
fu ( ~ ( t) , t)] dt 

It 

lz 

+ f bJ, ( ~ ( t) , t) dw ( t) 
It 

18 



Step 5: If a ( t), b ( t) are step functions, then 

G[ 1 ] f (; ( t2 ) ' t2 ) - f (; ( tl' tl ) ) = / h (; ( t)' t) + a ( t) fx (; ( t)' t) + 2 bl
2 

( t) fxx (; ( t)' t) dt 
1 

lz 

+ J b ( t) ft (; ( t), t) dw ( t ). 
11 

Denote successive intervals in [tpt2 ] by Ipl2, ... ,Ik. Sum the integral in Step 4 over all 

theljs and the above follows. 

Step 6: Let ai'bi be non-anticipative step functions such that 

T 

~ai ( t)- a ( t )I dt -----) 0 a. s. (2.2.6) 
0 

T p 

~bi(t)-b(t)l
2 

dt-----)0 (2.2.7) 
0 

and let 

t t 

~ ( t) = ; ( 0) + J ai ( s) ds + J bi ( s) dw ( s) . (2.2.8) 
0 0 

p 

Then, sup I ;i ( t) - ; ( t )I---) 0 . Hence, there is a subsequence { i 1} such that 
O"'t"'t 

sup ~~ ( t)-; ( t )I---) 0 a. s. as i = i 1 
-----) oo . This and (2.2. 7) imply that 

ogg 

T 2 p 

~bi ( t) /,. ( ~ ( t) , t) - b ( t) fx (; ( t), t )/ dt -----) 0 as i = i 1 
-----) oo . 

0 

It follows that 
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12 p 12 

J hi ( t) fx ( ;i ( t) , t) dw ( t) ~ J b ( t) fx (; ( t) , t) dw ( t) as i = i 1 ~ oo . 

~ ~ 

From (2.2.6), (2.2.7), and (2.2.8): 

as i = i 1 ~ oo, 

Writing the integral at the end of Step 5 with a= ai' b = bi, ; =~and taking limits as 

i = i I ~ oo , the formula in Step 5 follows for general a and b. 111 

2.3 Girsanov's Theorem 

In many of the financial applications presented in this thesis, we will need to find a 

probability measure such that a particular stochastic process becomes a martingale. A 

martingale is defined as a stochastic process that has the property that the expected value 

is equal to the last observed value. That is, if a process S (t) has been observed up to a 

time t0 , then for all t > t0 , E [ S ( t) J = S ( t0 ) • If a process is not a martingale with respect 

to a particular probability measure, it is sometimes possible to find another measure such 

that it is a martingale. The theorem that provides the means of making this transformation 

is GirsanOV1
S Theorem. 
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Theorem 2.3.1: Girsanov 1s Theorem 

I 

Let h (t) be a random adapted path with J( h 1 
( s) )

2 
ds < oo a. s. and let w be Brownian 

0 

motion with respect to the probability measure y. Define 

G ( w) = exp J h I ( s) dws -- J ( h I ( s)) 
2 

ds and assume that E [ G ( w) J = 1 . Let r be a 
{

I 1
1 

} 

0 20 

probability measure such that d y = G ( w) d y. Then, w- h ( w) has the same distribution 

with respect to r as w has with respect to r. 

Proof: 

Let Yn be a measure on l.Rn absolutely continuous with respect to Lebesgue measure, with 

Radon-Nikodym derivative d r,, = f ( x) . 
dx 

Let ¢ : l.Rn --7 lR be a bounded continuous function such that 

Then, 

i~~ l/J (X) f (X )dx = 1 .. l/J ( T ( Y)) f ( T ( Y)) J r ( Y) dy . 

It can be demonstrated that J r = 1 . Thus, 

f "'d = f "'(T ( ) ) f ( T ( y)) f ( ) d 
,k" r Yn k" r Y f ( Y) Y Y · 

21 



Now, let the interval [0,1] be partitioned by Tim = { 0 = t0 < t1 < · · · < tm = 1} and 

f( ) { 
~(yi-yi-1)2} Th 

y = exp - L.... ( ) . en, 
i=l 2 ti -ti-l 

Therefore, the theorem is true for finite dimensional processes. 

and Qlll : lR n ---7 Co by Qm ( X1' ... ' xm) = a piecewise linear path through X1' ... ' XII! • 

Then, Qm ( P," ( w)) ---7 w as m ---7 oo where w is the Brownian motion. 

As n ---7 oo, 

h" ( Pn ( W)) ---7 h , 

Qn ( h" ( P, ( W))) ---7 Qn ( P, ( h ( W))) ---7 h ( W). 

[ ( P,l ( w)) i - ( P,l ( w)) i-1 J [ h:l ( P,l ( w)) - h:~l ( P,l ( w)) J 
J ¢ ( Qn ( P, ( W)- h" P,

1 
( W))) X exp ti -ti-l 

2 [hi" ( p ( w)) - hi~ I ( p ( w)) J 
dy 

2(ti- ti-l) 

= l, ¢(Qn (y) )drn (y) by equation (2.3.1) 
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= t ¢(Qn (~ (w)))dr(w) 

-7 t¢(w)dy(w)asn-7oo. 

1111 

One application of Girsanov's Theorem is that given a stochastic process that is Brownian 

motion plus drift with respect to a probability measure defined by d r, we can find a 

probability measure defined by d fsuch that the stochastic process is Brownian motion 

with respect to the new measure. We will make use of this application in modeling 

financial derivatives. 

2.4 Stratonovich Calculus 

Stratonovich calculus is an alternative form of stochastic calculus. Any process that can 

be represented by an Ito integral can also be represented by a Stratonovich integral. In 

this section, we will present the definition of the Stratanovich integral and a formula to 

convert stochastic integrals from Ito form to Stratonovich form. 

Gard [8] provides a definition of the Statonovich integral as follows: 

Definition 5: Stratonovich Integral 

Let It = {t1,n = tl' t2,n, ... tn,n = t2 } be a sequence of partitions of the interval, [tl' t2 ] with 

meshiil,l-7 0 as n -7 oo. 
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12 n 1 
J f (t) 0 dw(t) = ~~~ 2( f (ti+l,n) + f (ti,n) )( w(ti+l,n)- w(ti,n)) · 
~ Fl 

(2.4.1) 

This is similar to the definition of the Ito integral but we use the average of f ( t) at both 

endpoints of the interval instead of the value at the left endpoint. An important property 

of the Stratonovich integral is that it follows the same chain rule as in Newtonian 

calculus. The next theorem shows a relationship between Ito and Stratonovich integrals 

which proves useful in solving stochastic differential equations. 

Theorem 2.4.1 

Let f ( t) = r g ( s) dw ( s) + r h ( s) ds . Then 

12 12 1 12 

J f ( t) o dw ( t) = J f ( t) dw ( t) + 2 J g ( t) dt . 
I, I, I, 

(2.4.2) 

Proof: 

See Gard [8]. 

2.5 Existence and Uniqueness of Solutions of Stochastic Differential Equations 

The following theorem from Gard [8] gives the conditions for the existence and 

uniqueness of stochastic differential equations. 

Theorem 2.5.1 

Given the stochastic differential equation on the interval [O,T]: 
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dX ( t) = f ( t, X ( t)) dt + g ( t, X ( t)) dw ( t) . (2.5.1) 

Suppose the following conditions are satisfied: 

• The functions f (t, x) and g (t, x) are measurable with respect to t and x for 

tE [O,T] and XE IR. 

• There exists a constant K such that for all t E [ 0, T] and x, y E IR 

o lf(t,x)-f(t,y)l+lg(t,x)-g(t,y)I~Kix-yl 

o IJ(t,x)l
2 

+lg(t,x)1
2 

~K2 (1+Ixn 

• X ( 0) is independent of w ( t) for t > 0 and E [ (X ( 0) t J < oo . 

Then there is a solution, X ( t) of (2.5 .1) on [ 0, T] which is continuous with probability 1 

and such that sup E [(X ( t) )
2 J < oo • Furthermore, the solution is path wise unique. In 

(O,TJ 

other words: If X and Y are two such solutions, then P(supiX (t)- Y (t )I= oJ = 1. 
(O,T] 

Proof: 

See Gard [8]. 
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3. Financial Models 

3.1 Assumptions 

Throughout this thesis, we will make certain assumptions about the financial markets. 

The assumptions are the same assumptions used to derive the Black-Scholes-Merton 

model for pricing derivatives. These assumptions are listed in Hull [ 4] as follows: 

1. The stock price follows the process: S ( t) = S ( 0) e11r+ow(r). 

2. It is possible to short sell securities and the full proceeds of the transaction are 

available for use. This transaction entails borrowing a security, then selling it and 

repaying the security at a later time. Short selling is equivalent to buying a 

negative amount of the security. 

3. There are no transaction costs or taxes. 

4. All securities are perfectly divisible. 

5. When modeling options we will assume that there are no dividends during the life 

of the option. 

6. Security trading is continuous. 

7. The risk-free interest rate, r, is constant over time and the same for all maturities. 

8. There are no opportunities for risk free arbitrage. This will be defined below. 
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Arbitrage 

Risk free arbitrage is a situation in which an investor will realize a profit with certainty 

with no initial investment. We will assume throughout this thesis that arbitrage is not 

possible. This assumption is essential to the development of option pricing models. 

Financial Derivatives 

Derivatives are securities that derive their value from some underlying asset. These 

include options and futures. Some examples are 

• Call option on a stock. This is the right but not the obligation to buy a share of a 

particular stock on or before a particular date, called the expiration date, for a 

predetermined price, called the exercise price. There are two common varieties of 

calls 

o American. These can be exercised at any time until the expiration date 

o European. These can only be exercised on the expiration date 

• Put option on a stock. This is the right but not the obligation to sell a share of a 

particular stock on or before the expiration date for a predetermined exercise 

price. There are also American and European versions of put options. 

• Futures contract on an asset such as a share of stock. This is a contract to buy (or 

sell) a share of a particular stock at a predetermined date for a predetermined 

price. Note that this is not an optional purchase. Once both parties enter a futures 

contract, the buyer is required to pay the predetermined price and the seller is 

required to deliver the asset. 

27 



We will develop models to determine a price for European call options using the 

assumptions listed in this section. 

3.2 Pricing a European Call Option- Risk Neutral Pricing Method 

In this section, we will develop the price for a European call option on a stock with price, 

S ( t) , exercise price, K, expiration date, T, and initial stock price, S ( 0) . We will use an 

approach called "risk neutral" pricing as presented in Baxter and Rennie [2]. The basic 

strategy of this method is to find the expectation of the present value of the option using 

"risk neutral" probabilities. The probability measure used to take expectation is not the 

actual probability measure of the stock but rather the probability measure that would exist 

in a risk neutral world. It turns out that the risk neutral probability measure is the measure 

such that the present value of underlying asset's price process is a martingale. We will 

find this new probability measure by invoking Girsanov's Theorem. 

To clarify the presentation of this method, we will first present an example using a very 

simplified model of the stock price process. This example is similar to examples 

presented in [3] and [4]. 
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Example 3.2.1 

Let the current market price of 1 share of a particular stock be S ( 0) = $100. Suppose that 

the future stock prices will follow a stochastic process such that the value at the end of 3 

months will be S
11 

= $112 with probability .75 or Sd = $89 with probability .25. 

Furthermore, suppose that the risk free interest rate will be a constant 5% annual rate for 

the next 3 months. 

Suppose you wish to purchase a European call option with this stock as the underlying 

asset with an expiration date 3 months from now and an exercise price of K = $105 . That 

is, in 3 months, you will have the right to purchase a share of the stock for $105. What 

should the buyer be willing to pay for this option? What price should the seller be willing 

to accept? 

We will show that the buyer should be willing to pay no more than $3.68 and the seller 

should be willing to accept no less than $3.68 for the call. This is true because a higher 

price would result in an arbitrage opportunity for the seller whereas a lower price would 

result in an arbitrage opportunity for the buyer. 

For example, suppose the call is sold for $3.00. Then the buyer has an opportunity to 

make an arbitrage profit. He can purchase 1,000 calls, short sell 308 shares of the stock 

and invest the difference at the risk free interest rate. The cash flows resulting from this 

transaction are summarized in Table 3.2.1 below: 

29 



Table 3.2.1 

Initial Final Cash Flow Final Cash Flow 
Investor's Action Cash Flow if stock goes up if stock goes down 

buy 1 000 calls -3,000 7,000 0 

short sell 308 stocks 30,800 -34,496 -27,500 

invest at the risk free rate -27,800 28,150 28,150 

TOTAL 0 654 650 

So, the buyer makes a profit regardless of the final stock price and does not need to invest 

any of his own money. The proceeds from the short sale of the stocks will finance the 

purchase of the calls and the investment at the risk free interest rate. 

On the other hand, suppose the call is sold for $4.00. Then the seller has an arbitrage 

opportunity. He can selll,OOO calls, purchase 308 shares of stock and borrow the 

difference at the risk free rate. The cash flows resulting from these transactions are 

summarized in Table 3.2.2. 

Table 3.2.2 

Initial Final Cash Flow Final Cash Flow 
Investor's Action Cash Flow if stock goes up if stock goes down 

short sell 1 000 calls 4,000 -7,000 0 

buy 308 stocks -30,800 34,496 27,500 

borrow at the risk free rate 26,800 -27,137 -27,137 

TOTAL 0 359 363 
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The seller makes a risk free profit with no initial investment. 

We could test various call prices until we find the unique arbitrage free price but there is 

a more straightforward method. We will find probabilities such that the present value of 

the stock price is a martingale and use them to calculate the present value of the expected 

cash flows. 

If the present value of the stock price is a martingale 

then E [ e -rT S ( T) J = e -rT ( pSu + ( 1- p) S d) = S ( 0) . Thus, the risk neutral probability that 

e'rs (0)-s 
the stock price increases is p = d • Substituting the values from our 

su -sd 

example, p = 0.533. 

At timeT, if the final stock price is Sd, then the value of the call is 0 because $89 is less 

than the strike price, $105. If the final stock price is Su at timeT, then the call is worth 

Su - K = 112-105 = 7. The expected present value using the risk neutral probabilities is 

C = e -(.25 )(.o5
) (.533) (7) = 3.68. 

This is the arbitrage free price of the call. Note that if we calculated the expected present 

value using the actual probability that the price goes up, we get 

C = e-(.25 )(.o5
) (. 75) ( 7) = 5.18. 
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From Table 3.2.2, it is clear that this price would create an arbitrage opportunity for the 

seller of the call. 

This method of pricing an option is known as the "risk neutral" method because it uses 

probabilities that would exist in a risk neutral world. In other words, if investors did not 

require additional return on their investment to compensate for risk, then the expected 

value of the final price would be the initial price plus risk free interest. In this make

believe world, the probability that the final price is $112 would be 0.533 instead of 0.75. 

In real markets, investors purchasing risky assets such as stocks demand a return in 

excess of the risk free rate to compensate them for the additional risk. In the context of 

pricing options, this excess return is irrelevant because it can be eliminated by hedging 

strategies as shown in Tables 3.2.1 and 3.2.2. 

The surprising fact established in this example is that the price of the call does not depend 

on the rate of return of the stock. Instead, it depends solely on the spread of the final 

stock prices and the risk free interest rate. In a more realistic model of the behavior of the 

stock price, the price of the call would depend only on the volatility of the stock price and 

the interest rate. 
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Section 3.3 Risk Neutral Pricing with Geometric Brownian Motion 

Let's proceed to a more realistic model of the stock price process: Geometric Brownian 

Motion. 

Stock price process: S (t) = S ( 0) e("-cr
2

lz)r+aw(r). Expressed as a differential, this is 

dS = pSdt + a'Sdw ( t) . 

Bond process: The price process for a risk free zero-coupon bond, such as aU. S. 

Treasury bond, with a face value of $1.00 can be represented asB (t) =err. 

(3.3.1) 

We will be interested in the process for the present value of a stock. This is the ratio of 

the stock price to the value of a bond, S ( t) = S ( t) I B ( t) . By Ito's Formula (Theorem 

2.2.7), 

dS = (JL- r) Sdt + aSdw(t). 

We want to find a probability measure such that S ( t) is a martingale. By Girsanov's 

Theorem, with h' (t) =- (JL- r) I a, the process can be written with a new Brownian 

motion, wB such that 
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dS = (,u- r) Sdt+ as( dw8 (t)- ,ll~ r dt). This reduces to dS = o-Sdw8 (t) which is a 

martingale. Using the new probability measure, the process for the stock price becomes 

S ( t) = S ( 0) exp { ( r-~ o-2
) t + o-w8 

( t)} . (3.3.2) 

We can now take the expected value of the cash flows resulting from a call at maturity 

with respect to the new probability measure and calculate the call price as the present 

value of this expectation. The pdf corresponding to the risk neutral probability measure is 

2 T 

f ( x) = ~ . In other words, it is the pdf of a Gaussian random variable with mean 0 
21ff 

and variance T. 

The value of the call at time 0 is 

C(O) =e-rr E[ max { S (T)- K,O}] 

~ r--0'2 I+<YW e 2 T 

{ 

( 
1 ) } _ _!:_w2 

= e -rT _!max S ( 0) e 2 
- K, 0 J21(i dw. 

To evaluate the integral, we will define the following variables: 

d ~ ln(S(O)/ K){-'f} 
o-..fi 

y = -wi.Jf, dy = -dwi.Jf 

u =-wi.Jf -o-.JT, du =-dwi.Jf. 
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We now have: 

112 _.i_ 
d+rY.fi 2 d 2 

C ( 0) = S ( 0) J e ~du-Ke -rT J e ~ dy . 
" 21C -~ " 21C 

The solution is: 

(3.3.4) 

where <I> ( ·) is the standard normal cumulative distribution function. 

In the next section, we will obtain the same result by solving a partial differential 

equation. 

3.4 Pricing a European Call Option - Partial Differential Equation Method -

Assuming Geometric Brownian Motion 

The risk neutral method is simple to apply and appeals to financial intuition. However, it 

is difficult to apply if we assume models of the underlying stock price process other than 

geometric Brownian motion. Risk neutral pricing is also difficult to apply to more 

complex options such as American calls and puts. An American option can be exercised 

at any time until the expiration date, so its value does not depend only on the payoff at 

expiration, making the risk neutral valuation more complex. A more commonly used 

pricing method, the Black-Scholes partial differential equation method is more difficult to 

apply but can be adapted to alternative stock models and more complex options. 
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The derivation and solution of the Black-Scholes PDE presented in this section is based 

on Wilmott, Howison and Dewynne [3]. We will refer to the simple binomial example in 

section 3.2 and illustrated in tables 3.2.1 and 3.2.2. In this example we see that, given the 

simple binomial probability distribution, both the buyer and the seller of a call can hedge 

their risk against both outcomes of the final stock price by constructing a risk free 

portfolio. In this section, we will construct a risk free portfolio from the buyer's point of 

view, but this time we will assume that the stock price follows geometric Brownian 

motion: 

dS = JiSdt + a Sdw ( t) . (3.4.1) 

We will denote the value of the risk free portfolio by II . The buyer will purchase a call 

option and short sell some unknown amount of shares, denoted by L1, needed to hedge 

the risk of the underlying stock process. The value of the portfolio is given by 

II(S,t) = C(S,t )-M (t). (3.4.2) 

The return on the portfolio over an infinitesimal time step is 

dii ( t) = dC ( t) - .LldS ( t) . 

Applying Ito's Formula with (3.4.1) and (3.4.2): 

dii=aS --.Ll dw(t)+ JJS-+-a S -+--~S dt. (ac J ( ac 1 2 2 a2c ac J 
as as 2 as2 at (3.4.3) 
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If we choose ~ = ac at the beginning of each time step as the amount of stock to short as 

sell, (3.4.3) reduces to 

The portfolio is entirely free of risk since the contribution of dw ( t) has been eliminated 

from the portfolio's return. Notice that this requires continuously rebalancing the 

composition of the portfolio. This is the reason we need to assume that security trading is 

continuous. 

Since the portfolio is risk free, it will earn a risk free rate of return, r, in an efficient 

financial market. Expressed mathematically, 

dii = riidt 

-+-aS- dt=r C-- dt. (ac 1 2 2 a2cJ ( ac) 
at 2 as 2 as 

The above reduces to the Black-Scholes PDE: 

ac 1 2 2 a2c ac 
-+-aS --+rS--rC=O. at 2 as 2 as (3.4.4) 

The boundary values corresponding to a European call option with excercise price K and 

expiration T are: 

C ( S, T) = max ( S - K, 0) the final condition (3.4.5) 
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C(O,t) =0 (3.4.6) 

c(s,t)-s asS-?=. (3.4.7) 

Now we have a boundary value problem that we will solve by the methodology presented 

in Wilmott, Howison and De wynne [3]. First, we will make some changes of variables to 

transform the Black -Scholes equation from a backward diffusion equation into a forward 

diffusion equation which has a straightforward solution. The changes of variable also 

make the variables dimensionless. 

S = Kex, t = T -1 ( ~ a 2
), C = Kv ( x, r). These changes of variables result in 

av a2v ( ) av /1 2 - =-+ b -l --bv where b = r -a . ar ax2 ax 2 
(3.4.8) 

The direction of time has reversed so that the final condition has now become an initial 

condition as follows: 

C(S,T) = max(S -K,O) 

Kv(x,O) = C(S,T) = max(S -K,O) =max( Kex -K,O) 

v ( x, 0) = max (ex -l, 0) . (3.4.9) 

Next, we set v = eax+fJTU (X, r) which leads to 

fJu+-=a u+2a-+-+(b-l) au+- -bu. au 2 au a2u ( au) 
ar ~ ~2 ~ 
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We can simplify this by choosing a= _ _.!_(b -1), p = _ _!_(b+ 1)
2

• The function v 
2 4 

_.!.( b-l )x-.!.( b+ I )2 r 
becomes v = e 2 4 u ( x, T) and the equation simplifies to 

(3.4.10) 

with final condition 

u(x,O)=u0 (x)=max e2 -e2 ,0 . 
( 

.!.(b+l)x .!.(b-l)x J 
(3.4.11) 

This is the heat equation for an infinite bar with diffusivity equal to unity. This problem 

has been studied for many years. The following solution is presented in Powers [5]. 

We assume that u (x, T) =X ( x )T ( T). ( 3.4.10) becomes 

x" (x) = r' ( T) = -,1? 
X(x) T(T) . 

This can be separated into two ordinary differential equations: 

x"(x)+A?X(x)=O (3.4.12) 

which has solution X ( x) = A(...l )cos ( ...lx) + B( A,) sin (A-x) 

(3.4.13) 

which has solution T ( T) = e --1?-r • 

Multiplying the solutions to (3.4.12) and (3.4.13 ), the solution to (3.4.10) is 
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u ( x, r) = [A(A-)cos (A-x)+ B (A, )sin (A-x) ]e--'2

r. 

Applying the initial condition, 

Uo (X) = r A (A,) cos (AX) + B (A,) sin (AX) d A, ' 

This is the Fourier integral representation of u0 • Thus, 

A (A,) = _!_ [ u0 ( x) cos (Ax) dx 
1C 

Substituting the above expressions into (3.4.14), 

(3.4.14) 

u (X, r) = ~ r[ [ Uo ( s )cos(A-s )dscos (AX)+ [ Uo ( s) sin (A-s )dssin (A-x) Jexp( -A2
T )dA

u (X, r) = ~ r [ Uo (X)[ cos(A-s )cos (AX)+ sin (AS )sin (AX) J ds 'exp ( -A2
T )dA-

The inner integral equals 

[
-(s-x)

2
] 

exp . 
4T 

Thus, the final solution to the heat problem is 

1 [ [-(s-x)2] u ( x, T) = c= u0 ( s) exp ds . 
2v1CT 4T 

Next, we need to transform the problem back to the original call pricing problem. Define 

z = ( s- x) / .J2i . The above integral reduces to 
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1 [ ( r;:::: ) _ _!_z
2 

u ( x, r) =- u0 z-v 2r + x e 2 dz 
21l 

= k [1~exp{~ (b+l)(x+z.Jii)}exp{- ~ z2 
}dz 

-k [1~exp{~ (b-1)( x+ z.Jii)}exp{ -~z2 }dz 

Substituting our original variables 

1 x=ln(SIK), r=-0"2 (T-t), C=Kv(x,r), 
2 

_ _!_(b-l}x-_!_(b+l}2 -r 
v(x,r)=e 2 4 u(x,r) 

we obtain the same solution as in Section 3.3. 
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4. Alternative Stock Models 

The model of the stock price process represented by equation (3.3.1) is a commonly used 

model but it is does not fit all stock price processes. Financial analysts must consider 

other models in order to price derivative assets accurately. In this section, we will present 

two alternative stock models. The first model is presented in a 1975 paper by Cox and 

Ross [6] and is discussed in Hull [ 4]. There is a solution for the price of a call via a 

partial differential equation but no solution via risk neutral valuation. 

4.1 The Cox and Ross Model 

In a paper written in 1975, Cox and Ross [7] present an alternative model of the stock 

process. The model is based on the assumption that the change in stock price is the sum 

of a deterministic drift term proportional to the stock price and a jump diffusion process. 

The jump diffusion process represents packets of information arriving at random times 

and having a random effect on the stock price. This is very close to what happens in real 

markets: financial analysts receive new information about a company at random points in 

time and incorporate the new information into their valuations of the company. 

The stock process is modeled by the stochastic differential equation 

ds = J.1Sdt + ( k -1) A.Sdt + ( 1- A.dt) 0 = j.iSdt + ( k -1) A.Sdt . 
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The stock price increases with a deterministic drift rate Jl and changes by an amount 

( k -1) S with probability A.dt or a change of 0 with probability 1- A.dt. If we let k be a 

random variable with distribution 

{
k + > 1 with probability ;r+ 

k= 
k- < 1 with probability ;r· 

In the limit, ask+ -7 1, k- -7 1 , and A -7 oo , the model becomes: 

dS = JiSdt + a.JS dw ( t) . (4.1.1) 

Assuming this model for the stock price process, we can solve for the price of a call by 

deriving a partial differential equation, then solving it, similar to the procedure used in 

section 3.4. 

First, we form a risk free portfolio by purchasing a call option with value C ( S, t) and 

short selling L1 shares of stock. The value of the portfolio is 

II(S,t)=C(S,t)-LlS(t). 

Next, we apply Ito's Formula to calculate the instantaneous return on the portfolio 

dii = 0''\f.) --L1 dw(t)+ JlS-+-a S-+-- JiLlS dt. r;:;(ac J [ ac 1 2 a2c ac ) 
~ ~ 2 ~2 ~ 

Choose L1 = ac so that the return is free of risk, 
as 

[ 
ac 1 2 a2c ac ) dii = JiS-+-a S-+--JILlS dt. as 2 as 2 at 
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The assumption of no risk free arbitrage implies that the above portfolio will earn the risk 

free rate of return. This leads to the equation 

( ac 1 2 o2
C ac J ( ac ) jJS-+-0" S-+--j.IAS dt= riTdt=r C--S dt. 

~ 2 ~2 ~ ~ 

This equation reduces to 

ac 1 2 o2c ac 
-+-0" S--+rS--rC=O. at 2 as 2 as 

(4.1.2) 

Note that this is almost the same as the original Black -Scholes equation except that the 

0"
2 term has a factor of S instead of S 2

. The final value and boundary conditions are 

also the same as the original Black-Scholes problem. However, the solution is much more 

difficult. Cox and Ross [7] provide the following solution: 

( ) 
~ (n+1)e-yynG(n+2,BK) -r(T-r)~ e-yyn+1G(n+l,BK) 

C S, t = S L...J - Ke L...J 
n=O f'(n+2) n=O f'(n+2) 

(4.1.3) 

where 

B= 2r 
0"2 [ er(T-t)-l J ' 

y = BSer(T-t), and 
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4.2 Stock Model Using a Stratonovich Differential 

In this section, we will present a model developed by Dr. Denis Bell of the University of 

North Florida. The model is similar to the Cox and Ross model but the stochastic 

differential is a Statonovich differential instead of an Ito differential. The advantage is 

that if a Stratonovich differential is assumed, then the stochastic differential equation is 

solvable and we can apply the risk neutral valuation method to value a call option. 

Henceforth, the model will be referred to as the "fractional" model. The fractional model 

is derived using the following theorem. 

Theorem 4.2.1 

Let r be the risk free interest rate and let the price process of a stock be represented by an 

Ito process: 

dS = a ( t, S) dt + b ( t, S) dw ( t) . (4.2.1) 

Then there exists a probability measure P with respect to which s* (t) = e-rt S (t) is a 

martingale. Let E denote the expectation with respect to P . Then for any functional 

F defined on the space of paths, E[F (s) J = E[ F (s) J where S satisfies the stochastic 

differential equation 

ds = rSdt +b(t, s)dw(t). 
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Proof: 

Using Ito's Formula, we have 

dS* = -re-'1 Sdt + e-rt dS 

=-re-'1Sdt+e-'1 (adt+bdw) 

Set dw = (a ~rS) dt + dw. Then, by Girsanov's Theorem, there exists a probability 

measure P with respect to which w is a Brownian motion. This implies that s* ( t) is a 

martingale. Substituting 

dw=dw-( a~rS dt) into (4.2.1), we have 

dS = rSdt+b(t, S)dw(t). 

Thus the distribution of S with respect to P is the same as the distribution of S with 

respect to P . 

1111 

To develop our alternative model of the stock, we start with the stochastic differential 

equation 

dS = rSdt +aSP o dw(t) (4.2.2) 

where the stock process is given by S ( t) = G ( S ( t), t) . Note that the differential in 

(4.2.2) is a Stratonovich differential. 
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Ito's Formula yields 

ac ac - 1 a2G - 2 
dS(t)=--;-+~dS(t)+--2 (dS(t)) 

at aS 2 as 

- -+ r +-- --+ -r t+-a- w t . -[aG ( S- pa-
2

S-2P_1)aG 0'
2
S
2
P a2G c]d ac S-Pd () 

at 2 as 2 as 2 as 

This implies that 

t -e -+ r +-- --+ -r t+e -a w t . ds*()- -rt[ac (s- pa-
2

s-2p-!)ac a-
2
S

2
Pa

2
G c]d -rtac S-Pd () 

at 2 as 2 as 2 as 

Recall that the condition of no risk free arbitrage implies that s* (t) is a martingale. This 

condition will be satisfied if we choose G to satisfy the partial differential equation: 

We must also impose the condition: G ( S ( 0), 0) = S ( 0). 

We consider the special case, p = 1/2: (4.2.3) becomes 

The solution is 

0'2 
G(S) = S +- which yields 

4r 

2 2 

S(t) = S(t)+~ and s* (t) = s* (t)+~. 
4r 4r 
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(4.2.5) 



Equation ( 4.2.5) provides a transformation from S to S . Solving the stochastic 

differential equation ( 4.2.2), we have 

{ 
1/2}2 

S(t) = e" ~ J: e-"1'dw(s)+(s <: J (4.2.6) 

Equations (4.2.6) and (4.2.5) yield 

2 2 
* ( ) -. ( ) (J' 2 (J' S t =S t +-=X +-. 

4r 4r 
(4.2.7) 

rt ( 2 JI/2 
where X(t)=~S*(t). X(t) isaNormalrandomvariablewithmean e-2 S(O)-;r 

The Ito equation corresponding to ( 4.2.5) is 

g dS = rSdt + CY dw(t). 
r 

(4.2.8) 

Equation ( 4.2.8) is the Ito equation of the stock process after applying Theorem 4.2.1. 

The model of the actual stock price is 

g dS = JLSdt+ dw(t). 
r 

(4.2.9) 

Now, we can use the risk neutral valuation to solve for the value of a European call 

option. As usual, let the option have exercise price K and expiration date T . We have 

C(t)=e-r1E[ max(S(t)-K,o)J. 
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( 
2 JJ/2 2 d _ -~ K- :: - m where m = ert12 S ( 0)-~ and v2 = ~ ( ert -1) . Let z = x- m , 

1 
- -----'------'-'---

4r 4r v v 

~ 
and d -VA -4r-m 

2-
v 

Then, 

E[ max(S(t)-K,o)]~ 1(v'z'+2mvz+m'+ ;: -K JJz,rexp(- ';}z+ 

J(v2z2 
+2mvz+m

2 + a
2 
-KJ ~ exp(-£Jdz 

d
2 

4r v2Jr 2 
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5. Fitting Data to Stock Models 

In this section, we will use actual stock data to estimate the parameters for the geometric 

Brownian motion model and the fractional model. Next, we will use the estimated 

parameters to calculate values of European call options. The results of these calculations 

are displayed in Table 5.1 at the end of this section. 

The data used were the end-of-day adjusted closing prices for a sample of the Standard 

and Poor 100 stocks. Each sample in Table 5.1 represents a 50 trading day period for one 

stock. The stock prices were adjusted to remove the distorting effects of dividends and 

stock splits. We used the estimated volatility of the stock during one 50 day period as a 

predictor of the volatility for the subsequent 50 days. The estimated volatility was used to 

price a European call with an expiration date 50 days hence. 

Fitting Data to the Geometric Brownian Motion Model 

To estimate the parameters f1 and 0' for the geometric Brownian motion model, we follow 

the methodology presented by Hull [4]. Recall that the solution to (3.3.1) is 

S ( ) S (0) (,u-a2/2}t+aw(t) Th' . h . f k . L . b d t = e . IS gives t e pnce o a stoc at timet. et time e measure 

in trading days. We have the following expression for the logarithm of the daily change 

in the price of the stock. 
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By the properties of Brownian motion, each uk is an independent normal random 

variable with mean jl- CJ'
2/2 and variance CJ'

2
• We used the procedures available in the 

SAS programming language to fit values to the mean and variance of the distribution of 

uk using the method of maximum likelihood. 

The null hypothesis is: 

The null hypothesis was tested using the Shapiro-Wilk statistic at the 95% confidence 

level. Note thatjl and CJ' estimated with these data represent the daily mean and 

volatility. 

Fitting Data to the Fractional Model 

We used the same stock data to test the fractional model presented in section 4.2. Due to 

the complexity of the model, the parameters were estimated using numerical methods. As 

in the case of the geometric Brownian motion model, we calculated Normal random 

variables that are functions of the stock prices and the assumed parameters. Recall the 

stochastic differential equation for the model, equation 4.2.2 with p=l/2. 

(5.2.1) 

The Ito equation corresponding to 5.2.1 is 

H dS = J1Sdt + CJ' dw ( t) . 
r 

(5.2.2) 

Since the data are discrete, we use a discrete approximation to 5.2.2: 
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(5.2.3) 

where Sk and wk are the stock price and the value of the Brownian motion on the k1
h day. 

From 5.2.3, we can calculate standard normal random variables for each trading day: 

In order to estimate the parameters fi and a, we must use numerical methods to solve 

the system of equations: 

1 N 2 
--:Luk =1. 
N -l k=l 

Here N is the number of available values of uk . We must also select a reasonable 

(5.2.4) 

(5.2.5) 

estimate of the risk-free interest rate since uk is a function of r. In this case, we selected 

3.0% annually as the risk-free interest rate. 

Using Newton's Method in Mathematica, we attempted to solve (5.2.4) and (5.2.5) for the 

same data used in section 5.1. The solution to the equations does not always exist but we 

recorded the results in cases where Newton's Method converged. Next, we calculated 

values of uk based on the selected interest rate and the estimated parameters. Shapiro-

Wilk statistics were computed in order to test whether the uk s have a normal distribution. 
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The null hypothesis is: 

H 0 : uk-N(f.L,CY). 

The results of the tests are shown in table 5.1 along with the results for the geometric 

Brownian motion model. 
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Table 5.1 
Sample of Standard and Poor 1 00 Stocks 
Results of Test for Normality and European Call Prices 

{j 
Reject H0? Initial Call European Call Price 

Sample Standard Fractional Standard Fractional Stock Exercise Standard Fractional 
Number Model Model Model Model Price Price Model Model 

1 0.00887 0.05569 N N 29.50 30.00 0.59 0.60 
2 0.00859 0.06359 N N 37.43 38.00 0.75 0.80 
3 0.00995 0.10320 N N 62.88 64.00 1.43 1.51 
4 0.01500 0.10320 y y 66.37 68.00 2.26 1.38 
5 0.00805 0.06429 y y 50.41 51.00 1.01 1.03 
6 0.00989 0.09488 N N 50.63 52.00 0.96 1.04 
7 0.00841 0.06879 N N 50.17 51.00 0.95 0.98 
8 0.00970 0.08700 N N 46.76 48.00 0.87 0.94 
9 0.00771 0.06585 N N 56.91 58.00 0.91 0.95 
10 0.00867 0.07537 N N 55.71 57.00 0.95 0.98 
11 0.01518 0.07537 y y 57.10 58.00 2.19 1.17 
12 0.00859 0.05095 N N 26.68 27.00 0.57 0.58 
13 0.00776 0.06325 y y 49.86 51.00 0.73 0.78 
14 0.00931 0.08078 N N 54.35 55.00 1.27 1.29 
15 0.00873 0.07959 N N 55.10 56.00 1.10 1.18 
16 0.00761 0.06745 N N 63.61 65.00 0.93 0.96 
17 0.00972 0.07174 N N 31.35 32.00 0.65 0.71 
18 0.00942 0.06786 N N 30.71 31.00 0.76 0.82 
19 0.00774 0.04689 N N 33.66 34.00 0.67 0.64 
20 0.00567 0.03588 N N 35.30 36.00 0.36 0.37 
21 0.00930 0.10796 y y 90.48 92.00 1.93 2.02 
22 0.00914 0.07253 y y 44.09 45.00 0.85 0.88 
23 0.00708 0.04846 N N 43.83 45.00 0.50 0.48 
24 0.00856 0.06525 N N 39.64 40.00 0.90 0.96 
25 0.00905 0.07299 N N 46.35 47.00 1.01 1.04 
26 0.00825 0.06538 N N 47.04 48.00 0.80 0.83 
27 0.00966 0.11348 N N 79.66 81.00 1.78 1.92 
28 0.00828 0.08899 N N 86.94 89.00 1.37 1.43 
29 0.00836 0.09100 N N 87.81 90.00 1.36 1.43 
30 0.00578 0.05883 N N 94.45 96.00 1.10 1.11 
31 0.00840 0.05089 N N 27.40 28.00 0.46 0.48 
32 0.00852 0.05283 N N 28.34 29.00 0.47 0.49 
33 0.00678 0.03953 N N 29.17 30.00 0.30 0.30 
34 0.00898 0.05580 N N 24.73 25.00 0.57 0.61 
35 0.00952 0.09802 N N 81.46 83.00 1.71 1.68 
36 0.00945 0.08464 N N 50.57 52.00 0.87 0.94 
37 0.00737 0.06088 N N 52.80 54.00 0.72 0.77 
38 0.00915 0.06676 N N 35.04 36.00 0.59 0.63 
39 0.00875 0.06208 N N 34.77 35.00 0.85 0.89 
40 0.00991 0.08059 y y 37.49 38.00 0.91 0.97 
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6. Conclusions 

We have presented proofs of several important results from stochastic calculus and 

demonstrated their use in pricing a European call option. We have shown that the price of 

a call option does not depend on the rate of return of the underlying stock but rather on its 

volatility. This was true in the case of all three stock models presented in this thesis. 

Therefore, it is important to have a good estimate of the volatility of the price but it is not 

necessary to have an estimate of the stock's rate of return. The financial rationale for this 

conclusion is that the risk of the financial derivative can be hedged by forming a risk free 

portfolio. Knowing that the portfolio earns the risk free interest rate enables us to 

calculate the market price of the derivative. 

In section 5, we used historical stock prices to estimate the volatilities of actual stocks. 

The Shapiro-Wilk statistics indicate that most of these stocks fit both the geometric 

Brownian motion model and the fractional model. The null hypothesis that the data were 

normally distributed was rejected in the same cases for each model. The estimated 

volatilities were used to calculate the prices of European call options. The fractional 

model generally produced higher prices for the call option. This indicates that the 

fractional model implies more risk for the seller of the call compared to the geometric 

Brownian motion model. 

There are many opportunities for further research in mathematical finance. Possible 

topics include alternative models of the stock price process, pricing more complex 
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options, for example American options, and varying any of the assumptions of the Black

Scholes-Merton model listed in section 3. One could develop models that consider 

transaction costs and dividends. The assumption of a constant interest rate that is equal 

across maturities could be relaxed. Any variation of the original assumptions could lead 

to a new financial model that might have practical applications. Also, there is a need for 

research in reliable procedures for fitting volatilities to the stock models. For some of the 

stocks in our sample we were not able to obtain estimated volatilities for the fractional 

model because Newton's Method did not converge. It is possible that other numerical 

methods would have yielded estimated volatilities. 
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