
UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

1996

Three-Dimensional Segmentation and
Visualization of Magnetic Resonance Imaging Data
William L. Bell Jr.
Univeristy of North Florida

This Master's Thesis is brought to you for free and open access by the
Student Scholarship at UNF Digital Commons. It has been accepted for
inclusion in UNF Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more information, please
contact Digital Projects.
© 1996 All Rights Reserved

Suggested Citation
Bell, William L. Jr., "Three-Dimensional Segmentation and Visualization of Magnetic Resonance Imaging Data" (1996). UNF
Graduate Theses and Dissertations. 28.
https://digitalcommons.unf.edu/etd/28

http://digitalcommons.unf.edu
http://digitalcommons.unf.edu
https://digitalcommons.unf.edu
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu

THREE-DIMENSIONAL SEGMENT A nON AND VISUALIZATION OF
MAGNETIC RESONANCE IMAGING DATA

by

William L. Bell, Jr.

A thesis submitted to the Department of Computer and Information Sciences in partial
fulfillment of the requirements for the degree of

Master of Science in Computer and Information Sciences

UNIVERSITY OF NORTH FLORIDA
DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES

November, 1996

The thesis "THREE-DIMENSIONAL SEGMENTATION AND VISUALIZATION OF
MAGNETIC RESONANCE IMAGING DATA" submitted by William L. Bell, Jf. in
partial fulfillment of the requirements for the degree of Master of Science in Computer
and Information Sciences has been

Approved . t7the7mmittee: Date

~ 1--7{ /77 ('
Yap S. Chua

ran ffi

Ralph M. Butler

/1- :J 7 - qr::,
Behrooz Seyed'S:bbassi

Accepted for the Department of Computer and Information Sciences:

1(/ 7/1(.
Charles N. Winton
Chairperson of the Department

Accepted for the College of Computing Sciences and Engineering:

1/ /;;1.7 /9(;
Charles N. Winton
Acting Dean of the College

Accepted for the lJniversity:

William J. Wilson
Dean of Graduate Studies

11

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

ACKNOWLEDGMENT

Although many people have contributed to the achievement of my educational goals,

certain individuals are especially deserving of my gratitude:

- My wife Kathi, for her support and toleration of my unhealthy preoccupation with my

studies;

- my parents, for providing me with a strong work ethic;

- Dr. Yap Siong Chua, my thesis adviser, for his friendly help and encouragement;

- Dr. Charles N. Winton, my graduate studies adviser, for his wise counsel throughout my

career as a graduate student;

- Dr. Ralph M. Butler and Dr. Behrooz Seyed-Abbassi, for generously donating their time

to serve as members of my thesis committee;

- and from Jacksonville University, my friends and colleagues Dr. Marilyn L. Repsher,

Prof. Dennis W. Dormady, and the late Dr. R. Wayne Hamm, who provided me with

much of the original inspiration to pursue a higher degree of education and

accomplishment.

iii

CONTENTS

List of Tables ... ix

List of Figures ... x

Abstract .. xi v

Chapter 1:

1.1

1.2

1.3

1.4

Introduction .. 1

Nuclear Magnetic Resonance and Magnetic Resonance Imaging 1

Visualization .. 2

Computed Tomography ... 3

Segmentation .. 4

1.4.1 Region-growing ... 5

1.4.2 Thresholding .. 6

1.4.3 Gradient Approximation and Edge Detection 6

1.5 Surface Rendering .. 7

1.5.1 Depth-cueing .. 8

1.5.2 Ray-tracing ... 9

1.5.3 Lighting and Shading Techniques .. 9

1.6 Storage Considerations .. 10

Chapter 2: Ancillary Software Tools and Libraries ... 13

2.1 ANYSLICE .. 13

2.2 SLlCE2IP ... 14

2.3 ROTATE .. 15

2.4 ANYVIEW ... 16

iv

2.5 XMSIF ... 16

2.6 VSA256 .. 16

Chapter 3: Implementation in Two Dimensions ... 17

3.1 Thresholding Methods ... 20

3.1.1 Density-range Thresholding ... 20

3 .1.2 Gradient-approximation Kernels .. , .. 21

3.1.2.1 The Prewitt Kernels .. 22

3.1.2.2 The Sobel Kernels ... 22

3.1.2.3 The Square-Sum-Root Method 23

3.2 Region-growing Methods .. 23

3.2.1 Recursive 4-connected Region-growing .. 25

3.2.2 Recursive 8-connected Region-growing .. 27

3.2.3 Iteration and Simulated Recursion; Stack
Self-management ... 27

3.2.4 A Spanfill Algorithm ... 30

3.3 Data Representation and Storage Methods34

3.3.1 Data Structures ... 34

3.3.1.1 Spatial Occupancy Enumeration Using 2-D Arrays 34

3.3.1.2 Linked Lists and Trees37

3.3.2 File Formats ... 41

3.3.2.1 RAW Format. .. 41

3.3.2.2 Encapsulated PostScript Format42

3.4 Image Presentation ... 42

3.4.1 Histogram Stretching .. .43

v

Chapter 4:

4.1

4.2

4.3

Chapter 5:

5.1

3.4.2 Color Quantization ... 43

Testing and Results in Two Dimensions .. 44

Benchmark Seedpoints ... 45

Factors Affecting Segmentation Results49

4.2.1 The Seedpoint .. 49

4.2.2 The Density Range ... 49

4.2.3 The Gradient Threshold ... 57

4.2.4 The Gradient Approximation Method ... 63

4.2.4.1 Prewitt Gradient Approximation 78

4.2.4.2 Sobel Gradient Approximation 79

4.2.4.3 Square-Sum-Root Gradient Approximation 83

4.2.5 The Region-growing Method ... 86

4.2.5.1 4-connected and 8-connected Recursion 86

4.2.5.2 4-connected Simulated Recursion 96

4.2.5.3 Recursive Spanfilling .. 99

4.2.5.4 Stack Limitations .. 1 0 1

4.2.6 Image Resolution ... 107

4.2.7 Run Times .. 107

Canonical Images ... 108

Implementation in Three Dimensions ... 117

Thresholding Methods ... 119

5.1.1 The Six-neighbor Kernels .. 121

5.1.2 The Frei-Chen Kernels ... 122

vi

5.1.3 The Pseudo-Sobel Kernels ... 124

5.2 Region-growing Methods .. 124

5.2.1 Recursive 6-connected Region-growing 124

5.2.2 Recursive 26-connected Region-growing 125

5.2.3 Iteration and Simulated Recursion125

5.2.4 A Stacked Spanfill Algorithm .. 125

5.3 Data Representation and Storage Methods .. 129

5.3.1 Spatial Occupancy Enumeration Using 3-D Arrays and
Disk Files ... 129

5.3.2 The Z-Buffer .. 130

5.3.3 The Stack ... 130

5.4 Rendering Techniques .. 131

5.4.1 Depth-cueing .. 131

5.4.2 Ray-tracing and Phong Shading ... 132

Chapter 6: Testing and Results in Three Dimensions .. 135

6.1 Canonical Images ... 135

6.2 The Density Range and Density Gradient Threshold 143

6.3 The Gradient Approximation Method ... 143

6.3.1 Six-neighbor Gradient Approximation .. 143

6.3.2 Frei-Chen Gradient Approximation ... 146

6.3.3 Pseudo-Sobel Gradient Approximation 148

6.4 The Region-growing Implementation .. 150

6.4.1 Recursion ... 150

6.4.2 Simulated Recursion .. 152

vii

6.4.3 6-connected and 26-connected Region-growing 152

6.4.4 Recursive Spanfilling ... 155

6.5 Image Rendering and Viewpoints .. 161

Chapter 7: Conclusions and Future Research .. 166

7.1 Windows User Interface ... 166

7.2 Changes in the Nature of the Convolution Kernels 167

7.3 Image-processing Enhancements ... 167

7.4 Manual Modification of Segmentation .. 168

7.5 Enhancements to Stacked Spanfilling .. 168

References .. 170

Appendix A: Availability Of 3-D MRI Data From UNC/Chapel Hill
(ANNOUNCE.3DH) .. 176

Appendix B: The Gradient ... 178

Appendix C: World-Wide Web Sites .. 179

Vita ... 181

viii

TABLES

Table 4.1-1: Benchmark Seedpoints ... 46

Table 4.2.2-1 : Effects of Adjustments to Lower Density Limit 55

Table 4.2.2-2: Effects of Adjustments to Upper Density Limit 55

Table 4.2.3-1 : Effects of Adjustments to Density Gradient Threshold 62

Table 4.2.4-1: Gradient Test Matrix Set (1.2:1) .. 67

Table 4.2.4-2: Gradient Test Matrix Set (1.4: 1) .. 68

Table 4.2.4-3: Gradient Test Matrix Set (1.6: 1) .. 69

Table 4.2.4-4: Gradient Test Matrix Set (1.8: 1) .. 70

Table 4.2.4-5: Gradient Test Matrix Set (2.0: 1) .. 71

Table 4.2.4-6: Gradient Approximation Method Responses for Test Matrices 72

Table 4.2.4-7: Normalized Density Gradients of Gradient Test Matrix (2.0: 1) 76

Table 4.2.4-8: First Derivative of Normalized Densities of Gradient Test Matrix
(2.0: 1) ... 77

Table 4.2.4.2-1: Results of Canonical Image Generation Using Sobel Gradient
Approximation ... 80

Table 4.2.4.3-1: Results of Canonical Image Generation Using SSR Gradient
Approximation ... 80

Table 4.2.5.1-1: 4-connected vs. 8-connected Region-growing: Pixel Accumulation
and Stack Frame Usage .. 95

Table 4.2.5.4-1: Pixel Accumulation and Stack Frame Usage for
Canonical Images ... 102

ix

FIGURES

Figure 3.0-1 a: GETCOORD Structure Chart (1 of 3) ... 18

Figure 3.0-1 b: GETCOORD Structure Chart (2 of 3) ... 19

Figure 3.0-1c: GETCOORD Structure Chart (3 of 3) ... 19

Figure 3.2.1-1: Recursive 4-connected Region-growing Algorithm 26

Figure 3.2.3-1: Simulated-recursion 4-connected Region-growing Algorithm 29

Figure 3.2.4-1a: Recursive Spanfill Region-growing Algorithm (1 of 2)32

Figure 3.2.4-1 b: Recursive Spanfill Region-growing Algorithmn (2 of 2) 33

Figure 4.1-1: Anatomical lllustration of The Head (Median Section)47

Figure 4.1-2: Benchmark Seedpoint Locations .. .48

Figure 4.2.2-1: Canonical Image of the Brain .. 52

Figure 4.2.2-2: The Canonical Brain, LDL Increased to 800 53

Figure 4.2.2-3: The Canonical Brain, LDL Increased to 90054

Figure 4.2.2-4: Effects of Adjustments to Lower Density Limit 56

Figure 4.2.2-5: Effects of Adjustments to Upper Density Limit 56

Figure 4.2.3-1 : Canonical Image of the Brain .. 59

Figure 4.2.3-2: The Canonical Brain, Density Gradient Threshold Reduced
to 1000 ... 60

Figure 4.2.3-3: The Canonical Brain, Density Gradient Threshold Reduced
to 1100 ... 61

Figure 4.2.3-4: Effects of Adjustments to Density Gradient Threshold 62

Figure 4.2.4-1 : The Canonical Brain (Prewitt Gradient Approximation) 64

Figure 4.2.4-2: The Canonical Brain (Sobel Gradient Approximation) 65

x

Figure 4.2.4-3: The Canonical Brain (Square-Sum-Root
Gradient Approximation) ... 66

Figure 4.2.4-4: Gradient Approximation Method Responses for Test Matrices 73

Figure 4.2.4-5: Normalized Density Gradients of Gradient Test Matrix (2.0: 1) 76

Figure 4.2.4-6: First Derivative of Normalized Density Gradients of Gradient Test
Matrix (2.0: 1) ... 77

Figure 4.2.4.2-1: Canonical Worm of Cerebel1um Using Sobel Gradient
Approximation ... 81

Figure 4.2.4.2-2: Canonical Cerebrum Using Sobel Gradient Approximation 82

Figure 4.2.4.3-1: Canonical Cerebrum Using SSR Gradient Approximation 84

Figure 4.2.4.3-2: Canonical Cerebrum Using SSR Gradient Approximation
(Threshold Adjusted) ... 85

Figure 4.2.5.1-1: Corpus Callosum Using 8-connected Segmentation 88

Figure 4.2.5.1-2: Corpus Callosum Using 8-connected Segmentation (reduced
gradient threshold) ... 89

Figure 4.2.5.1-3: Corpus Callosum Using 8-connected Segmentation (increased
LDL) ... 90

Figure 4.2.5.1-4: Cerebrum Using 8-connected Segmentation 91

Figure 4.2.5.1-5: Cerebrum Using 8-connected Segmentation (reduced gradient
threshold) ... 92

Figure 4.2.5.1-6: Scalp Using 8-connected Segmentation ... 93

Figure 4.2.5.1-7: Superior Sagittal Sinus Using 8-connected Segmentation 94

Figure 4.2.5.2-1: The Brain (Recursive Region-growing) ... 97

Figure 4.2.5.2-2: The Brain (Iterative, Simulated-recursive Region-growing) 98

Figure 4.2.5.3-1 : The Brain (Spanfill Region-growing) .. 1 00

Figure 4.2.5.4-1: All-inclusive Segmentation Using the Recursive Region-growing
Method ... 104

xi

Figure 4.2.5.4-2: All-inclusive Segmentation Using the Simulated-recursive Region-
growing Method ... 1 05

Figure 4.2.5.4-3: All-inclusive Segmentation Using the Spanfill Region-growing
Method ... 106

Figure 4.3-1: Canonical Image of the Corpus Callosum 1 09

Figure 4.3-2: Canonical Image of the Pons ... 11 0

Figure 4.3-3: Canonical Image of the Worm of Cerebellum 111

Figure 4.3-4: Canonical Image of the Cerebrum ... 112

Figure 4.3-5: Canonical Image of the Scalp .. 113

Figure 4.3-6: Canonical Image ofthe Superior Sagittal Sinus114

Figure 4.3-7: Canonical Image of the Brain .. 115

Figure 4.3-8: Canonical Image ofthe Head .. .116

Figure 5.1.1-1: 3x3x3 Data Cube: Array Subscript Assignment.. 120

Figure 5.1.1-2: 6-neighbor Gradient Approximation .. 122

Figure 5.1.2-1: Frei-Chen (26-neighbor) Gradient Approximation (x-axis) 123

Figure 5.2.4-1: The Stacked Spanfill Algorithm Concept 126

Figure 5.2.4-2: Efficiency of Stacked Spanfill Slice-Reading Order.. 128

Figure 5.4.2-1: The Triangular Patch .. 132

Figure 5.4.2-2: The Normal Vector; Normal, Light, Reflected, and
Sight Vectors .. 133

Figure 6.1-1: Corpus Callosum .. 136

Figure 6.1-2: Pons .. 137

Figure 6.1-3: Cerebellum ... 138

Figure 6.1-4: Cerebrum .. 139

Figure 6.1-5: Brain ... 140

xii

Figure 6.1-6: Scalp ... 141

Figure 6.1-7: Eye ... 142

Figure 6.3.1-1: Brain, Six-neighbor Gradient Approximation 145

Figure 6.3.2-1: Brain, Frei-Chen Gradient Approximation 147

Figure 6.3.3-1: Brain, Pseudo-Sobel Gradient Approximation 149

Figure 6.4.1-1 : Brain, Recursive Region-growing .. 151

Figure 6.4.3-1: Brain, 26-connected Region-growing .. 154

Figure 6.4.4-1: Head, Stacked Spanfill Region-growing 157

Figure 6.4.4-2: Head, Six -neighbor Region-growing ... 158

Figure 6.4.4-3: Sagittal Scalp, Stacked Spanfill Region-growing 159

Figure 6.4.4-4: Coronal Scalp, Stacked Spanfill Region-growing 160

Figure 6.5-1: Brain, Coronal View .. 162

Figure 6.5-2: Head, Coronal View ... 163

Figure 6.5-3: Brain, Transverse View .. 164

Figure 6.5-4: Head, Transverse View .. 165

xiii

ABSTRACT

In this thesis, I shall study and compare various methods for manipulating two- and three-

dimensional image data produced with a nuclear magnetic resonance scanner. In

particular, I will examine ways of focusing upon specific structures internal to the object

under study (segmentation); and will explore means of rendering realistic images of these

structures on a computer screen using depth-cueing, shading, and ray-casting techniques.

The 3DHEAD volumetric dataset used for this project was created with the Siemens

Magnetom and was provided courtesy of Siemens Medical Systems, Inc., Iselin, NJ. This

dataset consists of 109 slices of a human head, with each slice stored consecutively as a

256 x 256 array. Each pixel is represented by two consecutive bytes, which make one

binary integer. (A similar dataset of a human knee is also available.) The 3DHEAD

dataset requires about 14 Mb of disk space uncompressed. The programs which

manipulate this data are MS-DOS-based and were written and compiled using Microsoft

QuickC version 2.51. The 2-D programs were executed on a CompuAdd 486DXl2-50

with 8 Mb of RAM, running MS-DOS version 6.22; the 3-D programs were executed on

a 133 MHz Pentium clone with 48 Mb of RAM, running the DOS shell of Microsoft

Windows 95.

Our immediate objectives are to produce pleasing and informative 2-D and 3-D pictures

of the internal structure of some component of the human head: for example, the brain.

xiv

We need to remove from the original dataset all of the data which do not represent the

brain. Then, for the 3-D images, we need to render the remaining data in such a way that

it possesses depth and realism.

The overall job can be divided into three smaller tasks:

(1) Acquire the range of densities of brain tissue, expecting that the brain will not be

all of one uniform density, but that it will be fairly homogeneous.

(2) Filter out all "non-brain" data from the original dataset, using density or density

gradients as the criteria for segmentation.

(3) Use the remaining "brain" data to create a realistic computer image.

In [Udupa82], the authors suggest the following steps for 3-dimensional organ display:

1. segmentation of the three-dimensional array into regions corresponding to

organs

2. identification of the organ of interest

3. detection of its boundary

4. hidden surface removal

5. shading

Using the approach described in this thesis, we shall already have identified the organ of

interest using two-dimensional images taken from the original three-dimensional dataset.

We will proceed to segment data corresponding to the organ of interest using various

boundary-detection algorithms. Finally, we will create realistic images from the

xv

remaining data through the use of rendering algorithms which both remove hidden

surfaces and simulate variations in the light level.

xvi

CHAPTER 1

INTRODUCTION

We begin our exploration into the subject of segmentation and rendering with a

discussion of some important background information about the technology, terms, and

concepts to be encountered.

I. I Nuclear Magnetic Resonance and Magnetic Resonance Imaging

Nuclear magnetic resonance (NMR) is a phenomenon which occurs when atoms are

exposed to extremely strong magnetic fields. Atomic nuclei (particularly those of

hydrogen atoms) tend to line up along the axis of the magnetic field to which they are

exposed. Then, a radio-frequency pulse is directed at the atoms, which causes the nuclei

to twist out of alignment. When the pulse is removed, the atoms "relax" and, in the

process, give off RF signals which are measured and analyzed by a computer.

NMR technology is particularly important in the field of medicine. A living human being

(which, by virtue of being composed mostly of water and aliphatic [fatty] compounds, is

especially rich in hydrogen) may be placed inside a large electromagnet, and his internal

tissues and organs may be scanned and their hydrogen-ion densities recorded for study.

The densities may be correlated to different colors on a computer screen, enabling

- 1 -

physicians to discern the different organs and to discover abnormalities such as tumors,

breaks, or lesions. [Higgins84] states:

The gray scale of the NMR images displays fat as the brightest intensity
(white), followed by brain and spinal cord, solid viscera, vessel wall, and
muscle in descending order. Air, bone, and calcification produce almost
no MRI signal (black)... Fat in the bone marrow produces high signal
intensity ... Fluid-filled cavities tend to be low intensity.

Magnetic resonance imaging (MRI) scanners make it possible to scan a body in many

small increments along some axis, effectively producing many very thin "slices" of data.

These slices may be stacked to create a 3-dimensional image of the body. In addition,

advantage may be taken of the fact that, since different components of the body (organs,

bone, blood vessels, etc.) possess different hydrogen densities, some organs' data may be

filtered out, or segmented, so as to reveal only those organs which the imager desires to

study in detail. MRI requires neither surgery nor contrasting dye nor ionizing radiation to

create its images; the patient need only lie very still while the image is generated

[BeU94B]. (With the advent of new high-speed MRI scanning devices, even this

requirement is somewhat relaxed.) Exposure to intense magnetic fields has not been

shown to be harmful to living tissue.

1.2 Visualization

Scientific visualization has been described as "[the development of] algorithms and

methods that transform massive scientific datasets into pictures and other graphic

representations that facilitate comprehension and interpretation" [Samtaney94]. Datasets

may contain values derived from studies of fluid flow, weather patterns, stock market

- 2-

index fluctuations, or, in the present case, relative hydrogen density as detennined by

MRI scans of the human body.

On a practical level, one must consider certain properties relevant to visualization: in

particular, the generation, manipulation, storage, and display of data [Ranjan94].

Visualization gives us the ability to observe trends and relationships present, but perhaps

hidden or obscured, in complex datasets. With respect to this project, the relationship we

seek is that of connectedness, or homogeneity, of certain organic tissue in the human

body. The challenging aspect of the visualization task is that the structures we seek to

visualize are hidden from direct view, and have been heretofore observable only through

the use of (a) invasive techniques such as surgery, or (b) non-invasive techniques

involving X-rays or substances which emit ionizing radiation. Both techniques involve

some risk to the patient; and in any event, the quality of the resulting information often

leaves much to be desired.

1.3 Computed Tomography

Computed Tomography (CT) is described as the mathematical reconstruction of internal

structural information within an object from a series of projections [Russ95]. In the

present context, our projections are 2-dimensional "slices" of relative density data

provided by an MRI scan along some axis at regular intervals. The slices are stacked to

reconstruct a 3-dimensional volumetric dataset (VDS), to which we apply various

methods of computation for separating or segmenting tissue types of interest.

- 3 -

1.4 Segmentation

Segmentation is the process of extracting meaningful regions from images or volumes

[Carlbom92]. According to [Schalkoff89], segmentation groups pixels to form higher-

level regional image structures in a manner which is either non-contextual or contextual.

During non-contextual segmentation, relationships between features (at either the pixel-

or region-level) are ignored. Instead, the process relies upon the recognition of a

statistical pattern in the value of the pixels under consideration. For example, the density-

range-based approach to biomedical image segmentation employed in [Be1l94B]

depended upon each pixel's density value falling within a specified range, without regard

for the density value of its neighbors. As noted in section 1.4.2 (Thresholding), this

approach has its flaws.

The contextual segmentation process, on the other hand, considers the relationships

between neighboring pixels to support the decision to include a particular pixel in the

region being segmented. In other words, we assess the local pixel region content, rather

than simply the value of each individual pixel. Edge-detection and density-gradient

analysis are two methods which assess the contents of a local pixel region.

Segmentation involves two considerations. First, in order to acquire data for a particular

homogenous and connected structure, we must apply some technique for "growing" a

-4-

region of data from a specified seedpoint. Second, we must select from our dataset only

those values meeting specified criteria (thresholding).

1.4.1 Region-growing

Region-growing begins with the selection of a seedpoint, a single data point located

within the region to be segmented from the surrounding area. Each surrounding point is

examined and is added to the region if its value is sufficiently similar and if the point is

connected, that is to say, adjacent to the point which came before. The region grows in

all directions until no more points are encountered which meet the criteria for

homogeneity. Region-growing can be performed in either two or three dimensions.

Because of the recursive nature of the problem, the implementation of region-growing

algorithms is not conceptually difficult. However, the large number of recursive calls

likely to be encountered during segmentation can strain a computer's memory resources.

Therefore, we explore region-growing algorithms which implement recursion to a lesser

extent, or simulate recursion through an iterative process [Tenenbaum90] [Roh184]

[Foley90].

- 5 -

1.4.2 Thresholding

During the thresholding phase of segmentation, we evaluate each datum in the set under

consideration, retaining it only if it is above or below some limit (threshold), or within

some specified range of limits. In a previous experiment [BeIl94B], a simple density-

threshold algorithm was applied to a VDS of MRI density data for a human skull, with

the intention of segmenting brain tissue. The results were less than satisfactory, due to

the fact that (a) the density range of brain tissue is fairly broad, and (b) the density ranges

of other types if tissue found in the skull overlap that of brain tissue. Also, no attempt

was made to grow a region from a seedpoint. Therefore, brain tissue was not clearly and

distinctly segmented from adjacent tissue.

Although a density-range thresholding scheme might be an adequate criterion under some

circumstances, it could tum out that tissue of one type (X) with a certain density range

may lie adjacent to tissue of a different type (Y) with an overlapping density range. In

this case, complete segmentation of (X) from (Y) would be unsuccessful. Or, due to a

narrow specification of density range, a region could have many of its data points

discarded and thus be incompletely represented.

1.4.3 Gradient Approximation and Edge Detection

In either case, we might wish to examine the rate of change in density over the region.

This rate of change is referred to as the gradient (V). A low gradient indicates small or

- 6 -

smooth changes in density, characteristic of tissue which is homogeneous. A high

gradient indicates a sudden change in density, very likely a boundary between tissue

types. In image processing, algorithms which measure rates of change over a region are

often used to detect edges and boundaries between dissimilar areas.

An approximation of the gradient of a particular area may be determined using weighted-

sum masking [Be1l94A], where the kernels to be used are especially designed to display a

strong response to changes in i~tensity. In three dimensions, such operators approximate

the overall gradient in a volume by computing gradients in three orthogonal directions

and summing them. In this project, we compare the characteristics of several different

kinds of operator. A mathematical presentation of the notion of gradient may be found in

Appendix B.

1.5 Surface Rendering

When we display a slice of hydrogen-density data on a computer screen, each point of

data from the slice is represented by a single point on the screen. The color (or gray-

shade) of the point on the screen corresponds to the value of the datum. Throughout this

paper, reference will be made to "pixels" and "voxels". A pixel (picture element) refers

to a single point on a computer screen; each pixel, and each point in a slice of data, may

be referenced by a set of coordinates (x, y). A voxel (volume element) refers to a single

point in a volume of data at a set of coordinates (x, y, z). Since an image on a computer

- 7 -

screen is two-dimensional, we will need to resort to various techniques to give our images

the illusion of depth or realism.

Surface rendering is the process of adding the appearance of a (more or less) realistic

surface to a graphical object on a computer screen. Complex mathematical operations on

a scene's dataset add realism to the scene through the artful use of color, shading, lighting,

reflectivity, and refractivity.

1.5.1 Depth-cueing

One method of adding a sense of three-dimensionality to an object is known as depth-

cueing. This involves correlating the brightness level of each voxel in the object to the

voxel's distance from the viewer. Therefore, closer voxels appear brighter, and more

distant voxels appear more dim.

Although the depth-cueing method is not computationally difficult, it ignores issues

important to realism, such as the location of point light sources, ambient lighting, surface

texture, and the degree of specular reflection ("hot spots") at any given point in the object.

A surface-rendering method which addresses these issues is called ray-tracing.

- 8 -

1.5.2 Ray-tracing

Ray-tracing begins by tracing backwards the path of an imaginary single ray of light

(called an eye-ray) from the viewer's eye, through a viewscreen, to a region in the scene,

and eventually back to some point light source of known coordinates. During this

process, we may compute not only the path of the eye-ray (which may, in fact, be

reflected by or refracted through one or more surfaces on its journey), but also the

brightness of the ray, which diminishes both in proportion to the distance it travels and as

a result of reflecting off coarse surfaces and refracting through translucent material.

Ray-tracing determines the visibility of an area on an object's surface by examining the

relationship of an eye-ray's vector direction to the normal vector of the surface; if the

vector's included angle is less than 90 degrees, then the surface is visible. To define an

object's surface, an array of points is created containing the three-dimensional coordinates

of each point. We regard the object's surface as a collection of small triangular patches,

whose vertices are specified in the array. The vertices describe a plane whose normal

vector is computed for comparison with the eye-ray vector.

1.5.3 Lighting and Shading Techniques

Depth-cueing provides to a scene a sense of three-dimensionality by diminishing the

brightness of the more distant parts of an object. Ray-tracing makes it possible to

simulate the location of point light sources in the scene, and to remove the hidden

- 9-

surfaces of an object. However, the presence of "ambient" light (light which may have

come from a point light source, but which has since been scattered by atmospheric

disturbances) affects the perceived brightness of an image. Also, the texture of the

surface of an illuminated object will determine not only how much light is reflected, but

also the degree to which reflected light is highly concentrated in one spot (specular

reflection). Finally, the amount of reflected light seen by the viewer must be correlated to

the angle at which the viewer observes the different aspects of the object.

All of these factors are dealt with through the use of various illumination models. These

models view the amount of light seen by the observer as the sum of ambient light and

(possibly multiple sources of) specular reflected light, adjusted with coefficients and

trigonometric relationships to account for the texture of the surface, the viewing angle,

and atmospheric attenuation [Foley90].

1.6 Storage Considerations

In [Be1l94B], the Z-buffer was used as a method of representing the visible aspect of

certain volumetric data. The Z-buffer is a two-dimensional array which maintains

distance infonnation for the closest voxels which have been seen so far in a slice-by-slice

pass through the VDS of dimensions n x n. (Note that the dimensions of the Z-buffer are

the same as those of a single slice of the VDS.) The Z-buffer offers the advantage of

requiring relatively little memory, representing n2 points rather than n3 points. However,

- 10-

the Z-buffer method is also limiting in that, in order to rotate the object and view it from a

different angle, each point in the original VDS must be re-examined.

An alternative method for representing a segmented 3-D object would be to copy the

entire object to a second n3 array; this approach is called spatial occupancy enumeration

[Foley90]. The obvious disadvantage to this approach is the requirement for twice as

much memory or disk space in which to hold the data. In addition, much of the second

array would be used only to store zeros, indicating the absence of points in the segmented

object (in other words, a sparse matrix).

A data structure which has proven popular for maintaining sparse matrix 3-D data is the

octree [Foley90]. The idea behind the octree storage method is to recursively subdivide a

3-D scene into octants. Each octant is evaluated as being full, partially full, or empty,

depending on how much of the octant intersects the volume of the object. A partially full

octant is further subdivided, until its suboctants are evaluated as being all full or all empty

(or until some cutoff is reached). Whenever eight sibling octants are all full or all empty,

they are merged back into their single parent, which is then marked full or empty

accordingly. Represented as a tree, the root node and intermediate nodes are always

partially full; leaf nodes are always either full or empty. (A bottom-up approach is also

possible, resulting in improved efficiency.)

In [Kippenhan94], the authors suggest the use of a hierarchical matrix of pointers to store

and access volumetric data:

- 11 -

The "base pointer" will be a pointer to an array of sub-pointers (each of
which will point to a "slice" of volume data), each of which will in tum be
pointers to another array of sub-pointers (each of which will point to a "row"
of data within the slice of interest).

- 12-

CHAPTER 2

ANCil..LARY SOFfW ARE TOOLS AND LffiRARIES

For this project, various utility programs were required for the extraction and

manipulation of slices of data from the VDS. Files of general- and special-purpose C

functions were created which could be called from different programs as needed; here

follows a brief description of the role of each utility in the overall mission.

2.1 ANYSLICE

This program was written for use on an Intel 80x86-based computer running the DOS

operating system. ANYSLICE is designed to work with files of 3-D volumetric data

stored in "slice" format, such as the MRI or CT files available from the University of

North Carolina/Chapel Hill (see Appendix A). These files contain some number

(typically around a hundred) of slices of tomographic data stored sequentially in z-y-x

order. Every two bytes in each slice represents the magnetic resonance datum for the

point at (x, y) in slice (z).

ANYSLICE is designed to acquire a specified slice of data from the specified input file

and write that slice's data to the specified output file. The resulting binary file should be

131,072 bytes in length for a volumetric data file whose slices measure 256 x 256 pixels.

- 13-

File slices shall be numbered by the user beginning with 1. Within the program, we

revert to numbering the slices beginning with 0 after having called the atoiO function to

get the slicenumber argument. atoiO returns 0 if its argument was '0' or if it was

unsuccessful in converting the ASCII string it was passed. Furthermore, the user may

specify the orientation of the desired slice (sagittal, coronal, or transverse) with the final

argument "s", "c", or "t".

In or4er to understand these terms, consider three axes at right angles to each other: the

x-axis passes from the front of the head to the back, the y-axis parallel from the top of the

head downward through the spinal column, and the z-axis through the ears from left to

right,. A sagittal slice of the dataset is parallel to the x-y plane; a coronal slice is parallel

to the y-z plane; and a transverse slice is parallel to the x-z plane.

Usage: ANYSLICE <slicenumber> <infile> <outfile> <orientation>

Example: ANY SLICE 54 3dhead slice54.dat s

2.2 SLICE2IP

This program inverts the byte-order of, and quantizes to the range 0-255, the

pixel-integers present in a slice-file created by ANYSLICE. The modified file will be

suitable for viewing with the MIDTERM image-processing program [BeIl94A]. The user

should record the lower and upper histogram-scaling limits found to provide the most

pleasing contrast between the different components shown in the slice data. These limits

- 14-

will be given to the GETCOORD program in order to display a better image (although the

actual raw data underlying the image will be unaffected).

Usage: SLICE2IP <inputfile> <outputfile>

2.3 ROTATE

This program takes as its input a RAW-format density data file (a 256 x 256 array of

2-byte integers); rotates the data 90 degrees clockwise; and produces an output file of the

same format as the input.

ROT ATE is designed to be used in conjunction with data files produced by the

ANY SLICE program, which creates slice-wise data files from 3-dimensionaI volumetric

datasets. Since the slice files created may not always be in a pleasing orientation (e.g. a

coronal slice lying on its side), some means of rotating the picture will be found useful.

To rotate a picture by 180 or 270 degrees, simply apply ROTATE twice or three times,

respectively:

command

ROTATE original.dat 90.dat

ROTATE 90.dat 180.dat

ROTATE 180.dat 270.dat

ROTATE 270.dat 360.dat

result

---> 90 degrees clockwise

---> 180 degrees clockwise

---> 270 degrees clockwise

---> 360.dat = original.dat

Usage: ROTATE <inputfile> <outputfile>

- 15 -

2.4 ANYVIEW

ANYVIEW allows the user to extract from a VDS file a Z-buffer view of the contents of

that VDS file from one of the three axial orientations (x, y, or z). ANYVIEW's output is

a 256x256x8 RAW file of grayshade data.

Usage: ANYVIEW <infile> <outfile> <orientation>

Example: ANYVIEW 3dhead sagview.raw s

2.5 XMSIF

XMSIF (version 1.5, written by James W. Birdsall, copyright 1993) is a C interface to

extended memory functions, and is widely available via FTP to the Internet. Many of its

routines were incorporated into the MRI3D program in order to create and manipulate a

very large stack in extended memory.

2.6 VSA256

VSA256 (version 3.01, written by Spyro Gumas, copyright 1994) is a C interface to

functions which make it possible to generate graphics output on video adapters running

with VESA BIOS extensions. Use of VSA256 makes it possible to activate the high-

resolution, 256-color video modes necessary to display multiple grayshades.

- 16-

CHAPTER 3

IMPLEMENTATION IN TWO DIMENSIONS

The GETCOORD program was created for the purpose of performing segmentation in

two dimensions, both as an end in itself and as a preliminary step towards successful 3-D

segmentation. GETCOORD takes as its input a slice-file of 2-D density data, such as that

created by the ANY SLICE utility from the original VDS. This slice is displayed on the

screen. (Prior to loading, the intensity histogram of the slice-file may be modified to

improve its appearance and usability.)

Using the mouse, the user points to any pixel in the image to be used as a seedpoint for

region-growing. Via the keyboard, the user also specifies:

- which thresholding method is to be used

- the parameters for lower and upper density limits

- the density-gradient threshold

- the manner of floodfilling

When segmentation is complete, the user may save the coordinates of the seedpoint in a

small text file (to be used in the 3-D segmentation process implemented by the program

MRI3D). The user may also save the segmented image as a RAW-fonnat file (suitable

for viewing with the MIDTERM image-processing program [BeIl94A]) or as an

- 17 -

encapsulated PostScript file (which includes all of the settings infonnation for the current

image).

GETCOORD, an MS-DOS-based program, requires 16-color VGA and 640 kb of

conventional memory to run. The usage of the GETCOORD program is:

GETCOORD <inpucslice_filename> <slicenumber>

write_colocregisteTS
(MlSC.C)

display_image

A

cleactexcline
(MlSC.C)

B

Figure 3.0-1a: GETCOORD Structure Chart (1 of 3)

- 18 -

update...,gradient_approx_method c1ear_texUo_EOL
(MISc.q

Figure 3.0-1 b: GETCOORD Structure Chart (2 of 3)

already_visited
1------- ------
I recursive call to :

: _doofl~~ti"":'.

cJear_text_line

Figure 3.0-1c: GETCOORD Structure Chart (3 of 3)

- 19-

3.1 Thresholding Methods

In this program, we permit two types of thresholding: evaluation by density-range and

evaluation by density-gradient. Both types may be used together as well, i.e. a point must

meet both criteria in order to be accorded membership in the region.

3.1.1 Density-range Thresholding

When performing segmentation, the user may specify a density range in terms of a lower

density limit (LDL) and an upper density limit (UDL), between which a point's density

value must fall in order to be considered a member of the region. This task is

computationally easy and is performed before gradient approximation (section 3.1.2).

The default LDL at the start of the program is 1; the default UDL is 4095. (If these

values are modified, their new settings will be remembered between segmentation runs.)

The Magnetom does not report absolute hydrogen density directly in terms of any

particular unit of measure, such as grams per cubic centimeter; rather, its numbers

represent the relative intensity of RF signals given off by scanned tissue during the MRI

scanning process. For convenience' sake, we may casually regard hydrogen density and

RF signal intensity as equivalent.

- 20-

3.1.2 Gradient-approximation Kernels

The user may select one of three different ways of computing the approximate gradient

(V) of the 3 x 3 matrix surrounding each pixel being considered for membership in the

region of interest. In each case, wherever the tissue is homogeneous, we would expect

the rate of change over the 3 x 3 area to be low; at the boundary between differing tissue

types, we would expect a high gradient. The gradient-approximation methods will differ

in their response to changes in the gradient over the 3 x 3 area; we will observe how the

difference in response affects image quality.

To compute the gradient approximation is the most computationally expensive part of the

segmentation process. To begin with, we must acquire the values of 9 pixels (in two

dimensions), and then perform either integer or floating-point arithmetic on the values.

Therefore, we only perform gradient-approximation after having determined that a pixel

has not already been visited, and that its density is within the specified range. In the

discussion which follows, we consider a 3 x 3 grid M, whose elements are numbered

thus:

[

Ml M2 MJ]
M4 M5 M6

M7 M8 M9

More discussion of these and other spatial filtering methods may be found in

[Gonzalez92].

- 21 -

3.1.2.1 The Prewitt Kernels

The Prewitt kernels (or operators) are a pair of 3 x 3 matrices which are each multiplied

by the 3 x 3 matrix of density values with pixel P at its center. We compute the partial

derivative (or rate of change) in the vertical and horizontal directions, and then take the

sum of the absolute values of the partial derivatives to compute an approximation of the

gradient. The difference between the first and third rows approximates the derivative in

the X direction; the difference between the first and third columns approximates the

derivative in the Y direction [Gonzalez92]. The Prewitt kernels are:

K x = [~1 ~1 ~1] K y = [= ~ ~ ~]
1 1 -1 0 1

An equivalent equation which summarizes the operation described above is:

3.1.2.2 The Sobel Kernels

The Sobel kernels are similar in appearance and application to the Prewitt kernels, except

that the middle term is doubled, as shown. According to [Gonzalez92], derivative filters

enhance noise; the doubling of the center term in the Sobel operators works to provide a

smoothing effect in the resulting image. The Sobel kernels are:

- 22-

The equivalent equation is:

V M5 = I(M7+ 2M8+ M9)-(MJ+ 2M2+ M3)1 +

I(M3+ 2M6+ M9)-(MJ+ 2M4+ M7)1

3.1.2.3 The Square-Sum-Root Method

The Square-Sum-Root (SSR) method is a simple method of approximating the gradient

which does not implement kernels in the same way as the previous two methods. The

SSR equation is:

The SSR method involves floating-point arithmetic in the form of the square root

functions, which requires more computer time than integer arithmetic.

3.2 Region-growing Methods

Upon reflection, it will be seen that the region-growing problem is merely a variation of

the floodfilling problem. In floodfilling, we choose a seedpoint pixel within a region, and

color the seedpoint, the seedpoint's neighboring pixels, and their neighbors, and so on ad

- 23-

infinitum, either until some boundary is reached (a boundary-defined region), or as long

as a pixel's value is the same as that of the seedpoint (an interior-defined region). The

decision to color any pixel is based on the pixel's present value; if it is not the boundary

value, or if it is the same as that of the seedpoint, we color the pixel and proceed to

consider its neighbors for coloring [Fo]ey90].

The first three region-growing algorithms described here all operate in about the same

way, and begin with a user-specified seedpoint, pixel P. During region-growing, we first

check to ensure that P has not already been visited. If it has been visited, there is no point

in spending time processing it again, and we continue with the recursive growth (section

3.2.1). Next, we ensure that the density of P is within the specified range. If not, we

continue with the recursive growth. (We may effectively remove density-range from

consideration by making the limits maximally broad, e.g. LDL = 1, UDL = 4095.)

We save the most computationally expensive stage for last, and compute the gradient V

for the 3 x 3 grid surrounding P. If V is greater than or equal to the specified threshold T,

we continue with the recursive growth. Otherwise, we save the density of P in the output

buffer (P'S coordinates being implicit in its position in the memory array), and then

continue with the recursive growth.

- 24-

3.2.1 Recursive 4-connected Region-growing

As pointed out, the region-growing process involves examining the neighbors of a pixel

in a recursive fashion. In two dimensions, regions are said to be 4-connected if every two

pixels can be joined by a sequence of pixels using only up, down, left, or right moves

[Foley90]. Thus, after examining a pixel P for membership in the region to be

segmented, we recursively examine P's neighbors to the north, south, east, and west.

This recursive approach possesses the virtue of simplicity of understanding and coding.

However, stack space is needed during each recursive can to store the values of local

variables, arguments passed to the recursive function, and the calling function's return

address. (Each time a program makes a call to another procedure or function, it must

store these values, arguments, and addresses on the stack in an area of memory called a

stack frame.) For large regions, the many levels of recursion involved impose substantial

requirements upon the computer's available memory for stack space. Recursive cans also

may require more time to execute than an equivalent iterative approach due to the need

for stack manipulation.

In order to assess the algorithm's requirements for stack frames, we maintain a counter

which records the largest number of recursion levels for a particular run of the program.

Before making a recursive call, the program ensures that there is sufficient stack space

available; if not, the function returns to the calling function. Figure 3.2.1-1 displays an

algorithmic flowchart for the recursive 4-connected region-growing process.

- 25-

3.2.2 Recursive 8-connected Region-growing

In two dimensions, regions are said to be 8-connected if every two pixels can be joined by

a sequence of pixels using only up, down, left, right, up-and-right, up-and-Ieft, down-and-

right, or down-and-Ieft moves [Foley90]. Thus, after examining a pixel P for

membership in the region to be segmented, we recursively examine P's neighbors to the

north, south, east, and west, northwest, northeast, southwest, and southeast.

In all other respects, the 8-connected region-growing algorithm is identical to the 4-

connected algorithm described in section 3.2.1. It is presented primarily to assess

differences in image quality due to the additional degree of connectedness.

3.2.3 Iteration and Simulated Recursion; Stack Self-management

As noted, recursive methods require more time and memory space than equivalent

iterative methods. In order to reduce the program's need for time and memory, we

simulate recursion through an iterative implementation of the 4-connected recursive

region-growing algorithm described above. [Tenenbaum90] presents some useful

guidelines for maintaining one's own stack, and for simulating recursive calls for which

there is no longer a requirement to preserve local variables. By maintaining the stack

ourselves, we are able to use more efficiently the memory needed for arguments to the

pseudo-recursive call, as well as the return-label used in lieu of a return address. The

self-managed stack makes possible a greater number of pseudo-recursive calls for the

- 27-

same amount of physical memory, resulting in more complete growth of large regions for

which many levels of recursion would be necessary. Figure 3.2.3-1 shows an algorithmic

flowchart of the simulated-recursion 4-connected region-growing process.

- 28-

initialize data area and
stack; set current area to

(x, y), CARA=l

read grid, compute
gradient

save & paint
(CAX, CA y)

yes

no

NORTH SOUTH

push CA to S;
CAY--;

CARA=2

push CA to S;
CAY++;
CARA=3

BASECA~S~E~.~~~~

WEST:

push CA to S;
CA.x--;

CARA=4

i=CA.RA;
pop S to CA

EAST:

push CA to S;
CA.x++;
CARA=5

Figure 3.2.3-1: Simulated-recursion 4-connected Region-growing Algorithm

- 29-

3.2.4 A Spanfill Algorithm

The spanfilling algorithm is recursive, and starts (as usual) with a seedpoint, pixel P.

This time, pixels to the left and right of P are examined for and granted membership in

the region to be segmented. This horizontal row of member pixels is called the starting

span.

We next examine each pixel in the row immediately above the starting span. When a

new member pixel is found, we make a recursive call to the spanfill function, which saves

and paints this new pixel, fills its span, examines the span above it, and so on. After the

upward-recursive calls return, we make recursive calls to the spanfill function with

respect to rows of pixels beneath the starting span.

Although recursive in nature, this algorithm is much less reliant on stack space than the n-

way region-growing algorithms, because most of the pixel-coloring is done iteratively

within each span; the function only recurses when it is necessary to look at the row above

or below the current row.

Note that it is possible to have more than one span of member pixels in each row of

pixels, each span being separated horizontally by non-member pixels. Note also that

there are only 256 rows in the images acquired from the VDS. Although it is possible to

conceive of degenerate cases where there are relatively many member spans on each row

of pixels, it seems unlikely that one would encounter these cases very often in practice.

- 30-

Most of the time, the number of levels of recursion needed by the spanfill algorithm is

quite small. Figures 3.2.4-1a and 3.2.4-1b show an algorithmic flowchart of the recursive

spanfill region-growing process.

- 31 -

update stack
frame counter

save & paint seedpoint
of this span

r------~ paint to the left:

read grid &
compute gradient

save & paint next pixel
to the left

no

LHx=x+l;
x = original x

A

r------~ paint to the right:

read grid &
compute gradient

save & paint next pixel
to the right

decrement x;
RHx=x

o

Figure 3.2.4-la: Recursive Spanfill Region-growing Algorithm (I of 2)

- 32-

read grid &
compute gradient

do_spanfill_rec(x, y-l)
(recursive call to the row

above)

read grid &
compute gradient

do_spanfill_rec(x, y+ 1)
(recursive call to the row

below)

Figure 3.2.4-1b: Recursive Spanfill Region-growing Algorithm (2 of 2)

- 33-

3.3 Data Representation and Storage Methods

3.3.1 Data Structures

We discuss two data structures used to store two-dimensional MRI segmented data:

spatial occupancy enumeration (SOE) and the quadtree. We compare them with regard

for ease of coding, ease of data manipulation, speed and memory conservation.

3.3.1.1 Spatial Occupancy Enumeration Using 2-D Arrays

Spatial occupancy enumeration (SOE) is a form of solid-figure representation in which

the solid is decomposed into identical cells (or cells possessing similar characteristics,

such as the same density- or density-gradient range) arranged in a fixed, regular grid (e.g.

256 x 256) [Foley90]. In two dimensions, these cells are called pixels (picture elements);

in three dimensions, they are called voxels (volume elements). We represent an object by

deciding which cells are occupied, and which cells are not. Simple to implement and

manipulate, SOE may be used to organize data both in memory and in disk files, and is

often used in biomedical applications.

In the GETCOORD program, we have established two 256 x 256 square arrays for the

input and output slice-image buffers. In order to improve efficiency, we use the output

buffer's initial zero values as an indicator of whether a particular pixel was already visited

during region growth.

- 34-

For a resolution of n voxels in two dimensions, we may need up to n2 cells to represent an

object. This may provide only a rough approximation of the object; however, we are

already limited to this approximation in MRI work because of the nature of the original

VDS and its manner of generation.

We perfonn three basic operations in working with SOE: defining the memory array,

writing to the array, and reading from the array. We may define the size of the array

either at compile time or at run time. For an image of n x n pixels, and each pixel

requiring m bytes to store its value, the size of the array must be n x n x m bytes. A 256 x

256 array of 2-byte-integer data would therefore require an array of 131,072 bytes.

To access any particular pixel in the array for either reading or writing, we need only

calculate the byte-offset from the beginning of the array. If the coordinates of the pixel

are (x, y), and the number of rows in the array is R, then the byte-offset is

x + (y * R)

and the value of the pixel P at (x, y) is

P = array[x + (y * R)].

Similar remarks hold for accessing a pixel in a random disk file; we may use file-pointer-

positioning functions to access specific pixels in an already existing file. However, while

the size of the data type is usually already figured in by the compiler when accessing a

- 35 -

memory array, this must be explicitly done by the program when using byte-offsets on a

file. Then, the byte-offset is

(x + (y * R)) * sizeof(data type)

where sizeofO is an operator which returns the size (in bytes) of the data type.

The SOE approach using a memory array is very easy to implement, since the data

structure is topologically congruent to the way that the data occur in physical reality.

Manipulation of data is simple and fast, since to access any particular pixel requires the

computation (involving integer arithmetic only) of a single array address. The only

disadvantage of SOE is that, for a scene in which the segmented region is very small in

relation to the rest of the scene, most of the array will be used to store zeros, representing

the absence of segmented data. Such an array is called a sparse matrix, and might be

considered wasteful of memory space. In such cases, we may wish to explore other data

structures which are designed not to store null- or zero-data. Such structures include

linked lists and trees.

- 36-

3.3.1.2 Linked Lists and Trees

A linked list is a list of records in which each record contains, in addition to its data, a

field used to hold a pointer to the next record in the list. A tree is a data structure whose

root node contains, in addition to its data, links to two or more child nodes. Each child

node contains data plus links to other child nodes, and so forth in recursive fashion.

Linked lists and trees may be created, enlarged, and reduced dynamically (that is to say, at

runtime) as opposed to array structures, whose size is fixed at the time the program is

compiled.

By and large, lists and trees are more difficult and time-consuming to create and maintain

than are ordinary arrays. Each time a new node is required, memory must be allocated

and links established. Likewise, when a node is no longer needed, its memory must be

deallocated and returned to the operating system. Further, lists and trees are not randomly

addressable; whenever a node is to be accessed, the list or tree must be traversed in linear

or some other order until the desired node is found.

As mentioned, for a scene in which the segmented region is very small in relation to the

rest of the scene, most of the array will be used to store zeros in order to represent pixels

which were not selected during the segmentation process. This memory space could be

regarded as wasted, but is an unavoidable overhead cost to employing a fixed-size array.

The use of lists and trees to hold segmented data represents an effort to reduce this wasted

- 37-

space, but their effectiveness is limited because of the extra memory required for each

node in the list or tree to record pointers to its children and parent nodes.

One form of tree structure used for the storage of two-dimensional image data is called

the quadtree. A quadtree divides a scene into four quadrants. The quadtree's root node

points to each of the four top-level quadrants, which are classified depending upon

whether the quadrant is full (Le. all of the quadrant's pixels values meet the segmentation

criteria), partially full (only some of the pixels meet the segmentation criteria), or empty

(none of the pixels meet the segmentation criteria). Each quadrant is recursively divided

into sub-quadrants and analyzed, down to the pixel level, where no further division is

possible. (When working with three dimensional scenes, we may use a natural extension

of the quadtree notion called the octree, which divides the scene into eight octants.)l

If a region's homogeneity is highly concentrated (i.e. many adjacent pixels meeting the

criteria for segmentation), then, in terms of memory requirements, the quadtree can

provide a fairly efficient method of data storage. In general, the amount of memory

required is a function of the resolution (number of levels in the quadtree), the image size,

and the region's position in the grid [Samet90A].

Quadtrees are frequently used in the transmission of graphical data, where the
interest is in enabling the receiving party to view the image at progressively better levels of
resolution, and to terminate the transmission if and when it is decided that the picture is
unwanted. At first, a brief amount of time is used to transmit a crude picture at low
resolution. Then a longer amount of time is used to transmit a better-quality picture at a
higher resolution, and so on, until, at the end of the transmission, the picture is
reconstructed perfectly. This process may be interrupted at any time, and is useful for
browsing operations [Samet90B].

- 38-

If the region represented by a quadtree is highly convoluted (relatively few adjacent

member pixels), then the efficiency of the quadtree decreases. Consider a scene whose

pixels may have a value of either 0 or 1. In the worst case, that of a checkerboard pattern

of dimensions 2n x 2n
, then the number of nodes required to completely represent the

region is

,k' = 4° + 4' + 4' ;: G) • 16 = (:) 4'

Note that each node in the quadtree must store certain data, for example:

- the value of this pixel, if a leaf node (2 bytes)

- a status field (full, partially full, or empty) (1 byte)

- the upper-left coordinates of the quadrant (2 bytes)

- the size of the quadrant's side, in pixels (1 byte)

- a pointer to the node's parent (2 bytes)

- four pointers to each of the node's children (4 x 2 bytes)

By this reckoning, then, each node would need to be allocated 16 bytes of storage, and the

2n x 2n region would require (in the worst case)

bytes of storage.

- 39-

In the best case (where all the pixels of the region are members), only one node (at 16

bytes) would be required to completely represent the region. However, these remarks

hold only for two-valued (black-and-white) images. If a scene's pixels are multi-valued

(e.g. grayshade values or density data), pixels with a relatively wide range of values may

be considered members of a segmented region and yet may not be able to be grouped

efficiently in a quadtree because their values are not exactly the same. In other words, the

quadtree assigns nodes on the basis of a two-state condition: is the pixel a member of the

region or not? Whereas the segmentation algorithm usually assigns membership less

restrictively, admitting a wide range of values.

Note that a fixed-size array of dimensions 2n x 2n would require only 2 * 22n bytes (at 2

bytes per array element), regardless of the condition of the region, and regardless of the

conditions for segmentation; in other words, the best and worst cases are the same.

- 40-

3.3.2 File Fonnats

The binary image data stored in the RAW and PostScript fonnats is organized by spatial

occupancy enumeration in row-major order. That is, the values in the first n-element row

of the memory array are stored in the first n positions of the file; the values from the

second row of the array are stored in the next n positions of the file; an so on.

3.3.2.1 RAW Format

The RAW file fonnat was originally used for storing 256-shade grayscale data. As

implemented in the MIDTERM image-processing program [Be1l94A], an image of

dimensions 256 x 256 pixels could be stored in a file of 65,536 bytes, each byte being

capable of representing a number in the range 0 to 255. There is no particular reason why

the RAW format could not be used for storing any kind of data (e.g. density levels),

provided that the range of numbers could fit into a single byte.

When GETCOORD reads data from the slice-file, it must quantize (scale) the data from

the range 0-4095 to the range 0-15, in order for the VGA to be able to display the image.

Since MIDTERM expects from a RAW file a value in the range 0-255, GETCOORD

must re-quantize the screen-buffer gray-scale values from the range 0-15 to the range 0-

255 before storing the values in the RAW file.

- 41 -

3.3.2.2 Encapsulated PostScript Format

GETCOORD can save both the segmented image and a copy of the original image to an

encapsulated PostScript (BPS) file. All of the information relating to the active settings is

saved: filenames, x-y-z coordinates, thresholding and floodfilling methods, etc. The EPS

format is quite similar to ordinary PostScript, but permits the image to be imported into

many popular word-processing and page-layout programs.2

3.4 Image Presentation

Since MRI data represents relative RF signal intensities (which are, in turn, correlated to

hydrogen density), some transformations are necessary in order to obtain a useful display

on a computer monitor. We discuss two techniques below.

In order to convert an ordinary PostScript file to EPS, using a text editor, simply add
the following lines to the beginning of the PostScript file:

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: llx lly urx ury
%%Creator: cccccc
%%Title: tttttt
%%CreationDate: mmddyy

where llx and IIy are the lower-left x and y coordinates and urx and ury are the upper-right x
and y coordinates of the image's bounding box. The Creator, Title, and CreationDate fields
are non-printing optional comments which will appear in the bounding box on the screen (in
lieu of a thumbnail picture, whose format is not included here) [Holzgang92].

- 42-

3.4.1 Histogram Stretching

The GETCOORD program records the minimum and maximum values present in the

slice-image. It also permits the user to specify lower and upper bounds to be used in

stretching or compressing the histogram of intensities in the slice-image. When the

histogram is modified, the values in the slice-image are adjusted so as to scale the entire

range of values to a different range, resulting in improved contrast and a more usable

image. For a system of 256 grayshades, the value 0 equals black and 255 equals white,

with progressively lighter shades of gray in between. If most of a picture's pixel values

are low, then the picture will be dark. Stretching the histogram can lighten the picture

and make more detail visible.

3.4.2 Color Quantization

Color quantization is the process of scaling a range of pixel color values to a range which

is more suited to the display device being used. The range of input values from the

3DHEAD VDS has been determined to be from -128 to 3955. The range of valid

grayshade values for a standard VGA adapter is 0 (black) to 15 (high-intensity white).

Therefore, the input values must be scaled and sorted into 16 "buckets" corresponding to

each of the available VGA grayshades. It may be necessary to perform histogram

stretching and quantization together in order to obtain a usable image.

- 43-

CHAPTER 4

TESTING AND RESULTS IN TWO DIMENSIONS

In this chapter, we discuss the tests performed with the 2-D segmentation program,

focusing on these particular areas:

- image quality

- choice of seedpoint

- density ranges

- density-gradient threshold

- gradient-approximation methods

- region-growing methods

- stack frame and memory requirements

- image resolution

- run time needed to create an image

The notion of "image quality" is subjective and deserves some elaboration. To some

extent, image quality is constrained by the resolution of the original dataset. In two

dimensions, the quality of an image is a reflection of how well a particular structure is

able to be segmented, that is, separated from neighboring tissue. Does the region have

clear boundaries? Does it include what it is "supposed to"? Does it exclude other

- 44-

undesired areas? Is the image pocked or pitted to a degree which is out of proportion to

the fundamental nature of the object represented?

Image quality certainly depends upon the completeness of the image. This completeness

is related to computer resource requirements in that, the more pixels which are visited, the

more time and stack frames will be needed for the final image to be generated. But more

resource commitments do not necessarily result in a better image.

4.1 Benchmark Seedpoints

Specific locations within the human head were used as "benchmark seedpoints" for the

segmentation process. Taken from the median sagittal section (3DHEAD slice #54) of

the head, these benchmark points were chosen because they represent (in the opinion of

the author) distinct and significant structures which would lend themselves well to

segmentation. Names of the skull's internal structures are taken from [Frohse6l] (figure

4.1-1). Figure 4.1-2 and table 4.1-1 may be used together to locate the benchmark

seedpoints.

From these seedpoints, "canonical" images of segmented structures were derived (see

section 4.3). Although the notion of what is canonical is a matter of opinion, these

images will provide a useful means of comparison with other segmented images.

- 45-

structure (fig.) (x, y) ref. T LDL UDL
corpus callosum (4.3-1) (120,103) A 1000 1200 2000
pons (4.3-2) (155,140) B 800 1100 1500
worm of cerebellum (4.3-3) (181, 147) C 1800 900 1800
cerebrum (4.3-4) (151,75) D 900 900 2000
scalp (4.3-5) (199,55) E 8000 1200 2800
superior sagittal sinus (4.3-6) (200,75) F 1400 100 900
brain (cerebrum, cerebellum, stem) (4.3-7) (179,142) G 1500 500 2000
head (4.3-8) (127, 127) H 10000 200 3000

(all Prewitt segmentation)
I(all Recursive 4-connected, except fig. 4.3-8, Iterative)

Table 4.1-1: Benchmark Seedpoints

- 46-

THE HEAD
MEDIAN SECTION

I. Superior turbinated bone (Collcha lIasalis superior)
2. Middle turbinated bone (Concha lIilSalis media)
3. Inferior turbinated bone (Concha lIasalis inftrior)
4. Sphenoidal sinus (sill us sphelloidalis)
5. Tubal protrubernnce (Torus lubarius)
6. Hard palate (Palatum durum)
7. Soft palate (Palalum molle)
S. Back of tongue (Dorsum linguae)
9. Tonsil (Tonsilla pala/ina)
10. Genioglo aI mu cle (M. genioglossus)
II . Hyoid bone (Os hyoideum)
12. Epiglottis (Epiglol/is)
13. Thyroid cartilage (Carti/ago /hyreoidea)
14. Vocal fold (Plica vocalis)
15. Ventricular fold (Plicca vertricularis)
16. Thyroid gland (Glandula /hyreoidea)
17. Windpipe (Trachea)

IS. Gullet (Oesophagus)
19. Frontal sinus (Sill us fron/alis)
20. Superior agittal sinu (sinus sagil/alus suptrior)
21. Strainght sinu (Sinus rectus)
22. Dura mater (Dura maIer)
23. Olfactory bulb (Bulbus olfaclorius)
24. Frontal lobe (Lobus fron/alis sllptrior)
25. Wonn of cerebellum (Vert/lis ctrebelli)
26. Oblong medulla (Medulla oblonga/a)
27. Pons (Pons)
2S. Leg of cerebellum (Crus ctrebri)
29. Mamillary body (Corpus mamil/are)
30. Pituitary body (Hypophysis)
31 . Optic chiasma (Chiasma lIervi op/ici)
32. Great commi sure (Corpus callosum)
33. Pineal body (Corpus pineale)
34. Quadrigeminal bodies (Corpora quadrigeminal

Figure 4.1 - 1: Anatomical Ulu tration of the Head (Median Section)

- 47-

A. Corpus Callo urn
B. Pons
C. Worm of Cerebellum
D. Cerebrum
E. Scalp
F. Superior Sagittal Sinu

Figure 4.1-2: Benchmark Seedpoint Location

- 48-

4.2 Factors Affecting Segmentation Results

4.2.1 The Seedpoint

The choice of seedpoint is important in performing a successful segmentation. If a

seedpoint is chosen which lies on or near the boundary between two types of tissue, then

the gradient will be very high there, and the segmentation will immediately fail the

gradient-threshold test. Likewise, if the density of the chosen seedpoint is outside of the

specified range, then the density-range test will fail.

In order to address this possibility, the program displays during the seedpoint-selection

process a 3 x 3 matrix of density values surrounding the pixel underneath the mouse-

cursor, as well as the gradient and density at that pixel. This information is updated

dynamically as the mouse-cursor is moved, allowing the user to "explore" a region of

interest before committing to a particular seedpoint.

4.2.2 The Density Range

As the density range limits LDL and UDL are made smaller, fewer points will be

considered part of the region to be segmented. Some data may be lost, but the degree of

separation between different types of tissue may be improved. Using the "exploration"

feature of the program, the user may observe the range of densities in the area he wishes

to segment, and will be able to set LDL and UDL accordingly.

- 49-

To observe the effects of changes in density range, we use the canonical image of the

brain (figure 4.2.2-1) as a basis for comparison. (The settings for this and the other

canonical images were arrived at through a process of intelligent trial-and-error involving

such changes as we describe here.) The seedpoint for this image lies in the wonn of the

cerebellum, at coordinates (179,142). The density at this point is 1370; we know, then,

that the LDL must be set to some number less than 1370, and the UDL to some greater

number, for any region-growing to take place at all. (As a rule, in the following tests, we

work with this same seedpoint, using iterative region-growing, and varying from the

canonical only those settings whose behavior we are studying.)

Holding the UDL at the maximum of 4095, we begin by varying the LDL from 100 to

1300 in increments of 100. As table 4.2.2-1 shows, as the LDL in gradually increased,

fewer and fewer pixels are accumulated into the region grown. Figure 4.2.2-2 shows how

excluding pixels of density 500-800 results in an image of the cerebrum which is eroded

and less distinct. Figure 4.2.2-3 demonstrates an interesting phenomenon: as the LDL is

increased by just 100, there is a drastic decline in the area of the grown region.

Apparently there is a "bridge" of pixels with density 800-900 which connect the wonn of

the cerebellum with the rest of the brain; when this bridge is eliminated, region-growing

is inhibited.

- 50-

Looking at the upper side of the density range, as the VOL is increased upwards from

1370 (and the LDL is held constant at 500), some pixels are added to the image, but

ultimately the growth of the region is constrained by the density gradient threshold.

- 51 -

Output filename: FIG4221.EPS GETCOORD - Bill Bell - Fall 1996

x-y-z coordinates: [179, 142,54]
Gradient-approximation method:

Prewitt
Region-growing method :

Iterative
LDL: 500
UDL: 2000
Threshold: 1500
Stack frames u ed: 2957
Pixels accumulated: 9137

Figure 4.2.2-1: Canonical Image of the Brain

- 52-

Output filename: FIG4222.EPS GETCOORD - Bill Bell - Fall 1996

x-y-zcoordinates: [179, 142, 54]
Gradient-approximation method:

Prewitt
Region-growing method :

Iterative
LDL: 800
UDL: 4095
Threshold: 1500
Stack frames used: 2139
Pixels accumulated: 6605

Figure 4.2.2-2: The Canonical Brain, LDL Increa ed to 800

- 53 -

Output filename: FIG4223.EPS GETCOORD - Bill Bell - Fall 1996

x-y-z coordinate: [179, 142, 54)
Gradient-approximation method:

Prewitt
Region-growing method:

Iterative
LDL: 900
UDL: 4095
Threshold: 1500
Stack frame u ed: 218
Pixels accumulated: 61 1

Figure 4.2.2-3: The Canonical Brain, LDL Increased to 900

- 54-

LDL UDL recursive pixels remarks
calls accumulated (image quality, structures included)

100 4095 4562 20895 brain, frontal and sagittal sinuses
200 4095 3113 14108 brain, superior sagittal sinus, back of neck
300 4095 3325 12578 brain, superior sagittal sinus, back of neck
400 4095 3191 10976 brain, superior sagittal sinus, back of neck
500 4095 2957 9137 brain only
600 4095 2601 7986 brain, folds of cerebrum eroded
700 4095 2512 7120 brain, folds of cerebrum eroded
800 4095 2139 6605 brain, cerebrum eroded, no pineal
900 4095 218 611 only worm of cerebellum shown

1000 4095 108 515 eroded worm of cerebellum
1100 4095 88 232 eroded worm of cerebellum
1200 4095 39 79 eroded worm of cerebellum (almost gone)
1300 4095 20 39 eroded worm of cerebellum (almost gone)
1369 4095 2 1 one pixel
4095 4095 1 o end of chart

Table 4.2.2-1: Effects of Adjustments to Lower Density Limit

LDL UDL recursive pixels remarks
calls accumulated (image quality, structures included)

500 1371 1982 8553 brain, corpus callosum misSing
500 1400 3275 8664 brain, corpus callosum missing
500 1500 2911 8880 brain, corpus callosum begins to appear
500 1600 2957 9133 brain complete
500 1700 2957 9137 brain complete
500 1800 2957 9137 brain complete
500 1900 2957 9137 brain complete
500 2000 2957 9137 brain complete
500 2100 2957 9137 brain complete
500 2200 2957 9137 brain complete
500 2300 2957 9137 brain complete
500 2400 2957 9137 brain complete
500 2500 2957 9137 brain complete
500 4095 2957 9137 end of chart

Table 4.2.2-2: Effects of Adjustments to Upper Density Limit

- 55-

'C

~
'S
E
::J
U
U ca
III
Gi
)(

Q.

25000

20000

15000

10000

5000

Variations in Lower Density Limit

500 1000 1500 2000 2500 3000 3500 4000 4500

lower density lim it

Figure 4.2.2-4: Effects of Adjustments to Lower Density Limit

Variations in Upper Density Limit

25000.---------------------------------------~

20000

~ "S 15000
E
~
()
()

: 10000
'ii
)(

Q.

5000

............ •

O+---~--_+--~----~--~--_+--~----+_--~

o 500 1000 1500 2000 2500 3000 3500 4000 4500

upper density limit

Figure 4.2.2-5: Effects of Adjustments to Upper Density Limit

- 56-

4.2.3 The Gradient Threshold

As the gradient-threshold T is made smaller, fewer points will be considered part of the

region to be segmented. Some data may be lost, but the degree of separation between

different types of tissue may be improved. Using the "exploration" feature of the

program, the user may observe the range of gradients in the area he wishes to segment.

Keeping in mind the fact that the gradient is high in the area of the boundary between

tissue types, the user can determine (approximately) the largest threshold value which

will acquire member pixels of the region to be segmented, without impairing the

program's ability to accurately differentiate between tissue types.

Segmentation by gradient-threshold may be complicated where the seedpoint is located in

very porous tissue which has an inherently high gradient, such as bone or lung tissue. In

such cases, one may be better off selecting a very high gradient-threshold (INT_MAX, in

this case 32,767) and relying upon density-range alone for results. One must be sure that

the density-range selected is that of the porous tissue itself, not of whatever substance lies

inside the pores.

The (Prewitt) gradient approximation at the seedpoint is 597. Again using the canonical

brain image for comparison (figure 4.2.3-1), we hold the LDL and UDL steady while

varying the density-gradient threshold in increments. As table 4.2.3-1 shows, as the

threshold is increased, this relaxation in the criteria for region membership results in the

addition of more pixels. Figures 4.2.3-2 and 4.2.3-3 demonstrate a drastic accumulation

- 57 -

of pixels when the threshold is increased from 1000 to 1100; the higher threshold was

needed to permit the addition of pixels representing the cerebrum to those of the worm of

the cerebellum, wherein the seedpoint lies. If the threshold is permitted to grow too large,

entirely different structures may be added to the region. Ultimately, region growth is

constrained by the density range limits.

- 58 -

Output filename: FIG4232.EPS GETCOORD - Bill Bell - Fall 1996

x-y-z coordinate: [179, 142, 54]
Gradient-approximation method:

Prewitt
Region-growing method:

Iterati ve
LDL: 500
UDL: 2000
Thre hold: 1000
Stack frame u ed: 395
Pixels accumulated: 1042

Figure 4.2.3-2: The Canonical Brain, Den ity Gradient Thre hold Reduced to 1000

- 60-

Output filename: FIG4233.EPS GETCOORD - Bill Bell - Fall 1996

x-y-z coordinate : [179. 142.54]
Gradient-approximation method :

Prewitt
Region-growing method:

Iteralive
LDL: 500
UDL: 2000
Thre hold: 1100
Stack frame u ed: 2280
Pixel accumulated: 7416

Figure 4.2.3-3: The Canonical Brajn, Den ity Gradient Thre hold Reduced to 1100

- 61 -

threshold recursive pixels remarks
calls accumulated (image quality, structures included)

600 105 196 eroded worm of cerebellum
700 131 259 eroded worm of cerebellum
800 274 470 eroded worm of cerebellum, some cerebrum
900 334 804 eroded worm of cerebellum, some cerebrum

1000 395 1042 complete worm of cerebellum, some cerebrum
1100 2280 7416 brain, eroded
1200 2336 7916 brain, eroded
1300 2734 8369 brain, eroded
1400 3231 8760 brain, eroded
1500 2957 9137 the canonical image
1600 3492 10561 brain, back of neck
1700 2914 10882 brain, back of neck
1800 3238 11114 brain, back of neck
1900 3441 11327 brain, back of neck
2000 3760 11824 brain, back of neck
2500 3746 12481 brain, back of neck
3000 3531 17133 brain, back of neck, frontal sinuses
4000 3599 17498 brain, back of neck, frontal sinuses, vertebrae
5000 3665 17565 brain, back of neck, frontal sinuses, vertebrae

10000 3665 18508 brain, back of neck, frontal sinuses, vertebrae, scalp
15000 3665 18508 brain, back of neck, frontal sinuses, vertebrae, scalp
20000 3665 18508 brain, back of neck, frontal sinuses, vertebrae, scalp
32767 3665 18508 end of chart

Table 4.2.3-1: Effects of Adjustments to Density Gradient Threshold

V.,IUlonl In Olnlity Grldl.nt Thr •• hold

25000

20000

) '5000

" E
" §
.II

10000 I:
'&.

5000

0 ~
5000 10000 15000 20000 25000 30000 35000

Figure 4.2.3-4: Effects of Adjustments to Density Gradient Threshold

- 62-

4.2.4 The Gradient Approximation Method

In order to compare the effectiveness of the three gradient-approximation methods used

in this study, we perform three otherwise identical segmentations on the canonical image

of the brain. Figure 4.2.4-1 demonstrates the use of the Prewitt kernel (the canonical

Brain); figure 4.2.4-2, the Sobel kernel; and figure 4.2.4-3, the SSR formula.

Observe that the image created using the Sobel method appears somewhat eroded, with

structures either incomplete (e.g. the superior sagittal sinus) or missing entirely (e.g. the

pineal body). The image created using the SSR method is, by contrast, much too

complete; it includes a great many undesired structures into the region.

In order more closely to examine and analyze the behavior of each method, a spreadsheet

program was used to create sets of test matrices (tables 4.2.4-1 to 4.2.4-5). Each matrix

set describes a 3 x 3 matrix as the values of its constituent cells gradually change (in nine

steps) to reflect a change in density from one uniform level to another. At each

increment, the density gradient is recorded for each gradient-approximation method.

Table 4.2.4-6 synopsizes the results of the previous tables in this section; figure 4.2.4-4

displays these results in graphical form.

- 63-

Output filename: FIG4241.EPS GETCOORD - Bill Bell - Fall 1996

x-y-z coordinate: [179, 142,54]
Gradient-approximatjon melhod :

Prewitt
Region-growing melhod :

Iterative
LDL: 500
UDL: 2000
Thre hold : 1500
Stack frame used : 2957
Pixels accumulated: 9137

Figure 4.2.4-1: The Canonical Brain (Prewitt Gradient Approximation)

- 64-

Output filename: FIG4242.EPS GETCOORD - Bill BelI - Fall 1996

x-y-z coordinates: [179, 142, 54]
Gradient-approximation method:

Sobel
Region-growing method :

Iterative
LDL: 500
UDL: 2000
Threshold: 1500
Stack frame u ed: 2262
Pixel accumulated: 7447

Figure 4.2.4-2: The Canonical Brain (Sobel Gradient Approximation)

- 65-

Output filename: FIG4243.EPS GETCOORD - Bill Bell - Fall 1996

x-y-z coordinate: [179, 142, 54]
Gradient-approximation method:

SSR
Region-growing method:

Iterative
LDL: 500
UDL: 2000
Thre hold: 1500
Stack frame u ed: 3665
Pixels accumulated: 17541

Figure 4.2.4-3: The Canonical Brain (Square-Sum-Root Gradient Approximation)

- 66-

number of
cells covered test matrix Prewitt Sobel SSR

1000 1000 1000
0 1000 1000 1000 0 0 0

1000 1000 1000

!li~llli! 1000 1000
1000 1000 1000 400 400 0
1000 1000 1000

1000 1000
2 1000 1000 600 800 200

1000 1000

3 800 1200 283

4 800 1200 283

5 800 1200 283

6 800 1200 283

7 600 800 200

8 400 400 o

9 o o o

Table 4.2.4-1: Gradient Test Matrix Set (1.2: 1)

- 67-

number of
cells covered test matrix Prewitt Sobel SSR

1000 1000 1000
0 1000 1000 1000 0 0 0

1000 1000 1000

'I~,II~! 1000 1000
1000 1000 1000 800 800 0
1000 1000 1000

2 1200 1600 400

3 1600 2400 566

4 1600 2400 566

5 1600 2400 566

6 1600 2400 566

7 1200 1600 400

8 800 800 o

9 o o o

Table 4.2.4-2: Gradient Test Matrix Set (1.4: 1)

- 68-

number of
cells covered test matrix Prewitt Sobel SSR

1000 1000 1000
0 1000 1000 1000 0 0 0

1000 1000 1000

11,§gi! 1000 1000
1000 1000 1000 1200 1200 0
1000 1000 1000

1000
2 1000 1800 2400 600

1000

3 2400 3600 849

4 2400 3600 849

5 2400 3600 849

6 2400 3600 849

7 1800 2400 600

8 1200 1200 o

9 o o o

Table 4.2.4-3: Gradient Test Matrix Set (1.6:1)

- 69-

number of
cells covered test matrix Prewitt Sobel SSR

1000 1000 1000
0 1000 1000 1000 0 0 0

1000 1000 1000

!~~,I~i 1 000 1000
1000 1000 1000 1600 1600 0
1000 1000 1000

2 2400 3200 800

3 3200 4800 1131

4 3200 4800 1131

5 3200 4800 1131

6 3200 4800 1131

7 2400 3200 800

8 1600 1600 o

9 o o o

Table 4.2.4-4: Gradient Test Matrix Set (1.8: 1)

-70 -

number of
cells covered test matrix Prewitt Sobel SSR

1000 1000 1000
0 1000 1000 1000 0 0 0

1000 1000 1000

.lli1 1OOO 1000
1000 1000 1000 2000 2000 0
1000 1000 1000

1000
2 1000 3000 4000 1000

1000

3 4000 6000 1414

4 4000 6000 1414

5 4000 6000 1414

6 4000 6000 1414

7 3000 4000 1000

8 2000 2000 o

9 o o o

Table 4.2.4-5: Gradient Test Matrix Set (2.0: 1)

- 71 -

Prewitt: ratio
cells covered 1.2:1 1.4:1 1.6:1 1.B:1 2.0:1

0 0 0 0 0 0
1 400 800 1200 1600 2000
2 600 1200 1BOO 2400 3000
3 BOO 1600 2400 3200 4000
4 800 1600 2400 3200 4000
5 BOO 1600 2400 3200 4000
6 BOO 1600 2400 3200 4000
7 600 1200 1BOO 2400 3000
B 400 BOO 1200 1600 2000
9 0 0 0 0 0

Sobel: ratio
cells covered 1.2:1 1.4:1 1.6:1 1.8:1 2.0:1

0 0 0 0 0 0
1 400 800 1200 1600 2000
2 BOO 1600 2400 3200 4000
3 1200 2400 3600 4800 6000
4 1200 2400 3600 4800 6000
5 1200 2400 3600 4800 6000
6 1200 2400 3600 4800 6000
7 800 1600 2400 3200 4000
8 400 800 1200 1600 2000
9 0 0 0 0 0

SSR: ratio
cells covered 1.2:1 1.4:1 1.6:1 1.8:1 2.0:1

0 0 0 0 0 0
1 0 0 0 0 0
2 200 400 600 800 1000
3 283 566 849 1131 1414
4 283 566 849 1131 1414
5 283 566 849 1131 1414
6 2B3 566 B49 1131 1414
7 200 400 600 BOO 1000
8 0 0 0 0 0
9 0 0 0 0 0

Table 4.2.4-6: Gradient Approximation Method Responses for Test Matrices

-72 -

Prewitt Response

5000~--~

4000

i 3000
:s
I!! 2000 en

7000
6000
5000

~ 4000 II :s 3000 CD .. en 2000
1000

0

1600
1400
1200

C 1000
CII
'6 800
I!! 600 en

400
200

0

0

0

2 3

2 3

2 3

4 5 6 7 8 9

cells covered

Sobel Response

4 5 6 7 8

cells covered

SSR Response

4 5 6 7 8

cells covered

9

9

-+-1.2:1
_1.4:1

1.6:1
~1.8:1

......_2.0:1

-+-1.2:1
_1.4:1

.... 1.6:1

~1.8:1

......_2.0:1

-+-1.2:1
'_1.4:1

w"A.u,··1.6:1

~1.8:1

......_2.0:1

Figure 4.2.4-4: Gradient Approximation Method Responses for Test Matrices

-73 -

We observe two fundamental differences in the curves shown in the graph: first, the range

of density gradients encountered; and second, the shapes of the curves. The range of the

curves for the Prewitt method is 0 to 4000; the range for the Sobel method is 0 to 6000;

and for the SSR method, 0 to 1414.

Whereas the absolute gradient range by itself is unimportant, it becomes significant if one

does not take it into account when assigning an appropriate gradient threshold for the

gradient-approximation method being used. For example, a threshold of 1500 was

appropriate for segmenting the canonical Brain using the Prewitt method; such a number

ensures that no undesired areas will be included into the segmented image. However, this

same number is higher than most of the gradients which are computed during SSR

segmentation, making the gradient threshold largely irrelevant. (As we shall see, the SSR

threshold should be, in this case, about a third of the Prewitt threshold in order to create a

reasonably good image.)

In a similar fashion, because the Sobel kernel magnifies the effect of an encounter with an

edge, a threshold which works for a Prewitt segmentation may not be high enough for a

Sobel segmentation in order accurately to include all parts of a desired region.

The shape of a gradient-approximation response curve may also playa part in the results

of segmentation (figure 4.2.4-4). Over a range of a given kernel's cell-coverings, the

response curves of the different methods may be compared in order to answer certain

questions: How quickly does a particular method respond to a change in density? How

-74 -

strongly does it respond? Does it display any anomalies in its response (e.g. dips or flat

spots in the graph)? How do these characteristics manifest themselves in terms of image

quality?

Tables 4.2.4-7 and 4.2.4-8, and their accompanying graphs, figures 4.2.4-5 and 4.2.4-6,

are presented for evaluation. We first normalize the graph of the gradients computed for

each method at a given starting-to-ending-density ratio (in this case, 2.0: 1). By

normalizing the numbers, we scale them to the same range of values to ensure a fairer

comparison. In this case, the SSR numbers were multiplied by a constant of 2.86 in order

to scale them to the level of the Prewitt numbers. Then, the modified SSR numbers and

the Prewitt numbers were multiplied by 1.5 in order to scale them to the level of the Sobel

numbers.

-75 -

Normalized Density Gradients
cells

covered Prewitt Sobel SSR
0 0 0 0
1 3000 2000 0
2 4500 4000 4290
3 6000 6000 6066
4 6000 6000 6066
5 6000 6000 6066
6 6000 6000 6066
7 4500 4000 4290
8 3000 2000 0
9 0 0 0

Table 4.2.4-7: Normalized Density Gradients of Gradient Test Matrix (2.0:1)

7000

6000

5000

C 4000
GI ;;
f! 3000 CJ

2000

1000

0
0

Normalized Density Gradients

2 3 4 5 6 7

Cells Covered

8 9

Ell Prewitt

• Sobel

OSSR

Figure 4.2.4-5: Normalized Density Gradients of Gradient Test Matrix (2.0: 1)

-76 -

~

~
Gi c
i!
u:::

First Derivative of Normalized Density
Gradients

cells
covered Prewitt Sobel SSR

0 0 0 0
1 3000 2000 0
2 1500 2000 4290
3 1500 2000 1776
4 0 0 0
5 0 0 0
6 0 0 0
7 -1500 -2000 -1776
8 -1500 -2000 -4290
9 -3000 -2000 0

Table 4.2.4-8: First Derivative of Normalized Densities of Gradient

5000

4000

3000

2000

1000

0

-1000

-2000

-3000

-4000

-5000
0

Test Matrix (2.0: 1)

First Derivatives of
Normalized Density Gradients

2 3 4 5 6 7

Cells Covered

8 9

Ili1I Prew itt

.Sobel
oSSR

Figure 4.2.4-6: First Derivative of Normalized Density Gradients of Gradient

Test Matrix (2.0: 1)

-77 -

Next, we look at the rate of change of gradient with respect to the number of cells

covered; in effect, the first derivative of the normalized gradients. (Note that, since the

SSR method generates no gradient for the first, second, and ninth intervals, those

intervals are not useful for evaluating this method. Also note that symmetry exists about

the fifth interval: the fourth and sixth, third and seventh, second and eighth, and first and

ninth intervals are the negatives of each other.)

After all of this effort, it seems anticlimactic to report that the differences in gradient

first-derivatives is fairly small for the three approximation methods studied. Using the

highly simplified test matrices, the three methods yield respond in an approximately equal

manner. When comparing images created using each method for the canonical seedpoints

(and adjusting the threshold accordingly), we observe that the results are not radically

different. In general, the differences are either poor or overzealous region growth, or

degraded image quality due to erosion of boundary areas.

4.2.4.1 Prewitt Gradient Approximation

The Prewitt method was used to generate the so-called canonical images displayed in

section 4.3. As such, they are used as a basis for comparison in evaluating the

effectiveness of the other gradient-approximation methods.

-78 -

4.2.4.2 Sobel Gradient Approximation

As has been noted, a threshold which works for a Prewitt segmentation may not be high

enough for a Sobel segmentation. We observe this in practice by performing canonical

segmentations using the Sobel method instead of the Prewitt, but retaining the canonical

(Prewitt) gradient threshold. When the region to be segmented is fairly small (e.g. the

corpus callosum or the pons), the difference in quality of segmentation may not be

noticeable to the eye, although the degree of segmentation is different, as measured by the

number of recursive calls made and the number of pixels accumulated into the segmented

region (see table 4.2.4.2-1 and figure 4.2.4.2-1).

As the size of the desired region increases, however, boundary erosion and poor region

growth become evident (see figure 4.2.4.2-2). The remedy is to increase the threshold by

some amount, from perhaps 20% to as much as 80% of the Prewitt threshold. Even then,

the quality of the region boundaries may leave a little to be desired.

-79 -

Sobel Sobel Prewitt
Prewitt Stack Pixels Modijied Stack Pixels Prewitt Stack Pixels Remarlts on Sobel

Structure Threshold Frames Accumulated Threshold Frames Accumulated Threshold Frames Accumulated Quality
C()l])us callosum 1000 211 310 1250 262 347 1000 257 354 as good as PreWItt
pons 800 248 613 1000 272 633 800 272 640 as good as Prewitt
worm of cerebellum 1800 217 581 2400 358 659 1800 346 663 as goc d as Prewitt
cerebrum 900 404 923 1225 963 2730 900 970 2720 oor growth
scalp 8000 464 866 15000 516 1224 8000 516 1214 oor Qrowth
superior sagittal
sinus 1400 399 1041 1900 635 1758 1400 666 1770 [poor Jjrowth
brain 1500 2262 7447 2100 2754 9117 1500 2957 9137 mediocre growth, eroded
head 10000 11775 25214 11000 13395 25281 10000 13395 25358 cranium not fully formed

Table 4.2.4.2-1: Results of Canonical Image Generation Using

Sobel Gradient Approximation

SSR SSR
Prewitt Stack Pixels Mod~ied Stack Pixels

Structure Threshold Frames Accumulated Threshold Frames Accumulated

corpus callosum 1000 377 735 250 259
pons 800 512 2448 250 297

worm of cerebellum 1800 1986 6791 575 330

cerebrum 900 1623 6681 279 800

scalp 8000 516 1224 8000' 516

superior sagittal
sinus 1400 5613 16858 414 577

brain 1500 3665 17541 465 3052
head 10000 13395 25358 10000" 13395

malClmum gradient crossing the cranium -: 1800, denSity<400 on erther Side
- probably constrained by LOL and UOL

339
646

663

2668

1224

1645

8917
25358

Prewitt
Threshold

1000
800

1800

900

8000

1400

1500
10000

Prewitt
Stack Pixels

Frames Accumulated Remari<s on SSR Qualrty
includes dense areas of

257 354 frontal lobe
272 640 includes frontal lobe

346 663 includes brain, stem, c.c.

970 2720 includes brain, stem, c.c.
almost identical to

516 1214 canonical
includes sup. sag. sinus
other intracerebral

666 1770 material
includes brain, neck, jaw,

2957 9137 face
13395 25358 Identical to canonical

Table 4.2.4.3-1: Results of Canonical Image Generation Using

SSR Gradient Approximation

- 80-

Output filename: FIG42421 .EPS GETCOORD - Bill Bell - Fall 1996

x-y-z coordinate: [181, 147, 54]
Gradient-approximation method:

Sobel
Region-growing method:

Iterative
LDL: 900
UDL: 1800
Thre hold: 1800
Stack frame u ed: 217
Pixels accumulated: 581

Figure 4.2.4.2-1: Canonical Worm of Cerebellum U ing Sobel Gradient Approximation

- 81 -

Output filename: FIG42422.EPS GETCOORD - Bill Bell - Fall 1996

x-y-z coordinates: [151, 75, 54]
Gradient-approximation method:

Sobel
Region-growing method:

Iterative
LDL: 900
UDL: 2000
Thre hold: 900
Stack frames used : 404
Pixels accumulated: 923

Figure 4.2.4.2-2: Canonical Cerebrum Using Sobel Gradient Approximation

- 82-

4.2.4.3 Square-Sum-Root Gradient Approximation

Since the gradient approximations computed by the SSR method are unifonnly much

lower than those computed by the other methods studied, it comes as no surprise that the

use of a threshold which is successful with the Prewitt method should fail miserably

(most of the time) with the SSR method. Many undesired areas are included in the

segmented region due to an excessively high threshold. The remedy is, of course, to

reduce the threshold to a more appropriate level, perhaps to a third or a fourth of the

Prewitt value. Table 4.2.4.3-1 synopsizes the stack-frame/pixel-accumulation data

recorded for the SSR trials; figures 4.2.4.3-1 and 4.2.4.3-2 show before-and-after attempts

to segment the cerebrum using the SSR method.

- 83 -

Output filename: FIG42431 .EPS GETCOORD - Bill Bell - Fall 1996

x-y-z coordinates: [151.75.541
Gradient-approximation method:

SSR
Region-growing method:

Iterative
LDL: 900
UDL: 2000
Threshold: 900
Stack frames used: 1623
Pixels accumulated: 6681

Figure 4.2.4.3-1: Canonical Cerebrum Using SSR Gradient Approximation

- 84-

Output filename: FIG42432.EPS GETCOORD - Bill Bell - Fall 1996

x-y-z coordinate : [15 I , 75, 54]
Gradient-approximation method:

SSR
Region-growing method :

Iterative
LDL: 900
UDL: 2000
Thre hold: 279
Stack frame u ed: 800
Pixel accumulated: 2668

Figure 4.2.4.3-2: Canonical Cerebrum U ing SSR Gradient Approximation
(Thre hold Adju ted)

- 85-

4.2.5 The Region-growing Method

Our primary objective in performing segmentation is to create a beautiful and infonnative

image of a structure. We must recognize also the limitations of space and time; and so

we explore different region-growing algorithms in order to determine the characteristics

of each algorithm with respect to memory usage and runtimes, as well as to its ability to

segment effectively.

4.2.5.1 4-connected and 8-connected Recursion

The program GETCOOR8 was used to generate the images displayed in this section. It is

exactly the same as the GETCOORD program, except that a compiler directive is enabled

which expands the 4-connected region-growing function (dojloodfill_recO) to an 8-

connected function. To assess the effects of 8-connected region-growing, we recreate the

canonical images with GETCOOR8 and compare the results with those created with

GETCOORD.

Compare the 8-connected image of the corpus callosum (figure 4.2.5.1-1) with its 4-

connected counterpart (figure 4.3-1). 8-connectedness causes dense areas of the frontal

lobe to be included with the corpus callosum itself. Reducing the gradient threshold to

800 from 1000 removes most of the extra frontal lobe area (figure 4.2.5.1-2). Increasing

the lower density limit to 1400 from 1200 removes the frontal lobe entirely, although the

remaining image appears somewhat eroded (figure 4.2.5.1-3).

- 86-

Figure 4.2.5.1-4 shows the drastic effect of 8-connectedness on the 4-connected canonical

image of the cerebrum (figure 4.3-4). In this case, 8-connectedness causes the corpus

callosum, pons, and oblong medulla to be included with the cerebrum. Reducing the

gradient threshold to 750 from 900 helps improve the segmentation, although at some

cost to the quality of the remaining image (figure 4.2.5.1-5); especially so, since the

gradient in the cerebrum, a highly convoluted structure, tends to be on the high side.

By contrast, the appearance of some structures does not change much with the application

of 8-connected region-growing. For example, figure 4.2.5.1-6 shows the result of 8-

connectedness on the image of the scalp. Comparing this picture to the canonical scalp in

figure 4.3-5, we see that the only addition of matter appears at the bridge of the nose. We

conjecture that the scalp is, due to the relatively high gradient surrounding it, already

well-segmented; 8-connectivity doesn't have much of an effect under these circumstances.

Similar remarks hold for the superior sagittal sinus (8-connected, figure 4.2.5.1-7;

canonical 4-connected, figure 4.3-6).

- 87-

Output filename: FIG42511.EPS GETCOOR8 - Bill Bell- Fa)) 1996

x-y-z coordinate: [120, 103,54]
Gradient-approximation method:

Prewitt
Region-growing method:

Recur ive
LDL: 1200
UDL: 2000
Thre hold: 1000
Stack frame u ed: 262
Pixels accumulated: 596

Figure 4.2.5.1-1: Corpus Callosum Using 8-connected Segmentation

- 88 -

Output filename: FIG42512.EPS GETCOOR8 - Bill Bell - Fall 1996

x-y-z coordinates: [120, 103,54]
Gradient-approximation method:

Prewitt
Region-growing method:

Recursive
LDL: 1200
UDL: 2000
Thre hold: 800
Stack frame used : 226
Pixels accumulated: 356

Figure 4.2.5.1-2: Corpus Callosum Using 8-connected Segmentation
(reduced gradient thre hold)

- 89-

Output filename: FIG42513.EPS GETCOOR8 - Bill Bell- Fall 1996

x-y-z coordinate : [120, 103, 54]
Gradient-approxjmation method:

Prewitt
Region-growing method:

Recursive
LDL: 1400
UDL: 2000
Thre hold: 1000
Stack frame u ed: 198
Pixel accumulated: 276

Figure 4.2.5.1-3: Corpu Callo urn U ing 8-connected Segmentation
(increased LDL)

- 90-

Output filename: FIG42514.EPS GETCOOR8 - Bill Bell - Fall J 996

x-y-z coordinates: [151, 75, 54]
Gradient-approximation method :

Prewitt
Region-growing method :

Recursive
LDL: 900
UDL: 2000
Thre hold: 900
Stack frame used: 1398
Pixels accumulated: 4216

Figure 4.2.5.1-4: Cerebrum Using 8-connected Segmentation

- 91 -

Output filename: FIG42515.EPS GETCOOR8 - Bill Bell- Fall 1996

x-y-z coordinates: [151, 75, 54]
Gradient-approximation method:

Prewitt
Region-growing method:

Recur ive
LDL: 900
UDL: 2000
Thre hold: 750
Stack frame u ed: J202
Pixels accumulated: 2345

Figure 4.2.5.1-5: Cerebrum Using 8-connected Segmentation
(reduced gradient threshold)

- 92-

Output filename: FIG42516.EPS GETCOOR8 - Bill Bell - Fall 1996

x-y-z coordinates: [199 55, 54]
Gradient-approximation method:

Prewitt
Region-growing method:

Recur ive
LDL: 1200
UDL: 2800
Threshold: 8000
Stack frames used: 548
Pixel accumulated: 1247

Figure 4.2.5.1-6: Scalp U ing 8-connected Segmentation

- 93 -

Output filename: FIG42517 .EPS GETCOOR8 - Bill Bell- Fall 1996

x-y-z coordinates: [200, 75, 54]
Gradient-approximation method:

Prewitt
Region-growing method:

Recursive
LDL: 100
UDL:900
Thre hold: 1400
Stack frames u ed: 704
Pixels accumulated: 2240

Figure 4.2.5.1-7: Superior Sagittal Sinu U ing 8-connected Segmentation

- 94-

In retrospect, let us observe quantitatively the results and the resource usage of the 4-

connected and 8-connected recursive region-growing algorithms. As table 4.2.5.1-1

shows, in each of four benchmark cases studied, the 8-connected algorithm has

accumulated more pixels for its image, and uses more stack frames, than the 4-connected

method. The images of the cerebrum, and, to a lesser extent, the corpus callosum, could

be considered degenerate cases; the enhanced connectedness of the 8-connected method

has caused undesired areas to be included in the segmentation. We shall have more to say

on the subject of stack limitations in section 4.2.5.4.

4-connected region-growinQ 8-connected reQion-growinQ
structure figure pixels frames figure pixels frames

corpus callosum 4.3-1 257 354 4.2.5.1-1 262 596
cerebrum 4.3-4 970 2720 4.2.5.1-4 1398 4216
scalp 4.3-5 516 1214 4.2.5.1-6 548 1247
sup. sag. sinus 4.3-6 666 1nO 4.2.5.1-7 704 2240

Table 4.2.5.1-1: Pixel Accumulation and Stack Frame Usage (4-connected vs.

8-connected Region-growing)

- 95-

4.2.5.2 4-connected Simulated Recursion

The recursive method described above needs system stack space for its recursive calls as

well as for its calls to incidental functions. As described in section 3.2.3, this iterative

version simulates recursion by maintaining its own stack for the storage of passed

arguments and return addresses. Since it requires much less memory than the purely

recursive method to generate an image with the same settings, it has the potential to be

able to perform segmentations of which the recursive method would be incapable. (See

section 4.2.5.4, Stack Limitations.)

Since the iterative method is the result of a careful conversion of a recursive method

[Tenenbaum90], it is reasonable to expect that (assuming enough stack space and

identical settings) the two methods would yield exactly the same image. This is in fact

the case for each of the canonical images used in this study (except the image of the entire

head, in which case the stack ran out of space before the image was completed). We may

verify this outcome in two ways. First, we compare the appearance of the two images.

They should, of course, look the same; also, the number of stack frames and pixels

accumulated should be equal. Compare figures 4.2.5.2-1 and 4.2.5.2-2 for an example.

Second, we may save the output as RAW format files, and compare them byte-for-byte

using an operating-system comparison utility.

- 96-

Output filename: FIG42521.EPS GETCOORD - Bill Bell- Fall 1996

x-y-z coordinates: [179, 142, 54]
Gradient-approximation method:

Prewitt
Region-growing method:

Recursive
LDL: 500
UDL: 2000
Thre hold: 1500
Stack frames used: 2957
Pixel accumulated: 9137

Figure 4.2.5.2-1: The Brain (Recursive Region-growing)

- 97-

Output filename: FIG42522.EPS GETCOORD - Bill Bell - Fall 1996

x-y-z coordinates: [179, 142, 54]
Gradient-approximation method:

Prewitt
Region-growing method:

Iterative
LDL: 500
VDL: 2000
Threshold: 1500
Stack frame u ed: 2957
Pixels accumulated: 9137

Figure 4.2.5.2-2: The Brain (Iterative, Simulated-recur ive Region-growing)

- 98-

4.2.5.3 Recursive Spanfilling

As explained in section 3.2.4, the spanfilling algorithm used in this study is much more

efficient in its use of memory than the other region-growing algorithms used, because it

does most of its work (that of adding pixels to a region) in an iterative manner, and relies

on recursion only when moving to another span. We also note that the raw images

generated with the spanfilling method are exactly the same as those generated by the

other methods (except for the image of the entire head, which the spanfill method alone

was successful in completing without running out of stack space).

- 99-

Output filename: FIG42531.EPS GETCOORD - Bill Bell - Fall 1996

x-y-z coordinates: [179, 142,54]
Gradient-approximation method:

Prewitt
Region-growing method :

Spanfill
LDL: 500
UDL: 2000
Thre hold: 1500
Stack frames u ed: 331
Pixels accumulated: 9137

Figure 4.2.5.3-1: The Brain (SpanfilI Region-growing)

- 100-

4.2.5.4 Stack Limitations

The amount of memory available to the program as stack space, and the rate at which it is

used, may be determined or limited by the operating system, the program, the compiler

used to create the program, and the amount of physical memory in the computer. The

implementation of recursive functions in general can be made more efficient by

performing incidental functions in-line instead of calling other functions, refraining from

declaring local variables, and restricting the number and size of passed arguments.

In order to determine the limits on stack space, we must "stress" the image-generating

program, that is, provide it with a set of segmentation arguments which are broad enough

to cause the stack to be filled. To this end, we attempt all-inclusive segmentation, in

which the gradient threshold is set to the maximum (32767), and the density range limits

are set to their extremes (1 and 4095). The seedpoint selected lies at the center of the

input image. We would expect, given an unlimited amount of stack space, to view the

image in its entirety. The results of this approach may be seen in figures 4.2.5.4-1,

4.2.5.4-2, and 4.2.5.4-3.

In the cases of recursion and simulated recursion, observe that, when the stack becomes

full, no further segmentation is possible, and the image cannot be completely generated.

However, the spanfill method has no problem in recreating the original image in its

entirety. Table 4.2.5.4-1 synopsizes the numbers of stack frames used and pixels

accumulated for each region-growing method for each of the canonical images. Since the

- 101 -

recursive and simulate-recursive methods failed to completely recreate the entire input

image, we regard the number of stack frames (i.e. recursive calls) used by these methods

as the maximum available to the program.

Figure Recursive Simulated Recursion Spanfill
Stack Pixels Stack Pixels Stack Pixels

Structure Frames Accumulated Frames Accumulated Frames Accumulated
corpus callosum 4.3-1 257 354 257 354 30
pons 4.3-2 272 640 272 640 29
worm of cerebellum 4.3-3 346 663 346 663 24
cerebrum 4.3-4 970 2720 970 2720 104
scalp 4.3-5 516 1214 516 1214 133
sup. sag. sinus 4.3-6 666 1770 666 1770 85
brain 4.3-7 2957 9137 2957 9137 331
head 4.3-8 3404 20096* 20000 . 47351* 129
* Incomplete Image

Table 4.2.5.4-1: Pixel Accumulation and Stack Frame Usage
for Canonical Images

The recursive method uses the system's stack segment, which, for the GETCOORD

354
640
663

2720
1214
1770
9137

65280

program, was set at 55,000 bytes. (For the QuickC compiler, storage required for near

data and the stack may not exceed 65,535 bytes. GETCOORD's near data take up the

remaining 10,000 or so bytes.) The recursive function needs stack space not only for the

many calls to itself, but also for all of the calls made to other functions which are

incidental to the recursive function's operation. Observing figure 4.2.5.4-1, it is easy to

see why it is the poorest performer in terms of memory usage for image quality gained.

The simulated-recursive method uses the system stack only for calls to incidental

functions; otherwise, it uses a stack data structure which is built into, and managed by,

the program itself; the maximum size of this structure (20,000 "stack frames" of 3 bytes

- 102-

each) is hard-coded into the program and is essentially limited by the maximum variable

size which the compiler will accommodate (65,536 bytes). Since it uses memory much

more efficiently, the image it generates (figure 4.2.5.4-2) is much more complete that the

one created by its purely recursive cousin; however, in the end, it, too, proves

unsatisfactory .

Although the spanfill method's stack maximum is theoretically dependent upon the same

factors as the 4-connected recursive method, it clearly uses the stack much less than the

other algorithms, and alone is able to completely recreate the entire input image. No

single run of the GETCOORD program using the spanfill mode has yet been thwarted by

lack of stack space; it seems likely that only the most highly perforated of input datasets

(resembling, at the pixel level, something like a checkerboard) would cause such an

outcome.

- 103 -

Output filename: FIG42541 .EPS GETCOORD - Bill Bell - Fall 1996

x-y-zcoordinate : [127, 127,54]
Gradient-approximation method:

Prewitt
Region-growing method:

Recur ive
LDL: I
UDL: 4095
Threshold: 32767
Stack frames used : 3403
Pixels accumulated: 17994

Figure 4.2.5.4-1: All-inclusive Segmentation U ing the Recur ive
Region-growing Method

- 104-

Output filename: FIG42542.EPS GETCOORD - Bill Bell - Fall 1996

x-y-z coordinates: [l27, 127, 54]
Gradient-approximation method:

Prewitt
Region-growing method :

Iterative
LDL: I
UDL: 4095
Threshold: 32767
Stack frames used: 20000
Pixels accumulated: 47351

Figure 4.2.5.4-2: All-inclusive Segmentation U ing the Simulated-recur ive
Region-growing Method

- 105-

Output filename : FIG42543.EPS GETCOORD - Bill Bell - Fall 1996

x-y-z coordinates: [127, 127, 54]
Gradient-approximation method:

Prewitt
Region-growing method:

Spanfill
LDL: 1
UDL: 4095
Thre hold: 32767
Slack frames used : 129
Pixel accumulated: 65280

Figure 4.2.5.4-3: All-inclu ive Segmentation U ing the Spanfill
Region-growing Method

- 106-

4.2.6 Image Resolution

The 3DHEAD VDS represents an array of density data whose dimensions (in voxels) are

256 x 256 x 109. The physical dimensions of the area represented are roughly 36 cm x 36

cm x 15 cm.3 It would appear that the resolution of the original dataset, roughly 7

pixels/cm (.7 pixels/mm), is relatively coarse, and may not admit of high-resolution

segmented images of very small structures. Barring the use of a higher-resolution MRI

scanning machine, some fonn of interpolation may be necessary.

4.2.7 Run Times

Before moving on to the next section, it is appropriate to say a few words about the time

required to create the two-dimensional images presented here. These images were

generated by a DOS-based program running on a 50-MHz 486 computer. In each case

except for all-inclusive segmentation, run times were less than two or three seconds. For

small structures such as the corpus callosum, the run time for image generation was

essentially nil. The run time for an all-inclusive image using recursive region-growing

finished at three seconds, although this represents the time required for the stack to fill

up; the image created is incomplete. Likewise, all-inclusive region-growing using

simulated recursion ran in 11 seconds, resulting in an incomplete image due to stack

saturation. The spanfill method needed only eight seconds to create a complete image.

3 These figures are based on a comparison of the 54th sagittal slice of the 3DHEAD
VDS with measurements of the author's own skull: from the bridge of the nose to the back
of the skull, about 23 cm; and from left temple to right temple, about 18 cm.

- 107-

4.3 Canonical Images

The notion of a "canonical" image is taken to mean "a critical standard" by which other

images may be judged or compared. To be sure, image quality is in the eye of the

beholder; the reader is invited to derive better images than those displayed here. In any

event, these images will provide a useful basis for assessing the effectiveness of different

segmenting strategies.

- 108 -

Output filename: FIG431 .EPS GETCOORD - Bill Bell - Fall 1996

x-y-z coordinates: [120, 103 54]
Gradjent-approximaLion method:

Prewitt
Region-growing method:

Recursive
LDL: 1200
UDL: 2000
Thre hold: 1000
Stack frames u ed : 257
Pixel accumulated: 354

Figure 4.3-1: Canonical Image of the Corpu CaJlo urn

- 109-

Output filename: FIG432.EPS GETCOORD - Bill Bell - Fall 1996

x-y-z coordinate: [ISS, 140,54]
Gradient-approximation method:

Prewitt
Region-growing method:

Recur ive
LDL: 1100
UDL: 1500
Thre hold: 800
Stack frame u ed: 272
Pixel accumulated: 640

Figure 4.3-2: Canonical Image of the Pon

- 110 -

Output filename: AG433.EPS GETCOORD - Bill Bell - Fall 1996

x-y-z coordinate: [lSI, 147,54]
Gradient-approximation method:

Prewitt
Region-growing method:

Recursive
LDL: 900
UDL: IS00
Threshold: 1SOO
Stack frame u ed: 346
Pixel accumulated: 663

Figure 4.3-3: Canonical Image of the Worm of Cerebellum

- III -

Output filename: FIG434.EPS GETCOORD - Bill Bell- Fall 1996

x-y-z coordinates: [151,75, 54]
Gradient-approximation method:

Prewitt
Region-growing method:

Recur ive
LDL: 900
UDL: 2000
Thre hold: 900
Stack frames u ed: 970
Pixel accumulated: 2720

Figure 4.3-4: Canonical Image of the Cerebrum

- 112 -

Output filename: FIG435.EPS GETCOORD - Bill Bell - Fall 1996

x-y-z coordinate: r 199, 55, 54]
Gradient-approximation method:

Prewitt
Region-growing method:

Recursive
LDL: 1200
UDL: 2800
Thre hold: 8000
Stack frame u ed: 516
Pixel accumulated: J 214

Figure 4.3-5: Canonical Image of the ScaJp

- 113 -

Output filename: FIG436.EPS GETCOORD - Bill Bell - Fall 1996

x-y-z coordinates: [200, 75, 54]
Gradient-approximation method :

Prewitt
Region-growing method:

Recursive
LDL: 100
UDL: 900
Threshold: 1400
Stack frame u ed: 666
Pixels accumulated: 1770

Figure 4.3-6: Canonical Image of the Superior Sagittal Sinu

- 114-

Output filename: FIG437.EPS GETCOORD - Bill Bell - Fall 1996

x.-y-z coordinate: [179,142,54]
Gradient-approximation method:

Prewitt
Region-growing method:

Iterative
LDL: 500
UDL: 2000
Thre hold: 1500
Stack frame u ed: 2957
Pix.els accumulated: 9137

Figure 4.3-7: Canonical Image of the Brain

- 115-

Output filename: FIG438.EPS GETCOORD - Bill Bell- Fall 1996

x-y-z coordinate : [127, 127, 54J
Gradient-approximation method:

Prewitt
Region-growing method:

Iterative
LDL: 200
UDL: 3000
Threshold: 10000
Stack frame u ed : 13395
Pixels accumulated: 25358

Figure 4.3-8: Canonical Image of the Head

- 116 -

CHAPTER 5

IMPLEMENTATION IN THREE DIMENSIONS

The MRI3D program was designed to perform segmentation on a volumetric data set

(VDS) of hydrogen-ion density data gathered from a magnetic-resonance imaging

scanner. Besides the VDS itself, MRI3D uses a configuration file (in ASCn format)

which tells it how to segment the data. This configuration file contains the following

information:

- seedpoint (x, y, z) coordinates

- region-growing algorithm

- lower- and upper-density limits

- gradient threshold

- gradient-approximation operator

- Z-buffer view

- Z-buffer file format and name

- VDS input and output file names

- illumination method

- Phong-shading settings

MRI3D may be set up to run in interactive mode or as part of a batch process (using the

- 117-

"-b" option); due to the amount of data to be processed, the runs of this program often

take a very long time to complete, and the ability to batch the jobs may make it more

convenient to use. If being run in interactive mode, MRI3D allows the user to perfonn

dynamic histogram-stretching in order to improve the contrast of the resulting image.

The command-line usage for MRI3D is:

MRI3D configfilename logfilename [-b]

When complete, MRI3D will have created a status log file, containing various statistics

pertaining to the run of the program, as well as any errors which may have occurred. It

will also, depending upon the wishes of the operator, have created 256-grayshade RAW,

PostScript, or Encapsulated PostScript files of the Z-buffer which was generated. The

RAW files' dimensions are 256x256 pixels and are readily convertible to other fonnats,

as well as are able to be read directly by the MIDTERM image-processing program

[BeIl94A]. The PostScript files have embedded within them all of the settings pertaining

to the run which they represent.

MRI3D, a DOS-based program, requires 16-color VGA and 640 kb of conventional

memory to run. In addition, it requires at least 1 Mb of extended memory in order to

maintain an XMS-based stack for certain region-growing algorithms; as much as 4 Mb of

XMS is optimal. Furthennore, the input VDS file used for the experiments described

here needs 14 Mb of disk space; and the spatial-occupancy enumeration method used to

store output VDS data requires an additiona114 Mb. The intense disk input/output (110)

activity which takes place during segmentation makes this a very slow and noisy

- 118 -

program; a typical run could take many hours. Therefore, a large virtual disk (32 Mb)

was created in RAM memory, which made run times tolerably short (as much as two to

three hours in some cases).

MRI3D is made up of several component files; each deals with a different aspect of the

overall program. In addition, two shareware libraries were used in the creation of

MRI3D: VSA256, a VESA video graphics library, and XMSIF, a library of extended

memory routines (see Chapter 2).

5.1 Thresholding Methods

As with GETCOORD, MRI3D allows the user to apply limits, or thresholds, to a

segmentation run with respect either to hydrogen density or to the density gradient, or to

both. The principles are the same as previously described, the only significant difference

being that, when computing density gradients, we must extend our notion of the

convolution kernel into three dimensions. In this project, we describe three types of

gradient-approximation kernels: the Six-neighbor, the Frei-Chen, and the Pseudo-Sobel

kernel. Whereas GETCOORD's approach was to compute the density gradient of a 3x3

matrix of density data in the direction of both the x- and y-axes, MRI3D's kernels

evaluate a 3x3x3 matrix of density data and approximate the wadient in the direction of

the z-axis as well. As before, these derivative operators are designed to yield a small

number in response to volumes over which the change in density is small, and a high

- 119 -

number in volumes demonstrating a large change in density (and, for our purposes,

probably a change in tissue type).

For each 3x3x3 cube of data whose center lies at (x, y, z), MRI3D stores the density data

in a 28-element array (the zeroth element is unused, for convenience). Array subscripts

are assigned to the voxels of the data cube in a consistent manner, as shown in figure

5.1.1-1.

y

Figure 5.1.1-1: 3x3x3 Data Cube: Array Subscript Assignment

- 120-

5.1.1 The Six-neighbor Kernels

The Six-neighbor method, described in [Kippenhan94], derives its name from the fact

that it assesses the values of the six voxels which are neighbors in each axial direction to

the voxel at the center of the cube. It uses the following three equations to compute the

gradient in each direction:

v =V -V x (x-I. y. z) (:x+I. y. z)

The magnitude of the gradient of the entire cube is approximated by adding the absolute

values of the three axial gradients, thus:

During segmentation, we compare the value of G at each voxel under consideration with

the gradient threshold specified in the configuration file. Figure 5.1.1-2 shows the nature

of the Six-neighbor method.

- 121 -

Figure 5.1.1-2: 6-neighbor Gradient Approximation

5.1.2 The Frei-Chen Kernels

The Frei-Chen kernels (also known as the 26-neighbor kernels) and described in

[Kippenhan94], [Zucker81], and [Russ95], take into account all 26 of the voxels which

are neighbors to the center voxel under consideration. The computations for the gradient

are not conceptually complex; for the sake of brevity, we display only the equation for the

gradient in the direction of the x-axis. We also introduce a way of computing the gradient

which deviates from the notation used in [Kippenhan94], but which is algebraically

equivalent and involves less floating-point arithmetic (always a good thing in

computing!):

Let a = sqrt(3) 13, b = sqrt(2) /2, c = 1, and

let array M[27] contain the voxeI density data, as described. Then

- 122 -

Gx = I ((a * (M[3] + M[9] + M[21] + M[27] » +

(b * (M[12] + M[18] + M[6] + M[24] » +

(c * M[15])) -

((a * (M[l] + M[7] + M[19] + M[25] » +

(b * (M[lO] + M[16] + M[4] + M[22])) +

(c * M[13])) I

In the case of each axis, we consider the sum of densities (each multiplied by a constant

which is related to the voxel's position relative to the center of the cube) of all voxels in

the plane on one side of the center voxel, and the similar sum of the plane on the opposite

side. The absolute value of the difference between these sums yields the gradient for this

axis (see figure 5.1.2-1). The sum of all three axial gradients yields the approximation of

the gradient for the entire cube.

"""

.... ::: .:::,::,.
.... : ',-.. . : .. ,

"" "H==' :::::~----

...... ~.,::::. I-:-;~"" "--.1._-1

...... '~ :: :.-. .'

Figure 5.1.2-1: Frei-Chen (26-neighbor) Gradient Approximation (x-axis)

- 123 -

5.1.3 The Pseudo-Sobel Kernels

The Pseudo-Sobel kernels are loosely based on the Sobel kernels described earlier. They

are computed in precisely the same way as the Frei-Chen kernels, except that the values

of a, b, and c are 1, 2, and 4, respectively. As with the Sobel kernels, the idea is to reduce

noise in the resulting image by doubling the center terms of the kernel.

5.2 Region-growing Methods

Most of the techniques described here for three-dimensional region-growing are simple

extensions of the previously described algorithms for two-dimensional region-growing.

We do, however, take advantage of the adjacency of voxels in the same plane and on the

same row in order to reduce the number of Read operations, therefore improving the

program's efficiency.

5.2.1 Recursive 6-connected Region-growing

The plain recursive region-growing algorithm used here is essentially the same as the one

described in Chapter 3 for use in two dimensions, except that, in addition to the four

recursive calls made for voxels to the north, south, east, and west (in the same plane), we

make calls for the voxels to the "front" (the plane which precedes this one) and to the

"back" (the plane which follows).

- 124 -

5.2.2 Recursive 26-connected Region-growing

This region-growing algorithm is an extension of the 6-connected algorithm which makes

26 recursive calls to all voxels which are neighbors of the voxel under consideration. It is

analogous to two-dimensional 8-connectedness.

5.2.3 Iteration and Simulated Recursion

In order to make it possible to make more recursive calls without running out of stack

space, we implement simulated recursion in three dimensions here as we did in two

dimensions, as described in Chapter 3. However, the need for stack space in three

dimensions is exponentially greater; we therefore employ extended memory (XMS) for

our self-maintained stack. This concept will be discussed more fully in section 5.3.1.3.

5.2.4 A Stacked Spanfill Algorithm

The 2-D spanfilling algorithm described previously obtained a seedpoint (x, y) and filled

the entire row y to the left and right so long as its pixels met the criteria of density and

gradient for membership in the segmented set. Rows above and below this seedspan were

treated similarly in subsequent recursive calls to the spanfilling function.

In order to extend this idea into three dimensions, we extract a single slice (containing

two of the three orthogonal axes) through the input VDS. This slice is called the

- 125 -

seedslice. We consider the coordinates of the rightmost voxel in each span in the

seedslice to represent a seedpoint for a slice of the input VDS which is oriented

perpendicularly to the seedslice. (These seedpoints are stored in an array in memory.)

After using the seedpoints to spanfill the perpendicular slices in which they reside, we

store the resulting segmented images in the output VDS. The values of the voxels nearest

to the observer (as measured by the value of their z-coordinates) are stored in a Z-buffer

for further image processing.

input VDS

input VDS

ttansverse
seedslice

sagittal
stacked slice

segmented
seedslice

segmented
stacked slice

Figure 5.2.4-1: The Stacked SpanfiII Algorithm Concept

list of
seedpoints

output VDS

The selection of orientation of the seedslice (and consequently of the stacked slices), in

conjunction with the ordering of the VDS data, will have an effect on the runtime of the

program. To read any slice of the VDS involves some number of Seek and Read

- 126-

operations: the Seek positions the file pointer to the correct offset into the VDS; the Read

reads data which are found at that offset. A Seek operation may involve mechanical

movement of a hard drive's read/write heads, something which takes a relatively long

time in computer terms. Whether one is interested in reading one byte or a thousand, a

Seek is always necessary; but once a Seek is performed, the amount of time required to

read a large number of bytes or a small number is of little consequence. The number of

Seeks and the number of bytes of data acquired with each Read, and the proportion of the

one to the other, directly affects the amount of time needed to completely read a slice of

data.

It would appear, then, that, in order to minimize the amount of time needed to fully

process the input VDS, one would choose to read stacked slices in an order and

orientation which both minimizes the number of Seeks and maximizes the number of

bytes read for each Seek. rwe don't care much about these considerations with respect to

the seedslice, of which there is only one.) Let us observe quantitatively the different

combinations we might consider, as in figure 5.2.4-2:

- 127 -

seedslice: stacked slices:
stacked-slice

orientation axes seeks/slice orientation axes seeks/slice slices seeks total seeks

L?' x-z 109 CJn x-y 1 109 109 218

L?' x-z 109 {J y-z 27904 256 7143424 7143533

tJ x-y 1 /~ x-z 109 256 27904 27905

tJ x-y 1 {J y·z 27904 256 7143424 7143425

cJ y-z 27904 /~ x·z 109 256 27904 55808

cJ y-z 27904 CJn x-y 1 109 109 28013

Figure 5.2.4-2: Efficiency of Stacked Spanfill Slice-Reading Order

From figure 5.2.4-2, it is evident that the best strategy is to read a transverse seedslice,

involving 109 Seeks and Reads of 256 integers each, and sagittal stacked slices, at 109

Seeks and Reads of 65,536 integers each. We take advantage of the natural storage order

of the data in the VDS to optimize processing time.

- 128 -

5.3 Data Representation and Storage Methods

5.3.1 Spatial Occupancy Enumeration Using 3-D Arrays and Disk Files

The Spatial Occupancy Enumeration (SOE) method of storing data has already been

adequately described in Chapter 3. As noted, SOE is very simple to implement; however,

it was discerned early on that the number of Seek operations involved a very long time

when working with VDS files stored on a hard disk. Therefore, it was decided to

establish a large (32 Mb) virtual disk in memory: a "RAM disk." This action alone

reduced runtimes by an order of magnitude without any change in the program's code

(and also saved a great deal of wear and tear on the hard drive!).

5.3.2 The Z-buffer

Briefly mentioned in Chapter 1, the Z-buffer is a two-dimensional array which records, at

buffer coordinates (x, y), the z-coordinate of that voxel V at (x, y, z) whose z-value is the

smallest encountered thus far during the processing of the input VDS. For example,

given two voxels VI at (x}, Yh ZI) and V 2 at (x}, YI, Z2) (both members of the segmented

region), if Zl is less than Z2, then VI is considered to be closer to the user's viewpoint than

V2• When the entire VDS has been processed, the Z-buffer holds what amounts to

altitude data for the segmented region. Its contents may be saved by MRI3D to RAW,

PostScript, and Encapsulated PostScript formats; and may also be stored in any of the

three orthogonal views (sagittal, coronal, and transverse).

- 129-

The input VDS called 3DHEAD contains 109 sagittal slices of density data (or, if you

prefer, 256 coronal or transverse slices, although those are not the natural order of

storage). Through some trickery involving manipulation of the video graphics board's

color registers, we have squeezed out 189 gray- or pseudo-grayshades with which to color

the pixels in the Z-buffer (thanks are due to Spyro Gumas, the creator of the VSA256

VESA library [see Chapter 2], for his idea). Some image-processing of the raw

grayshade data may be needed to improve the brightness and contrast of the resulting

image; to this end, a simple histogram-stretching feature is built in to pennit the user to

adjust the picture before saving it.

5.3.3 The Stack

The stack, its nature and the principles of its use, were discussed in Chapters 3 and 4.

The recurring problem with stack-dependent algorithms is the fact that they are a finite

resource, and if they are not large enough to accommodate all of the recursive calls made

during segmentation, then the picture may appear incomplete. We attempted to

circumvent the problem in section 3.2.3 by allocating and manipulating our own stack in

conventional memory (i.e. under 640 kb), thus expanding the limits of tractable

segmentations.

In three dimensions, however, the problem of insufficient stack space is much more

severe. Therefore, we take advantage of the presence of physical memory beyond the 1

Mb boundary (in fact, up to 16 Mb) by making calls to functions which allocate extended

- 130-

memory (XMS). It is in XMS space that we create and maintain our stack for use with

the same simulated-recursion approach described in section 3.2.3. For this project, the

XMSIF library of C-interface routines (see Chapter 2) was used to allocate a handle to a

block of extended memory, to write to and read from this block, and to free it when

finished.

5.4 Rendering Techniques

In the following sections, we discuss the depth-cueing and ray-tracinglPhong-illumination

methods of image rendering.

5.4.1 Depth-cueing

As mentioned in Chapter 1, depth-cueing provides a correlation between the altitude or

proximity of a voxel and its perceived brightness. In MRI3D, we must ensure when

mapping altitudes to grayshades that the correct constant of proportionality is used for the

orientation of the view that was selected. Also, if there is little difference between the

altitudes of adjacent structures (and therefore of their voxels' brightness), we may find it

desirable to exaggerate those differences through the use of histogram-stretching in order

to create a more pleasing and informative picture.

- 131 -

5.4.2 Ray-tracing and Phong Shading

The notion of ray-tracing to detennine visible surfaces has already been treated in section

1.5.2. In this section, we describe specifically how such surfaces are detennined, how the

rays are computed, and how they are illuminated.

To begin with, we have a two-dimensional Z-buffer of altitude data. We traverse this

array, row by row and column by column, and, for each pixel (at coordinates (x, y),

imagine a small triangular "patch" whose vertices are at (x, y) (A), (x+l, y) (B), and (x,

y+l) (C), as in figure 5.4.2-1).

A B

Figure 5.4.2-1: The Triangular Patch

We derive the (x, y, z) coordinates of each vertex from the row, column, and array

element contents respectively; and use this information to compute some vectors:

(I) The line from A to C creates vector X; the line from A to B, vector Y. These two

vectors describe a plane which includes all three vertices of the patch.

(2) Vectors Nand Nu, derived from the cross-product of X and Y, are normal and unit-

normal vectors of the patch, that is, vectors which are perpendicular to the patch.

- 132 -

(3) Lu is the unit vector of some point light source (whose coordinates are specified in

the configuration file).

(4) Ru is the vector of light reflected off the patch from the point light source. (The

angle between Nand L is equal to the angle between Nand R.)

(5) S, the sight vector, is the vector from the viewer's eye to the patch. (The z-

component of this vector is an arbitrarily chosen number which represents the distance

between the patch and the viewer.)

Now that all the vectors have been computed, we determine if the patch is visible to the

viewer by computing the angle between vector R (the vector of reflected light) and vector

S (the sight vector). If the angle is greater than or equal to 90 degrees, then the patch

reflects no light towards the viewer and is therefore invisible (figure 5.4.2-2).

N.Nu

A

Figure 5.4.2-2: The Normal Vector; Normal, Light, Reflected, and Sight Vectors

- 133-

If the patch is visible, then we compute the intensity of the reflected light according to the

Phong illumination model [Foley90]:

where:

~ = Ia * Ka + Cld * K<J * (Nu • Lu)) + (LI * wee) * (cosn a))

Ir = reflected light intensity
Ia = ambient light intensity (0 <= Ia <= 255)
LI = diffused light intensity (0 <= LI <= 255)
Ka = ambient light coefficient (0 < Ka < 1)
K<J = diffused light coefficient (0 < K<J < 1)
Nu = unit vector normal to an illuminated patch
Lu = unit light vector (x, y, z)
wee) = a specular-reflection constant (0 < wee) < 1)
n = a constant (» 0 for a dull surface)
cos a = the cosine of the angle between the sight vector S and the

reflection vector R

The values la, Ka, LI, K<J, wee), and n are specified in the configuration file; pleasing

values are derived experimentally (Le. through trial and error).

- 134 -

CHAPTER 6

TESTING AND RESULTS IN THREE DIMENSIONS

6.1 Canonical Images

In this chapter, we examine the results of three-dimensional segmentation using the

MRI3D program. We begin by observing some canonical images; that is, images of

certain structures in and of the head which are readily identifiable by the human eye as

discrete structures, and which also lend themselves fairly well to segmentation. We then

modify some of the settings for the manner in which region-growing, gradient-

approximation, and rendering are performed, and we compare the results.

The following images are (in the judgment of the author) reasonably satisfactory, with the

exception of those for the cerebellum (figure 6.1-3) and the cerebrum (figure 6.1-4).

These two structures were found to be rather difficult to segment in two dimensions, and,

despite exhaustive attempts, are apparently not separable in three (using the automatic

methods described in this paper). It would appear that the consistency of the tissue from

the two structures is sufficiently similar to defy automatic segmentation, and that some

form of manual intervention would be necessary.

- 135-

MRI3D - Bill Bell - Master's Thesi Project - SummerlFall 1996
===
SeedX: 120 llluminationMethod: Depth-cue
SeedY: 103 Phongla: 100.000000
SeedZ: 54 Phongld: 100.000000
RGImplementation: Iterative PhongKa: 0.800000
RGAlgorithrn: 6-neighbor PhongKd: 0.800000
LDL: 1300 PhongLx: -300.000000
UDL: 1700 PhongLy: 300.000000
Threshold: 180 PhongLz: 300.000000
ApproximationMethod: 6-neighbor PhongWTheta: 0.800000
ZBufferView: Sagittal PhongN: 48.000000
Max tacktop: 11159 Voxels accumulated: 28775
Histogram ettings: Ll=30 Ul=150 L2=20 U2=189
ZBufferFile: c:/thesi Imri3d/pix2/corpcall.[RA W,PS,EPS]
VDSInfIle: d:/3dhead. vds
VDSOutfile: d:/temp.vds
Comment : corpu callo urn

Figure 6.1-1: Corpus CalIo urn

- 136 -

MRI3D - Bill Bell- Ma ter's Thesis Project - SummerIFall1996
===
SeedX: 155 lllurrunationMethod: Depth-cue
SeedY: 140 PhongIa: 100.000000
SeedZ: 54 PhongId: 100.000000
RGImplementation: Iterative PhongKa: 0.800000
RGAlgorithm: 6-neighbor PhongKd: 0.800000
LDL: 1100 PhongLx: -300.000000
UDL: 1500 PhongLy: 300.000000
Threshold: 160 PhongLz: 300.000000
ApproximationMethod: 6-neighbor PhongWTheta: 0.800000
ZBufferView: Sagittal PhongN: 48.000000
Maxstacktop: 222 Voxels accumulated: 768
Histogram ettings: Ll=80 Ul=ll0 L2=50 U2=150
ZBufferFile: c:/thesi Imri3d1pix2/pons. [RAW ,PS ,EPS]
VDSInftle: d:/3dhead.vds
VDSOutfile: d:/temp. vd
Comments: pon

•

Figure 6.1-2: Pons

- 137 -

MRl3D - Bill Bell - Master's Thesis Project - SummerlFall 1996
===
SeedX: 181 lliuminationMethod: Depth-cue
SeedY: 147 Phongla: 100.000000
SeedZ: 54 Phongld: 100.000000
RGImplementation: Iterative PhongKa: 0.800000
RGAlgorithm: 6-neighbor PhongKd: 0.800000
LDL: 1100 PhongLx: -300.000000
UDL: 1500 PhongLy: 300.000000
Threshold: 250 PhongLz: 300.000000
ApproximationMethod: 6-neighbor PhongWTheta: 0.800000
ZBufferView: Sagittal PhongN: 48.000000
Maxstacktop: 32338 Voxels accumulated: 106861
Histogram setting: Ll=37 Ul=170 L2=20 U2=189
ZBufferFile: c:/thesis/mri3d1pix2/crbllum. [RAW ,PS,EPS]
VDSInfile: d:/3dhead.vds
VDSOutfile: d:/temp.vds
Comments: cerebellum

Figure 6.1-3: Cerebellum

- 138 -

MRI3D - Bill Bell - Ma ter' The i Project - Summer/Fall 1996
=='===============================:=======================
SeedX: 151 IlluminationMethod: Depth-cue
SeedY: 75 Phongla: 100.000000
SeedZ: 54 Phongld: 100.000000
RGImplementation: Iterative PhongKa: 0.800000
RGAlgorithm: 6-neighbor PhongKd: 0.800000
LDL: 1000 PhongLx: -300.000000
UDL: 1800 PhongLy: 300.000000
Threshold: 350 PhongLz: 300.000000
ApproximationMethod: 6-neighbor PhongWTheta: 0.800000
ZBufferView: Sagittal PhongN: 48.000000
Maxstacktop: 88191 Voxel accumulated: 164043
Histogram setting: L1=37 Ul=170 L2=37 U2=189
ZBufferFile: c:/the i Imri3d/pix2/cerebrum.[RAW,PS,EPS]
VDSInflle: d:/3dhead.vds
VDSOutfile: d:/temp.vd
Comments: cerebrum

Figure 6.] -4: Cerebrum

- 139 -

======'=================:===============================
SeedX: 151 llluminationMethod: Depth-cue
SeedY: 75 PhongIa: 100.000000
SeedZ: 54 PhongId: 100.000000
RGImplementation: Iterative PhongKa: 0.800000
RGAlgorithm: 6-neighbor PhongKd: 0.800000
LDL: 900 PhongLx: -300.000000
UDL: 2000 PhongLy: 300.000000
Threshold: 900 PhongLz: 300.000000
ApproximationMethod: 6-neighbor PhongWTheta: 0.800000
ZBufferView: Sagittal PhongN: 48.000000
Maxstacktop: 263879 Voxels accumulated: 408407
Hi togram ettings: Ll=60 Ul=175 L2=25 U2=189
ZB ufferFi Ie: c:/the i Imri3d/pix2lhrain.[RA W,PS,EPS]
VDSInfile: d:/3dhead.vds
VDSOutfile: d:/temp.vds
Comment: brain

Figure 6.1-5: Brain

- 140-

MRI3D - Bill Bell - Master' The is Project - SummerlFall 1996
=============='===
SeedX: 199 llluminationMethod: Depth-cue
SeedY: 55 Phongla: 100.000000
SeedZ: 54 Phongld: 100.000000
RGImplementation: Iterative PhongKa: 0.800000
RGAlgorithm: 6-neighbor PhongKd: 0.800000
LDL: 400 PhongLx: -300.000000
UDL: 2800 PhongLy: 300.000000
Threshold: 8000 PhongLz: 300.000000
ApproximationMethod: 6-neighbor PhongWTheta: 0.800000
ZBufferView: Sagittal PhongN: 48.000000
Maxstacktop: 1092847 Voxel accumulated: 1555035
Hi togram ettings: Ll=75 Ul=189 L2=15 U2=180
ZBufferFile: c:/the is/mri3d/pix21 calp.[RA W,PS,EPS]
VDSlnfile: d:/3dhead. vd
VDSOutflle: d:/temp.vds
Comment: calp

Figure 6.1-6: Scalp

- 141 -

MRl3D - Bill Bell - Master's Thesis Project - Summer/Fall 1996
===
SeedX: 88 llluminationMethod: Phong
SeedY: 124 Phongla: 100.000000
SeedZ: 37 Phongld: 100.000000
RGImplementation: Iterative PhongKa: 0.800000
RGAlgorithm: 6-neigbbor PhongKd: 0.800000
LDL: 50 PhongLx: -300.000000
UDL: 1500 PhongLy: 300.000000
Thre hold: 500 PhongLz: 300.000000
ApproximationMethod: 6-neighbor PhongWTheta: 0.800000
ZBufferView: Sagittal PhongN: 48.000000
Max tacktop: 1314 Voxels accumulated: 1754

ZBufferFile: c:/tbe i Irnri3d/pix2/eyel.[RA W,PS,EPS]
VDSlofile: d:/3dhead.vds
VDSOutfile: d:/temp.vds
Comment : left eye, agittal, phong, 60

Figure 6.1-7: Eye

- 142-

6.2 The Density Range and Density Gradient Threshold

As was observed during two-dimensional experimentation, the care with which the upper

and lower limits of the density range and the density gradient threshold are chosen, can

make the difference between a most informative picture and one in which no meaningful

segmentation takes place. This is no less true in three dimensions; in fact, because of the

extra dimension involved, and therefore the additional opportunities for connectedness to

occur, some structures may not be segmentable at all without some form of manual

intervention.

6.3 The Gradient Approximation Method

It can be said in general that the differences apparent in the quality of the images as a

result of changes in gradient-approximation method are relatively minor. The six-

neighbor method seems to offer the best appearance of all three, although it takes about

twice as much time to complete, and requires three to four times the stack space of the

other methods.

6.3.1 Six-neighbor Gradient Approximation

All of the canonical images were generated using the six-neighbor method of gradient

approximation. We compare the Phong-shaded version of the canonical image of the

brain (figure 6.3.1-1) to the images of the brain created using other gradient-

- 143 -

approximation methods. Note that the appearance of the surface of the brain is rather

smooth. The six-neighbor image was completed in 41.28 minutes.

- 144-

MRI3D - Bill Bell - Master' Thesi Project - SummerlFall 1996
--
SeedX: 151 UluminationMethod: Phong
SeedY: 75 Phongla: 100.000000
SeedZ: 54 Phongld: 100.000000
RGImplementation: Iterative PhongKa: 0.800000
RGAlgorithm: 6-neighbor PhongKd: 0.800000
LDL: 900 PhongLx: -300.000000
VDL: 2000 PhongLy: 300.000000
Threshold: 900 PhongLz: 300.000000
ApproximationMethod: 6-neighbor PhongWTheta: 0.800000
ZBufferView: Sagittal PhongN: 48.000000
Max tacktop: 263879 Voxels accumulated: 408407

ZBufferFile: c:/thesi Imri3d1pix2/phgbrain.[RA W,PS,EPS]
VDSInfile: d:/3dhead.vds
VDSOutfile: d:/temp.vds
Comments: brain, phong-shaded

Figure 6.3.1-1: Brain, Six-neighbor Gradient Approximation

- 145 -

6.3.2 Frei-Chen Gradient Approximation

The image created using Frei-Chen gradient approximation (figure 6.3.2-1) displays a

more eroded appearance than that of the six-neighbor method. It is also to be noted that

the Frei-Chen image took about half the time to generate (20.76 minutes) as the six-

neighbor image; and that somewhat less than half the number of voxels were accumulated

to the Frei-Chen final data set as were accumulated to the six-neighbor set.

- 146-

===
SeedX: 151
SeedY: 75
SeedZ: 54
RGImplementation: Iterative
RGAJgorithm: 6-neighbor
LDL: 900
UDL: 2000
Thre hold: 1400
ApproxirnationMethod: Frei-Chen
ZBufferView: Sagittal
Max tacktop: 82751

lliuminationMethod: Phong
PhongIa: 100.000000
PhongId: 100.000000
PhongKa: 0.800000
PhongKd: 0.800000
PhongLx: -300.000000
PhongLy: 300.000000
PhongLz: 300.000000
PhongWTheta: 0.800000
PhongN: 48.000000
Voxel accumulated: 155270

ZBufferFile: c:/the i Irnri3d1pix2/fcbrain.[RA W,PS,EPS]
VDSInfile: d:/3dhead.vds
VDSOutfile: d:/temp. vds
Comment : brain, phong- haded, frei-chen

Figure 6.3.2- 1: Brain, Frei-Chen Gradient Approximation

- 147-

6.3.3 Pseudo-Sobel Gradient Approximation

The image created using Pseudo-Sobel approximation (figure 6.3.3-1) is even more

eroded than the Frei-Chen image. The Pseudo-Sobel data set contains slightly fewer

voxels than the Frei-Chen set, and took slightly less time to complete (18.65 minutes).

- 148 -

MRI3D - Bill Bell - Master's Thesis Project - SummerlFall 1996
=======================-==============================
SeedX: 151
SeedY: 75
SeedZ: 54
RGImplementation: Iterative
RGAlgorithm: 6-neighbor
LDL: 900
UDL: 2000
Threshold: 3300
ApproximationMethod: P eudo-Sobel
ZBufferView: Sagittal
Maxstacktop: 70528

IlluminationMethod: Phong
Phongla: 100.000000
Phongld: 100.000000
PhongKa: 0.800000
PhongKd: 0.800000
PhongLx: -300.000000
PhongLy: 300.000000
PhongLz: 300.000000
PhongWTheta: 0.800000
PhongN: 48.000000
Voxel accumulated: l38546

ZBufferFile: c:/thesi Imri3d/pix2/p brain.[RA W,PS,EPS]
VDSInfile: d:/3dhead. vd
VDSOutfile: d:/temp.vds
Comment : brain, phong-shaded, pseudo-sobel

Figure 6.3.3-1: Brain, P eudo-Sobel Gradient Approximation

- 149 -

6.4 The Region-growing Implementation

If time and stack space were limitless, then the results of different region-growing

methods should be essentially the same; observe the results obtained in two dimensions

with small regions, where, regardless of whether the algorithm chosen was recursive,

simulated-recursive, or spanfilling, the results in terms of voxels accumulated were

identical (table 4.2.5.4-1). (The RAW-format files were also shown to be equivalent.) In

three dimensions, the degree to which recursion must take place is exponentially greater,

since we are dealing with a cubic volume rather than a square area. Therefore, the

requirements for stack space and runtime become significantly greater.

6.4.1 Recursion

Figure 6.4.1-1 shows the results of taking the traditional recursive approach to region-

growing in three dimensions. The settings used are for the entire brain, as in the

canonical image used in figure 6.1-5. Evidently the program ran out of stack space quite

early on, terminating in 9.06 minutes, with only 127,105 voxels accumulated (compared

to 408,407 voxels for the canonical image using its own stack in extended memory).

Whereas the simulated-recursion method was able to grow its stack to 263,879 frames

(with room, theoretically, to grow to over 3 million frames in 15 Mb of extended

memory), the recursive algorithm, using the system's stack in conventional memory, ran

out after only 1429 frames.

- 150-

==:=============
SeedX: 151
SeedY: 75
SeedZ: 54
RGImplementation: Recursive
RGAlgorithm: 6-neighbor
LDL: 900
UDL: 2000
Thre hold: 900
ApproximationMethod: 6-neighbor
ZBufferView: Sagittal
Maxstacktop: 1429

IllurninationMethod: Depth-cue
Phongla: 100.000000
Phongld: 100.000000
PhongKa: 0.800000
PhongKd: 0.800000
PhongLx: -300.000000
PhongLy: 300.000000
PhongLz: 300.000000
PhongWTheta: 0.800000
PhongN: 48.000000
Voxel accumulated: 127105

ZBufferFile: c:/thesi Imri3dipix2/recbrain.[RA W,PS,EPS]
VDSInfile: d:/3dhead. vds
VDSOutfile: d:/temp.vds
Comment: brain (true recursion)

Figure 6.4.1-1: Brain, Recursive Region-growing

- 151 -

6.4.2 Simulated Recursion

The canonical image of the brain (figure 6.1-5) uses simulated recursion as its region-

growing method. It maintains its own stack in extended memory, which, given the data

structure used for each "stack frame", permits it to "recurse" over 3 million times in 15

Mb of extended memory. The canonical brain image was generated in 41.23 minutes,

accumulating 408,407 voxels and making 263,879 simulated recursive calls.

6.4.3 6-connected and 26-connected Region-growing

All of the three-dimensional images generated previously, recursive or otherwise, used

the six-neighbor region-growing algorithm. That is to say, for each voxel under

examination for membership in the segmented region, its neighbors to the four compass

directions and to the front and back were examined with recursive calls. In the following

figure 6.4.3-1, we observe the results of examining not only each voxel' s neighbors to the

four compass directions and to the front and rear, but also at the comers and along the

edges of the cube in which it resides.

It is clear from the picture that segmentation has not been well-performed; the brain is

there, but so is a quantity of other material from the face, jaw, and neck. Interestingly, the

amount of time required to run the 26-neighbor model, 156.38 minutes, is out of

proportion to the number of voxels accumulated (552,501 voxels) and to the number of

stack frames used (394,778 frames); compared to the canonical brain's statistics, the 26-

- 152 -

neighbor model took four times as long and twice as much stack space to accumulate 25

percent more voxels. This would suggest that, even if the segmentation had been

successful, it still would have been significantly less efficient than the six-neighbor

algorithm.

- 153 -

===================================='=====================
SeedX: 151
SeedY: 75
SeedZ: 54
RGImplementation: Iterative
RGAlgorithm: 26-neighbor
LDL: 900
VDL: 2000
Thre hold: 900
ApproximationMethod: 6-neighbor
ZBufferView: Sagittal
Maxstacktop: 394778

IllurninationMethod: Depth-cue
Phongla: 100.000000
Phongld: 100.000000
PhongKa: 0.800000
PhongKd: 0.800000
PhongLx: -300.000000
PhongLy: 300.000000
PhongLz: 300.000000
PhongWTheta: 0.800000
PhongN: 48.000000
Voxel accumulated: 552501

ZBufferFile: c:/tbe i Imri3d/pix2/26brain.[RA W,PS,EPS]
VDSInfile: d:/3dhead.vd
VDSOutfile: d:/temp.vd
Comment : brain, 26-connected

Figure 6.4.3-1: Brain, 26-connected Region-growing

- 154-

6.4.4 Recursive Spanfilling

The proposed stacked-spanfill algorithm as conceived provides a significant result but

also possesses a serious drawback. When used to display the entire head (essentially

segmenting the head from the surrounding volume), it is nine times faster than the six-

neighbor (spanfilling: 15.48 minutes, and six-neighbor: 138.3 minutes), nearly equally

effective at accumulating voxels (spanfilling: 1.51 million voxels, and six-neighbor: 1.55

million voxels), much less hungry for stack frames (spanfilling: 847 frames, and six-

neighbor: over I million frames); and provides a very pleasing picture. (Figure 6.4.4-1

shows the result of the stacked-spanfill algorithm; figure 6.4.4-2, the six-neighbor

equivalent.)

On the other hand, the algorithm considers only connectivity between contiguous voxels

in the same slice; therefore, if there exists some sub-structure known to belong to a larger

super-structure we wish to image, but which is not intersected by the seedslice, then that

sub-structure will not be captured by the algorithm. For example: a transverse seedslice

of 3DHEAD (our input VDS), taken at transverse slice 55, intersects the head rather high

up, completely missing the ears. If we decide to segment the scalp (taken throughout this

paper to mean all of the skin which covers the head, down to the neck) and choose a

seedpoint accordingly, we will obtain only that part of the scalp which is intersected by

the transverse slice (and, of course, voxels which lie in the same sagittal slices). Since

the ears were not intersected by the seedslice and they do not lie in the same sagittal

slices, they are completely excluded from the segmentation.

- 155 -

Figures 6.4.4-3 and 6.4.4-4 display the result. Nevertheless, the image of the brain

reposing inside the skull is rather striking.

- 156-

======================,=================================
SeedX: 127 lllurninationMethod: Depth-cue
SeedY: 127 Phongla: 100.000000
SeedZ: 54 Phongld: 100.000000
RGIrnplementation: Iterative PhongKa: 0.800000
RGAlgorithm: tacked-span fill PhongKd: 0.800000
LDL: 400 PhongLx: -300.000000
UDL: 2800 PhongLy: 300.000000
Thre hold: 8000 PhongLz: 300.000000
ApproximationMethod: 6-neighbor PhongWTheta: 0.800000
ZBufferView: Sagittal PhongN: 48.000000
Maxstacktop: 847 Voxels accumulated: 1515956
Histogram ettings: Ll=60 Ul=189 L2=25 U2=180
ZBufferFile: c:/thesis/rnri3d/pix2/spanfil1. [RA W,PS,EPS]
VDSlnfile: d:/3dhead.vds
VDSOutfile: d:/temp. vds
Comments: entire head, stacked- panfill

Figure 6.4.4-1: Head, Stacked Spanfill Region-growing

- 157 -

--,------------------------
SeedX: 127 IlluminationMethod: Depth-cue
SeedY: 127 PhongIa: 100.000000
SeedZ: 54 PhongId: 100.000000
RGImplementation: Iterative PhongKa: 0.800000
RGAlgorithm: 6-neighbor PhongKd: 0.800000
LDL: 400 PhongLx: -300.000000
UDL: 2800 PhongLy: 300.000000
Thre hold: 8000 PhongLz: 300.000000
ApproximationMethod: 6-neighbor PhongWTheta: 0.800000
ZBufferView: Sagittal PhongN: 48.000000
Max tacktop: 1082916 Voxel accumulated: 1554910
Hi to gram ettings: L1=75 Ul=189 L2=25 U2=189
ZBufferFile: c:/the i Imri3d1pix2/allhead.[RAW,PS,EPS]
VDSInfile: d:/3dhead.vd
VDSOutfile: d:/temp.vds
Comment : entire head

Figure 6.4.4-2: Head, Six-neighbor Region-growing

- 158 -

-------------------,-------,--,--
SeedX: 199 IlluminationMethod: Depth-cue
SeedY: 55 Phongla: 100.000000
SeedZ: 54 Phongld: 100.000000
RGlmplementation: Iterative PhongKa: 0.800000
RGAJgorithm: tacked- panfill PhongKd: 0.800000
LDL: 400 PhongLx: -300.000000
UDL: 2800 PhongLy: 300.000000
Thre hold: 8000 PhongLz: 300.000000
ApproximationMethod: 6-neighbor PhongWTheta: 0.800000
ZBufferView: Sagittal PhongN: 48.000000
Maxstacktop: 486 Voxel accumulated: 1123371
Hi togram etting : Ll=90 Ul=140 L2=25 U2=150
ZBufferFile: c:/the i Imri3d1pix21 panfiI2.[RA W,PS,EPS]
VDSlnfile: d:/3dhead. vd
VDSOutfi1e: d:/temp.vd
Comment: calp, tacked- panfill

Figure 6.4.4-3: Sagittal Scalp, Stacked Spanfill Region-growing

- 159 -

===
SeedX: 199 IlluminationMethod: Depth-cue
SeedY: 55 Phongla: 100.000000
SeedZ: 54 Phongld: 100.000000
RGImplementation: Iterative PhongKa: 0.800000
RGAlgorithm: tacked- panfil} PhongKd: 0.800000
LDL: 400 PhongLx: -300.000000
UDL: 2800 PhongLy: 300.000000
Thre hold: 8000 PhongLz: 300.000000
ApproximationMethod: 6-neighbor PhongWTheta: 0.800000
ZBufferView: Coronal PhongN: 48.000000
Maxstacktop: 486 Voxels accumulated: 1123371
Hi togram settings: Ll=75 Ul=160 L2=25 U2=180
ZBufferFile: c:/the i Imri3d1pix2/spanfi13.[RA W PS,EPS]
VDSInfile: d:/3dhead. vd
VDSOutfLle: d:/temp.vd
Comment : coronal calp, tacked-spanfill

Figure 6.4.4-4: Coronal Scalp, Stacked Spanfill Region-growing

- 160-

6.5 Image Rendering and Viewpoints

As stated, MRI3D has the capability of rendering images using ray-tracing, and of

illuminating them according to the Phong formula. It can also display the rendered image

in any of the three axial orientations. Many sagittal views of the brain and head have

already been displayed; the remaining images in this chapter show the coronal and

transverse views of these structures. Observe that the voxels accumulated and stack

frames used are identical to those of their sagittal counterparts; they are, after all, simply

different views of the same segmented region.

- 161 -

MRI3D - BiJJ Bell - Master's The i Project - SummerIFall1996
--------------------------,--
SeedX: 151
SeedY: 75
SeedZ: 54
RGImplementation: Iterative
RGAlgorithm: 6-neighbor
LDL: 900
UDL: 2000
Thre hold: 900
ApproximationMethod: 6-neighbor
ZBufferView: Coronal
Maxstacktop: 263879

IlluminationMethod: Phong
PhongIa: 100.000000
PhongId: 100.000000
PhongKa: 0.800000
PhongKd: 0.800000
PhongLx: -300.000000
PhongLy: 300.000000
PhongLz: 300.000000
PhongWTheta: 0.800000
PhongN: 48 .000000
Voxels accumulated: 408407

ZBufferFile: c:/the i Imri3d/pix2/corbrain.[RA W,PS,EPS]
VDSInfile: d:/3dhead. vd
VDSOutfile: d:/temp.vd
Comments: brain, phong- haded, coronal

Figure 6.5-1: Brain, Coronal View

- 162 -

MRI3D - Bill Bell- Master's The is Project - SummerlFall 1996
=='=============
SeedX: 199
SeedY: 55
SeedZ: 54
RGIrnplementation: Iterative
RGAlgorithm: 6-neighbor
LDL: 400
UDL: 2800
Threshold: 8000
ApproximationMethod: 6-neighbor
ZBufferView: Coronal
Max tacktop: 1092847

IlluminationMethod: Phong
Phongla: 100.000000
Phongld: 100.000000
PhongKa: 0.800000
PhongKd: 0.800000
PhongLx: -300.000000
PhongLy: 300.000000
PhongLz: 300.000000
PhongWTheta: 0.800000
PhongN: 48.000000
Voxel accumulated: 1555035

ZBufferFile: c:/thesi Irnri3d/pix2/corhead.[RAW,PS,EPS]
VDSInfile: d:/3dhead. vd
VDSOutfile: d:/temp. vd
Comment : calp, coronal view

Figure 6.5-2: Head, Coronal View

- 163 -

MRI3D - Bill Bell - Ma ter' The i Project - SummerlFall 1996
===============================:=====:=====================
SeedX: 151
SeedY: 75
SeedZ: 54
RGlmplementation: Iterative
RGAlgorithm: 6-neighbor
LDL: 900
UDL: 2000
Thre hold: 900
ApproximationMethod: 6-neighbor
ZBufferView: Transver e
Max tacktop: 263879

llluminationMethod: Phong
PhongIa: 100.000000
PhongId: 100.000000
PhongKa: 0.800000
PhongKd: 0.800000
PhongLx: -300.000000
PhongLy: 300.000000
PhongLz: 300.000000
PhongWTheta: 0.800000
PhongN: 48.000000
Voxel accumulated: 408407

ZBufferFile: c:/the i Irrui3d/pix2/xv brain.[RA W,PS,EPS]
VDSInfile: d:/3dhead.vd
VDSOutfile: d:/temp.vd
Comment : brain, phong-shaded, transver e

Figure 6.5-3: Brain, Tran ver e View

- 164-

===
SeedX: 199
SeedY: 55
SeedZ: 54
RGImplementation: Iterative
RGAlgorithrn: 6-neighbor
LDL: 400
UDL: 2800
Thre hold: 8000
ApproximationMethod: 6-neighbor
ZBufferView: Transver e
Max. tacktop: 1092847

UlurninationMethod: Phong
PhongIa: 100.000000
PhongId: 100.000000
PhongKa: 0.800000
PhongKd: 0.800000
PhongLx: -300.000000
PhongLy: 300.000000
PhongLz: 300.000000
PhongWTheta: 0.800000
PhongN: 48.000000
Voxel accumulated: 1555035

ZBufferFile: c:/thesi Irnri3d/pix2/xv head.[RA W,PS,EPS]
VDSlnfile: d:/3dhead.vd
VDSOutfile: d:/temp. vds
Comment : scalp, transver e view

Figure 6.5-4: Head, Tran ver e View

- 165 -

CHAPTER 7

CONCLUSION AND FUTURE RESEARCH

As automated segmentation projects go, the GETCOORDIMRI3D pair acquits itself

fairly well. However, there is certainly room for improvement and enhancements.

Herewith, then, are some reflections on the strengths and shortcomings of this project,

and suggestions for future research.

7.1 Windows User Interface

As it stands, the means of entering configuration data into GETCOORD and MRI3D are

rather primitive. The former relies for its input upon a question-and-answer paradigm;

the latter, upon a text file of configuration data. The Microsoft Windows GUI provides

the developer with ample opportunities to create a user-interface that is easy and intuitive

to use. The presence of multiple data entry fields, scroll bars, check boxes, option

buttons, and common dialog boxes would provide a familiar environment to the

experienced Windows user.

- 166-

7.2 Changes in the Nature of the Convolution Kernels

Some convolution-based image-processing methods involve kernels larger than 3 x 3. It

might be interesting to observe the results of gradient-approximations employing, for

example, a 5 x 5 or a 7 x 7 matrix.

The gradient of a volume, as applied here, is the rate of change in density over the

volume. A rate of change may be regarded as the first derivative of the underlying data.

Just as the convolution kernel used in MRl3D computed the gradient of a volume, a

future version might look at the second derivative of the data in a volume (the first

derivative of the gradient) as a means of better differentiating adjacent tissue types.

7.3 Image-processing Enhancements

Just as the histogram of grayshades of a two-dimensional image might be stretched in

order to improve contrast, one might consider computing a histogram of gradients over a

volumetric region, and stretching it to improve tissue differentiation.

The MIDTERM image-processing program [Be1l94A] provided many different image-

processing techniques for the manipUlation of 2-D data: histogram-stretching, adaptive

histogram equalization, median filtering, customized convolution kernels, and the like.

An extension of these same ideas into three dimensions would no doubt yield fasCinating

results.

- 167 -

MRI3D was able to segment structures from a single seedpoint. However, some

structures in the body come in sets of two or more, for example, eyes, kidneys, lungs,

teeth, and bones. The ability to combine the segmented image of multiple structures

would be a valuable addition to the project.

7.4 Manual Modification of Segmentation

For all their strengths, GETCOORD and MRI3D demonstrated that automatic

segmentation algorithms often leave much to be desired. It is a time-consuming process

to narrow down the exact set of density and gradient-threshold limits which will result in

a pleasing image. We have often wished we could simply point to an area on the screen

and tell the computer, "Focus only on this area; ignore all other areas, even if your criteria

for connectedness are met." It would be useful to be able to delineate to the computer

(using a mouse or digitizer) those areas of interest. (A three-dimensional implementation

of a solution will no doubt prove particularly challenging!)

7.5 Enhancements to Stacked Spanfilling

As observed, the stacked spanfill method of region-growing can, under a few

circumstances, yield a pleasing picture in much less time than the recursive methods.

However, it often leaves out important structures which were not intersected by the single

seedslice. Future research into the efficacy of this method might center upon ways of

- 168 -

using multiple seedslices without giving up the significant improvements in runtimes

which were realized.

- 169-

REFERENCES

[Abraham88]
Abraham, R. J. et aI, Introduction to NMR Spectroscopy, John Wiley and Sons,
1988.

[Baxes94]
Baxes, Gregory A, Digital Image Processing: Principles and Applications, John
Wiley and Sons, New York, NY, 1994.

[Be1194A]
Bell, William L., Jr., "MIDTERM Image Processing Methods Program," Image
Processing class project, College of Computing Sciences and Engineering,
University of North Florida, Jacksonville, FL, 1994.

[Be1194B]
Bell, William L., Jr., "3-Dimensional MRI Segmentation and Rendering," directed
independent study project, College of Computing Sciences and Engineering,
University of North Florida, Jacksonville, FL, 1994.

[Carlbom92]
Carlbom, Ingrid, William M. Hsu, Gudrun Klinker, Richard Szeliski et aI,
"Modeling and Analysis of Empirical Data in Collaborative Environments,"
Communications of the ACM 35, 6 (June 1992), pp. 74-84.

[Chellappa85A]
Chellappa, Rama and A A Sawchuck, Digital Image Processing and Analysis:
Volume 1: Digital Image Processing, IEEE Computer Society Press, 1985.

[Chellappa85B]
Chellappa, Rama and A. A. Sawchuck, Digital Image Processing and Analysis:
Volume 2: Digital Image Analysis, IEEE Computer Society Press, 1985.

[Chen88]
Chen, Chin-Tu, Jin-Shin Chou, Wei-Chung Lin, and Charles A. Pelizzari, "Edge
and Surface Searching in Medical Images," Proceedings of SPIE - vol. 914, part
A: Medical Imaging II, Roger Schneider, ed., Society of Photo-optical
Instrumentation Engineers, 1988, pp. 594-599.

- 170-

[Dalton88]
Dalton, B. L. and G. duBoulay, "Medical Image Matching," Proceedings of SPIE-
vol. 914, part A: Medical Imaging n, Roger Schneider, ed., Society of Photo-
optical Instrumentation Engineers, 1988.

[Foley90]
Foley, James D., Andries van Dam, Steven K. Feiner, and John F. Hughes,
Computer Graphics: Principles and Practice, Addison-Wesley, Reading, MA,
1990.

[Frohse61]
Frohse, Franz, Max BrodeJ, and Leon Schlossberg, Atlas of Human Anatomy,
Barnes and Noble, New York, NY, 1961.

[Gadian95]
Gadian, David G., NMR and Its Applications to Living Systems, Oxford Science
Publications, Oxford, U.K., 1995.

[Giger96]
Giger, Maryellen L. and Charles A. Pelizzari, "Advances in Tumor Imaging,"
Scientific American 275,3 (September 1996) pp. 110-112.

[Goldman84]
Goldman, Mark R., M.D., and Gerald M. Pohost, M.D., "Nuclear Magnetic
Resonance Imaging," Pediatric Cardiac Imaging, William F. Friedman, M.D., and
Charles B. Higgins, M.D., eds., W. B. Saunders Company, Philadelphia, PA,
1984.

[Gonzalez92]
Gonzalez, Rafael C. and Richard E. Woods, Digital Image Processing, Addison-
Wesley, Reading, MA, 1992.

[Gumas93]
Gumas, Spyro et aI, Tricks of the Graphics Gurus, Sams Publishing, 1993.

[Hauser91]
Hauser, Peter, M.D., "Magnetic Resonance Imaging in Priinary Affective
Disorder," Brain Imaging in Affective Disorders, Peter Hauser, ed., American
Psychiatric Press, 1991.

[Herman88]
Herman, Gabor T., "From 2-D to 3-D Representation," Mathematics and
Computer Science in Medical Imaging, M. A. Viergever, ed., Springer-Verlag,
1988, pp. 197-220.

- 171 -

[HHS86]
u.s. Department of Health and Human Services National Institute of Health,
"Magnetic Resonance Imaging", publication #87-1135, November 1986.

[Higgins84]
Higgins, Charles B., M.D., Elias H. Botvinick, M.D., Peter Lanzer, M.D., Robert
Herfkens, M.D., et ai, "Cardiovascular Imaging with Nuclear Magnetic
Resonance," Pediatric Cardiac Imaging, William F. Friedman, M.D., and Charles
B. Higgins, M.D., eds., W. B. Saunders Company, Philadelphia, PA, 1984.

[Hahne88]
Hahne, Karl-Heinz, Michael Bomans, Ulf Tiede, and Martin Reimer, "Display of
Multiple 3-D Objects Using the Generalized Voxel-Model," Proceedings of SPIE
- vol. 914, part B: Medical Imaging II, Roger Schneider, ed., Society of Photo-
optical Instrumentation Engineers, 1988, pp. 850-854.

[Holzgang92]
Holzgang, David A., Understanding PostScript, Sybex, San Francisco, CA, 1992.

[Kapouleas88]
Kapouleas, Ioannis and Casimir A. Kulikowski, "A Model-Based System for the
Interpretation ofMR Human Brain Scans," Proceedings of SPIE - vol. 914, part
A: Medical Imaging II, Roger Schneider, ed., Society of Photo-optical
Instrumentation Engineers, 1988, pp. 429-437.

[Kippenhan94]
Kippenhan, Shane and Matt Schneble, "Design of Enhancements to MEDx
Surface-Shade and Ray-Trace Modules", Sensor Systems, Inc., May 24, 1994 (via
FTPto alw.nih.gov:/pubIMRIPS).

[Kleppner92]
Kleppner, Daniel, "MRI for the Third World," Physics Today, 45, 3 (March
1992), p. 9.

[Koenig88]
Koenig, H. A. and G. Laub, "Tissue Discrimination in Magnetic Resonance 3D
Datasets," Proceedings of SPIE - vol. 914, part A: Medical Imaging II, Roger
Schneider, ed., Society of Photo-optical Instrumentation Engineers, 1988, pp. 669-
672.

[Korsh88]
Korsh, James F. and Leonard J. Garrett, Data Structures, Algorithms, and Program
Style Using C, PWS-Kent, Boston, MA, 1988.

- 172 -

[Levoy88]
Levoy, Marc, "Direct Visualization of Surfaces from Computed Tomography
Data," Proceedings of SPIE - vol. 914, part B: Medical Imaging n, Roger
Schneider, ed., Society of Photo-optical Instrumentation Engineers, 1988.

[Lindley91]
Lindley, Craig A., Practical Image Processing in C, Wiley and Sons, 1991.

[Lorenson87]
Lorenson, W. E. and Harvey E. Cline, "Marching Cubes: A High Resolution 3D
Surface Construction Algorithm," Computer Graphics 21, 4 (July 1987), pp. 163-
169.

[Mahoney96]
Mahoney, Diana Phillips, "The Art and Science of Medical Visualization,"
Computer Graphics World 19, 7 (July 1996), pp. 25-32.

[PateI96]
Patel, Vikas V., Michael W. Vannier, Jefferey L. Marsh, and Lun-Jou Lo,
"Assessing Craniofacial Surgical Simulation," IEEE Computer Graphics and
Applications 16, 1 (January 1996).

[pavlidis82]

[Qu96]

Pavlidis, Theo, Algorithms for Graphics and Image Processing, Computer Science
Press, Rockville, MD, 1982.

Qu, Xiaoqing and Xiaobo Li, "A 3D Surface Tracking Algorithm," Computer
Vision and Image Understanding 64, 1 (July 1996).

[Raichle94]
Raichle, Marcus E., "Visualizing the Mind," Scientific American 270, 4 (April
1994), pp. 58-64.

[Ranjan94]
Ranjan, Vishwa and Alain Fournier, "Volume Models for Volumetric Data," IEEE
Computer, July 1994.

[Rosenfeld76]
Rosenfeld, Azriel and A vinash C. Kak, Digital Picture Processing, Academic
Press, New York, NY, 1976.

[Russ95]
Russ, John c., The Image Processing Handbook, CRC Press, Boca Raton, FL,
1995.

- 173 -

[Samtaney94]
Samtaney, Ravi, Deborah Silver, Norman Zabusky, and Jim Cao, "Visualizing
Features and Tracking their Evolution," IEEE Computer 27, 7 (July 1994), pp. 20-
27.

[Schalkoff89]
Schalkoff, Robert J., Digital Image Processing and Computer Vision, John Wiley
and Sons, New York City, NY, 1989.

[Schneider95A]
Schneider, David, "MRI Goes Back to the Future," Scientific American 272, 3
(March 1995), p. 42.

[Schneider95B]
Schneider, David, "Changing the Image," Scientific American 272, 4 (April
1995), p. 42.

[Schwarzschild95]
Schwarzschild, Bertram, "Inhaling Hyperpolarized Noble Gas Helps Magnetic
Resonance Imaging of Lungs," Physics Today, 48,6 (June 1995), p. 17.

[Sims96]
Sims, David, "Putting the Visible Human to Work," IEEE Computer Graphics
and Applications 16, 1 (January 1996).

[Tenenbaum90]
Tenenbaum, Aaron M., Yedidyah Langsam, and Moshe J. Augenstein, Data
Structures Using C, Prentice-Hall, Englewood Cliffs, NJ, 1990.

[Tiede96]
Tiede, Ulf, Thomas Schiemann, and Karl Heinz Hohne, "Visualizing the Visible
Human," IEEE Computer Graphics and Applications 16, 1 (January 1996).

[Udupa82]
Udupa, Jayaram K., Sargur N. Srihari, and Gabor T. Herman, "Boundary
Detection in Multidimensions," IEEE Transactions on Pattern Analysis and
Machine Intelligence PAMI-4, 1 (January 1982), pp. 41-50.

[Wang96]
Wang, Stephen T. c., Robert C. Knowlton, Randy A. Hawkins, and Kenneth D.
Laxer, "Multimodal Image Fusion for Noninvasive Epilepsy Surgery Planning,"
IEEE Computer Graphics and Applications 16, 1 (January 1996).

[Yam96]
Yam, Philip, "Magnet on the Brain," Scientific American 275, 2 (August 1996), p.
32.

- 174-

[YHi-Jaaski88]
Yla-Jaaski, 1. and O. Kiibler, "Supporting Diagnosis and Surgical Planning by
Analysis and 3-D Display of Volume Images," Image Analysis and Processing II,
V. Cantoni, ed., Plenum Press, 1988, pp. 511-518.

[Zucker81]
Zucker, Steven W. and Robert A. Hummel, "A Three-Dimensional Edge
Operator," IEEE Transactions on Pattern Analysis and Machine Intelligence
PAMI-3, 3 (May 1981), pp. 324-331.

Acknowledgment

The 3DHEAD volumetric dataset used for this project was created with the Siemens
Magnetom and was provided courtesy of Siemens Medical Systems, Inc., Iselin, NJ.

The 3DHEAD volumetric data set was made available through the kind permission of the
Department of Computer Science at the University of North Carolina at Chapel Hill (see
Appendix A).

- 175 -

APPENDIX A

AVAILABILITY OF 3-D MRI DATA FROM UNC/CHAPEL HILL
(ANNOUNCE.3DH)

Announcing the Chapel Hill Volume Rendering Test Dataset, Volume I

SoftLab Software Systems Laboratory
University of North Carolina
Department of Computer Science
Chapel Hill, NC 27599-3175

The Chapel Hill Volume Rendering Test Dataset, Volume I is a collection of seven
datasets comprised of the following.

Announcement - Product announcement (This document).

Installation Instructions - Electronic copy of the installation
instructions (CH01) included in the distribution packet.

Head data - A 109-slice dataset of a human head. Complete
slices are stored consecutively as a 256 x 256 array. Pixels consist of 2 consecutive bytes
making one binary integer. Data taken on the Siemens Magnetom and provided courtesy
of Siemens Medical Systems, Inc., Iselin, NJ.

Head data information article - An ASCII file containing acknowledgments for the head
data files.

Knee data - A 127-slice dataset of a human knee. Complete
slices are stored consecutively as a 256 x 256 array. Pixels consist of 2 consecutive bytes
making one binary integer. Data taken on the Siemens Magnetom and provided courtesy
of Siemens Medical Systems, Inc., Iselin, NJ.

Knee data information article - An ASCII file containing acknowledgments for the knee
data files.

HIPIP data - The result of a quantum mechanical calculation of a SOD data of a
one-electron orbital of HIPIP, an iron protein. This is an ASCII dataset. Provided
courtesy of Louis Noodleman and David Case, Scripps Clinic, La Jolla, CA.

HIPIP information article - An ASCII file containing information about the HIPIP data.

- 176 -

SOD data - An electron density map of the active site of
SOD (superoxide dismutase). This is an ASCII dataset. Provided courtesy of Duncan
McRee, Scripps Clinic, La Jolla, CA.

SOD histogram - An ASCII histogram of the SOD dataset. This
is described in the previous file.

SOD information article - An ASCII file containing information
about the SOD dataset.

This dataset can be purchased for a nominal charge of $50.00.
The distribution is available in two different formats. The files on the tape will be written
from a DEC V AX computer using the UNIX file copy command "dd" or the UNIX "tar"
command. Total block size is 8192 bytes written at 1600 bpi on either a standard 1/2"
magnetic tape or a cartridge tape. Please specify your preference when ordering and note
that "dd" is not available with the cartridge tape. Installation instructions also accompany
the distribution.

For customers interested in Volume I, both Volume I and Volume II can be purchased as
a set for $90.00, a saving of $10.00 over ordering these separately. Please remember to
be specific as to what you may need.

To obtain these datasets, please contact:

Pamela M. Payne
Mail:SoftLab Coordinator
SoftLab Software Systems Laboratory
University of North Carolina
Department of Computer Science
CB# 3175, 351 Sitterson Hall
Chapel Hill, 27599-3175
Phone:(919) 962-1775
Electronic Mail:softlab@cs.unc.edu

- 177 -

APPENDIXB

THE GRADIENT

The gradient V of a function F at a point (x, y) is the vector

which points in the direction of the maximum rate of change of Fat (x,y) [Gonzalez92].
The vector itself is

and the magnitude of the vector is

- 178 -

APPENDIXC

WORLD-WIDE WEB SITES

The following list of World-Wide Web (WWW) sites features information relevant to the
fields of medical informatics, visualization, NMR and MRI. The Uniform Resource
Locator (URL) for each site is followed by a brief description of its contents.

www.nlm.nih.gov
National Library of Medicine, National Institute of Health; the Visible Human
Project; 3-D representation of cryosections of the male and female human bodies.

www.scp.caltech.edu/-mep/ivb.html
Interactive Volume Browser of data from the Visible Human Project.

www.voxel.com
Voxel System; holographic 3-D views of CT and MR data.

imacx. wustl.edu
Mallinckrodt Institute of Technology; MIR Image Processing Lab; surgical
simulation and planning; 3-D image CT and MR data available via FTP.

www.xray.ufl.edul-rbaIUrnritutor.html
University of Florida; downloadable computerized MRI tutorial.

www.cs.unc.edu/Research/graphics
University of North Carolina at Chapel Hill; various projects involving computer
graphics, visualization, rendering, and ultrasound.

rnri.med. yale.edu
Yale University Medical School; NMR Research Group.

- 179 -

www.crd.ge.com/esl/cgsp/projects/medical
General Electric; 3-D medical image reconstruction; MPEG animations.

poseidon.csd.auth.gr:80
Aristotle University of Thessaloniki; Department of Informatics; 3-D object
reconstruction from projections; applications in dentistry.

www.nas.nasa.govIRNRlVisualizationiannotatedURLs.html
National Aeronautics and Space Administration; list of URLs for sites relating to
scientific visualization.

- 180-

VITA

William L. (Bill) Bell, Jr. has a Bachelor of Arts degree from the University of the State

of New York Regents College in Political Science, 1985 and expects to receive a Master

of Science in Computer and Information Sciences from the University of North Florida,

December, 1996. Dr. Yap Siong Chua is serving as Bill's thesis adviser. Bill has been

employed for the last year at Ploof Truck Lines, Inc., as a computer/network/training

specialist. He also serves as an adjunct instructor at the University of North Florida,

teaching computer architecture and Visual Basic programming. For the previous seven

years, Bill worked at Jacksonville University in Jacksonville, Florida, serving as its

Director of Microcomputing Services and as an adjunct instructor.

Bill is interested in all aspects of computer graphics, particularly biomedical applications

and fractal imagery. As a student, he has presented several scholarly papers on fractal

graphics and mathematics at meetings of the Florida chapter of the Mathematical

Association of America. (Inspired by his recent employment in the transportation

industry, he has also written a short analysis of certain optimization techniques used to

match available semi-trailers with available loads.)

Bill programs mostly in C and Visual Basic these days, and has worked in BASIC,

Pascal, and Lisp. He is an avid fisherman and also enjoys studying and speaking human

languages, particularly French, German, Russian, Spanish, and a little English. Bill has

- 181 -

been married to the former Kathi Lee for 10 years and has one son, Jim, age 20. Those

wishing to contact Bill may reach him via electronic mail at:

wbell1@osprey.unf.edu

or can visit his homepage on the World-Wide Web at:

http://www.unf.edu/-wbell1Iindex.html

- 182-

	UNF Digital Commons
	1996

	Three-Dimensional Segmentation and Visualization of Magnetic Resonance Imaging Data
	William L. Bell Jr.
	Suggested Citation

	Title Page

	Contents

	Tables

	Figures

	Abstract

	Chapter 1: Introduction

	1.1 Nuclear Magnetic Resonance and Magnetic Resonance Imaging

	1.2 Visualization

	1.3 Computed Tomography

	1.4 Segmentation

	1.4.1 Region-growing

	1.4.2 Thresholding

	1.4.3 Gradient Approximation and Edge Detection

	1.5 Surface Rendering

	1.5.1 Depth-cueing

	1.5.2 Ray-tracing

	1.5.3 Lighting and Shading Techniques

	1.6 Storage Considerations

	Chapter 2: Ancillary Software Tools and Libraries

	2.1 ANYSLICE

	2.2 SLICE2IP

	2.3 ROTATE

	2.4 ANYVIEW

	2.5 XMSIF

	2.6 VSA256

	Chapter 3: Implementation in Two Dimensions

	3.1 Thresholding Methods

	3.1.1 Density-range Thresholding

	3.1.2 Gradient-approximation Kernels

	3.1.2.1 The Prewitt Kernels

	3.1.2.2 The Sobel Kernels

	3.1.2.3 The Square-Sum-Root Method

	3.2 Region-growing Methods

	3.2.1 Recursive 4-connected Region-growing

	3.2.2 Recursice 8-connected Region-growing

	3.2.3 Iteration and Simulated Recursion;Stack Self-management

	3.2.4 A Spanfill Algorithm

	3.3 Data Representation and Storage Methods

	3.3.1 Data Structures

	3.3.1.1 Spatial Occupancy Enumeration Using 2-D Arrays

	3.3.1.2 Linked Lists and Trees

	3.3.2 File Formats

	3.3.2.1 RAW Format

	3.3.2.2 Encapsulated PostScript Format

	3.4 Image Presentation

	3.4.1 Histogram Stretching

	3.4.2 Color Quantization

	Chapter 4: Testing and Results in Two Dimensions

	4.1 Benchmark Seedpoints

	4.2 Factors Affecting Segmentation Results

	4.2.1 The Seedpoint

	4.2.2 The Density Range

	4.2.3 The Gradient Threshold

	4.2.4 The Gradient Approximation Method

	4.2.4.1 Prewitt Gradient Approximation

	4.2.4.2 Sobel Gradient Approximation

	4.2.4.3 Square-Sum-Root Gradient Approximation

	4.2.5 The Region-growing Method
	4.2.5.1 4-connected and 8-connected Recursion

	4.2.5.2 4-connected Simulated Recursion

	4.2.5.3 Recursive Spanfilling

	4.2.5.4 Stack Limitations

	4.2.6 Image Resolution

	4.2.7 Run Times

	4.3 Canonical Images

	Chapter 5: Implementation in Three Dimensions

	5.1 Thresholding Methods

	5.1.1 The Six-neighbor Kernels

	5.1.2 The Frei-Chen Kernels

	5.1.3 The Pseudo-Sobel Kernels

	5.2 Region-growing Methods

	5.2.1 Recursive 6-connected Region-growing

	5.2.2 Recursive 26-connected Tegion-growing

	5.2.3 Iteration and Simulated Recursion

	5.2.4 A Stack Spanfill Algorithm

	5.3 Data Representation and Storage Methods

	5.3.1 Spatial Occupancy Enumeration Using 3-D Arrays and Disk Files

	5.3.2 The Z-buffer

	5.3.3 The Stack

	5.4 Rendering Techniques

	5.4.1 Depth-cueing

	5.4.2 Ray-tracing and Phong Shading

	Chapter 6: Testing and Results in Three Dimension

	6.1 Canonical Images

	6.2 The Density Range and Density Gradient Threshold

	6.3 The Gradient Approximation Method

	6.3.1 Six-neighbor Gradient Approximation

	6.3.2 Frei-Chen Gradient Approximation

	6.3.3 Pseudo-Sobel Gradient Approximation

	6.4 The Region-growing Implementation

	6.4.1 Recursion

	6.4.2 Simulated Recursion

	6.4.3 6-connected and 26-connected Region-growing

	6.4.4 Recursive Spanfilling

	6.5. Image Rendering and Viewpoints

	Chapter 7: Conclusion and Future Research

	7.1 Windows User Interface

	7.2 Changes in the Nature of the Convolution Kernels

	7.3 Image-processing Enhancements

	7.4 Manual Modification of Segmentation

	7.5 Enhancements to Stacked Spanfilling

	References

	Appendix A

	Appendix B

	Appendix C

