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ABSTRACT 

As high-speed networks with large bandwidth delay products (BDP) become more 

common, high-speed transport protocols must be developed that perform well in these 

contexts. TCP has limitations in high BDP networks. A number of high-speed TCP 

proposals have emerged, including BIC TCP, High Speed TCP, and H-TCP. XCP is an 

intraprotocol communication mechanism that promises even greater performance by 

providing explicit feedback from routers about congestion. It requires changes to routers 

and end hosts, though, whereas the other experimental protocols only require changes to 

an end host. 

We evaluated the performance ofXCP against BIC TCP, High Speed TCP, H-TCP, and . 

NewReno TCP. We found that in a controlled environment, XCP gave much better 

performance than the other TCPs. XCP was sensitive to misconfiguration and 

environmental factors, though, and was more difficult to deploy. More work is required 

to make XCP more stable. The other TCPs did not perform better than NewReno TCP 

but show promise, as most performed almost as well as NewReno TCP. 
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Chapter 1 

INTRODUCTION 

The Transmission Control Protocol (TCP) is the end-to-end protocol of the Internet and 

has contributed to the success of the Internet. It has been successful because it is 

conservative and stable. As the Internet has grown, links have developed much greater 

capacity. In additio~ newer types of links such as satellite and wireless links have longer 

delay. These types of links can be described as high bandwidth delay product links, or 

high BDP links. The capacity, or BDP, of a link is measured as a product of bandwidth 

and round-trip time (RTI). As either or both of these factors increases, the BDP 

increases. It is well known that TCP does not operate well on high bandwidth delay 

product networks. Its conservative policies lead to inefficiency, amongst other problems. 

TCP has a number of problems in high BDP networks. TCP increases its congestion 

window - the amount of unacknowledged data a TCP flow can have in the network at 

one time- by one packet per RTf. It decreases the congestion window by half upon a 

loss event. This leads to inefficiency. TCP is unable to keep high BDP links full, 

therefore underutilizing bandwidth. Another problem is that TCP is prone to instability 

and becomes oscillatory. Also, since TCP can only increase by one packet per RTT, it is 

unfair to long RTT flows. Finally, since all packet loss is interpreted as a congestion 

indicatio~ loss due to errors is incorrectly interpreted as congestion. 
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These problems with TCP adversely affect satellite links because of their long RTT. 

These adversely affect wireless links because of their high error rates. More and more 

applications exist that could take advantage of high bandwidth delay product networks. 

These include sharing of large scientific datasets and multimedia. These applications and 

types of links require improvements to TCP. 

In response to these problems, a number of proposals for high-speed TCPs have been 

made including High Speed TCP [Floyd02], Scalable TCP [Kelly03], BIC TCP 

[Rhee04], H-TCP [Leith04], and FAST TCP [Low04]. Each makes changes to the 

congestion control algorithms of TCP. Congestion occurs when a bottleneck in a 

network path is overwhelmed. Congestion control is the way TCP handles and avoids 

congestion events. A more radical proposal is XCP, the eXplicit Control Protocol, which 

unlike the other TCPs, makes changes to the routers as well as the end-systems. It gives 

explicit feedback about congestion in the network; feedback which is not present in the 

current TCP. XCP is more than just a new transport protocol; it is an interlayer 

communication protocol, allowing communication between the network and transport 

layers. The explicit feedback allows end-systems to react quickly and accurately to 

congestion in the network. 

XCP has been shown to have a number of benefits. It has been shown in simulation and 

experiments to have high utilization, maintains small queues, and exhibits almost no 

packet loss [Katabi02, Zhang05]. Overall, its performance appears to be impressive. 

Additionally, it decouples fairness and utilization control. Nonetheless, problems with 
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the protocol have been noticed, such as its sensitivity to a number of environmental 

factors and incorrect control information [Zhang05]. The most troubling fact about XCP 

is the amount of changes required in the network for its implementation. All routers in a 

path as well as the end-systems must be changed. Therefore, there are concerns about its 

deployability. 

With so many competing proposals to replace TCP, careful performance evaluation must 

be undertaken to determine which ones are deserving of further investigation. A number 

of studies have been undertaken comparing the performance of the various high-speed 

TCPs. A problem with these performance studies is that there is no standard, agreed

upon set of metrics or methods. There is ongoing work to develop these standard metrics 

and methods by different groups, including the Transport Models Research Group, 

chartered by the IRTF [Floyd05B]. One concern is ensuring a realistic environment to 

test the TCPs that actually matches the real Internet environment. Some factors include 

types of background traffic and bottleneck capacity. Another issue is controlling for 

variation in the network stacks used for testing the various proposals. Everything, 

including operating system kernel and hardware, should be the same between the 

different tests. 

Some research efforts have evaluated the performance ofXCP [Zhang05, Falk05B]. So 

far, no one has compared the performance ofXCP against any of the other high-speed 

TCPs. It is a challenge to compare XCP to the other high-speed TCPs because they are 

fairly different types of protocols. XCP is inter-protocol communication, requiring 
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changes at the routers and end-systems. The other high-speed TCPs only require changes 

at the end-systems and are essentially just updates to TCP. Also, most of the high-speed 

TCPs have been well-integrated into the Linux kernel and deployed; XCP has not been 

vetted in this way. 

We conducted a performance evaluation to compare XCP to the other high-speed TCPs. 

It was an initial attempt to understand how these could be compared. XCP, BIC TCP, 

High Speed TCP, and H-TCP were all compared with the current NewReno TCP. Tests 

were run with traffic generators, and environmental factors, including delay and loss 

were emulated. Measures such as average bandwidth and packet loss rates were taken 

and compared. 
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Chapter 2 

TRANSMISSION CONTROL PROTOCOL 

TCP is the main end-to-end protocol operating in the Internet today [Postel81 ]. The 

Internet Protocol (IP) provides an unreliable, connectionless packet delivery service. 

TCP sits on top of IP to provide the reliable, connection-oriented service that many 

applications require. TCP has two main functions: providing this reliable data delivery 

service and performing congestion control to protect the network from incapacitating 

congestion. 

2.1 Reliable Data Delivery 

As part of TCP' s reliable data delivery service, it does the following things: reliable 

transmission of data, in-order delivery of bytes, flow control, and multiplexing. Reliable 

transmission of data involves using acknowledgements, checksums, and a retransmission 

timer to ensure that error-free data is delivered to a destination. TCP ensures that data is 

delivered in order at the level of bytes by using per-byte sequence numbers and a sliding 

window. The sliding window is also used for flow control where the receiver advertises 

a window size of the amount of data it can accept without getting overwhelmed. Finally, 

incoming data is multiplexed between multiple processes through the use of port 

numbers. 
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2.1.1 Reliable Transmission 

The frrst thing that must happen with a TCP connection is that the connection must be 

established. This is accomplished with the three-way handshake. When a sender wishes 

to open a connection with a receiver, it sends a TCP segment with the SYN flag set. The 

SYN flag can be seen in the TCP header in Figure 1. The receiver replies with the SYN 

and ACK flags set, and the sender replies with the ACK flag set, finishing the handshake. 

0 1 2 3 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
I Source Port I Destination Port I 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
I Sequence Number I 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
I Acknowledgment Number I 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
I Data I I U I A I PI R I S IF I I 
I Offset! Reserved IRICISISIYIII Window I 
I I IGIKIHITININI I 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
I Checksum I Urgent Pointer I 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
I Options I Padding I 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
I data I 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Figure 1: TCP header. 
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Other things that happen during connection establishment are that TCP parameters and 

options can be set. There are parameters such as window scaling and other extensions to 

TCP that can be negotiated between the sender and receiver. The options field can be 

seen in the TCP header. Options are additions to TCP that may or may not be present in 

the sender or receiver. 

After the connection is established, data can be transmitted, and the receiver tells the 

sender it received the data through the use of positive acknowledgements. A positive 

acknowledgement returns the sequence number of the byte after the last byte that was 

received. The acknowledgements are also cumulative; they acknowledge the last 

segment that was received where each segment before it was also received. The 

checksum field can also be seen in the TCP header. It is used to guarantee that data 

arrives error-free. 

The sender has a retransmission timer, which keeps track of how long it has been since a 

segment was sent out. If an acknowledgement has not been received by the RTO 

(retransmit timeout) the data is retransmitted. The RTO is dynamically updated to the 

smoothed RTT plus variance. Samples of the RTT are taken continuously. 

2.1.2 In-Order Delivery 

The sequence number field can be seen in the TCP header in Figure 1. Each byte has a 

sequence number in TCP. There are 32 bits for the sequence number field, which allows 
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a sequence number space of 232
• Today larger amounts of data move through greater 

capacity and longer delay links, so this sequence number space is inadequate to guard 

against sequence number wrap-around, where the same sequence number could be seen 

within the same connection. Therefore, a timestamp option is used that appends a 

timestamp to the sequence numbers, increasing the sequence number space. 

Together with the sliding window, this allows for in-order delivery of bytes. The sliding 

window, which is also used for flow control, is a means to keep track of what data is 

outstanding, or "in-flight," i.e. sent, but not yet acknowledged. Receivers can check the 

sequence numbers of incoming data to make sure they fall within the window, and can 

reorder those that arrive out of order. If out of order segments arrive, only the last 

ordered byte will be acknowledged, so lost segments will be retransmitted. As the new 

out of order segments arrive, duplicate acknowledgements (ACKs) will be generated. 

Therefore, the sender can begin retransmitting when it sees a number of duplicate ACKs. 

This is called fast retransmit. 

The cumulative acknowledgement mechanism of TCP is somewhat limiting when it 

comes to retransmissions. Another extension to TCP is selective acknowledgements, or 

SACK. When SACK is implemented, non-contiguous blocks of data can be 

acknowledged, allowing for retransmission of only those segments that have not arrived 

at the receiver. It has been shown to improve performance and is being used more and 

more in the Internet 
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2.1.3 Flow Control 

The sliding window is also used for flow control. The receiver advertises the amount of 

data it can handle at one time through acknowledgements. This is called the receiver 

window. The window field can be seen in the TCP header. It uses 16 bits, so the 

window can be at most 2
16 

bytes. This is too small given the needs of applications, the 

larger capacity, and longer delay links available. Therefore, the Window Scaling option 

was added with RFC 1323, which allows a much larger window size with a scaling factor 

applied. 

The receiver is able to throttle the sender with the use of the receiver window to 

overcome rate mismatches between the two. If the receiver does not have enough buffer 

space to handle incoming data, it can reduce the size of the receiver window and send 

that back in an acknowledgement" to the sender. The sender must then reduce the amount 

of data it is sending. The sender uses the smaller of the receiver window and the 

congestion window, which will be seen later in the discussion of congestion control. 

2.1.4 Multiplexing 

Each end-system can have multiple processes sending and receiving data over the 

network. TCP distinguishes between the different processes with the use of port 

numbers. A port number is a 16-bit integer. Together with the IP address, this uniquely 

identifies the connection on that host. 
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The standard application programming interface to TCP is the Berkeley Socket interface. 

A socket is an abstraction for the connection. It can be read to and written from, much 

like files can. 

2.2 Congestion Control 

TCP' s reliable data delivery mechanisms control how a host interacts with other hosts. 

TCP' s congestion control mechanisms control how a host interacts with the network. 

Van Jacobson is primarily responsible for the initial TCP congestion control algorithms 

from the 1980s [Jacobson88]. These algorithms allowed TCP to scale with the growth of 

the Internet, avoiding congestion collapse. Congestion occurs when too many packets 

create a bottleneck on a network path and buffers at the bottleneck fill up. Unnecessary 

retransmissions can then further bog down the network, leading to collapse. 

Congestion control mechanisms in TCP both attempt to avoid congestion and control 

congestion once it has been detected. The basis of the mechanisms is the congestion 

window ( cwnd), the number of bytes that can be sent based on current delay in the 

network. The only indicator of congestion is packet loss. There are various congestion 

control mechanisms at work in current TCP implementations. One is Additive Increase 

Multiplicative Decrease, or AIMD, in which the congestion window is halved every time 

packet loss occurs and increased by one segment each Round Trip Time (RTT) if there is 

no packet loss. Another is the retransmit timer, which uses exponential back off when a 
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retransmitted packet is dropped. Slow Start is another mechanism. It checks the network 

to see if it can handle traffic by increasing the window by one segment per 

acknowledgement. Another mechanism is ACK-clocking in which the arrival of 

acknowledgements at the sender sets the pace for the transmission of new data. 

2.2.1 Congestion Control Mechanisms 

First, TCP probes the network to see how much load it can handle. This process is called 

Slow Start. After a connection is established, cwnd is set to 1 MSS (Maximum Segment 

Size) then increased segment per segment for each acknowledgement received. This 

produces exponential increase. When the acknowledgement for the 1 MSS arrives, cwnd 

is increased by 1 MSS. After the acknowledgement for those 2 MSS arrives, cwnd is 

increased by 2 MSS, then 4 MSS, then 8 MSS, and so on, thus increasing exponentially. 

The TCP sender keeps track of another variable - ssthresh, or Slow Start Threshold. 

This is initially set to the size of the receiver window. Slow Start continues until it 

reaches ssthresh, then congestion avoidance begins. When a timeout occurs or three 

duplicate ACKs are received, signaling packet loss, and, therefore, congestion, one half 

of the current window size is saved in ssthresh. Upon a timeout, cwnd is set to 1 MSS 

and Slow Start begins again. If three duplicate ACKs are received, this also signals 

packet loss, and the apparently missing segment is retransmitted (Fast Retransmit) and 

congestion avoidance is entered (Fast Recovery) [ Allman99 A]. 
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2.2.2 Congestion A voidance 

When ssthresh is reached, congestion avoidance begins. Then cwnd grows by one 

segment each RTT. This is linear growth compared to the exponential increase of Slow 

Start. This growth continues until congestion occurs. Window growth in congestion 

avoidance can he defined a~: 

cwnd = cwnd + 1/cwnd 

This is the Additive Increase Multiplicative Decrease (AIMD) policy ofTCP. Growth is 

linear, or additive, and, after packet loss occurs, the congestion window is halved, or 

decreased by a multiplicative factor. This is an efficient and somewhat fair control 

algorithm. Problems with fairness with the AIMD policy will be discussed below. 

2.2.3 Tahoe, Reno, and NewReno 

There have been three major versions ofTCP. The first was Tahoe, which included most 

of the behavior described above. The significant difference was that upon receipt of 

duplicate ACKs, Fast Retransmit was entered, but, then, instead of entering congestion 

avoidance, cwnd was reduced to 1 MSS and Slow Start began again. The next version of 

TCP, Reno, added Fast Recovery. Fast Recovery is an attempt to stay in congestion 

avoidance instead of falling back to Slow Start. In Fast Recovery, cwnd becomes: 

cwnd = ssthresh + 3 MSS 
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This is to account for the three packets for which duplicate ACK.s were sent. Each time a 

duplicate ACK is received after this, another MSS can be sent until new data is 

acknowledged. Then cwnd goes back to sstbresh [ Allman99A ]. 

NewReno is the newest version ofTCP, and is now the most deployed version on the 

Internet [Floyd05A]. What distinguishes it from TCP Reno is how it behaves if multiple 

segments are lost during Fast Recovery. Reno cannot recover from multiple packet loss 

during Fast Recovery. In New Reno, if a partial ACK is received, signaling that another 

segment was lost, it is retransmitted [Floyd99]. 

2.2.4 Congestion Control in High BDP Networks 

Although these current congestion control schemes have allowed for the explosive 

growth of the Internet, there are problems with them. The problems are particularly 

apparent in large bandwidth delay networks. There are three main scenarios that present 

challenges. First, there is poor link utilization in high bandwidth delay networks. TCP' s 

additive increase means that flows cannot fill up spare bandwidth quickly. A single TCP 

flow can fill up a 10 Gbps link, but this creates large, oscillatory queues. Also, in the 

presence of any realistic level of packet loss, the throughput is cut dramatically 

[Floyd02]. Second, TCP flows with long RTT cannot obtain a fair share of bandwidth at 

bottleneck links. Shorter RTT flows can open up their congestion windows faster, more 

quickly grabbing available bandwidth. Third, since dropped packets are the only 

indication of congestion, lossy links (such as wireless links) can be unnecessarily forced 
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into congestion response. Network capacity is increasing and new technologies such as 

satellite and wireless links are becoming more common, making these problems more 

significant than they have been in the past [Falk03]. 
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Chapter 3 

EXPLICIT CONTROL PROTOCOL 

The designers of XCP considered the state of congestion control in the Internet and 

decided to start over from scratch. Working with no constraints - no requirements for 

backwards compatibility or concerns about deployment -what would a brand new 

congestion control system look like? Instead of the binary indicator of congestion of the 

current TCP, packet loss, they designed a system that provided explicit feedback about 

congestion. The feedback is not only correct about congestion (as opposed to using 

packet loss, which is sometimes due to error), but the feedback can also communicate the 

degree of congestion in a link. 

The result was the eXplicit Control Protocol (XCP), a congestion control system for 

Internet transport protocols that performs well on high bandwidth delay product networks 

[Katabi02]. Each packet has a congestion header that carries per-flow congestion state. 

Routers along the way can modify the congestion header, providing feedback to the 

endpoints to control bandwidth allocation. Since the per-flow state is in the packet 

instead of the router, XCP can scale. One of the most important aspects ofXCP is that it 

decouples congestion control from fairness control. Deployment of XCP would require 

changes both to the end hosts and the routers, so depl~yment is a concern [Falk03]. 
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3.1 Description of Protocol 

XCP is a congestion control system, which involves end-systems and routers. It belongs 

to neither the transport nor network layers, but, rather, provides feedback between the 

transport and network layers, violating the separation of layers principle. The end

systems provide feedback to the routers and the routers provide feedback to the end

systems. Each packet has a congestion header, which carries the congestion window, the 

estimated round trip time, and the requested increase in throughput. The router monitors 

its input traffic rate and provides feedback to flows on whether they should increase or 

decrease their congestion windows by updating the congestion header. Other routers on 

the path can overwrite the feedback so the ultimate feedback is from the bottleneck. The 

receiver copies the congestion header to an acknowledgement, which the sender uses to 

update its congestion window [Katabi02]. 

3 .1.1 Congestion Header 

The format of the XCP congestion header can be seen in Figure 2. The header sits 

between the IP and transport headers since it is communication between the end-systems 

and the network. The Protocol field is the protocol of the data in the packet. Length is 

the length of the congestion header in bytes. Version is the version ofXCP. Format is a 

code that differentiates between a standard and minimal congestion header format. The 

RTT field is the beginning of the actual control information in the congestion header. It 

is the round trip time measured by the sender. X used to be throughput. It has been 

changed to inter-packet time of the flow calculated by the sender to avoid divisions in the 
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0 1 2 3 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
I Protocol I Length IVersioniFormat I unused I 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
I ~T 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
I X 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
I Delta_Throughput 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
I Reverse Feedback 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Figure 2: XCP congestion header. 

router. The Delta_ Throughput field is the desired or allocated change in throughput set 

by the sender. Routers along the path can change this field. Reverse_Feedback is the 

Delta_ Throughput value received by the receiver. The receiver copies Delta_ Throughput 

into the Reverse_Feedback field of an acknowledgement to retwn to the sender 

[Falk05A]. 

3 .1.2 XCP End-Systems 

The XCP sender maintains the congestion window (cwnd), desired throughput, estimate 

of current actual throughput, maximum throughput allowed by XCP, estimate of current 

inter-packet time, and an estimate of the current round trip time. It fills in the 

corresponding fields in the congestion header of outgoing packets. Delta_ Throughput 
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(bytes/second) is calculated by dividing the desired throughput by the number of packets 

in a RTI so that the value is per-packet instead of per-flow, keeping to the principle of 

keeping per-flow state out of the routers. If this is the first packet, estimates are set to 

zero. 

Delta_ Througput = desired_ throughput -throughput I throughput * (RTI /MSS) 

where MSS is the Maximum Segment Size. 

XCP receivers copy Delta_Throughput to the Reverse_Feedback field in the congestion 

header of returning acknowledgements. When the sender gets the feedback, it adjusts its 

cwnd by the following formula: 

cwnd = max( cwnd + feedback * RTI, MSS) 

Although packet loss should be rare with XCP, when it occurs, the system should fall 

back to standard TCP congestion control behavior [Falk05A, Katabi02]. 

3.1.3 XCP Routers 

The XCP routers compute the feedback to send back to the XCP end-systems. They do 

this with an efficiency (or congestion) controller and a fairness controller. Having two 

separate controllers provides the decoupling between congestion and fairness control 
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central to XCP. The control decisions are made once per control interval. The control 

interval is computed as the average RTT of the flows on this linlc 

3 .1.3 .1 Efficiency Controller 

The efficiency controller computes the desired increase or decrease in traffic based on 

the aggregate traffic. It is not at all concerned about the separate flows. The fairness 

controller is concerned only with splitting up the aggregate bandwidth between flows. 

The policy of the efficiency controller is Multiplicative Increase Multiplicative Decrease 

(MIMD). The efficiency controller computes the aggregate feedback each control 

interval as follows: 

F = a * (capacity - input_ bw) - b * queue I avg_ rtt 

Capacity is the link capacity in bytes/second. The input_bw is the average bandwidth of 

arriving traffic. The queue is the persistent queue, the minimum standing queue over a 

special queue estimation interval. The average RTT, avg_ rtt, is the value used to govern 

the control interval. Two constant parameters, a and b, are set to 0.4 and 0.226, 

respectively, based on stability analysis [Falk05A, Katabi02]. 

3.1.3.2 Fairness Controller 

The fairness controller takes the aggregate feedback computed by the efficiency 

controller, and splits it up among the flows on the link. It uses an Additive Increase 
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Multiplicative Decrease (AIMD) policy. The MIMD policy of the efficiency controller 

ensures that the spare bandwidth is allocated. The AIMD policy of the fairness controller 

converges to fairness much like the AIMD policy of TCP. These two policies working in 

concert accomplish both performance requirements of the protocol. Positive feedback is 

split equally per-flow (additive increase), and negative feedback is proportional to the 

flow's capacity (multiplicative decrease). The total feedback is computed as the positive 

feedback minus the negative feedback. Positive and negative feedback are calculated as 

follows: 

pos_fbk = Cp * X 

neg_ fbk = Cn * Pkt _Size 

Cp and Cn are, respectively, the scaled positive and negative feedback to be distributed. 

X is inter-packet time. Pkt _size in the negative feedback calculation makes the negative 

feedback proportional to the flow's capacity. 

If the aggregate feedback is zero, bandwidth shuffling is applied. Bandwidth shuffling 

redistributes a small portion of the capacity so that new flows can obtain a share of the 

capacity in a fully loaded system and converge to fairness. 
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3.2 Deployment Issues 

Since XCP requires changes to routers as well as to end-systems, there are significant 

deployment issues. First, the protocol must be very mature and well-tested before router 

manufacturers would agree to deploy it in routers. Second, XCP, with its communication 

across transport and network layers, is not an incremental change to Internet congestion 

control. How such a large change could take place is difficult to imagine. Would it 

happen on a cloud-by-cloud basis? Would it be deployed wholly on research networks 

such as Intemet2? Also, if it is to coexist with regular TCP, can it fairly share bandwidth 

with regular TCP flows? 

In the original XCP paper, Katabi describes a way to deploy XCP on a per-cloud basis. 

TCP flows would be mapped to an XCP flow as they enter the cloud. Katabi also 

suggests that XCP could be TCP.-friendly in a network shared with TCP flows. A router 

could have an XCP and a TCP queue and could use weighted-fair queuing so both would 

have equal average bandwidth [Katabi02]. 

The XCP specification discusses some of the issues of XCP deployment and offers some 

ideas of how it could be handled. One idea is to use XCP as a TCP performance

enhancing proxy (PEP). TCP PEPs are used in networks today to improve performance, 

sandwiching a more aggressive protocol between two TCP connections. XCP could be 

run in between two TCP connections as a PEP, and this could be used for incremental 

deployment [Falk05A]. 
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3.3 Simulations and Tests ofXCP 

Early simulations and tests had promising results for XCP. Katabi's simulations showed 

that XCP could give fair bandwidth allocation, almost no packet drops, high utilization, 

small standing queue size, and scalability [Katabi02]. Zhang confirmed these findings 

with his implementation of XCP, but also went on to test a number of factors such as link 

sharing, non-congestion losses, and non-XCP queues [ZhangOS]. He found that in some 

cases XCP could develop incorrect feedback that negatively affects its performance. 

In the paper that originally described XCP, Katabi reported the results of simulations 

with the network simulator ns-2 that compared the performance of XCP against TCP 

Reno with four different queuing schemes: Random Early Discard (RED), Random Early 

Marking (REM), Adaptive Virtual Queue (A VQ), and Core Stateless Fair Queuing 

(CSFQ), all with Explicit Congestion Notillcation (ECN) enabled. They simulated 

different capacities, delays, number of sources, and topologies. The results were as 

mentioned above: XCP outperformed TCP in all cases [Katabi02]. 

Zhang implemented XCP in Linux as a TCP option. He studied the effects of 

environmental factors on the performance of XCP in an experimental test bed using his 

Linux implementation. XCP requires accurate control information such as link capacity 

in order to work correctly. Problems arise when it is unable to get a good estimate of the 

load. Zhang manipulated different factors such as the configured sending rate, link 

contention, lossy wireless links, and non-XCP queue bottlenecks. He found that XCP's 
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behavior is affected by all of these factors [Zhang05]. The experimental test bed looked 

like Figure 3. The dummynet bridge is used to emulate link delay. The link in and out of 

the bridge is 1 0 Mbps to create a bottleneck. 

S1 

S2 

S3 

S4 

>OOM~d_WM~___(I , _ ____("1 v- ---v- -v 
XCP Router Dummynet Bridge D 

Figure 3: Test bed. 
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The lSI research group at USC has developed a FreeBSD implementation of XCP and is 

studying its performance. This FreeBSD implementation, including end-system and 

router kernel code, is available. Additionally, they have made available an ns-2 

distribution with XCP code. An Internet draft of the XCP specification has also been 

prepared [Falk05A]. They have begun to publish preliminary results of their 

performance studies. One such study considers the performance of XCP over satellite 

networks. The authors compared the performance of XCP with other experimental high

speed TCPs- BIC-TCP and FAST TCP using an ns-2 simulation. They considered the 

situation when long RTT flows compete with short RTT flows and found that XCP 

performed the best in terms of link utilization and fairness [Falk05B]. 

3.4 XCP for Linux 

Zhang developed his XCP for Ljnux as a TCP option based on Katabi' s initial 

description ofXCP. This was before the XCP specification was written, so there are 

some differences between Zhang's implementation and the reference implementation 

being developed at lSI. XCP for Linux was chosen for this study because the other high

speed TCPs such as BIC TCP and High Speed TCP were developed for Linux. This 

way, the underlying operating system and most of the network stack would be the same 

between the different experimental protocols. 

One main difference between Zhang's implementation and the reference implementation 

is XCP for Linux is a TCP option, and the reference implementation sits between the 
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transport and network layers. It is closely integrated with the Linux TCP implementation 

this way. Also, XCP for Linux is based on the original description of the protocol, and 

the protocol has evolved as the specification has been developed. The congestion header 

in XCP for Linux is closer to what Katabi described. It has three fields: H_feedback, 

H_rtt~ and H_cwnd. This has changed to what was described above: RTT, X, 

Delta_ Throughput, and Reverse_ Feedback. These different fields have made some 

changes to the calculations in the router. Finally, XCP for Linux does not use a control 

interval in order to avoid using a high-resolution timer in the Linux kernel but instead 

uses a delayed computation approach [Zhang05]. 

-25-



Chapter4 

HIGH-SPEED TRANSPORT PROTOCOLS 

Several proposals for high-speed TCPs exist. These include BIC TCP, High Speed TCP, 

H-TCP, FAST TCP, and Scalable TCP. The high-speed TCPs included in our 

experiments are considered in detail below- BIC TCP, High Speed TCP, and H-TCP. 

Their performance in various experiments to compare the different high-speed TCPs is 

also noted. The methodology of these experiments will be discussed in Chapter 5. 

4.1 BIC TCP 

Injong Rhee at North Carolina ~tate University devised a new congestion control 

algorithm called BIC TCP that uses a form of binary search to find the most appropriate 

sending rate for current network conditions [Rhee04]. BIC TCP stands for Binary 

Increase Congestion control TCP. This high-speed TCP was designed to exhibit RTf 

fairness, TCP friendliness, and stability. Results of performance evaluations compared 

to other high-speed TCPs have been favorable [Rhee04, Rhee06, Cottrell03, Leith05]. 

BIC TCP was implemented as a modification ofTCP NewReno with SACK and is now 

included by default in the 2.6 version of the Linux kernel. 
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The binary search increase portion ofBIC TCP works as follows. A current minimum 

window size, W min, and maximum window size, W max, are maintained. These are, 

respectively, the window size after fast recovery and the window size when the last 

packet loss occurred. The midpoint between W min and W max is computed to determine the 

new window size. Then feedback from the network is checked to determine if there was 

packet loss or not. If there was packet loss, that window size is set to the new W max, and 

if there was not packet loss, that window size is set to the new W min· This is repeated 

until the difference between W max and W min is less than a minimum increment, Smin· The 

increase function of binary search increase is logarithmic, unique amongst the high-speed 

TCPs. When the window size approaches the point of previous packet loss, the increase 

rate gets smaller, reducing packet loss. 

There is also an additive increase portion of the algorithm. When the midpoint between 

w min and w max constitutes an amount of increase greater than a maximum increment, 

Smax, the window size is increased by Smax until the increase is less than Smax· 

The decrease function is multiplicative decrease with a factor,~' set to 0.8. There is also 

a slow start period after the window size grows past W max· It adds an exponential factor 

of Smin to W max, and then switches to additive increase. A fast convergence stage allows 

smaller windows to get a fair share of bandwidth. Finally, regular TCP behavior is 

followed at low window sizes [Rhee04]. 

·* 
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Cottrell found BIC TCP performed very well in their experiments. It gave good 

utilization, stability, and fairness. BI C TCP showed some stability problems on long 

paths with large windows [Cottrell03]. Hamilton Institute experiments showed some 

problems with fairness and convergence times [Leith05]. Rhee also found RTT 

unfairness issues with BIC TCP, but the addition of background traffic to experiments 

improved BIC's fairness. Background traffic also improved convergence times. Rhee 

believes that the control dynamics of BIC interact more properly with background traffic 

than the other protocols [Rhee06]. BIC TCP seems to be a favorite of the research 

community. It provides good utilization and an improvement over Reno TCP with only a 

change at the sender. 

4.2 High Speed TCP 

High Speed TCP was proposed .by Sally Floyd as a change to regular TCP for large 

congestion windows [Floyd02]. It has also been evaluated in performance studies, and 

has been shown to have some increase in performance over regular TCP [Cottrell03, 

Leith05, Rhee06]. It is relatively simple to implement, only requiring a change in the 

sender. It is also in the 2.6 Linux kernel as an alternative congestion control algorithm. 

Like BIC TCP, High Speed TCP does not change the regular TCP congestion control 

algorithms for small windows. Once larger windows are reached, the response function 

changes to a function of the size of the congestion window. That is, the congestion 

window size is looked up in a table to find the appropriate increase factor. This provides 
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a more aggressive increase function. The decrease factor for High Speed TCP is 

correspondingly less aggressive than regular TCP, also based on a table of values 

[Floyd02]. 

Cottrell found HS-TCP to be "gentle" - it does not aggressively grab bandwidth from 

competing protocols. In fact, they found it to exhibit odd intra-protocol behavior. When 

an HS-TCP flow shares a link with another HS-TCP flow, the first flow gives up 

bandwidth to the second flow [Cottrell03]. The experiments carried out at the Hamilton 

Institute also showed fairness problems with HS-TCP. They additionally found that 

convergence times could be long. There were some issues with RTT unfairness, too 

[Leith05]. Rhee found HS-TCP exhibited better fairness as background traffic was 

added to their experiments [Rhee06]. Despite issues with performance noticed in the 

various experiments, HS-TCP was found by all to give an increase in utilization over 

standard Reno TCP with a small· change in the sender host. 

4.3 H-TCP 

H-TCP was developed at Hamilton Institute [Leith04]. Its performance has been 

evaluated alongside BIC TCP, High Speed TCP, and other high-speed TCPs. Outside of 

studies undertaken by the Hamilton Institute, the performance of H-TCP has not been as 

favorable as the other protocols [Leith05, Cottrel103, Rhee06]. 
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H-TCP is like High Speed TCP in that it is a modification to the regular TCP AIMD 

congestion control algorithms. It changes the increase factor to be based on the time 

elapsed since the time of the last congestion event. Like H-TCP, High Speed TCP only 

changes the response function for large congestion windows. The decrease factor is 

reduced to make it less aggressive, based on the maximum throughput seen since the last 

congestion event [Leith04]. 

Cottrell found H-TCP to have good stability and fairness [Cottrell03]. Hamilton Institute 

(the creators ofH-TCP) found H-TCP to have good fairness and convergence times. 

They found H-TCP to have much better RTT fairness than the other protocols [Leith05]. 

With the addition of background traffic, Rhee found H-TCP gave lower utilization, less 

stability, higher packet losses, and less RTT fairness. On the other hand, with 

background traffic added, H-TCP still had good fairness and convergence times 

[Rhee06]. 

4.4 Other High-speed Transport Protocols 

Other high-speed TCP proposals exist. One of the most promising, besides the ones 

noted above is FAST TCP. FAST TCP is delay-based and grew out ofTCP Vegas 

[Low04]. FAST TCP won the Bandwidth Challenge at SC2005. It uses queuing delay in 

addition to packet loss as congestion measures. It also uses pacing at the sender to avoid 

losses. Unfortunately, although an implementation is available for the 2.6 version of 

Linux, the version for Linux 2.4 is no longer available. The developers decided to close 
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the source; since the 2.4 version was a patch against the kernel, they can no longer 

distribute it. Since our experiments were against the 2.4 version of the Linux kernel, we 

could not include FAST TCP in our experiments. 

AnotJ:ter proposal is Scalable TCP from Tom Kelly [Kelly03]. Scalable TCP uses an 

exponential increase factor and a smaller multiplicative decrease factor. Other proposals 

include TCP-Westwood, LTCP, and TCP-Africa. Modifications to TCP for high-speed 

networks are an active area of research and will likely continue to produce more variants. 
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Chapter 5 

PERFORMANCE STUDIES 

5.1 Experimental Evaluation of High-speed Transport Protocols 

A number of studies have compared the performance of the various high-speed TCPs. It 

is an active research effort to develop methods and metrics for measuring the 

performance of high-speed TCPs. The results. of these studies have been mentioned in 

Chapter 4 in regards to the different high-speed TCPs. The methods and measurements 

of the studies are themselves a subject of interest. 

Bullot, Cottrell, and Hughes-Jones compared the performance of HS-TCP, Fast TCP, 

Scalable-TCP, HSTCP-LP, H-TCP, and BIC-TCP in real high-speed production 

networks [Cottrell03]. They considered throughput, RTT, intra- and inter-protocol 

fairness, stability, and impact of reverse traffic. They found that all of the experimental 

TCPs had better performance than TCP NewReno with SACK. Evaluating these 

protocols over a real network is very enlightening and an important step in testing a 

protocol's readiness for real network use. The downside of testing in a real network is 

environmental factors cannot be controlled. 
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Leith and Shorten of Hamilton Institute (developers of H-TCP) also compared the 

performance of these TCPs, but in a test bed, with a focus on fairness between competing 

flows [Leith OS]. They also attempted to develop a set of benchmark tests, which control 

for differences in network stack implementation. All machines used a modified version 

of the Linux 2.6.6 kernel. The results of both of these performance studies are complex 

and indicate a wide variation of fairness, aggressiveness, and stability issues with the 

various TCPs. They indicate a good deal of further study is needed to understand the 

performance aspects of these high-speed TCPs. 

Rhee (the developers ofBIC TCP) created an experimental test bed and evaluated an 

exhaustive list of recent high-speed TCPs: BIC, CUBIC, FAST, HSTCP, H-TCP, and 

Scalable TCP [Rhee06]. Like the other studies, their focus was on developing 

methodologies for evaluating TCPs. The focus of their experiments was to test the 

effects of background traffic. Background traffic can change the behavior of network 

protocols, and they aimed to see what behavioral changes they could observe. All of the 

protocols they examined showed different behavior with the presence of background 

traffic compared to experiments run without background traffic. For example, all of the 

protocols, except FAST, became more TCP friendly (share bandwidth with regular TCP) 

when background traffic was added. With background traffic, the high-speed TCPs have 

less bandwidth so become less aggressive with smaller window sizes. Also, random 

packet drops increase with increased traffic, changing the dynamics of the protocol 

behaviors. 
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None of these performance evaluations include XCP, highlighting the difficulty in 

comparing XCP to the other high-speed TCPs. XCP makes changes to the router while 

none of the other TCPs do anything to the router. The TCP header is changed with XCP, 

so different tools must be used to inject traffic and monitor its behavior. XCP for Linux 

includes the XCP congestion header as a TCP option. As discussed above, Zhang 

measured the performance of XCP for Linux in an experimental test bed much like the 

other high-speed TCP performance studies but only against TCP Reno. 

5.2 Issues in the Evaluation of Protocols 

There is a great need in the networking research community for better protocol 

performance studies [Floyd03]. There are three main areas that must be addressed when 

developing a TCP performance study: model, metrics, and methods. Each area has 

special challenges. 

There are many factors to consider when setting up a TCP experiment. TCP version, 

queuing scheme, number of flows, capacity, and propagation delay are just a sampling of 

the different factors that have to be determined when creating an experiment. There are 

many challenges in tuning these parameters. Research into the current use of the Internet 

can reveal what current traffic looks like and what networking configurations are most 

prevalent. This can be used to set up realistic experiments. With experimental protocol 

implementations though, the future of the Internet has to be taken into consideration. 

What will Internet traffic look like in the future? Will traffic continue to be dominated 
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by short web-like flows? Will satellite links become very common, making long delays 

more common? 

One of the main choices to make when setting up a TCP study is whether to do a 

simulation or an implementation study. Both have advantages and disadvantages. 

Networking protocols can be fully simulated in software. Some of the available 

simulato~s include OpNe~ x-sim, and the Network Simulator, ns-2. The benefit of using 

a test bed is an actual TCP implementation can be tested on a real network, although this 

can be limited by the amount of equipment on hand. Also, a test bed is limited in that it 

does not accurately reflect protocol performance on the Internet. [ Allman99B]. The chief 

advantage of doing a simulation is it is inexpensive since it requires less equipment. 

Both simulation and implementation studies are necessary, so the decisive factor in 

deciding between the two is what is to be studied. 

Ultimately, the most important consideration when setting up an experiment is what TCP 

model will be used. Some factors in a TCP model are topology, type of traffic, queuing 

policies, and congestion. There are many competing considerations when setting up a 

model. One consideration when picking a model is isolating behaviors of the protocol. 

Another consideration is what is being studied. For example, if congestion control 

behaviors are being studied, a congested link must be included in the test bed or 

simulation setup. These two issues can lead to tradeoffs. In the case of using 

background traffic, the behavior of the protocol is no longer isolated. Nonetheless, the 

protocol operating in isolation of background traffic is an unrealistic situation. 
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Understanding the current (or future) situation of the Internet can determine what is 

realistic. Most flows on the Internet are short, so using short flows in an experiment 

would be realistic. This may not be what is being studied about the protocol though, so 

bulk transfers may be used to elicit a certain behavior of the protocol [Floyd03]. 

What is to be studied about a protocol also drives what metrics will be collected in the 

experiment. Some standard metrics are throughput, link utilization, packet drops, and 

latency. If the effects of a protocol on an application such as VoiP are being studied, 

....• 

I.' 

.••.•

. ,'.~ •.• ,, ' 

i 
·~{-

jitter is important, and so queuing delay should be measured. With bulk transfers, 

throughput and delay are most important. There is some disagreement in the networking 

community about which metrics are important, so this is an area where standards may be 

useful. 

Finally, when setting up and executing a TCP experiment, all details of the experiment 

should be recorded and published so it can be repeated. This includes TCPs and 

versions, operating system kernel version, TCP parameters such as buffer sizes, router 

queuing method, topology, traffic, length of experiment, monitoring tools, etc. 

There have been a number of proposals for standard methods and metrics for TCP 

performance evaluation. One such effort is the Transport Modeling Research Group 

(TMRG) chartered by the IRTF. They are producing a number of documents that 

provide models for the evaluation of transport protocols [Floyd05B]. Wei also made a 
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proposal for a TCP benchmark suite [Wei05]. A compendium of the various proposals 

for methods, models, and metrics are presented below. 

5.2.1 Methods 

There is general agreement that new protocols must be subjected to both NS simulation 

and test bed experiments before they are fully understood and accepted. Live Internet 

tests are also useful for seeing how the protocols operate in a real-world setting. 

Test bed experiments must be setup in a way that accounts for the vagaries of the 

hardware. Different network interface cards and drivers can have a large effect on 

performance. CPU utilization, NI C performance, and other system parameters should be 

monitored. Network stacks should be the same between experiments in every way 

except for the piece being studied. Network stack parameters should be tuned to elicit 

the behavior of the protocol and in a consistent manner. Network setup should be tested 

before experiments are run to ensure all path parameters such as link capacity are what 

are expected. There are many factors at work even in a simple test bed, and they must all 

be controlled [Wei05]. 

5.2.2 Models 

Wei's proposal for a benchmark suite puts forth suggestions for topologies, traffic 

patterns, loss rates, and so forth, which would be reasonable in a TCP study [Wei05]. 
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This is a proposal though, and consensus does not exist in the networking community 

about these models. Two considerations can be followed with some certainty. First, 

these models should reflect current reality of the Internet. Second, experiments should 

vary one factor at a time. Following is a list of some of the proposed model factors and 

suggested values. 

• Network topology and configuration - number of nodes and connections between 

the nodes. Dumbbell topology (see Figure 4) is the most common topology used 

in networking research. Others, such as ring and parking lot, can also be used. 

• Workloads - where and when flows start and end. Small number of flows and 

many flows should be tested. Start and end times should be varied to show link 

sharing and synchronization behaviors. Poisson arrival with heavy tail file size 

distribution is known to be a typical workload in the Internet. Tests must also run 

long enough for the protocols to converge. 

• Link capacities: 56 Kbps, I OMbps, 1 OOMbps, 155Mbps, 622Mbps, I Gbps, 

2.5Gbps, and IOGbps are all values that are seen in the Internet today. 

• Propagation delay: lms, I Oms, 50ms, lOOms, 200ms, and 600ms are all values 

seen in the Internet today. 

• Packet loss rates: 0%, 0.001%, and O.I% are all guesses that Wei made as to 

realistic packet loss rates; but these are not understood well [Wei05]. 

• Queuing discipline: method of queuing used in routers. Examples are Random 

Early Discard (RED), Random Early Marking (REM), Adaptive Virtual Queue 

(AVQ), and Core Stateless Fair Queuing (CSFQ). A queuing discipline governs 
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how packets are buffered while they are waiting to be transmitted. The most 

common queuing discipline seen in the Internet is drop-tail, or FIFO. When a 

queue fills up at the router, drop-tail drops the next incoming packet. The other 

queuing disciplines have more "intelligent" methods. For example, RED 

randomly drops packets when the number of packets in the buffer is between 

certain configurable thresholds. This helps avoid synchronization. 

5 .2.2 Metrics 

In the Internet Draft, "Metrics for the Evaluation of Congestion Control Mechanisms," 

the following metrics are considered: 

• throughput; 

• delay; 

• packet loss; 

• responsiveness; 

• throughput or delay oscillations; 

• fairness; 

• convergence; 

• environmental robustness; 

• failure and misbehavior robustness; 

• deployability; 
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• specific transport metrics; and 

• user-based metrics [Floyd05B]. 

In the proposal for a TCP benchmark suite, Wei includes most of the above, except 

robustness, deployability and user-based metrics [W ei05]. 

Of the above metrics, only throughput, delay, and packet loss need be measured. The 

others can all be calculated based on throughput, delay, and packet loss. Tools such as 

iperf can measure throughput. Delay and packet loss can be measured by Dummynet 

routers or can be inferred at the host with instruments such as WeblOO [Wei05]. 

Throughput can be either aggregate throughput of all links, measured at the router, or 

per-connection, flow-based transfer time. Throughput is usually distinguished from 

goodput. Goodput is the success.ful part of the throughput - the packets that were 

actually useful and not dropped. I perf measures goodput. Delay can be queuing delay at 

the router or flow-based transfer time. Packet loss can also be measured at the router or 

per-flow. It may be useful to measure whether packet loss is due to congestion or 

corruption [Floyd05B]. 

Responsiveness and oscillations are different sides of the same coin. Responsiveness is 

how quickly the protocol responds to changes such as congestion. A protocol should 

respond quickly, but should not respond too much to transient changes. Oscillations can 

occur in queuing delay and throughput. They should be minimized so the protocol is 
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stable [Floyd05B]. Stability can be measured as standard deviation in queuing delay and 

throughput [W ei05]. 

Fairness and convergence are also related. Fairness is how well different flows of either 

the same or different protocols share a linl(. There are different measures of fairness: 

max-min fairness, proportional fairness, Jain's fairness index, and the product measure. 

The most commonly used measure of fairness in the protocol studies and the one 

suggested by Wei is Jain's fairness index: 

xds the average throughput of each flow [Floyd05B, Wei05]. In the case of high 

bandwidth delay product links, fairness between links of different round-trip times is also 

a concern [Katabi02]. Convergence is the time it takes to arrive at fairness when a new 

flow starts after an existing flow. 

Robustness is the ability of the protocol to handle problems such as a difficult 

environment, failures, and misbehaving users. An example of a challenging environment 

is a wireless network with a high error rate. An example of a failure is a router going 

down. Misbehaving users can lie about the amount of congestion on a link to confuse 

congestion control mechanisms. Goodput is a measure that can be used for robustness 

[Floyd05B]. 
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Floyd describes deployability in terms of the following change req~rements of a 

protocol: at the sender, at the receiver, at sender and receiver, at a single router, at all 

routers on a path, at end-systems and all routers along a path. Complexity of protocol 

implementation is another concern [Floyd05B]. 

Certain transport protocols may require special metrics. Also, metrics can be user-based, 

such as application-specific functions [Floyd05B]. Metrics may become standardized, 

but these types of metrics show, to some extent, they must be fluid and reflect the current 

reality of what is being measured. 
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Chapter 6 

EXPERIMENTAL EVALUATION 

6.1 Motivation for Experiments 

Three studies of the various high-speed TCPs were discussed in Chapter 5 [Cottrell03, 

Leith05, Rhee06]. The results of the studies were discussed in Chapter 4, and the 

methodologies were discussed in Chapter 5. We performed a similar study to evaluate 

the performance of the high-speed TCPs. We included XCP in addition to the other 

high-speed TCPs to see how the performance of XCP compares to the other high-speed 

protocols. Zhang and Henderson did a performance evaluation of XCP against NewReno 

TCP, but did not include any other high-speed TCPs [Zhang05]. 

Cottrell conducted his study on a real production network [Cottrell03]. The other three 

studies used test beds with emulation of environmental factors such as delay and loss 

[Leith05, Rhee06, Zhang05]. Our study uses a test bed that includes a bridge with a 

network emulator to emulate realistic loss and delay. 

The Hamilton Institute study focused on protocol behaviors such as fairness [Leith05]. 

Rhee's study concentrated on protocol behavior in the face of background traffic 

[Rhee06]. Cottrell focused on protocol behavior important to scientific researchers who 
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need to share large datasets and are attempting to implement these high-speed TCPs in 

the current Internet. Therefore, they concentrated on measurements such as throughput, 

fairness, and stability, which would be important in current production networks where 

links would be shared with other protocol traffic [Cottrel103]. The XCP study validated 

previous simulation findings then looked at how environmental factors would affect the 

behavior of XCP [Zhang05]. 

The main focus of our study is comparing the performance of XCP to the other high

speed TCPs as well as to New Reno TCP. Therefore, we will concentrate on user or 

application-based performance measures such as average throughput and loss. Measures 

that capture protocol behavior such as fairness and stability are left to future studies. 

Measures such as fairness and stability are important in terms of the overall effect of a 

protocol on the network, such as how TCP-friendly a protocol is. TCP-friendliness is 

how well a protocol shares bandWidth with the older TCP, which is important as 

protocols are incrementally deployed. It is beyond the scope of this study, though. 

Cottrell's study and the Hamilton Institute study emphasized having as uniform a 

network stack between all experiments as possible [Cottrell03, Leith05]. Our 

experiments emphasized this, as well. The hardware in the network test bed was the 

same in all experiments. Care was taken to have as similar a patch level for the Linux 

kernel as possible between the various high-speed TCP experiments. They were all 

performed on Linux kernel version 2.4. 
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Results can be compared to the four different performance studies [Cottrell03, Leith05, 

Rhee06, Zhang05]. Another consideration is recording enough detail of the experiments 

so they are reproducible. Care was taken to record as much detail as possible. 

6.2 Experimental Setup 

An experimental test bed was set up to test the performance ofXCP, BIC TCP, High 

Speed TCP (HS-TCP), H-TCP, and NewReno TCP. Guiding principles for setting up the 

test bed and experiments came from the preliminary work done on metrics and methods 

standardization for TCP performance evaluation by the TMRG [Floyd05B] and Wei. 

[Wei05]. The other high-speed TCP performance studies by Cottrell [Cottre1103], the 

Hamilton Institute [Leith05], and Rhee [Rhee06] also each served as partial models . 

. 
The test bed looked like Figure 4. Each node was a standard commodity PC, a Dell 

OptiPlex GX400, with the configuration listed in Table 1. 
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CPU 

Memory 

NIC 

Hard Drive 

(J •oo~, 
u--
Sender1 

Sender2 

Intel Pentium 4 1.40 GHz 

512MB ECC RDRAM 

3Com Etherlink 10/100 PCI 

20GB IDE 

Table 1: Host configuration. 

100Mbps9-'""" (J ,_ 
~ v 

XCP Router Bridge 
(netem) 

Figure 4: Test bed. 
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The base Linux installation for each node was Debian 3.1 Sarge. The hosts, senderl, 

sender2, receiver!, and receiver2, each had a few different patch levels of the Linux 

kernel version 2.4 installed on them to meet the requirements of the various high-speed 

TCP patches. The XCP end host patch was for Linux kernel 2.4.20. The BIC TCP patch 

was for Linux kernel2.4.25. The H-TCP patch was for Linux kernel2.4.23. High Speed 

TCP was included in the web 100 package for Linux 2.4, so did not require a separate 

patch level of the Linux kernel. New Reno TCP and High Speed TCP were both tested 

with Linux kernel 2.4.26. All of the kernels except Linux 2.4.20 were built with web 100 

instrumentation. Each of these Linux kernel 2.4 patch levels was built with the 

appropriate high-speed TCP patch applied and installed as separate kernel images on 

each end host. Each machine would be rebooted to the appropriate kernel image for each 

set of tests. 

On the router, Linux kernel 2.6.6 was installed, as this was the kernel version that the 

XCP router kernel module was developed and tested for. The bridge had Linux kernel 

version 2.6.15 so the network emulator, netem, could work properly. 

It is well known that the default settings for TCP in all major operating systems, 

including Linux, are not optimal for achieving good performance in high-speed 

networks. Therefore, the guidelines for TCP tuning from the TCP Tuning Guide were 

followed [Tierney06]. Different parameters for TCP can be set with the sysctl system in 

Linux. The sysctl tool modifies kernel parameters at runtime. Tcp _timestamps and 

tcp _window_ scaling are required for high-speed networks. They allow for large enough 
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window sizes in high-speed environments. They are on by default. Sack is well known 

to provide performance improvements over New Reno TCP, and the tcp _sack parameter 

is on by default. 

High-speed network contexts require larger buffer sizes for TCP. The size of the 

congestion window is related to the amount of buffer space each socket has allocated 

from the kernel. If the buffer size is too small, the congestion window cannot open up as 

much as it should. Larger buffer sizes allow the congestion window to grow to fill the 

larger pipes in a high-speed network. Therefore, the TCP buffer sizes were reset to 

values appropriate for a 100 Mbit network. The parameter names and new size in bytes 

are listed below in Table 2. 

net.core.rmem_max (max buffer size) 16777216 

net.core.wmem max 16777216 

net.ipv4.tcp_rmem (min, default, max) 4096 65536 16777216 

net.ipv4.tcp _ wmem 4096 87380 16777216 

Table 2: Network kernel parameters. 
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Another thing that can be configured to increase TCP throughput is the txquelen, or the 

size of the interface queue, as suggested by the TCP Tuning Guide. The 

recommendation was to set it to 1 000, which was done to all hosts with the ifconfig 

command. 

All of the hosts were instrumented with web100 [Web06]. The web100 software is a set 

of instruments for the TCPIIP stack in the operating system kernel. It collects statistics 

on all TCP events. We chose to use tcpdump to measure the experimental flows instead 

of web 100 because of difficulties in getting web 100 to work with the XCP hosts. The 

web 1 00 software was still used, though, because it provided an implementation of HS

TCP. 

The two sender hosts and the router were connected to a 10/100 Mbit switch, all 

communicating at 100 Mbps. A crossover cable connected the router and bridge. The 

bridge and the two receiver hosts were connected to a 101100 Mbit switch. The paths 

into and out of the bridge were set to 10 Mbps to create a bottleneck, allowing congestion 

to build up at the interface at the router leading to the bridge. It was important to allow 

congestion to occur to elicit the congestion control behavior of the various protocols. 

The primary differences between the different protocols being tested are the congestion 

control algorithms. 
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The router with Linux kernel version 2.6.6 was set up to act as a router by turning on IP 

forwarding. In Linux, setting the sysctl variable net.ipv4.ip _forward to 1 does this. The 

default queue in Linux is a drop-tail, or FIFO, queue. This was kept as the queue as it is 

the most common type of router queue seen in the Internet. When the XCP tests were 

run, the XCP router kernel modules were loaded. 

The bridge was required to pass on the XCP packets without installing a second XCP 

router, as all routers along an XCP path must be XCP-enabled. Bridges forward packets 

at the data link layer, bypassing IP. Also, the bridge served as the bottleneck to build 

congestion along the path by setting both its interfaces to 10 Mbps with the Linux utility 

mii-tool. The network emulation tool, netem, is built into the Linux kernel, and it was 

used to emulate various network conditions for the tests [Netem06]. Netem can inject 

delay so as to emulate realistic network paths such as the Internet or satellites. It can also 

inject loss to emulate realistic levels of loss such as are seen in the Internet or on wireless 

links. 

Many tests were run on the network to determine the optimal settings for the high-speed 

TCP tests. The traffic generator and measurement tool, iperf, was used to run these 

preliminary tests. The bandwidth delay product of the network can be used to determine 

the most appropriate window size to use when running tests. With a 10 Mbps network 

(the bandwidth at the bottleneck) and a 102 msecs RTT (measured with ping after netem 

injected 100 msecs of delay at the bridge), the following is the bandwidth delay product 

of the network: 
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BDP =Bandwidth x RTT = 10 Mbps/8 bits* .102 s = 127,500 bytes 

A 128,000 byte window was used as a starting point for experimenting with window 

sizes to find the size that would give optimal performance. A number of tests were done 

with various window sizes, and the best performance was achieved with a 128,000 byte 

window at the sender. The receiver's window size was set to 16 MB so that it would not 

be a limiting factor. 

Experiments were to be run with a 14 msecs RTT (measured with ping after netem 

injected 10 msecs of delay at the bridge) on the same network, giving the following 

bandwidth delay product: 

10 Mbps/8 bits* .014 s = 17,500 bytes 

Window sizes were experimented with at 14 msecs delay, starting at 17,500 bytes. A 

32,000 byte window was found to give optimal performance. Therefore, tests were run 

with both 32,000 byte windows and 128,000 bytes windows. 

The maximum bandwidth utilization was reached by using five streams at the same time. 

The tool to generate traffic and measure throughput for XCP, a modified version of ttcp, 

is unable to generate multiple streams, though, so the tests were limited to a single stream 

at a time. 
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6.3 Description of Experiments 

Tests were designed according to the recommendations of the TMRG and Wei. 

[Floyd05B, Wei05]. The goal was to measure performance of the various high-speed 

TCPs in a high-speed network context with network conditions as in the current Internet. 

Performance was measured in terms of average throughput, packet loss, and delay. As 

many high-speed TCPs were measured as possible against XCP. The set of protocols to 

be studied created some limitations. For example, only single flows could be measured 

because the tool for generating traffic for XCP only supported single streams. Also, it 

was problematic to include background traffic because only XCP flows could go through 

the XCP router. 

Traffic was generated with a modified version of ttcp. Ttcp creates a flow of socket

based TCP traffic and measures·throughput. It reports goodput, successfully transmitted 

data. Also, it measures user data, not including headers. It does memory to memory data 

transfers. The modified version supplied with XCP for Linux had an XCP mode and 

regular TCP mode. 

Ttcp was started on the receiver host as a sink with a 16 MB window. Then ttcp was 

started on the sender side as a source to connect to the receiver machine with a time 

length of 60s and initial window size of 128,000 bytes. Another set of tests was run with 

initial window size of 32,000 bytes. Tests were run for 60s to allow time for TCP to 

achieve steady state. A longer time would have been preferable, but memory limits on 
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the test machines appeared to cause problems with longer tests at low delay. In fact, tests 

run with 14 msecs delay would not run for longer than 55s. Nonetheless, tests run for 

five minutes at high delay did not seem to have very different results from the 60s tests. 

Re~listic network conditions were emulated with netem at the bridge. Tests were run 

with added 1 0 msecs, 100 msecs, and 500 msecs delay. This was split between the two 

interfaces on the bridge; so 10 msecs was added as 5 msecs on interface ethO and 5 msecs 

on interface ethl. With the delay added, ping was run on sender1 to receiver 1, and 

RTTs for 10 msecs added delay averaged an actual total14 msecs, 100 msecs averaged 

102 msecs, and 500 msecs averaged 502 msecs. Loss was also injected with netem at the 

bridge. Tests were run with 0.001%, 0.1% and 1% loss combined with 100 msecs delay. 

Each test was run five times, and results were averaged. 

All tests were repeated for each high-speed transport protocol. At the end of a set of tests 

with one protocol, the host computer was rebooted into the kernel image compiled with 

next protocol patch. For the XCP tests, the XCP kernel router module was also loaded, 

and an XCP qdisc was added to the network interface connected to the bridge with the 

following command: 

tc qdisc add dev eth1 root xcp capacity 1 OMbit limit 500 
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6.4 Results 

While the tests were being run, the packet capture tool tcpdump was run to monitor the 

flows. The packet capture library used by tcpdump, libpcap, drops packets at high 

speeds, so a modified version of libpcap was used which supports MMAP mode in the 

Linux kernel. Average throughput was reported by ttcp. The packet capture dump files 

were analyzed by the tcptrace tool [Tcptrace06] . 

6.4.1 Throughput 

Table 3 shows the average throughput reported by ttcp, averaged over five runs of each 

test. Figures 5 and 6 show the average throughput for 128,000 byte windows with the 

different values of loss and delay emulated by netem. The average throughput is actually 

average goodput (successfully qelivered packets), because that is what ttcp reports. 

TCP BIC HS-TCP H-TCP XCP 
Delay 

14 msec 3523.132 2405.468 3528.976 3624.134 3377.954 
102 msec 1905.032 1593.166 2058.978 1129.838 2652.072 
502 msec 923.946 298.452 332.152 146.81 342.59 

Loss 

0 1905.032 1593.166 2058.978 1129.838 2652.072 
0.001 2081.214 1548.918 2061.308 1091.904 2342.266 
0.100 1473.22 1403.12 1508.45 1134.52 2447.02 
1.000 966.63 1012.644 1031.442 882.384 2673.926 

Table 3: Average throughput reported by ttcp. Units are Kbit/sec with a 128,000 byte 
window. 
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Figure 5: Average throughput with different levels of loss for a 128,000 byte window. 

Results show XCP outperforming the other protocols in most instances. NewReno TCP 

also does well. The performance ofNewReno TCP degrades as delay or loss increases, 

as is expected. That is why it has problems on high BDP networks. XCP performs well 

with increasing levels of loss, but is affected by increasing delay. 
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Figure 6: Average throughput with different levels of delay for a 128,000 byte window. 

The effect of loss can be seen in Figure 5. XCP is almost unaffected by increasing levels 

of loss. Loss affects NewReno TCP and High-Speed TCP the greatest of the protocols. 

The performance ofBIC TCP and H-TCP does not degrade as significantly as NewReno 

TCP and High-Speed TCP. 

The effect of delay can be seen in Figure 6. Increased delay affects the performance of 

all of the protocols. H-TCP is most greatly affected by increasing delay. XCP is 
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surprisingly affected negatively by increased delay. XCP is supposed to perform well on 

long delay networks. 

An XCP flow with 10 msecs injected delay and no injected loss is shown in the time 

sequence graph in Figure 7. The time sequence graph shows all major events over the 

lifetime of the flow. The red Rs mark retransmissions. The green 3s are triple duplicate 

ACKs, which typically trigger TCP fast retransmit. These are difficult to differentiate in 

the graph since they overlap. They overlap since retransmissions happen as the duplicate 

ACKs are received. Each of these events indicates packet loss. There are few packet 

losses, especially once convergence occurs, as would be expected with an XCP flow. 
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Figure 7: XCP flow with few retransmissions. 
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A New Reno TCP flow with 10 msecs injected delay and no injected loss is shown in the 

time sequence graph in Figure 8. Many retransmissions are seen at the beginning of the 

flow but then taper off once steady state is reached. 

SOQ cnoc u ltlcr 32. 68 . .2 .J2769 -- '32. 68 .J 0 .2.50 it tmc scquc cc 9 ap J 
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Figure 8: TCP flow with many retransmissions. 

-58-

07 .25 .40 

time 



The outstanding data graph of the same TCP flow is seen in Figure 9. An outstanding 

data graph provides an estimate of cwnd over time (the red lines). It shows the typical 

TCP behavior of entering slow start after packet loss. The window size increases 

exponentially until packet loss causes the window size to drop back to one MSS. Steady 

state is reached about halfway through the flow and congestion begins to be avoided. 
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Figure 9: TCP flow avoiding congestion. 
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The behavior ofBIC TCP can be seen in the outstanding data graph in Figure 10. It is 

from a flow with 100 msecs injected delay, which shows the behavior of the protocol 

more clearly. The first half of the flow is the additive increase phase, and the second half 

is the binary search phase. The binary search phase appears to drop the congestion 

window fairly low. BIC is intended to be TCP friendly and RTT fair, so it is supposed to 

be less aggressive. It reaches equilibrium quickly then backs off which also helps it 

avoid self-inflicted losses. 
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Figure 10: BIC TCP flow. 
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The behavior ofHS-TCP can be seen in the outstanding data graph of Figure 11. It is a 

flow with 100 msecs injected delay and zero injected losses. The greater increase factor 

and lower decrease factor relative to NewReno TCP can be seen throughout the flow. 
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Figure 11: HS-TCP flow. 
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The behavior ofH-TCP can be seen in the outstanding data graph of Figure 12. 

Compared to the NewReno TCP tests, the increase factor appears to be greater when the 

window size reaches about 28,000 bytes. This corresponds to the H-TCP specification. 

The decrease factor does not appear to be less severe than NewReno TCP, though. 

0 tstil d ing D'Jtil (by1CSj 132., 611. :1 .2.32768 - -> 32. 168.30.2.5()0 1 ro tsta 0 1 g atil ) 

tmc 

Figure 12: H-TCP flow. 
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6.4.2 Packet Loss and Delay 

Figure 13 shows the measured delay from packet traces with 100 msecs of injected delay 

and 0%, 0.001%, O.lo/o, and 1% levels of injected loss. XCP and H-TCP have the lowest 

delay. They are also not as affected by increasing loss. New Reno TCP and HS-TCP 

have the highest delay. Delay drops off for NewReno TCP, BIC, and HS-TCP as loss 

mcreases. 
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Figure 13: Delay with injected loss. 
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Figure 14 shows measured levels of packet loss from packet traces with varying levels of 

injected delay. Packet loss does not increase significantly for New Reno TCP, High-

Speed TCP, and BIC TCP with increasing delay. H-TCP and XCP both have increasing 

packet loss with increased delay. It appears the increased delay injected with netem 

throws offXCP's control laws. This explains the decreased average throughput for XCP 

as delay increases seen in Figure 6. One possible explanation for this behavior could be 

bursty sending of data causing an incorrect estimation of RTT by XCP. Bursts of data 

would cause a queue buildup at the XCP router, which would increase delay. This would 

throw off RTI estimations, and the error would increase as the amount of delay 

increases. The seesaw cwnd seen in Figure 15 shows burstiness, supporting this theory. 
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Figure 14: Packet loss with injected delay. 
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Figure 15: XCP flow with burstiness. 
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6.4.3 XCP Sensitivity to Misconfiguration 

Tests were originally run with the capacity of the XCP router set to 10 Mbit, the line 

speed of the bottleneck seen in Figure 4. Results were as seen in Figures 16 and 17. 

XCP is clearly outperformed by all of the other protocols. 
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Figure 16: Average throughput with misconfigured XCP router with different levels of 
loss for a 128,000 byte window. 
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Figure 17: Average throughput with misconfigured XCP router with different delay 
values for a 128,000 byte window. 
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The packet traces of the tests were analyzed to determine what was happening during the 

XCP tests to cause such poor performance. Figure 18 shows a slice of a time sequence 

graph of a representative XCP flow with 10 msecs injected delay and zero injected 

losses. It shows sequence numbers on the Y -axis and time on the X -axis. All significant 

events over the course of the connection are shown in the graph. 
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Figure 18: XCP flow with many retransmissions. 
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The red Rs in the graph show retransmissions. The multiple retransmissions continue 

over the entire lifetime of the flow. Figure 19 shows the outstanding data graph for the 

same connection over the entire lifetime of the flow. This graph gives an estimate of the 

congestion window over the course of the flow. The congestion window grows to almost 

200000 bytes and then shrinks back down to zero continually. 
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Figure 19: XCP flow with oscillating congestion window. 
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XCP's control laws are clearly being thrown off. Investigation revealed that the XCP 

router was misconfigured. Zhang encountered the same issue in his tests with XCP for 

Linux [Zhang05]. The capacity setting in the XCP router must account for protocol 

overhead. It should be set to lower than the line speed of the network. The capacity of 

the XCP router was lowered, and the results seen in Figures 5 and 6 were achieved. 

Overestimating the capacity of the network causes XCP to assign more bandwidth to 

flows than is actually available. Then the sender increases cwnd by more than the 

network can handle, causing packet drops, as was seen in Figure 18. Figure 20 shows the 

outstanding data graph of an XCP flow with 10 msecs injected delay after the 

configuration problem was fixed. The burstiness in the flow is markedly reduced. 

Outsta <l tfl9 Data lbytos: 3:! . 168 . .2 .J27SO - - ' 92. 68.J0.2.5U0 1 io utsta <I t g data' 

60000 

40000 

20000 

o ~-~------~--------~--------~--------~--------~--
6.J4 . 0 0 6 .J 4 .20 06 .J 4 .JO 06 .J 4 .40 o6 .J 4 .SO 06 .J5 .00 

tame 

Figure 20: XCP flow with less burstiness. 
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6.4.4 Effect of Smaller Windows 

32,000 byte windows were found to give good performance at 14 msecs delay, so all 

tests were run with 32,000 byte windows as well as 128,000 windows. 32,000 byte 

windows were sub-optimal for 102 and 502 msecs delay. None of the protocols achieve 

as high performance with smaller windows, but XCP seems to be affected the worst. 

Figure 21 shows a test with varying levels of injected delay with a 32,000 byte window. 

Figure 22 shows a test with 100 msecs injected delay and varying levels of loss with a 

32,000 byte window. XCP cannot reach 700 Kbit/sec throughput. XCP cannot grab 

spare bandwidth with the smaller windows. 
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Figure 21: Average throughput with varying levels of delay with 32,000 byte windows. 
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Figure 22: Average throughput with varying levels of loss with 32,000 byte windows. 

6.5 Comparison to Other Studies 

Rhee [Rhee06] studied the effect of background traffic on the various high-speed 

transport protocols. They tested flows without background traffic and with background 

traffic. Without background traffic, as in our experiments, with increasing amounts of 

delay, utilization was the best for HS-TCP, followed by NewReno TCP, then BIC, and 

then H-TCP. This is the same as our results seen in Figures 5 and 6. With background 

traffic, their results were different. Utilization was best for BI C, followed next by HS-

TCP, then NewReno TCP and H-TCP. BIC, HS-TCP, and NewReno TCP do much 
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better at higher delays with background traffic, as well. This highlights the impact 

background traffic has on these types of tests. The control laws that govern the protocols 

work differently in the presence of background traffic. Proper models of background 

traffic are needed so that they can be integrated into protocol evaluations [Rhee06]. 

Cottrell was able to elicit performance improvements over NewReno TCP from some of 

the high-speed transport protocols tested in our study. Their results for the closest 

window size to what we used, 256 KB, were as follows: BIC TCP and NewReno TCP 

had the best throughput, followed by H-TCP, then HS-TCP. This is the same as the trend 

seen in our Figures 5 and 6, except BIC did better in their tests than ours and HS-TCP 

did worse than in ours. They also found the performance of the protocols showed more 

of a difference at longer distances, which is backed up by our tests with increasing delay. 

The parameters of their tests were fairly different from ours, though, so it is difficult to 

make a good comparison. Also: they used a production network, which is a very 

different context than the test bed we used. This points to the fact that protocols can 

behave very differently in different contexts and with different configurations. This 

underscores that tests must be done in simulation, test beds, and in production networks 

before protocols can be accepted [Cottrell03]. 

The Hamilton Institute study found performance improvements over NewReno TCP with 

some of the high-speed transport protocols, as well. Their results are almost the opposite 

of ours seen in Figures 5 and 6. BIC TCP had the highest throughput, followed by 

H-TCP, HS-TCP, and then NewReno TCP. Their tests were with two competing flows, 
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while our tests were with single flows. Also, they were measuring throughput as a 

function of queue size, while we were testing against loss rates and delay [Leith05]. 

Zhang and Henderson found their XCP for Linux gave good utilization, low packet 

drops, and small queues. It outperformed TCP, as it did in our tests as seen in Figures 5 

and 6, under controlled conditions. When environmental factors were varied, such as 

TCPIIP configuration, link contention, and non-congestion losses, performance dropped 

significantly. For example, if buffers are limited by memory shortage, the XCP routers 

can increase cwnd. Then when the buffers increase, the sender may be able to send more 

than the network can actually handle. This is a problem with the XCP control laws. 

They discovered the same issue revealed in our tests, as seen in our Figures 16 and 17. If 

the XCP router is even slightly misconfigured, such as having the capacity set too high, it 

throws off the XCP control laws, and XCP performs poorly. They went on to test 

situations where the capacity of the network could vary such as in links with contention, 

showing it can be very difficult to correctly estimate the capacity of a network. They 

also ran tests with small window size (64 KB) and large window size (640 KB) and 

found XCP had much worse utilization with the smaller windows, confirming what we 

saw in Figures 21 and 22 [Zhang05]. 
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Chapter 7 

CONCLUSION 

A set of experiments was run to evaluate the performance ofXCP, BIC TCP, HS-TCP, 

and H-TCP against NewReno TCP in a network test bed. Network environmental factors 

such as delay and loss were emulated to create realistic network scenarios. Care was 

taken to keep network stacks as uniform as possible between the tests of the different 

protocols. All tests were run on Linux kemel2.4. The TCP/IP stack was tuned for high

speed network performance. Traffic was generated by a modified version of the ttcp 

, tool. Tests were run with single stream 32,000 byte and 128,000 byte windows for 60s 

each. 

XCP performed the best of all of the high-speed protocols in a controlled environment. 

It gave the highest average throughput in most instances when it was configured 

correctly and proper window sizes were used. Nonetheless, a simple router 

misconfiguration or small windows made XCP perform much worse than the other 

protocols. A bursty sender also affected XCP negatively. All of the results confirm what 

other researchers have seen [Cottrell03, Rhee06, Zhang05]. 

None of the protocols beside XCP performed better than New Reno TCP. This highlights 

the difficulty in designing, implementing, and deploying a transport protocol. The 

-75-



congestion control algorithms ofNewReno TCP have been developed and tested in the 

real Internet for more than twenty years between its different versions. It has been 

proven to perform well and has improved over the years. It is stable and has prevented 

congestion collapse in the Internet. NewReno TCP does have performance problems in 

high-speed networks. It is overly conservative, inefficient, RTT unfair, and cannot 

recognize loss not due to congestion. Even so, newer high-speed transport protocols 

have a significant challenge to unseat TCP. 

To design a new transport protocol, a number of sometimes competing factors must be 

considered. The measures outlined by the TMRG in their draft specification point to the 

laundry list of important considerations. The protocol must give acceptable average 

throughput, low delay, and low packet loss. It must be stable, fair, and TCP-friendly. 

The protocol should converge, be robust, and be deployable. It must also do this in many 

different environments, including challenging ones such as satellite or wireless networks. 

Given the design challenge involved in designing a transport protocol, it is amazing that 

TCP has performed as well as it has. 

All of the high-speed transport protocols that were tested are experimental 

implementations. Work to improve them continues for all. All of the protocols except 

for XCP have newer versions for Linux kemel2.6. In fact, as ofLinux 2.6.13 each of the 

protocols beside XCP is included as part of the Linux kernel so congestion control 

algorithms can be swapped out at runtime. The paper by Rhee used the 2.6.13 version of 

the congestion control algorithms [Rhee06]. 
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Work continues on XCP as well. The XCP group at the Information Sciences Institute 

(lSI) at USC is working on the XCP specificatio~ and is developing a reference 

implementation for FreeBSD. Many changes have been made to the specification since 

XCP for Linux was developed. The lSI XCP FreeBSD implementation should be an 

improvement over XCP for Linux. For XCP to be properly evaluated against the other 

high-speed transport protocols, though, there will have to be an implementation for 

Linux. There are challenges to implementing the protocol for Linux, though, which 

Zhang and Henderson found when they implemented XCP for Linux. These challenges 

include a lack of floating point arithmetic in the Linux kernel. 

None of the high-speed transport protocols performed significantly worse than NewReno 

TCP. This shows they are all, at least, certainly contenders against NewReno TCP. 

They have been shown to exhibit other behaviors that are preferable to NewReno TCP 

such as increased RTf fairness, better convergence, and better stability [Cottre1103, 

Leith05, Rhee06]. As bugs are worked out and work on their control laws and design 

continues, significant improvements over NewReno TCP may still be seen. Performance 

evaluations should be continued. Any protocol that is considered as a replacement for 

New Reno TCP must be thoroughly evaluated in many different scenarios before it could 

be accepted. As many have said before, simulations., test bed experiments, and real 

production network tests must be performed. Correct and thorough TCP models must be 

tested, taking into consideration both present and future environments 

[Floyd03, Allman99B]. It is a significant challenge to design., implemen~ and prove a 

new transport protocol. 
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7.1 XCP Deployment Issues 

All of the transport protocols beside XCP were almost trivial to deploy. A patch was 

applied to the Linux kernel, and the kernel was rebuilt. Then when that transport 

protocol was to be run, the computer was rebooted to that kernel image. This was only 

necessary on the sending host. Typical TCP applications were run without any 

modification. 

XCP, on the other hand, required changes to the sender and receiver hosts, the router, and 

required a special application that implemented the XCP socket options. If more routers 

had been added to the network path, they would have required the XCP module, as well. 

The network emulation machine had to be set up as a bridge to pass on packets so that it 

would not require the XCP router module. Getting the router modules compiled, loaded, 

and working was a non-trivial task. Configuring the router module to work correctly in 

the test bed environment also required some effort and was prone to misconfiguration. 

The extra level of effort required to set up XCP in a simple test bed portends poorly for 

setting up XCP correctly in a real network environment. In Chapter 3, Katabi and Falk's 

ideas for XCP deployment were discussed. The level of effort to deploy XCP even in 

one network, let alone in the entire Internet, should not be minimized. Significant 

improvements in performance must be seen to justify the additional effort. XCP has 

quite a way to go before this will be seen. 
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7.2 Future Work 

Additional tests that could be run that would give more useful data would be tests with 

background traffic. Rhee' s experiments with background traffic show that background 

traffic significantly affects protocol behavior [Rhee06]. It would be useful to have 

models for background traffic to use in such experiments. Also, other metrics can be 

collected which fully describe protocol behavior, such as fairness, stability, and 

convergence. 

Better equipment, more memory, faster CPUs, and the like, would probably have an 

impact on the results of these tests. It would be interesting to rerun the tests on an 

improved test bed and compare results. Running the experiments on a gigabit network 

would provide an interesting comparison. 

All of the protocols beside XCP are included in Linux kernel 2.6. It would be interesting 

to rerun the tests with Linux kernel 2.6 and compare the results. If XCP could be 

implemented for Linux kernel 2.6, it could be included in these tests and results 

compared. 

Others are working on using the ideas ofXCP, but in a more realistic way. Stoica has 

proposed an alternative to XCP in their paper "One More Bit Is Enough." They propose 

a much simpler protocol called Variable-structure congestion Control Protocol (VCP) 
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that uses the existing ECN bits for congestion feedback. They have been able to achieve 

similar performance improvements to XCP. This would be significantly easier to 

implement and deploy than XCP [Stoica05]. 

There is continuing work on other high-speed transport protocols, as well. Performance 

evaluations not only test the value of current proposals but also help advance the work of 

developing new protocols in general as better understandings are formed of what is 

. needed in high-speed transport protocols. 
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