
UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

2011

Physiology and Biochemistry of the Tropical
Seagrass Thalassia testudinum in Response to
Hypersalinity Stress and Labyrinthula sp. Infection
Stacey Marie Trevathan-Tackett
University of North Florida

This Master's Thesis is brought to you for free and open access by the
Student Scholarship at UNF Digital Commons. It has been accepted for
inclusion in UNF Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more information, please
contact Digital Projects.
© 2011 All Rights Reserved

Suggested Citation
Trevathan-Tackett, Stacey Marie, "Physiology and Biochemistry of the Tropical Seagrass Thalassia testudinum in Response to
Hypersalinity Stress and Labyrinthula sp. Infection" (2011). UNF Graduate Theses and Dissertations. 391.
https://digitalcommons.unf.edu/etd/391

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNF Digital Commons

https://core.ac.uk/display/71998973?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu
https://digitalcommons.unf.edu
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu


 

 

Physiology and Biochemistry of the Tropical Seagrass Thalassia testudinum in Response 

to Hypersalinity Stress and Labyrinthula sp. Infection 

 by 

Stacey Marie Trevathan-Tackett 

 

 

 

 

 

A thesis submitted to the Department of Biology in partial fulfillment of the requirements 

for the degree of 

Master of Science in Biology 

University of North Florida 

College of Arts and Sciences 

December, 2011 

Unpublished Work © 2011 Stacey Marie Trevathan-Tackett 



Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted



iii 
 

Acknowledgements 

 I first would like to acknowledge NOAA and the Nancy Foster Scholarship for 
funding both school and living expenses for the majority of my Master‟s career allowing 
me to focus all of my time and efforts toward research. Also, I would like to thank the 
Dodson Grant, the Coastal Biology program and the Graduate School at UNF for their 
continued financial support and resources during graduate school. 

 I want to thank my main advisor, Dr. Cliff Ross, and my committee members, Dr. 
Daniel Moon and Dr. Amy Lane, for their guidance as well as for challenging me to be a 
better scientist over the past three years. Thanks to Amy Keagy, the B-Team Nathan 
Lauer and Kyle Loucks, and all my friends and fellow graduate students for not only 
helping with research but also making the past two and a half years an incredibly 
enjoyable and memorable time. 

 Lastly, I am grateful for my husband, Randy Tackett, and my family who have 
given me unconditional love and support during all the milestones and challenges in 
pursuit of my goals and dreams.  



iv 
 

Table of Contents 

Title Page          i 

Certificate of Approval        ii 

Acknowledgements         iii 

Table of Contents         iv 

List of Tables and Figures        v 

General Abstract         viii 

Chapter 1: General Introduction       9 

Chapter 2: Effects of elevated salinity on the health of the subtropical   23 

seagrass Thalassia testudinum and its susceptibility to wasting  

disease  

Chapter 3: Anti-labyrinthulid compounds produced by the tropical    55 

seagrass Thalassia testudinum  

Chapter 4: General Conclusions and Outlook     85 

Literature Cited         88 

Curriculum Vitae         96  



v 
 

List of Tables and Figures 

Pg. 14 Figure 1.1 Labyrinthula sp., the causative pathogen of wasting disease. 

Pg. 15 Figure 1.2 Summary of Labyrinthulomycota characteristics. 

Pg. 16 Figure 1.3 Internal cell structure of Labyrinthula highlighting the bothrosome 

organelle that is responsible for the production of the ectoplasmic network. 

Pg. 16 Figure 1.4 Thalassia testudinum (turtlegrass) blade exhibiting symptoms of 

wasting disease. 

Pg. 20 Figure 1Error! No text of specified style in document..5 The biosynthesis pathway 

of plant phenolics originating with phenylalanine in the shikimic 

acid/phenylpropanoid pathways. 

Pg. 21 Figure 1.6 Four phenolic acids upregulated in Thalassia testudinum leaves during 

Labyrinthula sp. infection. 

Pg. 35 Figure 2.1 Lesion area of Thalassia testudinum blades infected with Labyrinthula 

sp. following a 1- week incubation period under ambient (30) and elevated (45) 

salinities. 

Pg. 37 Table 2.1 Chlorophyll a fluorescence measurements of Thalassia testudinum 

under salinity (30 & 45) and Labyrinthula sp. infection treatments. 

Pg. 38 Figure 2.2 Rapid light curves of Thalassia testudinum blades under elevated 

salinity and Labyrinthula sp. infection.   



vi 
 

Pg. 39 Figure 2.3 Comparison between Thalassia testudinum maximum and effective 

quantum yields. 

Pg. 40 Figure 2.4 Heat dissipation (i.e., non-photosynthetic quenching, NPQ) of 

photosystem II of Thalassia testudinum under salinity and infection treatments. 

Pg. 41 Figure 2.5 Dark-adapted respiration rates of Thalassia testudinum under ambient 

(30) and elevated (45) salinity and Labyrinthula sp. infection. 

Pg. 42 Figure 2.6 Total chlorophyll (a + b) content of Thalassia testudinum blades under 

ambient (30) and elevated (45) salinity and Labyrinthula sp. infection. 

Pg. 44 Figure 2.7 Hypersalinity stress induces ROS production in Thalassia testudinum 

blade tissue. 

Pg. 45 Figure 2.8 In planta hydrogen peroxide concentrations in Thalassia testudinum 

blades following a 2-week incubation period at salinities of 30 and 45. 

Pg. 46 Figure 2.9 Effect of exogenous hydrogen peroxide (0- 100 μM) on Labyrinthula 

sp. colony growth. 

Pg. 66 Figure 3.1 Effect of phenolic acid concentrations on Labyrinthula colony growth 

for p-coumaric acid, p-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid and 

vanillin. 

Pg. 67 Figure 3.2 Comparison of the phenolic acid IC50 values reported in this study 

(red) with the in planta concentrations reported by Steele et al. (2005). 



vii 
 

Pg. 68 Table 3.1 The interaction index used to quantify the degree of synergism on 

Labyrinthula sp. colony growth in the presence of two of phenolic acids. 

Pg. 69 Figure 3.3 Comparison of the combined dose-response curve of 3,4-

dihydroxybenzoic acid and p-hydroxybenzoic acid with the theoretical additive 

curve. 

Pg. 70 Figure 3.4 Comparison of the combined dose-response curve of 3,4-

dihydroxybenzoic acid and p-coumaric acid with the theoretical additive curve. 

Pg. 71 Figure 3.5 Comparison of the combined dose-response curve of p-coumaric acid 

and p-hydroxybenzoic acid with the theoretical additive curve. 

Pg. 72 Figure 3.6 Autofluorescence of phenolic compounds in Thalassia testudinum leaf 

tissue 5 days post-infection with Labyrinthula.  

Pg. 75 Figure 3.7 Percent inhibition of Labyrinthula colony growth by Thalassia 

testudinum compounds isolated from Fraction W. 

Pg. 76 Figure 3.8 Percent inhibition of Labyrinthula colony growth by Thalassia 

testudinum compounds isolated from Fraction B. 

Pg. 77 Figure 3.9 Representative RP-HPLC chromatogram of fraction W2. 

Pg. 78 Figure 3.10 Representative RP-HPLC chromatogram of fraction B4. 

Pg. 79 Figure 3.11 Representative RP-HPLC chromatogram of fraction B5. 

 



viii 
 

General Abstract 

Seagrass meadows are essential to coastal ecosystems and have experienced 

declines in abundance due to a series of environmental stressors including elevated 

salinity and incidence of disease caused by the pathogen Labyrinthula sp. This thesis 

evaluated the dynamics between T. testudinum and Labyrinthula concerning the impacts 

of short term elevated salinity stress on the early stages of infection in Thalassia 

testudinum (Chapter 2) as well as the presence of anti-labyrinthulid secondary 

metabolites produced by the tropical seagrass (Chapter 3). The results showed that short 

term exposure to hypersalinity alters some cellular processes but does not necessarily 

lead to an immediate increase in wasting disease susceptibility. Specifically, the 

occurrence of disease was significantly lower in the hypersalinity treatments possibly due 

to a direct osmotic shock to Labyrinthula or indirectly due to the increase in in vivo H2O2 

concentrations that may have inhibited Labyrinthula growth. In addition, it was shown 

that 4 phenolic acids commonly found in turtlegrass leaf tissue were able to inhibit 

Labyrinthula growth in culture. Using a bioassay-guided fractionation technique, several 

purified fractions of T. testudinum leaf tissue showed anti-labyrinthulid activity, however 

the detailed characterization of the unknown compounds was inconclusive. The results 

presented in this thesis highlight the halotolerant characteristics of the seagrass T. 

testudinum as well as suggest that T. testudinum has the capability of defending itself 

against Labyrinthula infection using secondary metabolites.
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1 

Introduction 

1.1. Seagrasses  

Seagrasses are marine vascular, flowering plants that compromise only 0.001% of 

all angiosperms.  Their polyphyletic origins were first recorded in the mid- to late 

Cretaceous when they diverged first from terrestrial plants and subsequently from either 

xerophytic plants or freshwater hydrophytes (Kato et al. 2003) while dispersal and 

diversification began during the mid- to late Eocene.  The distribution and diversity of 

seagrasses today are best explained by both the vicariance hypothesis and the center-of-

origin concept which use continental drift and dispersal from a central population, 

respectively, as mechanisms of isolation and speciation (Dawes 1998).  These concepts 

also account for the presence of sister species in the Caribbean and Indo-West Pacific, 

namely, Thalassia testudinum and T. hemprichii, Syringodium filiforme and S. 

isoetifolium, and Halodule wrightii and H. uninervis.  Since all seagrasses have similar 

physiological adaptations to cope with the pressures of living in fully submerged marine 

habitats, classification is based on vegetative and reproductive characteristics which place 

the existing 60 species into 12 genera and 4 families. 

Globally, seagrass meadows represent a fragile yet vital component of many 

coastal ecosystems.  Aside from serving as a refuge and nursery for a variety of 

organisms, they are a source of organic matter for associated reef habitats and 
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commercial fisheries.  Their above-ground blades reduce turbidity by acting as a 

sediment catch while their extensive root and rhizome system stabilizes the sediments 

and thus reduces coastal erosion.  Additionally, seagrass meadows have received 

increased attention as powerful tools in climate change strategies (Laffoley et al. 2009) 

due to their ability to sequester and store carbon for millennia (Mateo et al. 1997).  

Living in a submerged marine habitat requires seagrasses to overcome several 

challenges in order to survive and reproduce successfully. As a result, seagrasses have 

become adapted to acquiring carbon dioxide and nutrients in the water column, water-

mediated reproduction, exponential light attenuation with increasing depth as well as 

maintaining osmotic balance in a saline environment (Dawes 1998). Seagrass leaves are 

responsible for the uptake of carbon dioxide from the water column. Aside from CO2 

assimilation, T. testudinum has also been shown to efficiently utilize HCO3
- (Durako 

1993) via a carbonic anhydrase-mediated process. Sexual reproduction among marine 

angiosperms is an annual event and is often temperature dependent (February-May and 

20-26°C for Florida species; Phillips 1960; McMillan 1982).  With limited conditions 

under which to sexually reproduce, asexual reproduction by vegetative growth of the 

rhizome is thought to be the main method of seagrass expansion. This type of growth also 

allows for resources like soluble carbon and proteins to be shared between ramets 

(individual short shoots) in a genet (an entire rhizoidal plant) which is particularly useful 

in stressful environments (see Dawes 2004). 

Seagrass photosynthesis and production depend on the amount and quality of light 

reaching the submerged plants.   Depending on the species and location of the seagrass, 

their minimal light requirement can range from 2-37% of surface irradiance (Lee et al. 
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2007) with Florida Bay populations of T. testudinum requiring at least 22% surface 

irradiance (Fourqurean and Zieman 1991). Being able to maintain a positive carbon 

budget (balance between photosynthesis and respiration) is essential and has a strong 

influence on seagrass depth distribution and plant morphology (Lee et al. 2007; Ralph et 

al. 2007).  

Lastly, maintaining an internal hypertonic environment in a marine setting is 

possible for seagrasses with a few physiological and metabolic adjustments and 

adaptations. Active osmoregulation via ion pumps occurs with the assistance of numerous 

mitochondria and an increase in cell membrane surface area of the epidermal cells 

(Dawes 1998). Salt tolerance is also aided by the vacuolar sequestration of ions (Na+, K+, 

Cl-; Touchette 2007). Additionally, the soluble amino acid proline is particularly 

important as both an organic osmolyte as well as a scavenger of reactive oxygen species 

which are often byproducts of excessive cellular respiration during osmoregulation 

(Touchette 2007). 

The coastal ecosystems in which seagrasses inhabit are dynamic and undergo 

daily fluctuations in environmental parameters from both natural and anthropogenic 

causes. While all marine angiosperms have developed physiological and biochemical 

adjustments, as mentioned above, to cope with living in a fluctuating habitat, each species 

has its own optimum range in which environmental factors, such as salinity, light, and 

temperature, need to lie.  The ability of a species to tolerate and recover from conditions 

beyond their upper and lower thresholds is influenced by the rate, either gradual or pulse, 

and the length, either acute or chronic, of the stressing episode (Ralph 1998; Koch et al. 

2007a).  Simultaneous variation of more than one parameter outside the tolerable range 
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has been shown to produce an additive stress response in seagrasses (Ralph 1999; Koch 

& Erskine 2001; Eldridge et al. 2004). 

 

1.2. Wasting Disease and Labyrinthula sp. 

One such circumstance involving multiple concurrent environmental stressors 

(high salinity, light reduction, sulfide toxicity, high population density and disease) has 

been thought to account for the 4000 hectare 1987 Thalassia testudinum (Banks ex 

König; turtlegrass) die-off in Florida Bay as well as subsequent smaller, patchy die-offs 

in Florida Bay up until 1989 (Roblee et al. 1991).  Other seagrass species have also been 

subjected to both larger (Zostera marina in the North Atlantic; Short et al. 1987; 

Muehlstein et al. 1991) and smaller (Zostera sp., New Zealand; Armiger 1964) die-offs. 

Each of these rapidly evolving events led to a drastic decline in ecosystem functionality.  

For example, the Thalassia testudinum die-off brought about a declined shrimp harvest 

(Fourqurean and Robblee, 1999). The Zostera marina die-off led to a reduction in the 

waterfowl populations, a loss in scallop industry and a change in the benthic landscape 

which in some cases was unfavorable for recolonization (Addy and Alyward 1944; 

Thayer et al. 1984; Short et al. 1987).  

In part, these large die-offs, later termed wasting disease outbreaks, was thought 

to be caused by an opportunistic marine protist, Labyrinthula sp. (Figure 1.1).  

Taxonomically misplaced for years due to both fungal and slime mold characteristics, 

recent phylogenetic analysis has placed Labyrinthula in the Phylum Labyrinthulomycota 

under the Stramenopila lineage (Tsui 2009).  Having lost the photosynthetic ability of 

their ancestors (Fig. 1.2), Labyrinthula are obligatory, marine heterotrophs often acting as 
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saprobes, mutualists, and commensalists as well as parasites (Tsui 2009). A specialized 

organelle of labyrinthulomycetes, the bothrosome (or sagenogentosome), secretes the 

extracellular ectoplasmic network used for locomotion (Fig. 1.3).  The ectoplasmic 

network also secretes digestive enzymes that act to break down and absorb nutrients 

(Raghukumar 2002).  It is believed that for pathogenic strains of Labyrinthula, the 

digestive enzymes are able to penetrate live seagrass blade tissue by degrading the cell 

walls of their hosts and subsequently destroying the cellular contents including 

chloroplasts (Raghukumar 2002; Tsui et al. 2009). This results in characteristic black 

lesions, an indicator of wasting disease (Figure 1.4).  

In infected blades, Labyrinthula cells can occupy viable, green cells on the 

periphery of the lesion (Young 1938). Once a seagrass is inoculated with the pathogenic 

protist, infection can spread rapidly, e.g. 0.8 mm/h (Ralph and Short 2002). It has been 

shown that once the lesion bisects the width of the blade, the health of the leaf is 

significantly compromised. Photosynthesis is significantly inhibited, vascular transport is 

lost or damaged affecting solute transport, and oxygen transport to the roots can be 

diminished leading to hypoxic conditions belowground (Durako and Kuss 1994). All of 

these effects on seagrass physiology may leave the seagrass more susceptible to 

additional environmental stresses (Ralph and Short 2002).  
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Figure 1.1 Labyrinthula sp., the causative pathogen of wasting disease (400x; Photo 

courtesy of Daniel Martin, University of South Alabama). 

 

 

 

 

Graphic redacted. Paper copy available upon request to 
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Figure 1.2 Summary of Labyrinthulomycota characteristics. Clades A and B represent a 

basal split between extant genera based on analysis of multiple loci (from Tsui 2009). 

 

 

 

Graphic redacted. Paper copy available upon request to 
home institution
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Figure 1.3 Internal cell structure of Labyrinthula highlighting the bothrosome organelle 

that is responsible for the production of the ectoplasmic network. Taken from Porter 

1988.

 

 

 

 

 

 

 

 

Figure 1.4 Thalassia testudinum (turtlegrass) blade exhibiting symptoms of wasting 

disease. 

1 cm 

1 cm 

Graphic redacted. Paper copy available upon request to
home institution
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As mentioned above, Labyrinthula travel within their self-produced network and 

must have a substrate on which to grow.  As a result, expansion of wasting disease to a 

new host must occur by blade-to-blade contact with an infected leaf (Muehlstein et al., 

1992). Labyrinthula has also been reported to travel long distances via planktonic detritus 

(Raghukumar 2002). Therefore, the ability of a virulent species of Labyrinthula to travel 

locally within and between populations as well as long distances makes this ubiquitous 

microbe a potential threat to coastal ecosystems (Short et al. 2007). 

 

1.3. Seagrass Defenses 

Interestingly, while the seagrass-Labyrinthula relationship is long-running and 

omnipresent, large-scale die-offs are not common.  Therefore, it is possible that 

seagrasses have an effective defense system against this pathogen. 

In general, once potentially harmful microorganisms make contact with the hosts‟ 

cell surfaces, plants can elicit one or more of the following inducible defenses: thickening 

of the cell wall at the damaged sites, hypersensitive response resulting in localized 

programmed cell death, increased respiration resulting in increased levels of toxic 

reactive oxygen species and lastly, the increased production of effective antimicrobial 

compounds, i.e. secondary metabolites (Cowan 1999; Shetty et al. 2008).   

The diversity of possible secondary metabolites is incredible. Many of these 

chemical compounds are produced via the shikimic acid and phenylpropanoid (SA/PP) 

pathways. These enzymatic pathways, typically start with one of 3 aromatic amino acid 

precursors, phenylalanine, tyrosine or tryptophan. This biosynthetic pathway can 

potentially create numerous flavonoids and up to 8000 known phenolics (Herrmann 
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1995). Plant phenolics are compounds with an aromatic ring and one or more hydroxyl 

substituents (i.e. phenol). Included in this group are phenols, flavonoids, lignin, tannins, 

and phenolic acids which are all biosynthesized from precursor phenylalanine (Fig 1.5).  

The diversity of phenolics begets diverse functions such as scavenging reactive oxygen 

species, protein synthesis, UV-absorption, and defense mechanisms (reviewed in Stalikas 

2007).   

In land plants, it has been shown that under ambient conditions, individuals can 

direct up to 20% of their fixed carbon into the shikimic acid pathway (Haslam 1993). 

While under attack, resources may be redirected into the SA/PP pathways for the 

production of antimicrobial secondary metabolites.  While these defenses are 

biochemically expensive, they are essential defense mechanisms to these sessile 

organisms. Furthermore, while chemical defenses have been shown to be upregulated 

during microbial attacks in land plants (Arnold & Targett 2002), chronic stress conditions 

have been shown to decrease the pathway‟s efficiency (Weaver & Herrmann 1997), 

possibly leaving a plant more susceptible to disease. Along these same lines, it has been 

hypothesized that the recent seagrass wasting disease episodes were attributed to poor 

environmental conditions which suppress or weaken the hosts‟ defenses (Muehlstein 

1989; Robblee et al. 1991).  

Biochemical defenses are particularly vital to marine plants, including seagrasses, 

as they are constantly exposed to potentially harmful microbes. In contrast to their 

terrestrial counterparts, chemically-mediated defenses of marine plant-pathogen systems 

are poorly understood (Baskin 2006). However, there has been evidence that sessile 

marine plants can produce anti-microbial secondary metabolites in response to attacks 
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(Engel et al. 2002).  Furthermore, during the past several years there has been growing 

evidence that seagrasses have the ability to chemically defend themselves against 

common microorganisms, invading pathogens or wounding (Jensen et al. 1998; Arnold & 

Targett 2002; Arnold et al. 2008; Ross et al. 2008). 

The body of work concerning composition and functions of the secondary 

metabolites in seagrasses is growing. In a survey of 12 seagrass genera including 

Thalassia testudinum, six phenolic acids were found in more than half of the seagrasses 

examined (Zapata and McMillan 1979).  Four of these phenolic acids were also found to 

be the product of “pseudo-induction” in Thalassia testudinum following wasting disease 

elicitation (Steele et al. 2005; Fig. 1.6). In this study, the lesions bisected the width of the 

seagrass blade which blocked vascular carbohydrate transport. The 4 phenolic acids were 

likely accumulating above the damage site in response to altered resource allocation 

rather than accumulating as a signaled induced defense response to Labyrinthula invasion 

(Steele et al. 2005).  

There is still much unknown about the specific defense mechanisms of Thalassia 

testudinum against pathogenic Labyrinthula sp.  Since wasting disease outbreaks have the 

potential to significantly damage T. testudinum meadows and compromise their function 

in coastal ecosystems, it is crucial to fully understand the dynamics of the T. testudinum-

Labyrinthula relationship. This thesis will contribute to this knowledge base by exploring 

both physiological and biochemical aspects of T. testudinum health and disease. 
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Figure 1.5 The biosynthesis pathway of plant phenolics originating with phenylalanine in 

the shikimic acid/phenylpropanoid pathways (from Taiz and Zeiger 2006). 

Graphic redacted. Paper copy available upon request to home 
institution
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Figure 1.6 Four phenolic acids upregulated in Thalassia testudinum leaves during 

Labyrinthula sp. infection (Steele et al. 2005). (A) 3,4-dihydroxybenzoic acid 

(protocatechuic acid), (B) vanillin, (C) p-hydroxybenzoic acid, (D) p-coumaric acid. 

  

A B 

C D 
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1.4. Objectives 

The objectives of the research presented herein were two-fold. Chapter 2 was 

aimed at providing a better understanding of the interaction between hypersalinity stress 

and infection dynamics. Thalassia testudinum was subjected to hypersalinity exposure, 

one of the stressors involved in the 1987 wasting disease outbreak. While exposed to this 

sub-optimal environment, T. testudinum was infected with a pathogenic strain of 

Labyrinthula. The seagrass‟ physiological and metabolic responses were monitored 

during the early stages of infection. In Chapter 3, T. testudinum‟s ability to produce 

effective anti-Labyrinthula secondary metabolites will be assessed. While the 4 

previously mentioned phenolic acids (3,4-dihydroxybenzoic acid, p-hydroxybenzoic acid, 

p-coumaric acid, and vanillin) have been shown to be upregulated during Labyrinthula 

infection, it was not known  if these compounds had direct anti-labyrinthulid activities. 

Therefore, the first part of this chapter was directed towards the determination if these 

phenolics have anti-labyrinthulid activity and then identify the specific inhibitory 

concentrations of the phenolic acids both alone and in combination. In the second half of 

the chapter, a bioassay-guided fractionation technique was used to isolate and 

subsequently characterize any anti-labyrinthulid compound(s) that have not been 

previously characterized in the leaf tissue T. testudinum.  
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2 

Effects of elevated salinity on the health of the subtropical seagrass Thalassia 

testudinum and its susceptibility to wasting disease 

 

Abstract 

Seagrass meadows are essential to coastal ecosystems and have experienced declines in 

abundance due to a series of environmental stressors including elevated salinity and 

incidence of disease.  This study evaluated the impacts of short term salinity stress on the 

early stages of infection in Thalassia testudinum Banks ex König by assessing changes in 

cellular physiology and metabolism.  Seagrass short shoots were exposed to ambient (30) 

and elevated (45) salinities for 7 days and subsequently infected for one week by the 

causative pathogen of wasting disease, Labyrinthula sp.  The occurrence of wasting 

disease was significantly lower in the hypersalinity treatments.  Additionally, while 

exposure to elevated salinity caused a reduction in chlorophyll a and b content, 

photosynthetic activity was not affected by salinity or infection.  In contrast, plant 

respiratory demand was significantly enhanced as a function of infection.  Elevated 

salinity caused T. testudinum to significantly increase its in vivo H2O2 concentrations to 

levels that exceeded those which inhibited Labyrinthula growth in an in vitro assay.  The 

results suggest that while short term exposure to hypersalinity alters some cellular 
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processes this does not necessarily lead to an immediate increase in wasting disease 

susceptibility. 

 

 

2.1. Introduction 

Globally, seagrass meadows represent a fundamental, yet delicate, component of 

many coastal marine ecosystems that, aside from serving as a refuge for numerous 

organisms, fulfill other important roles such as sediment stabilization and biogeochemical 

cycling.  Unfortunately, over the past eighty years these ecologically and economically 

important habitats have been declining in area at an increasing rate partially due to 

anthropological reduction in habitat and water quality (Waycott et al. 2009).  These 

coastal habitats can be subjected to extreme fluctuations in light levels and salinities, 

elevated temperatures (Vergeer et al. 1995; Blakesley et al. 2002), and hypoxic 

conditions (Koch et al. 2007b), all which contribute to an overall decrease in seagrass 

viability.  While seagrasses are, to a certain degree, able to cope with environmental 

variability, unfavorable conditions that occur simultaneously have been noted to cause an 

additive or synergistic decline in seagrass health (Ralph 1999; Koch et al. 2007b; Koch et 

al. 2007c).   

Such unfavorable environmental conditions have been thought to be precursory to 

large-scale die-offs of eelgrass (Zostera marina L.) and turtlegrass (Thalassia testudinum 

Banks ex König) habitats during which virulent forms of Labyrinthula spp. (Division 

Stramenopila) infect seagrass blades (Muehlstein 1989; Robblee et al. 1991).  The 

resulting infection, termed wasting disease, is characterized by black lesions at sites of 
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cell degradation (Raghukumar 2002; Tsui et al. 2009).  Labyrinthula spp. move within a 

self-produced ectoplasmic network, degrade host cell wall tissue with extracellular 

enzymes, and are believed to travel from host to host via direct contact (Muehlstein 

1992).  Since most Labyrinthula spp. isolated from the field do not create lesions, such 

incidences of disease are hypothesized to be attributed to poor environmental conditions 

which suppress or weaken the hosts‟ defenses (Muehlstein 1989).   

Previous research has supported the idea that multiple co-occurring environmental 

stressors likely work in concert to diminish the health of Thalassia testudinum (Robblee 

et al. 1991; Blakesley et al. 2002; Koch et al. 2007c).  This in turn would render the host 

more susceptible towards opportunistic pathogen infection.  Salinity fluctuations likely 

represent one of the leading drivers behind disease transmission.  Elevated salinities up to 

70 have been reported in areas of Florida Bay (Florida, USA) which are subject to 

episodes of drought, high evaporation, and/or low circulation (Robblee et al. 1991; 

Kelble et al. 2007c). While the optimum salinity range for T. testudinum lies between 30-

45 (Kahn and Durako 2006), hypersalinity thresholds can be 45 and 65 under pulsed 

(sudden change) and gradual increases, respectively (Koch et al. 2007a). Laboratory-

based studies have demonstrated that salinity affects the virulence and growth of 

Labyrinthula spp. in both marine and terrestrial systems (Young 1943; Muehlstein et al. 

1988; Martin et al. 2009; McKone and Tanner 2009).  Furthermore, a series of field-

based studies have provided strong evidence for the positive correlation between elevated 

salinity and increase in symptoms of seagrass wasting disease (Burdick et al. 1993; 

Blakesley et al. 2002). 
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While the importance of pathogens in terrestrial ecosystems has long been 

documented (Grenfell and Dobson 1995; Anderson et al. 2004), the role of diseases in 

coastal settings has not been thoroughly explored (Baskin et al. 2006).  Studies on 

seagrass wasting disease are lagging behind in terms of our understanding of plant 

pathogenesis as well as the intricate relationship between environmental stress and 

disease transmission.  Despite the reports that pathogenic strains of Labyrinthula spp. 

have been identified as primary etiological agents of wasting disease in seagrass 

meadows (Short et al. 1987; Muehlstein 1989; Muehlstein et al. 1991), there is still much 

to be elucidated regarding this host-pathogen interaction. 

The goal of this current study was to further understand the impacts of 

hypersalinity on the physiological responses of T. testudinum during the early stages of 

Labyrinthula infection. Specimens of T. testudinum were exposed to ambient (30) or 

elevated (45) salinities for a one week duration under laboratory conditions prior to being 

infected. One week after the onset of infection, physiological and metabolic responses 

were measured including lesion area, maximum and effective quantum yield, rapid light 

curves, total chlorophyll content, dark-adapted respiration, and detection of reactive 

oxygen species.  It was hypothesized that plants that were exposed to elevated salinity 

levels would exhibit a decrease in health and thus, be more likely to become infected by 

pathogenic Labyrinthula sp. 
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2.2. Materials and Methods 

2.2.1. Seagrass Collection & Labyrinthula Culture 

Thalassia testudinum Banks ex König short shoots were collected from the Indian 

River Lagoon, Ft. Pierce, Florida, USA (27°47‟N, 80°31‟W and 27°58‟N, 80°31‟W), 

cleaned of epiphytes, and maintained at the University of North Florida, Jacksonville, 

Florida, USA in aquaria tanks at the in situ salinity of 30 and light intensity of 115 μmol 

m-2 s-1 under a 12:12 h L:D photoperiod.  Short shoots included the blades, sheath and 

short segments of rhizome in either side. A known virulent strain of Labyrinthula sp., 

kindly provided by the laboratory of Dr. Anne Boettcher (University of South Alabama, 

USA), was utilized in all experiments.  Labyrinthula sp. cultures were maintained in 

serum-seawater agar (SSA) media as previously described by Martin et al. (2009) with 

slight modification.  Briefly, the SSA recipe contained 500 mL of 0.22 μm filtered 

seawater (salinity of 25) using Instant Ocean Sea Salt which was combined with 6 g agar, 

0.5 g glucose, 0.05 g nutritional yeast, 0.05 g peptone, 1.5 mg germanium dioxide, 12.5 

mL streptomycin/penicillin (stock: 1.25 g streptomycin + 1.25 g penicillin per 100 mL 

de-ionized H2O), and 5 mL horse serum.  All chemicals were purchased from Sigma-

Aldrich (St. Louis, MO, USA). 

 

2.2.2. Experimental Design 

To evaluate the effects of hypersalinity exposure and Labyrinthula sp. infection 

on T. testudinum health, five individual short shoots were used per treatment (n=5).  

Treatment groups were as follows: 1) uninfected seagrass at a salinity of 30 (control), 2) 

infected seagrass at 30, 3) uninfected seagrass at 45 and 4) infected seagrass at 45.  For 
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consistency, the second rank blade (i.e., second youngest) was always infected using the 

methods reported by Steele et al. (2005).  Sterilized vectors were placed on week-old 

Labyrinthula sp. agar cultures in areas of equal growth for 1 week prior to infection. 

Individual T. testudinum short shoots (1 short shoot being equivalent to one experimental 

unit) were acclimated in 3.8 L polyethylene terephthalate microcosms (Rubbermaid, 

Winchester, VA, USA) containing 0.22 μm filtered seawater of the desired salinity. 

Plants in the hypersalinity treatments had the salinity raised in a pulsed fashion, i.e., 

placed directly in seawater of a salinity of 45, and were allowed to acclimate for one 

week. All samples were randomly spaced apart at 28°C under 170 μmol m-2 s-1 of light 

using a 12:12 h L:D photoperiod.  Following one week of acclimation, sterilized control 

vectors and infected vectors were secured onto the middle of the second rank blade with a 

clamp made from ¼ inch flexible PVC tubing (Aquatic Eco-Systems, Inc., Apopka, FL, 

USA).  During the one-week ensuing infection period, temperature and salinity were 

monitored on a daily basis.  De-ionized water was added as needed to account for 

evaporation.   

 

2.2.3. Lesion Measurements 

Post treatment, lesions from the infected samples were measured using a Kodak© 

Gel 1500 Imaging System (Rochester, NY, USA).  Photographs were captured using a 

GL 1500 digital camera.  Kodak© Molecular Imaging Software v.5.0.1.27 was used to 

take accurate measurements of lesion areas and were reported in square millimeters 

(mm2). 
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2.2.4. Pulse Amplitude Modulated Fluorometry 

 Chlorophyll a fluorescence measurements using the Diving Pulse Amplitude 

Modulated (PAM) fluorometer (Heinz-Walz GmbH ©,Effeltrich, Germany) were 

accomplished in a randomized fashion for maximum quantum yields (MQY) as well as 

effective quantum yields (EQY) and rapid light curves (RLC) to avoid results influenced 

by light histories.  PAM settings were as follows: measuring intensity=5, gain=3, 

saturation intensity=2 and damp=2.  A dark leaf clip (DIVING-LC) was attached at the 

measurement sites to hold the fiber optic cable in place (Durako and Kunzelman 2002).  

Each measurement was taken within 5 s of attaching the leaf clip to minimize dark 

acclimation (i.e., quasi-darkness yield; Durako and Kunzelman 2002) with the distance of 

5 mm from the fiber optic cable to the adaxial leaf surface.   

 Maximum quantum yield measurements were taken before the onset of light.  At 

that point, photosynthetic structures were fully dark-adapted, i.e., the PSII reaction 

centers were completely oxidized. MQYs were calculated with MQY= (Fv)/Fm where Fv 

= (Fm-Fo).  Fm represents the dark adapted maximum fluorescence and Fo represents the 

dark-adapted initial fluorescence.  Two hours after the diurnal light regime began, 

measurements for EQYs and RLCs were taken.  The initial measurement taken for each 

rapid light curve was equivalent to the effective quantum yield for that sample.  EQYs 

were calculated with EQY= (∆F/ F´m) where (F´m-F)/ F´m. F´m is the light-adapted 

maximum fluorescence, and F is the minimum fluorescence of light-adapted leaves.   

Using the fluorescence measurements from MQY and EQY, non-photosynthetic 

quenching (NPQ) was calculated with (Fm – F´m)/ F´m.  For RLCs, eight increasing light 

intensities (i.e. photon flux densities or PFDs) were given at 10 second intervals 
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beginning at the lowest actinic light intensity.  The respective average PFDs (μmol m-2 s-

1) were measured in triplicate using an Apogee Quantum Light Meter® (Apogee 

Instruments, Inc., Logan, UT, USA): 23.3, 69, 142.3, 230, 346.7, 481.7, 716.7, and 984.3 

μmol m-2 s-1.  To create the light curve, relative electron transport rates (rETR) were 

plotted against the PFDs where rETR= Yield * PFD * AF * 0.5.  PFD is the photon flux 

density or the photosynthetically active radiation (PAR; nm) that is being emitted.  The 

plants were light-adapted for this measurement, so the Yield parameter represents the 

EQY.  As actual leaf absorbance was not measured in this experiment, the absorbance 

factor (AF) was set to one, and so the electron transport rate was relative (rETR).  The 0.5 

in the equation is to take into account the light accepted by photosystem II (PSII) only. 

 Using SigmaPlot©, the methods and equations reported by Ralph and Gademann 

(2005) were used to quantitatively compare RLCs.  The curve was fitted with a double 

exponential decay function using a Marquardt-Levenberg regression algorithm.  For 

samples that did not exhibit photoinhibition, a rectangular hyperbola was used.  Relative 

electron transport rates and saturation irradiances (Ek) were also calculated (Ralph and 

Gademann 2005). 

 

2.2.5. Dark-Adapted Respiration 

 To evaluate the impact of salinity and Labyrinthula infection on dark-adapted 

respiration, 2 cm sections of each sample of T. testudinum, including lesion area, were 

analyzed for their oxygen uptake post-treatment.  Respiration studies were conducted 

using an Oxygraph system outfitted with a DW3 liquid-phase electrode chamber 

(Hansatech Instruments©, Norfolk, UK).  Samples were dark adapted for at least 1 h prior 
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to any measurement.  In the reaction chamber, the leaf sections were submerged in 10 mL 

of O2 -saturated filtered seawater (0.45 μm).  Oxygen uptake was measured over the 

course of 20 min for each experiment.  Respiration was calculated as nanomoles of 

oxygen consumed per minute per gram of tissue.  Following respiration measurements, 

samples were immediately flash frozen in liquid nitrogen and stored at -20°C for pigment 

analysis. 

 

2.2.6. Pigment Analysis 

 Previously frozen samples were ground with a mortar and pestle in the dark in a 

small amount of 95% acetone until no large fragments remained.  The total volume of 

crude extract (10 mL) from each individual sample was wrapped in aluminum foil and 

refrigerated for 4 hours to allow for additional chlorophyll extraction with minimal 

degradation.  Chlorophyll a and b content was subsequently evaluated using the 

spectrophotometric technique and equations described by Jeffrey and Humphrey (1975) 

using absorbance readings at 647, 664, and 750 nm.  

 

2.2.7. Detection of Reactive Oxygen Species in Plant Tissue 

To assess whether elevated salinity compromised plant health and induced 

oxidative stress in T. testudinum, reactive oxygen species (ROS) accumulation was 

qualitatively monitored as previously described in Lauer et al. (2011) using the ROS 

specific probe 2‟,7‟-dichlorodihydrofluoresceindiacetate (H2DCF-DA; Invitrogen, 

Carlsbad, CA, USA), a nonfluorescing, nonpolar compound.  When H2DCF-DA reacts 

with cellular esterases, the diacetate group is cleaved off to yield the polar compound 



32 
 

H2DCF.  Oxidation of H2DCF by ROS yields the fluorescent product DCF.  After the 

two-week incubation period, 2 cm leaf clippings, obtained from each replicate, were 

incubated for 15 min in 10 mL of microcosm water containing H2DCF-DA (5 μM final 

concentration).  Prior to microscopic examination, samples were rinsed in fresh filtered 

seawater to remove any unbound probe.  Fluorescent imaging (ex 488 nm, em 525 nm) 

was taken using a Leica MZ10 F microscope (Leica Microsystems, Inc., Bannockburn, 

IL, USA) in conjunction with a Canon PowerShot S5-IS (Canon U.S.A. Inc., Melville, 

NY, USA). 

 

2.2.8. Quantification of Hydrogen Peroxide in Plant Tissue 

 Following the 2-week incubation at ambient (30) and elevated (45) salinities, 

hydrogen peroxide levels in T. testudinum blade tissue were accurately quantified using 

the aqueous compatible PeroXOquant ™ Quantitative Peroxide Assay Kit 

(ThermoScientific, Rockford, IL, USA).  Protocols were followed as per the 

manufacturer‟s specifications with slight modification.  Immediately after the end of the 

incubation, blade sections were excised from the middle of the second rank blade, and 

wet weights at approximately 0.1 g were measured. Samples were homogenized in 1 mL 

de-ionized water using a Fast Prep 24 bead homogenizer (MP Biomedicals, Irvine, CA, 

USA).  Following centrifugation at 13,000 x g (10 min), supernatants were combined 

with working reagent for a 1:10 ratio (modified from Cheeseman 2006).  Samples were 

read at 595 nm against H2O2 standards ranging from 0-1000 μM. 

 

2.2.9. In Vitro Labyrinthula Growth Inhibition Assays 
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To evaluate the potential for ecologically relevant concentrations of H2O2 (from 

T. testudinum) to inhibit Labyrinthula growth, an in vitro liquid culture assay was 

developed based upon a protocol previously reported by Martin et al. (2009).  Varying 

concentrations of H2O2 (0-100 μM; stock solution 30 % H2O2, Sigma-Aldrich St. Louis, 

MO, USA) were diluted with liquid media (SSA media without agar).  Each replicate 

sample (final volume of 2 mL) was transferred to a single well of a 12-well microplate 

(Costar ®, Corning Inc., Corning, NY, USA).  A standard area of SSA agar-based 

Labyrinthula sp. culture was cut using a 6 mm diameter cork borer and placed upside 

down in each well to start the assay.  Following 24 hours of growth, the liquid media was 

gently removed and replaced with 1 mL of 0.125% Crystal Violet histological stain 

(Fisher Scientific, Fair Lawn, NJ, USA).  After 1 minute, the stain was removed, rinsed 

with de-ionized water then dried at 60°C for ten minutes.  Using a dissecting scope, the 

well was inverted and the growth edge was traced.  The area of Labyrinthula sp. colony 

growth was quantified using a Kodak© Gel 1500 Imaging System.   

 

2.2.10. Statistical Analysis  

All statistical tests were performed at a 95 % confidence level.  Lesion size and in 

planta H2O2 content were statistically analyzed using a two-tailed independent t-test with 

salinity as the independent variable.  Analysis of respiration, MQY, EQY, NPQ, alpha 

and beta slopes, rETRmax, Ek, and chlorophyll concentrations were performed using a 

two-way ANOVA with salinity and infection as the independent variables.  MQY and 

EQY were compared within each treatment using independent t-tests.  Labyrinthula sp. 

colony growth inhibition was statistically analyzed using a one-way ANOVA with H2O2 
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concentration as the independent variable and was followed by a Tukey‟s post-hoc 

analysis. 

 

 

2.3. Results 

Specimens of Thalassia testudinum were infected with pathogenic Labyrinthula 

sp. under ambient (30) and elevated (45) salinities for a 1 week period.  One sample from 

the 45 hypersalinity uninfected treatment defoliated.  Another replicate from the same 

treatment had browning of the second rank blade from senescence including areas under 

the control vector.  The former replicate was omitted from all analyses while the latter 

was only omitted from the fluorescence measurements. In general, lesions were noted to 

form near the edges of the vector and ranged in appearance from small dots to continuous 

larger necrotic areas up to 15.5 mm2.  Average lesion size for the infected samples was 

significantly smaller in the 45 treatments when compared to the 30 controls (t= 3.019, p= 

0.03; Fig. 2.1).  Using the Wasting Index (WI) interpolation method of Burdick et al. 

(2003), ambient salinities had approximately 5 % lesion cover while elevated salinities 

had roughly 2-3 % cover. 
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Figure 2.1 Lesion area of Thalassia testudinum blades infected with Labyrinthula sp. 

following a 1-week incubation period under ambient (30) and elevated (45) salinities. 

Letters indicate significant differences (p≤ 0.05). Values represent mean ± SE (n=5). 
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There were no significant differences at a p-value of 0.05 among treatments with 

respect to both dark- and light-adapted photosynthetic efficiency measurements (MQY 

and EQY; Table 2.1).  Similarly, the differences in rapid light curve parameters among 

treatments (alpha slope, α; relative electron transport rate maximum, rETRmax; saturation 

irradiance, Ek; and downregulation irradiance/ beta slope, β; Table 2.1 and Fig. 2.2) were 

insignificant.  However, both uninfected and infected treatments under a salinity of 30 

had significantly lower yields for EQY than MQY (t= 3.462, p= 0.02 and t= 3.262, p= 

0.011, respectively; Fig. 2.3) while those of the infected treatment under a salinity of 45 

were marginally significant (t= 2.030, p= 0.077; Fig. 2.3).  Across all treatments, EQY 

means were 4.8 to 8.8 % lower than MQY means.  Values of NPQ were not significantly 

different among treatments (Fig. 2.4), yet there was a marginally significant effect for 

salinity (F= 3.915; p=0.068) with hypersalinity NPQ values being 26-68 % higher than 

controls maintained at 30. 

Post exposure, samples of T. testudinum were monitored to determine if infection 

or elevated salinity had an impact on respiratory demand.  There was a significant effect 

of infection as well as a salinity by infection interaction (2-way ANOVA; F= 10.323, p= 

0.006 and F= 5.047, p= 0.040, respectively).  Labyrinthula sp. infection caused an 

increase in respiration rates for both salinity treatments. Furthermore, the infected plants 

under a salinity of 30 exhibited a significantly high degree of respiration than those at 45 

(Fig. 2.5).  Following exposure to a salinity of 45, samples of T. testudinum demonstrated 

a significant reduction in total chlorophyll (chlorophyll a + b) content regardless of 

infection status (F= 14.699, p= 0.002; Fig. 2.6).
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Table 2.1 Chlorophyll a fluorescence measurements of Thalassia testudinum under salinity (30 & 45) and Labyrinthula sp. 

infection treatments. 

Treatment MQY EQY NPQ α rETRmax Ek β 

30 U 0.801 (0.00574)a 0.733 (0.0187)a 0.594 (0.242)a 0.470 (0.0149)a 28.0 (2.69)a 60.1 (6.95)a 0.0121 (0.00356)a 

30 I 0.796 (0.00736)a 0.758 (0.00888)a 0.687 (0.211)a 0.451 (0.0262)a 26.4 (3.30)a 58.6 (6.46)a 0.0135 (0.00227)a 

45 U 0.781 (0.00767)a 0.712 (0.0340)a 1.87 (0.961)a 0.446 (0.0267)a 25.5 (6.02)a 57.0 (12.5)a 0.00694 (0.000722)a 

45 I 0.783 (0.0165)a 0.722 (0.0254)a 0.932 (0.249)a 0.423 (0.0348)a 28.5 (2.76)a 68.4 (7.29)a 0.00982 (0.00200)a 

U= uninfected, I= infected, MQY= Maximum Quantum Yield, EQY= Effective Quantum Yield, NPQ= Non-Photosynthetic 

Quenching, α= Alpha slope, rETRmax= relative electron transport rate maximum, Ek= saturation irradiance, β= downregulation 

irradiance/Beta slope.  Two-way ANOVAs were performed with salinity and Labyrinthula sp. infection as the independent 

factors. Letters indicate significant differences (p≤ 0.05). Values represent mean ± SE (n=3-5).     
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Figure 2.2 Rapid light curves of Thalassia testudinum blades under elevated salinity and 

Labyrinthula sp. infection.  Values represent mean ± SE (n=3-5). 
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Figure 2.3 Comparison between Thalassia testudinum maximum and effective quantum 

yields taken before the onset of light and taken two hours after the diurnal photoperiod 

began, respectively. T. testudinum samples were subjected to elevated salinity and 

Labyrinthula sp. infection. U= uninfected, I= infected. Letters indicate significant 

differences (p≤ 0.05). Values represent mean ± SE (n=3-5). 
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Figure 2.4 Heat dissipation (i.e., non-photosynthetic quenching, NPQ) of photosystem II 

of Thalassia testudinum under ambient (30) and elevated (45) salinity and Labyrinthula 

sp. infection. U= uninfected, I= infected. The salinity treatment has a marginally 

significant effect (2-way ANOVA, p= 0.068). Values represent mean ± SE (n=3-5). 
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Figure 2.5 Dark-adapted respiration rates of Thalassia testudinum under ambient (30) and 

elevated (45) salinity and Labyrinthula sp. infection. U= uninfected, I= infected. Letters 

indicate significant differences (p≤ 0.05). Values represent mean ± SE (n=4-5). 
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Figure 2.6 Total chlorophyll (a + b) content of Thalassia testudinum blades under 

ambient (30) and elevated (45) salinity and Labyrinthula sp. infection. U= uninfected, I= 

infected. Letters indicate significant differences (p≤ 0.05). Values represent mean ± SE 

(n=4-5). 
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Reactive oxygen species (ROS) production was upregulated in T. testudinum 

samples following osmotic stress.  Specimens that were exposed to hypersalinity 

treatment displayed a pronounced release of ROS that was localized to the apoplastic 

regions between cells (Fig. 2.7).  Specimens that were maintained at a salinity of 30 

displayed much lower ROS production.  Furthermore, quantitative measurements showed 

that the amount of hydrogen peroxide in the second rank blades of T. testudinum was 

significantly lower at salinity of 30 (0.231 ± 0.0354 μmol H2O2/g FW) compared to 

levels at 45 (0.604 ± 0.117 μmol H2O2/g FW) values (t= -3.058, p= 0.016; Fig. 2.8).  

These values correspond to 290 µM and 755 µM H2O2 on a tissue water basis in the 30 

and 45 salinity treatments, respectively. 

Labyrinthula sp. Growth in the in vitro assay was negatively impacted upon the 

addition of hydrogen peroxide (F= 21.153, p< 0.001; Fig. 2.9). Labyrinthula sp. colony 

size showed a 19 % reduction in area when exposed to 60 μM H2O2 when compared to 

controls.  When samples were incubated in 80 μM and 100 μM H2O2 there was a 

significant reduction in colony size (52 % and 55 %, respectively) when compared to 

control values (p< 0.001). 
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Figure 2.7 Hypersalinity stress induces ROS production in Thalassia testudinum blade 

tissue. Following salinity treatments, plants were stained with the fluorescent probe 

H2DCF-DA. This probe detects the localized accumulation of ROS using fluorescent 

microscopy (Panels B & D, salinities of 30 & 45, respectively; ex 488 nm, em 525 nm). 

The presence of ROS is indicated by green, while chlorophyll is revealed in red. Light 

microscopy shown in Panels A & C for salinities of 30 and 45, respectively, are for visual 

reference. 
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Figure 2.8 In planta hydrogen peroxide concentrations in Thalassia testudinum blades 

following a 2-week incubation period at salinities of 30 and 45. Letters indicate 

significant differences (p= 0.03). Values represent mean ± SE (n=5). 
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Figure 2.9 Effect of exogenous hydrogen peroxide (0- 100 μM) on Labyrinthula sp. 

colony growth. Letters indicate significant differences (p≤ 0.004). Values represent mean 

± SE (n=6). 
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2.4. Discussion 

2.4.1. Effect of Salinity on Wasting Disease 

When compared to the wealth of knowledge concerning plant pathogenesis in 

terrestrial ecosystems, the roles of diseases in aquatic settings remain poorly understood 

(Baskin 2006). In this study, we evaluated the relationship between exposure to elevated 

salinity and susceptibility to infection using the T. testudinum – Labyrinthula host 

pathogen model system. 

 The extent of necrotic lesion coverage on T. testudinum blades was significantly 

lessened when plants were exposed to a hypersalinity environment suggesting that 

salinity clearly influences Labyrinthula sp. infection (Fig. 2.1).  Previous reports focusing 

on infected specimens of Zostera marina demonstrated that a positive correlation existed 

between lesion size and exposure to elevated salinities (McKone and Tanner 2009).  

Unfortunately, available data on the relationship between infection responses and 

elevated salinity in T. testudinum is limiting.  A single report (Blakesley et al. 2002) has 

provided documentation showing that T. testudinum beds in Florida Bay that were 

exposed to elevated salinity (>15) had higher incidence of wasting disease.   Using a 

liquid culture assay, Martin et al. (2009) demonstrated that colony surface area of 

Labyrinthula “T” (isolated from turtlegrass) declined over 90% when grown at a salinity 

of 50 when compared to samples maintained at 30.  While cell replication continued, the 

spreading of the ectoplasmic network was significantly diminished Martin et al. (2009).  

The negative impact of elevated salinity of Labyrinthula sp. may influence the 

pathogen‟s ability to adhere and to infect host blade tissue. 
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2.4.2. PAM Fluorometry 

Several previous studies have explored the relationship between Labyrinthula 

infection and the photosynthetic activity of host seagrasses. Ralph and Short (2002) 

reported that compared to healthy uninfected tissue Zostera marina displayed drastically 

reduced photosynthetic activity at the lesion site as well as up to 5 cm away from 

infection in healthy green tissue.  Durako and Kuss (1994) utilized photosynthetic versus 

irradiance responses and noted significant impairment of Thalassia testudinum‟s 

photosynthetic capacity as lesion growth increased.  Once lesions span the width of the 

blade, a decrease in photosynthesis as well as a reduction of oxygen transport and 

carbohydrate transport would likely occur (Durako and Kuss 1994; Ralph and Short 

2002). While these studies have contributed to the overall knowledge of seagrass wasting 

disease in terms of plant health and pathogen identification, they have all involved field 

samples that have previously been infected for an unknown amount of time.   

We observed that during the 1-week infection period of T. testudinum neither 

Labyrinthula presence nor changes in salinity significantly inhibited the seagrass‟ 

photosynthetic response.  Durako and Kuss (1994) found that in natural populations of T. 

testudinum there was also little variation in alpha (α) values when comparing uninfected 

samples and samples with 25 % lesion cover.  However, their study noted a significant 

reduction of the photosynthetic maximum at 25 % coverage suggesting infection caused a 

reduction in photosynthetic capacity (Durako and Kuss 1994).  RLC values and oxygen-

based P-I curves are cannot be interpreted synonymously, however, the data from the two 

methods are correlative (Ralph and Burchett 1995; Beer et al. 1998; Ralph and 

Gademann 2005).  Therefore, the differences between the photosynthetic capacities from 
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of Durako and Kuss (1994) and this study may be due to the differences in lesion cover 

(25% and 2-5%, respectively).  

Salinity stress has been shown to affect photosynthesis by interrupting the 

electron transport chain as well as altering the chlorophyll content and chloroplast 

structure (reviewed in Touchette 2007).  Clearly salinity levels as well as duration of 

exposure will influence plant physiological responses.  After a 2-week incubation period 

at a salinity of 45, there was no detectable reduction in the photosynthetic activity of T. 

testudinum (Table 2.1 and Fig. 2.2).  These observations are in agreement with previous 

reports that have demonstrated that T. testudinum shows no significant decrease in 

photosynthetic efficiency (MQY and α) or capacity (rETRmax) when exposed to pulsed 

increases in salinity up to 45 (Kahn and Durako 2006; Koch et al. 2007a).  While PSII 

can be a target of hypersalinity stress (Xia et al. 2004), T. testudinum has the ability to 

make adjustments to maintain levels of photosynthesis comparable to ambient salinities. 

Light-adapted EQY measurements of T. testudinum have been reported to 

fluctuate diurnally as a function of open reaction centers available to receive light energy 

(Durako and Kunzelman 2002; Qiu et al. 2003; Belshe et al. 2007).  This variation may 

indicate PSII downregulation (β) and non-photosynthetic quenching processes (Belshe et 

al. 2007).  In the present study, lack of variation in MQY among treatments indicates that 

PSII reaction centers were undamaged (Maxwell and Johnson 2000), while after the onset 

of light EQY values declined (Fig. 2.3).  Quantum yield values in every treatment 

exhibited a decline with the onset of light as may be expected, though NPQ values had a 

marginally significant increase due to elevated salinities (p= 0.068; Fig. 2.4).  Non-

photosynthetic quenching (NPQ) is correlated with the xanthophyll cycle, an inherent 
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photoprotective mechanism that naturally dissipates excess heat (Ralph et al. 2002; Qiu 

et al. 2003).  While the NPQ and xanthophyll cycle have often been associated with 

stress caused by high light, they have also been seen to be upregulated under hypersaline 

conditions in green algae (Masojídek et al. 2000) and coastal plants (Kao and Tsai 1999; 

Qiu et al. 2003).  For example, Naumann et al. (2007) reported that after 8 days under 

hypersalinity stress salt-tolerant Phragmites australis did not show any change in MQY 

but had a reduction in EQY with a concomitant increase in NPQ.  Similar chlorophyll a 

results indicating a constant MQY with variable EQY and NPQ could be useful in 

indicating sublethal stress before permanent photodamage occurs (Naumann et al. 2007). 

  

2.4.3. Dark-Adapted Respiration  

In aquatic flora, physiological changes that occur under salt stress may include 

increases in respiratory demand that are often necessary to meet the metabolic challenges 

of osmotic imbalance (Touchette 2007).   On the cytological level, T. testudinum 

possesses a well-developed mitochondrial-plasmalemma transport system which enables 

this halotolerant genus to maintain suitable ion levels despite exposure to elevated levels 

of salinity when compared to other aquatic families such as Zosteracae or Ruppiaceae 

(Jagels 1973; Jagels 1983).  In the present study, exposure of T. testudinum to a salinity 

of 45 did not cause any significant increase in respiratory demand. Similar observations 

have been made in T. testudinum seedlings that were grown under a salinity range of 10-

50 over a 30 day period (Kahn and Durako 2006).  These data suggest that T. testudinum 

may have additional mechanisms to cope with elevated salinity other than ATP-mediated 

processes, such as active ion transport (Touchette 2007).  
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In contrast to the results obtained from elevated salinity, the response to 

Labyrinthula infection showed a significant increase in cellular respiration at a salinity of 

30 when compared to non-infected controls (Fig. 2.5).  This work is in agreement with 

data from Durako and Kuss (1994) who demonstrated that in natural populations of 

infected T. testudinum there was a positive correlation existed between lesion cover and 

plant respiratory oxygen demand.  Enhanced oxygen consumption is a classic response of 

infected plants to a wide range of pathogens (Millerd and Scott 1962).  Numerous studies 

have provided evidence for enhanced respiratory activity or an increase in the expression 

of genes encoding enzymes associated with glycolosis or the tricarboxylic acid cycle 

(Major et al. 2010).  Mitochondrial activity is typically upregulated in order to support 

the resource demands (e.g. shikimic acid/phenylpropenoid pathway) associated with 

pathogen resistance (Miller and Scott 1962; Bolton 2009; Major et al. 2010). 

 

2.4.4. Pigment Analysis 

Following the incubation period, T. testudinum samples that were exposed to a 

salinity of 45 (regardless of infection status) showed the strongest visible signs of 

chlorosis and loss of pigmentation (Fig. 2.6).  Total chlorophyll (chlorophyll a + b) 

content (Fig. 2.6) was significantly reduced under hypersalinity (p= 0.002) which is a 

common response to osmotic stress in plants (Parida and Das 2005; Silva et al. 2010).  In 

seagrasses, decreased PSII function has been correlated with decreased chlorophyll 

content (McMillan and Moseley 1967 reported in Koch et al. 2007c).  However, high 

chlorophyll pigment concentrations do not always coincide with high PSII function 

(Ralph 1998; Silva et al. 2010; Wan et al. 2010), especially in salt tolerant species (Pak et 
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al. 2009).  A study using the watermoss Salvinia natans revealed that under high 

salinities MQY did not change even though a significant reduction in total chlorophyll 

(a+ b) content occurred (Jampeetong and Brix 2009).  Quantum yield measurements, 

thus, reflect the status of the photosystem reaction center and are not always tightly 

linked to the amount of working chlorophyll present (Ralph and Gademann 2005).  It has 

been suggested that one strategy to increase light absorption efficiency under stressed 

conditions would be for seagrasses to forego costly production of pigments and use 

internal light scattering (Cummings and Zimmerman 2003).  

 

2.4.5. Reactive Oxygen Species 

When plants are exposed to periods of enhanced salinity, the disruption of ion 

homeostasis may trigger the malfunction of any cellular electron transport processes, in 

particular, those located within the chloroplast and mitochondria.  In turn, excess 

production of reactive oxygen species (ROS) such as superoxide anion (O2
.-), hydroxyl 

radical (OH.) and hydrogen peroxide (H2O2) may ensue.  While oxidative stress may 

serve as an indicator of compromised health, the buildup of ROS may serve beneficial 

roles in a plant such as inhibiting the growth of pathogenic microorganisms (Kuźniak and 

Urbanek 2000).  Plants respond to microbial challenge with a rapid transient 

accumulation of ROS, termed oxidative burst.  However, if a plant is already undergoing 

oxidative stress and is subsequently infected, the plant may inadvertently already have 

sufficient levels of ROS to inhibit infection.  

In this study, a greater accumulation of ROS was observed in T. testudinum 

samples that were exposed to a salinity of 45 when compared to plants maintained at 30 



53 
 

(Fig. 2.7 B & D).  This accumulation was localized to the apoplastic regions between the 

cells which is a response consistent with peroxidase-dependent apoplastic oxidative 

bursts also seen in Arabidopsis thaliana when infected by the pathogen Fusarium 

oxysporum (Bindschedler et al. 2006). In addition to being produced in the apoplast, 

H2O2 can induce programmed cell death if a sustained burst follows the initial, rapid 

burst (Apel and Hirt 2004).   

Although the exact roles that H2O2 play in the seagrass‟ defenses against 

Labyrinthula are still unclear, in this study it was found that T. testudinum, while living in 

a hypersaline environment, can produce H2O2  in quantities that greatly exceed that which 

can inhibit Labyrinthula colony growth in vitro (750 µM vs.80 µM, respectively; Fig. 

2.9).  This suggests that T. testudinum could in fact inadvertently defend itself against 

Labyrinthula sp. invasion while under periods of oxidative stress. 

 

 

2.5. Conclusion 

It was initially hypothesized that elevated salinity would lower the resistance of T. 

testudinum, which in turn would render the plant more susceptible to pathogenic 

infection.  However, in terms of susceptibility to infection, the results indicate that while 

T. testudinum is experiencing oxidative stress and pigment degradation under elevated 

salinity, Labyrinthula infection is not enhanced.  This may be due to the direct effect of 

osmotic stress on the pathogen as well as the indirect effect of reactive oxygen species 

derived from the host tissue.  T. testudinum responded to infection with enhanced 

respiratory demand which is indicative of a classic plant defense response.  However, the 
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upregulation of defense molecules or proteins within T. testudinum has yet to be 

determined.  Changes in chlorophyll content and ROS levels are responses that may be 

most useful in the early detection of osmotic stress in T. testudinum.  Additionally, 

observing changes in EQY and NPQ after exposure to an elevated salinity environment 

with no simultaneous adjustments in MQY may indicate sublethal stress before 

permanent damage can be done to photosystem II.  

 In conclusion, initial exposure to elevated salinity stress does not necessarily 

imply that T. testudinum is more prone to infection.  This study emphasized the 

halotolerant characteristics of T. testudinum as well as useful indicators of early sublethal 

stress.  This work also highlighted novel dynamics of the effects of hypersalinity and 

ROS on Labyrinthula sp. growth and infection.  
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3 

Anti-labyrinthulid compounds produced by the tropical seagrass Thalassia 

testudinum 

 

Abstract 

 Historically, seagrasses have been subjected to incidences of wasting disease 

caused by the marine protist, Labyrinthula sp. While seagrasses are rich in phenolics that 

have been observed to accumulate in response to Labyrinthula infection, the exact anti-

labyrinthulid properties of these secondary metabolites produced by the tropical seagrass 

Thalassia testudinum are unknown. In this study, in vitro bioassays were used to test the 

anti-labyrinthulid properties of 4 phenolics acids (previously shown to be produced in T. 

testudinum leaves during infection) as well as unknown compounds extracted and 

partially purified from T. testudinum leaf tissue. The 4 phenolic acids, 3,4-

dihydroxybenzoic acid, p-hydroxybenzoic acid, p-coumaric acid, and vanillin, were 

shown to inhibit Labyrinthula growth at concentrations much lower than what was found 

in T. testudinum tissue. Additionally, it was found that several combinations of phenolic 

acids had a synergistic response against Labyrinthula colony growth. The bioassay-

guided fractionation technique was useful in isolating several anti-labyrinthulid fractions. 

Preliminary characterization of these compounds using 1H-NMR spectroscopy and 
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HPLC-MS was inconclusive thus highlighting the need for further characterization. The 

results suggest that T. testudinum has the capability of defending itself against 

Labyrinthula infection using secondary metabolites, yet, further research is required to 

identify the location and biosynthetic processes involved in the production of these in 

situ. 

 

 

3.1. Introduction 

Phenolic secondary metabolites derived from the shikimic acid and 

phenylpropanoid (SA/PP) pathways provide plants with numerous selective advantages 

including protection from ultraviolet radiation, the attraction of potential pollinators, cell 

wall strengthening, defense signaling and direct antimicrobial and antiherbivory defenses 

(Lattanzio et al. 2006; Stalikas 2007). Several reports have documented the presence of 

phenolic-based compounds in seagrass tissues, and it has been speculated that these 

compounds serve similar roles to that which are found their terrestrial relatives. 

In a broad survey of 25 seagrass species, simple phenolic acids were commonly 

found in both the above- and belowground tissues (Zapata and McMillan 1979). 

Similarly, sulphated phenolic acids and/or flavones were also frequently found in 43 

seagrass species with their presence often conserved taxonomically at the family or genus 

level (McMillan et al. 1980).  

In addition to these surveys on phenolic content, research has begun to shed light 

on the antimicrobial functions of phenolic acids in seagrasses, particularly against the 

pathogen associated with wasting disease, Labyrinthula. It has been shown that there is a 
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significant positive correlation between phenolic acid concentration and L. zosterae 

infection in the temperate eelgrass Z. marina (Vergeer et al 1995; McKone and Tanner 

2009). A similar correlation was found when turtlegrass Thalassia testudinum was 

infected by pathogenic Labyrinthula sp. (Steele et al. 2005). However, it was suggested 

that the upregulation of 4 phenolic acids, 3,4-dihydroxybenzoic acid, p-hydroxybenzoic 

acid, p-coumaric acid, and vanillin, was a result of pseudo-induction. The phenolic acids 

were not accumulating at the infection site, rather they were upregulated only at sites 

above the lesion. It was speculated that the necrotic tissue was serving as a physical 

barrier allowing the buildup of carbohydrates (precursors of phenolics via the shikimic 

acid pathway; Steele et al. 2005).  

While these positive correlations between Labyrinthula abundance and phenolic 

content suggest a bioactive role, there have been no extensive studies that have directly 

tested whether secondary metabolites from T. testudinum have true anti-labyrinthulid 

properties. One single report has tested this assumption using Z. marina (eelgrass) leaf 

tissue as a source of phenolics. Using an agar-based in vitro assay, it was found that 

caffeic acid had variable inhibitory activity against Labyrinthula zosterae colony growth 

(Vergeer and Develi 1997).  

Work by Jensen et al. (1998) demonstrated that Thalassia testudinum is able to 

produce a compound that effectively inhibits the growth and spore attachment of 

Schizochytrium aggregatum, a marine saprobe related to Labyrinthula.  This 

thraustrochytrid was inhibited by the novel flavone glycoside, luteolin7-β-D-

glucopyranosyl-2”-sulphate (Thalassiolin A), at concentrations 15x lower then what was 

found in T. testudinum leaf tissue. 
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 While it seems plausible that seagrasses, in particular T. testudinum, may have the 

secondary metabolite arsenal that could assist in the prevention or reduction of 

Labyrinthula infection, it is still unclear if T. testudinum can specifically produce 

compounds that inhibit the growth of Labyrinthula. With the increasing frequency of 

marine diseases and the devastating effects wasting disease has on seagrass populations 

and ecosystem functions (Robblee and DiDomenico 1991; Fourqurean and Robblee 

1999; Harvell et al. 1999), it is critical to fully understand the factors that prevent or 

reduce wasting disease occurrences. 

 The objective of this chapter was to further understand this relationship between 

the secondary metabolites of Thalassia testudinum and their effects on Labyrinthula 

colony propagation in vitro.  While the 4 previously mentioned phenolic acids (3,4-

dihydroxybenzoic acid, p-hydroxybenzoic acid, p-coumaric acid, and vanillin) have been 

shown to be upregulated during Labyrinthula infection, it is not known  if these 

compounds have direct anti-labyrinthulid activities. Therefore, the first part of this 

chapter was to determine if these phenolics have anti-labyrinthulid activity and then 

identify the specific inhibitory concentrations associated with these compounds, both 

alone and in combination.  It was hypothesized that these phenolic acids have multiple 

functions, and that in addition to accumulation in response to blocked vascular transport, 

they are able to inhibit Labyrinthula colony growth. In the second part of this chapter, a 

bioassay-guided fractionation approach was used to isolate compounds (some of which 

may be previously uncharacterized) that inhibit Labyrinthula colony growth. By using 

this broad exploratory approach, it was hypothesized that compounds that actively inhibit 

Labyrinthula proliferation will be found in T. testudinum leaf tissue. 
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3.2. Materials and Methods 

3.2.1. Labyrinthula Cultures & Seagrass Collection 

 A known virulent strain of Labyrinthula sp., kindly provided by the laboratory of 

Dr. Anne Boettcher (University of South Alabama), was utilized in all bioassay 

experiments. Labyrinthula sp. cultures were maintained in serum seawater agar (SSA) 

media as previously described by Martin et al. (2009) with slight modification. Briefly, 

the SSA recipe contained 500 mL of 0.22 µm filtered seawater (salinity of 25) using 

Instant Ocean® sea salt which was combined with 6 g agar, 0.5 g glucose, 0.05 g 

nutritional yeast, 0.05 g peptone, 1.5 mg germanium dioxide, 12.5 mL 

streptomycin/penicillin (stock: 1.25 g streptomycin/1.25 g penicillin per 100 mL de-

ionized H2O), and 5 mL horse serum. All chemicals were purchased from Sigma-Aldrich 

(St. Louis, MO, USA). 

 Samples of the seagrass Thalassia testudinum (Banks ex. König) were collected 

from a shallow water habitat (~ 1m) on June 2010 from Long Key, Florida, USA 

(24°49‟N, 80°31‟W). Blades were cleaned of epiphytes, patted dry and immediately 

frozen at -80°C until processing. 

 

3.2.2. Liquid Culture Assay 

 To test for anti-Labyrinthula properties of the phenolic acids and the unknown 

compounds extracted from T. testudinum blades, a liquid culture assay was utilized 

(modified from the methods of Martin et al. 2009). Selected concentrations of the 

compound of interest were made by dilution via heated liquid media (SSA media without 

agar). Each replicate sample (final volume of 2 mL) was transferred to a single well of a 
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12-well microplate (Costar©, Corning Inc., Corning, NY, USA). A standard area of SSA 

agar-based Labyrinthula sp. culture was cut using a 6 mm diameter cork borer and placed 

upside down in each well to start the assay. Following 24 h of growth, the liquid media 

was gently removed and replaced with 1 mL of 0.1% Crystal Violet histological stain 

(Fisher Scientific, Fair Lawn, NJ, USA). After 1 minute, the stain was removed, rinsed 

with deionized water and dried at 60°C for ten minutes. Using a dissecting scope, the 

well was inverted and the growth edge was traced. The area of Labyrinthula sp. colony 

growth was quantified using a Kodak© Gel 1500 Imaging System. 

 

3.2.3. Phenolic Acid Inhibition of Labyrinthula sp. 

 The four phenolic acids that have been previously reported to be upregulated in T. 

testudinum during Labyrinthula infection (Steele et al. 2005) were assayed.  Inclusive 

were 3,4-dihydroxybenzoic acid, p-hydroxybenzoic acid, p-coumaric acid, and vanillin.  

To assay for anti-labyrinthulid bioactivity, 50 mg of each phenolic acid (Fisher Scientific, 

Fair Lawn, NJ, USA) was solubilized in 1 mL acetone (100 mg for vanillin) to create 

stock solutions. Beginning with a final concentration of 0.05 mg/ml for each phenolic 

acid, each treatment (replicates of 6) was sequentially diluted by adding the stock 

solution to hot media, keeping the acetone volume the same in each treatment. 

Labyrinthula sp. samples were added to the liquid media and monitored using the assay 

method described above. Preliminary tests showed that the acetone controls (acetone + 

media) did not show any inhibitory activity against Labyrinthula sp. colony growth 

compared to negative controls (only media).  
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Percent inhibition exhibited by the Labyrinthula colonies in response to the 

phenolic acid dose was calculated and graphed against the log of the phenolic acid 

concentration (mM). A sigmoidal dose-response curve (logistic 4-parameter) was fitted 

and the half maximal inhibitory concentration (IC50) was calculated for each phenolic 

acid using GraphPad Prism version 4 (San Diego, California, USA).  

The interactive effects of two phenolic acids on Labyrinthula growth was tested in 

the following combinations using a 1:1 molar ratio of each compound‟s IC50 (Lane and 

Kubanek 2006): 3,4-dihydroxybenzoic acid and p-hydroxybenzoic acid; 3,4-

dihydroxybenzoic acid and p-coumaric acid; p-hydroxybenzoic acid and p-coumaric acid; 

and p-coumaric acid and vanillin. The dose-response curve derived from each 

combination was compared to the theoretic additive curve developed from the two 

individual dose-response curves (Tallarida et al. 1997). Additionally, an interactive index 

was used to compare the IC50 values of the combination and theoretical additive curves 

(Observed IC50/Theoretical Additive IC50). An index of less than one suggests synergism 

while an index equal to one indicates an additive response (Tallarida 2002). 

To visualize the presence of phenolic compounds, live T. testudinum blades were 

infected for 5 days using the pathogenic strain of Labyrinthula described above (see 

infection methods, Chapter 2). Infected tissue was visualized using an Olympus BX60 

fluorescent microscope (ex 350 nm, em ≥ 450 nm; Olympus Corp., Tokyo, Japan). 
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3.2.4. Bioassay-Guided Fractionation 

 General 

 Fisher Scientific (Fair Lawn, NJ, USA) HPLC-grade solvents were used in all 

fractionation and characterization steps. All solvent fractions were dried in vacuo using a 

Büchi Rotavapor R210 (Büchi Labortechnik AG, Flawil, Switzerland) and a Labconco 

Freezone 6 lyophilizer (Labconco, Kansas City, MO, USA). Column chromatography 

was carried out using Varian Bond Elut C18 60 mL columns (Agilent Technologies, 

Santa Clara, CA, USA) under pressure. HPLC was performed using a Zorbax SB-C18 

column (9.4 x 250 mm, 5µm; Agilent Technologies, Santa Clara, CA, USA) in 

association with a Waters 1525 Binary pump, Waters 2487 Dual Wavelength Absorbance 

Detector and Breeze Software Version 3.30 SPA (Waters Corp., Milford, MA, USA). 

Proton nuclear magnetic resonance (1H NMR) spectroscopy was performed using a 

Varian VNMRS (500 MHz; Agilent Technologies, Santa Clara, CA, USA). HPLC-MS 

was performed using a Synergi-Hydro RP column (Phenomenex, Inc., Torrance, CA, 

USA) in association with Applied Biosystems (ABI) 3200 QTrap LC/MS/MS 

(International Equipment Trading Ltd., Vernon Hills, IL, USA). 

  

Extraction and Isolation 

 Thalassia testudinum biomass (1.17 kg fresh weight) was homogenized in a 

blender then extracted three times in 60:40 EtOH:H2O (v/v).  The solvent extract was 

combined, filtered, and dried in vacuo yielding 108 g of crude extract. A total of 17 g of 

extract was solvent partitioned in 1g aliquots between 3:2 MeOH: H2O (v/v) and 

chloroform (400 mL ea.). Fractions were dried, and the chloroform fraction (Fraction C) 
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was stored at -80°C until further use. The MeOH:H2O fraction (14.12 g) was dissolved 1 

g at a time in 300 mL deionized water (Fraction W) and partitioned with an equal part of 

n-butanol (Fraction B). Both Fraction W and Fraction B were separately applied to a C-

18 column and eluted sequentially with 80:20, 60:40, 40:60, 20:80 and 0:100 H2O:MeOH 

(v/v; fractions 1-5, respectively).  

  

 Compound Characterization 

 1H NMR spectroscopy and HPLC- mass spectroscopy were used to further 

characterize metabolites from bioactive HPLC fractions. For 1H NMR spectroscopy, 

samples were solubilized in 1 mL deuterated chloroform. For HPLC-MS, samples were 

solubilized in HPLC-grade MeOH to a final concentration of 100 µg/mL. The LC-MS 

gradient was as follows: 50:50 H2O:MeOH (0.1% formic acid) to 100% MeOH (0.1% 

formic acid) in 15 min. 100% MeOH was run for 5 min then returned to 50:50 

H2O:MeOH in 1 min. 

 

3.2.5. Statistical Analyses 

 The differences among the IC50 values of each compound as well as between the 

original and theoretical curves were statistically analyzed with an F test  (p= 0.05) using 

GraphPad Prism Version 4. 

 

3.3. Results 

3.3.1. Labyrinthula Growth Inhibition by Phenolic Acids 

Each phenolic acid was assayed in order to assess its inhibitory activity against 

Labyrinthula colony growth, beginning with a concentration of 0.05 mg/mL 
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(approximately 0.3 mM) and increasing the dose until 100% growth inhibition occurred. 

A dose-response curve was created for each phenolic acid, and the concentration that 

inhibited Labyrinthula colony growth by half (IC50) was calculated (Fig. 3.1). Each IC50 

was significantly different (F test, p≤ 0.0011). P-coumaric acid (p-coum) was the most 

potent Labyrinthula inhibitor (IC50 = 0.6625 mM), followed by p-hydroxybenzoic acid 

(p-hyd; IC50= 0.9622 mM), 3,4-dihydroxybenzoic acid (3,4-dihyd; IC50= 1.048 mM), 

then vanillin (IC50= 5.613 mM). 

Using the phenolic acid concentrations found in infected T. testudinum tissue 

reported by Steele et al. (2005), in planta levels were converted from % dry weight to a 

mM basis. These values were then compared with the anti-labyrinthulid IC50 values for 

each of the phenolic acids used in this study (Fig. 3.2). Each phenolic acid was produced 

in T. testudinum leaves in excess of what was required to inhibit Labyrinthula colony 

growth (IC50 value). Notably, the IC50 values of p-hydroxybenzoic and vanillin were 45x 

and 14x lower than the in planta concentrations of 43.44 mM and 78.87 mM, 

respectively (Fig. 3.2). 

Bioassays using a combination of two phenolics were performed to determine if 

there was an additive or synergistic effect on Labyrinthula growth. The combination of p-

coumaric acid and vanillin did not show any activity against Labyrinthula growth. For 

combinations that exhibited anti-labyrinthulid activity, additive curves and IC50 values 

were calculated using the values from the individual curves. The interaction index 

quantitatively indicated an additive or synergistic interaction between two compounds. 

The combination of 3,4-dihydroxybenzoic acid and p-hydroxybenzoic acid had an index 

value closest to 1 (0.905) while the combination of p-coumaric acid and p-
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hydroxybenzoic acid had the lowest index value (0.7306; Table 1).The IC50 values 

resulting from each combination of phenolic acids (3,4-dihydroxybenzoic acid and p-

hydroxybenzoic acid, 3,4-dihydroxybenzoic acid and p-coumaric acid, and p-coumaric 

acid and p-hydroxybenzoic acid) were all significantly different from their respective 

theoretical additive curves (F test, p< 0.0001; Figs. 3.3-3.5, respectively).  
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Figure 3.1 Effect of phenolic acid concentrations on Labyrinthula colony growth for p-

coumaric acid, p-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid and vanillin. Letters 

indicate significantly different IC50 values (F test, p≤ 0.0011).  

p-coumaric acid a 
p-hydroxybenzoic acid b 
3,4-dihydroxybenzoic acid c 
Vanillin b 
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 Figure 3.2 Comparison of the phenolic acid IC50 values reported in this study (red) with 

the in planta concentrations reported by Steele et al. (2005). Dose-response curves were 

used to calculate the IC50 values (Fig. 3.1).  
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Table 3.1 The interaction index used to quantify the degree of synergism on Labyrinthula 

sp. colony growth in the presence of two of phenolic acids.  

  
Observed 

IC50   

Theoretical 
Additive 

IC50   
Interaction 

Indexa 

3,4 dihyd + p-hyd 0.9078 
 

1.003 
 

0.905 
  

     3,4 dihyd + p-coum 0.5982 
 

0.8118 
 

0.7306 
  

     p-coum + p-hyd 0.6688   0.7847   0.8523 
a
 Index calculated as Observed/Theoretical. Values < 1 suggest a synergistic interaction is 

occurring.   
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Figure 3.3 Comparison of the combined dose-response curve of 3,4-dihydroxybenzoic 

acid and p-hydroxybenzoic acid with the theoretical additive curve. Letters indicate 

significant differences in IC50 values (F test, p<0.0001). 

  

Combination of 3,4-dihyd and p-hyd a 
Theoretical Additive Curve b 
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Figure 3.4 Comparison of the combined dose-response curve of 3,4-dihydroxybenzoic 

acid and p-coumaric acid with the theoretical additive curve. Letters indicate significant 

differences in IC50 values (F test, p<0.0001). 

  

Combination of 3,4-dihyd and p-coum a 
Theoretical Additive Curve b 
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Figure 3.5 Comparison of the combined dose-response curve of p-coumaric acid and p-

hydroxybenzoic acid with the theoretical additive curve. Letters indicate significant 

differences in IC50 values (F test, p<0.0001). 

  

Combination of p-coum and p-hyd a 
Theoretical Additive Curve b 
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Figure 3.6 Autofluorescence of phenolic compounds in Thalassia testudinum leaf tissue 5 

days post-infection with Labyrinthula. (A) Light microscopy shows pronounced lesions 

(brown) surrounded by healthy green tissue. (B) Excitation using a DAPI filter set (ex 

350, em ≥ 450) shows accumulation of phenolics (blue) on lesion periphery. Red 

indicates the localization of chloroplasts and other photosynthetic epiphytes. 

  

A B 100 µm 100 µm 
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To visually detect the presence of phenolic compounds during Labyrinthula 

infection, 5 days post-infection Thalassia testudinum blades were visualized using 

fluorescent microscopy (Fig. 3.6). The presence of blue autofluorescence suggested the 

accumulation of phenolics less than 50 µm from lesion site (Fig. 3.6B). Red fluorescence 

indicated the localization of chloroplasts and other photosynthetic epiphytes (Fig. 3.6B). 

  

3.3.2. Bioassay-Guided Fractionation 

Crude extract was solvent partitioned between 3:2 MeOH:H2O (v/v) and 

chloroform (Fraction C). The MeOH:H2O phase was dried and further partitioned 

between equal parts water (Fraction W, 10.59 g) and n-butanol (Fraction B, 1.973 g). All 

fractions were dried and tested negative for anti-Labyrinthula activity. Fractions W and B 

were further separated using reverse-phase liquid chromatography resulting in fractions 

W1-W5 and B1-B5, respectively. Liquid culture assays with these fractions revealed 

fractions B4, B5 and W2 inhibited Labyrinthula colony growth by 100% relative to 

solvent only controls (Fig. 3.7-3.8).    

Fraction W2 was further purified using reverse phase high pressure liquid 

chromatography (RP-HPLC). Chromatographic fractions were collected in 5 min 

increments (0-30 min; fractions W2-A through F, respectively; Fig. 3.9) and then assayed 

for activity. None of these fractions exhibited anti-labyrinthulid activity. Because anti-

labyrinthulid activity was not chemically tractable in fraction W2, isolation of 

compounds from this fraction was not further pursued. 

Fractions B4 and B5 were also purified using RP-HPLC. Fractions were collected 

in 5 min increments (0-35 min; fractions B4-A-G and B5-A-G, respectively) and then 
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assayed for activity.  Fraction B4 showed anti-labyrinthulid activity in fractions B4-B and 

B4-D at 250 µg/mL and 200 µg/mL, respectively (Fig. 3.10). Bioassays of the B5 

fractions revealed activity in B5-D at 133 µg/mL and B5-E at 88.9 µg/mL (Fig. 3.11). 

Fractions B5-D and B5-E showed the greatest bioactivity and so were further 

characterized using 1H NMR and RP-HPLC coupled with mass-spectroscopy. The signal 

to noise ratio in the 1H NMR was too poor for adequate analysis due to the insufficient 

quantity of sample. LC-MS data were also inconclusive, possibly owing to the 

complexity of the molecular fragmentation patterns.  
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Figure 3.7 Percent inhibition of Labyrinthula colony growth by Thalassia testudinum 

chromatographic fractions originating from the water fraction (Fraction W) of the solvent 

partition. Fractions W1- W5 correspond to a solvent gradient solvent gradient of 20% to 

100% MeOH in H2O. The asterisk indicates the fraction that exhibited 100% growth 

inhibition and was subsequently subjected to RP-HPLC. 
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Figure 3.8 Percent inhibition of Labyrinthula colony growth by Thalassia testudinum 

chromatographic fractions originating from the n-butanol fraction (Fraction B) of the 

solvent partition.  Fractions B1- B5 correspond to a solvent gradient of 20% to 100% 

MeOH in H2O. Asterisks indicate the fractions that exhibited 100% growth inhibition and 

were subsequently subjected to RP-HPLC. 
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Figure 3.9 Representative RP-HPLC chromatogram of fraction W2, with monitoring at 

254 and 350 nm. Letters represent the fractions collected in 5 min intervals. Subsequent 

bioassays showed no anti-labyrinthulid activity. 
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Figure 3.10 Representative RP-HPLC chromatogram of fraction B4, with monitoring at 

254 and 350 nm. Letters represent the fractions collected in 5 min intervals. Highlights 

indicate fractions exhibiting anti-labyrinthulid activity. 
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Figure 3.11 Representative RP-HPLC chromatogram of fraction B5, with monitoring at 

254 and 350 nm. Letters represent the fractions collected in 5 min intervals. Highlights 

indicate fractions exhibiting anti-labyrinthulid activity. 
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3.4. Discussion 

3.4.1. Phenolic Acid Inhibition of Labyrinthula sp. 

 Phenolic compounds provide plants with an array of benefits including protection 

against microorganisms. Seagrasses are rich in phenolics, including phenolic acids and 

their conjugates (Zapata and McMillan 1979; McMillan et al. 1980). Four phenolic acids 

were previously identified as being pseudo-induced in T. testudinum leaf tissue while 

under attack by pathogenic Labyrinthula (Steele et al. 2005). In the current study, it was 

demonstrated that these metabolites, alone (Fig. 3.1) and in combination (Table 3.1), 

exhibited direct anti-Labyrinthula properties. P-coumaric acid, a hydroxycinnamic acid, 

was the most potent antibiotic with the lowest IC50 (0.6625 mM). The other phenolic 

acids, all hydroxybenzoic acid derivatives, had higher IC50 values. Vanillin, a reduced 

form of vanillic acid, had the highest IC50 (5.613 mM).  

In combination, p-coumaric acid and vanillin had no effect on Labyrinthula 

growth which suggests a negative, antagonistic interaction between these two 

compounds. However, a positive, synergistic interaction was observed with the other 

combinations of phenolic acids (3,4-dihydroxybenzoic acid and p-hydroxybenzoic acid; 

3,4-dihydroxybenzoic acid and p-coumaric acid; and, p-hydroxybenzoic acid and p-

coumaric acid). Each IC50 value calculated from the combination dose-response curve 

was significantly different than the theoretical additive IC50 values (Figs. 3.3-3.5). Each 

interaction index was less than 1 suggesting that Labyrinthula growth was affected 

synergistically in the presence of these phenolic acid combinations (Table 3.1). In 

general, secondary metabolites often have resource and metabolic costs associated with 

production (Bolton 2009). When the ecological benefits outweigh these costs, these 
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metabolites are said to maximize the plant‟s fitness (Optimal Defense Theory; Rhoades 

1979). Synergistic interactions of secondary metabolites are thought to increase a plant‟s 

fitness since a greater toxic effect is reached with lower concentrations of metabolites 

resulting in lower associated resource costs (Nelson and Kursar 1999). Phenolic acids, 

particularly p-coumaric acid, p-hydroxybenzoic acid and vanillic acid, have been shown 

to produce synergistic inhibitory responses on invading fungi in conifers (Cates 1999). 

 Interestingly, when the IC50 values of the individual phenolic acid inhibition trials 

in this study were compared to the in planta levels reported by Steele et al. (2005), the 

IC50 values were 2.5x – 45x lower than the levels reported during Labyrinthula infection 

(Fig 3.2). This suggests that although there are ample phenolic acids available to inhibit 

Labyrinthula, this may not be their primary role. Despite what would be considered high 

levels of phenolics, the plants are still capable of being infected. The following are 

possible explanations of the disconnection between the phenolic content with respect to 

the in vitro and in plant results: 

 When testing secondary metabolites for antimicrobial activity, bioassays may not 

always predict their ecological functions since the full range of host and pathogen 

responses and tactics are not being utilized (Engel et al. 2002). In this study, the 

whole colony of Labyrinthula was fully exposed to the phenolic acids while 

growing on a 2-D surface. This is unlike the 3-D environment of a cell in which a 

few cells may be exposed to host metabolites. 

 When invading seagrass tissue, Labyrinthula uses enzymes to degrade live 

epidermal cells. While not much is known about these enzymes, it is possible that 

the molecules utilized during infection of live tissue may not be expressed in 
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vitro and may cause Labyrinthula to response differently to the phenolic acids 

produced in planta. 

 Free phenolic acids were used in the anti-Labyrinthula bioassays. While free 

phenolics are often more toxic to pathogens, they may be naturally sequestered in 

plant organelles or vacuoles or present in inactive forms (bound to cells walls or 

stored as glycosides) until invasion occurs (van Sumere et al. 1975; Lattanzio et 

al. 2006). This helps to prevent self-damage while also being readily available 

for activation by enzymes in response to pathogen challenge (Lattanzio et al. 

2006). 

 Figure 3.6 shows accumulation of phenolics less than 100 µm from the lesion site 

while the phenolic acids extracted by Steele et al. (2005) were taken 2 cm from 

the lesion. Low molecular weight phenols, including phenolic acids, have been 

shown to accumulate at the site of infections as a rapid, initial lines of defense 

against microorganisms (Nicholson and Hammerschmidt 1992). Coinciding with 

defense strategies in land plants, the phenolic acids in T. testudinum may be serve 

as the first line of defense to slow Labyrinthula growth while secondary 

responses are being synthesized (Nicholson and Hammerschmidt 1992). 

 The relatively low levels of phenolic acids needed to inhibit Labyrinthula growth 

in culture-based bioassays and the accumulation of phenolics at the lesion sites on 

infected blades suggest that T. testudinum possibly employs these secondary metabolites 

as initial defenses to wasting disease.  To fully understand the defense mechanisms, it is 

necessary to identify the inducible defenses that are often the end-products of signal-

transduction pathways. Such defenses include an oxidative burst of reactive oxygen 
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species (see Chapter 2), synthesis of specific anti-microbial compounds (i.e. 

phytoalexins) and pathogenesis-related (PR) proteins, as wells as protective cross-linking 

of phenolic compounds as physical barriers to further infections (Dixon and Paiva 1996; 

Heath 2000; Lattanzio et al. 2006). 

 

3.4.2. Bioassay-Guided Fractionation 

 A bioassay-guided fractionation technique was used to survey potential anti-

labyrinthulid secondary metabolites found in Thalassia testudinum blade tissue. Thus far, 

activity was followed to two fractions of the n-butanol partition (fractions B4 and B5; 

Fig. 3.8). This coincides with the activity found in the n-butanol fractions reported by 

Regalado et al. (2009) from which a flavone glycoside (Thalassiolin B) and phenolic acid 

(p-hydroxybenzoic acid) were subsequently isolated. 

 LC-MS analysis of fraction B5-D indicated a compound of high molecular weight 

([M+] m/z = 986.6). These compounds were initially detected at 254 nm which is the 

wavelength used to detect phenolics acids (Steele et al. 2005; Stalikas 2007). It is 

possible that B5-D contains polymers of phenolic acids or perhaps a new compound(s) 

that has yet to be fully characterized. 

 

3.4.3. Conclusion 

 In this chapter, it was concluded that (1) phenolics acids are inhibitory toward 

Labyrinthula growth in culture and (2) by using a bioassay-guided fractionation 

technique, anti-labyrinthulid compounds could be isolated directly from T. testudinum 

tissue. The pure phenolic acids used in this study where able to inhibit Labyrinthula 
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colony growth at concentrations naturally found T. testudinum tissue. In some cases, the 

combination of two phenolic acids was able to elicit a synergistic inhibitory response on 

Labyrinthula proliferation. Even though the phenolic acids were previously shown to be 

pseudo-induced in response to Labyrinthula infection, the strong inhibitory properties 

and the accumulation of phenolics adjacent to the lesion sites suggest that these phenolic 

acids may in fact be a component of an initial line of defense against wasting disease. 

Additionally, despite the inconclusive characterization of the active compounds, 

metabolites exhibiting anti-labyrinthulid properties have been partially isolated directly 

from T. testudinum tissue.   

In conclusion, these initial results on the biochemical-mediated defenses of T. 

testudinum to Labyrinthula infection suggest that turtlegrass produces anti-labyrinthulid 

compounds. Future work should investigate the timing and location of pre-formed and 

induced compounds associated with a defense response in T. testudinum. 
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4 

General Conclusions and Outlook 

 

 It was the goal of this thesis to explore the physiological and biochemical 

responses of the tropical seagrass Thalassia testudinum to hypersalinity stress and 

Labyrinthula infection. In Chapter 2, after exposure to elevated salinity, T. testudinum 

experienced chlorophyll degradation as well as oxidative stress yet was able to maintain 

photosynthetic functions.  Interestingly, exposure to a hypersaline environment did not 

increase T. testudinum‟s susceptibility to wasting disease during the initial stages of 

infection. The cause of the decreased susceptibility is unclear since Labyrinthula 

infections may have been affected directly by the hypersaline environment or indirectly 

by the ROS levels in the host tissue. 

While ROS accumulation in response to infection was not measured in this study, 

it was shown that Labyrinthula growth can be significantly inhibited in vitro in the 

presence of ROS (i.e., H2O2) at levels well below the concentrations found in T. 

testudinum leaf tissue. Additionally, while ROS are known to have several roles as 

defense mechanisms such as direct microbial toxicity, cell wall reinforcement and 

signaling of other defense-related molecules, few studies have explored the relationship 

between the ROS response of seagrass and microbial invasion (Ross et al. 2008; Sureda 

et al. 2008). More research is needed to understand the in vivo effects of ROS on 

Labyrinthula during inoculation.  
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 After one week, T. testudinum exhibited increased respiration in response to 

Labyrinthula infection. This change in metabolism has been reported in higher plants to 

support the higher resource demands associated with pathogen resistances. For example, 

routing raw materials to the shikimic acid and phenylpropanoid pathways for the de novo 

production of secondary metabolites can require intense metabolic demands (Bolton 

2009).  In Chapter 3, it was shown that 5 days post-infection, phenolic compounds were 

upregulated in the immediate vicinity of Labyrinthula lesions. Phenolics that accumulate 

at the infection site are often associated with a rapid first line of defense in order to slow 

or stop further disease progression while other, more effective strategies can be employed 

(Nicholson and Hammerschmidt 1992). These secondary responses may include the de 

novo production of specific compounds such as phytoalexins and pathogenesis-related 

proteins (Nicholson and Hammerschmidt 1992; Lattanzio et al. 2006). It would be 

interesting to see if the increased respiration in T. testudinum is directly involved in a 

secondary stage of defense. 

 Using in vitro bioassays, unidentified compounds extracted from T. testudinum 

tissue as well as 4 phenolic acids that are known to be present during wasting disease 

exhibited anti-labyrinthulid properties (Chapter 3). This suggests that T. testudinum does 

in fact have the secondary metabolite arsenal to defense itself during Labyrinthula 

infection. However, there was a disconnection between the concentrations of 4 phenolics 

acids that inhibit Labyrinthula in vitro and their concentrations during infection of T. 

testudinum tissue (Steele et al. 2005). This highlights the importance of using 

ecologically relevant assays to help detect the effects of secondary metabolites on 
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microbial behavior (e.g., adhesion, settlement, and surface swarming; Jensen et al. 1998; 

Engel et al. 2002). 

 Few studies have explored the regulation of the SA/PP pathways as well as other 

defense-related signal-transduction pathways in seagrasses. Two hormones involved in 

defense signaling in plants, salicylic acid and jasmonic acid, do not seem to be involved 

in seagrass phenolic production during microbial invasion or wounding (Steele et al. 

2005; Arnold et al. 2008). It may also be important to explore the location and timing of 

biochemical defenses in seagrasses, particularly at the seagrass leaf surface when 

microbial invasion is initiated (Lane et al. 2009) as well as the genomic level (Lane and 

Moore 2011). 

 In conclusion, the results of this thesis suggest that Thalassia testudinum does 

have biochemical and metabolic defense mechanisms to at least manage Labyrinthula 

infection. T. testudinum is also able to physiologically adjust to survive under (short term 

conditions) in a hypersaline environment without increasing its susceptibility to wasting 

disease. This supports the currently hypothesis that multiple concurrent environmental 

stressors are involved the significant decline in seagrass health preceding large wasting 

disease outbreaks. 
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