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ABSTRACT 

In this paper, we present and implement a method to assess the mathematical 

synergy of two-drug combinations based on a stochastic model. The drugs in question are 

two isomers that are applied to the human eye via a liquid eye drop. Techniques applied 

to the data in this paper can be applied to other two-drug combination studies. 

We derive the mean and the variance terms of the drug combination "effects" in 

closed form using Ito's method of stochastic differential equations. The model fit of the 

data to the individual subject is examined by both statistical and graphical methods. Two 

estimation methods in SAS, PROC NUN and PROC NLMIXED, are used to estimate 

model parameters. We perform simulation and power studies using R software to show 

the strengths of the proposed approach in estimating the model parameters. 

From this research, we find that the combination of drugs under study is 

synergistic in nature. We also confirm that the proposed stochastic model is appropriate. 
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1. INTRODUCTION 

Combining drugs in biological systems is a common practice, and the effect can 

be one of three types: additive, synergistic, or antagonistic. These three terms refer to the 

response generated by using drugs in combination. Additivity means that using the drugs 

in combination is equivalent to using them separately; synergy means that the response is 

amplified; and antagonism means that the response is inhibited. 

Mathematical modeling is often used to describe the relationship of two drugs. 

One such model, referred to as the most suitable, is the Loewe additivity model under the 

assumption of no interactions in the model (Straetemans et aI, 2005). This model refers to 

a combination of two concentrations of drug A and drug B being additive (as defined 

above) and the total response is equivalent to an interaction effect. Feng and Kelly (2004) 

have established an extension of a model-free test for synergy in multiple drug 

combinations. This test can detect if synergy is present for a particular combination of 

two drugs using a nonparametric hypothesis test. 

Sen and Bell (2006) used additive models generated from stochastic differential 

equations for combinations of two anesthetic agents. In classical statistics, interaction is 

always defined by a mUltiplication. However, Sen and Bell suggest that interaction in a 

biological model can actually be defined linearly. They successfully modeled the 



absorption of two chemicals - morphine and midozolam - in a two-drug combination 

experiment. A simplified depiction of the compartmental modeling technique they used is 

shown in Figure #1 below. 

absorption ------~, ____ B_O_d_Y __ ...JI----. _ ~ elimination 

\ Measurements are taken 
here, from the blood stream. 

Figure # 1. Diagram depicting the flow of drugs through the human body. 

Their findings suggest that their particular combination of morphine and 

midozolam can be defined linearly; and in fact, it can be defined as an antagonistic 

relationship. It is important to not that this type of stochastic modeling is a new technique 

that has not previously been applied to drug combination experiments. 

Dr. Thomas Bradstreet performed an experiment in 1992 to determine if there was 

a difference in the time it took two isomers to absorb into the human body. Isomers are 

chemical compounds that are essentially the same, but are rotated in a way that causes 

them to behave differently in chemical reactions. When the rotation causes them to look 

like mirror images of each other, they are referred to as chiral or stereo isomers. Since the 

experiment was performed so long ago, there weren't many details surrounding the 

results. All we were given was the procedure and the final data set. 

Our original intent was to apply the Sen and Bell model to a new two-drug 

combination experiment. Since Sen and Bell use a linear approach to modeling, we can 
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also apply the concepts of synergy testing to this data set. Ifwe use the Feng and Kelly 

method of synergy testing, we will be able to prove if synergy is present. This means that 

we will be able to detect an amplified effect. From the Sen and Bell model, this can be 

detected by a resulting positive linear model of the drug "effects." 

It is also important to note that in the Bradstreet data, the only outcomes we are 

given are the total concentrations of the isomers. In the morphine and midozolam data 

set, the actual "effects" of the drugs are given in the resulting data set. In the Sen and Bell 

paper, they are able to make assumptions about the biological outcomes of the 

experiment. However, in the Bradstreet analysis, we can only model the concentrations 

and prove a mathematical synergy. While this will not prove anything about the "effect" 

of the two isomers, it is useful for studying their behavior in the human body. 

To summarize, we use the Sen and Bell approach for developing the model for 

data involving two chemicals (more specifically, two chiral isomers) applied in 

combination to a single subject. We then propose the necessary and sufficient conditions 

to validate the Feng and Kelly test, showing the additive nature of a particular drug 

combination. It is a biological synergy test, meaning that the data they intended for this 

type of test has some measure of the "effect" of the drugs used. However, we will use the 

idea behind the synergy test to justify the use of the Sen and Bell stochastic model in 

drug combination experiments. That is, using the methods behind the synergy test, we 

justify the linear model. And extension of this paper would be to apply these techniques 

to a two-drug combination experiment where the drug "effects" are measured, and 

synergy is suspected. 

3 



We develop the model in section 2. The dataset is described in section 3, followed 

by the description of the synergy test and the statistical methodologies. We present results 

in section 6 and a simulation study comparison in section 7. In Section 8, we provide the 

discussion of the findings. 

4 



2. DEVELOPING THE MODEL 

We start with the model presented in the paper by Sen and Bell (2006), 

(1) 

where: 

XI ==the concentration, 

a == the rate of elimination, 

v == the initial concentration of the chemical, 

f3 == the rate of absorption, 

and 

K == the coefficient associated with 

w == a Wiener process. 

p a Body 

\ Measurements are taken 
here, from the blood stream. 

Figure # 2. Diagram depicting the flow of drugs through the human body. 
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We assume that the initial concentration x(O) is zero and that a, f3, and K are 

constants. The drugs of interest, referred to from now on as isomers, are assumed to 

follow diffusion processes x and x with the same underlying Wiener process w. 
1 2 

First, we will develop the model for the concentration of a single isomer. Solving 

equation (1), we have: 

I 

XI = f((ve-PI - axl)dt + Kdw). 
o 

Now, given that Jl.1 = E(xl ) and equation (2), we can rewrite this as 

and finally, 

I 

JlI = f(ve-PI -aJlI)dt+O. 
o 

Next, we will solve for Jl.1 in a closed form. 

(2) 

(3) 
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To develop the variance, we must use techniques from Ito's calculus (Gard, 

1988). Let ~ = E(x; ). By Ito, dwdw = dt, dtdt = dwdt = dtdw = 0 , and 

(4) 

Thus, using equation (1) and (4) we have the following: 

Since the functions within the expectations are both continuous, we have: 

Since ~(O) = 0, this is evaluated as: 

re2al= 2v
2 

(e(2a-2 P)I_l) 
I 2(a _ fJ)2 

222 
V (e(a-p)1 -1)+ ~ (e 2at -1) 

(a - fJ)2 2a 

222 2 
r = __ V __ (e-2P1 _ e-2at ) v (e(-a-p)1 _ e-2at )+ _K_(I_ e-2at ) 

I (a _ fJ)2 (a - fJ)2 2a 

2 2 
V {-2pl 2 (-a-p)1 -2at) K (1 -2at) r = \e - e + e + - - e 

I ~-m2 k 
(5) 
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Using the variance formula V(xt ) = E(x;) - (E(xJ) 2 and equations (4) and (5), 

we have: 

2 
V {-2[3t 2 (-a-[3)t -2at) ---\e - e -e 

(a - f3)2 

(6) 

We use the linear combination 

(7) 

to represent the total response produced by using the two isomers in combination. 

Starting with equation (7), it follows immediately that the mean is 

(8) 

Now, let ct = E(x} X2). We will use the variance formula 

(9) 

and covariance formula 

(10) 

to solve for the variance of the combination described in equation (7) in closed form. 

By Ito, 

(11) 

Thus, using equation (1) we have the following: 
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Substituting the above result into equation (10) yields the covariance defined in the 

equation below. 

K]K2 (l_e-(a1+P2 )t) 
a] +a2 

Finally, substituting into the variance formula described in equation (9), we have: 

(12) 
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Using the mean and variance in equations (8) and (13), the full model used for 

programming is defined as (Sen and Bell, 2006): 

L = E(x) 
- ~V(x) 

(14) 

In equations (8) and (13), VI and v2 are initial amounts, a l and a 2 are the rates 

of eliminations, /31 and /32 are the rates of absorptions for the two isomers, K I and K 2 

represent the variability coefficients within each process, and CI and C2 are two constants 

as used in equation (2). In this paper, we refer to a's and j3 's as the main parameters for 

the model, K 's as the variance parameters, and C 's as the synergy parameters. 
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3. DESCRIPTION OF DATA 

This study focuses on the concentrations of two chiral stereo isomers, Sand R, in 

the human bloodstream. Isomers are essentially identical chemical substances that differ 

only in their stereochemistry. That is, the elemental make-up of the substances is exactly 

the same, but the 3-dimensional positioning is different. Specifically for Sand R 

isomerism, certain components of the compound are arranged in a different circular 

pattern about the center. S isomers indicate "left-hand" arrangements while R isomers 

indicate "right-hand" arrangements. These differences are often compared to mirror 

images or the direction of spokes on a wheel (McMurry, 1988). 

When the experiment begins, a blood sample is taken from each of seven 

volunteers (referred to as subjects) at the same location on the body. It is determined that 

the isomers are not present in any of the initial blood samples. That is, the concentration 

at time zero is 0 ng/mL (Bradstreet, 1992). A mixture containing equal parts of both 

isomers is applied via eye drops to the subjects at a rate of one drop per minute for three 

minutes. At the five minute time mark and eleven intervals thereafter, blood samples are 

taken from each subject and the concentration (in ng/mL) is recorded. We define the 

response of the single dose (either R or S) by the concentration amount of the isomer over 
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eleven time points. We also define the response of the combination dose by using the sum 

of the Sand R concentrations over the corresponding eleven time points. 

Table # 1. Original Data Set (Bradstreet, 1992). 

CC®rn~rnlirnnlifu:)[n~ «rn[gf[i]]O» ®IT ~ EDrncQJ lIS=lk®r:w@U'i>l 

lRflDrn[!J~ IPcmli=~tlrn[B 
~[!J[Q)~~ ilm[i]]@[j' 

0 5 10 15 30 45 60 90 120 240 360 480 

S 0 9 18 26 33 39 46 52 37 54 61 66 
1 

R 0 9 18 12 26 28 31 24 33 29 23 17 

S 0 22 47 78 104 142 167 160 173 173 210 186 
2 

R 0 26 49 69 100 101 113 126 98 75 57 40 

S 0 23 29 49 57 69 85 85 107 148 159 174 
3 

R 0 15 25 39 55 66 71 69 56 64 59 60 

S 0 14 35 44 97 108 160 134 146 169 161 150 
4 

R 0 24 58 85 99 102 109 103 99 74 47 36 

S 0 25 38 52 77 86 86 96 131 134 141 144 
5 

R 0 14 31 46 56 56 52 52 64 50 32 21 

S 0 41 73 75 112 64 145 148 182 183 224 188 
6 

R 0 38 65 73 76 105 99 105 95 53 38 30 

S 0 27 37 42 61 86 110 148 140 205 205 202 
7 

R 0 31 48 67 98 99 112 125 98 73 57 39 
--
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4. A STUDY FOR SYNERGY 

Laska et al (1994) proposed a synergy test of two-drug combinations that does not 

require modeling a response surface. They have used a model-free test to establish a 

sufficient condition for synergy at a combination dose. The Loewe definition of additivity 

implies that the mathematical equation of the form below should be satisfied. 

n 

LX, IXie =1 (15) 
,=1 

Here, n is the number of drugs used in combination, Xi is the dose amount of the ith drug, 

and X,e is the dose amount of the ith drug that, given alone, would produce e, the 

n 
magnitude of the response of the drug combination. The value LX, I X,e in equation (15) 

,=1 

is referred to Berenbaum's Interaction Index. When Berenbaum's Interaction Index is 

less than 1, the combination is synergistic. When it is greater than 1, the combination is 

antagonistic. When it is equal to 1, the combination is additive. 

By definition, e is unknown and determined by a unique function g, the 

mapping function between dose and response. In this study, the g-function is the link 

between the initial dose amounts (either individual or combined), and the response 

produced (either individual or combined). 

13 



It is also important to define what is meant by the term "response." Response, in 

the Sen and Bell (2006) study, is measured by the "effect" of the drugs used in 

combination. In this study, response is measured by the concentration of the isomers in 

the bloodstream. 

The equation (15) defines the theoretical line of dose additivity, where 

x = (x)' x 2 ) lies on an e -isobole (Laska et al 1994), a theoretical line describing a 

sampling of the dose combinations that produce synergistic, antagonistic, or additive 

responses. An example of an isobologram is given in Figure # 3. 

Dose of Isomer S 

Figure # 3. A hypothetical isobologram. 
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The endpoints of the e -isobole lie on the e -theoretical line - the line connecting 

the dose points of xle to x2e • At all points on the e -theoretical line of additivity, those 

dose combinations produce e. When a dose combination on the e -isobole produces a 

response that is above the e -theoretical line, the combination is defined as antagonistic. 

When the response is below the line, it is synergistic. The authors' proposed method for 

establishing a sufficient condition for a synergy test uses an arbitrary line through 

(x; ,x;) given by r(xl - x;) + (X2 - x;) = ° where x· = (x; ,x;) is a given dose point. 

In the fixed ratio design of two drugs (Tallarida, 2000), the proportion between 

two chemicals used in combination is kept constant by controlling the dose amount. In 

other words, for two levels of drugs we look at g -function inequalities of the form 

pg(xR,XS ) + g(xR,O) or pg(xR,XS ) + g(O,xs) , compared to one. In the expression, 

g(xR,XS ) is a function of two drugs, g(xR,O), and g(O,xs) are the functions of one drug 

in the absence of the other and p is the correlation coefficient that depends on the ratio 

of the combination of the two drugs and is defined using Berenbaum's Interaction Index. 

F or the synergy test, we use the null hypothesis, Ho of the format 

rg(x;, x;) ~ g(x ~ ,0) or rg(x ~,x;) ~ g(O, x;) versus hypothesis of synergy Ha as 

rg(x~,x;) < g(x~,O) and rg(x;,x;) < g(O,x;) respectively for a specified value ofr. A 

necessary condition for this hypothesis test is that the power for the specified value of r is 

at least 0.5. Also, since correlation is time dependent and expected to change as 

concentration combination changes, we establish a bound on r for significant results of 

the synergy tests for all subjects. 

15 



5. STATISTICAL METHODOLOGY 

The NUN procedure in SAS uses the mean and variance calculated from the 

stochastic model without any assumptions about the parametric form of the distribution. 

The procedure uses the least squares method to fit the curve to the observation and 

estimate the model parameters. The process requires the first derivatives of the equation 

with respect to each model parameter to be estimated. Mean Squared Error (MSE) is 

calculated as a result of convergence of the NLIN procedure. 

The NLMlXED procedure in SAS requires that the mean and the variance 

expressions for the equations be supplied as the initial input with the assumption that 

model has a normal distribution with the stated parameters. The procedure uses 

maximum likelihood estimates of the parameters while fitting the model to the 

observations. It includes information of the mean and variance for the combined data, and 

hence we estimate the combination coefficients C1 and c2 of the drug efficacies. We use 

individual data for later analyses where C1 and C 2 are considered to be known constants. 

Akaike's information criterion (AIC) is calculated for each selected model as 

Ale = n * In( S~E) + 2k , where k is the number of parameters to be estimated and SSE 

stands for sum of squared errors. A low value for Ale indicates a better fit (Sen, 2004). 

16 



The value of AIC is computed after the convergence of the NLMlXED procedure. The 

value of AIC is calculated for NLIN procedure from the respective MSE values. 

As suggested by Laska and Meisner (1989) we use the Wilcoxon Rank Test for 

the hypotheses that establishes a sufficient condition for synergy with a 0.05 significance 

level. Since the distribution of the time data for each subject is unknown, the 

nonparametric min test is appropriate. We perform the power study using the 

WILCOX.TEST procedure in R for a simulation size of 5000 data sets. For the synergy 

hypotheses, we test seven pairs of hypotheses against one sided alternatives, one pair per 

subject on each isomer type for combined and individual data. 

For simulations, we use R software to generate 20,000 data sets for each patient. 

Using the estimated parameters from both the NLIN and NLMlXED procedures, we 

supply the initial estimates of the parameters and use the NLS function to check the 

convergence of the model parameters to their initial values. 

17 



6. RESULTS 

The initial dose amounts are considered known and used as constants throughout 

the analysis. We utilize the combined data for seven subjects to estimate the parameters 

in equation (14). We use the equations (8) and (13) to input the mean and variance 

required in the procedure. The NLMIXED procedure was necessary to incorporate the 

subjects as blocking variables. This allowed us to analyze the data in its entirety and 

estimate the synergy parameters c1 and C 2 as given in Table # 2. This capability is not 

available from the NUN procedure. In Table # 2 below, the only meaningful parameters 

are c1 and C 2 • The others are not applicable to a larger model since parameters such as 

absorption are intended to be studied for one subject rather than a group. 

Table # 2. Parameter estimates from PROC NLMIXED using the full model, using 

combined data. 

lPffiITIDIiiJ[J~[J' Ul Bl Cl Kl U2 f32 C2 K2 

~cn1lJffi\@ 
{?#~ 0.09299 0.02499 1.113 -10.640 0.02475 0.00028 1.107 17.0014 
&,'lCIID[j)(fuj[JdJ +/- +/- +/- +/- +/- +/- +/- +/-
@[f'[f@[J' 0.1077 0.06809 1.0098 24.4854 0.01893 0.00056 0.825 6.0380 

18 



We use the individual data to estimate mean and variance parameters for seven 

subjects using both the NUN and NLMIXED procedures. The results are presented in 

Tables # 3 - 4, using the given coefficients of C1 and C2 from Table # 2. 

Table # 3. Parameter estimates for subjects 1-7 from PROC NUN using individual data. 

(Standard Errors are in parenthesis.) 

~m[b)D~ 
lPill(Q)(C ~lL,U~ 

<Xl f3l Kl <X2 f32 K2 

1 
0.0116 0.0001 -1.6259 0.0304 0.0590 2.7249 

(0.0138) (0.00083) (0.9421) (0.0101) (0.1688) (1.0368) 

2 
0.0078 0.0010 -0.4173 0.0260 0.0239 0.7696 

(0.0184) (0.00272) (0.4009) (0.0135) (0.0530) (0.4214) 

3 
0.0476 0.0427 1.0600 0.0103 -0.0003 -0.4560 

(0.0296) (0.1007) (0.0748) (0.0110) (0.00085) (0.1791) 

4 
0.0626 -0.0016 -0.6967 0.0046 0.0050 0.2330 

(0.0788) (0.00206) (0.4343) (0.0426) (0.0176) (0.5246) 

5 
0.1163 -0.0018 1.0275 0.0109 0.0016 -0.3480 

(0.0927) (0.0209) (0.2282) (0.0608) (0.0173) (0.4120) 

6 
0.0195 0.0508 -0.2631 -0.0119 0.0572 0.0470 

(0.0130) (0.2504) (0.0850) (0.0322) (0.1945) (0.0927) 

7 
0.1702 -0.2898 2.6484 -0.2928 -0.2646 -0.5329 

(4.9554) (4.7923) (42.5844) (4.7738) (4.7690) (4.3407) 
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Table # 4. Parameter estimates for subjects 1 - 7 from PROC NLMlXED using 

individual data. (Standard Errors are in parenthesis.) 

~(!]lliJ~~ 
lPm~ ~rlLliYilU2~l1lID 

U1 131 K.1 U2 132 K.2 

1 0.0796 -0.0005 0.0001 7.8761 3.2148 -18.3960 
(0.00324) (0.00015) (4.8522) (5.1508) (0.00001) (4.4106) 

2 
0.0231 0.0230 2.7994 0.0209 0.0003 -0.5299 

(0.01068) (0.01063) (36.5755) (0.00203) (0.0003) (35.7244) 

3 
0.0346 -0.0009 1.3451 0.0251 0.3338 -3.0440 

(0.00173) (0.00015) (8.0622) (0.01983) (0.1183) (7.5456) 

4 0.0410 0.0008 -3.4502 0.0008 0.0397 0.0162 
(0.02101) (0.00196) (1.2728) (0.00191) (0.02022) (0.5374) 

5 
0.2167 0.0001 7.6815 0.0373 0.0000 -4.7880 

(0.09124) (0.00335) (4.3065) (0.00514) (0.0006) (1.5228) 

6 
0.0730 0.0004 15.7446 0.0272 0.0005 -4.6469 

(0.03567) (0.00588) (9.8340) (0.00892) (0.00233) (9.0839) 

7 
0.0926 0.0229 4.5984 0.0005 0.0183 0.0762 

(0.0531) (0.02304) (2.1488) (0.00029) {0.00161) (0.6630) 

The above two procedures both generated parameter estimates with reasonably 

low standard errors. Of course, the variance parameters are expected to have larger 

standard errors due to their nature. 

Our next point of comparison is to look at the AIC values generated by each 

procedure. The AIC values in Table # 5 show lower numbers for the NUN procedure in 

every subject as compared to the NLMlXED procedure, and points towards a better fit of 

the data. 
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Table # 5. AIC comparisons for the individual subjects using two SAS procedures. 

~LUJIlliJlECC1r ~llilhl1JlDmIID ~llillB:r 

1 79.2 35.8 
2 93.6 68.5 
3 88.5 54.3 
4 98.0 71.8 
5 94.9 63.0 
6 115.8 78.5 
7 97.7 72.1 

Finally, using the parameter estimates obtained from the data in previous tables, 

we fit the estimated equations to the individual data as shown in Figure # 4. The fitted 

curves below indicate an extremely good fit of the model to the data by both the 

procedures. A careful look at the fitted curves by the NUN procedure confirms that it 

follows the data for the individual subjects slightly better than the curves fitted by the 

NLMlXED procedure. 
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Figure # 4. (previous page) Concentration versus time for individual subjects plotted 

with estimated curves by NUN (dotted lines) and NLMIXED (solid lines) methods on 

the observed values. 

Overall, we found that for this data set, the NLIN procedure in SAS fit the data 

the best. For the next part of our research, we studied the necessary and sufficient 

conditions for the synergy test. The necessary condition involved a power study. The 

sufficient conditions are verified using a hypothesis test. 

We performed a power study using R software to determine the significant ranges 

for r for each subject. The results are given in Table # 6. The lower bound for r is the 

maximum possible power (i.e. it is equal to 1.00). The upper bound for r is the first 

estimate that generated an acceptable power (i.e. it is above 0.5). Using these results, we 

perform the synergy tests on the observed data. 

Table # 6. Power study for the synergy tests using individual data. 

~rnm ll®U' {] 
~rn[b]~ Lower Upper 

Bound Bound 
1 0.08 0.23 
2 0.17 0.26 
3 0.19 0.27 
4 0.20 0.29 
5 0.12 0.23 
6 0.34 0.71 
7 0.21 0.28 

23 



In Table # 6, Subject 6 shows the maximum strength of maintaining the power. 

The synergy tests for individuals based on the choice of correlation coefficient between 

0.08 and 0.23 (over all data) gives p-values less than 0.05 for each subject when 

performed for both the isomers. The W -Score for the Wilcoxon Rank-Sum statistics and 

the p-values are shown in Tables # 7 - 8. 

Table # 7. Synergy tests for hypothesis Ho : r * g(x ~,x;) ;::: g(x ~ ,0) for subjects 1 - 7 

using isomer R. 

WllllirID);'S®w J:l&Dwlk~[!][j]] 

~[!]@~~ 
~[!]D&<l 

Lower Upper 
Bound Bound 

1 
W 121 97 

p-value <0.0001 0.009025 

2 W 121 92 
p-value <0.0001 0.01999 

3 
W 118 101 

p-value <0.0001 0.003317 

4 W 121 97 
p-value <0.0001 0.009025 

5 
W 119 89 

p-value <0.0001 0.03291 

6 W 121 90 
p-value <0.0001 0.02837 

7 
W 121 97 

p-value <0.0001 0.009025 
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Table # 8. Synergy test for hypothesis Ho : r * g(x;, x;) 2: g(O, x;) for subjects 1 - 7 

using isomer S. 

~Dfu®5:S@rn ~rnlli,~[!][ffi 

~[!][Q)]~ 
~[lJD~ 

Lower Upper 
Bound Bound 

1 
W 121 110 

p-va1ue <0.0001 0.0006443 

2 W 119 104 
p-value <0.0001 0.002369 

3 
W 121 104 

p-value <0.0001 0.002369 

4 W 113 96 
p-value <0.0001 0.009615 

5 
W 121 110 

l'-value <0.0001 0.0006443 

6 
W 121 114 

p-value <0.0001 <0.0001 

7 
W 121 97 

p-value <0.0001 0.009025 

C1 Cz Using the ratio of and in Table # 2 we get an estimate of p as 
c1 +cz C1 +cz 

close to 0.5 over all subjects. The estimate of p from Table # 2 is a crude estimate of the 

ratio of the combination of two chemicals acting simultaneously for the combined data. 

The variability of seven individuals entered into the calculation and is considered to have 

inflated the estimate. Therefore, we establish a bound for r, which is attuned to our data 

set, between 0.08 and 0.23 using the individual subjects. In this range, all of the above 

tests still remain significant establishing the sufficient condition for synergy. 
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A description of the estimated values for the correlation coefficient is shown 

below in the isobologram in Figure # 5. The theoretical isobole described in Laska et al 

(1994) illustrates two hypothetical doses with a generic placement of the synergistic 

locations. The straight line represents the e-theoreticalline of additivity connecting 

X le and x2e • In Figure # 4, we use the same line setup and place the correlation bounds to 

show the synergistic power and possible location for the dose combination of the data. 

ar:: .. 
G) 

E 
o 
.!!! 
o 
G) 
en o 
C 

Dose of Isomer S 

Figure # 5. A hypothetical isobologram with the estimated bounds for the correlation 

coefficient and the corresponding power is shown here. Note that the isobole curve 

represents only a sampling of the possible dose combinations. 
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7. SIMULATIONS AND EFFICIENCY COMPARISON FOR PARAMETER 

ESTIMATIONS 

A Bootstrapping Monte Carlo simulation study was conducted for individual 

subjects to compare the inferential performance of the NUN and NLMIXED procedures 

described in section 5. We considered the parameter estimates from the data as the initial 

starting points. After 20,000 iterations, the equations converged to assigned criteria and 

produced the average of each parameter value with the corresponding standard deviation. 

We used the known estimates of C1 and C2 in the simulation to be consistent with the 

synergy test. 

In most cases in Tables # 9 - lOwe get extremely close to the true parameters in 

Tables # 3 - 4. Difference tables (shown in Tables # 11-12) indicate that some of the 

variance (KI' K 2 ) parameters were incorrectly estimated by the data, though the main 

parameter estimates were quite close. Only one indication of a large difference was 

detected by the simulation. Table # 12, the NLMIXED difference table, shows a large 

difference for two main parameter estimates for Subject 1. 
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Table # 9. Simulation results for subjects 1 -7 using parameters ofPROC NUN 

procedures. (Standard Errors are in parenthesis.) 

~rn[t]~ 
lJ'L~OC IK:llLU~ 

Ul f31 Kl U2 f32 K2 

1 
0.0116 0.0001 -1.6270 0.0304 0.0593 2.7250 

(0.00003) (0.000002) (0.00185) (0.00002) (0.00033) (0.00204) 

2 0.0078 0.0010 -0.4174 0.0260 0.0239 0.7696 
(0.00001) (0.000001) (0.00017) (0.00001) (0.00002) (0.00018) 

3 
0.0477 0.0426 1.0600 0.0103 -0.0003 -0.4561 

(0.00002) (0.00008) (0.00006) (0.00001) (0.000001) (0.00014) 

4 0.0626 -0.0016 -0.6967 0.0046 0.0050 0.2330 
(0.00003) (0.000001) (0.00019) (0.00002) (0.00001) (0.00023) 

5 
0.1162 -0.0018 1.0280 0.0109 0.0016 -0.3479 

(0.00005) (0.00001) (0.00012) (0.00003) (0.00001) (0.00022) 

6 
0.0195 0.0509 -0.2632 -0.0118 0.0571 0.0470 

(0.000004) (0.00007) (0.00002) (0.00001) (0.00006) (0.00003) 

7 
0.1699 -0.2899 2.6495 -0.2929 -0.2647 -0.5330 

(0.00215) {0.00208) (0.01848) (0.00207) (0.00207) (0.00188) 

Table # 10. Simulation results for subjects 1 - 7 using parameters of PROC NLMIXED 

procedures. (Standard Errors are in parenthesis.) 

~rn[tDwt 
lJ'ill(DXC ~IL!OOU~~~[ID 

Ul f31 Kl U2 f32 K2 

1 0.0323 -0.0005 -4.0940 0.0985 0.0197 9.7950 
(0.00031) (0.00001) (0.05381) (0.00094) (0.00055) (0.0706) 

2 0.0231 0.0230 2.7990 0.0209 0.0002 -0.5299 
(0.01237) (0.01327) (16.7000) (0.0005) (0.00001) (16.8000) 

3 
0.0346 -0.0009 1.2730 0.0248 0.3344 -2.9730 

(0.00075) (0.000002) (0.1415) (0.00108) (0.00771) (0.1348) 

4 
0.0419 0.0008 -3.5496 0.0008 0.0418 0.1042 

(0.00257) (0.01442) (0.36869) (0.01535) (0.01326) (0.39592) 

5 
0.2163 0.0004 7.6820 0.0373 0.0000 -4.7880 

(0.00035) (0.00038) (0.01632) (0.00022) (0.00005) (0.01551) 

6 0.0718 0.0004 15.5999 0.0271 0.0005 -4.5510 
(0.0019) (0.00088) (0.21123) (0.00016) (0.00034) (0.22363) 

7 
0.0947 0.0253 4.6770 0.0005 0.0187 0.0122 

(0.00143) (0.00189) (0.07197) (0.000005) (0.00028) (0.06414) 
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Table # 11. Difference of true parameter values from estimated values with NUN. 

lPllSCDXC l~JTkO ~ 
~0!l[ID]~ 

PI P2 UI KI U2 K2 

1 0.0000 0.0000 0.0011 0.0000 -0.0004 -0.0001 

2 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 

3 0.0130 0.0436 -0.2851 -0.0148 -0.3341 2.5880 

4 0.0215 -0.0024 2.7535 0.0038 -0.0347 0.2168 

5 -0.1004 -0.0019 -6.6540 -0.0265 0.0016 4.4400 

6 -0.0535 0.0504 -16.0077 -0.0391 0.0567 4.6939 

7 0.0776 -0.3127 -1.9500 -0.2933 -0.2829 -0.6091 

Table # 12. Difference of true parameter values from estimated values with NLMIXED. 

lP!RSillXC ~li01]IT~~!E[ID 
~0!l[ID]~ 

UI PI KI U2 P2 K2 

1 0.0796 -0.0005 -1.0000 7.8645 3.2147 -16.7690 

2 0.0231 0.0230 0.7994 0.0131 -0.0008 -0.1125 

3 0.0346 -0.0009 -1.6549 -0.0226 0.2912 -4.1040 

4 0.0410 0.0008 -7.4502 -0.0617 0.0414 0.7129 

5 0.2167 0.0001 2.6815 -0.0789 0.0018 -5.8160 

6 0.0730 0.0004 9.7446 0.0076 -0.0504 -4.3837 

7 0.0926 0.0229 -2.4016 -0.1694 0.3082 -2.5733 
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NUN converged faster than NLMlXED and the NLIN parameter estimates are 

closer to the actual values obtained from the experimental data. We encountered 

problems of occurring singular values using NLMlXED. 

The variance parameters have large standard errors, but this was expected. When 

data is generated by a simulation technique, it is common to see inflated variance 

estimates. However, the bulk of the convergence was smooth giving precise estimates 

with very small standard errors. We suspect that NLIN performs better due to the lack of 

a distribution assumption. To perform calculations for parameter values, we suggest the 

NLIN procedure in SAS. 
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8. DISCUSSION 

Pharmacology studies deal with combined data that are interactive in nature. In 

mathematical terms, an interaction is usually represented by multiplication of terms. 

However, it is not quite clear for drug interactions if the combined effect is additive, 

multiplicative, or inhibitive in nature. Combination of isomers in drugs administered to 

the eye gives a reason to test for synergy to assert the researchers' effort to show an 

additive effect. 

In this paper, we find that our proposed model shows a positive linear relationship 

between the concentrations of the two isomers. We also have enough evidence to 

conclude that, by the Feng and Kelly synergy test, that the two drugs are indeed 

synergistic in nature. As a result of these findings, we show that the linear stochastic 

model, as proposed by Sen and Bell, is appropriate for modeling drug combination data. 

The proposed model can be analyzed with simple techniques from differential 

equations to determine the model mean and variance in closed form, and it is useful in the 

data analysis. The two different methods of statistical procedures, NUN and NLMIXED, 

are used here to confirm that our model has the flexibility required for use by 

practitioners. 
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The proposed model uses a limited number of dose combinations since we were 

restricted to using the existing data set; however, the data collection can be done based on 

the recommendations in the paper of Laska et al (1994). Necessary and sufficient 

conditions should be tested before implementing the modeling techniques presented in 

this paper. 

Many methods of drug assessment and model building are available. Some focus 

on testing for a biological synergy based on the effects generated by a particular drug 

combination. Since no biological "effects" are measured in the Bradstreet (1992) data, 

the model we propose tests for a mathematical synergy instead of a biological synergy, 

and biological synergy is not an implied result. However, if biological effects data is 

collected based on the combined dose levels as suggested by other researchers, we can 

test for synergy as shown in this paper. 
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APPENDIX II: PROGRAMMING ALGORITHMS 

Note: The code listed is representative of the code used to generate results; however, 

redundant iterations have been removed and data tables have been shortened. 

Algorithm 1. Fitting the Model in SAS 

Step 1. Input data. 

options nodate linesize=80; 
data isomerorig; 
input t res isomer $; v=5; 
cards; 

5 
10 
15 
30 

;run; 

I80NE 
36 ONE 
38 ONE 
59 ONE 

Step 2. Run PROC NLMIXED using entire dataset with all parameters unknown. 

proc nlmixed data=isomerorig maxiter= 1500; 
parms a = 0.8 b = -0.005 c=0.8 k=2.l w=.04 x=-0.0002 y=1.4 z=.9; 
mean=c*v*(exp(-b*t)-exp(-a*t))/(a-b)+y*v*(exp(-x*t)-exp(-w*t))/(w-x); 
var = c*c*k*k*(l-exp( -2*a*t))/(2*a)+y*y*z*z*(l-exp( -2*w*t))/(2*w) 
+ 2*c*y*k*z*(l-exp(-a*t-w*t))/(a+w); 
MODEL res~normal(mean,var); 
SUBJECT=isomer; 
PREDICT mean out=z; 
run; 
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Step 3. Using C 1, c2 from Step 2, input data for NUN procedure. 

data isomer2; 
input t SI Rl S2 R2 S3 R3 S4 R4 S5 R5 S6 R6 S7 R7;v=5; c=1.1134; 
y=1.1072; 
cards; 

5 9 
10 18 
15 26 
30 33 

9 22 26 23 15 14 24 25 14 41 
18 47 49 29 25 35 58 38 31 73 
12 78 69 49 39 44 85 52 46 75 
26 104 100 57 55 97 99 77 56 112 

38 27 31 
65 37 48 
73 42 67 
76 61 98 

options nodate linesize = 80; 
run; 

Step 4. Calculate combination concentration. 

data isomer 1 ; 
set isomer2; 
ONE=SI+Rl; 
TWO=S2+R2; 
THREE=S3+R3; 
FOUR=S4+R4; 
FIVE=S5+R5; 
SIX=S6+R6; 
SEVEN=S7+R7; 
run; 

Step 5. Evaluate model parameters using PROC NLIN. 

proc nlin data=isomer 1 converge = .00001 convergeparm = .00001 
method = marquardt; 
parms a = 0.05 b = -0.0005 k=-4.1 w=.02 x=-0.0004 z=5.01; 
model ONE =2*(c*v*(exp(-b*t)-exp(-a*t»/(a-b)+y*v*(exp(-x*t)-exp(­
w*t»/(w-x»/(2*c**2*k**2*(1-exp( -2*a*t»/a+2*y**2*z**2*(1-exp(-
2*w*t»/w+8*c*y*k*z*(I-exp(-a*t-w*t»/(a+w»**(1I2); 
der.a = 2*( c*v*t*exp( -a*t)/(a-b )-c*v*( exp( -b*t)-exp( -a*t»/(a-
b )**2)/(2*c**2*k**2*(I-exp( -2*a*t»/a+2*y**2*z**2*(I-exp(-
2*w*t»/w+8*c*y*k*z*(I-exp(-a*t-w*t»/(a+w»**(112)-(c*v*(exp(-b*t)­
exp( -a*t»/(a-b )+y*v*( exp( -x*t)-exp( -w*t»)I(w-x»*( 4*c**2*k**2*t*exp(-
2*a *t)/a-2*c* *2 *k**2*( l-exp( -2*a *t) )/a **2+8*c*y*k*z*t*exp( -a *t­
w*t)/(a+w)-8*c*y*k*z*(I-exp( -a*t-w*t»/(a+w)**2)/(2*c**2*k**2*(I­
exp( -2*a*t»/a+2*y**2*z**2*(1-exp( -2*w*t»/w+8*c*y*k*z*(1-exp( -a*t­
w*t»/(a+w»* *(3/2); 
der.w = 2*(y*v*t*exp( -w*t)/(w-x)-y*v*( exp( -x*t)-exp( -w*t»/(w-
x)**2)/(2*c**2*k**2*( l-exp( -2*a*t»/a+2*y**2*z**2*(1-exp(-
2*w*t»/w+8*c*y*k*z*(1-exp( -a*t-w*t»/(a+w»**( 112)-( c*v*( exp( -b*t)-
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exp( -a*t))/(a-b )+y*v*( exp( -x*t)-exp( -w*t))/(w-x))*( 4*y**2*z**2*t*exp(-
2*w*t)/w-2*y**2*z**2*(1-exp(-2*w*t))/w**2+8*c*y*k*z*t*exp(-a*t­
w*t)/(a+w)-8*c*y*k*z*(I-exp(-a*t-w*t))/(a+w)**2)/(2*c**2*k**2*(I­
exp( -2*a*t))/a+ 2*y**2*z**2*(l-exp( -2*w*t))/w+8*c*y*k*z*(l-exp( -a*t­
w*t))/(a+w)) * *(3/2); 
der.b = 2*(-c*v*t*exp( -b*t)/(a-b )+c*v*(exp( -b*t)-exp( -a*t))/(a­
b )**2)/(2*c**2*k**2*(l-exp( -2*a*t))/a+2*y**2*z**2*(l-exp(-
2*w*t))/w+8*c*y*k*z*(I-exp(-a*t-w*t))/(a+w))**(1I2); 
der.x = 2*( -y*v*t*exp( -x*t)/(w-x)+y*v*( exp( -x*t)-exp( -w*t))/(w-
x)**2)/(2*c**2*k**2*(l-exp( -2*a*t))/a+2*y**2*z**2*(l-exp(-
2*w*t))/w+8*c*y*k*z*(I-exp(-a*t-w*t))/(a+w))**(1/2); 
der.k = -( c*v*( exp( -b*t)-exp( -a*t))/(a-b )+y*v*( exp( -x*t)-exp( -w*t))/(w-
x))*( 4*c**2*k*(l-exp( -2*a*t))/a+8*c*y*z*(1-exp( -a*t­
w*t))/(a+w))/(2*c**2*k**2*(l-exp( -2*a*t))/a+2*y**2*z**2*(1-exp(-
2*w*t))/w+8*c*y*k*z*(I-exp(-a*t-w*t))/(a+w))**(3/2); 
der.z = -( c*v*( exp( -b*t)-exp( -a*t))/(a-b )+y*v*( exp( -x*t)-exp( -w*t))/(w-
x))*( 4*y**2*z*(I-exp( -2*w*t))/w+8*c*y*k*(l-exp( -a*t­
w*t))/(a+w))/(2*c**2*k**2*(l-exp( -2*a*t))/a+2*y**2*z**2*(l-exp(-
2*w*t))/w+8*c*y*k*z*( l-exp( -a*t-w*t))/( a+w)) * *(312); 
output out = ONE 
p=pred r = resid PARMS=a b k w x z; 
run; 

Step 6. Evaluate model parameters using PROC NLMIXED. 

data zpiece; 
set isomerorig; 
where isomer="ONE"; 
c=1.1134; y=l.1072; 
run; 

proc nlmixed data=zpiece maxiter= 1500; 
parms a = 0.1 b = 0.005 k=-I.2 w=-.02 x=-0.0002 z=-1.9; 
mean=c*v*(exp(-b*t)-exp(-a*t))/(a-b)+y*v*(exp(-x*t)-exp(-w*t))/(w-x); 
var = c*c*k*k*(1-exp( -2*a*t))/(2*a)+y*y*z*z*(1-exp( -2 *w*t))/(2*w) 
+ 2*c*y*k*z*( l-exp( -a*t-w*t))/(a+w); 
MODEL res~normal(mean,var); 
SUBJECT=isomer; 
PREDICT mean out=zpiecel; 
run; 
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Step 7. Generate plots comparing NLMlXED and NUN procedures. 

datanew2; 
set ONE zpiece 1; 
run; 

datanew3; 
setnew2; 
if ONE <.01 then p1=pred; 
if ONE >.01 then p2=pred; 
run; 

proc plot; 
plot ONE*t = '0' P 1 *t = 'm' p2*t='I'/overlay; 
title 'Comparing Pred and Obs for Patient ONE'; 
run; 

Step 8. Gather results for all subjects and report. 
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Algorithm 2. Simulation Study in R 

Step 1. Define model function and initial values. 

test.modell <- function(v1,c1,y1,a,b,k,w,x,z,t) { 
response<-2*(c1 *v1 *(exp(-b*t)-exp(-a*t))/(a-b)+y1 *v1 *(exp(-x*t)-exp(­
w*t))/(w-x))1 sqrt(2*c1 **2*k**2*(1-exp(-2*a*t))/a+2*y1 **2*z**2*(1-
exp(-2*w*t))/w+8*c1 *y1 *k*z* (l-exp(-a*t­
w*t))/(a+w))+morm(1,mean=0,sd=sqrt(t)) 
retum(response) } 
v<-5.0000 
c<-1.1134 
y<-1.1072 
ctl.obj <- nls.control(maxiter=500, tol=1e-02, minFactor = 119000) 
sim<-5000 
crit<-0.01 
flag 1 <-0 
flag2<-0 
flag3<-0 
flag4<-0 
flag5<-0 
flag6<-0 
flag7<-0 
flag11 <-0 
flag22<-0 
flag33<-0 
flag44<-0 
flag55<-0 
flag66<-0 
flag77<-O 

a1<- 0.01157 ;b1<- 6.51E-05 ;k1<- -1.6259 ;w1<- 0.030414 ;x1<- 0.058949 ;zl<- 2.724914 
all<-0.07963 ;bll<- -0.0005 ;kll<- 0.00005 ;wll<- 7.8761 ;xll<- 3.2148 ;zl1<- -18.396 
a2<- 0.00784 ;b2<- 0.001003 ;k2<- -0.41729 ;w2<- 0.025968 ;x2<- 0.02389 ;z2<- 0.769501 
a22<- 0.02308 ;b22<- 0.02301 ;k22<- 2.7994 ;w22<- 0.02094 ;x22<- 0.000247 ;z22<- -0.5299 
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Step 2. Generate simulation data set. 

R<-O 
T<-O 
i<-1 
for (i in 1 :sim){ 
R[1 + 11 *(i-l)]<-test.model1(v,c,y,al,b 1 ,kl,wI,xI,zI,5) 
R[2+ 11 *(i-I )]<-test.model1(v,c,y,aI,bI,kI,wI,xI,zI, 10) 
R[3+ 11 *(i-I)]<-test.model1(v,c,y,aI,bl,kI,wI,xl,zl,15) 
R[4+ 11 *(i-l)]<-test.model1(v,c,y,al,bl,kl,wl,xl,zl,30) 
R[5+ 11 *(i-l )]<-test.model1(v,c,y,al,bl,kl,wl,xl,zl ,45) 
R[6+ 11 *(i-l)]<-test.model1(v,c,y,al,bl,kl,wl,xl,zl,60) 
R[7+ 11 *(i-l)]<-test.model1(v,c,y,al,bl ,kl,wl,xl,zl,90) 
R[8+ 11 *(i-l)]<-test.model1(v,c,y,al,b l,kl,wl,xl ,zl, 120) 
R[9+ 11 *(i-l)]<-test.model1(v,c,y,aI,bl,kl,wl,xl,zl,240) 
R[IO+ 11 *(i-l)]<-test.model1(v,c,y,al,bl,kl,wl,xl,zl,360) 
R[I1+ 11 *(i-l)]<-test.model1(v,c,y,al,bl,kl,wl,xl,zl,480) 
T[I+11*(i-l)]<-5 
T[2+ 11 *(i-l)]<-10 
T[3+ 11 *(i-l)]<-15 
T[4+ 11 *(i-l)]<-30 
T[5+ 11 *(i-l)]<-45 
T[6+ 11 *(i-l)]<-60 
T[7+ 11 *(i-l)]<-90 
T[8+ 11 *(i-l)]<-120 
T[9+ 11 *(i-l)]<-240 
T[IO+ 11 *(i-l)]<-360 
T[ 11+ 11 *(i-l) ]<-480 
} 

Step 3. Run NLS procedure to determine the new parameter estimates. 

Test.matrix<-data.frame(T, R) 
fit 1 <-nls(R ~ 2*(c*v*(exp(-b*T)-exp( -a*T))/(a-b )+y*v*(exp( -x*T)-exp(­
w*T))/(w-x))/ sqrt(2*c**2*k**2*(1-exp( -2*a*T))/a+2*y**2*z**2*(1-
exp( -2*w*T))/w+8*c*y*k*z*(1-exp( -a*T -w*T))/(a+w)), 
data = Test.matrix, 
start = list(a=al, b=bl, k=kl, w=wl, x=xl, z=zl)) 
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Step 4. Check the difference between initial parameter values and new estimates. 

atest<-abs( coef( fit 1)[ 1 ]-a 1) 
btest<-abs( coef( fit 1 )[2]-b 1) 
ktest<-abs( coef(fitl )[3]-k 1) 
wtest<-abs( coef(fit1)[ 4]-w1) 
xtest<-abs(coef(fit1)[5]-xl) 
ztest<-abs( coef( fit l) [6] -z l) 
if( atest<crit && btest<crit && ktest<crit && wtest<crit && xtest<crit 
&& ztest<crit){ 
flagl <-1 
} 
(summary(fitl)) 
(flag1) 

Step 5. Gather results for all subjects and report. 
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Algorithm 3. Power Study in R 

Step 1. Define the models. 

test.modell <- function(vl,cl,yl,a,b,k,w,x,z,t,p) { 
response<-p*(2*(cl *vl *(exp(-b*t)-exp(-a*t))/(a-b)+yl *vl *(exp(-x*t)­
exp(-w*t))/(w-x))1 sqrt(2*c1 **2*k**2*(1-exp(-
2*a*t))/a+2*yl **2*z**2*(1-exp(-2*w*t))/w+8*c1 *yl *k*z* 
(l-exp(-a*t-w*t))/(a+w))+rnorm(l,mean=O,sd=sqrt(t))) 

return( response) } 

test.modelR <- function(vl,c,d,e,t) { 
response<- ((vI *(exp(-d*t)-exp(-c*t)))/(c - d))/sqrt(((e**2)/(2*c))*(1-
exp(-2*c*t)))+rnorm(l,mean=0,sd=sqrt(t)) 
return(response) } 

test.modelS <- function(vl,f,g,h,t) { 
response<- ((vI *(exp(-g*t)-exp(-f*t)))/(f - g))/sqrt(((h**2)/(2*f))*(1-exp(-
2*f*t)))+rnorm(l,mean=0,sd=sqrt(t)) 
return( response) } 

Step 2. Define initials and input data. 

sim<-5000 
al<- 0.01157 
a2<- 0.00784 
a3<- 0.047611 
a4<- 0.062561 
a5<- 0.116269 

v<-5.0000 
c<-1.1134 
y<-1.1072 
powerl<-1 
power2<-1 
power3<-1 
power4<-1 
power5<-1 
power6<-1 
power7<-1 
p<-0.20 

;bl<- 6.51E-05 
;b2<- 0.001003 
;b3<- 0.042653 
;b4<- -0.00162 
;b5<- -0.0018 

;kl<- -1.6259 
;k2<- -0.41729 
;k3<- 1.059978 
;k4<- -0.69668 
;k5<- 1.027519 
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Step 3. Use a while loop to determine the bound on r. (In this program, r = p.) 

while(powerI =power2&&power2=power3&&power3=power4&&power4 
=power5&&power5=power6&&power6=power7 &&power7=power 1){ 
ptest<-O 

Step 3.1. Use a for loop to generate the simulated data set. Inside this loop, 
use the WILCOX.TEST procedure to determine p-values for the 
corresponding value ofr. If the p-value is significant, increment a 
counting variable by one unit. 

for (i in I :sim){ 
RS<-O 
R<-O 
S<-O 
fit I <-0 
fit2<-0 
RS[ I ]<-test.modell (v,c,y ,aI,b l,k I,w I ,xl ,zI ,5,p) 
RS[2]<-test.modell (v,c,y,aI,b I ,kI ,wI ,xl ,zI, I O,p) 
RS[3]<-test.modell (v,c,y,al,b I ,kl ,wI ,xI,z I, 15,p) 
RS[ 4 ] <-test.modelI (v,c,y,al,b I ,kl ,wI ,xl ,zl ,30,p) 
RS[5]<-test.modell (v,c,y,al,b I ,kI,w I ,xl ,zI ,45,p) 
RS[6]<-test.modell (v,c,y,al,b I ,kl,w I ,xl,z I ,60,p) 
RS[7]<-test.modeII(v,c,y,aI,bl,kl,wl,xI,zl,90,p) 
RS[8]<-test.modell (v,c,y,al,b I ,kI,w I ,xl ,zl, 120,p) 
RS[9]<-test.modell (v,c,y,al,b 1 ,kl ,wI ,xl ,zl ,240,p) 
RS[I 0] <-test.model1 (v,c,y,al,b 1 ,kl,w I ,xl ,zl ,360,p) 
RS[II ]<-test.modell(v,c,y,al,b I ,kl,w I ,xl ,zl ,480,p) 
R[ 1 ]<-test.modeIR(v,c 1 ,dl,e I ,5) 
R[2]<-test.modeIR(v,c I,d I,e I, 10) 
R[3 ]<-test.modeIR( V,c I,d l,e 1,15) 
R[ 4]<-test.modeIR(v,c 1 ,dl,e I ,30) 
R[5]<-test.modeIR(v,c I,d I,e I ,45) 
R[ 6]<-test.modeIR(v,c I,d I,e 1,60) 
R[7]<-test.modeIR(v,cl,dl,eI,90) 
R[8]<-test.modeIR(v,c I,d l,e 1,120) 
R[9]<-test.modeIR( V,C I,d I,e I ,240) 
R[ 1 O]<-test.modeIR(v,c I,d l,e 1 ,360) 
R[ 11 ]<-test.modeIR(v,c I ,dl,e I ,480) 
S[ I ]<-test.modeIS(v,fl,g I,h I ,5) 
S[2]<-test.modeIS(v,fl,g I,h I, I 0) 
S[3]<-test.modeIS(v,fl,g 1 ,hI, 15) 
S[ 4]<-test.modeIS(v,fl,g I,h I ,30) 
S[5]<-test.modeIS(v,fl,g I,h I ,45) 
S[ 6]<-test.modeIS(v,fl,g I,h 1 ,60) 
S[7]<-test.modeIS(v,fl,g I,h I ,90) 
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S[8]<-test.modeIS(v,fl,g I,h 1,120) 
S[9]<-test.modeIS(v,fl,g 1,h 1 ,240) 
S[I O]<-test.modeIS(v,fl,g I,h 1 ,360) 
S[II]<-test.modeIS(v,fl,gI,hI,480) 

fit 1 <-wilcox.test(R,RS,altemative="greater") 
fit2<-wilcox.test(S,RS,altemative="greater") 

if(fitI$p.value<0.05&&fit2$p.value<0.05){ 
ptest<-ptest+ 1 
} 
} 

Step 3.2. Calculate the estimated power using the number of significant p­
values found during the simulation divided by the simulation size. 

powerl <-ptest/sim 

Step 4. Repeat the above procedure to find the upper bound on r. 

power 1 <-0 
power2<-0 
power3<-0 
power4<-0 
power5<-0 
power6<-0 
power7<-0 

p<-O.5 

while(power 1 <0.5&&power2<0.5&&power3<0.5&&power4<0.5&&pow 
er5<0.5&&power6<0.5&&power7<0.5) { 

ptest<-O 
for (i in 1 :sim){ 
RS<-O 
R<-O 
S<-O 
fit 1 <-0 
fit2<-0 
RS[I ]<-test.modell (v,c,y,aI,b 1 ,kI ,wI,x I,z 1 ,5,p) 
RS[2]<-test.modell (v,c,y,aI,b 1 ,kI,w 1 ,xI,z 1,1 O,p) 
RS[3]<-test.modell (v,c,y ,aI,b 1 ,kI,w 1 ,xI,z 1, 15,p) 
RS[ 4 ]<-test.modeII(v,c,y,aI,b 1 ,kI,w 1 ,xl ,zI,30,p) 
RS[5]<-test.modell (v,c,y,aI,b 1 ,kI,w 1 ,xI,z 1 ,45,p) 
RS[6]<-test.modell (v,c,y ,aI,b 1 ,kI ,wI ,xI,z 1 ,60,p) 
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RS[7]<-test.modell(v,c,y,al,bl,kl,wl,xl,zl,90,p) 
RS[8]<-test.modell (v,c,y,al,b l,kl ,wI ,xl ,zl, 120,p) 
RS[9]<-test.model 1 (v,c,y ,al,b l,kl ,wI ,xl ,zl ,240,p) 
RS[10]<-test.modell(v,c,y,al,bl,kl,wl,xl,zl,360,p) 
RS[ 11 ]<-test.modell (v,c,y ,al ,bl ,kl,w I ,xl ,zl ,480,p) 
R[ 1 ]<-test.modeIR(v,cl,d 1 ,el ,5) 
R[2]<-test.modeIR(v,cl,dl,el,10) 
R[3]<-test.modeIR(v,c I,d 1 ,el, 15) 
R[ 4]<-test.modeIR(v,c I,d l,e 1 ,30) 
R[ 5]<-test.modeIR(v,c I,d l,e 1 ,45) 
R[6]<-test.modeIR(v,cl,dl,el,60) 
R[7]<-test.modeIR(v,c I,d l,e 1,90) 
R[8]<-test.modeIR(v,c I,d I,e 1,120) 
R[9]<-test.modeIR(v,cl,dl,el,240) 
R[1 O]<-test.modeIR(v,c I,d l,e 1 ,360) 
R[ 11 ]<-test.modeIR(v,c 1 ,dl,e 1 ,480) 
S[ 1 ]<-test.modeIS(v,fl,g l,h 1 ,5) 
S[2]<-test.modeIS(v,fl,g l,h 1,10) 
S[3]<-test.modeIS(v,fl,g I,h 1,15) 
S[ 4 ]<-test.modeIS(v,fl,g l,h 1 ,30) 
S[ 5]<-test.modeIS(v,fl,g l,h 1 ,45) 
S[ 6]<-test.modeIS(v,fl,g l,h 1 ,60) 
S[7]<-test.modeIS(v,fl,g l,h 1 ,90) 
S[8]<-test.modeIS(v,fl,g l,h 1,120) 
S[9]<-test.modeIS(v,fl,gl,hl,240) 
S[1 O]<-test.modeIS(v,fl,g l,h 1 ,360) 
S[II]<-test.modeIS(v,fl,g I ,hl,480) 

fit 1 <-wilcox. test(R,RS,altemative=" greater") 
fit2<-wilcox.test(S,RS,altemative="greater") 

if( fit I $p.value<0.05&&fit2$p. value<0.05) { 
ptest<-ptest+ I 
} 
} 
power! <-ptestlsim 

Step 5. Using the same logic, find the bounds on r for each subject. 

powerl<-1 
p<-plow 
while(power I = I) { 
ptest<-O 
for (i in I :sim){ 
RS<-O 
R<-O 
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S<-o 
fit! <-0 
fit2<-0 
RS[I ]<-test.rnodell (v,c,y,al,b I,kl,w I,x I,z I ,S,p) 
RS[2]<-test.rnodell (v,c,y,al,b I,kl,w I ,xl ,zl, I O,p) 
RS[3]<-test.rnodell (v,c,y,al,b I ,kl ,wI ,xl ,zl, IS,p) 
RS[ 4 ] <-test.modelI (v,c,y,al,b I,kl,w I ,xl,z I ,30,p) 
RS[5]<-test.modell (v,c,y,al,b I ,kl ,wI ,xl ,zl ,4S,p) 
RS[6]<-test.modell (v,c,y,al,b I ,kl ,wl,x I ,zl ,60,p) 
RS[7]<-test.modell (v,c,y,al,b I ,kl ,wI ,xl,z I ,90,p) 
RS[8]<-test.modell (v,c,y,al,b l,kl ,wi ,xl ,zl, 120,p) 
RS[9]<-test.rnodell (v,c,y,al,b 1 ,kl,w I ,xl,z I ,240,p) 
RS[I 0] <-test.model 1 (v,c,y,al ,b I ,kl ,wl,x I ,zl ,360,p) 
RS[11 ]<-test.rnodell(v,c,y,al,bl,kl,wl,xl,zl,480,p) 
R[ I ]<-test.rnodelR(v,c I,d l,e I ,S) 
R[2] <-test.modelR(v,c I,d I,e I, I 0) 
R[3 ]<-test.modelR( V,c I,d I ,e 1, IS) 
R[ 4]<-test.modelR(v,c I,d I,e I ,30) 
R[ S]<-test.modelR( V,c I,d I ,e I ,45) 
R[ 6] <-test.modelR(v ,cl ,d I ,e 1,60) 
R[7]<-test.modelR(v,c I ,dl ,el ,90) 
R[8]<-test.modelR(v,c I,d I,e 1,120) 
R[9]<-test.rnodelR(v,c I ,dl,e 1,240) 
R[I O]<-test.rnodelR(v,c I,d I,e 1 ,360) 
R[ II ]<-test.rnodeIR(v,c I,d I,e I ,480) 
S[I ]<-test.modelS(v,fl,g l,h 1 ,S) 
S[2]<-test.modelS(v,fl,g I,h I, I 0) 
S[3]<-test.modeIS(v,fl,gl ,hi, 15) 
S[ 4 ]<-test.modelS(v,fl,g I,h I ,30) 
S[ 5]<-test.modeIS(v,fl,g I,h I ,45) 
S[6]<-test.rnodeIS(v,fl ,gl ,hI ,60) 
S[7]<-test.modeIS(v,fl,g I,h I ,90) 
S[8]<-test.modeIS(v,fl,g I ,hI, 120) 
S[9]<-test.rnodeIS(v,fl ,gl ,hI ,240) 
S[ I O]<-test.rnodelS(v,fl,g I,h I ,360) 
S[ll]<-test.modelS(v,fl,gl,hl,480) 

fit I <-wilcox.test(R,RS,altemative="greater") 
fit2<-wilcox.test(S,RS,altemative="greater") 

if(fitl$p.value<0.05&&fit2$p.value<0.05){ 
ptest<-ptest+ 1 
} 
} 
power! <-ptestlsim 
p=p+O.OI 
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} 
plow 1 <-p-O.O 1 

power 1 <-0 
p<-pup 
while(powerl <O.S){ 
ptest<-O 
for (i in 1 :sim){ 
RS<-O 
R<-O 
S<-o 
fit 1 <-0 
fit2<-0 
RS[I]<-test.modell(v,c,y,al,bl,kl,wl,xl,zl,S,p) 
RS[2]<-test.modell (v,c,y,al,b 1 ,kl,w 1 ,xl ,zl, 1 O,p) 
RS[3]<-test.modell(v,c,y,aI,b 1 ,kl,wl ,xl ,zl, IS,p) 
RS[4]<-test.model 1 (v,c,y,al ,b 1 ,kl ,wI ,xl ,zl ,30,p) 
RS[ S]<-test.modell (v,c,y,a l,b 1 ,kl,w l,x l,z 1 ,4S,p) 
RS[6]<-test.modell(v,c,y,al,bl,kl,wl,xl,zl,60,p) 
RS[7]<-test.modell (v,c,y,al,b 1 ,kl,w 1 ,xl,z 1 ,90,p) 
RS[8]<-test.modell (v,c,y ,al,b 1 ,kl ,wI ,xl ,zl, 120,p) 
RS[9]<-test.modell (v,c,y ,al,b l,kl ,wI ,xl ,zl ,240,p) 
RS[1 O]<-test.modell (v,c,y,al,b 1 ,kl,w 1 ,xl ,zl ,360,p) 
RS[11 ] <-test.model1 (v,c,y,al,b I ,kl ,wI ,xl ,zl ,480,p) 
R[ 1 ]<-test.modeIR(v,c I,d l,e 1 ,S) 
R[2] <-test.modeIR(v,c I,d I ,el, 10) 
R[3]<-test.modeIR(v,c I,d l,e 1, IS) 
R[ 4 ]<-test.modeIR(v,c 1 ,dl,e 1 ,30) 
R[S]<-test.modeIR(v,c 1 ,dl ,el ,4S) 
R[6]<-test.modeIR(v,c I,d 1 ,el ,60) 
R[7]<-test.modeIR(v,c I,d l,e 1,90) 
R[8]<-test.modeIR(v,c I,d l,e 1,120) 
R[9]<-test.modeIR(v,c I,d l,e 1 ,240) 
R[ 1 O]<-test.modeIR(v,c I,d l,e 1 ,360) 
R[ 11 ]<-test.modeIR( V,c I,d l,e 1,480) 
S [1 ]<-test.modeIS( v,fl,g l,h 1 ,S) 
S[2]<-test.modeIS(v,fl,g l,h 1,10) 
S[3]<-test.modeIS(v,fl,g l,h 1, IS) 
S[ 4]<-test.modeIS(v,fl,g l,h 1 ,30) 
S[S]<-test.modeIS(v,fl,g l,h 1 ,4S) 
S[ 6]<-test.modeIS(v,fl,g l,h 1 ,60) 
S[7]<-test.modeIS(v,fl,g l,h 1 ,90) 
S[8]<-test.modeIS(v,fl,g 1 ,hI, 120) 
S[9]<-test.modeIS(v,fl,g l,h 1 ,240) 
S[1 O]<-test.modeIS(v,fl ,gl,h 1,360) 
S [11 ]<-test.modeIS( v,fl,g l,h 1 ,480) 
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fit 1 <-wilcox. test(R,RS,altemative=" greater") 
fit2<-wilcox.test(S,RS,altemative="greater") 

if(fitl$p.value<O.05&&fit2$p.value<O.05){ 
ptest<-ptest+ 1 
} 
} 
power 1 <-ptestlsim 
p=p-O.Ol 
} 
pup 1 <-p+O.O 1 

Step 6. Gather results for all subjects and report. 
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Algorithm 4. Synergy Test in R 

Step 1. Set initial values and input data. 

P<- .25 
Rl<-O 
SI<-O 
RS1<-0 
Rl<-scanO 
918122628312433292317 
SI<-scanO 
9 182633394652375461 66 

Step 2. Calculate combination dose data set. 
for(i in 1: 11){ 
RS 1 [i]<-P*(RI [i]+S 1 riD 
} 
RSI 

Step 3. Run WILCOX. TEST procedure. 

wilcox. testeR 1 ,RS 1 ,altemative=" greater") 
wilcox.test(S 1 ,RS 1 ,altemative=" greater") 

Step 4. Gather results for all subjects and report. 
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