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STATEMENT ON SECURITY RESEARCH 

 

This research was performed with local software simulation on hardware that was not 

connected to the Internet.  All testing was performed within Java objects that only 

communicated with one another on one computer.  No simulation between hardware 

devices was tested during this research. 

 

This research was performed for purely academic reasons to study the security of data 

caching networks and a possible new attack vector.  UNF does not promote the use of any 

attack outside of an approved testing environment designed for computer research.  This 

research discusses the possibility of using this new attack on real world networks and what 

the effects of the attack would be.  Any further research on this topic should be done locally 

and never used against live networks or computers not owned by the tester.  Future research 

is promoted in this paper on the topic of finding methods to detect and prevent such data 

caching attacks in the future. 
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ABSTRACT 

 

With the rise of data exchange over the Internet, information-centric networks have become 

a popular research topic in computing.  One major research topic on Information Centric 

Networks (ICN) is the use of data caching to increase network performance. However, 

research in the security concerns of data caching networks is lacking.  One example of a 

data caching network can be seen using a Mobile Ad Hoc Network (MANET).  

 

Recently, a study has shown that it is possible to infer military activity through cache 

behavior which is used as a basis for a formulated denial of service attack (DoS) that can 

be used to attack networks using data caching.  Current security issues with data caching 

networks are discussed, including possible prevention techniques and methods.  A targeted 

data cache DoS attack is developed and tested using an ICN as a simulator. The goal of the 

attacker would be to fill node caches with unpopular content, thus making the cache 

useless.  The attack would consist of a malicious node that requests unpopular content in 

intervals of time where the content would have been just purged from the existing cache.  

The goal of the attack would be to corrupt as many nodes as possible without increasing 

the chance of detection.  The decreased network throughput and increased delay would also 

lead to higher power consumption on the mobile nodes, thus increasing the effects of the 

DoS attack.  

 



xiii 

Various caching polices are evaluated in an ICN simulator program designed to show 

network performance using three common caching policies and various cache sizes.  The 

ICN simulator is developed using Java and tested on a simulated network.  Baseline data 

are collected and then compared to data collected after the attack.  Other possible security 

concerns with data caching networks are also discussed, including possible smarter attack 

techniques and methods.   
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Chapter 1 

INTRODUCTION 

 

The Internet has grown in the 21th century to become the main source of communication 

and data exchange. The rise in mobile smart phone usage has also increased the amount of 

data exchange and the number of people requesting content. Examples of content include 

documents, videos, images, audio, and metadata.  As technology continues to get better, 

the byte size of the data also continues to increase.  For example a standard definition video 

which, has an average resolution of 480p.  A standard DVD disc can hold up to 4GB of 

data, which displays video in 480p resolution.  Many popular cameras and video cameras 

in 2014 are capable of shooting videos in high definition, or 1080p resolution.  A standard 

Blu-Ray disc can hold up to 50GB of data, which displays video in 1080p resolution.  

Similar types of file size increases can be seen with higher resolution images as technology 

continues to develop.  With more people capturing large multimedia there comes a need to 

present this media quickly, and keep the high quality for remote users.  The rise in 

technology has kept to “Moore’s Law” in doubling of technical capacity every two years 

[Schaller97], but many researchers suggest that the network technology is not keeping to 

the law [Coffman02].   

 

Data or content caching was used as a way to increase the performance of data exchange 

over the network.  Many peer-to-peer and mobile networks require data caching to increase 

network performance while providing the most energy efficient solution.  To reduce the 
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amount of network traffic and help solve any issues related to the geographic distance of 

client and server data exchange, Content Delivery Network (CDN) architectures were put 

in place in heavy metropolitan areas.  Content Delivery Networks place caching servers on 

the edge of networks so requests can be served in geographical proximity to users.  Another 

networking architecture, Named Data Networking (NDN), has also been proposed where 

data caching would be done on routers.  This type of network would require existing routers 

to be upgraded to faster and much more expensive hardware.   

 

Network security has become a very popular topic in the world of computing since the 

invention and rise of the Internet.  The Internet structure itself allowed for many security 

vulnerabilities to occur between remote computers.  Research on the Internet (its 

vulnerabilities, attack methods, and security technology) has become a vital necessity to 

maintain the confidentiality, integrity, and availability of personal and corporate assets. 

Technologies such as firewalls and other security devices and methods allow for businesses 

to be protected within an “intranet” but still have the availability to connect to the Internet. 

Other security devices such as Intrusion Prevention Systems (IPS) allow security 

professionals to monitor and actively defend against security threats.  Security research 

allows for such devices and methods to stay up to date on the latest vulnerabilities and 

attack methods.  Newly found and evaluated vulnerabilities and methods allow for security 

devices and professionals to accurately detect and prevent such issues in the future. 

[Daya13] 
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1.1 Problem Statement 

 

Data caching networks, such as an ICN, rely on the use of caching to increase network 

performance by minimizing the number of hops for given requests.  As mentioned, many 

different networks have been created and researched to solve the problem of fast data 

exchange.  ICNs have also introduced a new way to find content, based on the content data 

itself instead of an IP centric or host to host model [Brito13].  A main component of 

ensuring high performance in data exchange on networks is “data caching”.  Many 

companies and researchers use load testing to benchmark network limitations and show 

that data caching can greatly improve network performance [Bžoch12].  But what are the 

security implications of attacking the data cache itself?  As shown in Chapter 2, security 

research is lacking in the field of data caching networks and attacks targeted at cache 

pollution.  This thesis aims to show and discuss the security issues arising from attacking 

the use of data caching within networks and proposes a new type of DoS attack. 

 

Any gap in research and knowledge can lead to possible security vulnerabilities that may 

not be well known until exploited.  Take, for example, zero day attacks that use methods 

and vulnerabilities that are not known by the attacked company or technology until they 

are used against them.  The recent vulnerability discovered in SSLv3 protocol is a perfect 

example of vulnerabilities that exist in the world today that are not known until research or 

live attacks are performed.  These types of threats can be minimized by security research, 

testing, and general awareness.  Data caching network security currently lacks an in-depth 

look at security attacks targeting the use of data caching and thus presents a problem.   
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1.2 Contributions 

 

With the growing dependence on data caching within networks, a new DoS threat can be 

formed that targets the use of data caching strategies.  The new creative and adaptive 

method targets the goals of data caching and uses prior research on inferring network traffic 

from data cache behavior [Dehghan13].  This targeted DoS attack would prove to decrease 

network throughput and increase network delay.  This method is defined, implemented, 

and tested on a data caching network simulator.  The scalability of the attack 

implementation is tested across 3 network topologies ranging in size from 5 nodes to 8,846 

nodes.  The attack implementation is also tested across 3 caching strategies and 5 different 

cache sizes per node.  The network simulator was developed to test an ICN using custom 

object oriented classes that were developed to evaluate the new attack implementation.  The 

network simulator software was developed to test a network using software testing limited 

to the local machine.  No network hardware or external computers were used in the 

simulator testing.  Three different caching strategies were also tested in the simulator using 

a Java implementation of the DoS attack.  The scope of the research is limited to internal 

attacks.  For internal attacks, it is assumed that an internal node in the network has already 

been compromised.  No details are provided on how this node was compromised, nor will 

the security implications of attacks not related to data caching be discussed.  This new 

attack and discussion of security issues concerning data caching networks aims to open up 

more research and awareness in the field of computer security. 
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Chapter 2 

BACKGROUND AND LITERATURE REVIEW 

 

2.1 Background 

 

In this chapter, various concepts and technologies that relate to a DoS attack on data 

caching networks are discussed and defined.  The main topics include network 

technologies, data caching, and computer security.  A defined understanding of these topics 

and terminology will be needed to fully understand the proposed new attack method.   

 

2.1.1 Information Centric Networks (ICN) 

 

The most widely used networks today are host centric networks that use an IP address route 

requests.  Requests are bound to a physical geographic location that all requests must 

communicate to and from.  Information or content centric networks aim to change this 

paradigm to a data-based approach for delivering content.  This networking approach 

allows for faster information access regardless of location. For example, a user requests a 

video to download.  The router takes this request, searches nearby hosts for this content, 

and routes the request to the closest host with that content to serve the request. The history 

of ICNs come from content delivery systems such as publish/subscribe architectures and 

peer-to-peer networks where the main goal was content dissemination.   



- 6 - 

Key differences between ICNs and host centric networks include naming, routing, security, 

and API.  ICNs give names to unique pieces of content instead of giving names to hosts.  

Routing is performed by routing requests between a client requester and optimal content 

sources.  Host centric networks route requests between source and destination nodes that 

are identified using a physical geographic location on the network with an IP address.  

Packet headers are used to send chunks of data, hop by hop, from the browser to the server 

and back.  The packet headers contain the IP address which describes the location of the 

destination to all routers so they know where to forward the request [Brito13].  Clearly, if 

the end destination server is not geographically located near the client, the request could 

take some time to complete as it needs to travel from router to router, possibly across the 

globe.  Security in host centric networks focus on having a secure communication channel 

between source and destination hosts.  ICNs secure the integrity of the content itself and 

make sure it is not altered regardless of how the content is delivered. APIs exposed by 

ICNs create methods that allow for content to be published and consumed, whereas host 

centric networks allow data to be sent to given physical geographic locations [Tyson13]. 

 

 

2.1.2 Peer-to-Peer Networks 

 

The roots of ICNs are found in the early peer-to-peer networks that allowed for a new and 

unique way to send and receive data.  Peer-to-peer networks are a form of network 

architecture in which host computers send and receive data from one another without the 

need to go to a separate server. Each computer acts as both a client and a server in a peer-
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to-peer network.  A good definition of peer-to-peer systems was proposed by 

Androutsellis-Theotokis in 2004 [Androutsellis-Theotokis04],  

Peer-to-peer systems are distributed systems consisting of interconnected 

nodes able to self-organize into network topologies with the purpose of 

sharing resources such as content, CPU cycles, storage and bandwidth, 

capable of adapting to failures and accommodating transient populations 

of nodes while maintaining acceptable connectivity and performance, 

without requiring the intermediation or support of a global centralized 

server or authority. 

The most widely known and used peer-to-peer systems are used for sharing content, which 

first became popular with Napster.  Napster was forced to shut down after violating the 

Digital Millennium Copyright Act.  Shortly after that time, a file sharing protocol, Bit 

Torrent, became very popular and heavily used.  The Bit Torrent protocol [Pouwelse05] 

“splits files into chunks and the downloaders of a file barter for chunks of it by uploading 

and downloading them.  When a peer has finished downloading a file, it may become a 

seed by staying online and sharing the file.”  Users looking to download files must find a 

Bit Torrent web site that hosts directories of available files, called torrent files.  The torrent 

file contains information on what tracker to use to download this file.  The trackers 

[Pouwelse05] “keep a global registry of all the downloaders and seeds” of the given file. 

As seen, this protocol still relies on some servers in between the peers in order to share 

files across a network. 
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2.1.3 MANET 

 

Over the years, many different peer-to-peer networks have been created that focused on 

fixed peer computers.  A Mobile Ad hoc Network (MANET) aims to benefit from the 

advantages of peer-to-peer while using highly mobile peer computers.  A MANET is made 

up of mobile hosts, or peers, that use a store-and-forward method to send and receive 

packets on the network via a wireless network connection.  Since the nodes are mobile, all 

changes in physical location must be communicated to the entire MANET network so every 

node can update its network topology.  The distance between the nodes also must be taken 

into consideration.  If a mobile node is using a battery instead of a directly connected power 

source, then the node must see if the remaining battery power has enough power to send 

data to a node.  It is possible that a node with a low battery may only be able to send data 

to a node very close to its physical location. In the original MANET networks, only the 

routes were cached for faster read and write access [de Morais Cordeiro02]. 

 

2.1.4 Gnutella 

 

Another example of a peer-to-peer network topology that was used heavily in large scale 

deployments was Gnutella.  Gnutella is an unstructured and decentralized peer-to-peer 

network that became popular in the early 2000s.  The Gnutella topology was more robust 

and self-healing compared to other peer-to-peer topologies due to the lack of structure and 

decentralization.  It was the first decentralized peer-to-peer network of its kind, which lead 

to many new network topologies since that time.  The Gnutella topology was used heavily 
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with peer-to-peer file sharing clients such as Limewire.  Research in Gnutella showed that 

the topology was scalable, which was needed for the file sharing peer-to-peer services that 

grew heavily in popularity with services like Limewire [Chandra10]. 

 

2.1.5 Hybrid Networks 

 

Many devices have been produced with support for multiple communication technologies.  

A simple smart phone sold in 2015 would have the ability to connect to other devices using 

the cellular network, WIFI, Bluetooth and even RFID or NFC (Near Field 

Communication).  Deploying a MANET network using devices such as current generation 

smart phones would allow for the use of a hybrid network.  A Hybrid MANET network 

can be seen as a MANET network where certain nodes (or all nodes) have the ability to 

use another nearby existing network for communication.   

Take a simple example of troops deployed to foreign countries.  Each troop would be 

equipped with a communication device to make sure they can connect to all nearby troops.  

With the rise in use of cellular networks, there would be a strong possibility that the 

deployment location has a nearby cellular tower.  Troops could then use that existing 

network to pass information between squads by using the cellular network regardless of 

physical geographic proximity.  This would allow for much faster communication and data 

transfer than having to use satellite communication devices.  If a General was in one 

location and gave out new orders or vital documents, the data could be transferred to all 

nearby troops using the MANET network, then passed to other squads using the cellular 

network. The same example could be used for troops requesting new information.  The 
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request would be made within the MANET network and if it wasn’t on the network, the 

backup cellular network could be used. 

 

2.1.6 Content Centric Networking / Named-Data Networking 

 

One form of ICN architectures is Content Centric Networking (CCN).  Named content is 

the main component of content centric networking.  The most distinguishing feature of 

CCN is the ability to divide content into chunks so that each chunk has a unique name, 

ordered identifier, and can be requested individually.  There are two different types of 

packets in CCN: interest packets (I-packet) and data packets (D-packet).  An interest packet 

is a packet that contains information on a certain chunk of content and information on the 

node with interest (the requester).  The interest packet is then broadcasted on the network 

until a node is found with the specific chunk of content.  If a node receives an interest 

packet and does not have the content stored locally, it forwards the interest packet to its 

neighbors until a node that has stored the requested data is found. The data packet is then 

sent back to the requester in response to the interest packet.  Routers in CCNs use a content 

store (CS) to store content on the router using a caching policy such as least recently used 

(LRU).  These routers also contain a pending interest table (PIT) and a forwarding 

information base (FIB).  The PIT is used as a routing table to store interest packets that 

have been forwarded.  This allows for data packets to be sent back correctly in response.  

The FIB is a database that stores the mapping between the content names and the output 

interface. See Figure 1 for an overview of a CCN node [Brito13]. 

 



- 11 - 

 

Figure 1: Overview of Content Centric Networking Node 

 

NDN is a popular design architecture that implements content centric networking.  It uses 

both interest and data packets as required by content centric networks (Using NDN 

notation, a “/” separates name components and fragments are created by adding another “/” 

and adding the fragment identifier).  For example, fragment 3 of Jeff.jpg could be named 

/facebook/gougejeff/2014/photos/Jeff.jpg/3.  Figure 2 shows an overview of NDN 

including the interest packet request and the received data packet [Conti13]. 
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Figure 2: Named Data Networking Overview 

 

2.1.7 Caching 

 

Caching is a concept of storing data in memory to allow for faster data access.  Routers 

implement route caching of routing tables to allow for faster querying.  Web servers are 

also known for using caching to store web pages and multimedia.  There are many different 

caching policies that are used, and each has advantages and disadvantages. 

 

LRU or Least Recently Used caching policy is a commonly used caching policy [Bžoch12].   

It allows for storing of the most recently used content, and data are purged from the cache 

using a strategy given by its name.  Items are removed from LRU cache when the cache 

hits its maximum size and the item that was least recently used by that cache is removed 

from the cache.  LRU tends to be one of the best caching solutions for caching of large files 
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[Bžoch12].  It is usually implemented using a priority queue, which using the last access 

timestamp as the priority.  FIFO (First in First out) is another type of caching policy.  Items 

are placed and removed from this type of cache based on a queuing strategy.  Items placed 

into the cache are put into the tail or back of the queue and once its maximum size is 

reached, the item at the head or front of the queue is removed.  Random cache is another 

caching strategy where items are place into the cache at the start of a list.  When the 

maximum size is reached, a random index of that list is removed and the new item is put 

into that index [Bžoch12]. 

 

A form of caching content in different geographic locations can be seen in content delivery 

networks (CDN).  The CDN is essentially just a collection of servers that store local copies 

of specific content on servers located strategically across the Internet.  Content providers 

such as Netflix, Youtube and other companies use commercial CDNs to offload content 

hosting responsibility and allow for very high availability of content all over the world 

[Saroiu02].  Each CDN server can be seen as a data caching server that would serve 

requests for content instead of forwarding the request to the host.  

 

 

2.1.8 Computer Security 

 

In recent history, some of the most popular news stories surrounding the field of computing 

have been security related incidents.  Every year, a number of large companies are affected 

by computer security incident(s) that lead to large data loss and sometimes business 

closures.  The common core principles of information security are confidentiality, integrity, 
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and availability, which is commonly referred to as CIA.  Confidentiality refers to ensuring 

that best practices and methods are used to ensure all information is only available to those 

who have the need, or the right, to see it.  The integrity of a computing system is described 

as the prevention of unauthorized or improper modification of systems or information.  The 

accuracy of data is very important, especially in systems that have dependences on the 

correctness of that data to make decisions and take actions.  Availability refers to 

prevention of disruptions in service or productivity.  The main goal of information security 

is to ensure each of these principles for all company assets including physical and 

informational assets [Hernandez09]. 

 

As technology changes every day, an increasing amount of security vulnerabilities are 

found in developer code.  The most popular security attacks are targeted at remote servers 

and applications available on the Internet, which lead to web developers code being the 

most often attacked.  Every year, the Open Web Application Security Project (OWASP) 

produces a top 10 list of the most critical web application security risks.  The list is meant 

to be used as a resource to all developers to raise awareness of the most popular application 

security vulnerabilities and how to avoid them while developing applications.  Top attacks 

in the last couple years include: Buffer Overflow attacks, injection attacks 

(SQL/QueryString paramaters/etc.), broken authentication and session management, cross-

site scripting (XSS), using known vulnerable software components, and others [Stock13]. 

 

Attacks on application security is just one of the many attack vectors malicious users can 

target to compromise computer security.  The availability of computing resources and 
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applications is another commonly attacked vector in computer security.  Every day, 

malicious users throughout the world are targeting web sites and applications available on 

the Internet in an attempt to decrease performance or ultimately crash remote resources.  

This type of remote attack is called a denial of service attack (DoS).  A DoS attack can 

originate from a single source, or from multiple sources all with the same attack destination 

which is labeled a distributed denial of service attack (DDoS).  With the computing power 

available today, DDoS attacks are one of the most popular and effective ways of 

compromising the availability of remote services. 

   

There are many tools and methods for protecting computers and data from security 

vulnerabilities.  There are also many ways for securing the actual communication channel 

itself from attackers trying to take, decrypt, and change the data in route.  Tools such as 

encryption, authentication mechanisms, intrusion detection/prevention systems, and 

firewalls are all examples of security tools that work to detect and prevent threats and 

attacks.  Each of these tools depends on continuous research in order to stay current with 

new attacks and methods found in production and research environments.   

 

2.2 Known Results and Related Work 

 

There have been many research papers that discuss ICNs and caching related issues since 

heavy caching is one of the main concepts of ICN.  The main motivation of this research 

was all started from a research paper, “Inferring Military Activity in Hybrid Networks 

through Cache Behavior” by Mostafa Dehghan, Dennis L. Goeckel, Ting He, and Don 
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Towsley [Dehghan13]. The research shows that mobile hybrid networks have a 

vulnerability where military network activity can be inferred by examining the cache 

hit/miss of a single adversary node.  The paper discusses the concept of characteristic time 

(T*) which is used to describe the amount of time on average a single piece of content will 

stay in a single nodes cache.  A method is discussed on how to determine the cache size 

being used by other nodes on the network as well, which is used as a basis for determining 

the characteristic time.   

 

After taking a look at other research in this area, a gap was found in security research on 

caching.  The previous paper stated that this research field was lacking and that the paper 

had hopes of starting new research in this field.  While performing research, many papers 

on detecting attacks or vulnerabilities in networks including ICNs were found but only one 

paper was found on the details of such an attack. 

 

The paper on detecting cache pollution attacks in NDN by Mauro Conti, Paolo Gasti, and 

Marco Teoli was found as the only paper describing the feasibility of the attack [Conti13].  

This paper took a direct look at a new method of detecting cache pollution attacks, 

specifically in NDNs using concepts and methods used in this example of an ICN.  The 

paper also shows that this type of cache attack is not only viable in smaller networks, as it 

was once shown to be, but also for much larger network topologies.  The paper also 

suggests a way to improve a cache pollution attack found in a previous research paper by 

Xie et al. [Xie12].  A comparison is also used in this research paper to CacheShield [Xie12], 

which is the only known countermeasure to cache pollution attacks designed specifically 
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for NDNs.  Using the concepts found in this research, some improvements are made on the 

proposed attack method, which can be found in Chapter 4.  Also, the proposed attack is not 

targeted for NDNs, but any network architecture that uses data caching thus the detection 

methods specific to NDNs are viable.      
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Chapter 3 

RESEARCH METHODOLOGY 

 

3.1 Design Science 

 

Design science research is the research methodology used in this thesis.  The main goal of 

design science research is defined in its seven objectives or guidelines.  The outcome of 

design science research in Information Systems disciplines is to create solutions (artifacts) 

that have been evaluated, and to share the results of the evaluation with the community 

[Hevner04].   

 

3.2 Design Science Guidelines 

 

 

In this section, the seven design science guidelines are discussed and defined.  Each 

guideline is discussed and are used to help researchers conduct and evaluate research based 

on this methodology.  All guidelines are just guidelines and are not strictly enforced 

[Hevner04]. 

 

3.2.1 Design as an Artifact 

 

The first guideline of design science research states that an artifact must be created in the 

form of a construct, a model, a method, or an instantiation [Hevner04].  A clearly stated 



- 19 - 

and viable artifact must be created. For this thesis, the goal is to create a working method 

and implementation of performing a DoS attack on data caching networks.  The details of 

the method is described in full detail in Chapter 4. 

 

3.2.2 Problem Relevance 

 

The objective of the problem relevance guideline is to ensure that the solution is important 

and relevant in the real world [Hevner04].  As stated in the introduction, data caching has 

become a very popular way of increasing network performance in many different networks.  

As more networks become reliant on data caching, a clear understanding of all security 

concerns need to be defined.  If attacks and prevention techniques are not researched, then 

systems could be developed with future security vulnerabilities unknown to the general 

public. The reliance of this problem is established in Chapter 1. 

 

3.2.3 Design Evaluation 

 

The design evaluation guideline states that the artifact should be demonstrated via a well-

executed evaluation method [Hevner04].  Five possible evaluation methods are 

observational, analytical, experimental, test-based, and descriptive.  Observational 

evaluation is performed via case studies or field studies where multiple solutions are 

studied and discussed.  Analytical evaluation involves performing analysis of various 

qualities of the solution.  Experimental evaluation is performed with controlled 

experiments or simulations.  Test-based evaluation is performed with the use of black-box 
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and white-box testing strategies where solutions are tested for expected results.  Descriptive 

evaluation is performed using arguments, scenarios, or discussions on the solution.  This 

thesis uses the experimental evaluation method with the simulation performed on a sample 

data caching network.  An ICN software simulator is used as a simulation baseline and 

evaluated using three different scenarios as described in Chapter 5.  

 

3.2.4 Research Contributions 

 

The research contributions guideline states that the research must contribute to the designed 

areas of expertise in a clear and verifiable way [Hevner04].  The goal of this research is to 

create a new method and implementation of a DoS attack on data caching networks.  The 

attack method created can be used to affect many devices that makes use of a data cache 

including routers, CDNs, webservers, and other hardware devices.  A software ICN 

simulator was also developed to evaluate the DoS attack implementation.  This artifact 

contributes to the overall security research field by providing a new documented attack that 

can be further studied and researched.  Part of this research goal is to take the first steps 

into finding ways of detecting and preventing such types of attacks on data caching 

networks.   
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3.2.5 Research Rigor 

 

The research rigor guideline states that the artifact should be constructed and evaluated 

through the application of rigorous methods [Hevner04].  The DoS attack created in this 

thesis was based on prior research methods developed and evaluated to infer military 

traffic.  The method involved finding a unique way to use a data cache to infer information 

about cache usage.  Using that research, combined with research on security attacks on 

networks, the DoS attack on data caching networks method was developed.  

 

3.2.6 Design as a Search Process 

 

The design as a search process guideline states that the artifact should be the result of a 

search process that is set to find the best solution to the problem [Hevner04].  The DoS 

attack on data caching networks method was developed with current research articles that 

were found in published articles and papers.  The simulated attack was developed using 

existing technologies and network architectures in place in research and production 

environments today. 

 

3.2.7 Communication of Research 

 

The objective of the communication guideline is to present the solution to both a 

technology-oriented as well as a management-oriented audience [Hevner04].  The 

technical implementation details is described in Chapter 4 and working code samples are 
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provided in Appendix A.  The thesis was presented to the public community of the 

University of North Florida in the form of a written document and a final defense. 
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Chapter 4 

PROPOSED ATTACK THEORY AND METHODS 

 

4.1 Objective and Scope 

 

The objective of this thesis is to design a new method and implementation for a DoS attack 

on data caching networks.  The new targeted attack method is described in detail in section 

4.2, followed by a description of the Java implementation of the attack.  The DoS attack is 

designed to be an internal attack.  The attack can be started and run using a malicious node 

or a set of malicious nodes within a data caching network.  The attack is not designed to 

spread or replicate from node to node, but the impact of the attack increases as the number 

of malicious nodes increases, as seen in most DoS attacks.  The impact of the attack could 

also increase as the distance in hops between the requester and the content custodian 

increases.  The attack is also designed to run for an infinite amount of time or until the 

attacker chooses to stop the attack.  While the attack is running, network performance is 

expected to be adversely affected and should not improve until the attack stops.   

 

This DoS attack can be used on any data caching network.  This includes networks that 

have any node that implements data caching.  One example of a data caching node could 

be a web server that hosts or caches video content.  The attack would cause the cache to 

become filled with unpopular content that was not previously in the cache.  This would 

cause requests for valid and popular content to be affected by the attack and thus take more 
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hops to complete.  Another example would be any network that has data caching on nodes 

along the path to the content custodian.  This type of network would cache content on nodes 

as requests pass through the node.  Any piece of content that is not in the node’s cache, 

will be added to the cache so if a similar request is received it will respond with the content 

in its cache.  This type of network can be seen in a hybrid mobile ad-hoc network (MANET) 

or ICNs as described in Chapter 2.   

 

The scope of this DoS attack is limited to looking at the attack and its risk impact on data 

caching networks.  The security of the network activity over the wire is not discussed in 

this thesis.  The process of obtaining control of the malicious node is also outside of the 

scope of this thesis.  The DoS method described in section 4.2 assumes that the node has 

been compromised or that a malicious user is now in control of the node.  Security attacks 

that attempt to alter the state of the content in the cache or vulnerabilities in the technologies 

used for content caching are also not discussed in this thesis. 

 

4.2 Proposed Attack Method 

 

Figure 3 shows a diagram of normal activity on a data caching network.  Figure 4 shows a 

diagram of the DoS attack in a data caching network that uses content caching at each node.  

The following section provides a detailed description of the proposed attack method used 

for the targeted DoS attack on data caching networks.  As stated in step 1, it is assumed 

that a malicious node has been compromised, yet undetected, and is used as the attack 

vector. 
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Figure 3: Normal Data Caching Network 
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Figure 4: DoS Attack on Data Caching Network 

 

4.2.1 DoS Attack Method 

 

1. We assume that the malicious node on the network is compromised through an out 

of scope vulnerability or method that occurred in an undetected way.  It is also 

assumed that this malicious node is known as non-malicious by other nodes on the 

network. 

2. The malicious node then begins a search of all content on content custodians in the 

network.  The malicious node creates a list of content ordered by the last access 

time stamp or by searching and getting all content on the custodian from a list of 



- 27 - 

keywords.  Keywords are used to find content that is older, archived, or uncommon 

(eg. archived, old, 1/1/1999).  The keyword list is then used to choose the most 

unpopular content from the list obtained.  The top results from this list are then 

marked to be used for the attack.  The attacking node can also get this list of 

unpopular content by polling the content that it routes.  Keeping a list of all the 

content that is routed through the node gives the node a popularity distribution of 

content that it can use to identify the least popular content.  This list of unpopular 

content is used to carry out the attack.   

3. An estimate of the cache size used on the network is created.  The research 

algorithm proposed by Dehghan, Goeckel, He, and Towsley’s paper on “Inferring 

Military Activity in Hybrid Networks through Cache Behavior” is used to 

continuously get a better estimate of the cache size, which is seen in Figure 5 

[Dehghan13].  If the attacker is knowledgeable about the targeted network in 

advance through security analysis, then the effects and speed of the attack are 

increased.  It is also an option to skip this step since it can be a safe assumption that 

most nodes have the same cache size on a given ICN. 
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Figure 5: Cache Size Estimation Algorithm from Dehghan et al. 

 

4. (Optional Smart Attack) An estimate of the characteristic time (T*) is then created. 

The research algorithm proposed by Dehghan et al. is shown in Figure 6, which is 

based on a binary search [Dehghan13].  A slight variation of the algorithm is 

proposed below which starts by waiting a larger amount of time, then reducing the 

guess until an acceptable value is found.  The goal of the variation in the algorithm 

is to develop an easier and faster implementation of the algorithm.  The process is 

described below. 

a. The first stage of the characteristic time calculation is to send a request for 

a piece of unpopular content then compare the number of hops to the 

custodian to the number of hops the request actually took.  The attacker is 

looking to see if the requested file was served by the content custodian or 

by a node in the route that has the content cached, thus resulting in a cache 

hit.  It is important that the request is made for a content item that is not 

requested by other users or one that is seen as very unpopular.  If the content 

requested is popular, then the newly proposed algorithm is altered and the 
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results will not be accurate. For this step, the attacker chooses the least 

popular file from the unpopular files list. 

 

 

Figure 6: Characteristic Time Estimation Algorithm from Dehghan et al. 

 

b. The first stage of the characteristic time calculation is to send a request for 

a piece of unpopular content then compare the number of hops to the 

custodian to the number of hops the request actually took.  The attacker is 

looking to see if the requested file was served by the content custodian or 

by a node in the route that has the content cached, thus resulting in a cache 

hit.  It is important that the request is made for a content item that is not 

requested by other users or one that is seen as very unpopular.  If the content 

requested is popular, then the newly proposed algorithm is altered and the 
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results will not be accurate. For this step, the attacker chooses the least 

popular file from the unpopular files list. 

c. Wait T* or the characteristic time guess, and repeat the request.  The first 

iteration of the newly proposed algorithm should use a larger T* initial 

guess.  Compare the number of hops taken in the request to the number of 

hops to the custodian.  

d. If the second request was served by the custodian, then the attacker knows 

the content was purged from all caches in the path.  Otherwise the content 

is still cached at a node in the path. 

i. If the request was served by the custodian, then the guess of T* is 

too big and a lower value should be tested. Now, set the 

characteristic time guess to T*/2.  Repeat step 4a with the new 

smaller T* guess.   

ii. If the request was not served by the custodian and served from a 

node’s cache, then the guess of T* is a good value and can be used 

as a best guess of the characteristic time. Once this step is reached, 

the characteristic time calculation is complete and the attack can be 

started. 

5. Perform the Attack 

a. If the smart attack is used, the DoS attack starts once a good value for 

characteristic time is found.  If the smart attack is not used, then the attacker 

sends requests for unpopular content from the list acquired in step 2.  The 

attacker should only send requests for any content according to the rate 
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observed in normal activity or just above the normal rate.  The attacker 

request rate was defined as the number of requests for unpopular content 

(attack requests) that the attacker node completed after a normal request.  

This thesis used attacker request rates of 1, 2, and 4.  These three values 

were arbitrarily chosen as a good distribution of attacker request rates to 

show an impact, but to also prevent detection.  Increasing the attacker 

request rate above 4 could be too much traffic to send in succession and 

could lead to higher chances of detection.  

b. A single number increment is placed on each piece of unpopular content 

that is requested. For every normal request, any unpopular files that have 

been sent are incremented by one.  If the smart attack is being used, the 

attacker can only choose unpopular files that have a number increment value 

less than the characteristic time (T*).  The attacker waits at least the 

characteristic time (T*) between requests for unpopular files.  This ensures 

the requested unpopular content leaves the cache of all nodes in the route 

path.  It also ensures randomly requested content to help prevent detection. 

If the smart attack is not being used, then the attacker node picks a random 

unpopular file from its unpopular file list. 

c. The attack continues sending requests for unpopular content until the 

attacker wants to stop the attack.   

 

The concept of characteristic time, in theory, allows for the attack to better affect every 

node in the path between the requester and the content custodian.  If the first node in the 
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path keeps a cached copy of the content, then requests for the same piece of content before 

the characteristic time would just return from that first node’s cache.  This is the main 

reason the concept of characteristic time is so important to this attack.  Waiting a minimum 

of at least the characteristic time between repeat requests allows for the attacker to request 

the same piece of content in a looping fashion. 

 

4.3 Proposed Attack Implementation 

 

In this section, the technology used during development and details on the programming 

implementation are discussed and defined.  A defined description of the technology used 

and the implementation details will be needed to fully understand the proposed new attack 

implementation.   

 

4.3.1 Technology 

 

There are many different technologies that can be used to implement this DoS attack.  Java 

was chosen as the language to develop an implementation of this new attack and also used 

to create the data caching network simulator.  Java presented data types that made using 

three different types of caching strategies easy to implement and code.  Java also supported 

creation of a graph object with weighted edges.  The Java Platform, Standard Edition (Java 

SE) Java Development Kit (JDK) version 8u25 was used, which was the latest version at 

the time of the development period. 

 



- 33 - 

IntelliJ IDEA community edition was chosen as the Java integrated development 

environment (IDE). IntelliJ also offers an enterprise edition of the IDE at a cost, but the 

free community edition was used for this thesis.  The latest version of Java JDK was 

supported in the community edition.  IntelliJ IDEA offered an environment for easy and 

fast Java development, compiling, and execution. GIT was used as the revision or source 

control system.  IntelliJ IDEA offered free integration with GIT which made source control 

very simple.  The latest version of GIT release code, version 2.2.1, was used at the time of 

development. 

 

The development was done in a Microsoft Windows environment.  All executables for 

IntelliJ, Java, and GIT were all run and tested on Windows 7 and Windows 8.  Development 

of the source code was completed with IntelliJ and completed in weekly sprints.  For 

testing, the simulator was run on the following computers described in Table 1. 

 

Specifications Machine 1 Machine 2 

Operating System Windows 7 x64 Windows 8 x64 

CPU 
AMD Phenom II X4 940 (3 

GHz) 
Intel Core i7 870 (2.93 GHz) 

Memory 8 GB 8 GB 

Hard Drive 256 GB 256 GB 

Hard Drive Type SSD SSD 

Table 1: Development Machine Information 
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4.3.2 Java ICN Simulator & Attack Implementation 

 

Java was used as the platform to build an initial implementation of this proposed DoS attack 

on data caching networks.  Java is an object oriented programming language, and many 

objects were used to create a network simulation with nodes and edges for evaluation.  

Basic classes were created including a node class, an attacker node class (extension of 

node), an edge class, a content class, and a graph class (collection of nodes and edges). 

 

To create the network in Java, first a new graph was created.  In the create graph method, 

nodes, edges, and content were created according to the input variables.  As an example, a 

square graph was created that contained 25 nodes.  Since it was a square graph, nodes were 

placed in a matrix pattern with 5 nodes wide and 5 nodes high.  Edges were then created to 

connect every node to its neighbors (matrix) to the top, bottom, left, or right of the node.  

Diagonal edges were not created in the square graph matrix. Edges were created with a 

weight to supported weighted graphs and were created as directional edges.  In order to 

connect node 1 to node 2 bi-directionally, an edge would need to be created from node 1 

to node 2 and then also created from node 2 to node 1. 

 

After creating all the nodes and edges on the graph, content custodians were chosen at 

random and assigned content using an equal distribution.  In the 25 node matrix, 20% or 5 

nodes were chosen at random locations and assigned as custodians.  Changing the value of 

the number of custodians will change the results, but 20% was arbitrarily chosen as a 

constant.  The node then stored the content locally on the node and thus was the custodian.  
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After all custodians were created, all other nodes on the network were updated to store the 

location of each piece of content.  Each node stored a hash table of the content custodians 

which included a reference to the content object and a corresponding reference to the node 

object where it could be found. 

 

All content on the network was then assigned a popularity value according to the Zipfian 

distribution.  The Zipfian distribution assigned each content object a popularity value based 

on the value of alpha given as an argument.  Two primary alpha values were tested during 

the evaluation phase, 0.65, and 0.85.  These values were chosen as they were common 

values tested when implementing the Zipfian distribution.  Changing the value of the 

Zipfian alpha will change the results, but 20% was arbitrarily chosen as a constant.  The 

alpha would be used to distribute the values of the content popularity, which would assign 

them in ascending order.  To appropriately distribute content randomly among the 

custodians, the values were shuffled and then assigned to each content object.  After this 

was completed, the graph was fully created and ready to send and receive requests. 

 

For each cache type and cache size, a series of tests were performed on the simulated 

network.  The search class was used to perform all the work of processing the requests.  

The value of 100,000 was used as a constant in all evaluation testing for the number of 

request to perform for each test.  The search class would create packet objects which would 

help the nodes route the request and store data about the request.  The packet would start 

at the source node and perform Dijkstra’s algorithm to determine the shortest path to the 

custodian that held the requested content item. That custodian would then become the 
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destination node and a path array was established.  The packet would use the node’s 

methods of send and receive data to route the request and check each nodes cache at every 

hop to see if the content could be served from the node’s cache.  If the content was found 

in the cache of a node in the path, then the request was served from that node and statistics 

of the completed request were stored in the packet class.  If the content was not found in 

the cache of a node in the path, then that node would store that content in its own cache 

according to the caching policy being used on that network.  The requested content object 

was selected according to the probability distribution of the content.  More popular content 

was requested more frequently than less popular content.  The source node, or requester, 

was selected at random for all nodes that were not custodians.  

 

To ensure all nodes in the network had appropriate time to populate caches with content, 

also known as cache warming, no data were saved for the first 70% of the total test. Thus 

if the test called for 100 requests, only the statistics of the last 30 requests would be kept 

to allow for cache warming. After collecting the data from all packets, the data were stored 

in a packet tracer class to keep a history of all of the tests and statistics.  This process was 

repeated until all cache types and cache sizes were fully tested according to the constant 

variables defined.   

 

To ensure that a correct and valid evaluation was performed, a pattern was established 

during the first run of every unique cache type and cache size.  The pattern consisted of the 

exact source, destination, and content of each request or packet. This method helped create 

a constant variable for when attacker node objects were added to the network.  Having a 
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pattern allowed for the same tests and order of requests to be performed after adding 

attackers to the network.  This ensured that the dependent variable, average number of 

hops, would be comparing the same sets of data while only changing the number of attacker 

node objects.  

 

After testing a network with no attacker nodes, the same network structure was used.  

Random nodes were selected to add attackers to the network.  The nodes were converted 

to an attacker node object that extends the node class. This allowed for the node methods 

to be overwritten to perform the attack.  Once all attacker node objects were added to the 

network, Dijkstra’s algorithm had to be recomputed on all nodes so every node would 

correctly find the shortest path to content.   This ensured that all regular node objects would 

send requests for content without knowing the attacker node was malicious.   

 

The attacker node object had three primary methods that made it different than a normal 

node: polling for content to determine popularity, sending the attack, and determining a 

good value for characteristic time.  The warm up period was used by an attacker node to 

poll all content that it served.  After polling for some time, the node would have a new 

popularity distribution of content based on what it had served on the network.  This is one 

way the attacker node could know that sending a request for a given content item was 

indeed unpopular.  The attack method was used when the attacker node was the source 

node of a request packet.  The attacker would send its request for the content according to 

the pattern established.  After that request was complete, the attacker node would then send 

X number of request packets for unpopular content.  The value of X was kept as a constant 
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in the evaluation and was defined as the Attacker Request Rate.  In order to prevent 

detection, small request rates were tested during the evaluation phase including the values 

of 1, 2 and 4.  This meant that each time an attacker node was a source node in a packet, 

an additional 1, 2, or 4 packets would be created and sent over the network.  By requesting 

unpopular content, popular content would be purged from the active cache stores of the 

node objects in the path to the unpopular file’s custodian.   

 

An improved attack method was also found and tested during the evaluation.  This 

improvement was named the smart attack, which used the concept of Characteristic Time 

(T*) as described in section 4.2.  When this attack was used, the node needed to calculate 

the value of Characteristic Time.  The GuessCharacteristicTime method chose the most 

unpopular file, requested that file, waited a large amount of time (a multiple of the cache 

size value), re-requested the same file and saw if the custodian served the request.  If the 

request was filled by the custodian, a smaller value was chosen as the guess and the process 

would repeat.  This continued until the request was served by a node in the path (not the 

custodian), thus resulting in a cache hit. This final value was saved on the attacker node as 

the final characteristic time guess and used when determining which unpopular file to 

request during the attack.  The attack method did not change, with the exception of only 

requesting an unpopular file that had not been requested in at least the characteristic time.  

The attacker node kept a hash table to store and update the unpopular file list during the 

attack.   
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All test results were stored and compared in a graph after all test runs were completed.  An 

example of a completed test can be seen in Figure 7 below. 

 

 

Figure 7: Java Simulator Test Results Example 
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Chapter 5 

EVALUATION 

 

5.1 Evaluation Objectives 

 

The cache pollution attack described in the paper by Conti et al. [Conti13] was shown to 

produce positive attack results in a small network graph. This research was started to 

develop a specific implementation of the proposed cache pollution DoS attack.  The 

simulator developed in Java was used to evaluate the implementation of the attack across 

multiple cache replacement policies (LRU, FIFO, Random), multiple cache sizes, and most 

importantly on multiple network sizes.  The simulator was used to evaluate the average 

number of hops for each unique cache type and cache size on each of the three network 

scenarios.  After a pattern was established on the first run of each unique cache type and 

cache size graph, attackers would be added to the network and the test would be run again 

with attackers.  After running the complete test with and without attackers, the two values 

of average number of hops could be compared to calculate the percentage increase. 

 

All other variables were created as constants including the number of tests run and the 

numbers of requests performed per test. The pattern established on the first test also 

remained the same as other tests were run with and without attackers.  The location of the 

custodians and the content found on the custodians also remained unchanged for each test 

after the pattern was established.  The number of unpopular files used in the attack was a 
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variable that was chosen after running tests with many different values.  Since results were 

different depending on the number of unpopular files each attacker used, that number 

needed to remain constant.  Statistics were used to determine which value was chosen as 

this variable.  Table 2 below shows the results of those tests, in which different percentages 

of the currently tested cache size were used to determine the number of unpopular files.   

 

Number of Unpopular files: Percent 

Cache Size (%) 

Average Percent 

Increase (%) 

Standard 

Deviation 

80% 8.113225856 3.030205472 

100% 10.11736493 2.80922496 

120% 11.18972473 3.46343106 

150% 8.792727194 2.491202425 

200% 11.05813752 6.648555748 

Table 2: Number of Unpopular Files Test 

 

After evaluating the results of this test, 120% of the current cache size was chosen as the 

value to use in all tests.  120% of the current cache size means that the number of unpopular 

files used by each attacker changes as the cache size changes.  For example, if the cache 

size being tested is 10, the number of unpopular files each attacker uses is set to 12 (120% 

of 10).  Unpopular content items are those that have the lowest popularity value based on 

the Zipfian distribution that was established during the network graph creation.  When a 

value of 12 was used as the number of unpopular items, the attacker would select the 12 

content items with the lowest popularity value.  This list could also be established by 

polling the network or by having the list of the entire content universe, but this was not 

how it was implemented in this simulator.  
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When evaluating the average hops taken to complete the requests in each test, only the 

requests that were served by a cache hit when the pattern was established were taken into 

consideration.  This was done to ensure the results were truly evaluating the effectiveness 

of the attack on the data caches.  If a request was served by the content custodian during 

the pattern simulation run, any attack on the data cache could not lengthen the hops taken 

to retrieve that piece of content.  For example, if a node requested content “A” that was 

served by the custodian in say 7 hops, then that is the worst case scenario for the 

performance of that specific request.  In this example, the content was served in a maximum 

of 7 hops due to the size of the network and how many nodes were between requesting 

node and the custodian node.  The maximum number of hops will vary depending on the 

number of hops between a requester and a custodian.  The data caching on the network for 

that request didn’t serve the request, and thus any attack on the data caching would be 

useless.  For this reason, during the first run of a given test when the pattern is established, 

only the requests that are requested by a normal node (not an attacker) and served by a data 

cache (cache hit) are taken into consideration in the average number of hops in all tests.  

Any requests that are served by the custodian during the pattern simulation run are not 

included in the average hops calculation. 

 

Another objective of this research was to develop a smarter cache pollution attack based 

on the previous research on characteristic time and caching.  A smart attack was developed 

as described in Chapter 4, and was also evaluated against the normal cache pollution attack.  

To evaluate the smart attack, tests were run without the smart attack and then run with the 
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same graph structure with the smart attack.  This ensured that the two different attacks were 

evaluated in a consistent manner.   

 

5.1.1 Evaluation Limitations 

 

While evaluating the large scale networks, memory limitations were found.  All 

development and testing was completed on personal hardware that had at most 8GB of 

RAM.  During the testing of the 25 and 100 node square graphs, all cache types, cache 

sizes, and number of attackers could be tested with a large loop function.  The simulator 

allowed for looping through each specific test and the 100 node graph would use around 

4-5GB of RAM after completing all tests.  When testing the large scale Gnutella networks, 

tests needed to be looped one cache size at a time.  Just looping with one cache type, one 

cache size, and one size of attackers would exceed 6-8GB of RAM.  For this reason, batch 

scripts were created to loop through each specific test so all variable combinations could 

be tested.  The amount of time taken to loop through this simulation should also be taken 

into consideration.  When looping with the 6301 node Gnutella network with one cache 

type and one cache size, the test would take 40-60 minutes to complete using a machine 

with an Intel i7 quad core processor and DDR3 RAM.  Running this same test on an AMD 

Phenom II quad core processor with DDR3 RAM took 90-120 minutes.  This shows the 

simulator is very processor and memory intensive and hardware chosen to run testing 

should be considered carefully.  
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5.2 Experiment Scenarios 

 

In order to fully evaluate the scale of the proposed DoS attack, three different scenarios 

were setup.  The first experiment was a simple line graph setup with 5 nodes, including 

one requester, one custodian, and one attacker.  The second scenario developed was a 

square graph that can also be seen as a matrix.  The square graph had up to 100 nodes on 

the network, including 20 custodians (20%), and remaining nodes were requesters.  

Attackers were added to the graph and testing up to 16 attacker nodes (16%).  The third 

scenario developed was the Gnutella peer-to-peer dataset from the Stanford SNAP database 

[Leskovec14].  Two different real world graphs were imported, including a 6301 node 

graph and an 8846 node graph.  Each Gnutella graph included 5% custodians, and the 

remaining nodes were requesters.  Up to 16% attackers were also added and tested on both 

of these networks. 

 

5.2.1 Scenario 1: Line Graph 

 

This evaluation scenario can be seen as the proof of concept for the targeted DoS attack on 

data caching networks.  In this scenario, 5 nodes were created including one requester and 

one custodian.  The requester was the first node in the line graph and the custodian was the 

last node in the graph when visualizing the graph from left to right.  The other 3 nodes 

connected the requester to the custodian.  Edges were set so the furthest left node would 

connect to the neighbor node to its right, and this would continue to the custodian.  Only 

two content items were available on the custodian, one being the popular item and one 
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being the unpopular item.  Each node was given a cache size of 1, and the requester always 

requested the popular file.  An attacker node was added to the graph and its edge was 

connected to the second node in the graph, or the only node that the requester was 

connected to.  This attacker node always requested the unpopular file and the requester 

always requested the popular file.  Both nodes requested at the same rate, but that does not 

mean that the requests alternated as that would be the worst case scenario.  Figure 8 shows 

a visual representation of this evaluation scenario.  

 

 

Figure 8: Line Graph 

 

5.2.2 Scenario 2: Square Graph 

 

This evaluation scenario was set up to test the effectiveness of the DoS attack on a small 

network topology.  A simple matrix or square graph was chosen to implement this 

evaluation scenario.  The square graph was tested with 25 and 100 total nodes on the 



- 46 - 

network, which tested a 5x5 graph and a 10x10 graph respectively.  In this scenario, 20% 

of the total number of nodes were selected at random as the custodians and the rest of the 

nodes were selected as requesters.  A total of 1000 content items were distributed equally 

to these custodians and popularity was randomized amongst all content as described in the 

implementation section in Chapter 4.  Each node was connected to its neighbor to the top, 

bottom, left, or right of the node.  If a node existed at one of those locations, an edge was 

created.  This established a matrix square graph network that could be visualized as a grid 

as seen in Figure 9. 

 

 

Figure 9: Square Graph 
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The following method was applied on scenario 2 and scenario 3 as mentioned earlier in 

Chapter 4.  The first run of every test always started with 0 attackers, and requesters were 

selected at random.  The node selected then requested content based on the Zipfian 

popularity distribution.  Using a Zipfian popularity distribution and a constant alpha (values 

tested included: 0.65, 0.85) the requests were created and a pattern was established.  When 

attackers were added to the graph, the same pattern was used as a constant variable.  The 

pattern consisted of the source node, the destination node, and the content being searched 

for.  The same pattern that was established with 0 attackers was used for every test after 

the first run to ensure correct statistics were being collected.  Attackers were added to the 

graph, and when the pattern ran into an attacker node, the attacker would send the request 

for the popular content item and then send X number of attack requests (unpopular content) 

based on the constant variable for the attacker request rate.  

 

5.2.3 Scenario 3: Real World (Gnutella) Graph 

 

This evaluation scenario was set up to test the effectiveness of the DoS attack on a real 

world peer-to-peer network topology.  The Stanford Large Network Dataset Collection was 

used to test two real world Gnutella peer-to-peer networks [Leskovec14].  From the dataset, 

a 6,301 node graph with 20,777 directed edges and an 8,846 node graph with 31,839 

directed edges were chosen as test networks for this evaluation scenario.  With this many 

nodes, 5% of the total number of nodes were selected at random as the custodians and the 

rest of the nodes were selected as requesters.  A total of 2,000 content items were 

distributed equally to these custodians and popularity was randomized amongst all content 
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as described in the implementation section in Chapter 4.  Each dataset from the SNAP 

dataset included a list of all edges in each network.  This list of edges was imported from 

the downloaded file which created the unique network graph based on the Gnutella 

structure.   

 

5.3 Evaluation Results 

 

This research aims to analyze the impact of a DoS attack on data caching networks.  Two 

independent sets of simulations (without attackers and with attackers) were run on the same 

graph to produce results shown in the dependent variable of average number of hops.  As 

stated earlier, the average number of hops was only considered for normal requester nodes 

that returned a cache hit during the establishment of the pattern.  This ensured that only the 

average number of hops resulting from a result of the attack were shown in the results.   

 

For each scenario, the simulator measured the average number of hops for requests that 

when ran without attackers returned cache hits.  Attackers were added to the graph using 

2%, 4%, 8%, and 16% of the current graph size as attackers.  Data collected on the line 

graph and the 25 node square graph were unable to perform tests for each of these 

percentages as they were too small in size.  The line graph network results were collected 

for a proof of concept to show that the attack was valid.  The 25 node square graph results 

show 4%, 8%, 16%, and 32% attackers since the minimum number of attackers on this 

small of a graph was 1 attacker or 4%.  Data collected in each simulation are independent 

as results collected for one test do not interfere with results collected in another test.   
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5.3.1 Scenario 1 – Line Graph Results  

 

In the line graph scenario, the requests from the normal node and the attacker node occurred 

at the same rate.  This scenario aimed to show that the attack was possible and that a simple 

proof of concept line graph would show that the attack was valid.  Each of the cache types 

of LRU, FIFO, and Random were tested in this scenario and both 1 and 2 attackers were 

also tested.  Figure 10 shows that the average number of hops increased as the number of 

attackers on the graph increased from 1 to 2.  Figure 11 shows that the percent increase of 

109% for the average number of hops for normal requesters is very large when an attacker 

is on the network.  As seen in Figure 10 and Figure 11, when the cache size is 0 all requests 

are served from the custodian which is 4 hops from the requester in this simulation.  Also, 

when there is no attacker on the network and the cache size is 1, the neighbor to the 

requester always has the popular file in its cache and thus always returns the content in the 

first hop after the warm up period.   
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Figure 10: Line Graph Network Average Number of Hops 

 

 

Figure 11: Line Graph Network Percent Increase 

 

Table 3 shows that the attack was very effective during this line graph network scenario 

across all cache types.  The results also show that as the number of attackers increased, the 
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average number of hops increased accordingly.  This attack was also very effective due to 

the fact that only two pieces of content existed on the network.  By defining that one content 

item was popular and the other was unpopular, the results showed that with limited number 

of content items on the network, the attack would be very effective.  Three different cache 

replacement policies were tested in the line graph, and the results of this scenario did not 

show a difference in using one policy over another.   

 

Cache Type Mean: 1 

Attacker 

Std. Deviation: 

1 Attacker 

Mean: 2 

Attackers 

Std. Deviation: 

2 Attackers 

LRU 108.8 0 129.2 0 

FIFO 111.2 0 116.4 0 

Random 112 0 120.8 0 

Grand Total 110.6666 1.3597 122.1333 5.3099 

Table 3: Line Graph Percentage Increase Statistics 

 

5.3.2 Scenario 2 – Square Graph Results 

 

In the square graph scenario, a 25 node network and a 100 node network was tested which 

created a 5x5 and a 10x10 matrix network respectively.  Each network was created using 

the same method, using the independent variables of 20% custodians, 10 tests, and 100,000 

requests per test.  The 25 node network was tested with 1 attacker (4%), 2 attackers (8%), 

4 attackers (16%), and 8 attackers (32%).  The 100 node network was tested with 2 

attackers (2%), 4 attackers (4%), 8 attackers (8%), and 16 attackers (16%).  Since the 25 

node network was too small to test with 2% attackers, the best comparisons can be made 

using 4%, 8%, and 16% attackers.  Each graph was also tested with two values for the 

Zipfian alpha (0.65 & 0.85) which changed the distribution of the content popularity. 
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Values of 1, 2, and 4 were used as the attacker request rate which defined how many 

unpopular files the attacker node would request for each attack request.  All plotted charts 

can be found in Appendix B.  Figure 12 shows an example of the percent increase found 

in the 25 node network using LRU caching strategy and an attacker request rate of 1. Figure 

13 shows the percentage increase found in the 100 node network using LRU caching 

strategy and an attacker request rate of 1.  As seen in the charts, the overall percentage 

increase was 2%-4% smaller as the size of the graph grew from 25 to 100 nodes.  The 

results also show that the evaluation was performed with minimal error using LRU and 

FIFO cache replacement policies.  The results in Appendix B show that using a random 

cache replacement policy increased the value of the error bars due to the randomness of the 

cache replacement policy.   

 

 

Figure 12: Square Graph - 25 Nodes, using LRU, and Attacker Request Rate of 1 
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Figure 13: Square Graph - 100 Nodes, using LRU, and Attacker Request Rate of 1 

 

The mean of all the percent increases collected was also calculated for each unique cache 

type, cache size, Zipfian alpha, and attacker request rate.  The standard deviation of the 

entire population was also calculated for each of these unique combinations.  All collected 

statistics can be found in Appendix B.  Table 4 shows a combination of all stats collected 

on the 25 node square graph for 4%, 8%, 16%, and 32% attackers.  Table 5 shows a 

combination of all stats collected on the 100 node square graph for 4%, 8%, 16%, and 32% 

attackers.  All values in both tables are displayed as percentage increases calculated by the 

simulator using various numbers of attackers.  Each table shows the results collected for 

the mean and standard deviation of LRU, FIFO, and random cache replacement policies 

using attacker request rates of 1, 2, and 4.  The total rows shown at the end of each attacker 

request rate evaluated display the mean and the standard deviation of all the cache 
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replacement polices at the given attacker request rate.  For example, the 1 total row and 

mean 4% attackers column shows the results of the average percentage increase across 

LRU, FIFO, and random cache replacement policies using an attacker request rate of 1 and 

4% attackers.  This value shows a good average that can be expected from the attack when 

using an attacker request rate of 1 and 4 attackers, regardless of what cache replacement 

policy is used.  The grand total row is added to show the mean percentage increase of each 

evaluated number of attackers.  The average percentage increase across all evaluated 

attacker request rates showed a decrease as the size of the network increased, which can be 

seen in the grand total row. 
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Rate 
Cache 

Type 

Mean: 

4% 

Attackers 

Std. 

Deviation

: 4% 

Attackers 

Mean: 

8% 

Attackers 

Std. 

Deviation

: 8% 

Attackers 

Mean: 

16% 

Attackers 

Std. 

Deviation

: 16% 

Attackers 

Mean: 

32% 

Attackers 

Std. 

Deviation

: 32% 

Attackers 

1 LRU 2.8021 0.8014 5.4001 1.3287 9.4280 1.8237 16.5540 2.1850 

 FIFO 4.2650 1.5070 6.7171 1.4512 11.6098 1.4974 17.5756 0.8910 

 Random 6.8465 2.2845 7.7570 2.5399 8.9012 2.2551 10.2906 2.2157 

1 Total  4.6379 2.3466 6.6247 2.0907 9.9797 2.2195 14.8067 3.7235 

2 LRU 4.6778 1.4546 7.9589 1.6079 13.5661 2.3762 21.9207 3.7898 

 FIFO 4.9995 0.9143 8.2810 1.2684 15.2432 1.5159 23.0598 0.5477 

 Random 4.6945 1.2789 6.3522 1.2567 8.0969 1.0437 11.8739 1.5567 

2 Total  4.7906 1.2454 7.5307 1.6236 12.3021 3.5102 18.9515 5.5639 

4 LRU 6.2265 1.6745 10.4373 1.0293 16.9176 2.3334 25.5914 1.8264 

 FIFO 5.5726 2.1682 9.8396 2.8519 16.9229 2.2278 26.6797 2.1167 

 Random 6.7405 1.7346 6.1768 2.5650 8.4563 3.0551 11.2954 2.7274 

4 Total  6.1799 1.9321 8.8179 2.9672 14.0989 4.7434 21.1888 7.3636 

Grand 

Total 
 5.2028 2.0194 7.6578 2.4658 12.1269 4.0116 18.3157 6.3250 

Table 4: Square Graph 25 Node (Zipfian=0.65): Percentage Increase Statistics 
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Rate 
Cache 

Type 

Mean: 

2% 

Attackers 

Std. 

Deviation

: 2% 

Attackers 

Mean: 

4% 

Attackers 

Std. 

Deviation

: 4% 

Attackers 

Mean: 

8% 

Attackers 

Std. 

Deviation

: 8% 

Attackers 

Mean: 

16% 

Attackers 

Std. 

Deviation

: 16% 

Attackers 

1 LRU 1.3405 0.3363 2.3684 0.3245 4.3202 0.6322 7.7166 1.0344 

 FIFO 1.8617 0.3391 3.0553 0.5060 5.3064 0.5942 8.6093 1.0126 

 Random 5.0120 2.1569 5.4562 2.2420 5.9421 2.2029 7.1760 2.1798 

1 Total  2.7381 2.0634 3.6266 1.8837 5.1896 1.5211 7.8340 1.6222 

2 LRU 1.9977 0.3909 3.6754 0.6713 6.3476 1.0592 10.2613 1.6947 

 FIFO 1.8622 0.2527 3.3473 0.5085 6.0782 0.5963 9.7940 1.5589 

 Random 5.2901 2.5830 6.0852 2.6980 7.0544 2.6648 9.0873 2.6381 

2 Total  3.0500 2.1928 4.3693 2.0379 6.4934 1.7404 9.7142 2.0785 

4 LRU 3.0606 0.6066 5.4929 0.8816 8.8349 0.5561 13.7887 0.9263 

 FIFO 3.0641 0.7003 5.1621 0.6631 9.2712 0.4866 14.5649 0.9853 

 Random 5.0844 1.7007 6.0817 1.9419 7.4762 1.8621 9.3821 1.7938 

4 Total  3.7364 1.4693 5.5789 1.3443 8.5274 1.3864 12.5786 2.6252 

Grand 

Total 
 3.1748 1.9787 4.5249 1.9537 6.7368 2.0756 10.0422 2.9017 

Table 5: Square Graph 100 Node (Zipfian=0.65): Percentage Increase Statistics 

 

5.3.3 Scenario 3 – Gnutella Graph Results 

 

In the Gnutella graph scenario, a 6301 node network and an 8846 node network were tested.  

The graphs were imported from the Stanford SNAP dataset from the Internet peer-to-peer 

graphs [Leskovec14].  Each network was created using the same method, using the 

independent variables of 5% custodians, 10 tests, and 100,000 requests per test.  Each 

network was tested with 2% attackers (126 & 176 nodes), 4% attackers (252 & 353 nodes), 
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8% attackers (504 & 707 nodes), and 16% attackers (1008 & 1415 nodes).  Each graph was 

also tested with two values for the Zipfian alpha (0.65 & 0.85) which changed the 

distribution of the content popularity. Values of 1, 2, and 4 were used as the attacker request 

rate which defined how many unpopular files the attacker node would request for each 

attack request.  All plotted charts can be found in Appendix B, and Figure 14 shows an 

example of the percent increase found in the 6301 node network using LRU caching 

strategy and an attacker request rate of 1. Figure 15 shows the percentage increase found 

in the 8846 node network using LRU caching strategy and an attacker request rate of 1.  

The results of the Gnutella scenario also show a small drop in percentage increase as the 

size of the graph grew from 6301 nodes to 8846 nodes.  The results also show that the 

evaluation was performed with minimal error using LRU and FIFO cache replacement 

policies.  The results in Appendix B show that using a random cache replacement policy 

increased the value of the error bars due to the randomness of the cache replacement policy.   
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Figure 14: Gnutella Graph - 6301 Nodes, using LRU, and Attacker Request Rate of 1 

 

 

Figure 15: Gnutella Graph - 8846 Nodes, using LRU, and Attacker Request Rate of 1 
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Statistics were generated from all tests run on the two different size Gnutella graphs.  When 

comparing the mean between the 6301 node graph and the 8846 node graph, a small 

decrease in the average percent increase can be seen.  All collected statistics can be found 

in Appendix B. Table 6 shows a combination of all stats collected on the 6301 node 

Gnutella graph for 2%, 4%, 8%, and 16% attackers.  Table 7 shows a combination of all 

stats collected on the 8846 node Gnutella graph for 2%, 4%, 8%, and 16% attackers.  The 

total rows shown at the end of each attacker request rate evaluated display the mean and 

the standard deviation of all the cache replacement polices at the given attacker request 

rate.  For example, the 1 total row and mean 4% attackers column shows the results of the 

average percentage increase across LRU, FIFO, and random cache replacement policies 

using an attacker request rate of 1 and 4% attackers.  This value shows a good average that 

can be expected from the attack when using an attacker request rate of 1 and 4 attackers, 

regardless of what cache replacement policy is used.  The grand total row is added to show 

the mean percentage increase of each evaluated number of attackers.  The average 

percentage increase across all evaluated attacker request rates showed a decrease as the 

size of the network increased, which can be seen in the grand total row. 
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Rate 
Cache 

Type 

Mean: 

2% 

Attackers 

Std. 

Deviation

: 2% 

Attackers 

Mean: 

4% 

Attackers 

Std. 

Deviation

: 4% 

Attackers 

Mean: 

8% 

Attackers 

Std. 

Deviation

: 8% 

Attackers 

Mean: 

16% 

Attackers 

Std. 

Deviation

: 16% 

Attackers 

1 LRU 0.6122 0.0709 1.0224 0.0515 1.8139 0.0952 3.0220 0.1516 

 FIFO 1.1236 0.0972 1.7955 0.1299 2.7140 0.1696 4.1017 0.2510 

 Random 0.8270 0.1139 1.1981 0.0688 1.7011 0.0354 2.3947 0.1116 

1 Total  0.8543 0.2305 1.3387 0.3429 2.0764 0.4674 3.1728 0.7279 

2 LRU 0.8594 0.0470 1.4177 0.0587 2.5109 0.0202 4.1999 0.1512 

 FIFO 1.4053 0.1464 2.2980 0.1358 3.4862 0.2925 5.0724 0.2670 

 Random 1.0516 0.0974 1.4507 0.0942 2.1109 0.0456 3.1348 0.1407 

2 Total  1.1054 0.2493 1.7221 0.4198 2.7027 0.6025 4.1357 0.8159 

4 LRU 1.1071 0.0698 2.0630 0.0467 3.4351 0.0580 5.3538 0.0681 

 FIFO 1.7784 0.1684 2.8220 0.2614 4.2863 0.2365 6.1141 0.2380 

 Random 1.2435 0.0855 1.7740 0.0985 2.5912 0.0823 3.8656 0.2549 

4 Total  1.3763 0.3122 2.2197 0.4713 3.4375 0.7077 5.1112 0.9561 

Grand 

Total 
 1.1120 0.3411 1.7602 0.5496 2.7389 0.8187 4.1399 1.1530 

Table 6: Gnutella Graph 6301 Node (Zipfian=0.65): Percentage Increase Statistics 
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Rate 
Cache 

Type 

Mean: 

2% 

Attackers 

Std. 

Deviation

: 2% 

Attackers 

Mean: 

4% 

Attackers 

Std. 

Deviation

: 4% 

Attackers 

Mean: 

8% 

Attackers 

Std. 

Deviation

: 8% 

Attackers 

Mean: 

16% 

Attackers 

Std. 

Deviation

: 16% 

Attackers 

1 LRU 0.4441 0.0575 0.8310 0.0572 1.4857 0.1225 2.4147 0.1155 

 FIFO 0.8939 0.0685 1.4670 0.1234 2.2687 0.1196 3.5280 0.2095 

 Random 0.7301 0.1098 1.0044 0.1551 1.4478 0.0629 2.1777 0.0742 

1 Total  0.6894 0.2031 1.1008 0.2937 1.7341 0.3928 2.7068 0.6062 

2 LRU 0.7130 0.0377 1.2734 0.0666 2.1661 0.1312 3.4845 0.1998 

 FIFO 1.1960 0.0858 1.9668 0.1548 3.0387 0.1828 4.6194 0.2129 

 Random 0.8487 0.0699 1.3241 0.0770 1.9098 0.0798 2.8567 0.1407 

2 Total  0.9193 0.2143 1.5214 0.3332 2.3715 0.5025 3.6535 0.7531 

4 LRU 0.9715 0.0785 1.6770 0.0781 2.8111 0.1438 4.5888 0.1307 

 FIFO 1.4867 0.1110 2.4278 0.0921 3.6657 0.2104 5.4114 0.2733 

 Random 1.0122 0.0696 1.5294 0.0583 2.3276 0.1183 3.4884 0.2909 

4 Total  1.1568 0.2500 1.8781 0.4009 2.9348 0.5766 4.4962 0.8243 

Grand 

Total 
 0.9218 0.2938 1.5001 0.4693 2.3468 0.6979 3.6189 1.0355 

Table 7: Gnutella Graph 8846 Node (Zipfian=0.65): Percentage Increase Statistics 

 

5.4 Discussion 

 

After collecting all the results from all of the simulations, charts were created and are 

shown in Appendix B.  The main contributions of this research were accomplished by 

creating an extensible ICN simulator, creating and implementing a DoS attack on data 

caching networks, and testing the scalability of the attack implementation.  All charts 
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collected in the scalability testing showed a clear fall in the impact of the attack as the size 

of the network increased.   

 

After analyzing all of the results collected, a few trends were found.  The first trend that 

can be seen from the results is that the implemented cache pollution attack does not scale 

as Conti et al. discussed in their paper [Conti13].  As the size of the graph increased, the 

impact of the attack decreased.  This can be seen in the steady decrease in values for in 

average percentage increase.  This was seen clearly in the charts and shown to be true in 

the statistics collected for each set of graphs and shown in Tables 4-7 in the grand total 

row.  The largest percent increases were seen on the smaller square graphs, which were 

similar to the graphs shown in previous research [Conti13].  

 

One trend that was shown to remain true in the results was that as the number of attackers 

increased, the effect of the attack also increased.  This was seen in the increasing values of 

the percentage increase as the number of attackers increased for a given graph.  The results 

also showed a larger impact from the attack as the attacker request rate increased.  This 

was expected as most DoS attacks show larger effects as the number of attackers increase 

in theory. 

 

Another trend that was suggested by the results was that FIFO showed to be the consistently 

most affected caching strategy for the attack.  Comparing the percent increase to LRU 

showed larger percent increases as seen in the 25 node square graph with an attacker 

request rate of 1.  It was expected that LRU would be the most resilient caching strategy 
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for this data caching DoS attack since a main goal of LRU is to filter out unpopular content 

by prioritizing the most used content in the cache. 

 

5.5 Future Work 

 

As shown in Chapter 4, an initial version of the proposed smart attack was created and 

implemented in this research.  A software based content centric network simulator was also 

developed to evaluate the proposed implementation.  Initial results on the smaller graphs 

showed that this proposed improvement on the attack was inconsistent.  The theory of the 

proposed smart attack should prove to be an improvement on the initial attack.  One future 

improvement of this implementation of the DoS attack on data caching networks would be 

to improve the logic of the smart attack using the concept of characteristic time (T*).   

 

Extending this research to evaluate the attack using hardware testing instead of the software 

simulator would also qualify as an extension of this research.  This type of evaluation would 

require a dedicated lab of computers that each would represent a node or a collection of 

nodes.  Connecting each of the computers to an internal network and building a new test 

would create a physical ICN in which testing of the attack could be performed.  It would 

be recommended to ensure this network was disconnected from all other networks, 

including the Internet, to ensure the attack was limited to lab computers only.  

 

The ICN simulator was built using custom Java objects that can be reused for many 

different types of data collection.  Three optional variables that are not calculated or used 
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for extensive testing are edge delay, multiple values for weighted edges, and power 

consumption on nodes.  The edge delay could be collected by making some small source 

code changes to the variables collected.  The edge weight was set to a default value of 1 in 

the simulator, and thus made all edges un-weighted.  Power consumption is another 

variable that a node could be assigned if the node is mobile.  Performing analysis on new 

variables such as these would be a very good extension of this research.  

 

Another subject that could be used for future work on this research is to apply this attack 

and test it on host to host networks.  A node on a host to host network could turn into an 

attacker and then actively or passively poll web servers or other computers for content.  

This would allow the attacker to define a list of popular and unpopular content.  A web 

crawler could be used on a web server to search a website for old or archived data and add 

that content to the list of unpopular content.  Just sending out a large amount of requests 

for unpopular content would, in theory, fill up the web server’s cache with unpopular 

content and begin removing popular content from the cache.  This would have a similar 

effect on normal requests as they would no longer be able to retrieve content from the 

server’s cache and thus performance would be affected.  With enough attackers, it is 

possible that this attack could overload the server’s hardware resources or database queries 

and cause the service to shutdown preventing all users from accessing the server.
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Chapter 6 

CONCLUSION 

 

This research has provided an initial implementation of a DoS attack on data caching 

networks, or what is known as a cache pollution attack.  The implementation of the ICN 

simulator and attack was developed using Java.  The attack was evaluated for scalability 

by testing with 3 different types of graphs (line graph, square graph, Gnutella graph).  The 

attack showed consistent improvement in performance in terms of percentage increase in 

average number of hops on cache hits.  The results also showed that the attack does not 

scale as well as was initially thought in previous research.  As the size of the graph 

increased, the average percent increase in average hops decreased.  The greatest impact of 

the DoS attack was found on the line graph and on the 25 node square graph, which were 

the two smallest graphs in terms of number of nodes evaluated.  The findings of this 

research contribute to the overall security research field by providing a description of a 

new attack that can be further researched.   

 

We have identified three areas that can be considered for future research work.  The 

improvement of the proposed smart attack using the concept of characteristic time (T*) 

could improve the initial version of the attack.  Any logic that can be added to the attack 

should yield performance improvements on the attack algorithm and its effects.  Creating 

and testing the attack on a physical ICN in a lab environment would allow for evaluation 

of the attack on physical hardware.  This would be the next step in moving this type of 
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attack into a real world environment or test network.  Expanding the current 

implementation of the Java simulator to include new variables and metrics such as delay, 

edge weights, and battery life is another option for extending this research.  Evaluating the 

proposed DoS attack on host to host networks could be another area of future work on this 

research.  
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APPENDIX A 

Source Code Examples 

 

Git respository URL: https://github.com/gougej88/ICNDataCachingSimulator 

Line Graph repository: https://github.com/gougej88/LineChartThesis 

 

https://github.com/gougej88/ICNDataCachingSimulator
https://github.com/gougej88/LineChartThesis
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Node Class Example 
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Edge Class Example 
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Graph Class Example 
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Content Class Example 
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Packet Class Example 
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AttackerNode Class Example 
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APPENDIX B 

Results Collected 
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5x5 Square Graph. LRU. Zipfian = 0.65. Request rate of 2 

 

 

5x5 Square Graph. LRU. Zipfian = 0.65. Request rate of 4 
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5x5 Square Graph. FIFO. Zipfian = 0.65. Request rate of 1 
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5x5 Square Graph. FIFO. Zipfian = 0.65. Request rate of 4 

 

 

5x5 Square Graph. Random. Zipfian = 0.65. Request rate of 1 
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5x5 Square Graph. Random. Zipfian = 0.65. Request rate of 2 

 

 

5x5 Square Graph. Random. Zipfian = 0.65. Request rate of 4 
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5x5 Square Graph (Zipfian=0.65): Percentage Increase Statistics 
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5x5 Square Graph. LRU. Zipfian = 0.85. Request rate of 2 
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5x5 Square Graph. FIFO. Zipfian = 0.85. Request rate of 1 
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5x5 Square Graph. FIFO. Zipfian = 0.85. Request rate of 4 
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5x5 Square Graph. Random. Zipfian = 0.85. Request rate of 2 

 

 

5x5 Square Graph. Random. Zipfian = 0.85. Request rate of 4 
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5x5 Square Graph (Zipfian=0.85): Percentage Increase Statistics 

 

 

10x10 Square Graph. LRU. Zipfian = 0.65. Request rate of 1 
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10x10 Square Graph. LRU. Zipfian = 0.65. Request rate of 2 

 

 

10x10 Square Graph. LRU. Zipfian = 0.65. Request rate of 4 
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10x10 Square Graph. FIFO. Zipfian = 0.65. Request rate of 1 

 

 

10x10 Square Graph. FIFO. Zipfian = 0.65. Request rate of 2 
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10x10 Square Graph. FIFO. Zipfian = 0.65. Request rate of 4 

 

 

10x10 Square Graph. Random. Zipfian = 0.65. Request rate of 1 
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10x10 Square Graph. Random. Zipfian = 0.65. Request rate of 2 

 

 

10x10 Square Graph. Random. Zipfian = 0.65. Request rate of 4 
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10x10 Square Graph (Zipfian=0.65): Percentage Increase Statistics 

 

 

10x10 Square Graph. LRU. Zipfian = 0.85. Request rate of 1 
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10x10 Square Graph. LRU. Zipfian = 0.85. Request rate of 2 

 

 

10x10 Square Graph. LRU. Zipfian = 0.85. Request rate of 4 
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10x10 Square Graph. FIFO. Zipfian = 0.85. Request rate of 1 

 

 

10x10 Square Graph. FIFO. Zipfian = 0.85. Request rate of 2 
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10x10 Square Graph. FIFO. Zipfian = 0.85. Request rate of 4 

 

 

10x10 Square Graph. Random. Zipfian = 0.85. Request rate of 1 
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10x10 Square Graph. Random. Zipfian = 0.85. Request rate of 2 

 

10x10 Square Graph. Random. Zipfian = 0.85. Request rate of 4 
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10x10 Square Graph (Zipfian=0.85): Percentage Increase Statistics 

 

 

Gnutella 6301 node graph. LRU. Zipfian = 0.65. Request rate of 1 
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Gnutella 6301 node graph. LRU. Zipfian = 0.65. Request rate of 2 

 

 

Gnutella 6301 node graph. LRU. Zipfian = 0.65. Request rate of 4 
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Gnutella 6301 node graph. FIFO. Zipfian = 0.65. Request rate of 1 

 

 

Gnutella 6301 node graph. FIFO. Zipfian = 0.65. Request rate of 2 
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Gnutella 6301 node graph. FIFO. Zipfian = 0.65. Request rate of 4 

 

 

Gnutella 6301 node graph. Random. Zipfian = 0.65. Request rate of 1 
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Gnutella 6301 node graph. Random. Zipfian = 0.65. Request rate of 2 

 

 

Gnutella 6301 node graph. Random. Zipfian = 0.65. Request rate of 4 
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Gnutella 6301 node Graph (Zipfian=0.65): Percentage Increase Statistics 

 

 

Gnutella 6301 node graph. LRU. Zipfian = 0.85. Request rate of 1 
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Gnutella 6301 node graph. LRU. Zipfian = 0.85. Request rate of 2 

 

 

Gnutella 6301 node graph. LRU. Zipfian = 0.85. Request rate of 4 
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Gnutella 6301 node graph. FIFO. Zipfian = 0.85. Request rate of 1 

 

 

Gnutella 6301 node graph. FIFO. Zipfian = 0.85. Request rate of 2  
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Gnutella 6301 node graph. FIFO. Zipfian = 0.85. Request rate of 4 

 

 

Gnutella 6301 node graph. Random. Zipfian = 0.85. Request rate of 1 
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Gnutella 6301 node graph. Random. Zipfian = 0.85. Request rate of 2 

 

 

Gnutella 6301 node graph. Random. Zipfian = 0.85. Request rate of 4 
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Gnutella 6301 node Graph (Zipfian=0.85): Percentage Increase Statistics 

 

 

Gnutella 8846 node graph. LRU. Zipfian = 0.65. Request rate of 1 
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Gnutella 8846 node graph. LRU. Zipfian = 0.65. Request rate of 2 

 

 

Gnutella 8846 node graph. LRU. Zipfian = 0.65. Request rate of 4 
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Gnutella 8846 node graph. FIFO. Zipfian = 0.65. Request rate of 1 

 

 

Gnutella 8846 node graph. FIFO. Zipfian = 0.65. Request rate of 2 
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Gnutella 8846 node graph. FIFO. Zipfian = 0.65. Request rate of 4 

 

 

Gnutella 8846 node graph. Random. Zipfian = 0.65. Request rate of 1 
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Gnutella 8846 node graph. Random. Zipfian = 0.65. Request rate of 2 

 

 

Gnutella 8846 node graph. Random. Zipfian = 0.65. Request rate of 4 
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Gnutella 8846 node Graph (Zipfian=0.65): Percentage Increase Statistics 
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Gnutella 8846 node graph. LRU. Zipfian = 0.85. Request rate of 2 

 

 

Gnutella 8846 node graph. LRU. Zipfian = 0.85. Request rate of 4 
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Gnutella 8846 node graph. FIFO. Zipfian = 0.85. Request rate of 1 

 

 

Gnutella 8846 node graph. FIFO. Zipfian = 0.85. Request rate of 2 
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Gnutella 8846 node graph. FIFO. Zipfian = 0.85. Request rate of 4 
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Gnutella 8846 node graph. Random. Zipfian = 0.85. Request rate of 2 

 

 

Gnutella 8846 node graph. Random. Zipfian = 0.85. Request rate of 4 
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Gnutella 8846 node Graph (Zipfian=0.85): Percentage Increase Statistics 

 

 

Smart Attack Results. 5x5 Square Graph. LRU. Zipfian = 0.65. Request rate of 1 
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Smart Attack Results. 5x5 Square Graph. LRU. Zipfian = 0.65. Request rate of 2 

 

 

Smart Attack Results. 5x5 Square Graph. LRU. Zipfian = 0.65. Request rate of 4 
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