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ABSTRACT 

In this thesis, I shall study and compare various methods for manipulating two- and three-

dimensional image data produced with a nuclear magnetic resonance scanner. In 

particular, I will examine ways of focusing upon specific structures internal to the object 

under study (segmentation); and will explore means of rendering realistic images of these 

structures on a computer screen using depth-cueing, shading, and ray-casting techniques. 

The 3DHEAD volumetric dataset used for this project was created with the Siemens 

Magnetom and was provided courtesy of Siemens Medical Systems, Inc., Iselin, NJ. This 

dataset consists of 109 slices of a human head, with each slice stored consecutively as a 

256 x 256 array. Each pixel is represented by two consecutive bytes, which make one 

binary integer. (A similar dataset of a human knee is also available.) The 3DHEAD 

dataset requires about 14 Mb of disk space uncompressed. The programs which 

manipulate this data are MS-DOS-based and were written and compiled using Microsoft 

QuickC version 2.51. The 2-D programs were executed on a CompuAdd 486DXl2-50 

with 8 Mb of RAM, running MS-DOS version 6.22; the 3-D programs were executed on 

a 133 MHz Pentium clone with 48 Mb of RAM, running the DOS shell of Microsoft 

Windows 95. 

Our immediate objectives are to produce pleasing and informative 2-D and 3-D pictures 

of the internal structure of some component of the human head: for example, the brain. 

xiv 



We need to remove from the original dataset all of the data which do not represent the 

brain. Then, for the 3-D images, we need to render the remaining data in such a way that 

it possesses depth and realism. 

The overall job can be divided into three smaller tasks: 

(1) Acquire the range of densities of brain tissue, expecting that the brain will not be 

all of one uniform density, but that it will be fairly homogeneous. 

(2) Filter out all "non-brain" data from the original dataset, using density or density 

gradients as the criteria for segmentation. 

(3) Use the remaining "brain" data to create a realistic computer image. 

In [Udupa82], the authors suggest the following steps for 3-dimensional organ display: 

1. segmentation of the three-dimensional array into regions corresponding to 

organs 

2. identification of the organ of interest 

3. detection of its boundary 

4. hidden surface removal 

5. shading 

Using the approach described in this thesis, we shall already have identified the organ of 

interest using two-dimensional images taken from the original three-dimensional dataset. 

We will proceed to segment data corresponding to the organ of interest using various 

boundary-detection algorithms. Finally, we will create realistic images from the 
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remaining data through the use of rendering algorithms which both remove hidden 

surfaces and simulate variations in the light level. 
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CHAPTER 1 

INTRODUCTION 

We begin our exploration into the subject of segmentation and rendering with a 

discussion of some important background information about the technology, terms, and 

concepts to be encountered. 

I. I Nuclear Magnetic Resonance and Magnetic Resonance Imaging 

Nuclear magnetic resonance (NMR) is a phenomenon which occurs when atoms are 

exposed to extremely strong magnetic fields. Atomic nuclei (particularly those of 

hydrogen atoms) tend to line up along the axis of the magnetic field to which they are 

exposed. Then, a radio-frequency pulse is directed at the atoms, which causes the nuclei 

to twist out of alignment. When the pulse is removed, the atoms "relax" and, in the 

process, give off RF signals which are measured and analyzed by a computer. 

NMR technology is particularly important in the field of medicine. A living human being 

(which, by virtue of being composed mostly of water and aliphatic [fatty] compounds, is 

especially rich in hydrogen) may be placed inside a large electromagnet, and his internal 

tissues and organs may be scanned and their hydrogen-ion densities recorded for study. 

The densities may be correlated to different colors on a computer screen, enabling 
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physicians to discern the different organs and to discover abnormalities such as tumors, 

breaks, or lesions. [Higgins84] states: 

The gray scale of the NMR images displays fat as the brightest intensity 
(white), followed by brain and spinal cord, solid viscera, vessel wall, and 
muscle in descending order. Air, bone, and calcification produce almost 
no MRI signal (black)... Fat in the bone marrow produces high signal 
intensity ... Fluid-filled cavities tend to be low intensity. 

Magnetic resonance imaging (MRI) scanners make it possible to scan a body in many 

small increments along some axis, effectively producing many very thin "slices" of data. 

These slices may be stacked to create a 3-dimensional image of the body. In addition, 

advantage may be taken of the fact that, since different components of the body (organs, 

bone, blood vessels, etc.) possess different hydrogen densities, some organs' data may be 

filtered out, or segmented, so as to reveal only those organs which the imager desires to 

study in detail. MRI requires neither surgery nor contrasting dye nor ionizing radiation to 

create its images; the patient need only lie very still while the image is generated 

[BeU94B]. (With the advent of new high-speed MRI scanning devices, even this 

requirement is somewhat relaxed.) Exposure to intense magnetic fields has not been 

shown to be harmful to living tissue. 

1.2 Visualization 

Scientific visualization has been described as "[the development of] algorithms and 

methods that transform massive scientific datasets into pictures and other graphic 

representations that facilitate comprehension and interpretation" [Samtaney94]. Datasets 

may contain values derived from studies of fluid flow, weather patterns, stock market 
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index fluctuations, or, in the present case, relative hydrogen density as detennined by 

MRI scans of the human body. 

On a practical level, one must consider certain properties relevant to visualization: in 

particular, the generation, manipulation, storage, and display of data [Ranjan94]. 

Visualization gives us the ability to observe trends and relationships present, but perhaps 

hidden or obscured, in complex datasets. With respect to this project, the relationship we 

seek is that of connectedness, or homogeneity, of certain organic tissue in the human 

body. The challenging aspect of the visualization task is that the structures we seek to 

visualize are hidden from direct view, and have been heretofore observable only through 

the use of (a) invasive techniques such as surgery, or (b) non-invasive techniques 

involving X-rays or substances which emit ionizing radiation. Both techniques involve 

some risk to the patient; and in any event, the quality of the resulting information often 

leaves much to be desired. 

1.3 Computed Tomography 

Computed Tomography (CT) is described as the mathematical reconstruction of internal 

structural information within an object from a series of projections [Russ95]. In the 

present context, our projections are 2-dimensional "slices" of relative density data 

provided by an MRI scan along some axis at regular intervals. The slices are stacked to 

reconstruct a 3-dimensional volumetric dataset (VDS), to which we apply various 

methods of computation for separating or segmenting tissue types of interest. 
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1.4 Segmentation 

Segmentation is the process of extracting meaningful regions from images or volumes 

[Carlbom92]. According to [Schalkoff89], segmentation groups pixels to form higher-

level regional image structures in a manner which is either non-contextual or contextual. 

During non-contextual segmentation, relationships between features (at either the pixel-

or region-level) are ignored. Instead, the process relies upon the recognition of a 

statistical pattern in the value of the pixels under consideration. For example, the density-

range-based approach to biomedical image segmentation employed in [Be1l94B] 

depended upon each pixel's density value falling within a specified range, without regard 

for the density value of its neighbors. As noted in section 1.4.2 (Thresholding), this 

approach has its flaws. 

The contextual segmentation process, on the other hand, considers the relationships 

between neighboring pixels to support the decision to include a particular pixel in the 

region being segmented. In other words, we assess the local pixel region content, rather 

than simply the value of each individual pixel. Edge-detection and density-gradient 

analysis are two methods which assess the contents of a local pixel region. 

Segmentation involves two considerations. First, in order to acquire data for a particular 

homogenous and connected structure, we must apply some technique for "growing" a 
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region of data from a specified seedpoint. Second, we must select from our dataset only 

those values meeting specified criteria (thresholding). 

1.4.1 Region-growing 

Region-growing begins with the selection of a seedpoint, a single data point located 

within the region to be segmented from the surrounding area. Each surrounding point is 

examined and is added to the region if its value is sufficiently similar and if the point is 

connected, that is to say, adjacent to the point which came before. The region grows in 

all directions until no more points are encountered which meet the criteria for 

homogeneity. Region-growing can be performed in either two or three dimensions. 

Because of the recursive nature of the problem, the implementation of region-growing 

algorithms is not conceptually difficult. However, the large number of recursive calls 

likely to be encountered during segmentation can strain a computer's memory resources. 

Therefore, we explore region-growing algorithms which implement recursion to a lesser 

extent, or simulate recursion through an iterative process [Tenenbaum90] [Roh184] 

[Foley90]. 
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1.4.2 Thresholding 

During the thresholding phase of segmentation, we evaluate each datum in the set under 

consideration, retaining it only if it is above or below some limit (threshold), or within 

some specified range of limits. In a previous experiment [BeIl94B], a simple density-

threshold algorithm was applied to a VDS of MRI density data for a human skull, with 

the intention of segmenting brain tissue. The results were less than satisfactory, due to 

the fact that (a) the density range of brain tissue is fairly broad, and (b) the density ranges 

of other types if tissue found in the skull overlap that of brain tissue. Also, no attempt 

was made to grow a region from a seedpoint. Therefore, brain tissue was not clearly and 

distinctly segmented from adjacent tissue. 

Although a density-range thresholding scheme might be an adequate criterion under some 

circumstances, it could tum out that tissue of one type (X) with a certain density range 

may lie adjacent to tissue of a different type (Y) with an overlapping density range. In 

this case, complete segmentation of (X) from (Y) would be unsuccessful. Or, due to a 

narrow specification of density range, a region could have many of its data points 

discarded and thus be incompletely represented. 

1.4.3 Gradient Approximation and Edge Detection 

In either case, we might wish to examine the rate of change in density over the region. 

This rate of change is referred to as the gradient (V). A low gradient indicates small or 
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smooth changes in density, characteristic of tissue which is homogeneous. A high 

gradient indicates a sudden change in density, very likely a boundary between tissue 

types. In image processing, algorithms which measure rates of change over a region are 

often used to detect edges and boundaries between dissimilar areas. 

An approximation of the gradient of a particular area may be determined using weighted-

sum masking [Be1l94A], where the kernels to be used are especially designed to display a 

strong response to changes in i~tensity. In three dimensions, such operators approximate 

the overall gradient in a volume by computing gradients in three orthogonal directions 

and summing them. In this project, we compare the characteristics of several different 

kinds of operator. A mathematical presentation of the notion of gradient may be found in 

Appendix B. 

1.5 Surface Rendering 

When we display a slice of hydrogen-density data on a computer screen, each point of 

data from the slice is represented by a single point on the screen. The color (or gray-

shade) of the point on the screen corresponds to the value of the datum. Throughout this 

paper, reference will be made to "pixels" and "voxels". A pixel (picture element) refers 

to a single point on a computer screen; each pixel, and each point in a slice of data, may 

be referenced by a set of coordinates (x, y). A voxel (volume element) refers to a single 

point in a volume of data at a set of coordinates (x, y, z). Since an image on a computer 
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screen is two-dimensional, we will need to resort to various techniques to give our images 

the illusion of depth or realism. 

Surface rendering is the process of adding the appearance of a (more or less) realistic 

surface to a graphical object on a computer screen. Complex mathematical operations on 

a scene's dataset add realism to the scene through the artful use of color, shading, lighting, 

reflectivity, and refractivity. 

1.5.1 Depth-cueing 

One method of adding a sense of three-dimensionality to an object is known as depth-

cueing. This involves correlating the brightness level of each voxel in the object to the 

voxel's distance from the viewer. Therefore, closer voxels appear brighter, and more 

distant voxels appear more dim. 

Although the depth-cueing method is not computationally difficult, it ignores issues 

important to realism, such as the location of point light sources, ambient lighting, surface 

texture, and the degree of specular reflection ("hot spots") at any given point in the object. 

A surface-rendering method which addresses these issues is called ray-tracing. 
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1.5.2 Ray-tracing 

Ray-tracing begins by tracing backwards the path of an imaginary single ray of light 

(called an eye-ray) from the viewer's eye, through a viewscreen, to a region in the scene, 

and eventually back to some point light source of known coordinates. During this 

process, we may compute not only the path of the eye-ray (which may, in fact, be 

reflected by or refracted through one or more surfaces on its journey), but also the 

brightness of the ray, which diminishes both in proportion to the distance it travels and as 

a result of reflecting off coarse surfaces and refracting through translucent material. 

Ray-tracing determines the visibility of an area on an object's surface by examining the 

relationship of an eye-ray's vector direction to the normal vector of the surface; if the 

vector's included angle is less than 90 degrees, then the surface is visible. To define an 

object's surface, an array of points is created containing the three-dimensional coordinates 

of each point. We regard the object's surface as a collection of small triangular patches, 

whose vertices are specified in the array. The vertices describe a plane whose normal 

vector is computed for comparison with the eye-ray vector. 

1.5.3 Lighting and Shading Techniques 

Depth-cueing provides to a scene a sense of three-dimensionality by diminishing the 

brightness of the more distant parts of an object. Ray-tracing makes it possible to 

simulate the location of point light sources in the scene, and to remove the hidden 
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surfaces of an object. However, the presence of "ambient" light (light which may have 

come from a point light source, but which has since been scattered by atmospheric 

disturbances) affects the perceived brightness of an image. Also, the texture of the 

surface of an illuminated object will determine not only how much light is reflected, but 

also the degree to which reflected light is highly concentrated in one spot (specular 

reflection). Finally, the amount of reflected light seen by the viewer must be correlated to 

the angle at which the viewer observes the different aspects of the object. 

All of these factors are dealt with through the use of various illumination models. These 

models view the amount of light seen by the observer as the sum of ambient light and 

(possibly multiple sources of) specular reflected light, adjusted with coefficients and 

trigonometric relationships to account for the texture of the surface, the viewing angle, 

and atmospheric attenuation [Foley90]. 

1.6 Storage Considerations 

In [Be1l94B], the Z-buffer was used as a method of representing the visible aspect of 

certain volumetric data. The Z-buffer is a two-dimensional array which maintains 

distance infonnation for the closest voxels which have been seen so far in a slice-by-slice 

pass through the VDS of dimensions n x n. (Note that the dimensions of the Z-buffer are 

the same as those of a single slice of the VDS.) The Z-buffer offers the advantage of 

requiring relatively little memory, representing n2 points rather than n3 points. However, 
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the Z-buffer method is also limiting in that, in order to rotate the object and view it from a 

different angle, each point in the original VDS must be re-examined. 

An alternative method for representing a segmented 3-D object would be to copy the 

entire object to a second n3 array; this approach is called spatial occupancy enumeration 

[Foley90]. The obvious disadvantage to this approach is the requirement for twice as 

much memory or disk space in which to hold the data. In addition, much of the second 

array would be used only to store zeros, indicating the absence of points in the segmented 

object (in other words, a sparse matrix). 

A data structure which has proven popular for maintaining sparse matrix 3-D data is the 

octree [Foley90]. The idea behind the octree storage method is to recursively subdivide a 

3-D scene into octants. Each octant is evaluated as being full, partially full, or empty, 

depending on how much of the octant intersects the volume of the object. A partially full 

octant is further subdivided, until its suboctants are evaluated as being all full or all empty 

(or until some cutoff is reached). Whenever eight sibling octants are all full or all empty, 

they are merged back into their single parent, which is then marked full or empty 

accordingly. Represented as a tree, the root node and intermediate nodes are always 

partially full; leaf nodes are always either full or empty. (A bottom-up approach is also 

possible, resulting in improved efficiency.) 

In [Kippenhan94], the authors suggest the use of a hierarchical matrix of pointers to store 

and access volumetric data: 
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The "base pointer" will be a pointer to an array of sub-pointers (each of 
which will point to a "slice" of volume data), each of which will in tum be 
pointers to another array of sub-pointers (each of which will point to a "row" 
of data within the slice of interest). 
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CHAPTER 2 

ANCil..LARY SOFfW ARE TOOLS AND LffiRARIES 

For this project, various utility programs were required for the extraction and 

manipulation of slices of data from the VDS. Files of general- and special-purpose C 

functions were created which could be called from different programs as needed; here 

follows a brief description of the role of each utility in the overall mission. 

2.1 ANYSLICE 

This program was written for use on an Intel 80x86-based computer running the DOS 

operating system. ANYSLICE is designed to work with files of 3-D volumetric data 

stored in "slice" format, such as the MRI or CT files available from the University of 

North Carolina/Chapel Hill (see Appendix A). These files contain some number 

(typically around a hundred) of slices of tomographic data stored sequentially in z-y-x 

order. Every two bytes in each slice represents the magnetic resonance datum for the 

point at (x, y) in slice (z). 

ANYSLICE is designed to acquire a specified slice of data from the specified input file 

and write that slice's data to the specified output file. The resulting binary file should be 

131,072 bytes in length for a volumetric data file whose slices measure 256 x 256 pixels. 
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File slices shall be numbered by the user beginning with 1. Within the program, we 

revert to numbering the slices beginning with 0 after having called the atoiO function to 

get the slicenumber argument. atoiO returns 0 if its argument was '0' or if it was 

unsuccessful in converting the ASCII string it was passed. Furthermore, the user may 

specify the orientation of the desired slice (sagittal, coronal, or transverse) with the final 

argument "s", "c", or "t". 

In or4er to understand these terms, consider three axes at right angles to each other: the 

x-axis passes from the front of the head to the back, the y-axis parallel from the top of the 

head downward through the spinal column, and the z-axis through the ears from left to 

right,. A sagittal slice of the dataset is parallel to the x-y plane; a coronal slice is parallel 

to the y-z plane; and a transverse slice is parallel to the x-z plane. 

Usage: ANYSLICE <slicenumber> <infile> <outfile> <orientation> 

Example: ANY SLICE 54 3dhead slice54.dat s 

2.2 SLICE2IP 

This program inverts the byte-order of, and quantizes to the range 0-255, the 

pixel-integers present in a slice-file created by ANYSLICE. The modified file will be 

suitable for viewing with the MIDTERM image-processing program [BeIl94A]. The user 

should record the lower and upper histogram-scaling limits found to provide the most 

pleasing contrast between the different components shown in the slice data. These limits 
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will be given to the GETCOORD program in order to display a better image (although the 

actual raw data underlying the image will be unaffected). 

Usage: SLICE2IP <inputfile> <outputfile> 

2.3 ROTATE 

This program takes as its input a RAW-format density data file (a 256 x 256 array of 

2-byte integers); rotates the data 90 degrees clockwise; and produces an output file of the 

same format as the input. 

ROT ATE is designed to be used in conjunction with data files produced by the 

ANY SLICE program, which creates slice-wise data files from 3-dimensionaI volumetric 

datasets. Since the slice files created may not always be in a pleasing orientation (e.g. a 

coronal slice lying on its side), some means of rotating the picture will be found useful. 

To rotate a picture by 180 or 270 degrees, simply apply ROTATE twice or three times, 

respectively: 

command 

ROTATE original.dat 90.dat 

ROTATE 90.dat 180.dat 

ROTATE 180.dat 270.dat 

ROTATE 270.dat 360.dat 

result 

---> 90 degrees clockwise 

---> 180 degrees clockwise 

---> 270 degrees clockwise 

---> 360.dat = original.dat 

Usage: ROTATE <inputfile> <outputfile> 
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2.4 ANYVIEW 

ANYVIEW allows the user to extract from a VDS file a Z-buffer view of the contents of 

that VDS file from one of the three axial orientations (x, y, or z). ANYVIEW's output is 

a 256x256x8 RAW file of grayshade data. 

Usage: ANYVIEW <infile> <outfile> <orientation> 

Example: ANYVIEW 3dhead sagview.raw s 

2.5 XMSIF 

XMSIF (version 1.5, written by James W. Birdsall, copyright 1993) is a C interface to 

extended memory functions, and is widely available via FTP to the Internet. Many of its 

routines were incorporated into the MRI3D program in order to create and manipulate a 

very large stack in extended memory. 

2.6 VSA256 

VSA256 (version 3.01, written by Spyro Gumas, copyright 1994) is a C interface to 

functions which make it possible to generate graphics output on video adapters running 

with VESA BIOS extensions. Use of VSA256 makes it possible to activate the high-

resolution, 256-color video modes necessary to display multiple grayshades. 
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CHAPTER 3 

IMPLEMENTATION IN TWO DIMENSIONS 

The GETCOORD program was created for the purpose of performing segmentation in 

two dimensions, both as an end in itself and as a preliminary step towards successful 3-D 

segmentation. GETCOORD takes as its input a slice-file of 2-D density data, such as that 

created by the ANY SLICE utility from the original VDS. This slice is displayed on the 

screen. (Prior to loading, the intensity histogram of the slice-file may be modified to 

improve its appearance and usability.) 

Using the mouse, the user points to any pixel in the image to be used as a seedpoint for 

region-growing. Via the keyboard, the user also specifies: 

- which thresholding method is to be used 

- the parameters for lower and upper density limits 

- the density-gradient threshold 

- the manner of floodfilling 

When segmentation is complete, the user may save the coordinates of the seedpoint in a 

small text file (to be used in the 3-D segmentation process implemented by the program 

MRI3D). The user may also save the segmented image as a RAW-fonnat file (suitable 

for viewing with the MIDTERM image-processing program [BeIl94A]) or as an 
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encapsulated PostScript file (which includes all of the settings infonnation for the current 

image). 

GETCOORD, an MS-DOS-based program, requires 16-color VGA and 640 kb of 

conventional memory to run. The usage of the GETCOORD program is: 

GETCOORD <inpucslice_filename> <slicenumber> 

write_colocregisteTS 
(MlSC.C) 

display_image 

A 

cleactexcline 
(MlSC.C) 

B 

Figure 3.0-1a: GETCOORD Structure Chart (1 of 3) 
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update...,gradient_approx_method c1ear_texUo_EOL 
(MISc.q 

Figure 3.0-1 b: GETCOORD Structure Chart (2 of 3) 

already_visited 
1------- ------
I recursive call to : 

: _doofl~~ti"":'. 

cJear_text_line 

Figure 3.0-1c: GETCOORD Structure Chart (3 of 3) 
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3.1 Thresholding Methods 

In this program, we permit two types of thresholding: evaluation by density-range and 

evaluation by density-gradient. Both types may be used together as well, i.e. a point must 

meet both criteria in order to be accorded membership in the region. 

3.1.1 Density-range Thresholding 

When performing segmentation, the user may specify a density range in terms of a lower 

density limit (LDL) and an upper density limit (UDL), between which a point's density 

value must fall in order to be considered a member of the region. This task is 

computationally easy and is performed before gradient approximation (section 3.1.2). 

The default LDL at the start of the program is 1; the default UDL is 4095. (If these 

values are modified, their new settings will be remembered between segmentation runs.) 

The Magnetom does not report absolute hydrogen density directly in terms of any 

particular unit of measure, such as grams per cubic centimeter; rather, its numbers 

represent the relative intensity of RF signals given off by scanned tissue during the MRI 

scanning process. For convenience' sake, we may casually regard hydrogen density and 

RF signal intensity as equivalent. 
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3.1.2 Gradient-approximation Kernels 

The user may select one of three different ways of computing the approximate gradient 

(V) of the 3 x 3 matrix surrounding each pixel being considered for membership in the 

region of interest. In each case, wherever the tissue is homogeneous, we would expect 

the rate of change over the 3 x 3 area to be low; at the boundary between differing tissue 

types, we would expect a high gradient. The gradient-approximation methods will differ 

in their response to changes in the gradient over the 3 x 3 area; we will observe how the 

difference in response affects image quality. 

To compute the gradient approximation is the most computationally expensive part of the 

segmentation process. To begin with, we must acquire the values of 9 pixels (in two 

dimensions), and then perform either integer or floating-point arithmetic on the values. 

Therefore, we only perform gradient-approximation after having determined that a pixel 

has not already been visited, and that its density is within the specified range. In the 

discussion which follows, we consider a 3 x 3 grid M, whose elements are numbered 

thus: 

[

Ml M2 MJ] 
M4 M5 M6 

M7 M8 M9 

More discussion of these and other spatial filtering methods may be found in 

[Gonzalez92]. 
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3.1.2.1 The Prewitt Kernels 

The Prewitt kernels (or operators) are a pair of 3 x 3 matrices which are each multiplied 

by the 3 x 3 matrix of density values with pixel P at its center. We compute the partial 

derivative (or rate of change) in the vertical and horizontal directions, and then take the 

sum of the absolute values of the partial derivatives to compute an approximation of the 

gradient. The difference between the first and third rows approximates the derivative in 

the X direction; the difference between the first and third columns approximates the 

derivative in the Y direction [Gonzalez92]. The Prewitt kernels are: 

K x = [~1 ~1 ~1] K y = [= ~ ~ ~] 
1 1 -1 0 1 

An equivalent equation which summarizes the operation described above is: 

3.1.2.2 The Sobel Kernels 

The Sobel kernels are similar in appearance and application to the Prewitt kernels, except 

that the middle term is doubled, as shown. According to [Gonzalez92], derivative filters 

enhance noise; the doubling of the center term in the Sobel operators works to provide a 

smoothing effect in the resulting image. The Sobel kernels are: 
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The equivalent equation is: 

V M5 = I(M7+ 2M8+ M9)-(MJ+ 2M2+ M3)1 + 

I(M3+ 2M6+ M9)-(MJ+ 2M4+ M7)1 

3.1.2.3 The Square-Sum-Root Method 

The Square-Sum-Root (SSR) method is a simple method of approximating the gradient 

which does not implement kernels in the same way as the previous two methods. The 

SSR equation is: 

The SSR method involves floating-point arithmetic in the form of the square root 

functions, which requires more computer time than integer arithmetic. 

3.2 Region-growing Methods 

Upon reflection, it will be seen that the region-growing problem is merely a variation of 

the floodfilling problem. In floodfilling, we choose a seedpoint pixel within a region, and 

color the seedpoint, the seedpoint's neighboring pixels, and their neighbors, and so on ad 
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infinitum, either until some boundary is reached (a boundary-defined region), or as long 

as a pixel's value is the same as that of the seedpoint (an interior-defined region). The 

decision to color any pixel is based on the pixel's present value; if it is not the boundary 

value, or if it is the same as that of the seedpoint, we color the pixel and proceed to 

consider its neighbors for coloring [Fo]ey90]. 

The first three region-growing algorithms described here all operate in about the same 

way, and begin with a user-specified seedpoint, pixel P. During region-growing, we first 

check to ensure that P has not already been visited. If it has been visited, there is no point 

in spending time processing it again, and we continue with the recursive growth (section 

3.2.1). Next, we ensure that the density of P is within the specified range. If not, we 

continue with the recursive growth. (We may effectively remove density-range from 

consideration by making the limits maximally broad, e.g. LDL = 1, UDL = 4095.) 

We save the most computationally expensive stage for last, and compute the gradient V 

for the 3 x 3 grid surrounding P. If V is greater than or equal to the specified threshold T, 

we continue with the recursive growth. Otherwise, we save the density of P in the output 

buffer (P'S coordinates being implicit in its position in the memory array), and then 

continue with the recursive growth. 
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3.2.1 Recursive 4-connected Region-growing 

As pointed out, the region-growing process involves examining the neighbors of a pixel 

in a recursive fashion. In two dimensions, regions are said to be 4-connected if every two 

pixels can be joined by a sequence of pixels using only up, down, left, or right moves 

[Foley90]. Thus, after examining a pixel P for membership in the region to be 

segmented, we recursively examine P's neighbors to the north, south, east, and west. 

This recursive approach possesses the virtue of simplicity of understanding and coding. 

However, stack space is needed during each recursive can to store the values of local 

variables, arguments passed to the recursive function, and the calling function's return 

address. (Each time a program makes a call to another procedure or function, it must 

store these values, arguments, and addresses on the stack in an area of memory called a 

stack frame.) For large regions, the many levels of recursion involved impose substantial 

requirements upon the computer's available memory for stack space. Recursive cans also 

may require more time to execute than an equivalent iterative approach due to the need 

for stack manipulation. 

In order to assess the algorithm's requirements for stack frames, we maintain a counter 

which records the largest number of recursion levels for a particular run of the program. 

Before making a recursive call, the program ensures that there is sufficient stack space 

available; if not, the function returns to the calling function. Figure 3.2.1-1 displays an 

algorithmic flowchart for the recursive 4-connected region-growing process. 
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3.2.2 Recursive 8-connected Region-growing 

In two dimensions, regions are said to be 8-connected if every two pixels can be joined by 

a sequence of pixels using only up, down, left, right, up-and-right, up-and-Ieft, down-and-

right, or down-and-Ieft moves [Foley90]. Thus, after examining a pixel P for 

membership in the region to be segmented, we recursively examine P's neighbors to the 

north, south, east, and west, northwest, northeast, southwest, and southeast. 

In all other respects, the 8-connected region-growing algorithm is identical to the 4-

connected algorithm described in section 3.2.1. It is presented primarily to assess 

differences in image quality due to the additional degree of connectedness. 

3.2.3 Iteration and Simulated Recursion; Stack Self-management 

As noted, recursive methods require more time and memory space than equivalent 

iterative methods. In order to reduce the program's need for time and memory, we 

simulate recursion through an iterative implementation of the 4-connected recursive 

region-growing algorithm described above. [Tenenbaum90] presents some useful 

guidelines for maintaining one's own stack, and for simulating recursive calls for which 

there is no longer a requirement to preserve local variables. By maintaining the stack 

ourselves, we are able to use more efficiently the memory needed for arguments to the 

pseudo-recursive call, as well as the return-label used in lieu of a return address. The 

self-managed stack makes possible a greater number of pseudo-recursive calls for the 
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same amount of physical memory, resulting in more complete growth of large regions for 

which many levels of recursion would be necessary. Figure 3.2.3-1 shows an algorithmic 

flowchart of the simulated-recursion 4-connected region-growing process. 
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initialize data area and 
stack; set current area to 

(x, y), CARA=l 

read grid, compute 
gradient 

save & paint 
(CAX, CA y) 

yes 

no 

NORTH SOUTH 

push CA to S; 
CAY--; 

CARA=2 

push CA to S; 
CAY++; 
CARA=3 

BASECA~S~E~.~~~~ 

WEST: 

push CA to S; 
CA.x--; 

CARA=4 

i=CA.RA; 
pop S to CA 

EAST: 

push CA to S; 
CA.x++; 
CARA=5 

Figure 3.2.3-1: Simulated-recursion 4-connected Region-growing Algorithm 
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3.2.4 A Spanfill Algorithm 

The spanfilling algorithm is recursive, and starts (as usual) with a seedpoint, pixel P. 

This time, pixels to the left and right of P are examined for and granted membership in 

the region to be segmented. This horizontal row of member pixels is called the starting 

span. 

We next examine each pixel in the row immediately above the starting span. When a 

new member pixel is found, we make a recursive call to the spanfill function, which saves 

and paints this new pixel, fills its span, examines the span above it, and so on. After the 

upward-recursive calls return, we make recursive calls to the spanfill function with 

respect to rows of pixels beneath the starting span. 

Although recursive in nature, this algorithm is much less reliant on stack space than the n-

way region-growing algorithms, because most of the pixel-coloring is done iteratively 

within each span; the function only recurses when it is necessary to look at the row above 

or below the current row. 

Note that it is possible to have more than one span of member pixels in each row of 

pixels, each span being separated horizontally by non-member pixels. Note also that 

there are only 256 rows in the images acquired from the VDS. Although it is possible to 

conceive of degenerate cases where there are relatively many member spans on each row 

of pixels, it seems unlikely that one would encounter these cases very often in practice. 
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Most of the time, the number of levels of recursion needed by the spanfill algorithm is 

quite small. Figures 3.2.4-1a and 3.2.4-1b show an algorithmic flowchart of the recursive 

spanfill region-growing process. 
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update stack 
frame counter 

save & paint seedpoint 
of this span 

r------~ paint to the left: 

read grid & 
compute gradient 

save & paint next pixel 
to the left 

no 

LHx=x+l; 
x = original x 

A 

r------~ paint to the right: 

read grid & 
compute gradient 

save & paint next pixel 
to the right 

decrement x; 
RHx=x 

o 

Figure 3.2.4-la: Recursive Spanfill Region-growing Algorithm (I of 2) 
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read grid & 
compute gradient 

do_spanfill_rec(x, y-l) 
(recursive call to the row 

above) 

read grid & 
compute gradient 

do_spanfill_rec(x, y+ 1) 
(recursive call to the row 

below) 

Figure 3.2.4-1b: Recursive Spanfill Region-growing Algorithm (2 of 2) 
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3.3 Data Representation and Storage Methods 

3.3.1 Data Structures 

We discuss two data structures used to store two-dimensional MRI segmented data: 

spatial occupancy enumeration (SOE) and the quadtree. We compare them with regard 

for ease of coding, ease of data manipulation, speed and memory conservation. 

3.3.1.1 Spatial Occupancy Enumeration Using 2-D Arrays 

Spatial occupancy enumeration (SOE) is a form of solid-figure representation in which 

the solid is decomposed into identical cells (or cells possessing similar characteristics, 

such as the same density- or density-gradient range) arranged in a fixed, regular grid (e.g. 

256 x 256) [Foley90]. In two dimensions, these cells are called pixels (picture elements); 

in three dimensions, they are called voxels (volume elements). We represent an object by 

deciding which cells are occupied, and which cells are not. Simple to implement and 

manipulate, SOE may be used to organize data both in memory and in disk files, and is 

often used in biomedical applications. 

In the GETCOORD program, we have established two 256 x 256 square arrays for the 

input and output slice-image buffers. In order to improve efficiency, we use the output 

buffer's initial zero values as an indicator of whether a particular pixel was already visited 

during region growth. 
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For a resolution of n voxels in two dimensions, we may need up to n2 cells to represent an 

object. This may provide only a rough approximation of the object; however, we are 

already limited to this approximation in MRI work because of the nature of the original 

VDS and its manner of generation. 

We perfonn three basic operations in working with SOE: defining the memory array, 

writing to the array, and reading from the array. We may define the size of the array 

either at compile time or at run time. For an image of n x n pixels, and each pixel 

requiring m bytes to store its value, the size of the array must be n x n x m bytes. A 256 x 

256 array of 2-byte-integer data would therefore require an array of 131,072 bytes. 

To access any particular pixel in the array for either reading or writing, we need only 

calculate the byte-offset from the beginning of the array. If the coordinates of the pixel 

are (x, y), and the number of rows in the array is R, then the byte-offset is 

x + (y * R) 

and the value of the pixel P at (x, y) is 

P = array[x + (y * R)]. 

Similar remarks hold for accessing a pixel in a random disk file; we may use file-pointer-

positioning functions to access specific pixels in an already existing file. However, while 

the size of the data type is usually already figured in by the compiler when accessing a 
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memory array, this must be explicitly done by the program when using byte-offsets on a 

file. Then, the byte-offset is 

(x + (y * R)) * sizeof(data type) 

where sizeofO is an operator which returns the size (in bytes) of the data type. 

The SOE approach using a memory array is very easy to implement, since the data 

structure is topologically congruent to the way that the data occur in physical reality. 

Manipulation of data is simple and fast, since to access any particular pixel requires the 

computation (involving integer arithmetic only) of a single array address. The only 

disadvantage of SOE is that, for a scene in which the segmented region is very small in 

relation to the rest of the scene, most of the array will be used to store zeros, representing 

the absence of segmented data. Such an array is called a sparse matrix, and might be 

considered wasteful of memory space. In such cases, we may wish to explore other data 

structures which are designed not to store null- or zero-data. Such structures include 

linked lists and trees. 
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3.3.1.2 Linked Lists and Trees 

A linked list is a list of records in which each record contains, in addition to its data, a 

field used to hold a pointer to the next record in the list. A tree is a data structure whose 

root node contains, in addition to its data, links to two or more child nodes. Each child 

node contains data plus links to other child nodes, and so forth in recursive fashion. 

Linked lists and trees may be created, enlarged, and reduced dynamically (that is to say, at 

runtime) as opposed to array structures, whose size is fixed at the time the program is 

compiled. 

By and large, lists and trees are more difficult and time-consuming to create and maintain 

than are ordinary arrays. Each time a new node is required, memory must be allocated 

and links established. Likewise, when a node is no longer needed, its memory must be 

deallocated and returned to the operating system. Further, lists and trees are not randomly 

addressable; whenever a node is to be accessed, the list or tree must be traversed in linear 

or some other order until the desired node is found. 

As mentioned, for a scene in which the segmented region is very small in relation to the 

rest of the scene, most of the array will be used to store zeros in order to represent pixels 

which were not selected during the segmentation process. This memory space could be 

regarded as wasted, but is an unavoidable overhead cost to employing a fixed-size array. 

The use of lists and trees to hold segmented data represents an effort to reduce this wasted 
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space, but their effectiveness is limited because of the extra memory required for each 

node in the list or tree to record pointers to its children and parent nodes. 

One form of tree structure used for the storage of two-dimensional image data is called 

the quadtree. A quadtree divides a scene into four quadrants. The quadtree's root node 

points to each of the four top-level quadrants, which are classified depending upon 

whether the quadrant is full (Le. all of the quadrant's pixels values meet the segmentation 

criteria), partially full (only some of the pixels meet the segmentation criteria), or empty 

(none of the pixels meet the segmentation criteria). Each quadrant is recursively divided 

into sub-quadrants and analyzed, down to the pixel level, where no further division is 

possible. (When working with three dimensional scenes, we may use a natural extension 

of the quadtree notion called the octree, which divides the scene into eight octants.)l 

If a region's homogeneity is highly concentrated (i.e. many adjacent pixels meeting the 

criteria for segmentation), then, in terms of memory requirements, the quadtree can 

provide a fairly efficient method of data storage. In general, the amount of memory 

required is a function of the resolution (number of levels in the quadtree), the image size, 

and the region's position in the grid [Samet90A]. 

Quadtrees are frequently used in the transmission of graphical data, where the 
interest is in enabling the receiving party to view the image at progressively better levels of 
resolution, and to terminate the transmission if and when it is decided that the picture is 
unwanted. At first, a brief amount of time is used to transmit a crude picture at low 
resolution. Then a longer amount of time is used to transmit a better-quality picture at a 
higher resolution, and so on, until, at the end of the transmission, the picture is 
reconstructed perfectly. This process may be interrupted at any time, and is useful for 
browsing operations [Samet90B]. 
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If the region represented by a quadtree is highly convoluted (relatively few adjacent 

member pixels), then the efficiency of the quadtree decreases. Consider a scene whose 

pixels may have a value of either 0 or 1. In the worst case, that of a checkerboard pattern 

of dimensions 2n x 2n
, then the number of nodes required to completely represent the 

region is 

,k' = 4° + 4' + 4' ;: G) • 16 = (:) 4' 

Note that each node in the quadtree must store certain data, for example: 

- the value of this pixel, if a leaf node (2 bytes) 

- a status field (full, partially full, or empty) (1 byte) 

- the upper-left coordinates of the quadrant (2 bytes) 

- the size of the quadrant's side, in pixels (1 byte) 

- a pointer to the node's parent (2 bytes) 

- four pointers to each of the node's children (4 x 2 bytes) 

By this reckoning, then, each node would need to be allocated 16 bytes of storage, and the 

2n x 2n region would require (in the worst case) 

bytes of storage. 
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In the best case (where all the pixels of the region are members), only one node (at 16 

bytes) would be required to completely represent the region. However, these remarks 

hold only for two-valued (black-and-white) images. If a scene's pixels are multi-valued 

(e.g. grayshade values or density data), pixels with a relatively wide range of values may 

be considered members of a segmented region and yet may not be able to be grouped 

efficiently in a quadtree because their values are not exactly the same. In other words, the 

quadtree assigns nodes on the basis of a two-state condition: is the pixel a member of the 

region or not? Whereas the segmentation algorithm usually assigns membership less 

restrictively, admitting a wide range of values. 

Note that a fixed-size array of dimensions 2n x 2n would require only 2 * 22n bytes (at 2 

bytes per array element), regardless of the condition of the region, and regardless of the 

conditions for segmentation; in other words, the best and worst cases are the same. 
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3.3.2 File Fonnats 

The binary image data stored in the RAW and PostScript fonnats is organized by spatial 

occupancy enumeration in row-major order. That is, the values in the first n-element row 

of the memory array are stored in the first n positions of the file; the values from the 

second row of the array are stored in the next n positions of the file; an so on. 

3.3.2.1 RAW Format 

The RAW file fonnat was originally used for storing 256-shade grayscale data. As 

implemented in the MIDTERM image-processing program [Be1l94A], an image of 

dimensions 256 x 256 pixels could be stored in a file of 65,536 bytes, each byte being 

capable of representing a number in the range 0 to 255. There is no particular reason why 

the RAW format could not be used for storing any kind of data (e.g. density levels), 

provided that the range of numbers could fit into a single byte. 

When GETCOORD reads data from the slice-file, it must quantize (scale) the data from 

the range 0-4095 to the range 0-15, in order for the VGA to be able to display the image. 

Since MIDTERM expects from a RAW file a value in the range 0-255, GETCOORD 

must re-quantize the screen-buffer gray-scale values from the range 0-15 to the range 0-

255 before storing the values in the RAW file. 
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3.3.2.2 Encapsulated PostScript Format 

GETCOORD can save both the segmented image and a copy of the original image to an 

encapsulated PostScript (BPS) file. All of the information relating to the active settings is 

saved: filenames, x-y-z coordinates, thresholding and floodfilling methods, etc. The EPS 

format is quite similar to ordinary PostScript, but permits the image to be imported into 

many popular word-processing and page-layout programs.2 

3.4 Image Presentation 

Since MRI data represents relative RF signal intensities (which are, in turn, correlated to 

hydrogen density), some transformations are necessary in order to obtain a useful display 

on a computer monitor. We discuss two techniques below. 

In order to convert an ordinary PostScript file to EPS, using a text editor, simply add 
the following lines to the beginning of the PostScript file: 

%!PS-Adobe-3.0 EPSF-3.0 
%%BoundingBox: llx lly urx ury 
%%Creator: cccccc 
%%Title: tttttt 
%%CreationDate: mmddyy 

where llx and IIy are the lower-left x and y coordinates and urx and ury are the upper-right x 
and y coordinates of the image's bounding box. The Creator, Title, and CreationDate fields 
are non-printing optional comments which will appear in the bounding box on the screen (in 
lieu of a thumbnail picture, whose format is not included here) [Holzgang92]. 
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3.4.1 Histogram Stretching 

The GETCOORD program records the minimum and maximum values present in the 

slice-image. It also permits the user to specify lower and upper bounds to be used in 

stretching or compressing the histogram of intensities in the slice-image. When the 

histogram is modified, the values in the slice-image are adjusted so as to scale the entire 

range of values to a different range, resulting in improved contrast and a more usable 

image. For a system of 256 grayshades, the value 0 equals black and 255 equals white, 

with progressively lighter shades of gray in between. If most of a picture's pixel values 

are low, then the picture will be dark. Stretching the histogram can lighten the picture 

and make more detail visible. 

3.4.2 Color Quantization 

Color quantization is the process of scaling a range of pixel color values to a range which 

is more suited to the display device being used. The range of input values from the 

3DHEAD VDS has been determined to be from -128 to 3955. The range of valid 

grayshade values for a standard VGA adapter is 0 (black) to 15 (high-intensity white). 

Therefore, the input values must be scaled and sorted into 16 "buckets" corresponding to 

each of the available VGA grayshades. It may be necessary to perform histogram 

stretching and quantization together in order to obtain a usable image. 
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CHAPTER 4 

TESTING AND RESULTS IN TWO DIMENSIONS 

In this chapter, we discuss the tests performed with the 2-D segmentation program, 

focusing on these particular areas: 

- image quality 

- choice of seedpoint 

- density ranges 

- density-gradient threshold 

- gradient-approximation methods 

- region-growing methods 

- stack frame and memory requirements 

- image resolution 

- run time needed to create an image 

The notion of "image quality" is subjective and deserves some elaboration. To some 

extent, image quality is constrained by the resolution of the original dataset. In two 

dimensions, the quality of an image is a reflection of how well a particular structure is 

able to be segmented, that is, separated from neighboring tissue. Does the region have 

clear boundaries? Does it include what it is "supposed to"? Does it exclude other 
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undesired areas? Is the image pocked or pitted to a degree which is out of proportion to 

the fundamental nature of the object represented? 

Image quality certainly depends upon the completeness of the image. This completeness 

is related to computer resource requirements in that, the more pixels which are visited, the 

more time and stack frames will be needed for the final image to be generated. But more 

resource commitments do not necessarily result in a better image. 

4.1 Benchmark Seedpoints 

Specific locations within the human head were used as "benchmark seedpoints" for the 

segmentation process. Taken from the median sagittal section (3DHEAD slice #54) of 

the head, these benchmark points were chosen because they represent (in the opinion of 

the author) distinct and significant structures which would lend themselves well to 

segmentation. Names of the skull's internal structures are taken from [Frohse6l] (figure 

4.1-1). Figure 4.1-2 and table 4.1-1 may be used together to locate the benchmark 

seedpoints. 

From these seedpoints, "canonical" images of segmented structures were derived (see 

section 4.3). Although the notion of what is canonical is a matter of opinion, these 

images will provide a useful means of comparison with other segmented images. 
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structure (fig.) (x, y) ref. T LDL UDL 
corpus callosum (4.3-1) (120,103) A 1000 1200 2000 
pons (4.3-2) (155,140) B 800 1100 1500 
worm of cerebellum (4.3-3) (181, 147) C 1800 900 1800 
cerebrum (4.3-4) (151,75) D 900 900 2000 
scalp (4.3-5) (199,55) E 8000 1200 2800 
superior sagittal sinus (4.3-6) (200,75) F 1400 100 900 
brain (cerebrum, cerebellum, stem) (4.3-7) (179,142) G 1500 500 2000 
head (4.3-8) (127, 127) H 10000 200 3000 

(all Prewitt segmentation) 
I(all Recursive 4-connected, except fig. 4.3-8, Iterative) 

Table 4.1-1: Benchmark Seedpoints 
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THE HEAD 
MEDIAN SECTION 

I. Superior turbinated bone (Collcha lIasalis superior) 
2. Middle turbinated bone (Concha lIilSalis media) 
3. Inferior turbinated bone (Concha lIasalis inftrior) 
4. Sphenoidal sinus (sill us sphelloidalis) 
5. Tubal protrubernnce (Torus lubarius) 
6. Hard palate (Palatum durum) 
7. Soft palate (Palalum molle) 
S. Back of tongue (Dorsum linguae) 
9. Tonsil (Tonsilla pala/ina) 
10. Genioglo aI mu cle (M. genioglossus) 
II . Hyoid bone (Os hyoideum) 
12. Epiglottis (Epiglol/is) 
13. Thyroid cartilage (Carti/ago /hyreoidea) 
14. Vocal fold (Plica vocalis) 
15. Ventricular fold (Plicca vertricularis) 
16. Thyroid gland (Glandula /hyreoidea) 
17. Windpipe (Trachea) 

IS. Gullet (Oesophagus) 
19. Frontal sinus (Sill us fron/alis) 
20. Superior agittal sinu (sinus sagil/alus suptrior) 
21. Strainght sinu (Sinus rectus) 
22. Dura mater (Dura maIer) 
23. Olfactory bulb (Bulbus olfaclorius) 
24. Frontal lobe (Lobus fron/alis sllptrior) 
25. Wonn of cerebellum (Vert/lis ctrebelli) 
26. Oblong medulla (Medulla oblonga/a) 
27. Pons (Pons) 
2S. Leg of cerebellum (Crus ctrebri) 
29. Mamillary body (Corpus mamil/are) 
30. Pituitary body (Hypophysis) 
31 . Optic chiasma (Chiasma lIervi op/ici) 
32. Great commi sure (Corpus callosum) 
33. Pineal body (Corpus pineale) 
34. Quadrigeminal bodies (Corpora quadrigeminal 

Figure 4.1 - 1: Anatomical Ulu tration of the Head (Median Section) 
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A. Corpus Callo urn 
B. Pons 
C. Worm of Cerebellum 
D. Cerebrum 
E. Scalp 
F. Superior Sagittal Sinu 

Figure 4.1-2: Benchmark Seedpoint Location 
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4.2 Factors Affecting Segmentation Results 

4.2.1 The Seedpoint 

The choice of seedpoint is important in performing a successful segmentation. If a 

seedpoint is chosen which lies on or near the boundary between two types of tissue, then 

the gradient will be very high there, and the segmentation will immediately fail the 

gradient-threshold test. Likewise, if the density of the chosen seedpoint is outside of the 

specified range, then the density-range test will fail. 

In order to address this possibility, the program displays during the seedpoint-selection 

process a 3 x 3 matrix of density values surrounding the pixel underneath the mouse-

cursor, as well as the gradient and density at that pixel. This information is updated 

dynamically as the mouse-cursor is moved, allowing the user to "explore" a region of 

interest before committing to a particular seedpoint. 

4.2.2 The Density Range 

As the density range limits LDL and UDL are made smaller, fewer points will be 

considered part of the region to be segmented. Some data may be lost, but the degree of 

separation between different types of tissue may be improved. Using the "exploration" 

feature of the program, the user may observe the range of densities in the area he wishes 

to segment, and will be able to set LDL and UDL accordingly. 
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To observe the effects of changes in density range, we use the canonical image of the 

brain (figure 4.2.2-1) as a basis for comparison. (The settings for this and the other 

canonical images were arrived at through a process of intelligent trial-and-error involving 

such changes as we describe here.) The seedpoint for this image lies in the wonn of the 

cerebellum, at coordinates (179,142). The density at this point is 1370; we know, then, 

that the LDL must be set to some number less than 1370, and the UDL to some greater 

number, for any region-growing to take place at all. (As a rule, in the following tests, we 

work with this same seedpoint, using iterative region-growing, and varying from the 

canonical only those settings whose behavior we are studying.) 

Holding the UDL at the maximum of 4095, we begin by varying the LDL from 100 to 

1300 in increments of 100. As table 4.2.2-1 shows, as the LDL in gradually increased, 

fewer and fewer pixels are accumulated into the region grown. Figure 4.2.2-2 shows how 

excluding pixels of density 500-800 results in an image of the cerebrum which is eroded 

and less distinct. Figure 4.2.2-3 demonstrates an interesting phenomenon: as the LDL is 

increased by just 100, there is a drastic decline in the area of the grown region. 

Apparently there is a "bridge" of pixels with density 800-900 which connect the wonn of 

the cerebellum with the rest of the brain; when this bridge is eliminated, region-growing 

is inhibited. 
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Looking at the upper side of the density range, as the VOL is increased upwards from 

1370 (and the LDL is held constant at 500), some pixels are added to the image, but 

ultimately the growth of the region is constrained by the density gradient threshold. 
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Output filename: FIG4221.EPS GETCOORD - Bill Bell - Fall 1996 

x-y-z coordinates: [179, 142,54] 
Gradient-approximation method: 

Prewitt 
Region-growing method : 

Iterative 
LDL: 500 
UDL: 2000 
Threshold: 1500 
Stack frames u ed: 2957 
Pixels accumulated: 9137 

Figure 4.2.2-1: Canonical Image of the Brain 
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Output filename: FIG4222.EPS GETCOORD - Bill Bell - Fall 1996 

x-y-zcoordinates: [179, 142, 54] 
Gradient-approximation method: 

Prewitt 
Region-growing method : 

Iterative 
LDL: 800 
UDL: 4095 
Threshold: 1500 
Stack frames used: 2139 
Pixels accumulated: 6605 

Figure 4.2.2-2: The Canonical Brain, LDL Increa ed to 800 
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Output filename: FIG4223.EPS GETCOORD - Bill Bell - Fall 1996 

x-y-z coordinate: [179, 142, 54) 
Gradient-approximation method: 

Prewitt 
Region-growing method: 

Iterative 
LDL: 900 
UDL: 4095 
Threshold: 1500 
Stack frame u ed: 218 
Pixels accumulated: 61 1 

Figure 4.2.2-3: The Canonical Brain, LDL Increased to 900 
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LDL UDL recursive pixels remarks 
calls accumulated (image quality, structures included) 

100 4095 4562 20895 brain, frontal and sagittal sinuses 
200 4095 3113 14108 brain, superior sagittal sinus, back of neck 
300 4095 3325 12578 brain, superior sagittal sinus, back of neck 
400 4095 3191 10976 brain, superior sagittal sinus, back of neck 
500 4095 2957 9137 brain only 
600 4095 2601 7986 brain, folds of cerebrum eroded 
700 4095 2512 7120 brain, folds of cerebrum eroded 
800 4095 2139 6605 brain, cerebrum eroded, no pineal 
900 4095 218 611 only worm of cerebellum shown 

1000 4095 108 515 eroded worm of cerebellum 
1100 4095 88 232 eroded worm of cerebellum 
1200 4095 39 79 eroded worm of cerebellum (almost gone) 
1300 4095 20 39 eroded worm of cerebellum (almost gone) 
1369 4095 2 1 one pixel 
4095 4095 1 o end of chart 

Table 4.2.2-1: Effects of Adjustments to Lower Density Limit 

LDL UDL recursive pixels remarks 
calls accumulated (image quality, structures included) 

500 1371 1982 8553 brain, corpus callosum misSing 
500 1400 3275 8664 brain, corpus callosum missing 
500 1500 2911 8880 brain, corpus callosum begins to appear 
500 1600 2957 9133 brain complete 
500 1700 2957 9137 brain complete 
500 1800 2957 9137 brain complete 
500 1900 2957 9137 brain complete 
500 2000 2957 9137 brain complete 
500 2100 2957 9137 brain complete 
500 2200 2957 9137 brain complete 
500 2300 2957 9137 brain complete 
500 2400 2957 9137 brain complete 
500 2500 2957 9137 brain complete 
500 4095 2957 9137 end of chart 

Table 4.2.2-2: Effects of Adjustments to Upper Density Limit 
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Figure 4.2.2-4: Effects of Adjustments to Lower Density Limit 
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Figure 4.2.2-5: Effects of Adjustments to Upper Density Limit 

- 56-



4.2.3 The Gradient Threshold 

As the gradient-threshold T is made smaller, fewer points will be considered part of the 

region to be segmented. Some data may be lost, but the degree of separation between 

different types of tissue may be improved. Using the "exploration" feature of the 

program, the user may observe the range of gradients in the area he wishes to segment. 

Keeping in mind the fact that the gradient is high in the area of the boundary between 

tissue types, the user can determine (approximately) the largest threshold value which 

will acquire member pixels of the region to be segmented, without impairing the 

program's ability to accurately differentiate between tissue types. 

Segmentation by gradient-threshold may be complicated where the seedpoint is located in 

very porous tissue which has an inherently high gradient, such as bone or lung tissue. In 

such cases, one may be better off selecting a very high gradient-threshold (INT_MAX, in 

this case 32,767) and relying upon density-range alone for results. One must be sure that 

the density-range selected is that of the porous tissue itself, not of whatever substance lies 

inside the pores. 

The (Prewitt) gradient approximation at the seedpoint is 597. Again using the canonical 

brain image for comparison (figure 4.2.3-1), we hold the LDL and UDL steady while 

varying the density-gradient threshold in increments. As table 4.2.3-1 shows, as the 

threshold is increased, this relaxation in the criteria for region membership results in the 

addition of more pixels. Figures 4.2.3-2 and 4.2.3-3 demonstrate a drastic accumulation 
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of pixels when the threshold is increased from 1000 to 1100; the higher threshold was 

needed to permit the addition of pixels representing the cerebrum to those of the worm of 

the cerebellum, wherein the seedpoint lies. If the threshold is permitted to grow too large, 

entirely different structures may be added to the region. Ultimately, region growth is 

constrained by the density range limits. 
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Output filename: FIG4232.EPS GETCOORD - Bill Bell - Fall 1996 

x-y-z coordinate: [179, 142, 54] 
Gradient-approximation method: 

Prewitt 
Region-growing method: 

Iterati ve 
LDL: 500 
UDL: 2000 
Thre hold: 1000 
Stack frame u ed: 395 
Pixels accumulated: 1042 

Figure 4.2.3-2: The Canonical Brain, Den ity Gradient Thre hold Reduced to 1000 
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Output filename: FIG4233.EPS GETCOORD - Bill Bell - Fall 1996 

x-y-z coordinate : [179. 142.54] 
Gradient-approximation method : 

Prewitt 
Region-growing method: 

Iteralive 
LDL: 500 
UDL: 2000 
Thre hold: 1100 
Stack frame u ed: 2280 
Pixel accumulated: 7416 

Figure 4.2.3-3: The Canonical Brajn, Den ity Gradient Thre hold Reduced to 1100 
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threshold recursive pixels remarks 
calls accumulated (image quality, structures included) 

600 105 196 eroded worm of cerebellum 
700 131 259 eroded worm of cerebellum 
800 274 470 eroded worm of cerebellum, some cerebrum 
900 334 804 eroded worm of cerebellum, some cerebrum 

1000 395 1042 complete worm of cerebellum, some cerebrum 
1100 2280 7416 brain, eroded 
1200 2336 7916 brain, eroded 
1300 2734 8369 brain, eroded 
1400 3231 8760 brain, eroded 
1500 2957 9137 the canonical image 
1600 3492 10561 brain, back of neck 
1700 2914 10882 brain, back of neck 
1800 3238 11114 brain, back of neck 
1900 3441 11327 brain, back of neck 
2000 3760 11824 brain, back of neck 
2500 3746 12481 brain, back of neck 
3000 3531 17133 brain, back of neck, frontal sinuses 
4000 3599 17498 brain, back of neck, frontal sinuses, vertebrae 
5000 3665 17565 brain, back of neck, frontal sinuses, vertebrae 

10000 3665 18508 brain, back of neck, frontal sinuses, vertebrae, scalp 
15000 3665 18508 brain, back of neck, frontal sinuses, vertebrae, scalp 
20000 3665 18508 brain, back of neck, frontal sinuses, vertebrae, scalp 
32767 3665 18508 end of chart 

Table 4.2.3-1: Effects of Adjustments to Density Gradient Threshold 
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Figure 4.2.3-4: Effects of Adjustments to Density Gradient Threshold 
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4.2.4 The Gradient Approximation Method 

In order to compare the effectiveness of the three gradient-approximation methods used 

in this study, we perform three otherwise identical segmentations on the canonical image 

of the brain. Figure 4.2.4-1 demonstrates the use of the Prewitt kernel (the canonical 

Brain); figure 4.2.4-2, the Sobel kernel; and figure 4.2.4-3, the SSR formula. 

Observe that the image created using the Sobel method appears somewhat eroded, with 

structures either incomplete (e.g. the superior sagittal sinus) or missing entirely (e.g. the 

pineal body). The image created using the SSR method is, by contrast, much too 

complete; it includes a great many undesired structures into the region. 

In order more closely to examine and analyze the behavior of each method, a spreadsheet 

program was used to create sets of test matrices (tables 4.2.4-1 to 4.2.4-5). Each matrix 

set describes a 3 x 3 matrix as the values of its constituent cells gradually change (in nine 

steps) to reflect a change in density from one uniform level to another. At each 

increment, the density gradient is recorded for each gradient-approximation method. 

Table 4.2.4-6 synopsizes the results of the previous tables in this section; figure 4.2.4-4 

displays these results in graphical form. 

- 63-



Output filename: FIG4241.EPS GETCOORD - Bill Bell - Fall 1996 

x-y-z coordinate: [179, 142,54] 
Gradient-approximatjon melhod : 

Prewitt 
Region-growing melhod : 

Iterative 
LDL: 500 
UDL: 2000 
Thre hold : 1500 
Stack frame used : 2957 
Pixels accumulated: 9137 

Figure 4.2.4-1: The Canonical Brain (Prewitt Gradient Approximation) 
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Output filename: FIG4242.EPS GETCOORD - Bill BelI - Fall 1996 

x-y-z coordinates: [179, 142, 54] 
Gradient-approximation method: 

Sobel 
Region-growing method : 

Iterative 
LDL: 500 
UDL: 2000 
Threshold: 1500 
Stack frame u ed: 2262 
Pixel accumulated: 7447 

Figure 4.2.4-2: The Canonical Brain (Sobel Gradient Approximation) 
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Output filename: FIG4243.EPS GETCOORD - Bill Bell - Fall 1996 

x-y-z coordinate: [179, 142, 54] 
Gradient-approximation method: 

SSR 
Region-growing method: 

Iterative 
LDL: 500 
UDL: 2000 
Thre hold: 1500 
Stack frame u ed: 3665 
Pixels accumulated: 17541 

Figure 4.2.4-3: The Canonical Brain (Square-Sum-Root Gradient Approximation) 
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number of 
cells covered test matrix Prewitt Sobel SSR 

1000 1000 1000 
0 1000 1000 1000 0 0 0 

1000 1000 1000 

!li~llli! 1000 1000 
1000 1000 1000 400 400 0 
1000 1000 1000 

1000 1000 
2 1000 1000 600 800 200 

1000 1000 

3 800 1200 283 

4 800 1200 283 

5 800 1200 283 

6 800 1200 283 

7 600 800 200 

8 400 400 o 

9 o o o 

Table 4.2.4-1: Gradient Test Matrix Set (1.2: 1) 
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number of 
cells covered test matrix Prewitt Sobel SSR 

1000 1000 1000 
0 1000 1000 1000 0 0 0 

1000 1000 1000 

'I~,II~! 1000 1000 
1000 1000 1000 800 800 0 
1000 1000 1000 

2 1200 1600 400 

3 1600 2400 566 

4 1600 2400 566 

5 1600 2400 566 

6 1600 2400 566 

7 1200 1600 400 

8 800 800 o 

9 o o o 

Table 4.2.4-2: Gradient Test Matrix Set (1.4: 1) 
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number of 
cells covered test matrix Prewitt Sobel SSR 

1000 1000 1000 
0 1000 1000 1000 0 0 0 

1000 1000 1000 

11,§gi! 1000 1000 
1000 1000 1000 1200 1200 0 
1000 1000 1000 

1000 
2 1000 1800 2400 600 

1000 

3 2400 3600 849 

4 2400 3600 849 

5 2400 3600 849 

6 2400 3600 849 

7 1800 2400 600 

8 1200 1200 o 

9 o o o 

Table 4.2.4-3: Gradient Test Matrix Set (1.6:1) 
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number of 
cells covered test matrix Prewitt Sobel SSR 

1000 1000 1000 
0 1000 1000 1000 0 0 0 

1000 1000 1000 

!~~,I~i 1 000 1000 
1000 1000 1000 1600 1600 0 
1000 1000 1000 

2 2400 3200 800 

3 3200 4800 1131 

4 3200 4800 1131 

5 3200 4800 1131 

6 3200 4800 1131 

7 2400 3200 800 

8 1600 1600 o 

9 o o o 

Table 4.2.4-4: Gradient Test Matrix Set (1.8: 1) 
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number of 
cells covered test matrix Prewitt Sobel SSR 

1000 1000 1000 
0 1000 1000 1000 0 0 0 

1000 1000 1000 

.lli1 1OOO 1000 
1000 1000 1000 2000 2000 0 
1000 1000 1000 

1000 
2 1000 3000 4000 1000 

1000 

3 4000 6000 1414 

4 4000 6000 1414 

5 4000 6000 1414 

6 4000 6000 1414 

7 3000 4000 1000 

8 2000 2000 o 

9 o o o 

Table 4.2.4-5: Gradient Test Matrix Set (2.0: 1) 
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Prewitt: ratio 
cells covered 1.2:1 1.4:1 1.6:1 1.B:1 2.0:1 

0 0 0 0 0 0 
1 400 800 1200 1600 2000 
2 600 1200 1BOO 2400 3000 
3 BOO 1600 2400 3200 4000 
4 800 1600 2400 3200 4000 
5 BOO 1600 2400 3200 4000 
6 BOO 1600 2400 3200 4000 
7 600 1200 1BOO 2400 3000 
B 400 BOO 1200 1600 2000 
9 0 0 0 0 0 

Sobel: ratio 
cells covered 1.2:1 1.4:1 1.6:1 1.8:1 2.0:1 

0 0 0 0 0 0 
1 400 800 1200 1600 2000 
2 BOO 1600 2400 3200 4000 
3 1200 2400 3600 4800 6000 
4 1200 2400 3600 4800 6000 
5 1200 2400 3600 4800 6000 
6 1200 2400 3600 4800 6000 
7 800 1600 2400 3200 4000 
8 400 800 1200 1600 2000 
9 0 0 0 0 0 

SSR: ratio 
cells covered 1.2:1 1.4:1 1.6:1 1.8:1 2.0:1 

0 0 0 0 0 0 
1 0 0 0 0 0 
2 200 400 600 800 1000 
3 283 566 849 1131 1414 
4 283 566 849 1131 1414 
5 283 566 849 1131 1414 
6 2B3 566 B49 1131 1414 
7 200 400 600 BOO 1000 
8 0 0 0 0 0 
9 0 0 0 0 0 

Table 4.2.4-6: Gradient Approximation Method Responses for Test Matrices 

-72 -



Prewitt Response 
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Figure 4.2.4-4: Gradient Approximation Method Responses for Test Matrices 
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We observe two fundamental differences in the curves shown in the graph: first, the range 

of density gradients encountered; and second, the shapes of the curves. The range of the 

curves for the Prewitt method is 0 to 4000; the range for the Sobel method is 0 to 6000; 

and for the SSR method, 0 to 1414. 

Whereas the absolute gradient range by itself is unimportant, it becomes significant if one 

does not take it into account when assigning an appropriate gradient threshold for the 

gradient-approximation method being used. For example, a threshold of 1500 was 

appropriate for segmenting the canonical Brain using the Prewitt method; such a number 

ensures that no undesired areas will be included into the segmented image. However, this 

same number is higher than most of the gradients which are computed during SSR 

segmentation, making the gradient threshold largely irrelevant. (As we shall see, the SSR 

threshold should be, in this case, about a third of the Prewitt threshold in order to create a 

reasonably good image.) 

In a similar fashion, because the Sobel kernel magnifies the effect of an encounter with an 

edge, a threshold which works for a Prewitt segmentation may not be high enough for a 

Sobel segmentation in order accurately to include all parts of a desired region. 

The shape of a gradient-approximation response curve may also playa part in the results 

of segmentation (figure 4.2.4-4). Over a range of a given kernel's cell-coverings, the 

response curves of the different methods may be compared in order to answer certain 

questions: How quickly does a particular method respond to a change in density? How 
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strongly does it respond? Does it display any anomalies in its response (e.g. dips or flat 

spots in the graph)? How do these characteristics manifest themselves in terms of image 

quality? 

Tables 4.2.4-7 and 4.2.4-8, and their accompanying graphs, figures 4.2.4-5 and 4.2.4-6, 

are presented for evaluation. We first normalize the graph of the gradients computed for 

each method at a given starting-to-ending-density ratio (in this case, 2.0: 1). By 

normalizing the numbers, we scale them to the same range of values to ensure a fairer 

comparison. In this case, the SSR numbers were multiplied by a constant of 2.86 in order 

to scale them to the level of the Prewitt numbers. Then, the modified SSR numbers and 

the Prewitt numbers were multiplied by 1.5 in order to scale them to the level of the Sobel 

numbers. 
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Normalized Density Gradients 
cells 

covered Prewitt Sobel SSR 
0 0 0 0 
1 3000 2000 0 
2 4500 4000 4290 
3 6000 6000 6066 
4 6000 6000 6066 
5 6000 6000 6066 
6 6000 6000 6066 
7 4500 4000 4290 
8 3000 2000 0 
9 0 0 0 

Table 4.2.4-7: Normalized Density Gradients of Gradient Test Matrix (2.0:1) 

7000 

6000 

5000 

C 4000 
GI ;; 
f! 3000 CJ 

2000 

1000 

0 
0 

Normalized Density Gradients 

2 3 4 5 6 7 

Cells Covered 

8 9 

Ell Prewitt 

• Sobel 

OSSR 

Figure 4.2.4-5: Normalized Density Gradients of Gradient Test Matrix (2.0: 1) 
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Gi c 
i! 
u::: 

First Derivative of Normalized Density 
Gradients 

cells 
covered Prewitt Sobel SSR 

0 0 0 0 
1 3000 2000 0 
2 1500 2000 4290 
3 1500 2000 1776 
4 0 0 0 
5 0 0 0 
6 0 0 0 
7 -1500 -2000 -1776 
8 -1500 -2000 -4290 
9 -3000 -2000 0 

Table 4.2.4-8: First Derivative of Normalized Densities of Gradient 
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2000 

1000 
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-2000 
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-5000 
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First Derivatives of 
Normalized Density Gradients 
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Cells Covered 
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oSSR 

Figure 4.2.4-6: First Derivative of Normalized Density Gradients of Gradient 

Test Matrix (2.0: 1) 
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Next, we look at the rate of change of gradient with respect to the number of cells 

covered; in effect, the first derivative of the normalized gradients. (Note that, since the 

SSR method generates no gradient for the first, second, and ninth intervals, those 

intervals are not useful for evaluating this method. Also note that symmetry exists about 

the fifth interval: the fourth and sixth, third and seventh, second and eighth, and first and 

ninth intervals are the negatives of each other.) 

After all of this effort, it seems anticlimactic to report that the differences in gradient 

first-derivatives is fairly small for the three approximation methods studied. Using the 

highly simplified test matrices, the three methods yield respond in an approximately equal 

manner. When comparing images created using each method for the canonical seedpoints 

(and adjusting the threshold accordingly), we observe that the results are not radically 

different. In general, the differences are either poor or overzealous region growth, or 

degraded image quality due to erosion of boundary areas. 

4.2.4.1 Prewitt Gradient Approximation 

The Prewitt method was used to generate the so-called canonical images displayed in 

section 4.3. As such, they are used as a basis for comparison in evaluating the 

effectiveness of the other gradient-approximation methods. 
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4.2.4.2 Sobel Gradient Approximation 

As has been noted, a threshold which works for a Prewitt segmentation may not be high 

enough for a Sobel segmentation. We observe this in practice by performing canonical 

segmentations using the Sobel method instead of the Prewitt, but retaining the canonical 

(Prewitt) gradient threshold. When the region to be segmented is fairly small (e.g. the 

corpus callosum or the pons), the difference in quality of segmentation may not be 

noticeable to the eye, although the degree of segmentation is different, as measured by the 

number of recursive calls made and the number of pixels accumulated into the segmented 

region (see table 4.2.4.2-1 and figure 4.2.4.2-1). 

As the size of the desired region increases, however, boundary erosion and poor region 

growth become evident (see figure 4.2.4.2-2). The remedy is to increase the threshold by 

some amount, from perhaps 20% to as much as 80% of the Prewitt threshold. Even then, 

the quality of the region boundaries may leave a little to be desired. 
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Sobel Sobel Prewitt 
Prewitt Stack Pixels Modijied Stack Pixels Prewitt Stack Pixels Remarlts on Sobel 

Structure Threshold Frames Accumulated Threshold Frames Accumulated Threshold Frames Accumulated Quality 
C()l])us callosum 1000 211 310 1250 262 347 1000 257 354 as good as PreWItt 
pons 800 248 613 1000 272 633 800 272 640 as good as Prewitt 
worm of cerebellum 1800 217 581 2400 358 659 1800 346 663 as goc d as Prewitt 
cerebrum 900 404 923 1225 963 2730 900 970 2720 oor growth 
scalp 8000 464 866 15000 516 1224 8000 516 1214 oor Qrowth 
superior sagittal 
sinus 1400 399 1041 1900 635 1758 1400 666 1770 [poor Jjrowth 
brain 1500 2262 7447 2100 2754 9117 1500 2957 9137 mediocre growth, eroded 
head 10000 11775 25214 11000 13395 25281 10000 13395 25358 cranium not fully formed 

Table 4.2.4.2-1: Results of Canonical Image Generation Using 

Sobel Gradient Approximation 

SSR SSR 
Prewitt Stack Pixels Mod~ied Stack Pixels 

Structure Threshold Frames Accumulated Threshold Frames Accumulated 

corpus callosum 1000 377 735 250 259 
pons 800 512 2448 250 297 

worm of cerebellum 1800 1986 6791 575 330 

cerebrum 900 1623 6681 279 800 

scalp 8000 516 1224 8000' 516 

superior sagittal 
sinus 1400 5613 16858 414 577 

brain 1500 3665 17541 465 3052 
head 10000 13395 25358 10000" 13395 

malClmum gradient crossing the cranium -: 1800, denSity<400 on erther Side 
- probably constrained by LOL and UOL 

339 
646 

663 

2668 

1224 

1645 

8917 
25358 

Prewitt 
Threshold 

1000 
800 

1800 

900 

8000 

1400 

1500 
10000 

Prewitt 
Stack Pixels 

Frames Accumulated Remari<s on SSR Qualrty 
includes dense areas of 

257 354 frontal lobe 
272 640 includes frontal lobe 

346 663 includes brain, stem, c.c. 

970 2720 includes brain, stem, c.c. 
almost identical to 

516 1214 canonical 
includes sup. sag. sinus 
other intracerebral 

666 1770 material 
includes brain, neck, jaw, 

2957 9137 face 
13395 25358 Identical to canonical 

Table 4.2.4.3-1: Results of Canonical Image Generation Using 

SSR Gradient Approximation 
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Output filename: FIG42421 .EPS GETCOORD - Bill Bell - Fall 1996 

x-y-z coordinate: [181, 147, 54] 
Gradient-approximation method: 

Sobel 
Region-growing method: 

Iterative 
LDL: 900 
UDL: 1800 
Thre hold: 1800 
Stack frame u ed: 217 
Pixels accumulated: 581 

Figure 4.2.4.2-1: Canonical Worm of Cerebellum U ing Sobel Gradient Approximation 
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Output filename: FIG42422.EPS GETCOORD - Bill Bell - Fall 1996 

x-y-z coordinates: [151, 75, 54] 
Gradient-approximation method: 

Sobel 
Region-growing method: 

Iterative 
LDL: 900 
UDL: 2000 
Thre hold: 900 
Stack frames used : 404 
Pixels accumulated: 923 

Figure 4.2.4.2-2: Canonical Cerebrum Using Sobel Gradient Approximation 
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4.2.4.3 Square-Sum-Root Gradient Approximation 

Since the gradient approximations computed by the SSR method are unifonnly much 

lower than those computed by the other methods studied, it comes as no surprise that the 

use of a threshold which is successful with the Prewitt method should fail miserably 

(most of the time) with the SSR method. Many undesired areas are included in the 

segmented region due to an excessively high threshold. The remedy is, of course, to 

reduce the threshold to a more appropriate level, perhaps to a third or a fourth of the 

Prewitt value. Table 4.2.4.3-1 synopsizes the stack-frame/pixel-accumulation data 

recorded for the SSR trials; figures 4.2.4.3-1 and 4.2.4.3-2 show before-and-after attempts 

to segment the cerebrum using the SSR method. 
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Output filename: FIG42431 .EPS GETCOORD - Bill Bell - Fall 1996 

x-y-z coordinates: [151.75.541 
Gradient-approximation method: 

SSR 
Region-growing method: 

Iterative 
LDL: 900 
UDL: 2000 
Threshold: 900 
Stack frames used: 1623 
Pixels accumulated: 6681 

Figure 4.2.4.3-1: Canonical Cerebrum Using SSR Gradient Approximation 
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Output filename: FIG42432.EPS GETCOORD - Bill Bell - Fall 1996 

x-y-z coordinate : [15 I , 75, 54] 
Gradient-approximation method: 

SSR 
Region-growing method : 

Iterative 
LDL: 900 
UDL: 2000 
Thre hold: 279 
Stack frame u ed: 800 
Pixel accumulated: 2668 

Figure 4.2.4.3-2: Canonical Cerebrum U ing SSR Gradient Approximation 
(Thre hold Adju ted) 
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4.2.5 The Region-growing Method 

Our primary objective in performing segmentation is to create a beautiful and infonnative 

image of a structure. We must recognize also the limitations of space and time; and so 

we explore different region-growing algorithms in order to determine the characteristics 

of each algorithm with respect to memory usage and runtimes, as well as to its ability to 

segment effectively. 

4.2.5.1 4-connected and 8-connected Recursion 

The program GETCOOR8 was used to generate the images displayed in this section. It is 

exactly the same as the GETCOORD program, except that a compiler directive is enabled 

which expands the 4-connected region-growing function (dojloodfill_recO) to an 8-

connected function. To assess the effects of 8-connected region-growing, we recreate the 

canonical images with GETCOOR8 and compare the results with those created with 

GETCOORD. 

Compare the 8-connected image of the corpus callosum (figure 4.2.5.1-1) with its 4-

connected counterpart (figure 4.3-1). 8-connectedness causes dense areas of the frontal 

lobe to be included with the corpus callosum itself. Reducing the gradient threshold to 

800 from 1000 removes most of the extra frontal lobe area (figure 4.2.5.1-2). Increasing 

the lower density limit to 1400 from 1200 removes the frontal lobe entirely, although the 

remaining image appears somewhat eroded (figure 4.2.5.1-3). 
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Figure 4.2.5.1-4 shows the drastic effect of 8-connectedness on the 4-connected canonical 

image of the cerebrum (figure 4.3-4). In this case, 8-connectedness causes the corpus 

callosum, pons, and oblong medulla to be included with the cerebrum. Reducing the 

gradient threshold to 750 from 900 helps improve the segmentation, although at some 

cost to the quality of the remaining image (figure 4.2.5.1-5); especially so, since the 

gradient in the cerebrum, a highly convoluted structure, tends to be on the high side. 

By contrast, the appearance of some structures does not change much with the application 

of 8-connected region-growing. For example, figure 4.2.5.1-6 shows the result of 8-

connectedness on the image of the scalp. Comparing this picture to the canonical scalp in 

figure 4.3-5, we see that the only addition of matter appears at the bridge of the nose. We 

conjecture that the scalp is, due to the relatively high gradient surrounding it, already 

well-segmented; 8-connectivity doesn't have much of an effect under these circumstances. 

Similar remarks hold for the superior sagittal sinus (8-connected, figure 4.2.5.1-7; 

canonical 4-connected, figure 4.3-6). 
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Output filename: FIG42511.EPS GETCOOR8 - Bill Bell- Fa)) 1996 

x-y-z coordinate: [120, 103,54] 
Gradient-approximation method: 

Prewitt 
Region-growing method: 

Recur ive 
LDL: 1200 
UDL: 2000 
Thre hold: 1000 
Stack frame u ed: 262 
Pixels accumulated: 596 

Figure 4.2.5.1-1: Corpus Callosum Using 8-connected Segmentation 
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Output filename: FIG42512.EPS GETCOOR8 - Bill Bell - Fall 1996 

x-y-z coordinates: [120, 103,54] 
Gradient-approximation method: 

Prewitt 
Region-growing method: 

Recursive 
LDL: 1200 
UDL: 2000 
Thre hold: 800 
Stack frame used : 226 
Pixels accumulated: 356 

Figure 4.2.5.1-2: Corpus Callosum Using 8-connected Segmentation 
(reduced gradient thre hold) 
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Output filename: FIG42513.EPS GETCOOR8 - Bill Bell- Fall 1996 

x-y-z coordinate : [120, 103, 54] 
Gradient-approxjmation method: 

Prewitt 
Region-growing method: 

Recursive 
LDL: 1400 
UDL: 2000 
Thre hold: 1000 
Stack frame u ed: 198 
Pixel accumulated: 276 

Figure 4.2.5.1-3: Corpu Callo urn U ing 8-connected Segmentation 
(increased LDL) 
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Output filename: FIG42514.EPS GETCOOR8 - Bill Bell - Fall J 996 

x-y-z coordinates: [151, 75, 54] 
Gradient-approximation method : 

Prewitt 
Region-growing method : 

Recursive 
LDL: 900 
UDL: 2000 
Thre hold: 900 
Stack frame used: 1398 
Pixels accumulated: 4216 

Figure 4.2.5.1-4: Cerebrum Using 8-connected Segmentation 

- 91 -



Output filename: FIG42515.EPS GETCOOR8 - Bill Bell- Fall 1996 

x-y-z coordinates: [151, 75, 54] 
Gradient-approximation method: 

Prewitt 
Region-growing method: 

Recur ive 
LDL: 900 
UDL: 2000 
Thre hold: 750 
Stack frame u ed: J202 
Pixels accumulated: 2345 

Figure 4.2.5.1-5: Cerebrum Using 8-connected Segmentation 
(reduced gradient threshold) 
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Output filename: FIG42516.EPS GETCOOR8 - Bill Bell - Fall 1996 

x-y-z coordinates: [199 55, 54] 
Gradient-approximation method: 

Prewitt 
Region-growing method: 

Recur ive 
LDL: 1200 
UDL: 2800 
Threshold: 8000 
Stack frames used: 548 
Pixel accumulated: 1247 

Figure 4.2.5.1-6: Scalp U ing 8-connected Segmentation 
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Output filename: FIG42517 .EPS GETCOOR8 - Bill Bell- Fall 1996 

x-y-z coordinates: [200, 75, 54] 
Gradient-approximation method: 

Prewitt 
Region-growing method: 

Recursive 
LDL: 100 
UDL:900 
Thre hold: 1400 
Stack frames u ed: 704 
Pixels accumulated: 2240 

Figure 4.2.5.1-7: Superior Sagittal Sinu U ing 8-connected Segmentation 
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In retrospect, let us observe quantitatively the results and the resource usage of the 4-

connected and 8-connected recursive region-growing algorithms. As table 4.2.5.1-1 

shows, in each of four benchmark cases studied, the 8-connected algorithm has 

accumulated more pixels for its image, and uses more stack frames, than the 4-connected 

method. The images of the cerebrum, and, to a lesser extent, the corpus callosum, could 

be considered degenerate cases; the enhanced connectedness of the 8-connected method 

has caused undesired areas to be included in the segmentation. We shall have more to say 

on the subject of stack limitations in section 4.2.5.4. 

4-connected region-growinQ 8-connected reQion-growinQ 
structure figure pixels frames figure pixels frames 

corpus callosum 4.3-1 257 354 4.2.5.1-1 262 596 
cerebrum 4.3-4 970 2720 4.2.5.1-4 1398 4216 
scalp 4.3-5 516 1214 4.2.5.1-6 548 1247 
sup. sag. sinus 4.3-6 666 1nO 4.2.5.1-7 704 2240 

Table 4.2.5.1-1: Pixel Accumulation and Stack Frame Usage (4-connected vs. 

8-connected Region-growing) 
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4.2.5.2 4-connected Simulated Recursion 

The recursive method described above needs system stack space for its recursive calls as 

well as for its calls to incidental functions. As described in section 3.2.3, this iterative 

version simulates recursion by maintaining its own stack for the storage of passed 

arguments and return addresses. Since it requires much less memory than the purely 

recursive method to generate an image with the same settings, it has the potential to be 

able to perform segmentations of which the recursive method would be incapable. (See 

section 4.2.5.4, Stack Limitations.) 

Since the iterative method is the result of a careful conversion of a recursive method 

[Tenenbaum90], it is reasonable to expect that (assuming enough stack space and 

identical settings) the two methods would yield exactly the same image. This is in fact 

the case for each of the canonical images used in this study (except the image of the entire 

head, in which case the stack ran out of space before the image was completed). We may 

verify this outcome in two ways. First, we compare the appearance of the two images. 

They should, of course, look the same; also, the number of stack frames and pixels 

accumulated should be equal. Compare figures 4.2.5.2-1 and 4.2.5.2-2 for an example. 

Second, we may save the output as RAW format files, and compare them byte-for-byte 

using an operating-system comparison utility. 
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Output filename: FIG42521.EPS GETCOORD - Bill Bell- Fall 1996 

x-y-z coordinates: [179, 142, 54] 
Gradient-approximation method: 

Prewitt 
Region-growing method: 

Recursive 
LDL: 500 
UDL: 2000 
Thre hold: 1500 
Stack frames used: 2957 
Pixel accumulated: 9137 

Figure 4.2.5.2-1: The Brain (Recursive Region-growing) 
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Output filename: FIG42522.EPS GETCOORD - Bill Bell - Fall 1996 

x-y-z coordinates: [179, 142, 54] 
Gradient-approximation method: 

Prewitt 
Region-growing method: 

Iterative 
LDL: 500 
VDL: 2000 
Threshold: 1500 
Stack frame u ed: 2957 
Pixels accumulated: 9137 

Figure 4.2.5.2-2: The Brain (Iterative, Simulated-recur ive Region-growing) 
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4.2.5.3 Recursive Spanfilling 

As explained in section 3.2.4, the spanfilling algorithm used in this study is much more 

efficient in its use of memory than the other region-growing algorithms used, because it 

does most of its work (that of adding pixels to a region) in an iterative manner, and relies 

on recursion only when moving to another span. We also note that the raw images 

generated with the spanfilling method are exactly the same as those generated by the 

other methods (except for the image of the entire head, which the spanfill method alone 

was successful in completing without running out of stack space). 
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Output filename: FIG42531.EPS GETCOORD - Bill Bell - Fall 1996 

x-y-z coordinates: [179, 142,54] 
Gradient-approximation method: 

Prewitt 
Region-growing method : 

Spanfill 
LDL: 500 
UDL: 2000 
Thre hold: 1500 
Stack frames u ed: 331 
Pixels accumulated: 9137 

Figure 4.2.5.3-1: The Brain (SpanfilI Region-growing) 
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4.2.5.4 Stack Limitations 

The amount of memory available to the program as stack space, and the rate at which it is 

used, may be determined or limited by the operating system, the program, the compiler 

used to create the program, and the amount of physical memory in the computer. The 

implementation of recursive functions in general can be made more efficient by 

performing incidental functions in-line instead of calling other functions, refraining from 

declaring local variables, and restricting the number and size of passed arguments. 

In order to determine the limits on stack space, we must "stress" the image-generating 

program, that is, provide it with a set of segmentation arguments which are broad enough 

to cause the stack to be filled. To this end, we attempt all-inclusive segmentation, in 

which the gradient threshold is set to the maximum (32767), and the density range limits 

are set to their extremes (1 and 4095). The seedpoint selected lies at the center of the 

input image. We would expect, given an unlimited amount of stack space, to view the 

image in its entirety. The results of this approach may be seen in figures 4.2.5.4-1, 

4.2.5.4-2, and 4.2.5.4-3. 

In the cases of recursion and simulated recursion, observe that, when the stack becomes 

full, no further segmentation is possible, and the image cannot be completely generated. 

However, the spanfill method has no problem in recreating the original image in its 

entirety. Table 4.2.5.4-1 synopsizes the numbers of stack frames used and pixels 

accumulated for each region-growing method for each of the canonical images. Since the 
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recursive and simulate-recursive methods failed to completely recreate the entire input 

image, we regard the number of stack frames (i.e. recursive calls) used by these methods 

as the maximum available to the program. 

Figure Recursive Simulated Recursion Spanfill 
Stack Pixels Stack Pixels Stack Pixels 

Structure Frames Accumulated Frames Accumulated Frames Accumulated 
corpus callosum 4.3-1 257 354 257 354 30 
pons 4.3-2 272 640 272 640 29 
worm of cerebellum 4.3-3 346 663 346 663 24 
cerebrum 4.3-4 970 2720 970 2720 104 
scalp 4.3-5 516 1214 516 1214 133 
sup. sag. sinus 4.3-6 666 1770 666 1770 85 
brain 4.3-7 2957 9137 2957 9137 331 
head 4.3-8 3404 20096* 20000 . 47351* 129 
* Incomplete Image 

Table 4.2.5.4-1: Pixel Accumulation and Stack Frame Usage 
for Canonical Images 

The recursive method uses the system's stack segment, which, for the GETCOORD 

354 
640 
663 

2720 
1214 
1770 
9137 

65280 

program, was set at 55,000 bytes. (For the QuickC compiler, storage required for near 

data and the stack may not exceed 65,535 bytes. GETCOORD's near data take up the 

remaining 10,000 or so bytes.) The recursive function needs stack space not only for the 

many calls to itself, but also for all of the calls made to other functions which are 

incidental to the recursive function's operation. Observing figure 4.2.5.4-1, it is easy to 

see why it is the poorest performer in terms of memory usage for image quality gained. 

The simulated-recursive method uses the system stack only for calls to incidental 

functions; otherwise, it uses a stack data structure which is built into, and managed by, 

the program itself; the maximum size of this structure (20,000 "stack frames" of 3 bytes 
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each) is hard-coded into the program and is essentially limited by the maximum variable 

size which the compiler will accommodate (65,536 bytes). Since it uses memory much 

more efficiently, the image it generates (figure 4.2.5.4-2) is much more complete that the 

one created by its purely recursive cousin; however, in the end, it, too, proves 

unsatisfactory . 

Although the spanfill method's stack maximum is theoretically dependent upon the same 

factors as the 4-connected recursive method, it clearly uses the stack much less than the 

other algorithms, and alone is able to completely recreate the entire input image. No 

single run of the GETCOORD program using the spanfill mode has yet been thwarted by 

lack of stack space; it seems likely that only the most highly perforated of input datasets 

(resembling, at the pixel level, something like a checkerboard) would cause such an 

outcome. 
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Output filename: FIG42541 .EPS GETCOORD - Bill Bell - Fall 1996 

x-y-zcoordinate : [127, 127,54] 
Gradient-approximation method: 

Prewitt 
Region-growing method: 

Recur ive 
LDL: I 
UDL: 4095 
Threshold: 32767 
Stack frames used : 3403 
Pixels accumulated: 17994 

Figure 4.2.5.4-1: All-inclusive Segmentation U ing the Recur ive 
Region-growing Method 
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Output filename: FIG42542.EPS GETCOORD - Bill Bell - Fall 1996 

x-y-z coordinates: [l27, 127, 54] 
Gradient-approximation method: 

Prewitt 
Region-growing method : 

Iterative 
LDL: I 
UDL: 4095 
Threshold: 32767 
Stack frames used: 20000 
Pixels accumulated: 47351 

Figure 4.2.5.4-2: All-inclusive Segmentation U ing the Simulated-recur ive 
Region-growing Method 
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Output filename : FIG42543.EPS GETCOORD - Bill Bell - Fall 1996 

x-y-z coordinates: [127, 127, 54] 
Gradient-approximation method: 

Prewitt 
Region-growing method: 

Spanfill 
LDL: 1 
UDL: 4095 
Thre hold: 32767 
Slack frames used : 129 
Pixel accumulated: 65280 

Figure 4.2.5.4-3: All-inclu ive Segmentation U ing the Spanfill 
Region-growing Method 
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4.2.6 Image Resolution 

The 3DHEAD VDS represents an array of density data whose dimensions (in voxels) are 

256 x 256 x 109. The physical dimensions of the area represented are roughly 36 cm x 36 

cm x 15 cm.3 It would appear that the resolution of the original dataset, roughly 7 

pixels/cm (.7 pixels/mm), is relatively coarse, and may not admit of high-resolution 

segmented images of very small structures. Barring the use of a higher-resolution MRI 

scanning machine, some fonn of interpolation may be necessary. 

4.2.7 Run Times 

Before moving on to the next section, it is appropriate to say a few words about the time 

required to create the two-dimensional images presented here. These images were 

generated by a DOS-based program running on a 50-MHz 486 computer. In each case 

except for all-inclusive segmentation, run times were less than two or three seconds. For 

small structures such as the corpus callosum, the run time for image generation was 

essentially nil. The run time for an all-inclusive image using recursive region-growing 

finished at three seconds, although this represents the time required for the stack to fill 

up; the image created is incomplete. Likewise, all-inclusive region-growing using 

simulated recursion ran in 11 seconds, resulting in an incomplete image due to stack 

saturation. The spanfill method needed only eight seconds to create a complete image. 

3 These figures are based on a comparison of the 54th sagittal slice of the 3DHEAD 
VDS with measurements of the author's own skull: from the bridge of the nose to the back 
of the skull, about 23 cm; and from left temple to right temple, about 18 cm. 
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4.3 Canonical Images 

The notion of a "canonical" image is taken to mean "a critical standard" by which other 

images may be judged or compared. To be sure, image quality is in the eye of the 

beholder; the reader is invited to derive better images than those displayed here. In any 

event, these images will provide a useful basis for assessing the effectiveness of different 

segmenting strategies. 
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Output filename: FIG431 .EPS GETCOORD - Bill Bell - Fall 1996 

x-y-z coordinates: [120, 103 54] 
Gradjent-approximaLion method: 

Prewitt 
Region-growing method: 

Recursive 
LDL: 1200 
UDL: 2000 
Thre hold: 1000 
Stack frames u ed : 257 
Pixel accumulated: 354 

Figure 4.3-1: Canonical Image of the Corpu CaJlo urn 
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Output filename: FIG432.EPS GETCOORD - Bill Bell - Fall 1996 

x-y-z coordinate: [ISS, 140,54] 
Gradient-approximation method: 

Prewitt 
Region-growing method: 

Recur ive 
LDL: 1100 
UDL: 1500 
Thre hold: 800 
Stack frame u ed: 272 
Pixel accumulated: 640 

Figure 4.3-2: Canonical Image of the Pon 
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Output filename: AG433.EPS GETCOORD - Bill Bell - Fall 1996 

x-y-z coordinate: [lSI, 147,54] 
Gradient-approximation method: 

Prewitt 
Region-growing method: 

Recursive 
LDL: 900 
UDL: IS00 
Threshold: 1SOO 
Stack frame u ed: 346 
Pixel accumulated: 663 

Figure 4.3-3: Canonical Image of the Worm of Cerebellum 
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Output filename: FIG434.EPS GETCOORD - Bill Bell- Fall 1996 

x-y-z coordinates: [151,75, 54] 
Gradient-approximation method: 

Prewitt 
Region-growing method: 

Recur ive 
LDL: 900 
UDL: 2000 
Thre hold: 900 
Stack frames u ed: 970 
Pixel accumulated: 2720 

Figure 4.3-4: Canonical Image of the Cerebrum 
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Output filename: FIG435.EPS GETCOORD - Bill Bell - Fall 1996 

x-y-z coordinate: r 199, 55, 54] 
Gradient-approximation method: 

Prewitt 
Region-growing method: 

Recursive 
LDL: 1200 
UDL: 2800 
Thre hold: 8000 
Stack frame u ed: 516 
Pixel accumulated: J 214 

Figure 4.3-5: Canonical Image of the ScaJp 
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Output filename: FIG436.EPS GETCOORD - Bill Bell - Fall 1996 

x-y-z coordinates: [200, 75, 54] 
Gradient-approximation method : 

Prewitt 
Region-growing method: 

Recursive 
LDL: 100 
UDL: 900 
Threshold: 1400 
Stack frame u ed: 666 
Pixels accumulated: 1770 

Figure 4.3-6: Canonical Image of the Superior Sagittal Sinu 
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Output filename: FIG437.EPS GETCOORD - Bill Bell - Fall 1996 

x.-y-z coordinate: [179,142,54] 
Gradient-approximation method: 

Prewitt 
Region-growing method: 

Iterative 
LDL: 500 
UDL: 2000 
Thre hold: 1500 
Stack frame u ed: 2957 
Pix.els accumulated: 9137 

Figure 4.3-7: Canonical Image of the Brain 
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Output filename: FIG438.EPS GETCOORD - Bill Bell- Fall 1996 

x-y-z coordinate : [127, 127, 54J 
Gradient-approximation method: 

Prewitt 
Region-growing method: 

Iterative 
LDL: 200 
UDL: 3000 
Threshold: 10000 
Stack frame u ed : 13395 
Pixels accumulated: 25358 

Figure 4.3-8: Canonical Image of the Head 
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CHAPTER 5 

IMPLEMENTATION IN THREE DIMENSIONS 

The MRI3D program was designed to perform segmentation on a volumetric data set 

(VDS) of hydrogen-ion density data gathered from a magnetic-resonance imaging 

scanner. Besides the VDS itself, MRI3D uses a configuration file (in ASCn format) 

which tells it how to segment the data. This configuration file contains the following 

information: 

- seedpoint (x, y, z) coordinates 

- region-growing algorithm 

- lower- and upper-density limits 

- gradient threshold 

- gradient-approximation operator 

- Z-buffer view 

- Z-buffer file format and name 

- VDS input and output file names 

- illumination method 

- Phong-shading settings 

MRI3D may be set up to run in interactive mode or as part of a batch process (using the 
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"-b" option); due to the amount of data to be processed, the runs of this program often 

take a very long time to complete, and the ability to batch the jobs may make it more 

convenient to use. If being run in interactive mode, MRI3D allows the user to perfonn 

dynamic histogram-stretching in order to improve the contrast of the resulting image. 

The command-line usage for MRI3D is: 

MRI3D configfilename logfilename [-b] 

When complete, MRI3D will have created a status log file, containing various statistics 

pertaining to the run of the program, as well as any errors which may have occurred. It 

will also, depending upon the wishes of the operator, have created 256-grayshade RAW, 

PostScript, or Encapsulated PostScript files of the Z-buffer which was generated. The 

RAW files' dimensions are 256x256 pixels and are readily convertible to other fonnats, 

as well as are able to be read directly by the MIDTERM image-processing program 

[BeIl94A]. The PostScript files have embedded within them all of the settings pertaining 

to the run which they represent. 

MRI3D, a DOS-based program, requires 16-color VGA and 640 kb of conventional 

memory to run. In addition, it requires at least 1 Mb of extended memory in order to 

maintain an XMS-based stack for certain region-growing algorithms; as much as 4 Mb of 

XMS is optimal. Furthennore, the input VDS file used for the experiments described 

here needs 14 Mb of disk space; and the spatial-occupancy enumeration method used to 

store output VDS data requires an additiona114 Mb. The intense disk input/output (110) 

activity which takes place during segmentation makes this a very slow and noisy 
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program; a typical run could take many hours. Therefore, a large virtual disk (32 Mb) 

was created in RAM memory, which made run times tolerably short (as much as two to 

three hours in some cases). 

MRI3D is made up of several component files; each deals with a different aspect of the 

overall program. In addition, two shareware libraries were used in the creation of 

MRI3D: VSA256, a VESA video graphics library, and XMSIF, a library of extended 

memory routines (see Chapter 2). 

5.1 Thresholding Methods 

As with GETCOORD, MRI3D allows the user to apply limits, or thresholds, to a 

segmentation run with respect either to hydrogen density or to the density gradient, or to 

both. The principles are the same as previously described, the only significant difference 

being that, when computing density gradients, we must extend our notion of the 

convolution kernel into three dimensions. In this project, we describe three types of 

gradient-approximation kernels: the Six-neighbor, the Frei-Chen, and the Pseudo-Sobel 

kernel. Whereas GETCOORD's approach was to compute the density gradient of a 3x3 

matrix of density data in the direction of both the x- and y-axes, MRI3D's kernels 

evaluate a 3x3x3 matrix of density data and approximate the wadient in the direction of 

the z-axis as well. As before, these derivative operators are designed to yield a small 

number in response to volumes over which the change in density is small, and a high 
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number in volumes demonstrating a large change in density (and, for our purposes, 

probably a change in tissue type). 

For each 3x3x3 cube of data whose center lies at (x, y, z), MRI3D stores the density data 

in a 28-element array (the zeroth element is unused, for convenience). Array subscripts 

are assigned to the voxels of the data cube in a consistent manner, as shown in figure 

5.1.1-1. 

y 

Figure 5.1.1-1: 3x3x3 Data Cube: Array Subscript Assignment 
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5.1.1 The Six-neighbor Kernels 

The Six-neighbor method, described in [Kippenhan94], derives its name from the fact 

that it assesses the values of the six voxels which are neighbors in each axial direction to 

the voxel at the center of the cube. It uses the following three equations to compute the 

gradient in each direction: 

v =V -V x (x-I. y. z) (:x+I. y. z) 

The magnitude of the gradient of the entire cube is approximated by adding the absolute 

values of the three axial gradients, thus: 

During segmentation, we compare the value of G at each voxel under consideration with 

the gradient threshold specified in the configuration file. Figure 5.1.1-2 shows the nature 

of the Six-neighbor method. 
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Figure 5.1.1-2: 6-neighbor Gradient Approximation 

5.1.2 The Frei-Chen Kernels 

The Frei-Chen kernels (also known as the 26-neighbor kernels) and described in 

[Kippenhan94], [Zucker81], and [Russ95], take into account all 26 of the voxels which 

are neighbors to the center voxel under consideration. The computations for the gradient 

are not conceptually complex; for the sake of brevity, we display only the equation for the 

gradient in the direction of the x-axis. We also introduce a way of computing the gradient 

which deviates from the notation used in [Kippenhan94], but which is algebraically 

equivalent and involves less floating-point arithmetic (always a good thing in 

computing!): 

Let a = sqrt(3) 13, b = sqrt(2) /2, c = 1, and 

let array M[27] contain the voxeI density data, as described. Then 
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Gx = I ((a * (M[3] + M[9] + M[21] + M[27] » + 

(b * (M[12] + M[18] + M[6] + M[24] » + 

(c * M[15] ) ) -

((a * (M[l] + M[7] + M[19] + M[25] » + 

(b * (M[lO] + M[16] + M[4] + M[22] )) + 

(c * M[13] ) ) I 

In the case of each axis, we consider the sum of densities (each multiplied by a constant 

which is related to the voxel's position relative to the center of the cube) of all voxels in 

the plane on one side of the center voxel, and the similar sum of the plane on the opposite 

side. The absolute value of the difference between these sums yields the gradient for this 

axis (see figure 5.1.2-1). The sum of all three axial gradients yields the approximation of 

the gradient for the entire cube. 

""" 

.... ::: .:::,::,. 
.... : ',-.. . : .. , .... 

"" "H==' :::::~----

...... ~.,::::. I-:-;~"" "--.1._-1 

...... '~ .... :: :.-. .' 

Figure 5.1.2-1: Frei-Chen (26-neighbor) Gradient Approximation (x-axis) 
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5.1.3 The Pseudo-Sobel Kernels 

The Pseudo-Sobel kernels are loosely based on the Sobel kernels described earlier. They 

are computed in precisely the same way as the Frei-Chen kernels, except that the values 

of a, b, and c are 1, 2, and 4, respectively. As with the Sobel kernels, the idea is to reduce 

noise in the resulting image by doubling the center terms of the kernel. 

5.2 Region-growing Methods 

Most of the techniques described here for three-dimensional region-growing are simple 

extensions of the previously described algorithms for two-dimensional region-growing. 

We do, however, take advantage of the adjacency of voxels in the same plane and on the 

same row in order to reduce the number of Read operations, therefore improving the 

program's efficiency. 

5.2.1 Recursive 6-connected Region-growing 

The plain recursive region-growing algorithm used here is essentially the same as the one 

described in Chapter 3 for use in two dimensions, except that, in addition to the four 

recursive calls made for voxels to the north, south, east, and west (in the same plane), we 

make calls for the voxels to the "front" (the plane which precedes this one) and to the 

"back" (the plane which follows). 
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5.2.2 Recursive 26-connected Region-growing 

This region-growing algorithm is an extension of the 6-connected algorithm which makes 

26 recursive calls to all voxels which are neighbors of the voxel under consideration. It is 

analogous to two-dimensional 8-connectedness. 

5.2.3 Iteration and Simulated Recursion 

In order to make it possible to make more recursive calls without running out of stack 

space, we implement simulated recursion in three dimensions here as we did in two 

dimensions, as described in Chapter 3. However, the need for stack space in three 

dimensions is exponentially greater; we therefore employ extended memory (XMS) for 

our self-maintained stack. This concept will be discussed more fully in section 5.3.1.3. 

5.2.4 A Stacked Spanfill Algorithm 

The 2-D spanfilling algorithm described previously obtained a seedpoint (x, y) and filled 

the entire row y to the left and right so long as its pixels met the criteria of density and 

gradient for membership in the segmented set. Rows above and below this seedspan were 

treated similarly in subsequent recursive calls to the spanfilling function. 

In order to extend this idea into three dimensions, we extract a single slice (containing 

two of the three orthogonal axes) through the input VDS. This slice is called the 
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seedslice. We consider the coordinates of the rightmost voxel in each span in the 

seedslice to represent a seedpoint for a slice of the input VDS which is oriented 

perpendicularly to the seedslice. (These seedpoints are stored in an array in memory.) 

After using the seedpoints to spanfill the perpendicular slices in which they reside, we 

store the resulting segmented images in the output VDS. The values of the voxels nearest 

to the observer (as measured by the value of their z-coordinates) are stored in a Z-buffer 

for further image processing. 

input VDS 

input VDS 

ttansverse 
seedslice 

sagittal 
stacked slice 

segmented 
seedslice 

segmented 
stacked slice 

Figure 5.2.4-1: The Stacked SpanfiII Algorithm Concept 

list of 
seedpoints 

output VDS 

The selection of orientation of the seedslice (and consequently of the stacked slices), in 

conjunction with the ordering of the VDS data, will have an effect on the runtime of the 

program. To read any slice of the VDS involves some number of Seek and Read 
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operations: the Seek positions the file pointer to the correct offset into the VDS; the Read 

reads data which are found at that offset. A Seek operation may involve mechanical 

movement of a hard drive's read/write heads, something which takes a relatively long 

time in computer terms. Whether one is interested in reading one byte or a thousand, a 

Seek is always necessary; but once a Seek is performed, the amount of time required to 

read a large number of bytes or a small number is of little consequence. The number of 

Seeks and the number of bytes of data acquired with each Read, and the proportion of the 

one to the other, directly affects the amount of time needed to completely read a slice of 

data. 

It would appear, then, that, in order to minimize the amount of time needed to fully 

process the input VDS, one would choose to read stacked slices in an order and 

orientation which both minimizes the number of Seeks and maximizes the number of 

bytes read for each Seek. rwe don't care much about these considerations with respect to 

the seedslice, of which there is only one.) Let us observe quantitatively the different 

combinations we might consider, as in figure 5.2.4-2: 
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seedslice: stacked slices: 
stacked-slice 

orientation axes seeks/slice orientation axes seeks/slice slices seeks total seeks 

L?' x-z 109 CJn x-y 1 109 109 218 

L?' x-z 109 {J y-z 27904 256 7143424 7143533 

tJ x-y 1 /~ x-z 109 256 27904 27905 

tJ x-y 1 {J y·z 27904 256 7143424 7143425 

cJ y-z 27904 /~ x·z 109 256 27904 55808 

cJ y-z 27904 CJn x-y 1 109 109 28013 

Figure 5.2.4-2: Efficiency of Stacked Spanfill Slice-Reading Order 

From figure 5.2.4-2, it is evident that the best strategy is to read a transverse seedslice, 

involving 109 Seeks and Reads of 256 integers each, and sagittal stacked slices, at 109 

Seeks and Reads of 65,536 integers each. We take advantage of the natural storage order 

of the data in the VDS to optimize processing time. 
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5.3 Data Representation and Storage Methods 

5.3.1 Spatial Occupancy Enumeration Using 3-D Arrays and Disk Files 

The Spatial Occupancy Enumeration (SOE) method of storing data has already been 

adequately described in Chapter 3. As noted, SOE is very simple to implement; however, 

it was discerned early on that the number of Seek operations involved a very long time 

when working with VDS files stored on a hard disk. Therefore, it was decided to 

establish a large (32 Mb) virtual disk in memory: a "RAM disk." This action alone 

reduced runtimes by an order of magnitude without any change in the program's code 

(and also saved a great deal of wear and tear on the hard drive!). 

5.3.2 The Z-buffer 

Briefly mentioned in Chapter 1, the Z-buffer is a two-dimensional array which records, at 

buffer coordinates (x, y), the z-coordinate of that voxel V at (x, y, z) whose z-value is the 

smallest encountered thus far during the processing of the input VDS. For example, 

given two voxels VI at (x}, Yh ZI) and V 2 at (x}, YI, Z2) (both members of the segmented 

region), if Zl is less than Z2, then VI is considered to be closer to the user's viewpoint than 

V2• When the entire VDS has been processed, the Z-buffer holds what amounts to 

altitude data for the segmented region. Its contents may be saved by MRI3D to RAW, 

PostScript, and Encapsulated PostScript formats; and may also be stored in any of the 

three orthogonal views (sagittal, coronal, and transverse). 

- 129-



The input VDS called 3DHEAD contains 109 sagittal slices of density data (or, if you 

prefer, 256 coronal or transverse slices, although those are not the natural order of 

storage). Through some trickery involving manipulation of the video graphics board's 

color registers, we have squeezed out 189 gray- or pseudo-grayshades with which to color 

the pixels in the Z-buffer (thanks are due to Spyro Gumas, the creator of the VSA256 

VESA library [see Chapter 2], for his idea). Some image-processing of the raw 

grayshade data may be needed to improve the brightness and contrast of the resulting 

image; to this end, a simple histogram-stretching feature is built in to pennit the user to 

adjust the picture before saving it. 

5.3.3 The Stack 

The stack, its nature and the principles of its use, were discussed in Chapters 3 and 4. 

The recurring problem with stack-dependent algorithms is the fact that they are a finite 

resource, and if they are not large enough to accommodate all of the recursive calls made 

during segmentation, then the picture may appear incomplete. We attempted to 

circumvent the problem in section 3.2.3 by allocating and manipulating our own stack in 

conventional memory (i.e. under 640 kb), thus expanding the limits of tractable 

segmentations. 

In three dimensions, however, the problem of insufficient stack space is much more 

severe. Therefore, we take advantage of the presence of physical memory beyond the 1 

Mb boundary (in fact, up to 16 Mb) by making calls to functions which allocate extended 
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memory (XMS). It is in XMS space that we create and maintain our stack for use with 

the same simulated-recursion approach described in section 3.2.3. For this project, the 

XMSIF library of C-interface routines (see Chapter 2) was used to allocate a handle to a 

block of extended memory, to write to and read from this block, and to free it when 

finished. 

5.4 Rendering Techniques 

In the following sections, we discuss the depth-cueing and ray-tracinglPhong-illumination 

methods of image rendering. 

5.4.1 Depth-cueing 

As mentioned in Chapter 1, depth-cueing provides a correlation between the altitude or 

proximity of a voxel and its perceived brightness. In MRI3D, we must ensure when 

mapping altitudes to grayshades that the correct constant of proportionality is used for the 

orientation of the view that was selected. Also, if there is little difference between the 

altitudes of adjacent structures (and therefore of their voxels' brightness), we may find it 

desirable to exaggerate those differences through the use of histogram-stretching in order 

to create a more pleasing and informative picture. 
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5.4.2 Ray-tracing and Phong Shading 

The notion of ray-tracing to detennine visible surfaces has already been treated in section 

1.5.2. In this section, we describe specifically how such surfaces are detennined, how the 

rays are computed, and how they are illuminated. 

To begin with, we have a two-dimensional Z-buffer of altitude data. We traverse this 

array, row by row and column by column, and, for each pixel (at coordinates (x, y), 

imagine a small triangular "patch" whose vertices are at (x, y) (A), (x+l, y) (B), and (x, 

y+l) (C), as in figure 5.4.2-1). 

A B 

Figure 5.4.2-1: The Triangular Patch 

We derive the (x, y, z) coordinates of each vertex from the row, column, and array 

element contents respectively; and use this information to compute some vectors: 

(I) The line from A to C creates vector X; the line from A to B, vector Y. These two 

vectors describe a plane which includes all three vertices of the patch. 

(2) Vectors Nand Nu, derived from the cross-product of X and Y, are normal and unit-

normal vectors of the patch, that is, vectors which are perpendicular to the patch. 
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(3) Lu is the unit vector of some point light source (whose coordinates are specified in 

the configuration file). 

(4) Ru is the vector of light reflected off the patch from the point light source. (The 

angle between Nand L is equal to the angle between Nand R.) 

(5) S, the sight vector, is the vector from the viewer's eye to the patch. (The z-

component of this vector is an arbitrarily chosen number which represents the distance 

between the patch and the viewer.) 

Now that all the vectors have been computed, we determine if the patch is visible to the 

viewer by computing the angle between vector R (the vector of reflected light) and vector 

S (the sight vector). If the angle is greater than or equal to 90 degrees, then the patch 

reflects no light towards the viewer and is therefore invisible (figure 5.4.2-2). 

N.Nu 

A 

Figure 5.4.2-2: The Normal Vector; Normal, Light, Reflected, and Sight Vectors 
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If the patch is visible, then we compute the intensity of the reflected light according to the 

Phong illumination model [Foley90]: 

where: 

~ = Ia * Ka + Cld * K<J * (Nu • Lu)) + (LI * wee) * (cosn a)) 

Ir = reflected light intensity 
Ia = ambient light intensity (0 <= Ia <= 255) 
LI = diffused light intensity (0 <= LI <= 255) 
Ka = ambient light coefficient (0 < Ka < 1) 
K<J = diffused light coefficient (0 < K<J < 1) 
Nu = unit vector normal to an illuminated patch 
Lu = unit light vector (x, y, z) 
wee) = a specular-reflection constant (0 < wee) < 1) 
n = a constant (» 0 for a dull surface) 
cos a = the cosine of the angle between the sight vector S and the 

reflection vector R 

The values la, Ka, LI, K<J, wee), and n are specified in the configuration file; pleasing 

values are derived experimentally (Le. through trial and error). 
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CHAPTER 6 

TESTING AND RESULTS IN THREE DIMENSIONS 

6.1 Canonical Images 

In this chapter, we examine the results of three-dimensional segmentation using the 

MRI3D program. We begin by observing some canonical images; that is, images of 

certain structures in and of the head which are readily identifiable by the human eye as 

discrete structures, and which also lend themselves fairly well to segmentation. We then 

modify some of the settings for the manner in which region-growing, gradient-

approximation, and rendering are performed, and we compare the results. 

The following images are (in the judgment of the author) reasonably satisfactory, with the 

exception of those for the cerebellum (figure 6.1-3) and the cerebrum (figure 6.1-4). 

These two structures were found to be rather difficult to segment in two dimensions, and, 

despite exhaustive attempts, are apparently not separable in three (using the automatic 

methods described in this paper). It would appear that the consistency of the tissue from 

the two structures is sufficiently similar to defy automatic segmentation, and that some 

form of manual intervention would be necessary. 
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MRI3D - Bill Bell - Master's Thesi Project - SummerlFall 1996 
========================================================= 
SeedX: 120 llluminationMethod: Depth-cue 
SeedY: 103 Phongla: 100.000000 
SeedZ: 54 Phongld: 100.000000 
RGImplementation: Iterative PhongKa: 0.800000 
RGAlgorithrn: 6-neighbor PhongKd: 0.800000 
LDL: 1300 PhongLx: -300.000000 
UDL: 1700 PhongLy: 300.000000 
Threshold: 180 PhongLz: 300.000000 
ApproximationMethod: 6-neighbor PhongWTheta: 0.800000 
ZBufferView: Sagittal PhongN: 48.000000 
Max tacktop: 11159 Voxels accumulated: 28775 
Histogram ettings: Ll=30 Ul=150 L2=20 U2=189 
ZBufferFile: c:/thesi Imri3d/pix2/corpcall.[RA W,PS,EPS] 
VDSInfIle: d:/3dhead. vds 
VDSOutfile: d:/temp.vds 
Comment : corpu callo urn 

Figure 6.1-1: Corpus CalIo urn 
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MRI3D - Bill Bell- Ma ter's Thesis Project - SummerIFall1996 
========================================================= 
SeedX: 155 lllurrunationMethod: Depth-cue 
SeedY: 140 PhongIa: 100.000000 
SeedZ: 54 PhongId: 100.000000 
RGImplementation: Iterative PhongKa: 0.800000 
RGAlgorithm: 6-neighbor PhongKd: 0.800000 
LDL: 1100 PhongLx: -300.000000 
UDL: 1500 PhongLy: 300.000000 
Threshold: 160 PhongLz: 300.000000 
ApproximationMethod: 6-neighbor PhongWTheta: 0.800000 
ZBufferView: Sagittal PhongN: 48.000000 
Maxstacktop: 222 Voxels accumulated: 768 
Histogram ettings: Ll=80 Ul=ll0 L2=50 U2=150 
ZBufferFile: c:/thesi Imri3d1pix2/pons. [RAW ,PS ,EPS] 
VDSInftle: d:/3dhead.vds 
VDSOutfile: d:/temp. vd 
Comments: pon 

• 

Figure 6.1-2: Pons 
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MRl3D - Bill Bell - Master's Thesis Project - SummerlFall 1996 
========================================================= 
SeedX: 181 lliuminationMethod: Depth-cue 
SeedY: 147 Phongla: 100.000000 
SeedZ: 54 Phongld: 100.000000 
RGImplementation: Iterative PhongKa: 0.800000 
RGAlgorithm: 6-neighbor PhongKd: 0.800000 
LDL: 1100 PhongLx: -300.000000 
UDL: 1500 PhongLy: 300.000000 
Threshold: 250 PhongLz: 300.000000 
ApproximationMethod: 6-neighbor PhongWTheta: 0.800000 
ZBufferView: Sagittal PhongN: 48.000000 
Maxstacktop: 32338 Voxels accumulated: 106861 
Histogram setting: Ll=37 Ul=170 L2=20 U2=189 
ZBufferFile: c:/thesis/mri3d1pix2/crbllum. [RAW ,PS,EPS] 
VDSInfile: d:/3dhead.vds 
VDSOutfile: d:/temp.vds 
Comments: cerebellum 

Figure 6.1-3: Cerebellum 
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MRI3D - Bill Bell - Ma ter' The i Project - Summer/Fall 1996 
=='===============================:======================= 
SeedX: 151 IlluminationMethod: Depth-cue 
SeedY: 75 Phongla: 100.000000 
SeedZ: 54 Phongld: 100.000000 
RGImplementation: Iterative PhongKa: 0.800000 
RGAlgorithm: 6-neighbor PhongKd: 0.800000 
LDL: 1000 PhongLx: -300.000000 
UDL: 1800 PhongLy: 300.000000 
Threshold: 350 PhongLz: 300.000000 
ApproximationMethod: 6-neighbor PhongWTheta: 0.800000 
ZBufferView: Sagittal PhongN: 48.000000 
Maxstacktop: 88191 Voxel accumulated: 164043 
Histogram setting: L1=37 Ul=170 L2=37 U2=189 
ZBufferFile: c:/the i Imri3d/pix2/cerebrum.[RAW,PS,EPS] 
VDSInflle: d:/3dhead.vds 
VDSOutfile: d:/temp.vd 
Comments: cerebrum 

Figure 6.] -4: Cerebrum 
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======'=================:=============================== 
SeedX: 151 llluminationMethod: Depth-cue 
SeedY: 75 PhongIa: 100.000000 
SeedZ: 54 PhongId: 100.000000 
RGImplementation: Iterative PhongKa: 0.800000 
RGAlgorithm: 6-neighbor PhongKd: 0.800000 
LDL: 900 PhongLx: -300.000000 
UDL: 2000 PhongLy: 300.000000 
Threshold: 900 PhongLz: 300.000000 
ApproximationMethod: 6-neighbor PhongWTheta: 0.800000 
ZBufferView: Sagittal PhongN: 48.000000 
Maxstacktop: 263879 Voxels accumulated: 408407 
Hi togram ettings: Ll=60 Ul=175 L2=25 U2=189 
ZB ufferFi Ie: c:/the i Imri3d/pix2lhrain.[RA W,PS,EPS] 
VDSInfile: d:/3dhead.vds 
VDSOutfile: d:/temp.vds 
Comment: brain 

Figure 6.1-5: Brain 
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MRI3D - Bill Bell - Master' The is Project - SummerlFall 1996 
=============='=========================================== 
SeedX: 199 llluminationMethod: Depth-cue 
SeedY: 55 Phongla: 100.000000 
SeedZ: 54 Phongld: 100.000000 
RGImplementation: Iterative PhongKa: 0.800000 
RGAlgorithm: 6-neighbor PhongKd: 0.800000 
LDL: 400 PhongLx: -300.000000 
UDL: 2800 PhongLy: 300.000000 
Threshold: 8000 PhongLz: 300.000000 
ApproximationMethod: 6-neighbor PhongWTheta: 0.800000 
ZBufferView: Sagittal PhongN: 48.000000 
Maxstacktop: 1092847 Voxel accumulated: 1555035 
Hi togram ettings: Ll=75 Ul=189 L2=15 U2=180 
ZBufferFile: c:/the is/mri3d/pix21 calp.[RA W,PS,EPS] 
VDSlnfile: d:/3dhead. vd 
VDSOutflle: d:/temp.vds 
Comment: calp 

Figure 6.1-6: Scalp 
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MRl3D - Bill Bell - Master's Thesis Project - Summer/Fall 1996 
========================================================= 
SeedX: 88 llluminationMethod: Phong 
SeedY: 124 Phongla: 100.000000 
SeedZ: 37 Phongld: 100.000000 
RGImplementation: Iterative PhongKa: 0.800000 
RGAlgorithm: 6-neigbbor PhongKd: 0.800000 
LDL: 50 PhongLx: -300.000000 
UDL: 1500 PhongLy: 300.000000 
Thre hold: 500 PhongLz: 300.000000 
ApproximationMethod: 6-neighbor PhongWTheta: 0.800000 
ZBufferView: Sagittal PhongN: 48.000000 
Max tacktop: 1314 Voxels accumulated: 1754 

ZBufferFile: c:/tbe i Irnri3d/pix2/eyel.[RA W,PS,EPS] 
VDSlofile: d:/3dhead.vds 
VDSOutfile: d:/temp.vds 
Comment : left eye, agittal, phong, 60 

Figure 6.1-7: Eye 
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6.2 The Density Range and Density Gradient Threshold 

As was observed during two-dimensional experimentation, the care with which the upper 

and lower limits of the density range and the density gradient threshold are chosen, can 

make the difference between a most informative picture and one in which no meaningful 

segmentation takes place. This is no less true in three dimensions; in fact, because of the 

extra dimension involved, and therefore the additional opportunities for connectedness to 

occur, some structures may not be segmentable at all without some form of manual 

intervention. 

6.3 The Gradient Approximation Method 

It can be said in general that the differences apparent in the quality of the images as a 

result of changes in gradient-approximation method are relatively minor. The six-

neighbor method seems to offer the best appearance of all three, although it takes about 

twice as much time to complete, and requires three to four times the stack space of the 

other methods. 

6.3.1 Six-neighbor Gradient Approximation 

All of the canonical images were generated using the six-neighbor method of gradient 

approximation. We compare the Phong-shaded version of the canonical image of the 

brain (figure 6.3.1-1) to the images of the brain created using other gradient-
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approximation methods. Note that the appearance of the surface of the brain is rather 

smooth. The six-neighbor image was completed in 41.28 minutes. 
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MRI3D - Bill Bell - Master' Thesi Project - SummerlFall 1996 
------------------------------------------------------------------------------------------------------------------
SeedX: 151 UluminationMethod: Phong 
SeedY: 75 Phongla: 100.000000 
SeedZ: 54 Phongld: 100.000000 
RGImplementation: Iterative PhongKa: 0.800000 
RGAlgorithm: 6-neighbor PhongKd: 0.800000 
LDL: 900 PhongLx: -300.000000 
VDL: 2000 PhongLy: 300.000000 
Threshold: 900 PhongLz: 300.000000 
ApproximationMethod: 6-neighbor PhongWTheta: 0.800000 
ZBufferView: Sagittal PhongN: 48.000000 
Max tacktop: 263879 Voxels accumulated: 408407 

ZBufferFile: c:/thesi Imri3d1pix2/phgbrain.[RA W,PS,EPS] 
VDSInfile: d:/3dhead.vds 
VDSOutfile: d:/temp.vds 
Comments: brain, phong-shaded 

Figure 6.3.1-1: Brain, Six-neighbor Gradient Approximation 
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6.3.2 Frei-Chen Gradient Approximation 

The image created using Frei-Chen gradient approximation (figure 6.3.2-1) displays a 

more eroded appearance than that of the six-neighbor method. It is also to be noted that 

the Frei-Chen image took about half the time to generate (20.76 minutes) as the six-

neighbor image; and that somewhat less than half the number of voxels were accumulated 

to the Frei-Chen final data set as were accumulated to the six-neighbor set. 
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========================================================= 
SeedX: 151 
SeedY: 75 
SeedZ: 54 
RGImplementation: Iterative 
RGAJgorithm: 6-neighbor 
LDL: 900 
UDL: 2000 
Thre hold: 1400 
ApproxirnationMethod: Frei-Chen 
ZBufferView: Sagittal 
Max tacktop: 82751 

lliuminationMethod: Phong 
PhongIa: 100.000000 
PhongId: 100.000000 
PhongKa: 0.800000 
PhongKd: 0.800000 
PhongLx: -300.000000 
PhongLy: 300.000000 
PhongLz: 300.000000 
PhongWTheta: 0.800000 
PhongN: 48.000000 
Voxel accumulated: 155270 

ZBufferFile: c:/the i Irnri3d1pix2/fcbrain.[RA W,PS,EPS] 
VDSInfile: d:/3dhead.vds 
VDSOutfile: d:/temp. vds 
Comment : brain, phong- haded, frei-chen 

Figure 6.3.2- 1: Brain, Frei-Chen Gradient Approximation 
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6.3.3 Pseudo-Sobel Gradient Approximation 

The image created using Pseudo-Sobel approximation (figure 6.3.3-1) is even more 

eroded than the Frei-Chen image. The Pseudo-Sobel data set contains slightly fewer 

voxels than the Frei-Chen set, and took slightly less time to complete (18.65 minutes). 
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MRI3D - Bill Bell - Master's Thesis Project - SummerlFall 1996 
=======================-============================== 
SeedX: 151 
SeedY: 75 
SeedZ: 54 
RGImplementation: Iterative 
RGAlgorithm: 6-neighbor 
LDL: 900 
UDL: 2000 
Threshold: 3300 
ApproximationMethod: P eudo-Sobel 
ZBufferView: Sagittal 
Maxstacktop: 70528 

IlluminationMethod: Phong 
Phongla: 100.000000 
Phongld: 100.000000 
PhongKa: 0.800000 
PhongKd: 0.800000 
PhongLx: -300.000000 
PhongLy: 300.000000 
PhongLz: 300.000000 
PhongWTheta: 0.800000 
PhongN: 48.000000 
Voxel accumulated: l38546 

ZBufferFile: c:/thesi Imri3d/pix2/p brain.[RA W,PS,EPS] 
VDSInfile: d:/3dhead. vd 
VDSOutfile: d:/temp.vds 
Comment : brain, phong-shaded, pseudo-sobel 

Figure 6.3.3-1: Brain, P eudo-Sobel Gradient Approximation 
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6.4 The Region-growing Implementation 

If time and stack space were limitless, then the results of different region-growing 

methods should be essentially the same; observe the results obtained in two dimensions 

with small regions, where, regardless of whether the algorithm chosen was recursive, 

simulated-recursive, or spanfilling, the results in terms of voxels accumulated were 

identical (table 4.2.5.4-1). (The RAW-format files were also shown to be equivalent.) In 

three dimensions, the degree to which recursion must take place is exponentially greater, 

since we are dealing with a cubic volume rather than a square area. Therefore, the 

requirements for stack space and runtime become significantly greater. 

6.4.1 Recursion 

Figure 6.4.1-1 shows the results of taking the traditional recursive approach to region-

growing in three dimensions. The settings used are for the entire brain, as in the 

canonical image used in figure 6.1-5. Evidently the program ran out of stack space quite 

early on, terminating in 9.06 minutes, with only 127,105 voxels accumulated (compared 

to 408,407 voxels for the canonical image using its own stack in extended memory). 

Whereas the simulated-recursion method was able to grow its stack to 263,879 frames 

(with room, theoretically, to grow to over 3 million frames in 15 Mb of extended 

memory), the recursive algorithm, using the system's stack in conventional memory, ran 

out after only 1429 frames. 
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========================================:============= 
SeedX: 151 
SeedY: 75 
SeedZ: 54 
RGImplementation: Recursive 
RGAlgorithm: 6-neighbor 
LDL: 900 
UDL: 2000 
Thre hold: 900 
ApproximationMethod: 6-neighbor 
ZBufferView: Sagittal 
Maxstacktop: 1429 

IllurninationMethod: Depth-cue 
Phongla: 100.000000 
Phongld: 100.000000 
PhongKa: 0.800000 
PhongKd: 0.800000 
PhongLx: -300.000000 
PhongLy: 300.000000 
PhongLz: 300.000000 
PhongWTheta: 0.800000 
PhongN: 48.000000 
Voxel accumulated: 127105 

ZBufferFile: c:/thesi Imri3dipix2/recbrain.[RA W,PS,EPS] 
VDSInfile: d:/3dhead. vds 
VDSOutfile: d:/temp.vds 
Comment: brain (true recursion) 

Figure 6.4.1-1: Brain, Recursive Region-growing 
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6.4.2 Simulated Recursion 

The canonical image of the brain (figure 6.1-5) uses simulated recursion as its region-

growing method. It maintains its own stack in extended memory, which, given the data 

structure used for each "stack frame", permits it to "recurse" over 3 million times in 15 

Mb of extended memory. The canonical brain image was generated in 41.23 minutes, 

accumulating 408,407 voxels and making 263,879 simulated recursive calls. 

6.4.3 6-connected and 26-connected Region-growing 

All of the three-dimensional images generated previously, recursive or otherwise, used 

the six-neighbor region-growing algorithm. That is to say, for each voxel under 

examination for membership in the segmented region, its neighbors to the four compass 

directions and to the front and back were examined with recursive calls. In the following 

figure 6.4.3-1, we observe the results of examining not only each voxel' s neighbors to the 

four compass directions and to the front and rear, but also at the comers and along the 

edges of the cube in which it resides. 

It is clear from the picture that segmentation has not been well-performed; the brain is 

there, but so is a quantity of other material from the face, jaw, and neck. Interestingly, the 

amount of time required to run the 26-neighbor model, 156.38 minutes, is out of 

proportion to the number of voxels accumulated (552,501 voxels) and to the number of 

stack frames used (394,778 frames); compared to the canonical brain's statistics, the 26-
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neighbor model took four times as long and twice as much stack space to accumulate 25 

percent more voxels. This would suggest that, even if the segmentation had been 

successful, it still would have been significantly less efficient than the six-neighbor 

algorithm. 
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===================================='===================== 
SeedX: 151 
SeedY: 75 
SeedZ: 54 
RGImplementation: Iterative 
RGAlgorithm: 26-neighbor 
LDL: 900 
VDL: 2000 
Thre hold: 900 
ApproximationMethod: 6-neighbor 
ZBufferView: Sagittal 
Maxstacktop: 394778 

IllurninationMethod: Depth-cue 
Phongla: 100.000000 
Phongld: 100.000000 
PhongKa: 0.800000 
PhongKd: 0.800000 
PhongLx: -300.000000 
PhongLy: 300.000000 
PhongLz: 300.000000 
PhongWTheta: 0.800000 
PhongN: 48.000000 
Voxel accumulated: 552501 

ZBufferFile: c:/tbe i Imri3d/pix2/26brain.[RA W,PS,EPS] 
VDSInfile: d:/3dhead.vd 
VDSOutfile: d:/temp.vd 
Comment : brain, 26-connected 

Figure 6.4.3-1: Brain, 26-connected Region-growing 
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6.4.4 Recursive Spanfilling 

The proposed stacked-spanfill algorithm as conceived provides a significant result but 

also possesses a serious drawback. When used to display the entire head (essentially 

segmenting the head from the surrounding volume), it is nine times faster than the six-

neighbor (spanfilling: 15.48 minutes, and six-neighbor: 138.3 minutes), nearly equally 

effective at accumulating voxels (spanfilling: 1.51 million voxels, and six-neighbor: 1.55 

million voxels), much less hungry for stack frames (spanfilling: 847 frames, and six-

neighbor: over I million frames); and provides a very pleasing picture. (Figure 6.4.4-1 

shows the result of the stacked-spanfill algorithm; figure 6.4.4-2, the six-neighbor 

equivalent.) 

On the other hand, the algorithm considers only connectivity between contiguous voxels 

in the same slice; therefore, if there exists some sub-structure known to belong to a larger 

super-structure we wish to image, but which is not intersected by the seedslice, then that 

sub-structure will not be captured by the algorithm. For example: a transverse seedslice 

of 3DHEAD (our input VDS), taken at transverse slice 55, intersects the head rather high 

up, completely missing the ears. If we decide to segment the scalp (taken throughout this 

paper to mean all of the skin which covers the head, down to the neck) and choose a 

seedpoint accordingly, we will obtain only that part of the scalp which is intersected by 

the transverse slice (and, of course, voxels which lie in the same sagittal slices). Since 

the ears were not intersected by the seedslice and they do not lie in the same sagittal 

slices, they are completely excluded from the segmentation. 
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Figures 6.4.4-3 and 6.4.4-4 display the result. Nevertheless, the image of the brain 

reposing inside the skull is rather striking. 
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======================,================================= 
SeedX: 127 lllurninationMethod: Depth-cue 
SeedY: 127 Phongla: 100.000000 
SeedZ: 54 Phongld: 100.000000 
RGIrnplementation: Iterative PhongKa: 0.800000 
RGAlgorithm: tacked-span fill PhongKd: 0.800000 
LDL: 400 PhongLx: -300.000000 
UDL: 2800 PhongLy: 300.000000 
Thre hold: 8000 PhongLz: 300.000000 
ApproximationMethod: 6-neighbor PhongWTheta: 0.800000 
ZBufferView: Sagittal PhongN: 48.000000 
Maxstacktop: 847 Voxels accumulated: 1515956 
Histogram ettings: Ll=60 Ul=189 L2=25 U2=180 
ZBufferFile: c:/thesis/rnri3d/pix2/spanfil1. [RA W,PS,EPS] 
VDSlnfile: d:/3dhead.vds 
VDSOutfile: d:/temp. vds 
Comments: entire head, stacked- panfill 

Figure 6.4.4-1: Head, Stacked Spanfill Region-growing 
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------------------------------------------------------------------------------------------,------------------------
SeedX: 127 IlluminationMethod: Depth-cue 
SeedY: 127 PhongIa: 100.000000 
SeedZ: 54 PhongId: 100.000000 
RGImplementation: Iterative PhongKa: 0.800000 
RGAlgorithm: 6-neighbor PhongKd: 0.800000 
LDL: 400 PhongLx: -300.000000 
UDL: 2800 PhongLy: 300.000000 
Thre hold: 8000 PhongLz: 300.000000 
ApproximationMethod: 6-neighbor PhongWTheta: 0.800000 
ZBufferView: Sagittal PhongN: 48.000000 
Max tacktop: 1082916 Voxel accumulated: 1554910 
Hi to gram ettings: L1=75 Ul=189 L2=25 U2=189 
ZBufferFile: c:/the i Imri3d1pix2/allhead.[RAW,PS,EPS] 
VDSInfile: d:/3dhead.vd 
VDSOutfile: d:/temp.vds 
Comment : entire head 

Figure 6.4.4-2: Head, Six-neighbor Region-growing 
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-------------------,-------,--------------------------------------------,--------------------------------------------
SeedX: 199 IlluminationMethod: Depth-cue 
SeedY: 55 Phongla: 100.000000 
SeedZ: 54 Phongld: 100.000000 
RGlmplementation: Iterative PhongKa: 0.800000 
RGAJgorithm: tacked- panfill PhongKd: 0.800000 
LDL: 400 PhongLx: -300.000000 
UDL: 2800 PhongLy: 300.000000 
Thre hold: 8000 PhongLz: 300.000000 
ApproximationMethod: 6-neighbor PhongWTheta: 0.800000 
ZBufferView: Sagittal PhongN: 48.000000 
Maxstacktop: 486 Voxel accumulated: 1123371 
Hi togram etting : Ll=90 Ul=140 L2=25 U2=150 
ZBufferFile: c:/the i Imri3d1pix21 panfiI2.[RA W,PS,EPS] 
VDSlnfile: d:/3dhead. vd 
VDSOutfi1e: d:/temp.vd 
Comment: calp, tacked- panfill 

Figure 6.4.4-3: Sagittal Scalp, Stacked Spanfill Region-growing 
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========================================================= 
SeedX: 199 IlluminationMethod: Depth-cue 
SeedY: 55 Phongla: 100.000000 
SeedZ: 54 Phongld: 100.000000 
RGImplementation: Iterative PhongKa: 0.800000 
RGAlgorithm: tacked- panfil} PhongKd: 0.800000 
LDL: 400 PhongLx: -300.000000 
UDL: 2800 PhongLy: 300.000000 
Thre hold: 8000 PhongLz: 300.000000 
ApproximationMethod: 6-neighbor PhongWTheta: 0.800000 
ZBufferView: Coronal PhongN: 48.000000 
Maxstacktop: 486 Voxels accumulated: 1123371 
Hi togram settings: Ll=75 Ul=160 L2=25 U2=180 
ZBufferFile: c:/the i Imri3d1pix2/spanfi13.[RA W PS,EPS] 
VDSInfile: d:/3dhead. vd 
VDSOutfLle: d:/temp.vd 
Comment : coronal calp, tacked-spanfill 

Figure 6.4.4-4: Coronal Scalp, Stacked Spanfill Region-growing 
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6.5 Image Rendering and Viewpoints 

As stated, MRI3D has the capability of rendering images using ray-tracing, and of 

illuminating them according to the Phong formula. It can also display the rendered image 

in any of the three axial orientations. Many sagittal views of the brain and head have 

already been displayed; the remaining images in this chapter show the coronal and 

transverse views of these structures. Observe that the voxels accumulated and stack 

frames used are identical to those of their sagittal counterparts; they are, after all, simply 

different views of the same segmented region. 
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MRI3D - BiJJ Bell - Master's The i Project - SummerIFall1996 
--------------------------,----------------------------------------------------------------------------------------
SeedX: 151 
SeedY: 75 
SeedZ: 54 
RGImplementation: Iterative 
RGAlgorithm: 6-neighbor 
LDL: 900 
UDL: 2000 
Thre hold: 900 
ApproximationMethod: 6-neighbor 
ZBufferView: Coronal 
Maxstacktop: 263879 

IlluminationMethod: Phong 
PhongIa: 100.000000 
PhongId: 100.000000 
PhongKa: 0.800000 
PhongKd: 0.800000 
PhongLx: -300.000000 
PhongLy: 300.000000 
PhongLz: 300.000000 
PhongWTheta: 0.800000 
PhongN: 48 .000000 
Voxels accumulated: 408407 

ZBufferFile: c:/the i Imri3d/pix2/corbrain.[RA W,PS,EPS] 
VDSInfile: d:/3dhead. vd 
VDSOutfile: d:/temp.vd 
Comments: brain, phong- haded, coronal 

Figure 6.5-1: Brain, Coronal View 
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MRI3D - Bill Bell- Master's The is Project - SummerlFall 1996 
============================================'============= 
SeedX: 199 
SeedY: 55 
SeedZ: 54 
RGIrnplementation: Iterative 
RGAlgorithm: 6-neighbor 
LDL: 400 
UDL: 2800 
Threshold: 8000 
ApproximationMethod: 6-neighbor 
ZBufferView: Coronal 
Max tacktop: 1092847 

IlluminationMethod: Phong 
Phongla: 100.000000 
Phongld: 100.000000 
PhongKa: 0.800000 
PhongKd: 0.800000 
PhongLx: -300.000000 
PhongLy: 300.000000 
PhongLz: 300.000000 
PhongWTheta: 0.800000 
PhongN: 48.000000 
Voxel accumulated: 1555035 

ZBufferFile: c:/thesi Irnri3d/pix2/corhead.[RAW,PS,EPS] 
VDSInfile: d:/3dhead. vd 
VDSOutfile: d:/temp. vd 
Comment : calp, coronal view 

Figure 6.5-2: Head, Coronal View 
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MRI3D - Bill Bell - Ma ter' The i Project - SummerlFall 1996 
===============================:=====:===================== 
SeedX: 151 
SeedY: 75 
SeedZ: 54 
RGlmplementation: Iterative 
RGAlgorithm: 6-neighbor 
LDL: 900 
UDL: 2000 
Thre hold: 900 
ApproximationMethod: 6-neighbor 
ZBufferView: Transver e 
Max tacktop: 263879 

llluminationMethod: Phong 
PhongIa: 100.000000 
PhongId: 100.000000 
PhongKa: 0.800000 
PhongKd: 0.800000 
PhongLx: -300.000000 
PhongLy: 300.000000 
PhongLz: 300.000000 
PhongWTheta: 0.800000 
PhongN: 48.000000 
Voxel accumulated: 408407 

ZBufferFile: c:/the i Irrui3d/pix2/xv brain.[RA W,PS,EPS] 
VDSInfile: d:/3dhead.vd 
VDSOutfile: d:/temp.vd 
Comment : brain, phong-shaded, transver e 

Figure 6.5-3: Brain, Tran ver e View 
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========================================================= 
SeedX: 199 
SeedY: 55 
SeedZ: 54 
RGImplementation: Iterative 
RGAlgorithrn: 6-neighbor 
LDL: 400 
UDL: 2800 
Thre hold: 8000 
ApproximationMethod: 6-neighbor 
ZBufferView: Transver e 
Max. tacktop: 1092847 

UlurninationMethod: Phong 
PhongIa: 100.000000 
PhongId: 100.000000 
PhongKa: 0.800000 
PhongKd: 0.800000 
PhongLx: -300.000000 
PhongLy: 300.000000 
PhongLz: 300.000000 
PhongWTheta: 0.800000 
PhongN: 48.000000 
Voxel accumulated: 1555035 

ZBufferFile: c:/thesi Irnri3d/pix2/xv head.[RA W,PS,EPS] 
VDSlnfile: d:/3dhead.vd 
VDSOutfile: d:/temp. vds 
Comment : scalp, transver e view 

Figure 6.5-4: Head, Tran ver e View 
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CHAPTER 7 

CONCLUSION AND FUTURE RESEARCH 

As automated segmentation projects go, the GETCOORDIMRI3D pair acquits itself 

fairly well. However, there is certainly room for improvement and enhancements. 

Herewith, then, are some reflections on the strengths and shortcomings of this project, 

and suggestions for future research. 

7.1 Windows User Interface 

As it stands, the means of entering configuration data into GETCOORD and MRI3D are 

rather primitive. The former relies for its input upon a question-and-answer paradigm; 

the latter, upon a text file of configuration data. The Microsoft Windows GUI provides 

the developer with ample opportunities to create a user-interface that is easy and intuitive 

to use. The presence of multiple data entry fields, scroll bars, check boxes, option 

buttons, and common dialog boxes would provide a familiar environment to the 

experienced Windows user. 
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7.2 Changes in the Nature of the Convolution Kernels 

Some convolution-based image-processing methods involve kernels larger than 3 x 3. It 

might be interesting to observe the results of gradient-approximations employing, for 

example, a 5 x 5 or a 7 x 7 matrix. 

The gradient of a volume, as applied here, is the rate of change in density over the 

volume. A rate of change may be regarded as the first derivative of the underlying data. 

Just as the convolution kernel used in MRl3D computed the gradient of a volume, a 

future version might look at the second derivative of the data in a volume (the first 

derivative of the gradient) as a means of better differentiating adjacent tissue types. 

7.3 Image-processing Enhancements 

Just as the histogram of grayshades of a two-dimensional image might be stretched in 

order to improve contrast, one might consider computing a histogram of gradients over a 

volumetric region, and stretching it to improve tissue differentiation. 

The MIDTERM image-processing program [Be1l94A] provided many different image-

processing techniques for the manipUlation of 2-D data: histogram-stretching, adaptive 

histogram equalization, median filtering, customized convolution kernels, and the like. 

An extension of these same ideas into three dimensions would no doubt yield fasCinating 

results. 
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MRI3D was able to segment structures from a single seedpoint. However, some 

structures in the body come in sets of two or more, for example, eyes, kidneys, lungs, 

teeth, and bones. The ability to combine the segmented image of multiple structures 

would be a valuable addition to the project. 

7.4 Manual Modification of Segmentation 

For all their strengths, GETCOORD and MRI3D demonstrated that automatic 

segmentation algorithms often leave much to be desired. It is a time-consuming process 

to narrow down the exact set of density and gradient-threshold limits which will result in 

a pleasing image. We have often wished we could simply point to an area on the screen 

and tell the computer, "Focus only on this area; ignore all other areas, even if your criteria 

for connectedness are met." It would be useful to be able to delineate to the computer 

(using a mouse or digitizer) those areas of interest. (A three-dimensional implementation 

of a solution will no doubt prove particularly challenging!) 

7.5 Enhancements to Stacked Spanfilling 

As observed, the stacked spanfill method of region-growing can, under a few 

circumstances, yield a pleasing picture in much less time than the recursive methods. 

However, it often leaves out important structures which were not intersected by the single 

seedslice. Future research into the efficacy of this method might center upon ways of 
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using multiple seedslices without giving up the significant improvements in runtimes 

which were realized. 
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APPENDIX A 

AVAILABILITY OF 3-D MRI DATA FROM UNC/CHAPEL HILL 
(ANNOUNCE.3DH) 

Announcing the Chapel Hill Volume Rendering Test Dataset, Volume I 

SoftLab Software Systems Laboratory 
University of North Carolina 
Department of Computer Science 
Chapel Hill, NC 27599-3175 

The Chapel Hill Volume Rendering Test Dataset, Volume I is a collection of seven 
datasets comprised of the following. 

Announcement - Product announcement (This document). 

Installation Instructions - Electronic copy of the installation 
instructions (CH01) included in the distribution packet. 

Head data - A 109-slice dataset of a human head. Complete 
slices are stored consecutively as a 256 x 256 array. Pixels consist of 2 consecutive bytes 
making one binary integer. Data taken on the Siemens Magnetom and provided courtesy 
of Siemens Medical Systems, Inc., Iselin, NJ. 

Head data information article - An ASCII file containing acknowledgments for the head 
data files. 

Knee data - A 127-slice dataset of a human knee. Complete 
slices are stored consecutively as a 256 x 256 array. Pixels consist of 2 consecutive bytes 
making one binary integer. Data taken on the Siemens Magnetom and provided courtesy 
of Siemens Medical Systems, Inc., Iselin, NJ. 

Knee data information article - An ASCII file containing acknowledgments for the knee 
data files. 

HIPIP data - The result of a quantum mechanical calculation of a SOD data of a 
one-electron orbital of HIPIP, an iron protein. This is an ASCII dataset. Provided 
courtesy of Louis Noodleman and David Case, Scripps Clinic, La Jolla, CA. 

HIPIP information article - An ASCII file containing information about the HIPIP data. 
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SOD data - An electron density map of the active site of 
SOD (superoxide dismutase). This is an ASCII dataset. Provided courtesy of Duncan 
McRee, Scripps Clinic, La Jolla, CA. 

SOD histogram - An ASCII histogram of the SOD dataset. This 
is described in the previous file. 

SOD information article - An ASCII file containing information 
about the SOD dataset. 

This dataset can be purchased for a nominal charge of $50.00. 
The distribution is available in two different formats. The files on the tape will be written 
from a DEC V AX computer using the UNIX file copy command "dd" or the UNIX "tar" 
command. Total block size is 8192 bytes written at 1600 bpi on either a standard 1/2" 
magnetic tape or a cartridge tape. Please specify your preference when ordering and note 
that "dd" is not available with the cartridge tape. Installation instructions also accompany 
the distribution. 

For customers interested in Volume I, both Volume I and Volume II can be purchased as 
a set for $90.00, a saving of $10.00 over ordering these separately. Please remember to 
be specific as to what you may need. 

To obtain these datasets, please contact: 

Pamela M. Payne 
Mail:SoftLab Coordinator 
SoftLab Software Systems Laboratory 
University of North Carolina 
Department of Computer Science 
CB# 3175, 351 Sitterson Hall 
Chapel Hill, 27599-3175 
Phone:(919) 962-1775 
Electronic Mail:softlab@cs.unc.edu 
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APPENDIXB 

THE GRADIENT 

The gradient V of a function F at a point (x, y) is the vector 

which points in the direction of the maximum rate of change of Fat (x,y) [Gonzalez92]. 
The vector itself is 

and the magnitude of the vector is 
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APPENDIXC 

WORLD-WIDE WEB SITES 

The following list of World-Wide Web (WWW) sites features information relevant to the 
fields of medical informatics, visualization, NMR and MRI. The Uniform Resource 
Locator (URL) for each site is followed by a brief description of its contents. 

www.nlm.nih.gov 
National Library of Medicine, National Institute of Health; the Visible Human 
Project; 3-D representation of cryosections of the male and female human bodies. 

www.scp.caltech.edu/-mep/ivb.html 
Interactive Volume Browser of data from the Visible Human Project. 

www.voxel.com 
Voxel System; holographic 3-D views of CT and MR data. 

imacx. wustl.edu 
Mallinckrodt Institute of Technology; MIR Image Processing Lab; surgical 
simulation and planning; 3-D image CT and MR data available via FTP. 

www.xray.ufl.edul-rbaIUrnritutor.html 
University of Florida; downloadable computerized MRI tutorial. 

www.cs.unc.edu/Research/graphics 
University of North Carolina at Chapel Hill; various projects involving computer 
graphics, visualization, rendering, and ultrasound. 

rnri.med. yale.edu 
Yale University Medical School; NMR Research Group. 
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www.crd.ge.com/esl/cgsp/projects/medical 
General Electric; 3-D medical image reconstruction; MPEG animations. 

poseidon.csd.auth.gr:80 
Aristotle University of Thessaloniki; Department of Informatics; 3-D object 
reconstruction from projections; applications in dentistry. 

www.nas.nasa.govIRNRlVisualizationiannotatedURLs.html 
National Aeronautics and Space Administration; list of URLs for sites relating to 
scientific visualization. 
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