
UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

1990

Linda Implementations Using Monitors and
Message Passing
Alan L. Leveton
University of North Florida

This Master's Thesis is brought to you for free and open access by the
Student Scholarship at UNF Digital Commons. It has been accepted for
inclusion in UNF Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more information, please
contact Digital Projects.
© 1990 All Rights Reserved

Suggested Citation
Leveton, Alan L., "Linda Implementations Using Monitors and Message Passing" (1990). UNF Graduate Theses and Dissertations. 365.
https://digitalcommons.unf.edu/etd/365

http://digitalcommons.unf.edu
http://digitalcommons.unf.edu
https://digitalcommons.unf.edu
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu

LINDA IMPLEMENTATIONS
USING MONITORS AND MESSAGE PASSING

by

Alan L. Leveton

A thesis submitted to the
College of Computer and Information Sciences

in partial fulfillment of the requirements for the
degree of

Master of Science in Computer and Information Sciences

UNIVERSITY OF NORTH FLORIDA
COLLEGE OF COMPUTER AND INFORMATION SCIENCES

December, 1990

The thesis "Linda Implementations Using Monitors and Message
Passing" submitted by Alan L. Leveton in partial fulfillment
of the requirements for the degree of Master of Science in
Computer and Information Sciences has been

App
Date

Thesis Adviser and Committee Chairman

Accepted for the College of Computer and Information
Sciences:

Accepted for the University:

Vice-President for Academic Affairs

ii

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

ACKNOWLEDGEMENT

Naturally, nothing of this magnitude is accomplished

without the tolerance and patience exerted by Lajeanne,

Josh, and Mike.

iii

CONTENTS

List of Figures .vi

Abstract

Chapter 1:

.vii

Introduction

1.1 Thesis Organization

1.2 Problem Review

1. 2.1

1. 2. 2

Linda Background

Problem Description

1.3 Literature Review

Chapter 2: Methods and Procedures

2.1 Background

2.1.1 Monitors

2.1.2 Message Passing

2.2 Interface

2.3 Basic Design for Monitors

2.4 Basic Design for Message

Model

Passing

.......
Model

2.5 Design Considerations
2.6 Detailed Design

2.6.1 Monitors Model
2.6.2 Message Passing Model

2.7 Demonstration and Applicability
2.7.1 Primes Finder I
2.7.2 Primes Finder II
2. 7. 3 Primes Finder III
2.7.4 Semigroups Problem

iv

1

1

1

1

6

8

12

12

12

14

15

19

24

27

29

29

36

40

41

42

43

45

Chapter 3: Recommendations and Conclusion ...•.......... 49

3.1 Recommendations for Future Enhancement 49

3. 2 Evaluation . 50

References . 52

Appendix A: Monitors Model Program Listing •............. 54

Appendix B: Message Passing Model Program Listing 70

Appendix c: Test Cases . 8 6

Vita ... 109

v

FIGURES

Figure 1: A Tuple Structure in the Monitors Model ..•.... 20

Figure 2: Communication in Message Passing Model 24

Figure 3: Prime Finders Test Results••.......• 43

Figure 4: Semigroups Problem Test Results•.......•. 47

vi

ABSTRACT

Linda is a new parallel programming language that is built

around an interprocess communication model called generative

communication that differs from previous models in

specifying that shared data be added in tuple form to an

environment called tuple space, where a tuple exists

independently until some process chooses to use it.

Interesting properties arise from the model, including space

and time uncoupling as well as structured naming. We

delineate the essential Linda operations, then discuss the

properties of generative communication. We are particularly

concerned with implementing Linda on top of two traditional

parallel programming paradigms - process communication

through globally shared memory via monitors, and process

communication in local memory architectures through the use

of message passing constructs. We discuss monitors and

message passing, then follow with a description of the two

Linda implementations.

vii

1.1 Thesis Organization

Chapter 1

INTRODUCTION

Chapter 1 reviews the basic problem and the current research

in tuple space coordination of parallel processes. Chapter

2 delineates our plan of attack: a background of the

monitors and message passing paradigms that support our

Linda implementations; a high-level design description; and

those fundamental choices that influenced the design from

the onset. We then present enough of the detailed design to

allow the interested reader to judge, modify or enhance the

implementations as he sees fit. Chapter 2 concludes with a

description of four test cases: three variations on prime

number generation and a parallel Linda solution to a

semigroups problem. Finally, in Chapter 3 we evaluate the

effort and conclude with recommendations for enhancement of

the Linda model.

1.2 Problem Review

1.2.1 Linda Background

The abstract environment called tuple space forms the basis

of Linda's model of communication. A process generates an

- 1 -

object called a tuple and places it in a globally shared

collection of ordered tuples called tuple space.

Theoretically, the object remains in tuple space forever,

unless removed by another process [CAR89].

Tuple space holds two varieties of tuples. Process or

'live' tuples are under active evaluation, incorporate

executable code, and execute concurrently. On the other

hand, data tuples are passive, ordered collections of data

items. For example, the tuple ("mother","age",56) contains

three data items: two strings and an integer. A process

tuple that is finished executing resolves into a data tuple,

which may in turn be read or consumed by other processes

[CAR89A].

Four operations are central to Linda: out, in, rd and eval.

Out(t) adds tuple t to tuple space. The elements of t are

evaluated before the tuple is added to tuple space [AHU86].

For example, if array[4] contains the value 1 10 1 ,

out("sum",2,array[4]) adds the tuple ("sum",2,10) to tuple

space and the process continues immediately.

In(m) attempts to match some tuple t in tuple space to the

template m and, if a match is found, removes t from tuple

space. Normally, m consists of a combination of actual and

formal parameters, where the actuals in m must match the

actuals in t by type and position and the formals in m are

- 2 -

assigned values in t [AHU86]. Thus, given the tuple noted

above, in("sum",?i,?j) matches "sum", assigns 2 to i, 10 to

j, and the tuple is removed from tuple space. Rd is similar

to in except that the matched tuple remains in tuple space.

Unlike the other operators, the executing process suspends

if an in or rd fails to match a tuple.

Eval(t) is similar to out(t) with the exception that the

tuple argument to eval is evaluated after t is added to

tuple space. A process executing eval creates a live tuple

and continues. In creating the active tuple, eval

implicitly spawns a new process that begins to work

evaluating the tuple [CAR89A]. For example, if the function

abs(x) computes the absolute value of x, then eva1("ab",-

6,abs(-6)) creates or allocates another process to compute

the absolute value of -6. Once evaluated, the active tuple

resolves into the passive tuple ("ab",-6,6) which can now be

consumed or read by an in or rd. Eval is not primitive in

Linda and is actually constructed on top of out and provides

Linda with a mechanism to dynamically create multiple

processes to assist in a task. Implementations of Linda

exist that do not recognize the eval operation [AHU86],

including a network model based on worker replication - n

nodes are given n copies of a program, thereby obviating the

need for dynamic process creation.

- 3 -

Tuple members are usually simple data types: characters,

one-dimensional strings, integers, or floats. In some Linda

implementations tuples can include more complex data types

(e.g., integer arrays) [CAR89A]. These data structures are

removed from or added to tuple space just like the more

fundamental types.

Operations which insert or withdraw from tuple space do so

atomically. In theory, nondeterminism is inherent - it is

assumed that the tuples are unordered in tuple space so

that, given a template m and matching tuples tl, t2 and t3,

it can not be determined which tuple will be removed by

in(m) [GEL85]. In practice, implementations of tuple space

fall short of pure nondeterminism - some ordering is

inescapable but remains implementation dependent. It is in

the spirit of Linda programming not to presuppose any

ordering of tuples in the underlying mechanism. Sequencing

transactions upon tuple space is facilitated using a

sequencing key as an additional tuple element [LEL90], a

method employed to program distributed arrays in Linda.

Thus the ith element of vector "A" is accessed via

in("A",i,<some_number>)

while the ith + 1 element is added to tuple space with

out ("A", i+l, <some_number>)

We avoid the need for sequencing keys if some ordering of

tuples is guaranteed in an implementation, but not without

- 4 -

costs - a programmer must be aware of the internal ordering

mechanism, and the implementation loses orthogonality.

Several properties distinguish Linda. Generative

communication simply means that a tuple generated by process

pl has independent existence in tuple space until removed by

some process p2. This property facilitates communication

orthogonality because a receiver has no prior knowledge
'~

about a sender and a sender has none about the receiver -

all communication is mediated through tuple space. Spatial

and temporal uncoupling also mark Linda. Any number of

disjoint processes may input tuples and tuples added to

tuple space by out remain in tuple space until removed by in

[GEL85].

A property called structured naming deserves special

consideration. Given the operations out(tl) and in(ml), all

actuals in tl must match the corresponding actuals in ml for

matching to succeed. The actuals in tl constitute a

structured name or key and, loosely speaking, make tuple

space content addressable. For example, if ("sum",l0,9) is

a tuple in tuple space, then the success of the operation

in("sum",?x,lO) is predicated upon the structured name

["sum",lO]. We are reminded both of the restriction

operation in relational databases and instantiation in logic

languages [GEL88]. The structured name should not be

confused with the logical name, which is simply the initial

- 5 -

element in a tuple and must be an actual of any type. If nl

is the logical name in template ml, and if any tuple in

tuple space with nl as the first element successfully

matches ml, then nl is said to be a single non-unique key.

Restricting the key to a single element reduces search time

if hashing is used to implement tuple space [LEL90]. In

many of the examples that follow, the logical name is used

as the key.

While Linda is best suited to building distributed data

structure programs involving many worker processes attacking

the structure simultaneously, it also works well with more

traditional methods of employing parallelism [AHU86].

Furthermore, because it is a high-level programming tool,

Linda can model both the shared memory as well as message

passing style of programming regardless of the underlying

architecture [LEL90].

1.2.2 The Problem

It was our desire to implement two versions of Linda - one

to take advantage of a shared memory architecture, the other

to utilize the resources of networked machines, offering an

advantage in portability. Each implementation is based upon

a different programming model. An abstract data structure

called a monitor synchronizes access to shared data in

shared memory architectures, whereas processes in disjoint

- 6 -

memory space communicate through message passing operations

[BOY87].

Although shared memory seems a natural for tuple space,

some means is required to make the operations on tuple space

atomic. During the brief moment in which a process either

places a tuple into tuple space or consumes a tuple, the

process must be assured of being the sole process operating

on the data. Monitors provide a coherent means to protect

tuples from simultaneous access by processes executing in

parallel. We developed the monitors model on an eight

processor Sequent Balance 8000, a shared memory multi

processing machine.

The message passing programming model provides a means for

disjoint, loosely coupled processes to communicate solely

through messages and is used to implement Linda in two

environments: a shared memory machine that supports message

passing primitives and a group of workstations that

communicate over a local area network. We used an Ethernet

network of Suns for the workstation environment, while the

Sequent provided an excellent test bed for both

implementations because it also support message-passing

primitives.

Both programming paradigms are high level abstractions in

themselves and provide an intelligent means to construct

- 7 -

parallel programs in diverse environments. The challenge

was to bootstrap the approaches to a higher level of

abstraction - that of the Linda model.

1.3 Literature Review

Boyle and others recognized the need for a set of portable

tools to aid in parallel programming and describe their

operation and applicability in several programs [BOY87].

Three multiprocessing paradigms are supported: (1) shared

memory multiprocessors; (2) a set of processors that

communicate solely through messages (typically, a

multiprocessor that does not support shared memory, or a

group of workstations that communicate over a LAN); (3)

communicating clusters - sets of large multiprocessing

machines that communicate via message passing. The tools

that support these paradigms achieve portability by hiding

machine dependent details behind convenient macros (later,

as their package evolved, the authors converted the macros

to less cryptic functions) .

Many of the properties of Linda were first described in

[GEL85]. Gelernter introduces generative communication,

which he argues is sufficiently different from the three

basic kinds of concurrent programming mechanisms of the time

(monitors, message passing, and remote operations) as to

make it a fourth model. It differs from the other models in

- 8 -

requiring that messages be added in tuple form to the

environment called tuple space where they exist

independently until a process chooses to receive them.

Generative communication became the basis for Linda,

originally developed for the SBN network computer.

Gelernter further elucidates the structured naming rules for

tuples and some additional distinguishing properties -

communication orthogonality, space uncoupling, time

uncoupling, distributed sharing, and free naming.

Carriero and others describe a Linda implementation designed

at AT&T Bell Laboratories on the S/Net multicomputer

[CAR86]. Of interest is the manner in which tuple space is

implemented. Upon executing out(t), tuple tis broadcast to

every node in the network, thus imposing a copy of tuple

space on each node and forcing a delete protocol to handle

in's. If a matching tuple is found locally, an attempt is

made to delete t across the entire network. All nodes must

receive the delete message, and only one process attempting

a deletion will succeed. The overhead to accomplish this

protocol is surprisingly inexpensive because the nodes

communicate over a fast, word-parallel bus. The costly

storage requirements of replicated tuple space have spawned

variations on the S/Net kernel. One attempt stores generated

tuples locally and broadcasts templates to all nodes, a

scheme which avoids the replication problem [CAR86].

- 9 -

Throughout the literature, the hardware usually dictates the

complexity of the software implementations of Linda. Tuple

space has an affinity with the notion of shared memory, so

a Linda kernel for the Encore Multimax results in a simpler

design than the 8/Net or the Intel iPSC described in

[AHU86]. Tuple space is implemented on the Intel as a

distributed hash table where different hash bins are mapped

to different nodes. Efforts are underway for Linda support

in hardware that may overcome the communications overhead

which results in a significant bottleneck as the number of

nodes scales up.

The Linda Machine improves upon the software implementations

in several respects [AHU88]. Each node in its processor

grid has two parts, so internode communication is offloaded

from the computation part to a Linda coprocessor which also

serves as tuple storage manager. Furthermore, the

architecture supports the peculiar semantics of tuples

themselves, while a uniform distribution scheme across

broadcast busses improves communication performance.

Finally, the work at Cogent Research takes the leap from

applications programming to a version of Linda designed for

system-level programming as the IPC for a parallel operating

system [LEL90]. Their version of Linda, called Kernel

Linda, supports multiple tuple spaces (discussed in Chapter

3) and language-independent data types. QIX, the name given

- 10 -

to their parallel, server-based operating system, is similar

to Mach, except that QIX is based on Kernel Linda.

- 11 -

2.1 Background

Chapter 2

METHODS AND PROCEDURES

Before proceeding to interface and design details, we

explain the notion of monitors and message passing that

sustain our two Linda models. Boyle et al. [BOY87]

originally implemented t~ese abstract structures in a set of

tools (hereafter called the P4 package) that werB

successfully developed for an automated reasoning system at

Argonne National Laboratories. Eventually, they found wider

applicability over a variety of architectures. For a

detailed description of the algorithms see [BOY87].

2.1.1 Monitors

Programming multiprocessors in which processes can

communicate with one another via globally shared memory

requires that shared objects must be protected against

unsafe concurrent access. One approach to programming such

systems involves the use of an abstract data type called a

monitor to synchronize access to shared objects. Monitors

coordinate efficient use of locking mechanisms to guarantee

exclusive access to shared resources and protect critical

sections of code at any one time. They are responsible for

- 12 -

suspending processes that wish to enter the monitor

prematurely, and releasing processes blocked on the

condition queue when the resource is free and use of the

monitor relinquished.

[BOY87] describes an implementation of monitor operations in

terms of the following primitives:

(1) menter(<monitor-name>) - grants exclusive control
of the monitor to a process.

(2) mexit(<monitor-name>) - relinquishes exclusive
control.

(3) delay(<monitor-name>,<queue>) - suspends the
process executing the delay and releases control
of the monitor.

(4) continue(<monitor-name>,<queue>) - the process
executing continue exits the monitor and awakens
one of the processes in <queue>, which continues
execution at the point where it was previously
delayed.

P4's create and g_malloc (a shared memory version of C's

malloc function) provide two other necessary mechanisms -

process creation and shared memory allocation.

P4 includes high-level operations built on top of the low

level primitives described above. One special-purpose

mechanism is called the askfor monitor. A common pattern in

multiprocessing, sometimes called agenda parallelism

[CAR89AJ, focuses on a list of tasks to be performed and is

epitomized in the master-worker paradigm. A master process

initializes a computation and creates worker processes

capable of performing, in parallel, a step in the

computation. Workers repeatedly seek a task to be

performed, perform the task, and continue to seek tasks

- 13 -

until an exhaustion state is reached. The askfor monitor

manages just such a pool of tasks and is invoked with

askfor(<monitor-name>,<number-of-processes>,
<get-problem>,<task>,<reset>)

where monitor-name is the name of the monitor, number-of-

processes is the number of processes that share the task

pool, get-problem is a user-defined function that provides

the logic required to remove a task from the pool, task is

the actual piece of work removed from the pool, and reset is

the logic required to reinitialize the pool. Askfor

includes the logic required to delay and continue processes

if tasks cannot be taken from the pool. A set of support

functions include probend and progend. Of special interest

is progend, which signals program termination to all active

processes. The peculiar use of two such askfors in our

shared-memory implementation is introduced in section 2.3.

2.1.2 Message Passing

Message passing is the most widespread method for

coordination of cooperating processes. In message passing,

we create parallel processes and all data structures are

maintained locally. Processes do not share physical memory,

but communicate by exchanging messages. Processes must send

data objects from one process to another through explicit

send and receive operations. For algorithms that can be

formulated as such, the P4 package includes the following

primitives:

- 14 -

send(<id>,<type>,<size>)
receive_any(<id>,<type>,<size>)

where id is the process identification of the intended

recipient of the message (for send) or the process id of the

sender (for receive any), type is the message type, and size

is the length of the message. The message type actually

points to a structure in which the message is 'packetized'

and must be of a consistent specified format across all

nodes that use the particular message type. Sendr (send

with rendezvous), an alternative to send, forces the sending

process to suspend until it receives acknowledgement from

the recipient.

Two procedures are used to create processes in P4. While

create is used to create processes in the shared memory

implementation, create_procgroup is used to develop a

network of processes (a process group) that communicate via

messages.

2.2 Interface

Linda operations must adhere to a strict format in our

implementations. The range of valid data types for tuples

include integers, one-dimensional strings, floats (doubles),

and aggregates (arrays of any of the other types). A format

string or mask, typical for many 'C' functions that take

variable length arguments (e.g., printf), must be present

as the first argument to any of the Linda operations and is

- 15 -

not to be confused with the tuple elements themselves. The

value of each element is formatted according to the codes

embedded in the mask. For simple actuals (actuals that are

not aggregates), the mask format specification is <%Type>,

where Type is d (integer), f (double), or s (string). For

aggregates the format specification is <:Type>. The Linda

operations must distinguish between actuals and formals;

thus a different type separator is used for simple formals:

<?Type>, where type is again d, f, or s. Another

restriction is that the first tuple element (the logical

name) must be a string or integer actual.

out is exemplified in the following code:

func ()
{

}

inti, num, big(10];
int size = 10;
char buf(20],mask(20];

num = 100;
strcpy(buf,"anything");
for(i=O;i<20;i++)

big[i] = i;

strcpy(mask,"%s%s%d:d");
out(mask,"key",buf,num,big,size);

All tuple arguments to out are actuals, a necessary

limitation of our model. Furthermore, the tuple contains

one more element than type identifiers because aggregates

require an integer dimension following the array name. When

the parser recognizes the aggregate type separator, it

automatically pops the dimension (size) off the argument

stack.

- 16 -

Given the same declarations and assignments, when executing

in("%s?s?d:d","key",buf,&num,big,&size)

the parser interprets all arguments as formals, except the

key. Since all formals are addresses of c variables,

ampersands are required for the integers (names for strings

and arrays are the addresses for these types). Note that

the first tuple argument is the only one used for matching

criteria. If we execute

in("%s?s%d:d","key",buf,2,big,&size)

then the structured name ["key 11 ,2] is used as matching

criteria. One may wonder why the type separator for an

aggregate formal (:) is the same as its actual counterpart.

In our implementation, aggregate arguments to rd and in are

restricted to formals and no distinguishing specifier is

necessary.

Eval takes two arguments - a key and a pointer to a

function. Any arguments to the function are passed via out

and retrieved with in. A discussion of the constraints on

our implementation of this operator is deferred until

section 2.3.

A Linda program is not complete without requisite

initialization and termination routines. Mon linda init

intializes the monitors, creates the process pool, and sets

up the environment. It take three arguments: PROCS, · argc

and argv. PROCS is a user-defined constant in mon linda.h

- 17 -

and should be set to an optimum number of processes. One of

the initialization procedures uses PROCS to create the

process resource for eval. The termination routine

mon linda end flushes the monitors and facilitates graceful

termination of processes.

Initialization and termination routines for the message

passing model are, respectively, sr linda init and

sr linda end. The number of processes is not required as a

parameter to the initialization function because it is

defined separately with create_procgroup, which reads a

"process group" file that contains the following fields:

1. the name of a remote machine on which slave
processes are to be created.

2. the number of slaves that are to be created
and share memory on the remote machine (since
we make no use of the cluster model, this field
defaults to 1.

3. the full path name of the slave program.

Each model requires a header file that declares the

structures common to all processes. Both sr linda.h and

mon linda.h allow for modification of the constant

HANGER_SIZE, which defines the size of a string buffer used

to store simple formals and actuals. The default size is

100 bytes, but the maximum size of a tuple is actually

program dependent. If a tuple includes a large number of

non-aggregate members or very large strings, this constant

requires modification. Aggregates are dynamically allocated

- 18 -

in the monitor's model, but in the message passing ~odel

they are defined with a fixed maximum size. The definition

of AGG SIZE in sr linda.h should scale with the expected

aggregate size (the default is 300 bytes). If no aggregates

are used, the programmer should set AGG SIZE to one,

minimizing communication overhead.

2.3 Basic design for the shared-memory implementation.

Tuples are stored in shared memory as self-contained data

structures. The representation of tuples includes not only

data, but also typing information required for matching and

retrieving the tuple. The first element of the tuple

structure, called the hanger, contains the data - formals or

actuals that constitute the tuple. The tuple mask is the

second element and contains the typing information required

to process the tuple.

Given the type mask "%s%d:d", and the statement

out("%s%d:d","key",10,array,5}

where array points to some local array of length 5 with

elements (1 .. 5), Figure 1 shows what the four element tuple

looks like when stored in shared memory. Note that all

elements are actuals, a necessary restriction placed on out

in our implementation. Actuals that are integers, floats, or

simple strings are copied into the hanger. For actuals that

are aggregates, a global copy is made and a pointer to the

- 19 -

mask

%s%d:d I
tuple hanger

structure

I 10 I * I 5 I key

aggregate I 20 I 1 I 2 I 3 I 5 I 5 I
I I SlZe

aggregate data

Figure 1: A tuple in shared memory.

copy is stored in the tuple hanger. The tuple structure is

hashed into any one of 256 linked lists. These hash lists,

in their entirety, are at any time the physical embodiment

of tuple space.

The four basic Linda operations are implemented as functions

in the shared-memory model. A single monitor protects two

resources: a queue of unevaluated functions and the linked

list representation of tuple space. Two asfors control

respective access to tuple space and process-to-task

initiated by eval.

out is relatively easy to process. A statement of the form

out(mask,arg1,arg2, ... argN) invokes a function which

examines each argument for its type based on the relative

position in mask. The mask informs the function how to build

- 20 -

the hanger. All that remains is to claim access to the

monitor with menter, link the tuple structure to the

appropriate hash list, and relinquish the monitor with

continue. Continue is preferred over mexit because it

releases a suspended process from the monitor's delay queue.

The activated process is now free to reexamine 'tuple space

for a matching tuple.

In and rd are more complicated because a process must

suspend if no tuple matching occurs. A statement of the form

in(mask, arg1, arg2 .. argN), where the arguments are a

collection of actuals and formals, invokes a function that

constructs a local template based on typing information in

mask. The process must now gain exclusive access to the

tuple space monitor to search for a matching tuple. Neither

menter nor mexit will help us here because we need some

means to obtain a task (a matched tuple) from a task pool (a

linked list of tuple structures), but block if none is

found. The askfor monitor provides the answer. Remember

that one of the parameters to askfor is <get-problem>, a

pointer to a routine whose purpose is to return a task from

a pool of work. In our case that routine includes the

following logic:

(1) search the appropriate hash list for a
matching tuple.

(2) if a match is found, delete the tuple struc
ture from the hash list and return success to
askfor.

(3) if no match is found, return failure to askfor.

- 21 -

Two characteristics of askfor are crucial to the Linda

operations. If a match is found, the matched tuple is

returned in <task>, another of the parameters to askfor. If

no match is found, the askfor monitor automatically delays

the process on a monitor queue. Rd initiates a similar

process, except that the tuple structure is not deleted from

the hash list.

Eval's basic design is best explained by example. Suppose

we have defined the a function to compute the number of

primes within the range 2 to x. If primes is a pointer to a

function, eval("some_tag",primes) spawns a process that

calls the function. Arguments to the function are passed

via tuple space - the process executing the eval adds the

arguments to tuple space; the process allocated by eval

removes the arguments from tuple space. The example is

coded in our system as

main ()
{

}

int primes();

I* masks are omitted for
convenience *I

out("prime arg",3);
eval("some-tag",primes);
I* collect-primes *I

primes ()
{

}

int i,result;

in ("prime_ arg", i)
I* compute the result *I
out("some_tag",result);

- 22 -

With these restrictions in mind, the design of eval only has

to consider allocating processes to unevaluated functions.

A separate askfor is used to this end. Eval is basically a

three step operation: enter the evaluation monitor, add the

function name to the pool of tasks (a linked list of

pointers to functions), and exit the monitor. Note that we

have slightly altered the traditional semantics of eval.

Heeding the caveat, process creation is not cheap, we

decided to create n processes up front where n is the user

provided argument (PROCS) to mon_linda_init. This permits

us to "reuse" processes rather than repeatedly create them.

The initialization function uses P4 1 s create, which spawns a

new process that begins execution at a procedure with a

twofold purpose: invoke an askfor that manages the

assignment of unevaluated functions to available processes,

and then invoke the function retrieved from the pool. The

<get-problem> parameter to askfor pops the function off the

list and returns the pointer to the function in <task>. If

there are no functions on the list, the process delays.

Processes continue to attack the pool of functions until the

main procedure invokes progend, signalling an exhaustion

condition.

- 23 -

master

tuple space
manager

slave

out("name",3)

(name,l)

(name,2)

(name,3)

in("name",?x) I

Figure 2: Communication mediated through the
tuple space manager.

2.4 Basic Design for the Message-Passing Implementation

A Linda model based on message passing requires a minimum of

three processes: a master process to initialize the

environment, at least one slave process to assist in doing

work, and a process to act as tuple space manager. All

communication between the master process and the slaves is

mediated through Linda operations and tuple storage handled

by the manager. Figure 2 depicts a master process

communicating a tuple to a slave process through the tuple

space manager.

- 24 -

Tuples are stored as structures in the local memory of the

tuple space manager. A tuple structure includes the

following elements: a mask contains the typing information;

the hanger contains the data corresponding to simple data

types; a type identifier indicates whether a request is IN,

RD, or OUT; size identifiers store the tuple and aggregate

lengths; and a separate area stores aggregate data. Note

that all data, including aggregates, are copied into the

tuple structure's data areas - pointer storage is

meaningless in disjoint memory space. Once again, a tuple

structure is hashed into any one of 256 linked lists. A

similar structure, which we call the tuple channel, serves

as the primary message type through which processes

communicate tuple information to the tuple manager.

The initial steps of in and rd require argument examination

and template construction. The tuple channel is used to

send the template to the tuple space manager and to receive

the actual tuple from tuple space. The two statements

send(manager id,tuple channel,size)
receive_any(Id,tuple_channel,size)

not only communicate a matched tuple to the process

executing the in or rd, but suspend the process until a

match is found. A process retains a copy of the template,

and defers the assignment of actuals to formals until

receiving a matched tuple. Send was preferred to sendr

because the dialogue between a Linda process and the manager

- 25 -

uses self-synchronizing pairs - a send is immediately

followed by a receive_any in any process executing rd or in.

out examines the argument list, populates the tuple channel

and uses send to communicate the information to the tuple

manager. Sendr is unnecessary because the sender does not

require prior knowledge of the process that will ultimately

in or rd the tuple. This is in the spirit of communication

orthogonality, in which the tuple manager plays the role of

mediator.

The tuple manager takes the place of the monitor in the

message passing implementation. It's sole job is to receive

a request on tuple space, process the request dependent on

the tuple type, and iterate. If the tuple type is RD or IN,

the manager searches the appropriate hash list. If a match

is found, data is packed into the tuple channel and returned

to the suspended process. When no match is found the

identity of the requester, the tuple type and the template

are linked to a wait queue. Upon receipt of a tuple of type

OUT, the manager first searches the wait queue, satisfying

all pending requests (there may be several rd's waiting on

the same tuple) until the first matched in is encountered or

the search is exhausted. If no in is encountered, the

information in the tuple channel is copied into a tuple

space structure and linked to the appropriate hash list.

- 26 -

The manager serves requests until it receives a special

tuple of type END which signals termination.

2.5 Design Considerations

We wanted to design a Linda model, not a complete Linda

kernel; hence, the fundamental decision to code the Linda

operations as functions. We were further justified by the

fact that much of what is standard in 'C' (i.e. the library

of I/O functions) are procedures built on top of a minimal

set of instructions and we simply viewed the linda

primitives as an extension of this standard. This decision

resulted in certain limitations on eval and out.

A Linda kernel cited in (CAR89B] allows eval tuples to have

more than two elements. For example, a typical eval may

appear as

eval("key",i,primes(i))

which spawns a process to compute whether or not i is prime.

After the tuple is evaluated, the tuple ("key",i,<result>)

is added to tuple space. In our implementation it is

impossible to defer the evaluation of primes(i) - the

function will return a value prior to process creation.

Instead we use

out("another key",i)
eval ("key" ,primes)

where primes is a pointer to a function and a separate tuple

maps arguments to the function via tuple space. A

declaration of such a function is superfluous and is treated

- 27 -

simply as an integer type, the default in most c

implementations.

With this in mind, we considered two possible implemen

tations for eval in the monitors model. One method

dynamically creates processes as needed: eval("key",func)

invokes create(func). Although successful, indeterminate

calls to eval result in costly process creation overhead.

Instead, we decided on the process queue method discussed

above.

In both models, the arguments to out are restricted to

formals. Some Linda kernels allow for inverse structured

naming, in which formals are permitted as elements in tuple

space. Although the monitors model can be enhanced to

include a restricted form of inverse naming (the formals

would have to be shared variables), without special locators

or distributed pointers this is all but impossible to

implement in a loosely coupled world.

Another fundamental decision affected the implementation of

tuple space in the message passing model. We opted for a

single tuple manager verses a distributed or replicated

tuple space because the latter methods require building fast

deletion and broadcast protocols, an effort beyond the scope

of the project. For an interesting discussion of these

schemes see [CAR86A].

- 28 -

2.6 Detailed Design

Both Linda implementations are coded in c. In the detailed

discussion, key C functions are italicized and explained in

the follow-up discussions. Variables are capitalized for

emphasis. Although we begin with the monitors

implementation, we preserve a common syntax where similar

algorithms carry 'over to the message passing implementation.

Readers not interested in detailed design considerations may

wish to skip the remainder of Chapter 2.

2.6.1 Detailed Design in the Monitor Based Implementation

In, out, and rd initially parse varying length list of tuple

elements through a call to

Parse(Tuple_mask,Type,Buffer,Tuple_list)

where Tuple_mask is the string of type specifiers; Type is a

constant indicating whether the calling function is in, out

or rd; Buffer is a string buffer that will contain the

resultant template (if type is IN or RD) or hanger (if type

is OUT); and Tuple_list is the argument stack. A parse of

the mask yields the type separator and the data type for

each argument on Tuple_list. To parse an integer actual we

use

if(Mask ptr == '%') {
if(Mask ptr[lJ == 'd' {

}

Integer= va arg(Tuple list,int);
sprintf(Token,"%d ",Integer);
strcat(Buffer,Token);

- 29 -

ANSI C's va_arg (and related functions) allows one to

iteratively access the elements of varying length argument

lists, given knowledge of the data type for each element.

c•s sprintf formats and writes the values of c variables to

a string token before it is concatenated to the data buffer.

In and rd require storing address pointers in Buffer for

later actual-to-formal assignment, thus

if(Mask ptr == '?') {
if(Mask ptr[lJ == 'd' {

}

Int ptr = Va arg(Tuple list,int *);
sprintf(Token, "%d ", Int ptr);
strcat(Buffer,Token); -

pops the address of an integer off· the argument stack and

appends it to the buffer. Addresses of all types are

formatted as integers, but are properly recast during

instantiation. The only remaining problem is to process

aggregates. To place an integer array into tuple space we

use

if(Mask ptr == ': ') {
if(Type == OUT) {

}
}

if(Mask ptr[l] -- 'd' {
Int ptr = va arg(Tuple list,int *);
size= va arg(Tuple list,int);
Aggreg ptr = (struct aggregate *)

}

- g malloc((sizeof(Int ptr)
*-size + sizeof(int));

bcopy(Int ptr,&(Aggreg ptr->data),
(sizeof(Int ptr)-* size));

Aggreg ptr->size ~ size;
sprintf(Token,"%d ",Aggreg ptr);
strcat(Buffer,Token); -

Two elements are popped off the argument stack: a pointer to

the array, followed by the number of elements in the array.

- 30 -

G_malloc allocates shared memory for the aggregate

structure, while bcopy copies from one memory buffer (the

array) to another (the aggregate) , an efficient means to

build the data portion of the aggregate structure. If the

operator type is IN or RD, and Mask_ptr points to 'd' (the

aggregate formal is an integer array variable), then a

series of statements of the form

Int ptr = va arg(Tuple list,int *);
Global.size ptr = va arg(Tuple list,int *);
sprintf(Token,"%d ",Int ptr); -
strcat(Buffer,Token); -

places the address of the array formal into the data buffer.

Restricting Linda operations to only one aggregate formal

permits us to place the address of the expected array size

into a global structure.

With parse defined, the code for out is straight forward.

Although a call to out is made with a variable number of

parameters, the function takes the first parameter as its

only argument. Va start sets a pointer to the top of a

stack containing the remaining arguments:

out(Tuple_mask)

va start(Tuple mask,Tuple list);
parse(Tuple mask,Type,Hanger,Tuple list)
stok(Hanger~Key) -
Hashnum = hash(Key)
menter(&((Glob->TS) .m);
[allocate space for space node]
strcpy(Space node->hanger~Hanger);
strcpy(space-node->mask,tuple mask);
[link Space node to tail of linked list of
Space nodes-based on Hashnum]
continue(&((glob->TS),m) ,o);

- 31 -

The buffer constructed in parse is passed to out through

Hanger. Stok take two arguments: a source (Hanger) and a

target token (Key). Stok picks off the first space-

delimited token from the source string and copies it into

the target string. A hashing algorithm suggested by [PEA90]

efficiently maps variable length text strings onto small

integers. The spread of integers is uniform, and

experiments with the function rarely yield collisions.

Menter and continue takes as arguments the address of the

monitor declared in mon linda.h. The monitor is continued

and not strictly exited so that a process blocked on an in

or rd is released from the delay queue before the process

executing out exits the monitor. Since all processes share

the data stored in tuple space, allocation for a space node

uses g_malloc instead of malloc.

In and rd search the list of tuple structures before

matching actuals to formals. The algorithm is as follows:

in(tuple_mask)

va_start(Tuple_mask,Tuple_list);
Type = IN;
parse(Tuple mask,Type,Template,Tuple list);
strcpy(Global.template,Template); -
Global.type = Type;
strcpy(Global.mask,Tuple mask);
Rc = askfor((&(Glob->TS)~Glob->procs,t match,Hanger);
instantiate(Tuple_mask,Template,Hanger);

T match is invoked from within askfor, and passes the

matched data to Hanger from the linked list of Space_nodes.

Before invoking askfor, Template, Type and Tuple_mask are

copied into global storage because any procedure that gets a

- 32 -

problem from the pool (in this case, t_match) is restricted

to only one argument - the address through which a task is

passed to the function executing askfor. The algorithm for

t match follows:

t_match(Hanger)

found = FALSE;
Rc = 1;
stok(Key,Global.template)
Hashnum = hash(Key)
Space node = Tuple space[Hashnum]
while-(!found and Space node !=NULL) {

if match(Space node->hanger,Global.template,
Global.mask)

found = TRUE;
else (get next Space_node in list]

}
if(found) {

strcpy(Hanger,Space node->hanger);
if(Type == IN) -

(deallocate space_node]
Rc = o;

} return(RC);

Match (not shown) returns TRUE if the node hanger matches

the relative actuals embedded in the template. If the search

is exhausted before a match is found, askfor suspends the

process on a monitor queue and returns a -1 in rc. If the

search succeeds, t_match removes the affected structure from

the linked list and frees its memory. Instantiation

reverses the parse and match stages. Whereas t match

compares actuals (the structured name) in a template to

actuals in the candidate hanger, instantiate ignores the

structured name and focuses on formals. Instantiation of an

integer proceeds as follows:

- 33 -

instantiate(Tuple_mask,Template,Hanger)
{

stok(Template tok,Template);
stok(Hanger tok,Hanger);
if(Mask ptr-== '?') {

if(Mask ptr == 'd') {

}
}

sscanf(Template tok, '%d',
&Ptr) ; -

sscanf(Hanger_tok,"%d",Integer);

Int ptr = (int *) Ptr;
*Int_ptr = Integer;

Instantiate does actual-to-formal assignment. During

instantiation sscanf reverses sprintf. It reads characters

from the template, then converts and stores them in C

variables according to the specified format in Tuple_mask.

In the case of formals, sscanf yields an address of a

particular type, and the actual (Hanger_tok) is assigned to

that address. Since any address is buffered as an integer,

it is recast to the necessary type prior to assignment. In

the case of formals that reference aggregates, bcopy is used

to copy the data to a local address referenced in the

template, as shown here:

if(Mask pointer== ': ') {

}

if(Mask pointer is 'd') {
sscanf(Template tok,"%d",&Ptr);
Int ptr = (int *> Ptr;
sscanf(Hanger tok, 11 %d 11 ,&Ptr);
Aggr node = (struct aggregate *) Ptr;
bcopy(&(Aggr node->data) ,Int ptr,

}

sizeof(int) * Aggr node->size);
*Global.size_ptr = Aggr_node->size;

C's sizeof returns the number of bytes for a given type,

which is factored against the aggregate size to determine

- 34 -

the exact number of bytes to be copied. Two assignments are

made for every aggregate instantiation - the data and the

number of elements in the aggregate. We saved the address

of the target array size in a global structure and the last

statement assigns the actual size to this address.

Finally, eval is implemented using a second askfor monitor.

Initially, eval simply stores a pointer to an integer

function in a string buffer. Remember from the discussion

above that one of the parameters to eval is a pointer to the

function to be evaluated. That pointer is linked to a list

of Eval nodes accessible to processes spawned during

initialization:

eval(Tuple_mask)

Eval node = alloc eval node();
strcpy(Tuple mask-;-"%s%d");
!* get tuple-name and function ptr */
Key= va arg(Tuple list, char*);
sprintf(Buffer, "%s-" ,Key);
strcat(Eval node->work,Buffer);
Ptr to IntFunction = va arg(Tuple list,int *);
sprintf(Token,"%d ",Ptr-to IntFunction);
strcat(Eval node->work,Token);
strcpy(Eval-node->mask,Tuple mask);
(enter the monitor -
link Eval node to pool of work
continue the monitor]

During initialization, create receives one argument that is

a pointer to a function and creates a new process that

executes the indicated function (work, described below).

Visualize any new process as hovering around an askfor

monitor in an attempt to retrieve an Eval node from the task

pool:

- 35 -

work ()

Rc = askfor(&(Glob->TS,Num procs,getfunc,Func)

while ((Rc == 0)
{

if (Rc == 0) {

I I
I I (Rc != -1))

Eval node = (struct work struct) Func;
if(Eval node->mask[3J ==-'d') {
sscanf(Eval node->work,"%s%d",Key,

Ptr to-IntFunction)
(*Ptr_to=IntFunction) ();

Rc = askfor(&(Glob->TS,Glob->procs,getfunc,Func)
}

Getfunc, and hence askfor, return success if an Eval node is

successfully removed from the task pool. If a process

enters the monitor and finds no tasks (the list of

Eval nodes in the pool queue is empty), getfunc returns a 1

in Rc, and the process is put on a delay queue. The

function progend (not shown) signals processes delayed in

the askfor monitor that the program has ended and they exit

the monitor with RC set to -1. The function buffered in

Eval node is called without any arguments, as it is

incumbent upon the programmer to out the function arguments

to tuple space prior to invoking eval.

2.6.2 Detailed Design for the Message Passing Implementation

In the message passing Linda model, the algorithms for out,

in, and rd are similar to those in the monitors

implementation. Unlike the previous model, communication

with the tuple space is accomplished through send and

receive operations and tuple space is a local memory manager

- 36 -

of these operations. All operations access the logical

communication channel. A local process feeds the channel as

these essential statements for out show:

out(Tuple_mask)

va start(Tuple list,Tuple mask)
parse(Tuple mask,Type,Hanger,Tuple list)
strcpy(Tuple channel.hanger,Hanger);
strcpy(Tuple-channel.mask,Tuple mask);
Tuple channei.type = OUT; -
[calculate Tuple size]
send(Manager_Id,Tuple_channel,Tuple_size)

Parse differs from its relative in the monitors model only

in how aggregates are handled. In the monitors model, parse

dynamically allocates separate structures for aggregates,

and only stores the address in a hanger. In the message-

passing model, the data and size for an aggregate are part

of the tuple channel, and parser bcopy's directly into the

channel structure. Instantiate also differs from its

relative in the monitors model - it takes one less argument

because the data used for actual-to-formal assignments are

accessed via the channel structure, as these statements for

in show:

in(Tuple_mask)

va start(Tuple list,Tuple mask)
parse(Tuple mask,Type,Template,Tuple list)
strcpy(Tuple channel.hanger,Template);
strcpy(Tuple-channel.mask,Tuple mask);
Tuple channei.type = IN; -
[calculate Tuple size]
send(Manager Id,Tuple structure,Tuple size);
receive(Manager Id,Tuple channel,Tuple size);
/* Tuple channel.hanger now has actuals

for instantiation */
instantiate(Tuple_mask,Template);

- 37 -

The process immediately blocks after a send until receive is

satisfied. In and rd are identical on the master and slave

processes, differing only in how the tuple manager processes

them. The main module for the tuple manager includes

receive(Proc id,Tuple channel,Tuple size)
while(Tuple channel.type != END) { -

if(Tuple_channel.type == IN l l
Tuple channel.type == RD)
serve-in or rd(Proc id,Tuple channel.type,

- - - Tuple size);
else if(Tuple channel.type == OUT)

if(! (check wait(Proc id,Tuple size)))
serve-out(Proc Id,Tuple size);

receive(Proc_id~Tuple_channel,Tupie_size)

The manager receives and processes tuples until sr_linda_end

transmits a terminal tuple channel with tuple type set to

END. We present the algorithm for serve out:

serve_out(Proc_id,Tuple_size)

stok(Key,Tuple channel.hanger)
Hashnum = hash(key)
[allocate space for a Space node]
[copy all elements of Tuple-structure into
Space node] -

[link Space_node to the tail of the Space_queue]

Serve out uses the same hashing algorithm as that found in

the monitors model. As will be shown below, an out'd tuple

is not always hashed directly into a tuple space list. If

there are pending in's or rd's, check_queue processes newly

arriving tuples. But first, we present the algorithm for

serve in or rd:

serve_in_or_rd(Proc_id,Type,Tuple_size)

stok(Key,Tuple channel.hanger);
hashnum = hash(Key);
Space node= Tuple space[hashnum];
found-= FALSE; -
while(!found && Space node !=NULL)

if(match(tuple_channel.hanger,Space_node->hanger,

- 38 -

tuple channel.mask))
found =-TRUE;

else (get next Space_node in list]

if(found) {

}

if(Tuple channel.type == IN)
[delete Space node from list]

(copy elements of Space node into Tuple channel]
send(Proc id,Tuple channel,Space node.tuple size)
free(Space_node) - - -

else { /* put on a wait queue */
[allocate space for a Wait node]
(Copy elements of Tuple channel into Wait_node]
Wait node->id = Proc id-
[Link the Wait node to the tail of the

Wait_queue]

If a match is found, the request is satisfied and the

manager sends the entire tuple to the suspended process,

identified by Proc id. A null condition on a hash list

signals the manager to queue the process to a linked list of

Wait nodes. A wait node contains the process id of the

waiting process in addition to the tuple type, mask and

template. If the tuple manager receives a structure of type

OUT, it first searches the wait queue for any pending in's

or rd's. Thus,

check_wait(Proc_id,Tuple_size)

Found in = FALSE
Found-= FALSE
While (wait node !=NULL and !Found_in){

if(match(Tuple channel.hanger,
Wait node->template,Wait node->mask)

Found = TRUE -
else [get next Wait_node in wait queue]

}
if(Found) {

send(Wait node->id,Tuple channel,Tuple size);
[remove Wait node from wait queue] -
if(Wait node=>type == IN)

Found in = TRUE

- 39 -

else [get next Wait node in wait queue]
[deallocate Wait=node]

}
return(Found_in)

The standard matching algorithm is used to compare templates

to hangers. It is important to note that if the manager

matches a template of type IN, the search ends and the tuple

is never added to tuple space. The manager adds the tuple

to tuple space if only RD's are matched, or the search ends

without any match.

2.7 Demonstration and Applicability

Carriero explores many conceptual classes of parallel

programs and advances each with variations on finding all

the primes within a specified range[CAR89A]. Testing our

implementations on these programs proved applicability over

several categories of parallelism and at the same time

verified the code. Significant interaction among processes

justifies primes-finding as a test case, but the interaction

is fairly constant throughout execution time. In contrast, a

settling property, in which process interaction decreases

relative to time, characterizes a semigroups problem and

makes it an excellent candidate for the message passing

implementation where communication overhead is a often a

critical factor. Appendix C includes the source code for

the test cases.

- 40 -

2.7.1 Primes Finder I.

The first test case, run in the Sequent's shared memory

environment using the monitors model, is an example of

result parallelism using a live data structure method. A

result vector is defined and each process is assigned to

compute one element of the vector. Furthermore, it uses a

method known as live data structures in which each element

of the resulting data structure is an active process that

yields the element upon termination. If ("primes'',n,ok) is

one element of the distributed result vector, where n is the

index into the vector and ok is 1 if n is prime, then the

couplet

eval("%s%d","primes",prime)
out("%s%d","primearg",n)

implicitly creates a process to compute the nth element of

the result vector, adding the tuple ("result",n,ok) before

termination. As explained above, our implementation

deviates from the ideal - first, the programmer must

explicitly out the evaluated tuple before exiting prime;

secondly, if there are 100 elements to resolve, we do not

create 100 processes; instead a fixed number of processes

are reused as needed from the process queue.

With slight modification the program succeeds under the

message passing model in the absence of eval. First, prime

is replicated across n nodes, where n is the process group

- 41 -

size. After the master collects all of the primes, it outs

n special tuples to signal termination.

While this exercise is natural, simple and proves the

correctness of the manager and process monitors, it is

nevertheless highly inefficient: the process creation

overhead combined with small granularity obviates speedup

expected from parallelizing in the first place. Carriero

offers a large grain approach that improves speed at the

expense of simplicity.

2.7.2 Primes Finder II.

In the first primes finder a vector was actually constructed

in tuple space. Tuple space acted like shared memory and,

in fact, the program works just as well in the absence of

true shared memory, but just as inefficiently. An

alternative is to use agenda parallelism in which workers

focus on a list of tasks to be performed. The master

assigns the following task to a worker: find all of the

primes within a specific range where the block size is a

programmer-defined constant. The master process constructs

the distributed global table where all primes are stored.

Slaves store in local tables only those primes required to

construct a new block. The master in's completed blocks and

expands the resultant primes table. A full explanation can

- 42 -

Primes Finder I Primes Finder II

Number of Grain = 2000
Processes Limit = 300000

1 85200 11000

3 15500 3850

4 13554 3050

5 12300 2725

8 15080 2600

Figure 3: Time vs Processes for Primes Finding

be found in [CAR89A]. Run under monitor control, this

version showed significant speedups over the live data

structure method (figure 3) while also validating the

storage and retrieval of aggregates. Speedup was also

evident when tested under the message passing model,

although the size of the message channel for the tuple

structure was a limiting factor in grain size.

2.7.3 Primes Finder III

In many parallel programs the concurrent processes perform

the same task, a pattern we call function homogeneity (note

that this is not the same as the instruction homogeneity

exhibited by SIMD machines). Many programs require a

heterogenous mix of functions to be executed in parallel.

Thus, our final primes case proves interesting if only

because more than one type of function is eval'd to do the

work, a programming method Carriero calls specialist

- 43 -

parallelism [CAR89A]. Based on the sieve of Eratosthenes

algorithm, the program starts off with two pipes: a source

that generates integers; and a sink that removes multiples

of the last known prime. As the sink discovers a new

greatest primes, it eval's a function (pipe_seg) that sieves

multiples of this prime. Again, for an in depth discussion

of the algorithm, see [CAR89A]. Run under the monitors

model, three functions are evaluated, proving the robustness

of the function queue and its overseer, the evaluation

monitor.

This case raises the following question: in the absence of

eval, how does one achieve function heterogeneity? One

solution is to partition network nodes among the functions.

In the pipes example, delegate one node as the master,

another to source, and the remainder to sink and pipeseq.

Evaluation is now inherent in the architecture, and nodes

communicate as usual through the medium of tuple space using

the fundamental Linda operators.

Without dynamic pointers or locators our only other

alternative is to replicate all functions across all nodes

and simulate eval with tuples. In our pipes example the

entry point for all slave nodes begin with a function

filter.

while(l} {
in("eval",type);
if(!strcmp(type,"source"))

source();
else if(!strcmp(type,"sink"))

- 44 -

sink();
else if(!strcmp(type,"pipeseg"))

pipeseg () ;
else break; /* type = end token */

}

When sink detects the final prime, it outs a termination

token to all slaves, including itself.

As a test case for exercising eval, primes finder III proved

invaluable. As an efficient parallel program, it ranks

unfavorably when compared with the agenda program, though

not as inefficient as the 'live' data structure example.

The methodology applied to a coarse-grained problem may

prove advantageous.

2.7.4 A Semigroups Problem

There exists a class of programs in which communication

costs decrease as execution time increases. The semigroups

problem falls into this category, and thus is a very good

candidate for Linda's message passing implementation. A

short discussion of an algorithm suggested by [BUT88]

follows the problem description.

The program is given as input a set of words and an

operation table that defines how to build new words from

existing ones. The object is to build a unique set of words

by applying the operation table to the original set and any

newly derived words. The set of all possible words is

- 45 -

usually very large when compared with the solution set. For

example, if there are six unique values for a character in a

word, and a 6x6 operation table defining the product of a

character pair, for a 36 element word one can derive 6 to

the 36th words. Eliminating duplicates yields a solution

set of only 224 words.

A Linda parallel solution to the problem requires a master

and any number of slaves. For efficiency, all slaves are

required to build local copies of the word list and no two

slaves can receive the same piece of work, represented by an

index into the local word list; thus, it is incumbent upon

the master to communicate new words to slaves via tuple

space. To meet this requirement, new-word tuples are

indexed by slave. Initially the master must communicate

unique id's to each slave by placing into tuple space n

tuples of the form ("id",i) where n is the number of slaves

and i is some arbitrary integer. After the master places

the operation table and initial word list into tuple space,

it in's tuples of the form

("master",&type,&id,word);

where type takes the value Candidate (a slave found a word

he thinks is new) or Work_request (a slave needs an operand

from which to generate new words). If the master in's a

candidate that is indeed a new word, it adds the word to the

master list and outs the tuple

(id,type,word,idx)

- 46 -

TIME

Number of
Processes Word size = 25 Word size = 36

1 1250 11000

3 660 4400

4 575 3430

5 600 3330

8 1400 5800

Figure 4: Time vs Processes for Semigroups Problem

where type is New_word, id is the unique id of the target

slave, and idx is an indication of where word is to be

placed in the local list.

Slave processes in tuples of the form

(id,&type,word,&idx)

where type contains one of two flags: New_word, which

informs the slave to add word to its local list; or Work,

which prompts the slave to generate new words from the word

pointed to by idx. If a derived word exists locally, it is

discarded.

If a derived word is not in the local list, the slave outs

the tuple

("master",type,id,word)

where type is Candidate. The master now searches the primary

list for the word. If the master discovers the word is truly

- 47 -

new, he adds it to the primary list and outs n copies into

tuple space, where n is the number of slaves.

Communication costs are substantially curtailed by

maintaining a master list and several local lists. If each

slaves list is a subset of the master list, a slave can

eliminate as many duplicates a possible on a local level,

rather than communicate all generated tuples to the master.

For a complete discussion of the semigroups algorithm, see

[But88].

Results on 36-element words are recorded in figure 4 for 1

and 3 processes. The results are promising for loosely

coupled processors because, as execution time increases,

generated words are more likely found in local lists, and

only request type tuples are communicated through tuple

space.

- 48 -

Chapter 3

RECOMMENDATIONS AND CONCLUSIONS

3.1 Recommendations for Future Enhancement

The Linda implementations provide the minimal set of Linda

operations in out, in and rd. Boolean versions of these

primitives can perform existence tests on tuples in tuple

space. Inp and rdp would attempt to locate a matching tuple

and return 0 if they fail; otherwise they return a 1 and

perform the usual matching of actuals to formals that are

found in a normal in or rd. Constructing these predicate

versions on top of in and rd requires minimal modification

to the existing code.

Our hashing scheme works best when tuples are restricted to

a single unique key. Once such a key is identified in tuple

space, the tuple will match any template with the same key.

If the hash distribution is good, this translates into a

match with the first tuple in the hash list. Unfortunately,

not all tuples fall into this category. In problems where

the matching criteria include two tuple elements (the

logical name and one or more additional actuals) hashing on

a combination of these elements should result in a faster

search for a matching tuple. Our hashing method is less

than optimum for tuple patterns like these, and we therefore

- 49 -

recommend experimentation with concatenated index schemes to

alleviate potential search bottlenecks.

Finally, there is the issue of multiple tuple spaces.

Suppose we wished to add two matrices "A" and "B". To inform

matrix "A" of its row index and data we write

out("A", index, data).

The logical "A" identifies a specific vector, while index

points to a specific element of the vector. An element is

retrieved by matching on the first two tuple members:

rd("A",index,&data).

The amount of searching can be reduced if we placed vector

"A" in its own tuple space, thus eliminating the need for

combined keys. In the message passing model, this translates

into multiple tuple managers. A distributed askfor, or use

of several monitors, may provide the answer to multiple

tuple spaces in the monitors model. A Linda kernel

described in (LEL90] implements multiple tuple spaces.

3.2 Evaluation and Conclusion

Facilities such as interprocess communication and protection

of shared resources were added to operating systems to

support multiprogramming and have since been adapted to

exploit explicit multiprocessing within the scope of two

models - the shared-memory model and the distributed

(message-passing) model. Application programmers working

- 50 -

within a traditional multiprogramming environment are

typically shielded from the details of the underlying

mechanisms because multiple processes are rarely used in a

single program. In contrast, when multiprocessors are used

for explicit parallelism, the difference between the models

is exposed to the programmer (LEL90]. The P4 tool set was

originally developed to buffer the programmer from painful

synchronization problems while offering an added advantage

in portability. Nevertheless, two dialects are still needed

to communicate parallel algorithms. Our attempt to build a

single high-level programming model on top of the existing

paradigms in the hope that the same semantics can be used

regardless of the underlying model was successful with the

exception of the eval operation. While the three primary

Linda operators remain semantically consistent, the eval

operator remains non-portable between the shared memory and

message passing implementations. More importantly, the

fundamental properties associated with generative

communication remain intact, and the distinction between

shared and disjoint memory is blurred in the light of this

fourth model - that of tuple space synchronization.

- 51 -

REFERENCES

[AHU88)
Ahuja, s., et al. "Matching Language and Hardware for
Parallel Computation in the Linda Machine", IEEE Trans.
Computers 37,8 (Aug. 1988}, pp. 921-929.

[AHU86]
Ahuja, s., Carriero, N. and Gelernter, D. "Linda and
Friends", IEEE Computer 19,8 (Aug. 1986}, pp 26-34.

[BOY87)
Boyle, J., et al. Portable Programs for Parallel
Processors, Holt, Rinehart and Winston, Inc., New York
NY, 1987, 272 pages.

[BUT88]
Butler, R., and Karonis, N. "Exploitation of
Parallelism in Prototypical Deduction Problems". Ninth
International Conference on Automated Deduction, 1988,
pp. 333-343.

[CAR88)
Carriero, N., and Gelernter, D. "Applications
experience with Linda". In Proceedings of the ACM
Symposium on Parallel Programming, July, 1988.

[CAR89A)
Carriero, N., and Gelernter, D. "How to Write Parallel
Programs", ACM Computing Surveys 21,3 (Sept. 1989},
pp . 3 2 3 -3 56 •

[CAR89B]
Carriero, N., and Gelernter, D. "Linda in Context",
Commun. ACM. 32,4 (April, 1989}, pp. 444-458.

[CAR86A]
Carriero, N., and Gelernter, D. "The S/Net's Linda
Kernel", ACM Trans. Comput. syst. 4,2 (May 1986}, pp.
110-129.

[CAR86B]
Carriero, N., Gelernter, D., and Leichter, J.
"Distributed data structures in Linda". Proceedings of
the ACM Symposium on Principles of Programming
Languages, Jan. 1986.

[GEL85)
Gelernter, D. "Generative Communication in Linda", ACM
Trans. Prog. Lang. Syst. 7,1 (Jan. 1985), pp. 80-112.

- 52 -

[LEL90]
Leler, Wm. "Linda Meets Unix", IEEE Computer. 23,2
(Feb. 1990}, pp. 43-54.

[PEA90]
Pearson, Peter K. "Fast Hashing of Variable-Length
Text Strings", Commun. ACM. 33,6 (June 1990}, pp. 677-
680.

- 53 -

APPENDIX A

Monitors Model Listing

I* LINDA.COMM.MON is the program kernel for the monitors
model run in a shared memory environment. The routines are
described in detail in the main body of the thesis.
*I

I* The header file MON LINDA.H includes the common
structures used in the-monitors model. Of primary concern
are the structures space q and aggregate: space q contains a
tuple as it appears in tuple space, while aggregate holds
complex tuple elements.
*I

I* MON_LINDA.H: *I

#include <stdarg.h>
#include "p4.h"
#include "p4_compat.h"

#define HANGER SIZE 80
#define KEY SIZE 80
#define IN o
#define RD 1
#define OUT 3

int *pinum2;

struct globals{
char template[80];
int type;
char mask[80];
} global;

struct space q {
char hanger[HANGER SIZE];
char mask[80]; -
struct space_q *next;
} ;

struct aggregate {
int size;
char data;

}*ag_ptr;

struct globmem {
struct space_q *tuple_space[256], *space_tails[256];

- 54 -

struct work struct *pool, *pool_tail;
int numprocs;
struct askfor monitor TS;

}*glob;

struct work struct {
char work[80);
char mask[20);
struct work struct *next;
} ;

struct space_q *head_avl_nodeq;

- 55 -

I* LINDA.COMM.MON: *I

#include <stdio.h>
#include "mon linda.h"

slave()
{

work (1 s 1) ;

}

I* Function RESET is an optional parameter to askfor. It is
not used in the implementation *I

reset ()
{
}

I* Function GETFUNC is used by askfor. It is the logic
required to take an unevaluated function from the function
queue (glob->pool) *I

getfunc(p)

{

}

int *Pi

int rc = 1;

if (glob->pool != NULL)
{

}

I* return function from pool *I
*P = (int) glob->pool;
glob->pool = glob->pool->next;
rc = o;

else
{

}

glob->pool tail = NULL;
glob->pool-= NULL;

return (rc) ;

I* Function WORK iteratively calls an askfor that attempts
to take an unevaluated function from the function queue. If
the queue is empty, askfor provides the logic to suspend the
process. If askfor returns success, then the function
pulled from the queue is evaluated *I

work(who)
char who;

- 56 -

{

}

int rc;
struct work struct *eval_tuple;
int func;

int ptr;
int result;
int (* int func ptr) () ;
char key (80]; -

ptr = o;
printf("entered work\n");
rc = askfor(&(glob->TS), glob->numprocs, getfunc, &func,

reset) ;
while ((rc -- 0) I I ((rc != -1) && (who== 's')))
{

}

if (rc == O)
{

}

eval_tuple = (struct work_struct *) func;

if (strcmp(eval tuple->mask, "%s%d") == 0)
sscanf(eval tuple->work, "%s%d", key,

&int_func_ptr);

(*int_func_ptr) ();

rc = askfor(&(glob->TS), glob->numprocs, getfunc,
&func, reset);

/* Function OUT passes a variable length argument list to
PARSE, which returns the tuple elements in hanger. OUT then
enters the monitor, hashes the tuple structure (space node)
to an appropriate linked list, and exits the monitor with a
continue statement */

out(tuple mask)
char tuple_mask[80];

{
va list tuple list;
int hashnum, type;
char hanger[HANGER SIZE], key[KEY SIZE];
struct space q, *space node; -
struct space=q *alloc_tuple_struct();

type = OUT;
va start(tuple list, tuple mask);
parse(tuple_mask, type, hanger, tuple_list);

- 57 -

}

va_end(tuple_list);

stok(key, hanger);
hashnum = thash(key);
menter(&((glob->TS) .m));
if (glob->tuple_space[hashnum] == NULL)
{
space node = alloc tuple struct();
strcpy(space node->hanger, hanger);
strcpy(space-node->mask, tuple mask);
space node->next = NULL; -
glob->tuple space[hashnum] = space node;
glob->space=tails[hashnum] = space=node;

}
else
{

}

space node = alloc tuple struct();
strcpy(space node->hanger, hanger);
strcpy(space-node->mask, tuple mask);
space node->next = NULL; -
glob->space tails[hashnum]->next = space node;
glob->space=tails[hashnum] = space_node;-

cont(&((glob->TS) .m), 0);

/* Like OUT, function IN first calls PARSE, which returns a
template for matching. IN then invokes askfor, which either
returns in hanger the matched tuple or suspends the process
if no match occurs. If askfor succeeds, INSTANTIATE does
the actual to formal assignments. */

in(tuple mask)
char tuple_mask[80];

{

va list tuple list;
int rc, type;-
char template[HANGER SIZE];
char hanger[HANGER_SIZE];

type = global.type = IN;

va start(tuple list, tuple mask);
parse(tuple mask, type, template, tuple_list);
va end(tuple list);
strcpy(globai.template, template);
strcpy(global.mask, tuple_mask);
rc = 1;
while ((rc != -1) && (rc != 0))

- 58 -

{
rc = askfor(&(glob->TS) ,glob->numprocs,t match,hanger,

reset); -
}

if (rc == 0)
instantiate(tuple_mask, template, hanger);

}

/* Function RD is identical to IN, except that askfor does
not remove the matched tuple from tuple space */

rd(tuple mask)
char tuple_mask[80];

{

}

va list tuple list;
int rc, type;-
char hanger[HANGER SIZE];
char template[HANGER_SIZE];

type = global.type = RD;

va start(tuple list, tuple mask);
parse(tuple mask, type, template, tuple_list);
va end(tuple list);
strcpy(globai.template, template);
strcpy(global.mask, tuple_mask);
rc = 1;
while ((rc != -1) && (rc != 0))
rc = askfor(&(glob->TS) ,glob->numprocs,t match,hanger,

reset); -
instantiate(tuple_mask, template, hanger);

/* Function EVAL places a pointer to an (unevaluated)
function on a function queue (glob->pool) protected by a
monitor. */

eval(tuple mask)
char tuple=mask[80];

{
va list tuple list;
char *mask ptr, *key;
int *int func ptr;
char buffer[80];
struct work struct *alloc eval node();
struct work=struct *eval_node;-

va_start(tuple_list, tuple_mask);

- 59 -

}

key= va arg(tuple list, char*);
eval node= alloc eval node();
sprintf(eval node=>work, "%s ", key);
strcpy(eval_node->mask, "%s%d");

int func ptr = va arg(tuple list, int *);
sprintf (buffer, "%d ", int func ptr) ;
strcat(eval node->work, buffer);
va end(tuple list);
menter(&((glob->TS) .m));

eval node->next = NULL;
if (glob->pool == NULL)
{
glob->pool = eval node;
glob->pool_tail =-eval_node;

}
else
{

}

glob->pool tail->next = eval node;
glob->pool=tail = eval_node;

cont(&((glob->TS) .m), 0);

/* Function T MATCH provides the logic to compare actuals in
a template with actuals in a tuple structure's hanger. If
the template matches some tuple, T MATCH returns success to
askfor along with the matched hanger; otherwise T MATCH
returns failure to askfor. T MATCH calls MATCH, which
actually performs the comparison. */

t match(hanger)
char *hanger;

{
int rc;
struct space q *space node, *pred;
struct aggregate *agnode;
int stok();
int hashnum;
int found;
char key[80], tuple_tok[80];

found = o;
rc = 1;
stok(key, global.template);
hashnum = thash(key);
pred =space node= glob->tuple space[hashnum];
while ((!found) && (space_node T= NULL))
{
if (match(space_node->hanger, global.template,

- 60 -

}

{

}
else
{

}

global. mask))

found = 1;

pred = space node;
space_node = space_node->next;

} /* end while !NULL */
if (found)
{
strcpy(hanger, space node->hanger);
if (global.type == IN)
{

}

if (space node== glob->tuple space[hashnum])
glob->tuple space[hashnum] =-space node->next;

else if (space node->next == NULL) -
{ -
pred->next = NULL;
glob->space_tails[hashnum] = pred;

}
else
pred->next = space node->next;

space node->next = head avl nodeq;
head_avl_nodeq = space_nodeT

rc = o;
}
return (rc) ;

/* Function PARSE builds the tuple structure's hanger using
information supplied by the tuple mask. PARSE pops
arguments off the argument list (tuple list) and converts
the argument into a formatted string. -The string is
formatted according to the type information found in the
mask. */

parse(tuple mask, type, buffer, tuple_list)
char *tuple-mask, *buffer;
int type; -
va list tuple_list;

{
int rc;
char *mask ptr;
struct aggregate *ag ptr;
double flt, *flt ptrT
int *int ptr, size, integer;
char *char ptr;
char tok [80];
rc = 1;

- 61 -

char ptr = va arg(tuple list, char*);
sprintf(buffer, "%s ", char ptr);
for (mask_ptr = tuple_mask + 2; *mask_ptr; mask_ptr++)
{
if (*mask ptr == 1 %1)

switch (mask_ptr(l])
{
case 1 s 1 :

char ptr = va arg(tuple list, char*);
sprintf(tok, "%s ", char ptr);
strcat(buffer, tok); -
break;

case 1 d 1 :

integer = va arg(tuple list, int);
sprintf(tok,-"%d ", integer);
strcat(buffer, tok);
break;

case 1 f 1 :

}

flt = va arg(tuple list, double);
sprintf(tok, "%f "-; flt);
strcat(buffer, tok);
break;

else if (*mask ptr == 1 ? 1
)

switch (mask_ptr[l])
{
case 1 d 1 :

int ptr = va arg(tuple list, int *);
/* need to try %p here-*/
sprintf(tok, "%d ", int ptr);
strcat(buffer, tok); -
break;

case 1 s 1 :

char ptr = va arg(tuple list, char *);
sprintf(tok, "%d ",char ptr);
strcat(buffer, tok); -
break;

case 1 f 1 :

}

flt ptr = va arg(tuple list, double*);
sprintf(tok,-"%d ", flt ptr);
strcat(buffer, tok); -
break;

else if (*mask_ptr == 1 : 1)

{

if (type == OUT)
{
switch (mask_ptr[l])
{

- 62 -

case 1 d 1 :

int ptr = va arg(tuple list, int *);
size = va arg(tuple list, int);
ag_ptr = (struct aggregate *)

g malloc((sizeof(int) *size) +
- sizeof(int));

if (ag_ptr == NULL)
{

}

printf("agmal failed\n");
exit(l);

ag ptr->size = size;
bcopy(int ptr, &(ag_ptr->data), (sizeof(int) *

size));
sprintf(tok, "%d ", ag ptr);
strcat(buffer, tok); -
break;

case 1 s 1 :

char ptr = va arg(tuple list, char*);
size-= va arg{tuple list, int);
ag ptr = (struct aggregate *)
g-malloc((sizeof(char) * size) +

- sizeof(int));
if (ag_ptr == NULL)
{

}

printf("agmal failed\n");
exit(l);

ag ptr->size = size;
bcopy(char ptr, &(ag ptr->data), (sizeof(char)

*size)); -
sprintf(tok, "%d ", ag ptr);
strcat(buffer, tok); -
break;

case 1 f 1 :

flt ptr = va arg(tuple list, double *);
size = va arg(tuple list, int);
ag_ptr = {struct aggregate *)

g malloc((sizeof(double) * size) +
sizeof(int));

if (ag_ptr == NULL)
{

}

printf("agmal failed\n");
exit (1) ;

ag ptr->size = size;
bcopy(flt ptr, &(ag ptr->data),

(sizeof(double)-* size));
sprintf(tok, "%d ", ag ptr);
strcat(buffer, tok); -
break;

- 63 -

}

}
}

}
} /* end if type out */
else
{
switch (mask_ptr[l])
{
/* pinum2 stores the global ptr to size */
case 1 d 1 :

int ptr = va arg(tuple list, int *);
pinum2 = va arg(tuple list, int *);
sprintf(tok-; "%d ", int ptr);
strcat(buffer, tok); -
break;

case 1 s 1 :

char ptr = va arg(tuple list, char*);
pinum2 = va arg(tuple list, int *);
sprintf(tok-; "%d ", char ptr);
strcat(buffer, tok); -
break;

case 1 f 1 :

flt ptr = va arg(tuple list, double *);
pinum2 = va arg(tuple list, int *);
sprintf(tok-; "%d ", flt ptr);
strcat(buffer, tok); -
break;

}
}

/* Function INSTANTIATE does actual to formal assignments.
It assigns actuals in hanger to appropriate formals in
template. */

instantiate(tuple mask, template, hanger)
char *tuple_mask,-*template, *hanger;

{
int rc;
char *mask ptr;
struct space q *space node;
struct aggregate *aggr node;
int stok(); -
int tokint;
int *int ptr;
char *string ptr, *char ptr;
char template tok[80], hanger_tok[80], tokchr[80];
char *pout, *pin;

- 64 -

int *generic ptr;
double *flt_ptr 1 tokflt;

pin = template;
pout = hanger;

for (mask ptr = tuple mask + 2 1 stok(template tok 1 pin) 1

stok(hanger_tok 1 pout); *mask_ptr; mask_ptr += 2)
{
pout = pout + strlen(hanger tok) + 1;
pin = pin + strlen(template-tok) + 1;
stok(template tok 1 pin); -
stok(hanger tok 1 pout);
if (*mask_ptr == 1 %1

)

{
}
else if (*mask ptr == 1 ? 1

)

switch (mask_ptr[1J)
{
case 1 s 1 :

printf("found ?s\n");
sscanf(template tok 1 "%d 11

1 &generic ptr);
sscanf(hanger tok 1 "%s" 1 tokchr); -
char ptr = (char *) generic ptr;
strcpy(char ptr 1 tokchr); -
break; -

case 1 d 1 :

sscanf(template tok 1 "%d 11
1 &generic ptr);

sscanf(hanger tok 1 "%d" 1 &tokint); -
*generic ptr ~ tokint;
break; -

case 1 f 1 :

}

sscanf(template tok 1 "%d 11
1 &generic ptr);

sscanf(hanger tok 1 "%lf 11
1 &tokflt) ;-

flt ptr = (double *) generic ptr;
*flt ptr = tokflt; -
break;

else if (*mask ptr == 1 : 1)

switch (mask_ptr[1J)
{
case 1 d 1 :

sscanf(hanger tok 1 "%d 11
1 &generic ptr);

aggr node = (struct aggregate *) generic ptr;
sscanf(template tokl "%d"l &generic ptr);
bcopy(&(aggr node->data) 1 generic ptr 1

(sizeof(generic ptr) * aggr node->size));
*pinum2 = aggr node->size; -
free(aggr node);
break; -

- 65 -

}

}

case 1 s 1 :

sscanf(hanger tok, "%d", &generic ptr);
aggr node = (struct aggregate *) generic ptr;
sscanf(template tok, "%d", &generic ptr>T
char ptr = (char *) generic ptr; -
bcopy(&(aggr node->data), char ptr, (sizeof(char)

* aggr-node->size)); -
*pinum2 = aggr node->size;
free(aggr node);
break; -

case 1 f 1 :

}

sscanf(hanger tok, 11 %d", &generic ptr);
aggr node = (struct aggregate *) generic ptr;
sscanf(template tok, "%d", &generic ptr>T
flt ptr = (double *) generic ptr; -
bcopy(&(aggr node->data), flt ptr, (sizeof(double)

* aggr node->size)); -
*pinum2 = aggr node->size;
free(aggr node);
break; -

/* Function STOK picks a space-delimited token off a source
string and returns it in tok. It is primarily used during
the instantiation phase in IN and RD, where the actuals
embedded in a hanger and the formals embedded in a template
are stripped off a string buffer before the actual is
assigned to the formal. */

int stok(tok, source)
char *tok, *source;

{
int i;

for (i = o; (source[i] != I 1) && (source[i] != 1 \0 1
);

}

i++)
tok[i] = source[i];

tok[i] = 1 \0 1 ;

if (source[i] == 1 \0 1
)

return (1);
else
return (0);

- 66 -

/* ALLOC TUPLE STRUCT dynamically allocates a node for a
tuple structure. */

struct space_q *alloc_tuple_struct()
{

}

struct space_q *node;

if ((node= head_avl_nodeq) ==NULL)
{
node = (struct space q *) g_malloc(sizeof(struct
space q)); -
if (node == NULL)

}
else
{

printf("Malloc failed for space_q\n");

head_avl_nodeq = node->next;
}

return (node);

/* ALLOC EVAL NODE dynamically allocates a node for a work
structure in the pool of unevaluated functions. */

struct work_struct * alloc_eval_node()
{

}

struct work_struct *node;

node = (struct work struct *) g_malloc(sizeof(struct
work struct)) ;

if (node == NULL)
printf("malloc failed for worknode\n");

return (node);

/* THASH is the hashing function used by OUT. */

thash(word)
char word[80];

{

}

int h;
int i;

h = o;
for (i = 1 ; word [i] ! = 1 \ o 1 ; i ++)
{
h = t[h A word[i]];

}
return (h) ;

- 67 -

I* MON LINDA INIT initializes the environment, and creates
the appropriate number of slaves. *I

mon linda init(procs, ac, av)
int-procs~ int ac;
char **av;

{

}

extern slave();
int i;

initenv(ac, av);
glob = (struct globmem *) g_malloc(sizeof(struct

globmem));
for (i = o; i < 256; i++)
{
glob->tuple space[i] = NULL;
glob->space=tails[i] = NULL;

}
glob->pool = NULL;
glob->pool tail = NULL;
head avl nodeq = NULL;
askfor init(&(glob->TS));
glob->numprocs = procs;

for (i = 1; i <= procs; i++)
{
create(slave);

}

I* Function MATCH returns success if a template matches a
hanger *I

match(template, hanger, mask)
char *template, *hanger, *mask;

{
int i, k, j, count;
int flag = 1;

count = 0;
k = o;
j = o;
for (i = 0; (*(mask+ i) != 1 \0 1

) && flag; i += 2)
{
if (*(mask+ i) == 1 %1

)

{
for (; (*template != 1 1) II (*hanger != 1 1);

template++, hanger++)
{
if (*template != *hanger)

- 68 -

}

}

}
else
{

{

}
}

flag = o;
break;

for (; *template != 1 1 ; template++);
for (; *hanger != 1 1 ; hanger++);

}
template++;
hanger++;

return (flag);

/* The termination procedure */

mon_linda_end ()
{

progend(&((glob->TS} .m));
wait_for_end();

}

- 69 -

APPENDIX B

Message Passing Model Listing

I* Many of the routines included in LINDA.COMM.SR are
similar to those described in LINDA.COMM.MON; therefore,
comments listed below strive to point out the differences in
the two comm files. *I

I* SR LINDA.H defines global constants. Values for AG MAX
and HANGER_SIZE are program dependent. *I

#include <stdio.h>
#include <stdarg.h>
#include <p4.h>
#include <p4_compat.h>

#define END 0
#define IN 1
#define RD 2
#define OUT 3
#define AG MAX 100
#define HANGER SIZE 80

I* end of SR_LINDA.H *I

I* The globals used throughout the comm file functions
include global structures required to store tuples
(space q), communicate tuple information to the tuple
manager (tuple msg type) and suspend processes waiting for a
matching tuple-(wait_queue). *I

struct tuple_msg_type
{

} ;

int type;
char mask[20];
char hanger[HANGER SIZE];
int aggreg size; -
int tuple size;
char aggreg_data[AG_MAX];

struct tuple_msg_type tuple_channel;

struct space_q
{

struct space q *next;
char mask[20];
char hanger[128];

- 70 -

int aggreg size;
int tuple size;
char aggreg data[AG MAX];

} *head avl nodeq, *tuple space[256), *space_tails[256],
*headT - -

struct wait_queue
{

int id;
int type;
char mask[20];
char hanger[128];
struct wait queue *next;

} *head_avl_waitq, *wait_head, *wait_tail;

struct globals
{

int aglen;
int *size ptr;

} global; -

int t_master;

I* The comm file routines listed here were those tested on a
shared memory machine. The proc group used by such a
configuration assumes that all slave process name their
entry points with the common name slave(). Since only one
of the slave processes can assume the role of tuple manager,
function SLAVE performs manager tasks only if the process
executing SLAVE has a process id equal to 1. Otherwise
SLAVE invokes LSLAVE, which is assumed to be a worker
process in a Linda program. *I

slave()
{

}

if (get my id() -- 1)
tm();- -

else
lslave ();

I* Function TM is the main routine for the tuple manager.
It receives tuple information via the message channel
(tuple channel) and satisfies the appropriate linda
operation, iterating until the termination routine
(SR_LINDA_END) signals end of program. *I

tm()
{

int id, ln, i;

- 71 -

}

wait tail = wait head = head avl waitq = NULL;
for (i = o; i < 256; i++) - -
{
tuple space[i] = NULL;
space=tails[i] = NULL;

}
head avl nodeq = NULL;
g_recv_any(&id, &tuple_channel, &ln);

while (tuple_channel.type != END)
{
if ((tuple channel.type == RD) i i (tuple_channel.type

==IN))
serve in or rd(id, tuple channel.type, ln);

else if (tupie_channel.type ~= OUT)
{

}

if (check_wait(id, ln) == 0)
{
serve_out(id, ln);

}

g_recv_any(&id, &tuple_channel, &ln);
}

!* Before a tuple is actually placed in tuple space,
function CHECK WAIT examines the wait queue, which contains
the process id-and template belonging to any process waiting
for a matching tuple. */

check wait(id, ln)
int id, ln;

{

int tln, qid, found, found in, hold type;
struct wait_queue *wait_node, *pred~ *saveq;

pred = wait node = wait_head;
found in = o;
found-= 0;

while ((wait_node !=NULL) && (!found_in))

{
qid = wait node->id;
if (match(tuple channel.hanger, wait_node->hanger,

wait node->mask))

else
{

found =-1;

pred = wait_node;

- 72 -

}

}

wait node = wait_node->next;
found = o;

if (found)
{

}
}

hold_type = wait_node->type;

saveq = wait_node;

tuple channel.type = hold type;
tln =-tuple channel.tuple-size;
g_send(qid,-&tuple_channei, tln);

if (wait_node == wait_head)
{
wait head = wait node->next;
wait-node = wait-head;
if (wait head ==-NULL)

wait=tail = wait_head;
}
else if (wait_node == wait_tail)
{
pred->next = NULL;
wait node = wait tail = pred;

}
else
{

}

pred->next = wait node->next;
wait node = pred;

if (hold type == IN)
found in = 1;

else -
{
pred = wait node;
wait node =-wait node->next;
found = o; -

}

saveq->next = head avl waitq;
head_avl_waitq = saveq;

return (found_in);

- 73 -

I* Function SERVE OUT adds the tuple to tuple space under
two conditions: no process on the wait q matched the tuple
or processes waiting exclusively for RD's matched the tuple
*I
serve out(id, ln)
int id, ln;

{

}

struct space q *temp node, *space node;
struct space-q *alloc space q();-
int tln, hashnum; - -
int i;
char key(20);

stok(key, tuple channel.hanger);
hashnum = thash(key);

if (tuple_space(hashnum) == NULL)
{
space node = alloc space q(ln);
bcopy(&(tuple channel.mask), &(space node->mask), ln -

sizeof(tuple channel.type)); -
space node->next-= NULL;
tuple-space(hashnum) = space node;
space=tails(hashnum) = space=node;

}
else
{

}

space node= alloc space q(ln);
bcopy(&(tuple channel.mask), &(space node->mask), ln-

sizeof(tuple channel.type)); -
space node->next-= NULL;
space-tails(hashnum)->next = space node;
space=tails(hashnum) = space_node;-

I* Function SERVE IN OR RD manages the Linda operations in
and rd. MATCH returns success if the template matches a
hanger in tuple space. If MATCH fails, the process id of
the waiting process, the template, and the tuple type are
assigned to a wait queue structure (wait node) and linked to
the wait queue. *I- -

serve in or rd(id, type, ln)
int id, type, ln;

{
struct space q *space node, *pred;
struct wait_queue *wait_node, *alloc_wait_q();

- 74 -

int stok();
int found;
int hashnum;
char key[80];

found = o;

stok(key, tuple_channel.hanger);

hashnum = thash(key);

pred =space node= tuple space[hashnum];
while ((!found) && (space=node !=NULL))

{
if (match(space node->hanger, tuple_channel.hanger,

tuple_channel.mask))
{

}
else
{

found = 1;

pred = space node;
space_node =-space_node->next;

}
}

if (found)
{
if (type == IN)
{

}

if (space node== tuple space[hashnum])
tuple space[hashnum] =-space node->next;

else if (space_node->next == NULL)
{
pred->next = NULL;
space_tails[hashnum] = pred;

}
else
pred->next = space_node->next;

bcopy(&(space node->mask), &(tuple channel.mask),
space node->tuple size); -

g_send(id, &tuple_channei, space_node->tuple_size);

free(space_node);
}

- 75 -

}

else
{

wait node= alloc wait q();
wait-node->id = id; -
wait-node->type = tuple channel.type;
strcpy(wait node->mask,-tuple channel.mask);
strcpy(wait-node->hanger, tuple channel.hanger);
wait node->next = NULL; -
if (wait_head == NULL)
{

}
else
{

}
}

wait tail = wait head = wait_node;

wait tail->next = wait node;
wait-tail = wait_node;-

I* ALLOC SPACE Q returns an available node for use in tuple
space *I

struct space q *alloc space q(t ln)
int t_ln; - - - -
{

}

struct space_q *node;

node = (struct space q *) g_malloc(t_ln);
if (node == NULL) -
printf("Failed malloc in node\n");

return (node);

I* ALLOC WAIT Q returns an available node for use on the
process wait queue. *I

struct wait_queue *alloc_wait_q()
{

struct wait_queue *node;

if ((node= head_avl_waitq) ==NULL)
{

}

node = (struct wait queue *) g_malloc(sizeof(struct
wait queue));

if (node ==-NULL)
printf("Failed malloc in wait\n");

- 76 -

}

else
{
head_avl_waitq = node->next;

}

return (node);

I* The primary difference between OUT and its cousin in the
monitors model is that after the argument list is parsed and
the hanger packed, OUT sends the information to the tuple
manager for processing. In other words, the tuple manager
takes the place of the monitor in the message passing model.
*I

out(tuple mask)
char tuple_mask(80J;

{

}

va list tuple list;
char *p; -
int type, tln, id;
char *char ptr;
char temp (8 0] ;
char hanger(128];

type = OUT;
global.aglen = 1;

tuple channel.aggreg size = o;
tuple-channel.aggreg-data(O] = 'O';
va start(tuple list,-tuple mask);
strcpy(tuple channel.mask,-tuple mask);
parse(tuple mask, type, hanger, tuple list);
va_end(tuple_list); -

strcpy(tuple channel.hanger, hanger);
tuple channei.type = OUT;
id =get my id();
tln = sizeof(tuple channel.aggreg size) +

sizeof(tuple channel.type) +
sizeof(tuple channel.mask) +
sizeof(tuple-channel.hanger) +

sizeof(tuple channel.tuple size) +
global.aglen; -

tuple channel.tuple size = tln;
g_send(l, &tuple_channel, tln);

- 77 -

I* See the comment on OUT above. *I

in(tuple mask)
char tupie_mask[80];

{

}

va list tuple list;
int tln, id;
char template[128];
char temp[80];
int rc, type;

type = IN;
va start(tuple list, tuple mask);
strcpy(tuple channel.mask,-tuple mask);
parse(tuple mask, type, template~ tuple list);
va_end(tuple_list); -

strcpy(tuple channel.hanger, template);
tuple channei.type = type;
tln =-tuple channel.tuple size= sizeof(tuple channel);
g send(l, &tuple channel,-tln); -
id = get my id()7
g recv any(&t master, &tuple channel, &ln);
instantiate(tuple_mask, template, tuple_channel.hanger);

I* See the comment on OUT above. *I

rd(tuple mask)
char tupie_mask[80];

{
va list tuple list;
int tln; -
int id;
char template[128];
char temp[80];
int rc, type;

type = RD;
va start(tuple list, tuple mask);
strcpy(tuple channel.mask,-tuple mask);
parse(tuple mask, type, template~ tuple list);
va_end(tuple_list); -

strcpy(tuple channel.hanger, template);
tuple channei.type = RD;
id = get_my_id();

- 78 -

}

tln =tuple channel.tuple size= sizeof(tuple channel);
g send(l, &tuple channel,-tln); -
g-recv any(&t master, &tuple channel, &ln);
instantiate(tuple_mask, template, tuple_channel.hanger);

/* PARSE is almost identical to its cousin in the monitors
model. The primary difference is that we do not dynamically
allocate memory to store aggregate data. Rather, we copy
the contents of the aggregate into the message channel. */

parse(tuple mask, type, buffer, tuple_list)
char *tuple-mask, *buffer;
int type; -
va_list tuple_list;
{

char *mask ptr;
int *int ptr,integer;
char *char ptr;
char tok [80];
double flt;
double *flt_ptr;

if (tuple_mask[l] == 1 s 1)

{

}

char ptr = va arg(tuple list, char *);
sprintf(buffer, "%s ", char_ptr);

else
{

}

integer = va arg(tuple list, int);
sprintf(buffer, "%d ",-integer);

for (mask_ptr = tuple_mask + 2; *mask_ptr; mask_ptr++)
{
if (*mask ptr == 1 %1)

switch (mask_ptr[l])
{
case 1 s 1 :

char ptr = va arg(tuple list, char*);
sprintf(tok, "%s ", char ptr);
strcat(buffer, tok); -
break;

case 1 d 1 :

integer = va arg(tuple list, int);
sprintf(tok,-"%d ", integer);
strcat(buffer, tok);
break;

case 1 f 1 :

- 79 -

}

flt = va arg(tuple list, double);
sprintf (Eok, "%f n-;- flt);
strcat(buffer, tok);
break;

else if (*mask ptr == 1 ? 1)

switch (mask_ptr(l])
{
case 1 d 1 :

int ptr = va arg(tuple list, int *);
!* need to try %p here-*/
sprintf(tok, "%d ", int ptr);
strcat(buffer, tok); -
break;

case 1 s 1 :

char ptr = va arg(tuple list, char *);
sprintf(tok, 11%d ", char ptr);
strcat(buffer, tok); -
break;

case 1 f 1 :

}

flt ptr = va arg(tuple list, double*);
sprintf(tok,-"%d ", flt ptr);
strcat(buffer, tok); -
break;

else if (*mask_ptr == 1 : 1)

{
if (type == OUT)
{
switch (mask ptr(l])
{

case 1 d 1 :

int ptr = va arg(tuple list, int *);
size= va arg(tuple list, int);
global.agien = sizeof(int) * size;

tuple channel.aggreg size = size;
bcopy(int ptr, &(tuple channel.aggreg data),

global.aglen); - -
sprintf(tok, "%d ", int ptr);
strcat(buffer, tok); -
break;

case 1 s 1 :

char ptr = va arg(tuple list, char *);
size-= va arg(tuple list, int);
global.agien = sizeof(char) * size;
tuple channel.aggreg size = size;
bcopy(char ptr, &(tuple channel.aggreg data),

global~aglen); - -
sprintf(tok, "%d ", char_ptr);

- 80 -

}

}
}

strcat(buffer, tok);
break;

case 1 f 1 :

flt ptr = va arg(tuple list, double *);
size = va_arg(tuple_list, int);
global.aglen = sizeof(double) * size;
tuple channel.aggreg size = size;
bcopy(flt ptr, &(tuple channel.aggreg data),

global.aglen); - -
sprintf(tok, 11 %d 11 , flt ptr);
strcat(buffer, tok); -
break;

}
}
else
{

}

switch (mask_ptr(l])
{
case 1 d 1 :

int ptr = va arg(tuple list, int *);
global.size ptr = va arg(tuple list, int *);
sprintf (tok-; 11 %d 11 , Int ptr); -
break; -

case 1 s 1 :

char ptr = va arg(tuple list, char *);
global.size ptr = va arg(tuple list, int *);
sprintf(tok-; 11 %d 11 , char ptr) ;-
break; -

case 1 f 1 :

}

flt ptr = va arg(tuple list, double*);
global.size ptr = va arg(tuple list, int *);
sprintf (tok-; 11 %d 11 flt ptr); -
break; -

tuple channel.aggreg size = o;
tuple-channel.aggreg-data(O] = 1 0 1 ;

strcat(buffer, tok) ;-

I* Again, INSTANTIATE is similar to its cousin in the
monitors model. */

instantiate(tuple mask, template, hanger)
char *tuple_mask,-*template, *hanger;
{

va list tuple_list;

- 81 -

char *mask ptr;
int stok () T
int integer, tokint, tln;
int *int ptr;
char *char ptr;
char template tok[80), hanger_tok[80J, tokchr[80);
char *pout, *pin;
int *generic ptr;
double tokflt, *flt_ptr;

pin = template;
pout = hanger;
for (mask ptr = tuple mask + 2, stok(template tok, pin),

stok(hanger_tok, pout); *mask_ptr; mask_ptr += 2)
{
pout = pout + strlen(hanger tok) + 1;
pin = pin + strlen(template-tok) + 1;
stok(template tok, pin); -
stok(hanger tok, pout);
if (*mask ptr == 1 %1)

continue;
else if (*mask ptr == 1 ? 1)

switch (mask_ptr[1])
{
case 1 s 1 :

sscanf(template tok, "%d", &generic ptr);
sscanf(hanger tok, "%s", tokchr); -
char ptr = (char *) generic ptr;
strcpy(char ptr, tokchr); -
break; -

case 1 d 1 :

sscanf(template tok, "%d", &generic ptr);
sscanf(hanger tok, "%d", &tokint); -
int ptr = (int *) generic ptr;
*int ptr = tokint; -
break;

case 1 f 1 :

}

sscanf(template tok, "%d", &generic ptr);
sscanf(hanger tok, "%lf", &tokflt) ;-
flt ptr = (double *) generic ptr;
*flt ptr = tokflt; -
break;

else if (*mask ptr == 1
:

1
)

switch (mask_ptr[1J)
{
case 1 d 1 :

sscanf(template tok, "%d", &generic ptr);
int ptr = (int *) generic ptr; -
tln-= sizeof(int) * tuple=channel.aggreg_size;

- 82 -

}

}

bcopy(&(tuple channel.aggreg data), int ptr, tln);
*global.size ptr = tuple channel.aggreg-size;
break; - - -

case 1 s 1 :

sscanf(template tok, "%d", &generic ptr);
char ptr = (char *) generic ptr; -
tln ~ sizeof(char) * tuple channel.aggreg size;
bcopy(&(tuple channel.aggreg data), char ptr,

tln); - - -
*global.size ptr = tuple_channel.aggreg_size;
break; -

case 1 f 1 :

}

sscanf(template tok, "%d", &generic ptr);
flt ptr = (double *) generic_ptr; -
tln-= sizeof(double) * tuple channel.aggreg size;
bcopy(&(tuple channel.aggreg-data), flt ptr~ tln);
*global.size ptr = tuple channel.aggreg-size;
break; - - -

/* STOK is identical to its cousin in the monitors model. */

int stok(tok, source)
char *tok, *source;

{
int i;
for (i = 0; (source [i] ! = 1 1) && (source [i] ! = 1 \ o 1) ;

}

i++)
tok[i] = source[i];

tok[i] = 1 \0 1
;

if (source[i] == 1 \0 1
}

return (1);
else
return (0);

/* SR LINDA END sends a special string to the tuple manager
signalling end of program. It then waits for all other
slave processes to die. */

sr_linda_end ()
{

struct tuple_msg_type tuple_channel;

strcpy(tuple_channel.hanger, "endstring");

- 83 -

}

strcpy(tuple channel.mask, "%end");
tuple channei.type = END;
g send(1, &tuple channel, sizeof(tuple channel));
wait_for_end();- -

I* THASH is identical to its counterpart in the monitors
model *I

thash(word)

{

}

char word[80];

int h;
int i;

h = o;
for (i = 1 ; word [i] ! = 1 \ o 1 ; i ++)
{
h = t[h A word[i]];
I* printf("%d ",h); *I

}
return (h) ;

I* MATCH is identical to MATCH in the monitors model *I

match(template, hanger, mask)

{

char *template, *hanger, *mask;

int i, k, j, count;
int flag = 1;
count = o;
k = o;
j = o;
for (i = 0; (*(mask+ i) != 1 \0 1) && flag; i += 2)
{
if (*(mask + i) == 1 %1)

{

}
else
{

for (; (*template != 1 1) II (*hanger != 1 1);

template++, hanger++)
{
if (*template != *hanger)
{

}
}

flag = o;
break;

- 84 -

for (; *template != 1 1 ; template++);
for (; *hanger != 1 1 ; hanger++);

}

}

}
template++;
hanger++;

return (flag);

f* SR LINDA INIT initializes the environment and creates the
process group. */

sr linda init(ac, av)
int ac; -
char **av;

{

}

initenv(ac, av);
create_procgroup();

- 85 -·

APPENDIX C

Sample Linda Programs

I* A note on the following primes finding programs - The
three primes finding programs are variations on similar
programs found in [CAR89A]. Furthermore, only versions
based on the monitors model are shown here. Minor
modifications are required for execution under the message
passing model. *I

I* PRIMES FINDER I: *I

#include <stdib.h>
#include "mon linda.h"

#define NUM PROCS 4

main(argc,argv)
int argc;
char **argv;

{

}

int primes();
int last,i,ok,limit;

mon_linda_init(NUM_PROCS,argc,argv);

limit = 100;

for(i=2;i<limit;++i)
{

out("%s%d","primeargs",i);
eval("%s%d","primes",primeptr);

}

for(i=2;i<limit;++i)
{

rd("%s%d?d","primes",i,&ok);
if(ok == 1)
last = i;

}
printf("greatest prime is %d\n",last);

mon_linda_end();

- 86 -

int primes()

{

}

int me,i,limit,ok;
double sqrt();

in("%s?d","primeargs",&me);
limit= sqrt((double) me) + 1;
for(i=2;i<limit;++i)

{

}

rd("%s%d?d","primes",i,&ok);
if((ok) && (me%i == 0))

{
out("%s%d%d","primes",me,O);
return(O);

}

printf("slave %d found prime= %d\n",get_my_id() ,me);
out("%s%d%d","primes",me,1);
return(l);

- 87 -

I* PRIMES FINDER II *I

I* Master process *I

#include <stdio.h>
#include "mon linda.h"

#define NUM PROCS 3
#define GRAIN 2000
#define LIMIT 100000
#define NUM INIT PRIME 15

int prime[LIMIT 1 10 + 1] = {2, 3, 5, 7, 11, 13, 17, 19, 23,
29, 31, 37, 41, 43, 47}

int pp[LIMIT 1 10 + 1] =
{4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961,

1369, 1681, 1849, 2209};

long time_start, time_end;

main(argc, argv)
int argc;
char **argv;

{
int eot, size, new, first num, i, num, num_primes;
char formal[80]; -
int new primes[GRAIN], np2;
int it;-
int timestart, timeend;
int worker();

mon linda_init(NUM_PROCS, argc, argv);

timestart =clock();
for (i = 0; i < NUM_PROCS; ++i)
{
eval("%s%d", "worker", worker);

}

num primes = NUM INIT PRIME;
first num = prime[num-primes - 1] + 2;
out("%s%d", "next_task", first_num);

eot = o;
newptr = new primes;
for (num = first_num; num < LIMIT; num += GRAIN)
{

in("%s%d:d", "result", num, new_primes, &size);

- 88 -

}

for (i = o; i < size; ++i, ++num_primes)
{

}
}

prime[num primes)= new_primes[i];
if (!eot)-
{

}

np2 =new primes[i] * new_primes[i];
if (np2 >-LIMIT)
{

}

eot = 1;
np2 = -1;

out("%s%d%d%d", "primes", num_primes, .
new_primes[i], np2);

for (i = 0; i < NUM PROCS; ++i)
in("%s?d", "worker11 , &it);

timeend =clock();
printf("Time: %d\n", timeend- timestart);

printf("%d: %d\n", num_primes, prime[num_primes- 1]);

mon_linda_end();

I* worker process *I

int worker ()

{
int xprime[LIMIT I 10 + 1] = {2, 3, 5, 7, 11, 13, 17,

19, 23, 29, 31, 37, 41, 43, 47 }
int xpp[LIMIT 1 10 + 1] = {4, 9, 25, 49, 121, 169, 289,

361, 529, 841, 961, 1369, 1681, 1849, 2209};
int count, eot, i, limit, num, num primes, ok, start;
int my_primes[GRAIN]; -

num_primes = NUM_INIT_PRIME;

eot = o;
while (1)
{

in("%s?d", "next_task", &num);
if (num == -1)
{

}

out("%s%d",
break;

"next task" -1) ·
- ' '

limit = num + GRAIN;

- 89 -

}

out("%s%d", "next task" - ' (limit > LIMIT) ? -1

if (limit > LIMIT)
limit = LIMIT;

start = num;
for (count = o; num < limit; num += 2)
{

}

while (!eot && num > xpp(num_primes- 1])
{

}

rd("%s%d?d?d", "primes", num primes,
&xprime(num primes], &xpp(num primes]);

if (xpp(num primes] < 0) -
eot = 1T

else
++num_primes;

for (i = 1, ok = 1; i < num_primes; ++i)
{

}

if (! (num% xprime(i]))
{

}

ok = o;
break;

if (num < xpp[i])
break;

if (ok)
{

}

my primes(count] = num;
++count;

limit);

out("%s%d:d", "result", start, my_primes, count);
}
out("%s%d", "worker", 1);

- 90 -

/* PRIMES FINDER III: */

#include <stdio.h>
#include "mon_linda.h"

#define LIMIT 200
#define NUM PROCS 6
long time_start, time_end;

main(argc, argv)
int argc;
char **argv;

{
int source();
int sink();
int i, end;
int timestart, timeend;

mon linda init(NUM PROCS, argc, argv);
timestart-= clock();

}

eval("%s%d 11 , "source", source);
eval(11 %s%d", "sink", sink);
in("%s?d", "sink", &end);
timeend = clock();
mon linda end();
printf(11 time is %d\n", timeend- timestart);

int source ()

{

}

int i, out index = o;

for (i = 5; i < LIMIT; i += 2)
out("%s%d%d%d", "seg", 3, out index++, i);

out("%s%d%d%d", "seg", 3, out_Index, 0);

int sink()
{

int in index = o, num, prime = 3, prime_count = 2;
int pipe_seg();

while (1)
{

in("%s%d%d?d", "seg", prime, in index, &num);

in index++;
if- (! num)

break;

- 91 -

}

if (num % prime)
{

}
}

++prime count;
if ((num * num) <LIMIT)
{

eval("%s%d", "pipeseg", pipe seg);
out("%s%d%d%d", "psegargs", prime, num, in_index);

prime = num;
in index = o;

}

printf("count: %d.\n", prime count);
out("%s%d", "sink", 1); -

int pipe seg ()

{

}

int prime, next, in_index, num, out_index = o;

in("%s?d?d?d", "psegargs", &prime, &next, &in_index);

while (1)
{

in("%s%d%d?d", "seg", prime, in index, &num);
in index++;
if- (! num)
{

}

out("%s%d%d%d", "seg", next, out_index, num);
return;

if (num % prime)
{

}
}

out("%s%d%d%d", "seg", next, out_index, num);
out_index++;

- 92 -

I* A note on the SEMIGROUPS PROBLEM - The program is a
modification of e,ne referenced in [BUT88] and was tested
under the message passing model. Minor modifications are
required for it to run under the monitors model. *I

I* SEMI.H - header file for the semigroups problem *I

#define BOOL int
#define TRUE 1
#define FALSE 0

#define
#define
#define
#define
#define
#define
#define

DEFAULT MEM SZ 10000
MAX INIT PROB sz 10 - -
MAXTBLSZ 20
MAXWORDSZ 125
MAXSLAVES 9
MAXOPER 9
HASH TBL SZ 9973

I* message types *I
#define INITDATA 0
#define REQWORK 1
#define WORK 2
#define CANDIDATE 3
#define NEWWORD 4
#define TERMINATE 5
#define ACK 6

#define PERFORM OPERATION(W1,W2,W3,WORDSZ) \
{ - \
int i; \

\
for (i=O; i < WORDSZ; i++) \

W3[i] =operation tbl[W1[i]][W2[i]]; \
W3[i] = 1 \0'; I* add string terminator *I \

}

typedef char WORD[MAXWORDSZ+1];

#define DATA REC \
int -type; \
WORD word; \
BOOL ack; \
int idx;

struct data struct
{

DATA REC
} ;

struct hash node
{

WORD *wrd_ptr;

- 93 -

struct hash node *next;
} ;

struct newword
{

} ;

struct newword *next;
WORD word;
int idx;

struct init data struct
{

int type;
int master;
int my id;
int word_sz;
int oper tbl sz;
char operation_tbl[MAXOPER][MAXOPER];

} ;
struct work struct
{

DATA REC
} ;
struct cand struct
{

DATA REC
} ;
struct neww struct
{

DATA REC
} ;
struct ack struct
{

DATA REC
} ;

/* SEMIGROUPS PROBLEM - MASTER PROCESS: */

#include <stdio.h>
#include "semi.h"
#include "sr linda.h"

int my id = o;
BOOL more work;
WORD wordT
char s[80];
int type;
int wait idx;
struct data struct newword, work, candidate;
int next_mast_entry;

- 94 -

struct newword *head avl newword;
struct hash node *head_avl_hash_node;

int msg type, i, idx, size, next_idx, last_idx, hash_idx,
nslaves;

int num rows in mast tbl;
long time start~ time end;
struct hash node *hash tbl[HASH TBL SZJ, *p,
*alloc_hashnode(); - - -

main(argc, argv)
int argc;
char **argv;
{

struct newword *newword queue[MAXSLAVES], *qp,
*alloc newword();

int id, word sz, oper tbl sz;
char operation tbl[MAXOPER][MAXOPER];
char mytab[MAXOPER][MAXOPER];
int wait queue[MAXSLAVES];
WORD *master table[lOO];
int timestart, timeend;
int ln, op sz;
int tempint;
int i, j;

sr_linda_init(argc, argv);

next mast entry = 2;
printf("master before Malloc\n");
master table[O] = (WORD*) g malloc((sizeof(WORD) *

- MAXTBLSZ}) ; -
printf("master after Malloc\n");
if (master_table[O] == NULL}
{

}

printf("first Malloc failed in master\n");
exit(9};

printf("master before Malloc\n");
master table[l] = (WORD*) g malloc((sizeof(WORD) *

- MAXTBLSZ}); -
printf("master after Malloc\n");
if (master_table[l] == NULL}
{

}

printf("second Malloc failed in master\n");
exit(9};

for (i = 0; i < HASH TBL SZ; i++)
hash_tbl[i] = NULL;- -

for (i = 0; i < MAXSLAVES; i++)
newword_queue[i] = NULL;

- 95 -

read input(master table, hash tbl, newword_queue,
- &nslaves, -

&num rows in mast tbl, &word sz,
&oper_tbl=sz~ operation_tbl)T

bcopy(operation tbl, mytab, 36);
last idx = num rows in mast tbl - 1;
head-avl newword = NULL;
head=avl=hash_node = NULL;

for (i = 1; i <= nslaves; i++)
{
out("%s%d", "id", i);

}
strcpy(word, "init");
op sz = sizeof(operation tbl);
printf("sizeof oper tbl Is %d\n", op_sz);
for (i = 1; i <= nsiaves; i++)

out("%s%d%d%s:s", "initdata", i, word_sz, word,
operation_tbl, op_sz);

more work = TRUE;
wait-idx = -1;
next=idx = o;

timestart = clock();
while (more_work)
{
in("%s?d?d?s?d", "master", &type, &id, word, &idx);
if (type != REQWORK && type != CANDIDATE)
{

exit(99);
}
if (type == CANDIDATE)

{
if (!word_exists(word, hash_tbl, word_sz))
{
last idx++;
if (last_idx >= (next_mast_entry * MAXTBLSZ))
{

}

master table[next mast entry] = (WORD *)
-g malloc((sizeof(WORD) * MAXTBLSZ)) i

if (master table[next mast entry] == NULL)
{ - - -

exit(9);
}
next_mast_entry++;

strcpy(master table[last idx I MAXTBLSZ] +
(last-idx % MAXTBLSZ), word);

hash idx = hash(word, word sz);
p = alloc hashnode(); -
p->next =-hash_tbl[hash_idx];

- 96 -

}
else
{

p->wrd ptr = master table[last idx 1 MAXTBLSZ] +
- (last idx% MAXTBLSZ);

hash tbl[hash idxJ = p;
for (i = o; i-< nslaves; i++)
{

qp = alloc newword();
qp->next =-newword queue[i];
strcpy(qp->word, master table[last idx 1

MAXTBLSZJ + (last-idx% MAXTBLSZ));
qp->idx = last idx; -
newword queue(IJ = qp;

} I* endfor *I
if (wait_idx > -1)
{

dump queue(wait queue[wait idx],
- newword queue, nslaves);

type = WORK; -
out("%d%d%s%d", wait queue(wait idx], type,

word, idx) ; - -
wait idx--;
next-idx++;

} - I* endif *I
} I* endif *I
dump_queue(id, newword_queue, nslaves);

type = ACK;
Out(11 ~od~od~oS~od 11 , 1'd type WOrd 1'dx) •

' ' ' '

dump queue(id, newword queue, nslaves);
if (next_idx > last_idx)
{

}

if (wait_idx -- nslaves - 2)
{

}
else
{

for (i = 1; i <= nslaves; i++)
{
type = TERMINATE;
out("%d%d%s%d", i, type, word, idx);

} I* endfor *I
more work = FALSE;

wait idx++;
wait-queue(wait idx] = id;

} - I* endif *I

else
{
idx = next_idx++;

- 97 -

}

type = WORK;
Out (11 ~od~odS!:os~od 11 ' 1' d type word 1' dx) •

' ' ' '
}

}

}

timeend =clock();
sr_linda_end(};

printf("Time was %d\n", timeend- timestart);
printf("Ending table with %d entries\n", last idx + 1};
I* -

* print table(master table, last idx,word sz);
*display hash table{hash tbl);- -
*I - - -

printf("Time was %d\n", timeend- timestart);

display hash table(tbl)
struct hash node *tbl[];

{

}

int i, count, total count;
struct hash_node *PT

printf("\nDisplay of Hash Table\n");
total count = o;
for (I = 0; i < HASH_TBL_SZ; i++)
{
for (count= o, p = tbl[i]; p !=NULL; p = p->next,

count++);
if (count)
{

}
}

printf("Hash idx = %d has %d nodes\n", i, count);
total count += count;

printf("\nTotal nodes found in hash table= %d\n",
total_count) ;

I* end display_hash_table *I

print table(table, table_length, word_length)
WORD *table[);
int table_length, word_length;

{
int i;
int tbl idx;

for (tbl idx = 0; (tbl idx * MAXTBLSZ) < table_length;
- tbl_idx++)-

- 98 -

for (i = 0; i < MAXTBLSZ && (tbl idx * MAXTBLSZ + i) <=
table length; i++) -

print_word(table[tbl_idx] + i, word_length);

return;

} I* end print_table *I

print word(word, length)
WORD word;
int length;
{

}

int i;

if (my_id)
{
printf("slv%d: -->", my_id);

}
else
{
printf("master -->");

}

printf(" ");
for (i = o; i < length; i++)
printf("%c", word[i] + 'O' - 1);

printf(" %x", word[i]);

printf("\n");

return;

I* end print_word *I

read input(master tbl, hash tbl, slv q tbl, nslaves,
init_prob_sz, word_sz, oper_tbl_sz,-operation_tbl)

WORD *master tbl[];
int *nslaves~ *init prob sz, *word sz, *oper_tbl_sz;
struct hash node *hash tbl[]; -
struct newword *slv q tbl[];
char operation_tbl[MAXOPER][MAXOPER];

{
int i, j, hash idx;
struct hash node *Pi
struct newword *alloc_newword();
struct newword *qp;

scanf("%d %d %d", nslaves, word_sz, init_prob_sz);
I*

* printf("nslaves=%d word sz=%d init prob sz=%d
* \n",*nslaves,*word_sz,*Init_prob_sz); *I

- 99 -

}

if (*init prob sz >= MAX_INIT_PROB_SZ I I *word sz >
MAXWORDSZ)-

{
printf("problem too big - increase size of init tbl or

word size\n");
exit(3);

}
for (i = o; i <= (*init_prob_sz) - 1; i++)
{
scanf("%s", master tbl[O] + i);
convert(master_tbl[OJ + i, master_tbl[O] + i, word_sz);

hash idx = hash(master tbl[O] + i, *word_sz);
p = alloc hashnode();-
p->next =-hash tbl[hash idx];
p->wrd ptr = master tbl(OJ + i;
hash tbl[hash idx) ~ p;
for (j = o; j-< *nslaves; j++)
{

qp = alloc newword();
qp->next =-slv q tbl[j];
qp->idx = i; - -
strcpy(qp->word, master tbl[O] + i);
slv_q_tbl[j] = qp; -

}
}

printf("Initial table with %d entries:\n",
*init prob sz);

print_table(master=tbl, (*init_prob_sz) - 1, *word_sz);

scanf("%d", oper tbl sz);
while (getchar()-!= '\n');
printf("\nOperation table of dimension %d:\n",

*oper tbl sz);
for (i = 1; i <= (*oper_tbl_sz); i++)
{

}

for (j = 1; j <= (*oper_tbl_sz); j++)
{

}

operation tbl[i][j] = getchar();
printf("%c", operation tbl[i][j]);
operation_tbl[i][j] = operation_tbl[i][j] - 1 0 1 +

1;
printf(" %x", operation_tbl[i][j]);

while (getchar() != '\n');
printf("\n");

- 100 -

convert(source, target, ln)
WORD source, target;
int *ln;
{

int i;

for (i = o; i < *ln; i++)
target[i] = source(i] - 'O' + 1;

return;
}

dump queue(id, q_tbl, nslaves)
int Id;
struct newword *q_tbl[];
int nslaves;

{
struct newword *qp, *qp1;
int i, mark;

for (i = 1, mark =
i++)

{
if (id == i)

mark = i - 1;
}

if (mark== (-1))
{

(-1); i <= nslaves && mark

printf("Master unable to locate %d i\n", id);
exit(3);

}

(-1) ;

for (qp = q tbl[mark], qp1 =NULL; qp !=NULL; qp1 = qp,
qp = qp->next)

}

{
strcpy(word, qp->word);
idx = qp->idx;
type = NEWWORD;
Out (11 ~od~od~oS~od 11

1 1' d type WOrd 1' dX) • I I I I

}

if (qp1 != NULL)
{
qp1->next = head avl newword;
head avl newword-= q=tbl(mark];

}
q tbl[mark] = NULL;
return;

/* end dump_queue */

- 101 -

struct hash_node *alloc_hashnode()
{

}

int i;
struct hash_node *p, *qp, *qp1;

if (head_avl_hash_node == NULL)
{
qp = (struct hash node*) g malloc((sizeof(struct

hash node))* 100);-
if (qp == NULL)
{

}

printf("can't alloc hashnode\n");
exit(9);

for (i = 1, head avl hash node = qp; i < 100; i++, qp =
qp->next) - - -

{
qp->next = qp + 1;

}
qp->next = NULL;

}
p = head avl hash node;
head avl-hash node = head avl hash node->next;
return (p); - - -

I* end alloc_hashnode *I

struct newword * alloc_newword()
{

}

int i;
struct newword *p, *qp, *qp1;

if (head_avl_newword == NULL)
{
qp = (struct newword *) g_malloc((sizeof(struct

newword))
* 100) ;

if (qp == NULL)
{

}

printf("cant alloc newword\n");
exit(9);

for (i = 1, head avl newword = qp; i < 100; i++, qp =
qp->next) - -

{
qp->next = qp + 1;

}
qp->next = NULL;

}
p = head avl newword;
head avl-newword = head_avl_newword->next;
return (p);

I* end alloc newword *I

- 102 -

hash(word, word sz)
WORD word; -
int word_sz;
{

int aligned buffer[(MAXWORDSZ 1 sizeof(int)) + 1];
int i, left~ right, j;
unsigned int accum, ored word;
int *1; -
char *c;

strcpy((char *) aligned buffer, word);
1 ~ aligned_buffer; -
accum ~ o;
for (i ~ (word_sz 1 (3 * sizeof(int))); i; i--)
{
ored word ~ o;
for (j ~ o; j < 3; j++)
{

}

ored word I= (*1 << j * 3);
1++;-

accum = (accum << 1) A ored_word;
}
return (accum% HASH TBL SZ);

} I* end hash *I
word exists(word, hash tbl, word sz)
struct. hash node *hash -tbl [];
WORD word; -
int word_sz;

{

}

int i, rc;
struct hash node *p;

for (rc = o, i = hash(word, word sz), p ~ hash_tbl[i]; p
!= NULL && rc ~= o; p = p->next)

{
if (strcmp(word, p->wrd_ptr) == 0) I* if equal words *I

rc = 1;
}

return (rc);
I* end word exists *I

- 103 -

/* SEMIGROUPS PROBLEM - SLAVE PROCESS: */

#include <stdio.h>
#include "semi.h"

int my id;
char s[80];
WORD word;
int idx, type;
int word sz, oper tbl sz;
struct hash node *hash tbl[HASH TBL SZ], *p,
*slave alloc hashnode(); - -
struct-hash node *slave head avl hash node;
char operation tbl[MAXOPER][MAXOPER];
char *op_tbl; -

lslave (}
{

int id, myid;
BOOL more work, waiting for ack, first with idx;
int i, work idx, msg type, hash idx, loc_tbi_idx,

local idx; - -
WORD *local table[100], newword;
int next local idx;
int ln,] ; -

slave head avl hash_node = NULL;
next Iocal-idx-= 2;
local table[O] = (WORD*} g malloc((sizeof(WORD} *

- MAXTBLSZ});
if (local_table[O] == NULL}
{

}

printf("First Malloc failed in a slave\n"};
exit(9};

printf("s: local table 1 defined\n"};
local table[1] = (WORD*) g malloc((sizeof(WORD) *

- MAXTBLSZ});
if (local_table[1] == NULL)
{

}

printf("Second Malloc failed in a slave\n"};
exit(9};

printf("s: local table 2 defined\n"};
for (i = 0; i < HASH TBL SZ; i++)
hash_tbl[i] = NULL;- -

in("%s?d", "id", &id};

strcpy(s, "%s%d?d?s:s"};
in("%s%d?d?s:s", "initdata", id, &word sz, word,

operation tbl, &oper=tbl_sz);
myid = get my id(); -
type = REQWORK;

- 104 -

strcpy(word, "dummy");
idx = o;

Out (11 9.:cos9.:cod9.:cod9.:cos9.:cod 11 ' "master" type l' d word l' dx) .
' ' ' ' '

more work = TRUE;
while (more_work)
{

in("%d?d?s?d 11 , id, &type, word, &idx);
switch (type)
{

case TERMINATE:
more work = FALSE;
break;

case NEWWORD:
for (local idx = idx I MAXTBLSZ; local idx >=

next_Iocal_idx; next_local_idx++)
{
local table[next local idx] = (WORD *)

- g malloc((sizeof(WORD) * MAXTBLSZ));
if (local=table[next_local_idx] == NULL)
{

exit(9);
}

}
strcpy(local table[local idx] + (idx % MAXTBLSZ),

word); -
hash idx = hash(word, word sz);
p = slave alloc hashnode();
p->next =-hash tbl[hash idx];
p->wrd ptr = local table[idx 1 MAXTBLSZJ + (idx %

- MAXTBLSZ);
hash tbl[hash idx] = p;
break; -

case WORK:
work idx = idx;
loc tbl idx = o;
first with idx = TRUE;
while-(generate a word(local table, &loc_tbl_idx,

work idx, word sz, -

{

&first with idx, newword,
operation tbl))

if (!word_exists(newword, hash_tbl, word_sz))
{

strcpy(word, newword);
I*
* printf("NEWER: 11

) i
print word(word,word sz);

*I - -
type = CANDIDATE;

- 105 -

}

}
}

out("%s%d%d%s%d", "master", type, id, word,
idx);

waiting for ack = TRUE;
while (waiting_for_ack)
{

in("%d?d?s?d", id, &type, word, &idx);
if (type != NEWWORD && type != ACK)
{

exit(99);
}

if (type == NEWWORD)
{

}
else
{

}
}

for (local idx = idx I MAXTBLSZ;
local-idx

{

}

>= next local idx;
next_local_idx++)

local table(next local idx] = (WORD *)
-g malloc((sizeof(WORD) *

MAXTBLSZ));
if (local table(next local idx] == NULL)

exit(9); - -

strcpy(local table(local idx] + (idx %
MAXTBLSZ), word);-

hash idx = hash(word, word sz);
p = slave alloc hashnode();
p->next =-hash tbl[hash idx);
p->wrd ptr = local table[idx 1 MAXTBLSZJ

- + (idx% MAXTBLSZ);
hash_tbl[hash_idx] = p;

waiting_for_ack = FALSE;

type = REQWORK;
out("%s%d%d%s%d", "master", type, id, word, idx);
break;

default:

}
}

printf("s: exiting due to invalid type %d\n",
type);

exit(99);
break;

I* end switch *I
/* endwhile *I

I* end main *I

- 106 -

generate a word(local table, loc tbl idx,
data-rec idx, word sz, first-with idx,
newword,-operation-tbl) - -

WORD *local table[], newword;
int *loc tbi idx, data rec idx, word sz;
BOOL *first with idx; - - -
char operation_tbl[MAXOPER][MAXOPER];

{

}

char *w1, *w2;
int rc;

rc = 1; I* word generated *I
w1 = local table[*loc tbl idx 1 MAXTBLSZ] +

- (*loc-tbl-idx
% MAXTBLSZ) ;

w2 = local table[data rec idx 1 MAXTBLSZ] +
- (data-rec-idx

% MAXTBLS z) ;
if (*first_with_idx && *loc tbl idx <= data_rec_idx)
{

}

PERFORM OPERATION(w1, w2, newword, word_sz);
*first with idx = FALSE;

else
{

}

if (*loc_tbl_idx < data_rec_idx)
{

PERFORM_OPERATION(w2, w1, newword, word_sz);
}
else
{

rc = o; I* word not generated *I
}
*first with idx = TRUE;
(*loc_tbl_idx)++;

return (rc);

struct hash node *slave_alloc_hashnode()
{

int i;
struct hash_node *p, *qp, *qp1;

if (slave_head_avl_hash_node == NULL)
{
qp = (struct hash node*) g_malloc((sizeof(struct

hash node))-* 100);
if (qp == NULL)
{

printf("Error in malloc for hash nodes in

- 107 -

}

}

slave\n");
exit(9);

for (i = 1, slave_head_avl_hash_node = qp; i < 100;
i++,

qp = qp->next)
{

qp->next = qp + 1;
}
qp->next = NULL;

}
p = slave head avl hash node;
slave head avl-hash node =

slave head avl hash node->next;
return (p);- - -

/* end slave alloc hashnode */

- 108 -

VITA

Alan Leveton currently works as a systems analyst for the

Naval Aviation Depot in Jacksonville, Florida. He received

a B.A. in Education from the University of Florida in 1974.

A teaching career that spanned over ten years included a

variety of courses in Literature and Mathematics. Alan

plans to graduate in May, 1991.

- 109 -

	UNF Digital Commons
	1990

	Linda Implementations Using Monitors and Message Passing
	Alan L. Leveton
	Suggested Citation

	Title Page
	CONTENTS
	FIGURES
	ABSTRACT
	Chapter 1 INTRODUCTION
	1.1 Thesis Organization
	1.2 Problem Review
	1.2.1 Linda Background
	1.2.2 The Problem

	1.3 Literature Review

	Chapter 2 METHODS AND PROCEDURES
	2.1 Background
	2.1.1 Monitors
	2.1.2 Message Passing

	2.2 Interface
	2.3 Basic design for the shared-memory implementation
	2.4 Basic Design for the Message-Passing Implementation
	2.5 Design Considerations
	2.6 Detailed Design
	2.6.1 Detailed Design in the Monitor Based Implementation
	2.6.2 Detailed Design for the Message Passing Implementation

	2.7 Demonstration and Applicability
	2.7.1 Primes Finder I
	2.7.2 Primes Finder II
	2.7.3 Primes Finder III
	2.7.4 A Semigroups Problem

	Chapter 3 RECOMMENDATIONS AND CONCLUSIONS
	3.1 Recommendations for Future Enhancement
	3.2 Evaluation and Conclusion

	REFERENCES
	APPENDIX A
	APPENDIX B
	APPENDIX C

