
UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

2001

CORBA: A Quantitative and Qualitative
Comparison of Industrial Strength, Commercial
CORBA ORBs for the JAVA Platform
Michelle Leigh McKeller
University of North Florida

This Master's Project is brought to you for free and open access by the
Student Scholarship at UNF Digital Commons. It has been accepted for
inclusion in UNF Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more information, please
contact Digital Projects.
© 2001 All Rights Reserved

Suggested Citation
McKeller, Michelle Leigh, "CORBA: A Quantitative and Qualitative Comparison of Industrial Strength, Commercial CORBA ORBs
for the JAVA Platform" (2001). UNF Graduate Theses and Dissertations. 323.
https://digitalcommons.unf.edu/etd/323

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNF Digital Commons

https://core.ac.uk/display/71998958?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu
https://digitalcommons.unf.edu
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu

CORBA:
A QUANTITATIVE AND QUALITATIVE COMPARISON

OF INDUSTRIAL STRENGTH, COMMERCIAL CORBA ORBS
FOR THE JAVA PLATFORM

by

Michelle Leigh McKeller

A graduate project submitted to the
Department of Computer and Information Sciences

in partial fulfillment of the requirements for the degree of

Master of Science in Computer and Information Sciences

UNIVERSITY OF NORTH FLORIDA
DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES

Dec, 2001

The graduate project "CORBA: A Quantitative and Qualitative Comparison oflndustrial
Strength, Commercial CORBA ORBs for the Java Platform" submitted by Michelle
Leigh McKeller in partial fulfillment of the requirements for the degree of Master of
Science in Computer and Information Sciences has been

Approved by the graduate project committee:

Graduate Project Advisor and Committee Chairperson

Dr. Charles N. Winton
Graduate Director

Date

Accepted for the Department of Computer and Information Sciences:

0

Chair erson of the Department

11

r '

Signature Deleted

Signature Deleted

Signature Deleted

ACKNOWLEDGEMENT

I would like to especially thank Dr. Sanjay Ahuja for his instruction and support for the

project.

I would also like to thank my friends and family for their support and understanding

during the many hours I dedicated to achieving this milestone in my life and career.

Finally, I would also like to thank my employer, Homeside Lending, for their tuition

reimbursement program and flexible work hours, which made pursuing this degree

possible.

111

CONTENTS

List of Figures ... vii

List of Tables ... viii

Abstract .. ix

Chapter 1 : Introduction .. 1

Chapter 2: Distributed Systems ... 3

Chapter 3: Middleware .. 5

Chapter 4: CORBA .. 7

4.1 CORBA Services ... 8

4.2 CORBA Architecture ... 10

4.3 Interface Definition Language ... 12

Chapter 5: ORBS ... 13

5.1 Java 2 ORB .. 13

5.2 VisiBroker .. 14

5.3 Orbix 2000 ... 16

IV

Chapter 6: Project Description ... 18

6.1 Scenario .. 19

6.2 Database and Connectivity .. 20

6.3 Services .. 21

6.4 Servers .. 21

6.5 Factory Classes .. 22

6.6 Clients .. 23

Chapter 7: Testing ... 25

Chapter 8: Results and Comparisons ... 26

8.1 JAVA20RB ... 26

8.1.1 Quantitative Comparison .. 26

8.1.2 Qualitative Comparison .. 27

8.2 VisiBroker .. 28

8.2.1 Quantitative Comparison .. 28

8.2.2 Qualitative Comparison .. 29

8.3 Orbix 2000 ... 29

8.3 .1 Quantitative Comparison .. 29

8.3.2 Qualitative Comparison .. 30

8.4 Additional Comparisons .. 32

Chapter 9: Conclusions .. 33

References ... 34

v

Appendix A ... 3 5

Appendix B ... 3 7

Appendix C ... 3 8

Appendix D ... 40

Appendix E ... 41

Appendix F .. 42

Appendix G ... 44

Appendix H ... 46

Appendix I .. 48

Appendix J .. 50

Appendix K ... 52

Appendix L ... 53

Appendix M .. 71

Appendix N ... 90

Appendix 0 ... 11 7

Vita .. 119

vi

FIGURES

Figure 1: Software and hardware service layers in distributed systems 6

Vll

TABLES

Table 1: CORBA Services .. 8

Table 2: Additional Comparison Results ... 32

vm

ABSTRACT

In distributed systems design, middleware is a key component. Middleware establishes

the communication between a client and server in a multi-tiered architecture. One

approach to middleware is implementing the OMG's CORBA standard, through the use

of ORBs. Three of the more popular commercially available ORBs are Sun's Java 2

ORB, Borland's VisiBroker for Java, and IONA's Orbix 2000 for Java. The purpose of

this graduate project was to compare the three ORBs both quantitatively and

qualitatively. The project compares the ORBs quantitatively by measuring the

performance of each ORB, in terms of response time. The comparison was done

qualitatively by looking at the services each ORB provides, the level of ease of

implementing a simple, client-server application in each ORBs' syntax, the time taken to

develop each application, difficulties encountered, and the stability of each ORB when

tested. The results ofthe project should prove to be useful for distributed systems

designers, and for researchers studying middleware products. In addition, each of the

applications created for the project can be re-used for any future performance or load

testing of the ORBs one might want to conduct.

IX

Chapter 1

INTRODUCTION

Due to the increasing popularity of the Internet and E-Commerce, distributed systems are

in widespread use today. Distributed systems provide the speed and reliability that are

needed in today's high-volume, fast-paced computing world. When designing a

distributed system, the question is asked, which middleware product should be used?

The answer is not a simple one. With so many middleware products available, it is

difficult to pick the best one to meet all of your systems needs. Purchasing a product

based on an article or anecdotal experience is a poor substitute for an in-depth analysis of

a product prior to purchase. However, most distributed systems designers do not have the

time or materials available for an in-depth analysis of middleware products. Due to this,

to aid in choosing the right middleware, a comparison was made of three of the more

popular middleware products that implement the OMG's CORBA standard, through the

use of ORBs. For the comparison of the middleware products each product was compared

both quantitatively and qualitatively by a graduate student, who is also a full-time senior

systems programmer. The quantitative comparison was done by measuring the

performance, the response time for the server to respond to a client request, for each

ORB. The qualitative comparison involved implementing a separate client-server

application for each product. The applications were then compared by how easy each

one was to implement, the amount of time it took to create each application to where it

- 1 -

was fully functional, the types of difficulties encountered with each product, and the

stability of each product. Lastly, for the qualitative comparison, each ORB was evaluated

in terms of services it provides.

The usefulness of the project should be great for any distributed systems designer, or

researcher in the field of middleware. Each application created for the project lends itself

to further use outside the scope of this project, for further testing of the middleware

products, or with some minor revisions, for testing of another ORB product.

- 2 -

Chapter 2

DISTRIBUTED SYSTEMS

To understand the project and its goal, one must first begin with a clear understanding of

distributed systems, what they are, and how they are used. The definition of a distributed

system is one in which components located at networked computers communicate and

coordinate their actions only by passing messages [CoulourisOl]. Distributed systems

have the following characteristics: concurrency of components, lack of a global clock,

and independent failures of components. Concurrency of components means that

multiple components in the system can run concurrently or at the same time. An example

of this would be multiple servers servicing multiple client requests concurrently. Lack of

a global clock means that the time of day at each server can vary. If the application you

are implementing involves dates and times then your application must handle the

continuity of date and time across each server or client the application is running on. By

independent failures of components, we mean that if your application is running on

multiple servers, one of the servers can be taken down, and the remaining servers can still

function as if all servers were fully functioning. Examples of popular distributed systems

are the Internet and any intranet.

The main purpose or benefit of a distributed system is the ability to share resources

among many systems. The resources that can be shared are objects, hardware, software,

- 3 -

printers, database records, files. The World Wide Web is an example of resource sharing.

With distributed systems, many challenges arise, some of which are the heterogeneity of

the systems components, openness, scalability, failure handling, concurrency of

components, security, and transparency [CoulourisOl]. Heterogeneity ofthe systems

components means that your distributed system must be able to handle differences among

each component in your system. The differences can include hardware and software.

Openness means a new component can be added to the system and it can be made

available for use by a variety of clients. Scalability means the ability to continue the

same level of performance and reliability under an increasing number of users. Failure

handling is the ability to handle any failures that occur in the distributed system,

including software and hardware failures. Transparency means that to the client or user,

the distributed system is one mechanism, they are not aware of how many servers are in

the system, or where they are located. With transparency, the user only knows, in order

to connect to the system, the following needs to be done. The underlying architecture of

the system the user is connecting to is invisible to them.

When dealing with heterogeneity in your distributed system, a component to consider

including in your design is middleware.

- 4 -

Chapter 3

MIDDLEWARE

Middleware refers to a software layer that provides a programming abstraction as well as

masking the heterogeneity of the underlying networks, hardware, operating systems, and

programming languages [CoulourisO 1]. An example of a popularly used middleware is

CORBA. Java RMI is another example of a middleware product, however RMI differs

from CORBA in the fact that it can only be implemented in the Java programming

language. The majority of middleware is implemented over IP, the Internet protocol. IP

itself hides the heterogeneity of the underlying networks. However, all middleware

handles the heterogeneity of operating systems and hardware.

Masking the differences of the lower layers of a distributed system's architecture is just

one job of middleware. The other job of middleware is to provide a uniform

programming model for system programmers to use. Middleware is represented by

objects or processes in a set of computers that interact with each other to implement

resource sharing and communication support for distributed applications [CoulourisOl].

Middleware provides the foundation for building software components that can work

together in a distributed environment. Middleware also provides a mechanism for

applications to communicate with each other through the use of remote method

- 5 -

invocation, notification of events, replication of shared data, and communication between

a group of processes.

Middleware also provides applications with services that are bound to the distributed

programming model that the middleware provides [CoulourisO 1]. An example of this

would be the many services that CORBA provides. Figure 1 shows the software and

hardware service layers of a distributed system.

Applications, services

Middleware

Operating System J
1-----------l Platform

Computer and network hardware

Figure 1: Software and hardware service layers in distributed systems [CoulourisOl]

- 6 -

Chapter 4

CORBA

In 1989 the Object Management Group or OMG was formed with a goal in mind of

creating a means of allowing distributed objects that were programmed in any language

to communicate with each other [CoulourisOl]. The goal was achieved when the OMG

introduced a metaphor, the object request broker, commonly known as an ORB

[CoulourisOl]. The ORB helps an object to invoke a method on another object. The

ORB handles locating the object, activating the object if needed, and communicating the

object's request to the other object. The called upon method is carried out, and a

response is sent back to the requesting object. Later, the OMG created a specification for

an ORB architecture, this specification is CORBA.

CORBA- Common Object Request Broker Architecture is the most commonly used

middleware component used today. The basics of CORBA are portability and

interoperability. Portability meaning an application written to access a particular

CORBA implementation or ORB, could be minimally changed to access another ORB

implementation. In reality this takes more than minimal work with today' s ORB

products. Interoperability means that anyone can take the specification, implement their

ORB, and that ORB can communicate with any ORB implementation. This concept is

- 7 -

referred to as HOP or Internet Inter-ORB Protocol. HOP is based on TCP/IP and is

widely used on the Internet.

4.1 CORBA Services

CORBA not only provides portability and interoperability, but it also provides a wealth

of distributed services to support them. The following table lists the more popular

CORBA services 0Guru01]:

Service Description
Object Life Cycle Defines how CORBA objects are created,

removed, moved, and copied
Naming Defines how CORBA objects can have

friendly symbolic names
Events Decouples the communication between

distributed objects
Relationships Provides arbitrary typed n-ary relationships

between CORBA objects
Externalization Coordinates the transformation of CORBA

objects to and from external media
Transactions Coordinates atomic access to CORBA

objects
Concurrency Control Provides a locking service for CORBA

objects in order to ensure serializable
access

Property Supports the association of name-value
pairs with CORBA objects

Trader Supports the finding of CORBA objects
based on properties describing the service
offered by the object

Query Supports queries on objects

Table 1: CORBA Services

- 8 -

Some of the services are used more often than others and are worth a more detailed

explanation.

The Naming Service allows names to be bound to remote object references of CORBA

objects within naming contexts [CoulourisOl]. The scope in which a set of names applies

is called a naming context. Within a naming context, each name must be unique. A

client calls the Naming Service to get a reference to a remote object. The client passes

the name of the object to the Naming Service and the service then looks up the object

reference by name, and returns the reference to the client. The client can then invoke

methods on the remote object using that reference.

The Event Service is a notification service. The event service allows suppliers, or objects

of interest, to communicate notifications to subscribers. The notifications are sent to the

subscribers as results of a CORBA remote method invocation. Notifications can be

pulled by the subscriber or pushed by the supplier. The Event Service would be useful,

for example, in situations where a client received updates of new client application

releases from a server. The client could automatically be notified when a new release

was made available, the pushed technique, or could invoke a method on the server to see

if notifications were available, the pulled technique.

The Notification Service is basically the same as the Event Service with some

improvements. With the Notification Service, filters are used to either keep notifications

- 9 -

from being sent to all recipients of the notification, or if a client, used to keep from

receiving all notifications, and only pick which ones they would like to receive.

The Transaction Service provides the capabilities to send remote method invocations as

one transaction using begin, commit, and rollback commands. The client creates the

transaction, the ORB then processes the transaction based on the commands at the

beginning and end of the transaction.

4.2 CORBA Architecture

The CORBA architecture consists of several components which are the ORB core, the

object adapter, skeletons, client stubs/proxies, implementation repository, interface

repository, dynamic invocation interface, and dynamic skeleton interface.

The ORB Core provides an interface that includes the following [CoulourisOl]:

• operations enabling it to be started and stopped

• operations to convert between remote object references and strings

• operations to provide argument lists for requests using dynamic invocation

The object adapter is the connector of the programming language interface of the

corresponding servant classes and the CORBA objects with IDL interfaces. The object

adapter creates the remote object references for the CORBA objects, activates objects,

- 10 -

and sends remote method invocations through a skeleton to the correct servant. The

object adapter has two implementations the BOA, basic object adapter, and the POA,

portable object adapter. The main reason for the POA is because the BOA specification

was not complete, and therefore affected server portability. By using the POA, any

application code that accesses one type of ORB should be able to be modified slightly

and access another vendor's ORB.

Skeletons are generated when the IDL interface is compiled. Remote method invocations

are invoked through a skeleton to get to a servant. The skeleton unmarshals request

arguments being sent to the servant, and marshals the results of replies from the servant.

Skeletons are created in the server's programming language.

Stubs/proxies are used by the client, and are created in the client's programming

language. The stubs marshal the arguments in remote requests and unmarshal the results

from a reply. The stubs perform the exact opposite job as the skeletons.

The implementation repository activates objects on demand. The interface repository

provides registered IDL interface information to an application. The interface repository

is used when, for whatever reason, a proxy is not available. The interface repository can

provide the client or server with information about the methods and parameters of an

object.

- 11 -

A dynamic invocation interface is used when for whatever reason it is not practical to

allow proxies on a client machine. The dynamic invocation interface is used in

combination with the interface repository to invoke a remote method on an object. If the

type of an object interface is not known at compile time, then the dynamic skeleton

interface can be used for remote method invocations.

4.3 Interface Definition Language

The IDL or Interface Definition Language, facilitates defining modules, interfaces, types,

attributes and method signatures for an application [CoulourisOl]. The IDL is created at

the beginning of programming an application. Once completed, the IDL is compiled with

the compiler included with your ORB's implementation. The commands to invoke the

compiler differ among vendor products. The IDL is programming language neutral, by

providing language bindings for most of the commonly used programming languages.

By this, a client/server can be written in different languages, but still communicate with

each other.

- 12 -

Chapter 5

ORBS

The OMG created the CORBA specification to allow for communication across any

platform and any programming language. The specification when implemented is

referred to as an ORB. The specification can be implemented by anyone willing to try.

However the time it would take to implement your own ORB seems wasteful, when so

many good ORB implementations are available to the public. Three of the more popular

ORBs available are Sun's Java 2 ORB, Borland's VisiBroker for Java, and IONA's Orbix

2000. Although the CORBA specification's purpose was to provide uniformity and

hence portability among applications, each of these ORBs are very different from the

other. The following discussion will highlight those differences.

5.1 Java 2 ORB

The Java 2 ORB is one of the more appealing implementations of the CORBA

specification. The ease of use of the Java 2 ORB is outstanding compared to other orbs.

Sun has provided several tutorials, articles, and an extensive knowledge base on how to

use the ORB. With the current version of the JDK, 1.3, the Java 2 ORB provides a

Naming Service only. The Java 2 ORB differs from other ORBs in the fact that it does

- 13 -

not include a distinct basic object adapter (BOA) or a portable object adapter (POA). The

object adapter manages the creation and lifecycle of objects in the CORBA distributed

space [DEVOl]. Since the Java 2 ORB is without an object adapter, the ORB handles

this task itself. Also, the object adapter provides an API that object implementations use for

various low level services [jGuruOl]. Other services not implemented in the current version

of the Java 2 ORB are the interface repository, policies and methods for getting them,

domain managers and methods for getting them, and ORB methods for supporting single

threading [SUN].

The Java 2 ORB is only partially compliant with the CORBA 2.x specification. A note

worth mentioning, the newest beta version of the JDK, 1.4, includes support for the POA

through the Java 2 ORB and is more compatible with the CORBA specification.

5.2 VisiBroker

Since the Java 2 ORB's list of available services and features is so short, the next two

sections will seem extremely long in comparison.

One of the main features of VisiBroker is the extensive amount of services it provides.

One of those features is the Smart Agent Service, which is a directory service that

provides the ability for multiple smart agents on a network to cooperate to provide high

availability and load balancing for client access to the server objects [VISI].

- 14 -

An additional feature ofVisiBroker is the Object Activation Daemon (OAD). The OAD

is used to automatically start object implementations when a client needs to use them, and

can defer activation of an object until a client request [VISI]. The OAD is the interface to

the implementation repository. With the current version ofVisiBroker, activation is done

through PO As, previous versions used BOAs, and the current version is backward

compatible.

VisiBroker provides a Location Service, which enables you to access information for an

object from multiple Smart Agents. While working with the Smart Agents, the Location

Service can tell you all of the available instances of an object.

VisiBroker provides for single and multithreaded thread management. VisiBroker's

connection management minimizes the number of client connections to the server by

multiplexing all requests for the same object over the same connection.

One nice feature ofVisiBroker is that it comes equipped with two IDL compilers, one

functions as any normal IDL compiler generating skeletons and stubs, the other skips

generating skeletons and stubs and simply populates the interface repository with the

contents of the IDL file being compiled. Given this, the dynamic skeleton interface and

the dynamic invocation interface are also standard features ofVisiBroker.

- 15 -

An additional feature are interceptors that can be used to extend the ORB with

customized client and server code that enables load balancing, monitoring, or security to

meet specialized needs of distributed applications [VISI].

One point worth mentioning again is the fact that the 4.1 release ofVisiBroker is

backward compatible with previous versions. By this, a previous implementation of

VisiBroker that implemented the basic object adapter (BOA), can still be used. One ORB

that does not provide support for the BOA is Orbix 2000. The fact that VisiBroker does

still support the BOA is a positive fact for VisiBroker. Finally, VisiBroker is easily used,

with a nice amount of user-friendly documentation available at Borland's web-site.

5.3 Orbix 2000

VisiBroker provides a lot of services. Orbix 2000 provides all of these services as well.

For example, Orbix 2000 has services similar to the Smart Agent and Object Activation

Daemon. They are all bundled under a section called Location Domains, which includes

the Location Service. Orbix also has the capability to insert the contents of an IDL

interface into the interface repository, but instead of creating a separate IDL compiler to

accomplish this, Orbix 2000 simply has the functionality as a flag setting for the standard

IDL compiler. Therefore, to simplify matters, the following discussion will only mention

what Orbix 2000 has that VisiBroker does not.

- 16 -

Orbix comes bundled with code generators referred to as genies. The genies allow a

developer to create an entire client-server, multithreaded, fully functional application in

minutes. The documentation for Orbix 2000 is geared towards the application developer

using the genies. Therefore, implementation of an application using Orbix 2000 is faster

when using the genies instead of venturing on your own.

Orbix 2000 comes equipped with an object transaction service, which is one of the

CORBA services mentioned in the specification. The transaction service allows for

remote method invocations to be processed in bundles, called transactions. The

transaction is controlled through commit and rollback commands. If any portion of the

transaction fails, a rollback command is issued, and none of the transaction is committed.

One note to make is that both VisiBroker and Orbix 2000 come standard with the more

common CORBA services, such as the naming and event services.

- 17 -

Chapter 6

PROJECT DESCRIPTION

Since the purpose of the project was a comparison ofthe products, emphasis was placed

on the data gathered, rather than the applications created for the project. However, the

applications created can be re-used for further testing of the ORB's or with some minor

revisions, to test another ORB product.

The project was to compare three of the more popular, commercially available ORB

products both quantitatively and qualitatively using the Java programming language. The

quantitative aspect focused on the performance of each ORB. The qualitative aspect

focused on the ease of implementing each ORB, the time involved, any difficulties that

occurred, the stability of each ORB, and the services each ORB provides. To compare

each of the ORBs, a fully functional client-server application was created for each one of

the products. The application was a three-tiered client-server application. The first tier

was the client, the second tier was the server, and the third tier was an Oracle database.

Each tier ran on a separate server machine. The servers were named DSP, Neptune, and

Manatee. DSP is a single processor Pentium 200 MHz machine with 64 megabytes of

RAM, running Red Hat Linux 7 with kernel version 2.2. Neptune is a dual Pentium III

550 MHz processor machine with 512 megabytes ofRAM. Manatee is running Oracle 8

Enterprise Edition with the Partitioning and Objects Options, Release 8.0.5.0.0.

- 18 -

6.1 Scenario

The original proposal for the project consisted of a GUI for a client with web capabilities.

Since the focus of the project was the end result, which was the data, not the application's

usefulness, the GUI was discarded. Another stipulation on the project was to automate

the test cases, in hopes of reusability of the applications created. Due to these

stipulations some improvisation was used.

Assume you are a clerk for a local part's store. Everyday you sell parts to customers and

record this information into a spreadsheet, like Microsoft Excel. At the end of the day, it

is your responsibility to convert the spreadsheets into text files, and drop them into the

correct directory on your networked Linux machine. During the day, you basically have

two types of transactions, an account transaction, which consists of adding new accounts,

and updating current accounts. Also, you might need to find out what information is

currently stored for an existing account. As the clerk, you create three spreadsheets,

called Read.txt, Update. txt, and InsertAcct.txt. Also, you have customers that make

payments on their accounts during the day, referred to as transactions. Transactions can

be added, updated, or read for whatever reason. At the end of the day, you create three

more text files from spreadsheets calling them Read. txt, Update Trans. txt, and Insert.txt.

The Read. txt is the same for both the account and transaction because we can only read

the last transaction made for an account. Therefore, all that is needed is the account

number to read an account, or read the last transaction made for an account.

- 19 -

6.2 Database and Connectivity

An Oracle database was used to store the account and transaction information that is kept

in the text files the store clerk submits at the end of each business day. The database

schema for the project consists of six tables named: Accounts, Transactions,

Transaction_Types, Account_Statuses, Account_ Types and States. Refer to Appendix A:

Database Tables Creation Script for further details of each table. The Transaction_Types,

Account_ Statuses, Account_ Types, and States tables are code lookup tables for the

Accounts and Transactions tables. The Accounts table consists of 25 fields, that when

their lengths are summed equals 840. The Transactions table consists of 5 fields, that

when their lengths are summed equals 58. A record being either read, inserted, or

updated on the Accounts table is supposed to mimic a heavy load being sent across a

network. A record being either read, inserted, or updated on the Transactions table is

supposed to mimic a light load being sent across a network. To increase speed at the

database, for the transaction id field (trans_id) a sequence was created to automatically

create the next available transaction id number.

JDBC- Java Database Connectivity was used for the database connectivity. JDBC was a

perfect match since each application was being implemented in Java. To minimize time

at the server, only one database connection was created. The database connection was

located in the server class. The server class was the main program on the server side, and

was only invoked at start up by the developer. The server itself has no methods called on

by the client.

- 20 -

6.3 Services

Each ORB's implementation had a different way of invoking services that have to be

running prior to starting your server and client. The commands are listed in Appendix B.

For the Java 2 ORB and VisiBroker, a simple naming service was the only service that

had to be manually started. For Orbix 2000, a series of services are all ran as background

daemons on the Linux machine. The Orbix 2000 services are all started and stopped with

a script that is automatically created for you when configuring the Orbix 2000

installation. The Orbix 2000 services must be started prior to running the server.

However, these services are configured to where only one user-id has control over these

services. The default user-id is 'root', however you can override this during the

installation configuration. The current user-id with access to start and stop these services

is 'mmckeller'. The services are currently running on Neptune and DSP.

One final note, files were created that can be sourced in order to run the services for the

Java 2 ORB and VisiBroker.

6.4 Servers

Each application's server required different command-line arguments and different

syntax for them to run. Appendix C includes these commands. Recall that a separate

application was required for each ORB product's implementation, according to the OMG

CORBA specification this should really not have been required. According to the

standard, portability allows for a few simple lines of code to be changed and the same

- 21 -

application should be able to invoke any of the three ORB implementations. If each of

the ORBs supported the same services, and implemented the same object adapter, then

this might be possible. However, the Java 2 ORB does not implement a BOA or POA,

VisiBroker implements both, and Orbix 2000 only implements the POA. Since Java's

implementation of their ORB most closely resembles the BOA implementation of

VisiBroker, the decision was made to implement VisiBroker in the BOA style rather than

the POA. The only difference between the BOA and POA are a few low-level additional

services that the POA offers that were not needed in any of the applications.

If all three of the ORBs supported the POA, then ideally the only two things that would

need to change between each application, are two settings, the ORBClass properties and

the ORBSingletonClass properties. The properties can be set four different ways, refer to

Appendix D for further details. In order not to invoke the incorrect ORB, the only way to

set the properties, for use in this project, was to set the properties on the java command

line. For visibroker, the properties were wrapped in the 'vbj' command that is used to

invoke a server, instead of using the java command. One final note, files were created

that can be sourced in order to run the server for the Java 2 ORB and VisiBroker.

6.5 Factory Classes

In order to limit the number of activated objects at the server, a factory class was used,

that could be called by the client. A factory class is a wrapper type object that

- 22-

encapsulates other objects within it. By doing this, the only object that is registered

through the naming service is the factory class, which for the project was called

"Manager", and this is the only object that has to be looked up in the naming service.

6.6 Clients

Due to each ORBs individualized syntax, each client was invoked with different

command line arguments. The command to invoke each client is listed in Appendix E.

One of the command line arguments, for each client, was the name of the test file you

wanted to process. Another is the number of clients you wanted to run concurrently, and

also what type of transaction you wished to run, either an insert, update, or read on an

account or transaction. The type of transaction and name of file were separated so that

the filenames could change without changing the application code.

To mimic several clients running concurrently, each test file consisted of200 records. A

for . .loop was used in the client to read in one record per client to be ran. A new thread

was spawned by the client for each client to be run. The record that was to be sent to the

database was broken down into an array and the array was passed to the client thread.

The client thread then took the array passed it to the remote object, the remote object

performed the database update, returning any result sets or error messages to the client.

Due to the design of the applications, greater numbers of clients could be tested by

simply adding more test data to the test files, and changing the number of clients on the

- 23 -

command line. The only limit is the ORB itself. One final note, files were created that

can be sourced in order to run the client for the Java 2 ORB and VisiBroker.

Instructions on how to compile and run the client-server for each application are included

in Appendix F.

- 24 -

Chapter 7

TESTING

Performance testing was implemented by recording the response time of each server to a

client's request. The start time was recorded when the client called the remote method

for an object. The stop time was recorded at the next line in the code following the

remote method call. The difference of the start and stop times gives the response time.

Increasing numbers of clients were run concurrently, and separate tests ran for each

increment. The number of clients began with 1 going to 200 with increments of 25.

Also, a separate test was ran for an insert, update, and read of an account record, which

mimicked a heavy load, and for an insert, update, and read of a transaction record, which

mimicked a light load. The sum of all tests equals 54 separate tests for each ORB

product. The total number of tests ran were 162 tests.

The response times were recorded in log files, and the mean, max, min, and variance for

each orb under the conditions listed above were calculated and recorded in tabular and

graphical forms. The graphs are Appendix G, H, I, J.

During testing, if a request failed for whatever reason, that request was omitted from the

response time calculations.

- 25 -

Chapter 8

RESULTS AND COMPARISONS

Each ORB performed well and was fairly easy to implement. No one ORB clearly stood

out from the rest as being the better ORB in every category. Each ORB performed better

or worse depending on the test ran. The results are in the following sections.

8.1 Java 2 ORB

8.1.1 Quantitative Comparison

The Java 2 ORB had the slowest response times under heavy conditions, and tied with

Orbix 2000 under light conditions.

The Java 2 ORB had a higher variance than Orbix 2000, but it's variance almost equaled

VisiBroker's variance. The Java 2 ORB had a higher maximum response time than the

other ORBs, a minimum response time higher than VisiBroker, but lower than Orbix, an

average response time the same as Orbix 2000 for light loads, and greater than the other

two ORBs under heavy loads.

- 26 -

The reason for this is unknown, basically because we are not aware of how the ORB is

built by Java. An educated guess would be that when this version of the JDK was

created, CORBA was just beginning to become popular, and not a whole lot was known

about it. The VisiBroker and Orbix 2000 ORBs are fairly new products, thereby having

access to the latest CORBA specifics.

8.1.2 Qualitative Comparison

The Java 2 ORB is a great ORB product. The ease of use of the Java 2 ORB outweighs

its lack of services. Java provides nice tutorials at their web-site. Several books have

been published with examples of using the Java 2 ORB, also sometimes referred to as the

Java IDL. For a simple, client-server application that needs to implement CORBA, the

Java 2 ORB is definitely the right choice. For a large, multi-user, heavy data, production

environment, the ORB is not ideal. The ORB lacks too many of the common CORBA

services. The only real service of use it provides is the Naming Service. Another

downfall is the IDL compiler that comes with the implementation can only generate Java

code. VisiBroker and Orbix 2000 both come with C++ versions of their ORB product.

Another disadvantage to using the Java ORB is that it offers no support for a single

threaded model, only multi-threaded. The disadvantage is small, but could become an

issue when implementing an application using it.

- 27-

8.2 VisiBroker

8.2.1 Quantitative Comparison

Under light load conditions, VisiBroker outperformed the Java 2 ORB and Orbix 2000.

However under heavy conditions, VisiBroker's response times were so similar to Orbix

2000's that it was really a tie between the two on who was the fastest.

VisiBroker's variance almost equaled the Java 2 ORB's, but was higher than Orbix

2000's. VisiBroker had a minimum response time lower than Orbix 2000, a maximum

response time lower than Orbix 2000 for light loads, a higher maximum response time

than Orbix 2000 for heavy loads, average response times lower than Orbix 2000 for light

loads, and average response times almost equal to Orbix 2000 for heavy loads.

Overall VisiBroker seemed to have the better times. The only reason that could be found

for this, is the response time seemed to be quicker for a client request when it followed a

failed client request call. When a request failed, it was not included in the calculations for

the response times.

- 28 -

8.2.2 Qualitative Comparison

VisiBroker is an easy ORB product to use when creating client-server applications.

VisiBroker provides a wealth of services, almost all of the CORBA services that are

available, with the exception of the Transaction service. One advantage that VisiBroker

clearly has over ORBIX 2000 is the fact that it supports the BOA still. Backward

compatibility is always a key decision when choosing any software product. The fact

that VisiBroker is backward compatible is definitely a feather in its cap.

8.3 Orbix 2000

8.3.1 Quantitative Comparison

Under heavy load conditions, Orbix 2000 tied with VisiBroker for quickest response

times. Under light loads, Orbix 2000 tied with the Java 2 ORB for the slowest reponse

times.

Orbix 2000 had the lowest variance in response times over the other two ORBs. Orbix

2000 had the highest minimum response times over the other two ORBs, tied with the

Java 2 ORB for the highest maximum response time under light loads, the lowest

- 29 -

maximum response time for heavy loads, an average response time higher than

VisiBroker, but the same as Java for light loads, and an average response time the same

as VisiBroker, but lower than Java for heavy loads.

Orbix 2000's response times were evenly distributed, meaning the first client request

serviced had almost the same response time as the last client request serviced, which is

good. Even distribution among response times means the load balancing in Orbix is

working properly, and as the number of clients continues to increase to numbers greater

than those used for this project, the response times should stay even across multiple

clients.

8.3.2 Qualitative Comparison

Orbix 2000 provides more services than the other two ORBs used in the comparison.

Orbix 2000 provides a transaction service that neither ORB has. Orbix 2000 also

provides code generators, which can substantially speed up the learning curve and

development time for an application. The lack of support for the BOA is a major

downfall with Orbix 2000. Due to this, there is no backward compatibility with previous

Orbix versions, and there is no portability with code that implements the BOA. Another

downfall of the Orbix 2000 is its lack of good documentation. Orbix has the standard

manuals that all software products have. However, the manuals lack good examples for

the beginning Orbix 2000 programmer. The examples are either too simplistic, by not

- 30 -

implementing a naming service, or are too advanced, by including every service, or

feature available. Administration with Orbix is a challenge itself, but is outside the realm

of this comparison. Refer to Appendix K for further details on how to properly configure

Orbix for your installation. Refer to Appendix L for the source code of the Java 2 ORB

application. Refer to Appendix M for the source code of the VisiBroker ORB

application. Refer to Appendix N for the source code of the Orbix 2000 application.

Refer to Appendix 0 for a directory structure of the project CD, which includes a copy of

this paper.

- 31 -

8.4 Additional Comparisons

The following table lists the remaining components ofthe comparison of the three ORBs:

Feature Java2 ORB VisiBroker Orbix 2000
Supports single and Multi-thread support Single and Multi Single and Multi
multi-threading only
Naming Service Yes Yes Yes
Event Service No Yes Yes
IDL supports code No Yes Yes
generation for
multiple
programming
languages
BOA Support No Yes No
POA Support Not in current Yes Yes

version
Policy Support No Yes Yes
Location Service No Yes Yes
Activator Daemon No Yes Yes
Interface Repository No Yes Yes
Transaction Service No No Yes
Dyn-Any No Yes Yes
Code Generator No No Yes
Time to develop 8 hrs 10 hrs 14 hrs
Time to configure 0 0 40 hrs
Stability of Code Stable Stable Stable
Ease of Easy Not as Easy Difficult
Implementation
Difficulties Conflict with other Difficulty Difficulty following
Encountered ORBs, fixed when generating BOA code examples,

ORBClass property support classes using code
set to use Java 2 using the ID L generating genies,
ORB. compiler. Fixed installing and

when set flag for configuring ORBIX,
compiler to generate and configuring the
the classes. repository to work

across a network

Table 2: Additional Comparison Results

- 32 -

Chapter 9

CONCLUSIONS

In conclusion the best ORB to use in your distributed system is the ORB that meets your

applications needs the best, however here are a few recommendations.

For simple, client-server applications, with a low number of concurrent clients running,

the Java 2 ORB works best.

For large, heavy data applications where no transaction processing is necessary,

VisiBroker works best.

For large, heavy data applications where transaction processing is needed, and the time

for development is short, then the Orbix 2000 ORB works best.

For the migrating of existing, older CORBA implementations to a new ORB, VisiBroker

would be best due to its support for both the BOA and POA.

- 33 -

REFERENCES

[CoulourisO 1]
Coulouris, George, J. Dollimore, and T. Kindberg, Distributed Systems Concepts and

Design, Addison-Wesley, 2001

[DEVOl]
Sun- Advanced Programming for the Java 2 Platform, http://developer.java.sun.com/developer/

onlineTraining/Programming/JDCBook/corba.html

OGuruOl]
Sun- Introduction to CORBA Short Course, http://developer.java.sun.com/developer/

online Training/ corba/ corba.html

[SUN]
Package org.omg. CO RBA, http:/ /j ava.sun.com/products/j dk/1.2/ docs/ a pi/ org/

omg/CORBA/package-summary.html#unimpl

[VIS I]
VisiBroker documentation version 4.0, http://www.borland.com/techpubs/books/vbj/

vbj40/framesetindex.html

- 34 -

APPENDIX A

Database Tables Creation Script

REM
REM Michelle McKeller
REM Tables for Account Database
REM
REM TABLE
REM ACCOUNTS
REM TRANSACTIONS
REM TRANSACTION TYPES
REM STATES
REM ACCOUNT STATUSES
REM ACCOUNT TYPES
REM
PROMPT
PROMPT Creating Table ACCOUNTS
CREATE TABLE accounts(
acct num
pm_num
acct status cd - -
acct_ type_ cd
ssn
last name
first_name
middle initial
prim_ address
prim_city
prim_ state_ cd
prim_ zip_ cd
prim_ zip_ cd _ext
sec address
sec_city
sec state cd - -
sec_zip_cd
sec_ zip_ cd _ext
prim _phone_ num
sec _phone_ num
fax num
create dt
modified dt

V ARCHAR2(9)
VARCHAR2(4)
VARCHAR2(4)
VARCHAR2(4)
V ARCHAR2(9)
V ARCHAR2(30)
V ARCHAR2(25)
VARCHAR2(1)
V ARCHAR2(30)
V ARCHAR2(30)
V ARCHAR2(2)
V ARCHAR2(5)
V ARCHAR2(4)
V ARCHAR2(30)
V ARCHAR2(30)
V ARCHAR2(2)
V ARCHAR2(5)
VARCHAR2(4)
V ARCHAR2(20)
V ARCHAR2(20)
V ARCHAR2(20)
V ARCHAR2(20)
V ARCHAR2(20)

- 35 -

NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NOT NULL,
NULL,
NULL,
NOT NULL,
NOT NULL,

comments
addtl comments

V ARCHAR2(256)
V ARCHAR2(256)

)

REM TRANSACTIONS
PROMPT
PROMPT Creating Table TRANSACTIONS
CREATE TABLE transactions(
trans_id VARCHAR2(9)
acct num V ARCHAR2(9)
trans_type_cd VARCHAR2(4)
trans amt NUMBER(l4,2)
create dt V ARCHAR2(20)

)
,
REM TRANSACTION TYPES
PROMPT
PROMPT Creating Table TRANSACTION_ TYPES
CREATE TABLE transaction_ types(
trans_type_cd VARCHAR2(4)
trans_type_name VARCHAR2(20)
)
,
REM STATES
PROMPT
PROMPT Creating Table STATES
CREATE TABLE states(
state cd
state name

V ARCHAR2(2)
V ARCHAR2(20)

)

REM ACCOUNT STATUSES
PROMPT
PROMPT Creating Table ACCOUNT_ STATUSES
CREATE TABLE account_ statuses(
acct_status_cd VARCHAR2(4)
acct_status_name VARCHAR2(20)

)
,
REM ACCOUNT TYPES
PROMPT
PROMPT Creating Table ACCOUNT_ TYPES
CREATE TABLE account_types(
acct_ type_ cd V ARCHAR2(4)
acct_type_name VARCHAR2(20)

);

- 36 -

NULL,
NULL

NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL

NOT NULL,
NOT NULL

NOT NULL,
NOT NULL

NOT NULL,
NOT NULL

NOT NULL,
NOT NULL

APPENDIXB

Commands to Start the Services

For the Java 2 ORB:
tnameserv -ORBinitialPort 2400

For VisiBroker:
osagent

For Orbix 2000:
source start orbix2000 servtces

- 37 -

APPENDIXC

Commands to Start the Servers

For the Java 2 ORB:
java CBServer -ORBClass com.sun.CORBA.iiop.ORB -ORBSingletonClass
com.sun.CORBA.iiop.ORB -ORBinitialPort 2400
http:/ /neptune. cocse. unf.edu/mmckeller/Corba/CB Server oracle.j dbc.driver. OracleDriver
jdbc:oracle:thin:@manatee.unf.edu: 1521 :sidl youruseridhere yourpasswordhere

For VisiBroker:
vbj VBServer http://neptune.cocse.unf.edu:2400/mmckellerNisiBrokerNBServer
oracle.jdbc.driver.OracleDriver jdbc:oracle:thin:@manatee.unf.edu:1521:sidl
youruseridhere yourpasswordhere

For Orbix 2000:
<project name=" generated_ app" default="build _all" basedir=". ">

<property name="idl_ flags" value="-Vopt/iona/orbix _ art/1.2/idl -jbase=-POBBankObjects:-Ojava _output-
jpoa=-POBBankObjects:-Ojava _output "/>
<property name="clpath"

value=" /usr/local/j dk 1.3 /lib/ classes 111.zip: $0 RA CLE _ H OME/jdbc/lib/ classes 111.zip :/etc/ opt/iona/ domain
s:/opt/iona/orbix _ art/1.2/classes/orbix2000.jar:/opt/iona/orbix _ art/1.2/classes/omg.jar:/etc/opt/iona:/etc/opt/
iona/ domains:/ opt/iona/ orbix _ art/1.2/ classes/ orbix2000 .jar:/ opt/iona/ orbix _art/ 1.2/ classes/ omg.j ar:/ etc/ opt/i
ona:/ etc/ opt/iona:/ etc/ opt/iona/ domains: export:/ opt/iona/ orb ix _ art/1.2/ demos/ classes:/ etc/ opt/iona:/ etc/ opt/i
on a/ domains"/>
<target name="init">
<tstamp/>
<property name="classes" value="classes"/>
<mkdir dir="$ {classes}"/>

</target>

<target name="idl_ compile" depends="init">
<exec dir=" ./" command="/opt/iona/orbix _ art/1.2/bin/idl $ { idl_ flags} OBBank.idl"

output="idl_ compiler .out"/>
<exec dir=" ./" command="cat idl_ compiler.out"/>

</target>

<target name="build _all" depends="idl_ compile">
<javac classpath=" ./classes:$ { clpath}"

srcdir=" ./" destdir=" ./classes"/>
</target>

<target name="runserver" depends="">
<java classpath=" ./classes:$ { clpath}"

- 38 -

jvmargs="-Dorg.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBimpl -
Dorg.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpl.ORBSingleton''

args="-ORBdomain _name default-domain
http://neptune.cocse.unf.edu:2400/mmckeller/Orbix/OBBank0bjects/OBBankObjects/server
oracle.jdbc.driver.OracleDriver jdbc:oracle:thin:@manatee.unf.edu: 1521 :sid1 youruseridhere
yourpasswordhere"

fork="yes"
classname="OBBankObjects.server"/>

</target>

<target name="runclient" depends="">
<java classpath=" ./classes:$ { clpath}"

jvmargs="-Dorg.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBimpl
Dorg.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpl.ORBSingleton''

args="-ORBdomain_name default-domain READ 25 Read.txt
http://neptune.cocse.unf.edu:2400/mmckeller/Orbix/OBBankObjects/OBBankObjects/server"

fork="yes"
classname="OBBankObjects.client''/>

</target>

<target name="info" depends="">
<echo message=" help:"/>
<echo message="build.xml options:"/>
<echo message=""/>
<echo message="info Prints out this message." />
<echo message="build_all Deletes class files, IDL compiler generated files"/>
<echo message=" and rebuilds everything."/>
<echo message=" clean Removes all class files."/>
<echo message=" clean_ all Removes all generated files."/>
<echo message="runserver Run the server. "/>
<echo message="runclient Run the client."/>

</target>

<target name=" clean" depends="">
<deltree dir="classes"/>
<delete dir="./" includes="idl_ compiler.out,ant_ env.csh ant_ env.sh, *.ref"/>

</target>
<target name="clean _all" depends="">
<deltree dir="OBBankObjects"/>
<deltree dir="classes"/>
<deltree dir="java _output"/>
<delete dir=" ./" includes="idl_ compiler.out,ant_ env .csh ant_ env .sh, *.ref'/>
<deltree dir="idlgen"/>
<delete dir=" ./" includes="./* .ref'/>
<delete dir="./" includes="build.xml"/>
<delete dir=" ./" includes="idl_ compiler.out"/>

</target>

</project>

- 39 -

APPENDIXD

Setting the properties

1. Set them in the orb.properties file in the jdk _installation_ dir\jre\lib directory.
Note: if there are multiple ORB vendors products running on the same machine, this
file will cause a conflict among the ORBs. You could be using a different ORB than
you intended to with this property files existence.

2. If there is another ORB installation already using the orb.properties file, the
properties may be overridden on the command line as follows:

Java -Dorg.omg.CORBA.ORBClass=name of your orb class
Dorg.omg.CORBA.ORBSingletonClass=name of your orb's singleton class

3. Use the wrapper that comes with your ORB's implementation, for VisiBroker it's the
vbj and vbjc commands, for Orbix 2000 it's the itjava and itjavac commands.

4. Set programmatically: this only applies to the org.omg.CORBA.ORBClass as the
search for the org.omg.CORBA.ORBSingletonClass is implemented in a static
initializer on the ORB class. This is executed once in the JVM's lifetime when the
ORB class is loaded. Therefore, this value cannot be set programmatically.

The following is the order in which the ORB class searches for these properties:

For org.omg.CORBA.ORBClass:
1. Check in Applet parameter or application string array, if any.
2. Check in the properties parameter, if any.
3. Check in the System properties.
4. Check in the orb.properties file located in the jdk_installation_dir\jre\lib directory.
5. Fall back on a hard-coded default behavior.

For org.omg. CORBA. ORBSingletonClass:
1. Check in Applet parameter or application string array, if any.
2. Check in the properties parameter, if any.
3. Check in the System properties.
4. Check in the orb.properties file located in the jdk_installation_dir\jre\lib directory.

- 40 -

APPENDIXE

Commands to Start the Clients

For the Java 2 ORB:
java CBClient -ORBClass com.sun.CORBA.iiop.ORB -ORBSingletonClass
com.sun.CORBA.iiop.ORB -ORBinitialHost neptune.cocse.unf.edu -ORBinitialPort
2400 READ 25 Read.txt http://neptune.cocse.unf.edu/mmckeller/Corba/CBServer

For VisiBroker:
vbj VBClient READ 25 Read.txt
http://neptune.cocse.unf.edu:2400/mmckellerNisiBrokerNBServer

For Orbix 2000:
Refer to Appendix C: For Orbix 2000

- 41 -

APPENDIXF

Compiling and Running the Applications

To begin verify that the .bash_profile file included on the project CD is set as your
.bash_profile on the server. The settings in it point to the correct JDK directory to use
(1.3) and to the correct JDBC driver to use.

For the Java 2 ORB:
1. Run the idl compiler: idlj -fall CBBank.idl
2. Run in both the CBBankObjects directory and the regular directory: javac *.java
3. To start the naming service, in a separate secure shell session on the server machine,

source svrcbnamesvr
4. To start the server, source svrcb
5. To start the client, source clcbclient
6. Make sure the file name your testing with is the same as the file name in clcbreadacct,

also modify the number of clients to be what you want to test with in the same file.
Separate scripts were created for each type of test file.

For VisiBroker:
1. To run the idl compiler, first the .module class must be removed, then run the

makefile by typing, make
2. To compile the code, all class files must first be removed, then run the makefile by

typing, make
3. To start the naming service, in a separate secure shell session on the server machine,

source svrvbnamesvr
4. To start the server, source svrvb
5. To start the client, source clvbclient
6. Make sure the file name your testing with is the same as the file name in

clvbreadacct, also modify the number of clients to be what you want to test with in
the same file. Separate scripts were created for each type of test file.

For Orbix 2000:
1. Keep the directory structure the same as it is on the project CD.
2. source 02KEnv .sh
3. source /opt/iona/bin/orbix2000_env
4. source /opt/iona/bin/orbix2000 _java_ env
5. source ant env.sh
6. start orbix2000 services

- 42 -

7. To compile the code completely, ant clean then ant build_all
8. To start the server, ant runserver
9. To start the client, ant runclient
10. To test different test files, separate .xml documents were created, you need only

rename the .xml document to build.xml to use it.

- 43 -

~ 60000

8 40000

~ 20000

:1: 0

~ 60000

8 40000

~ 20000

:lE 0

~ 60000

§ 40000
0
Q)

.!!! 20000

:1: 0

APPENDIXG

Mean of Response Times

Mean -Read Light Load

-+-Java 2 ORB

--11-- VisiBroker

Orbix 2000

Clients

Mean -Insert Light Load

--+--Java 2 ORB

-IIi-VisiBroker

Orbix 2000

Clients

Mean- Update Light Load

<:>() "()\:) "<:>\:) fl...\:)\:)

Clients

- 44 -

~ 300000
c
0
(.)
Q)

~
~

1/)
'C
c
0
u
Q)

~
::15

200000

100000

0

100000
80000
60000
40000
20000

0

~ 100000
c
0
(.)
Q)

.!a

:a:

50000

0

Mean - Read Heavy Load

~() "()() "~() rp>()

Clients

--+-Java 2 ORB

-a-VisiBroker

Orbix 2000

Me an - Insert Heavy Load

-+-Java 2 ORB

-&-Vis iBroker

Orbix 2000

~1:) "1:)1:) "~\;) ~1:)

Clients

Mean- Update Heavy Load

~() "()() "~(J '"\,-()()

Clients

- 45 -

-11- VisiBroker

Orbix 2000

~ 80000
§ 60000
g 40000
.~ 20000

a: 0

~ 60000

§ 40000
0
Cll
.~ 20000

~ 0

~ 60000

§ 40000
0
Cll
.~ 20000

0

APPENDIXH

Maximum of Response Times

Max- Read Light Load

-+-Java 2 ORB

-a-VisiBroker

Orbix 2000

Clients

Max -Insert Light Load

--11-- VisiBroker

Orbix 2000

Max- Update Light Load

~~ "~~ "~~ ~~
Clients

- 46 -

-+-Java 2 ORB

-a-VisiBroker

Orbix 2000

~ 600000
s:: 8 400000
Cl)

.!a 200000

~ 0

(/) 150000 "C
s::

100000 0
0
Cl)

50000 .!a

~ 0

~ 100000
s::
0
0
Cl)

.!a

2:

50000

0

""

Max- Read Heavy Load

~\:) ""\:)\:) ~-...~\:) ~\:)

Clients

-+-Java 2 ORB

-111- VisiBroker

Orbix 2000

Max - Insert Heavy Load

Clients

Max- Update Heavy Load

Clients

- 47 -

~ 60000

g 40000
0
Q)

.!a 20000

~ 0

~ 40000
g 30000
g 20000
.!a 10000

~ 0

~ 60000
c
0
0
Q)

.!a

~

40000

20000

0

APPENDIX I

Minimum ofResponse Times

Min- Read Light Load

Min - Insert Light Load

~e:> "e:>e:> "~e:> rve:>e:>

Clients

Min- Update Light Load

--+-Series 1

-11-- Series2

Series3

--+-Series 1

_.._Series2

Series3

--+-Java 2 ORB

__._ VisiBroker

Orbix 2000

~C) "C)C) "~C) rf>C)

Clients

- 48 -

~ 40000
c
0
0
Cl)

.!a

:!:

30000
20000
10000

0

~ 100000
c
0
0
Cl)

.!a

:!:

50000

0

~ 15000
c
0
0
Cl)

.!a

:!:

10000

5000

0

Min - Read Heavy Load

-11- VisiBroker

Orbix 2000

Min - Insert Heavy Load

-+-Java 2 ORB

-11- VisiBroker

Orbix 2000

Clients

Min - Update Heavy Load

-+-Series1

-11- Series2

Series3

- 49 -

APPENDIXJ

Variance ofResponse Times

Variance- Read Light Load

Ul 300000000 '0
r::

200000000 0
()
Q) 100000000 .!!!

-+-Java 2 ORB

:E
0 -11-- VisiBroker

" Orbix2000

Clients

Variance -Insert Light Load

100000000

"' 80000000 'C

" 60000000 0
'-' 40000000 Q)

~ 20000000
~ 0

" ~() "()() ~() f>()
Clients

--+--Java 2 ORB

---VisiBroker
Orbix 2000

Variance -Update Light Load

60000000
(/) 50000000
-g 40000000
8 30000000
Cl>
~ 20000000
:!!! 10000000

0

" ~<:) "<:)<:) "~<:) rf'<:)

Clients

- 50 -

-+-Java 2 ORB

-111- VisiBroker

Orbix 2000

Variance - Read Heavy Load

(/)
'C
s::
0
0
Q)

.!!!

~

10000000000
8000000000
6000000000
4000000000
2000000000

0
...... 0 0 0 0

1.0 0 1.0 0
N

Clients

--+--Java 2 ORB

-Iii- VisiBroker

Orbix2000

Variance -Insert Heavy Load

(/) 800000000
-g 600000000
8 400000000
Q)

~ 200000000

~ 0

" <:><:) "<:)<:) "<:><:) rf'<:)

Clients

--+--Java 2 ORB

-11-- VisiBroker

Orbix 2000

Variance -Update Heavy Load

600000000
Ill 500000000
-g 400000000
8 300000000
Q)

~ 200000000
:E 1 00000000

0

" ~<::) <::)<::) ~<::) ~<::)
" " 'V
Clients

- 51 -

--+--Java 2 ORB

------ VisiBroker

Orbix 2000

APPENDIXK

Administration of Orbix 2000

Configuration

After Orbix 2000 has been installed, it must be configured in order to use any of the
CORBA services. When Orbix 2000 is installed, the installer can choose a default local
host configuration or to run a manual configuration. The manual configuration must be
chosen, otherwise the services cannot be ran. The configuration must be ran on both the
client and server, with the server being the first to be configured. Also, the user running
the configuration must have root access to the server.

Running a configuration repository across a network

When configuring Orbix 2000, when asked if the configuration will be file-based or
configuration repository based, select configuration repository based, this will allow the
naming service to run so that the client-server can communicate. When finished with
configuring the server, save the client. prep file to a place where you have access to
retrieve it. This file will be used to run the configuration on the client side. When you
are ready to configure the client, the following command is used: configure -useprep
client. prep this will automatically configure the client. The only thing that should need
to be entered during the configuration is the host name your running the client on. One
thing to be careful of is prior to running the configuration on the client, start the orbix
2000 services on the server side. During the client configuration, Orbix 2000 attempts to
create a connection to the naming services running on the other machine, the server, if
they are down it cannot complete the configuration. Also, one thing to make certain of is
to give the capability to start and stop the Orbix 2000 services to someone else besides
root. If you do not change the default on this, then only the system administrator can
start and stop the services. The purpose of running the configuration in this manner, is to
be able to have two machines communicate across a network. If the configuration
repository is not set up in this manner, then only a client running on the same machine as
the server can communicate with it.

- 52 -

APPENDIXL

Java 2 ORB Application

II Michelle McKeller- Graduate Project
II Corba- Java 2 Orb
II CBCiient

import java.io. *;
importjava.util.*;

public class CBC!ient
{

public static void main(String[] args)
{

try
{

String typeTest = "";
String numCiients = '"';
String Uri="";
String fileName="";
String inLine = "";
File name;
boolean bToken =false;
intiNum=O;
int ilndex = 0;
int iTokenCt = 0;

//Retrieving command line arguments
if (args.length < 12)
{

System.out.println("At least 12 command-line arguments are needed.");
System.exit(O);

II Type of test we're running, read, insert, or update
type Test= args[8].trim().toUpperCase();

I I Number of Clients running
numCiients = args[9].trim();

II Convert from string to int we'D need this value for, for loops
iNurn= Integer.valueOf(numCiients).intValue();
System.out.println("Number of Clients running will be:"+ iNurn);

II Name of text file we'll be using for the test
fileName= args[IO].trim();

II URL should be in the format of "http://neptune.cocse.unf.edu:2400/mmckeller/Corba/CBServer"
Uri= args[ll].trim();

II Reading in data from file given on command line
II However many clients are supposed to run, that is how
I I many lines we will read, one for each client, then
II spawn a client thread.
System.out.println("Searching for file entered on command line ... ");

name= new File(fileName);

- 53 -

);

Uri, items).startO;

command line.");

}
II End ofCBClient

if(name.existsO)
{

}else
{

System.out.println("File found, reading in 1line per client thread.");
FileReader inFile =new FileReader (name);
BufferedReader inBuff= new BufferedReader(inFile);

I I Reading in one line per client requested, then spawning the client thread
for (ilndex = 0; ilndex < iNurn; ilndex++)
{

if ((inLine = inBuff.readLineO) !=null)
{

}else
{

StringTokenizer st =new StringTokenizer(inLine, "ltlnlr", bToken

String [] items= new String [(st.countTokensO)] ;

try
{

iTokenCt = 0;
while (st.hasMoreTokensO)
{

String word= st.nextTokenO;

items[iTokenCt] =word;

iTokenCt = iTokenCt + 1;

}
}catch(NoSuchEiementException e)
{

}

II If any of the fields were empty, this is going
I I to get thrown, but thats acceptable

II Spawning a client thread and passing it the string array of data
I I that we read in

new CBClientThread(args, typeTest, String.valueOf(ilndex + 1),

I I The file has to have as many rows in it as there are clients listed
II on the command line if not, this error occurs
System.out.println("File does not support number of clients on

System.exit(O);

System.out.println("File Name entered on command line does not exist.");
System.exit(O);

}
)catch(IOException e)
{

System.out.println("An error occurred processing request.");

- 54 -

II Michelle McKeller- Graduate Project
II Corba- Java 2 Orb
II CBClientThread

import java.lang. *;
import java.io. *;

II All CORBA applications need these classes
import java.net.MalformedURLException;
importjava.utii.Locale;
import org.omg. CosNaming. *;
import org.omg.CORBA. *;
import CBBankObjects.*;

public class CBCiientThread extends Thread
{

String aTypeTest, a Uri, aCiientNum;
String [] aArgs;
String [] aDataltems;

public CBCiientThread(String [] args, String type Test, String clientNum, String Uri, String [] dataltems)
{

aArgs = args;
aTypeTest =type Test;

aCiientNum = clientNum;
aUrl =Uri;
aDataltems = dataltems;

public void run()
{

long time!= 0;
long time2 = 0;

try
{

File Writer Log= new File Writer("dbDataLog.txt", true);
BufferedWriter w =new BufferedWriter(Log);

II Create and initialize the ORB
ORB orb= ORB.init(aArgs, null);
II Get the root naming context
org.omg.CORBA.Object objRef= orb.resolve_initial_references("NameService");
NamingContext ncRef= NamingContextHelper.narrow(objRei);
II Resolve the object reference in naming
NameComponent nc =new NameComponent(aUrl, "");
NameComponent path[]= { nc};
CBManager mgr = CBManagerHelper.narrow(ncRef.resolve(path));

if(mgr= null)
{

System.out.println("Error: Manager object equals null.");
System.exit(O);

CBAccount acct = null;
CBTransaction trans= null;
String [] acctData =null;
String [] transData =null;
String rowsAffected = "";
int i=O;

II Deciding whether to read, insert, or update
if (aTypeTest.equals("READ"))
{

II Reads an account record
II mimics a heavy load

I I Start timer

- 55 -

database.");

was: " + acctData[i]);

record into the database.");

time!= System.currentTimeMillis();

II Reading the main account record
acct = mgr.getAccount(aDataltems[O]);

if (acct = null)
{

}else
{

I I Stop timer
time2 = System.currentTimeMillis();

System.out.println("Read account failed constructing account object.");

acctData = acct.readAccount();

II Stop timer
time2 = System.currentTimeMillis();

if (acctData[O].trim() = "")
{

}else
{

System.out.println("Read account failed reading record from the

w.write("Returned data was: ");

for (i = 0; i < 25; i++)
{

w.write(acctData[i]);
w.newLine();

System.out.println("Account data returned from server

}else if(aTypeTest.equals("INSERT"))
{

I I Inserts a new transaction record
II mimics a light load

II Start timer
timel = System.currentTimeMillis();

I I Inserting a transaction record
acct = mgr.getAccount(aDataltems[O]);

if (acct =null)
{

}else
{

I I Stop timer
time2 = System.currentTimeMillis();

System.out.println("Insert transaction failed constructing account object.");

trans= acct.putTransaction(aDataltems[O], aDataltems);
rowsAffected = trans.insertTransaction();

II Stop timer
time2 = System.currentTimeMillis();

if (rowsAffected.trim() = '"')
{

System.out.println("Transaction insert failed when trying to insert

}else
{

w.write("Rows affected: "+ rowsAffected);

- 56 -

the record in the database.");

w.newLine();

System.out.println("Rows affected: " + rowsAffected);

}else if(aTypeTest.equals("UPDATE"))
{

II Updates an existing account record
II mimics a heavy load

II Start timer
time!= System.currentTimeMillis();

acct = mgr.putAccount(aDataltems[O], aDataltems);

if (acct = null)
{

}else
{

II Stop timer
time2 = System.currentTimeMillis();

System.out.println("Update account failed constructing account object.");

rowsAffected = acct.updateAccount();

II Stop timer
time2 = System.currentTimeMillis();

if (rowsAffected = "")
{

}else
{

System.out.println("Update account failed when trying to update

w.write("Rows affected:" +rowsAffected);
w.newLine();

System.out.println("Rows affected: " + rowsAffected);

}else if(aTypeTest.equals("INSERTACCT"))
{

II Inserts a new account record
II mimics a heavy load

I I Start timer
time I = System.currentTimeMillis();

II Inserting a new account
acct = mgr.putAccount(aDataltems[O], aDataltems);

if (acct = null)
{

}else
{

II Stop timer
time2 = System.currentTimeMillis();

System.out.println("Insert account failed constructing account object.");

rowsAffected = acct.insertAccount();

II Stop timer
time2 = System.currentTimeMillis();

if (rowsAffected = "")

- 57 -

record into the database.");

);

transaction object.");

record from the database.");

}else
{

System.out.println("Insert Account failed when trying to insert

w.write("Rows affected: "+ rowsAffected);
w.newLine();

System.out.println("Rows affected: "+ rowsAffected);

}else if(aTypeTest.equals("READTRANS"))
{

II This retrieves the last transaction record for the account
II mimics a light load

I I Start timer
timel = System.currentTimeMillis();

acct = mgr.getAccount(aDataltems[O]);

if(acct= null)
{

}else
{

II Stop timer
time2 = System.currentTimeMillis();

System.out.println("Read transaction failed constructing the account object."

trans = acct.getTransaction(aDataltems[O]);
if (trans = null)
{

}else
{

I I Stop timer
time2 = System.currentTimeMillis();

System.out.println("Read transaction failed constructing

transData = trans.readTransaction();

I I Stop timer
time2 = System.currentTimeMillis();

if (transData[O].trim() = 1111
)

{

}else
{

System.out.println("Read transaction failed reading the

w.write("Returned data was: ");

for (i = 0; i < 4; i++)
{

w.write(transData[i]);
w.newLine();

System.out.println("Transaction data
returned from server was: " + transData[i]);

}
}else if(aTypeTest.equals("UPDATETRANS"))
{

I I Start timer
timel = System.currentTimeMillis();

- 58 -

object.");

transaction object.");

acct = mgr.getAccount(aDataltems[O]);

if (acct = null)
{

}else
{

I I Stop timer
time2 = System.currentTimeMillis();

System.out.println("Update transaction failed constructing the account

trans= acct.putTransaction(aDataltems[O], aDataltems);

if (trans= null)
{

II Stop timer
time2 = System.currentTimeMillis();

System.out.println("Update transaction failed constructing the

}else
{

rowsAffected = trans.updateTransaction();

I I Stop timer
time2 = System.currentTimeMillis();

if (rowsAffected.trimO = "")
{

System.out.println("Update transaction failed when
updating the record in the database.");

);

}

}

}else
{

w.write("Rows affected:"+ rowsAffected);
w.newLine();

System.out.println("Rows Affected: "+ rowsAffected

w.close();
}catch(IOException e)
{

}

System.out.println("An error occurred writing to the dbDataLog file.");
e.printStackTrace();

catch(Exception e)
{

try
{

System.out.println("An error has occurred in the Client.");
e.printStackTrace();

File Writer Log= new File Writer("timelog.txt", true);
BufferedWriter w = new BufferedWriter(Log);
w.write("Time spent on Client"+ aCiientNum + ": "+ (time2- time!) +"Milliseconds");
w.newLine();
w.close();

}catch(IOException e)
{

System.out.println("Problem occurred creating log file: "+e);

System.out.println("Time spent on Client"+ aClientNum + ": "+ (time2- time!)+" Milliseconds");

II End ofCBClientThread

- 59 -

II Michelle McKeller- Graduate Project
II Corba- Java 2 Orb
II CBServer

import java.io.IOException;
import java.net.MalformedURLException;
import org.omg.CosNaming. *;
import org.omg.CosNaming.NamingContextPackage. *;
import org.omg.CORBA.*;
import CBBankObjects. *;

public class CBServer
{

II public No-argument constructor
public CBServer()
{
}

public static void main(String args[])
{

new CBServer();

CBDBServer dbServer =null;
CBManagerlmpl Manlmpl =null;

String ServerUrl = "";
String Driver='"';
String dbURL = "";
String User="";
String Password="";

try
{

if (args.length < 11)
{

System.out.println("At least 11 command-line arguments are needed.");
System.exit(O);

ServerUrl = args[6].trim();
Driver= args[7]. trim();
dbURL = args[8].trim();
User= args[9].trim();
Password= args[lO].trim();

System.out.println("Server running on: "+ ServerUrl);

II Initialize the ORB.
org.omg.CORBA.ORB orb= org.omg.CORBA.ORB.init(args,null);

System.out.println("ORB Initialized.");

I I Create a Database Server Object
dbServer =new CBDBServer(Driver, dbURL, User, Password);

II Create a Manager Object
Manimpl =new CBManagerlmpl(dbServer);

orb.connect(Manimpl);

II print stringified object reference
System.out.println("Created manager\n" + orb.object_to_string(Manimpl));

II Get the root naming context
org.omg. CORBA. Object objRef = orb.resolve _initial_references("NameService");
NamingContext ncRef = NamingContextHelper.narrow(objRef);

System.out.println("Name Service Initialized.");

II Bind the object reference in naming
NameComponent nc =new NameComponent(ServerUrl, "");
NameComponent path[]= {nc};

- 60 -

}
}

ncRef.rebind(path, Manlmpl);
System.out.println("Name Component bound.");

II Wait for invocations from clients
java.lang.Object sync= new java.lang.ObjectO;
synchronized(sync)
{

sync.waitO;

} catch (Exception e)
{

}

System.err.println("Failure during object export to CORBA: "+e);
e.printStackTrace(System.out);
System. exit(-!);

II End of CBServer

- 61 -

II Michelle McKeller- Graduate Project
II Corba- Java 2 Orb
II CBDBServer

importjava.net. *;
import java.sql. *;
importjava.io.*;

public class CBDBServer {

String sDriver = "";
String sdbURL = "";
String sUser = "";
String sPassword = '"';
String dbaseURL = "";
Connection dbConnection;
Statement query;

I I Constructor
public CBDBServer(String Driver, String dbURL, String User, String Password)

}

{
sDriver =Driver; lloracle.jdbc.driver.OracleDriver
sdbURL = dbURL; II '~dbc:oracle:thin:@manatee.cocse.unf.edu: 1521 :sid1
sUser =User;
sPassword =Password;

initialize();

public void initialize()
{

try
{

Class.forName(sDriver);
dbaseURL = sdbURL;
dbConnection = DriverManager.getConnection(dbaseURL, sUser, sPassword);
query= dbConnection.createStatement();

catch(SQLException e)
{

}

System.out.println("failed");
e.printStackTrace();

catch(CiassNotFoundException e)
{

System.out.println("failed cl");

public int runDBinOrUpQuery(String sSqiQuery)
{

introws=O;

try
{

rows= query.executeUpdate(sSqiQuery);

catch(SQLException e)
{

System.out.println("failed");
e.printStackTrace();

return rows;

public ResultSet runDBReadQuery(String sSqiQuery)
{

ResultSet results= null;

- 62 -

try

results= query.executeQuery(sSqlQuery);
}
catch(SQLException e)

{
System.out.println("failed");

e.printStackTraceO;

return results;

II End ofCBDBServer

- 63 -

II Michelle McKeller- Graduate Project
II Corba- Java 2 Orb
II CBManagerlmpl

import CBBankObjects. *;

public class CBManagerlmpl extends CBBankObjects._CBManagerlmpiBase
{

CBDBServer dbSvr;

II public No-argument constructor
public CBManagerlmpl(CBDBServer mydbServer)
{

this.dbSvr = mydbServer;

II Returns an Account object.
public CBAccount getAccount(String Id) throws Unknown
{

CBAccountlmpl Acct =new CBAccountimpl(Id, dbSvr);
System.out.println("Returning Account Object for the given account number.");
return Acct;

II Adds an Account Object
public CBAccount putAccount(String Id, String [] Data) throws Unknown
{

CBAccountlmpl Account= new CBAccountlmpl(Id, Data, dbSvr);
System.out.println("Returning Account Object for the given account number.");

return Account;
}

II End ofCBManagerlmpl

- 64 -

II Michelle McKeller- Graduate Project
II Corba- Java 2 Orb
II CBAccountlmpl

import java.sql. *;

import CBBankObjects.*;

public class CBAccountlmpl extends CBBankObjects._CBAccountlmp!Base
{

private String Id;
private String Data[];

private CBDBServer dbSvr;

II public constructor
public CBAccountlmpl(String sld, CBDBServer mydbSvr)
{

this.Id = sld;
this.dbSvr = mydbSvr;

I I overloaded constructor
public CBAccountimpl(String sid, String [] sData, CBDBServer mydbSvr)
{

this.ld = sld;
this.Data = sData;

this.dbSvr = mydbSvr;

I I Methods for accessing a Transaction Object
public CBTransaction getTransaction(String sid) throws Unknown
{

CBTransactionlmpl Trans= new CBTransactionimpl(sld, dbSvr);
System.out.println("Returning Transaction Object for the given account number.");
return Trans;

public CBTransaction putTransaction(String sld , String [] sData) throws Unknown
{

CBTransactionimpl Transact= new CBTransactionlmpl(sid, sData, dbSvr);
System.out.println("Returning Transaction Object for the given account number.");
return Transact;

I I Gets data for the Account object
public synchronized String [] readAccount()
{

String [] InfoData =new String [25];

String sq!Query ="SELECT acct_num, pin_num, acct_status_cd, acct_type_cd, ssn, last_ name, first_ name, middle_initial,
prim_address, prim_city, prim_state_cd, prim_zip_cd, prim_zip_cd_ext, sec_address, sec_city, sec_state_cd, sec_zip_cd,
sec_zip_cd_ext, prim__phone_num, sec__phone_num, fax_num, create_dt, modified_dt, comments, addtl_comments FROM accounts
WHERE acct_num ="' + Id + ""';

System.out.println("Sql query being sent to the db is: "+ sqiQuery);

ResultSet results = dbSvr.runDBReadQuery(sq!Query);

try
{

results.nextO;

InfoData[O] = results.getString("acct_num");
System.out.println("result: "+ InfoData[O]);

Info Data[!] = results.getString("pin_num");
System.out.println("result:"+ InfoData[l]);

lnfoData[2] = results.getString("acct_status_cd");
System.out.println("result: "+ InfoData[2]);

- 65 -

}

InfoData[3] = results.getString("acct_type_cd");
System.out.println("result: "+ InfoData[3]);

InfoData[4] = results.getString("ssn");
System.out.println("result: "+ InfoData[4]);

InfoData[S] = results.getString("last_ name");
System.out.println("result: "+ InfoData[S]);

InfoData[6] = results.getString("first_ name");
System.out.println("result: "+ InfoData[6]);

InfoData[7] = results.getString("middle_initial");
System.out.println("result: "+ InfoData[7]);

InfoData[S] = results.getString("prim_address");
System.out.println("result: "+ InfoData[S]);

InfoData[9] = results.getString("prim_city");
System.out.println("result: "+ InfoData[9]);

InfoData[IO] = results.getString("prim_state_cd");
System.out.println("result: " +Info Data[! 0]);

InfoData[ll] = results.getString("prim_zip_cd");
System.out.println("result: " + InfoData[ll]);

InfoData[l2] = results.getString("prim_zip_cd_ext");
System.out.println("result: " + InfoData[12]);

InfoData[13] = results.getString("sec_address");
System.out.println("result: "+ InfoData[13]);

InfoData[14] = results.getString("sec_city");
System.out.println("result: " + InfoData[14]);

InfoData[lS] = results.getString("sec_state_cd");
System.out.println("result: "+ InfoData[lS]);

InfoData[16] = results.getString("sec_zip_cd");
System.out.println("result:"+ InfoData[16]);

InfoData[17] = results.getString("sec_zip_cd_ext");
System.out.println("result: "+ InfoData[17]);

InfoData[lS] = results.getString("prim_phone_num");
System.out.println("result: "+ InfoData[IS]);

InfoData[19] = results.getString("sec_phone_num");
System.out.println("result: "+ InfoData[19]);

InfoData[20] = results.getString("fax_num");
System.out.println("result: "+ InfoData[20]);

InfoData[21] = results.getString("create_dt");
System.out.println("result:"+ InfoData[21]);

InfoData[22] = results.getString("modified_dt");
System.out.println("result: "+ InfoData[22]);

InfoData[23] = results.getString("comments");
System.out.println("result: " + InfoData[23]);

InfoData[24] = results.getString("addtl_comments");
System.out.println("result: "+ InfoData[24]);

catch(SQLException e)
{

- 66 -

System.out.println("Read transaction failed: "+e);

return InfoData;

I I Inserts the data for the account object
public synchronized String insertAccount()
{

String sMessage = "";

String sqlQuery ="INSERT INTO accounts(acct_num, pin_num, acct_status_cd, acct_type_cd, ssn,
last_name, first_name, middle_initial, prim_address, prim_city, prim_state_cd, prim_zip_cd, prim_zip_cd_ext, sec_address, sec_ city,
sec_state_cd, sec_zip_cd, sec_zip_cd_ext, prim_phone_num, sec_phone_num, fax_num, create_dt, modified_dt, comments,
addtl_comments) ";

sq!Query = sqlQuery + "VALUES("' + Data[O] + "1
, "' +Data[!] + "1

, "
1 + Data[2] + "1

,
111 + Data[3] +

111
, "'+ Data[4] + "1

, "'+ Data[5] + "1
,

111 + Data[6] + "1
, "

1 +Data[?]+"', 111 + Data[8] + "1
,

111 + Data[9] + 111
, "

1 + Data[lO] + "1
, "

1 +
Data[ll] + 1

",
111 + Data[l2] + "',"' + Data[l3] + "', 111 + Data[l4] + 111

,
111 + Data[l5] + "1

, "';

sqiQuery = sqlQuery + Data[l6] + 111
,

111 + Data[l7] + "1
, "

1 + Data[l8] + 1
",

111 + Data[l9] + 111
,

111 +
Data[20] + "1

,
111 + Data[21] + "1

, "'+ Data[22] + "1
, "

1 + Data[23] + "', "'+ Data[24] + "1
)";

System.out.println("Sql query being sent to the db is: " + sqlQuery);

int rows = dbSvr.runDBinOrUpQuery(sqlQuery);

sMessage ="Number of rows affected:"+ String.valueOf(rows);

return sMessage;

II Updates the data for the account object
public synchronized String updateAccount()
{

String sMessage = "";

String sqlQuery ="UPDATE accounts SET pin_num = 111 +Data[!]+ "1
, acct_status_cd = "1 + Data[2] + "1

, acct_type_cd = 111 +
Data[3] + "1

, ssn ="' + Data[4] + "1
, last_ name= 111 + Data[5] + "1

, first_ name= "1 + Data[6] + "1
, middle_initial = "1 +Data(?]+ 1

",

prim_address = "1 + Data[8] + "1
, prim_city = 111 + Data[9] + "1

, ";

sqlQuery = sqlQuery + "prim_state_cd = "1 + Data[lO] + "1
, prim_zip_cd = 111 + Data[ll] + "',

prim_zip_cd_ext = "1 + Data[l2] + 111
, sec_address = "1 + Data[l3] + "', sec_city = "1 + Data[l4] + "1

, sec_state_cd = 111 + Data[l5] + "1
,

sec_zip_cd ="' + Data[l6];
sqlQuery = sqlQuery + 1

", sec_zip_cd_ext = 111 + Data[l7] + "1
, prim_phone_num ="' + Data[l8] + "1

,

sec_phone_num = "1 + Data[l9] + "1
, fax_num = "1 + Data[20] + "', create_dt ="' + Data[21] + "', modified_dt = "1 + Data[22] + 1

",

comments= "1 + Data[23] + "1
, addtl_comments = "1 + Data[24] + "1 WHERE acct_num ="' + Id + ""1

;

System.out.println("Sql query being sent to the db is: "+ sqlQuery);

int rows= dbSvr.runDBlnOrUpQuery(sqlQuery);

sMessage = "Number ofrows affected: " + String.valueOf(rows);

return sMessage;

}
I I End of CBAccountlmpl

- 67 -

II Michelle McKeller- Graduate Project
II Corba- Java 2 Orb
II CBTransactionlmpl

import java.sql. *;

import CBBankObjects. *;

public class CBTransactionlmpl extends CBBankObjects._CBTransactionlmpiBase {
private String Id;
private String Data[];

private CBDBServer dbSvr;

II public constructor
public CBTransactionimpl(String sld, CBDBServer mydbSvr)
{

this.ld = sld;
this.dbSvr = mydbSvr;

II overloaded constructor
public CBTransactionlmpl(String sld, String [] sData, CBDBServer mydbSvr)
{

this.Id = sld;
this.Data = sData;

this.dbSvr = mydbSvr;

I I Gets data for the transaction object
public synchronized String [] readTransaction()
{

String [] InfoData =new String [4];

String sqlQuery ="SELECT trans_id, acct_num, trans_type_cd, trans_amt, create_dt FROM transactions WHERE acct_num = '"
+ Id +'"AND trans_id =(SELECT MAX(trans_id) FROM transactions WHERE acct_num ="' + Id + '")";

System.out.println("Sql query being sent to the db is: " + sqlQuery);

ResultSet results= dbSvr.runDBReadQuery(sqiQuery);

return InfoData;

if (results= null)
{

lnfoData[O] = "";
}else
{

try
{

}

results.nextO;
lnfoData[O] = results.getString("acct_num");
System.out.println("results: "+ InfoData[O]);

lnfoData[l] = results.getString("trans_type_cd");
System.out.println("results: " + InfoData[l]);

lnfoData[2] = results.getString("trans_amt");
System.out.println("results: "+ InfoData[2]);

InfoData[3] = results.getString("create_dt");
System.out.println("results: "+ InfoData[3]);

catch(SQLException e)
{

System.out.println("Read transaction failed: "+e);

- 68 -

II Inserts the data for the transaction object
public synchronized String insertTransaction()
{

String sMessage= "";

String sq!Query ="INSERT INTO transactions(trans_id, acct_num, trans_type_cd, trans_amt, create_dt)
VALUES (trans_id_sequence.NEXTVAL, 111 + Data[O] + "', 111 + Data[l] + 111

,
111 + Data[2] + 111

, "'+ Data[3) + 1
")";

System.out.println("Sql query being sent to the db is: " + sq!Query);

int rows= dbSvr.nmDBinOrUpQuery(sq!Query);

sMessage ="Number of rows affected:"+ String.valueOf(rows);

return sMessage;

II Updates the data for the transaction object
public synchronized String update Transaction()
{

String sMessage = "";

String sq!Query ="UPDATE transactions SET trans_type_cd = "1 + Data[l) + "', trans_amt = 111 + Data[2] + "',
create_dt ="' + Data[3] + "1 WHERE acct_num = 111 +Data[OJ+ 111 AND trans_id =(SELECT MAX(trans_id) FROM transactions
WHERE acct_num = 111 + Data[O] + 1

")";

System.out.println("Sql query being sent to the db is: " + sq!Query);

int rows= dbSvr.runDBinOrUpQuery(sq!Query);

sMessage = "Number ofrows affected: " + String.valueOf(rows);

return sMessage;

II End ofCBTransactionimpl

- 69 -

II Michelle McKeller- Graduate Project
II Corba- Java 2 Orb
II CBBank.idl

module CBBankObjects {
exception Unknown {};

};

typedef string CBAcct[25];
typedef string CBTrans[4];

interface CBTransaction {
I I Reads the transaction data for a given account number
CBTrans readTransaction() raises(Unknown);

II Inserts the transaction data into the database
II for a given account number

string insertTransaction() raises(Unknown);

II Updates the transaction data in the database
II for a given account number and trans id

string updateTransaction() raises(Unknown);
} ;

interface CBAccount {

I /Gets Last made transaction for an Account
CBTransaction getTransaction(in string sid) raises(Unknown);

I /Puts Last made transaction for an Account
CBTransaction putTransaction(in string sid, in CBTrans objltem) raises(Unknown);

II Reads the account data for a given account number
CBAcct readAccount() raises(Unknown);

II Inserts the account data into the database
II for a given account number

string insertAccount() raises(Unknown);

I I Updates the account data in the database
I I for a given account number

string updateAccount() raises(Unknown);
} ;

interface CBManager {
II Gets an account object
CBAccount getAccount(in string Id) raises(Unknown);

II Puts an account object
CBAccount putAccount(in string Id, in CBAcct objltem) raises(Unknown);

};

II End ofCBBank.idl

- 70 -

APPENDIXM

VisiBroker Application

II Michelle McKeller- Graduate Project
I I Corba - VisiBroker
//VBC!ient

import java.io. *;
import java. uti!.*;

public class VBCiient
{

public static void main(String[] args)
{

try
{

String typeTest = "";
String numCiients = "";
String Uri="";
String fileName="";
String inLine = "";
File name;
boolean bToken =false;
int iNum=O;
int ilndex = 0;
int iTokenCt = 0;

//Retrieving command line arguments
if (args.length < 4)
{

System.out.println("At least 4 command-line arguments are needed.");
System.exit(O);

I I Type oftest we're running, read, insert, or update
type Test= args[O].trim().toUpperCase();

II Number of Clients running
numClients = args[l].trim();

II Convert from string to int we'll need this value for, for loops
iNurn= Integer.valueOf(numClients).intValue();
System.out.println("Number of Clients running will be:"+ iNurn);

II Name of text file we'll be using for the test
fileName= args[2].trim();

II URL should be in the format of
"http://neptune.cocse.unf.edu:2400/mmckellerNisiBrokerNBServer"

Uri= args[3].trim();

II Reading in data from file given on command line
II However many clients are supposed to run, that is how
II many lines we will read, one for each client, then
I I spawn a client thread.
System.out.println("Searching for file entered on command line ... ");

name= new File(fileName);

- 71 -

);

Uri, items).start();

command line.");

}
//End ofVBCiient

if(name .exists())
{

)else
{

System.out.println("File found, reading in I line per client thread.");
FileReader inFile =new FileReader (name);
BufferedReader inBuff= new Buffered Reader(inFile);

II Reading in one line per client requested, then spawning the client thread
for (ilndex = 0; iindex < iNurn; ilndex++)
{

if ((inLine = inBuff.readLine()) !=null)
{

}else
{

StringTokenizer st =new StringTokenizer(inLine, "\t\n\r", bToken

String [] items= new String [(st.countTokens())] ;

try
{

iTokenCt = 0;
while (st.hasMoreTokens())
{

String word= st.nextToken();

items[iTokenCt] =word;

iTokenCt = iTokenCt + I;

}
}catch(NoSuchEiementException e)
{

}

II Ifauy of the fields were empty, this is going
II to get thrown, but thats acceptable

II Spawning a client thread and passing it the string array of data
II that we read in

new VBCiientThread(args, type Test, String.valueOf(ilndex + 1),

II The file has to have as many rows in it as there are clients listed
II on the command line if not, this error occurs
System.out.println("File does not support number of clients on

System.exit(O);

System.out.println("File Name entered on command line does not exist.");
System.exit(O);

)
)catch(IOException e)
{

System.out.println("An error occurred processing request.");

- 72 -

II Michelle McKeller- Graduate Project
II Corba- VisiBroker
II VBClientThread

import java.lang. *;
importjava.io.*;
import java.net.MalformedURLException;
import java.utii.Locale;
import VBBankObjects. *;

public class VBClientThread extends Thread
{

String aTypeTest, aUrl, aCiientNum;
String [] aArgs;
String [] aDataltems;

public VBClientThread(String [] args, String typeTest, String clientNum, String Uri, String[] dataltems)
{

aArgs = args;
aTypeTest = typeTest;

aClientNum = clientNum;
aUrl =Uri;
aDataltems = dataltems;

public void run()
{

long time!= 0;
long time2 = 0;

try
{

File Writer Log= new File Writer("dbDataLog.txt", true);
BufferedWriter w =new BufferedWriter(Log);

II Create and initialize the ORB
org.omg.CORBA.ORB orb= org.omg.CORBA.ORB.init(aArgs, null);

VB Manager mgr = VBManagerHelper.bind(orb, aUrl);

if(mgr= null)
{

System.out.println("Error: Manager object equals null.");
System.exit(O);

VB Account acct =null;
VB Transaction trans= null;
String [] acctData =null;
String [] transData =null;
String rowsAffected = "";
inti= 0;

I I Deciding whether to read, insert, or update
if (aTypeTest.equals("READ"))
{

I I Reads an account record
II mimics a heavy load

I I Start timer
timel = System.currentTimeMillis();

II Reading the main account record
acct = mgr.getAccount(aDataltems[O]);

if (acct = null)
{

II Stop timer
time2 = System.currentTimeMillis();

- 73 -

database.");

was: " + acctData[i]);

record into the database.");

}else
{

System.out.println("Read account failed constructing account object.");

acctData = acct.readAccountO;

II Stop timer
time2 = System.currentTimeMillisO;

if (acctData[O].trimO = 1111
)

{

}else
{

System.out.println("Read account failed reading record from the

w.write("Returned data was: ");

for (i = 0; i < 25; i++)
{

w.write(acctData[i]);
w.newLineO;

System.out.println("Account data returned from server

}else if(aTypeTest.equals("INSERT"))
{

II Inserts a new transaction record
II mimics a light load

II Start timer
timel = System.currentTimeMillis();

II Inserting a transaction record
acct = mgr.getAccount(aDataltems[O]);

if (acct = null)
{

}else
{

II Stop timer
time2 = System.currentTimeMillis();

System.out.println("Insert transaction failed constructing account object.");

trans= acct.putTransaction(aDataltems[O], aDataltems);
rowsAffected = trans.insertTransactionO;

II Stop timer
time2 = System.currentTimeMillisO;

if(rowsAffected.trim() = "")

{

}else
{

System.out.println("Transaction insert failed when trying to insert

w.write("Rows affected: "+ rowsAffected);
w.newLine();

System. out. println("Rows affected: " + rowsAffected);

}else if(aTypeTest.equals("UPDATE"))
{

II Updates an existing account record

- 74 -

the record in the database.");

record into the database.");

II mimics a heavy load

II Start timer
time!= System.currentTimeMillis();

acct = mgr.putAccount(aDataltems[O], aDataltems);

if (acct = null)
{

}else
{

II Stop timer
time2 = System.currentTimeMillis();

System.out.println("Update account failed constructing account object.");

rowsAffected = acct.updateAccount();

II Stop timer
time2 = System.currentTimeMillis();

if(rowsAffected = "")
{

}else
{

System.out.println("Update account failed when trying to update

w.write("Rows affected: " + rowsAffected);
w.newLine();

System.out.println("Rows affected: "+ rowsAffected);

}else if(aTypeTest.equals("INSERTACCT"))
{

II Inserts a new account record
II mimics a heavy load

II Start timer
time!= System.currentTimeMillis();

II Inserting a new account
acct = mgr.putAccount(aDataitems[O], aDataltems);

if (acct = null)
{

}else
{

II Stop timer
time2 = System.currentTimeMillis();

System.out.println("Insert account failed constructing account object.");

rowsAffected = acct.insertAccount();

II Stop timer
time2 = System.currentTimeMillis();

if (rowsAffected = "")
{

}else
{

System.out.println("Insert Account failed when trying to insert

w.write("Rows affected: "+ rowsAffected);
w.newLine();

System.out.println("Rows affected: " + rowsAffected);

- 75 -

);

transaction object.");

record from the database.");

}else if(aTypeTest.equals("READTRANS"))
{

II This retrieves the last transaction record for the account
II mimics a light load

I I Start timer
timel = System.currentTimeMillis();

acct = mgr.getAccount(aDataitems[O]);

if(acct= null)
{

}else
{

I I Stop timer
time2 = System.currentTimeMillis();

System.out.println("Read transaction failed constructing the account object."

trans= acct.getTransaction(aDataltems[O]);
if (trans = null)
{

}else
{

I I Stop timer
time2 = System.currentTimeMillis();

System.out.println("Read transaction failed constructing

transData = trans.readTransaction();

I I Stop timer
time2 = System.currentTimeMillis();

if (transData[O].trim() = "")

{

}else
{

System.out.println("Read transaction failed reading the

w.write("Returned data was: ");

for (i = 0; i < 4; i++)
{

w.write(transData[i]);
w.newLine();

System.out.println("Transaction data
returned from server was: " + transData[i]);

object.");

}
}else if(aTypeTest.equals("UPDATETRANS"))
{

I I Start timer
time! = System.currentTimeMillis();

acct = mgr.getAccount(aDataltems[O]);

if (acct = null)
{

II Stop timer
time2 = System.currentTimeMillis();

System.out.println("Update transaction failed constructing the account

}else

- 76-

transaction object.");

trans= acct.putTransaction(aDataltems[O], aDataltems);

if (trans = null)
{

I I Stop timer
time2 = System.currentTimeMillis();

System.out.println("Update transaction failed constructing the

}else
{

rowsAffected = trans.updateTransaction();

I I Stop timer
time2 = System.currentTimeMillis();

if (rowsAffected.trim() = "")
{

System.out.println("Update transaction failed when
updating the record in the database.");

);

}

}else
{

}

w.write("Rows affected: "+ rowsAffected);
w.newLine();

System.out.println("Rows Affected: "+ rowsAffected

w.close();
}catch(IOException e)
{

}

System.out.println("An error occurred writing to the dbDataLog file.");
e.printStackTrace();

catch(Exception e)
{

try
{

System.out.println("An error has occurred in the Client.");
e.printStackTrace();

File Writer Log= new File Writer("timelog.txt", true);
BufferedWriter w =new BufferedWriter(Log);
w.write("Time spent on Client"+ aCiientNum + ": "+ (time2- timel) +"Milliseconds");
w.newLine();
w.close();

}catch(IOException e)
{

System.out.println("Problem occurred creating log file: "+e);

System.out.println("Time spent on Client"+ aCiientNum + ": "+ (time2- timel) +"Milliseconds");

II End ofVBCiientThread

- 77 -

II Michelle McKeller- Graduate Project
II Corba - VisiBroker
IIVBServer

import java.io.IOException;
import java.net.MalformedURLException;
import VBBankObjects. *;

public class VBServer
{

I I public No-argument constructor
public VBServerO
{
}

public static void main(String args(])
{

new VBServer();

VBDBServer dbServer =null;

String ServerUrl = "";
String Driver="";
String dbURL = "";
String User="";
String Password="";

try
{

if (args.length < 5)
{

System.out.println("At least 5 command-line arguments are needed.");
System.exit(O);

ServerUrl = args[O].trim();
Driver= args[l].trim();
dbURL = args[2].trim();
User= args[3].trim();
Password= args[4].trim();

II Initialize the ORB.
org.omg.CORBA.ORB orb= org.omg.CORBA.ORB.init(args,null);

System.out.println("ORB Initialized.");

II Initialize the BOA.
com.inprise. vbroker.CORBA.BOA boa = ((com. inprise. vbroker. CORBA.ORB)orb).BOA _init();

II Create a Database Server Object
dbServer =new VBDBServer(Driver, dbURL, User, Password);

II Create a Manager Object
VB Manager Man = new VBManagerlmpl(Server Uri, dbServer);

II Export the newly created object.
boa.obj_is _ready(Man);

System.out.println("Created manager\n" + orb.object_to_string(Man));

II Wait for incoming requests
boa.impl_is _ready();

} catch (Exception e)
{

}

System.err.println("Failure during object export to CORBA: "+e);
e.printStackTrace(System.out);
System. exit(-I);

}
}

- 78 -

II End ofVBServer

- 79 -

II Michelle McKeller- Graduate Project
I I Corba - VisiBroker
II VBDBServer

import java.net. *;
import java.sql. *;
import java.io. *;

public class VBDBServer {

}

String sDriver = 1111
;

String sdbURL = 1111
;

String sUser = '"';
String sPassword = 1111

;

String dbaseURL = 1111
;

Connection dbConnection;
Statement query;

I I Constructor
public VBDBServer(String Driver, String dbURL, String User, String Password)
{

sDriver =Driver; lloracle.jdbc.driver.OracleDriver
sdbURL = dbURL; II 11jdbc:oracle:thin:@manatee.cocse.unf.edu:l52l:sidl
sUser =User;
sPassword =Password;

initialize();

public void initialize()
{

try
{

Class.forName(sDriver);
dbaseURL = sdbURL;
dbConnection = DriverManager.getConnection(dbaseURL, sUser, sPassword);
query= dbConnection.createStatement();

catch(SQLException e)
{

}

System.out.println(11failed 11
);

e.printStackTrace();

catch(ClassNotFoundException e)
{

System.out.println(11failed cl11
);

public int runDBinOrUpQuery(String sSqiQuery)
{

introws = 0;

try
{

rows= query.executeUpdate(sSqiQuery);

catch(SQLException e)
{

System.out.println(11failed 11
);

e.printStackTrace();

return rows;

public ResultSet runDBReadQuery(String sSq!Query)
{

ResultSet results =null;

- 80 -

try

results= query.executeQuery(sSq!Query);
}
catch(SQLException e)

{
System.out.println("failed");

e.printStackTraceO;

return results;

II End ofVBDBServer

- 81 -

II Michelle McKeller- Graduate Project
I I Corba - VisiBroker
II VBManagerlmpl

import VBBankObjects. *;

public class VBManagerlmpl extends VBBankObjects._ VBManagerlmpiBase
{

VBDBServer dbSvr;

II public No-argument constructor
public VBManagerlmpl(String Uri, VBDBServer mydbServer)
{

super(Uri);
this.dbSvr = mydbServer;

II Returns an Account object.
public VBAccount getAccount(String Id) throws Unknown
{

VBAccount Acct =new VBAccountlmpl(Id, dbSvr);

System.out.println("Returning Account Object for the given account number.");

return Acct;

II Adds an Account Object
public VBAccount putAccount(String Id, String D Data) throws Unknown
{

VBAccount Account= new VBAccountlmpl(Id, Data, dbSvr);

System.out.println("Returning Account Object for the given account number.");

return Account;
}

II End ofVBManagerlmpl

- 82 -

II Michelle McKeller- Graduate Project
II Corba- VisiBroker
II VBAccountimpl

importjava.sql.*;
import VBBankObjects. *;

public class VBAccountlmpl extends VBBankObjects._ VBAccountlmpiBase
{

private String Id;
private String Data[];

private VBDBServer dbSvr;

II public constructor
public VBAccountlmpl(String sld, VB OBServer mydbSvr)
{

this.Id = sld;
this.dbSvr = mydbSvr;

II overloaded constructor
public VBAccountimpl(String sld, String [] sData, VB OBServer mydbSvr)
{

this.Id = sld;
this.Data = sData;

this.dbSvr = mydbSvr;

II Methods for accessing a Transaction Object
public VBTransaction getTransaction(String sld) throws Unknown
{

VBTransaction Trans= new VBTransactionlmpl(sld, dbSvr);
System.out.println("Returning Transaction Object for the given account number.");
return Trans;

public VBTransaction putTransaction(String sld , String [] sData) throws Unknown
{

VBTransaction Transact= new VBTransactionimpl(sld, sData, dbSvr);
System.out.println("Returning Transaction Object for the given account number.");
return Transact;

II Gets data for the Account object
public synchronized String [] readAccount()
{

String [] InfoData =new String [25];

String sqlQuery ="SELECT acct_num, pin_num, acct_status_cd, acct_type_cd, ssn, last_ name, first_ name, middle_initial,
prim_ address, prim_ city, prim _state_ cd, prim_ zip_ cd, prim_ zip_ cd _ext, sec_ address, sec_ city, sec _state_ cd, sec_ zip_ cd,
sec_zip_cd_ext, prim_phone_num, sec_phone_num, fax_num, create_dt, modified_dt, comments, addtl_comments FROM accounts
WHERE acct_num = "' + Id + '"";

System.out.println("Sql query being sent to the db is: "+ sqiQuery);

ResultSet results= dbSvr.runDBReadQuery(sqiQuery);

try
{

results.nextO;

InfoData[O] = results.getString("acct_num");
System.out.println("result: " + InfoData[O]);

InfoData[l] = results.getString("pin_num");
System.out.println("result: 11 + InfoData[l]);

InfoData[2] = results.getString("acct_status_cd");
System.out.println("result: 11 + InfoData[2]);

- 83 -

}

InfoData[3] = results.getString("acct_type_cd");
System.out.println("result: "+ InfoData[3]);

InfoData[4] = results.getString("ssn");
System.out.println("result: "+ lnfoData[4]);

InfoData[5] = results.getString("last_ name");
System.out.println("result: "+ InfoData[S]);

InfoData[6] = results.getString("first_ name");
System.out.println("result: " + InfoData[6]);

InfoData[7] = results.getString("middle_initial");
System.out.println("result: "+ InfoData[7]);

InfoData[8] = results.getString("prim_address");
System.out.println("result: "+ InfoData[8]);

InfoData[9] = results.getString("prim_city");
System.out.println("result: " + InfoData[9]);

InfoData[lO] = results.getString("prim_state_cd");
System.out.println("result:"+ lnfoData[lO]);

InfoData[ll] = results.getString("prim_zip_cd");
System.out.println("result: "+ InfoData[ll]);

InfoData[l2] = results.getString("prim_zip_cd_ext");
System.out.println("result: "+ InfoData[12]);

InfoData[13] = results.getString("sec_address");
System.out.println("result: "+ InfoData[l3]);

InfoData[14] = results.getString("sec_city");
System.out.println("result: "+ InfoData[l4]);

InfoData[15] = results.getString("sec_state_cd");
System.out.println("result:"+ InfoData[15]);

InfoData[16] = results.getString("sec_zip_cd");
System.out.println("result: "+ InfoData[l6]);

InfoData[17] = results.getString("sec_ zip_ cd _ext");
System.out.println("result: " + InfoData[l7]);

InfoData[18] = results.getString("prim_phone_num");
System.out.println("result: "+ InfoData[l8]);

InfoData[19] = results.getString("sec_phone_num");
System.out.println("result: " +Info Data[19]);

InfoData[20] = results.getString("fax_num");
System.out.println("result: "+ InfoData[20]);

InfoData[21] = results.getString("create_dt");
System.out.println("result: "+ InfoData[21]);

InfoData[22] = results.getString("modified_ dt");
System.out.println("result: " + lnfoData[22]);

InfoData[23] = results.getString("comments");
System.out.println("result: "+ InfoData[23]);

InfoData[24] = results.getString("addtl_comments");
System.out.println("result: "+ IntoData[24]);

catch(SQLException e)
{

System.out.println("Read transaction failed: "+e);

- 84 -

return InfoData;

I I Inserts the data for the account object
public synchronized String insertAccountO
{

String sMessage = "";

String sq!Query ="INSERT INTO accounts(acct_num, pin_num, acct_status_cd, acct_type_cd, ssn,
last_name, first_name, middle_initial, prim_address, prim_city, prim_state_cd, prim_zip_cd, prim_zip_cd_ext, sec_address, sec_ city,
sec_state_cd, sec_zip_cd, sec_zip_cd_ext, prim_phone_num, sec_phone_num, fax_num, create_dt, modified_dt, comments,
addtl_comments) ";

sq!Query = sq!Query +"VALUES("'+ Data[O] + 1
",

111 +Data[!]+ 1
",

111 + Data[2) + 111
,

111 + Data[3] +
"', "'+ Data[4] + "', "'+ Data[5] + "', "1 + Data[6] + "', "'+ Data[7] + 111

,
111 +Data[&]+ 1

", "'+ Data[9] + 111
, "

1 + Data[lO] + 1
", "'+

Data[!!]+"',"'+ Data[12] + 1
",

1
" +Data[B)+"',"'+ Data[l4] + 1

", "'+Data[IS)+ "1
, "

1
;

sq!Query = sq!Query + Data[16] + 111
, "'+ Data[17] +"',"'+Data[!&]+"', 1

" + Data[l9] + "', "'+
Data[20] + "', "'+ Data[21] + 1

",
111 + Data[22] + 111

,
111 + Data[23] + 111

,"' + Data[24] + "1
)";

System.out.println("Sql query being sent to the db is: " + sqlQuery);

int rows= dbSvr.runDBinOrUpQuery(sq!Query);

sMessage ="Number of rows affected:"+ String.valueOf(rows);

return sMessage;

II Updates the data for the account object
public synchronized String updateAccountO
{

String sMessage = "";

String sq!Query ="UPDATE accounts SET pin_num = 111 +Data[!]+ 1
", acct_status_cd ="' + Data[2] + "', acct_type_cd ="' +

Data[3] + 1
", ssn = "1 + Data[4] + 111

, last_ name="'+ Data[5] + 1
", first_ name="'+ Data[6] + "1

, middle_initial = 1
" + Data[7] + "',

prim_address ="'+Data[&]+"', prim_city = 111 + Data[9] + "1
, ";

sq!Query = sq!Query + "prim_state_cd = 111 + Data[IO] + "1
, prim_zip_cd = 111 + Data[ll] + "',

prim_zip_cd_ext ="' + Data[l2] + 111
, sec_address ="' + Data[l3] + 1

", sec_city = 1
" + Data[14] + "', sec_state_cd ="' + Data[IS] + 1

",

sec_zip_cd = 111 + Data[16];
sq!Query = sq!Query + 111

, sec_zip_cd_ext = 1
" + Data[l7] + 111

, prim_phone_num = "1 +Data[I&]+ 1
",

sec_phone_num ="' + Data[l9] + "', fax_num ="' + Data[20] + 1
", create_dt ="' + Data[21] + 111

, modified_dt="' + Data[22] + 1
",

comments="'+ Data[23] + 111
, addtl_comments ="' + Data[24] + 111 WHERE acct_num = "'+ Id + 1

"";

System.out.println("Sql query being sent to the db is: "+ sq!Query);

int rows= dbSvr.runDBinOrUpQuery(sq!Query);

sMessage ="Number of rows affected:"+ String.valueOf(rows);

return sMessage;

}
II End ofVBAccountimpl

- 85 -

II Michelle McKeller- Graduate Project
II Corba - VisiBroker
II VBTransactionlmpl

import java.sql. *;
import VBBankObjects. *;

public class VBTransactionlmpl extends VBBankObjects._ VBTransactionlmplBase {
private String Id;
private String Data[];

private VBDBServer dbSvr;

II public constructor
public VBTransactionlmpl(String sld, VBDBServer mydbSvr)
{

this.Id = sld;
this.dbSvr = mydbSvr;

I I overloaded constructor
public VBTransactionlmpl(String sld, String [] sData, VBDBServer mydbSvr)
{

this.Id = sld;
this.Data = sData;

this.dbSvr = mydbSvr;

II Gets data for the transaction object
public synchronized String [] readTransaction()
{

String [] InfoData =new String [4];

String sqiQuery ="SELECT trans_id, acct_num, trans_type_cd, trans_amt, create_dt FROM transactions WHERE acct_num = '"
+ Id +"'AND trans_id =(SELECT MAX(trans_id) FROM transactions WHERE acct_num = "' + Id + "')";

System.out.println("Sql query being sent to the db is: "+ sqiQuery);

ResultSet results= dbSvr.runDBReadQuery(sqiQuery);

return InfoData;

if (results= null)
{

}else
{

InfoData[O] = "";

try
{

}

results.nextO;
InfoData[O] = results.getString("acct_num");
System.out.println("results: " + InfoData[O]);

InfoData[l] = results.getString("trans_type_cd");
System.out.println("results:"+ InfoData[l]);

InfoData[2] = results.getString("trans_amt");
System.out.println("results: "+ lnfoData[2]);

InfoData[3] = results.getString("create_dt");
System.out.println("results: "+ InfoData[3]);

catch(SQLException e)
{

System.out.println("Read transaction failed: "+ e);

- 86 -

II Inserts the data for the transaction object
public synchronized String insertTransactionO
{

String sMessage = "";

String sqlQuery ="INSERT INTO transactions(trans_id, acct_num, trans_type_cd, trans_amt, create_dt)
VALUES (trans_id_sequence.NEXTVAL, 1

" + Data[O] + 111
,

111 +Data[!]+ "1
, "

1 + Data[2] + 111
,

111 + Data[3] + "1
)";

System.out.println("Sql query being sent to the db is: "+ sq!Query);

int rows = dbSvr.runDBinOrUpQuery(sq!Query);

sMessage = "Number ofrows affected: " + String.valueOf(rows);

return sMessage;

II Updates the data for the transaction object
public synchronized String updateTransactionO
{

String sMessage = "";

String sqlQuery ="UPDATE transactions SET trans_type_cd = "1 +Data[!]+ 1
", trans_amt = 111 + Data[2] + "1

,

create_dt = 111 + Data[3] + "1 WHERE acct_num = 111 + Data[O] + "1 AND trans_id =(SELECT MAX(trans_id) FROM transactions
WHERE acct_num = 111 + Data[O] + "1

)";

System.out.println("Sql query being sent to the db is: "+ sqlQuery);

int rows= dbSvr.runDBinOrUpQuery(sqiQuery);

sMessage ="Number of rows affected: "+ String.valueOf(rows);

return sMessage;

II End ofVBTransactionlmpl

- 87 -

II Michelle McKeller- Graduate Project
I I Corba - VisiBroker
II VBBank.idl

module VBBankObjects{
exception Unknown{};

};

typedef string VBAcct[25];
typedefstring VBTrans[4];

interface VBTransaction {
II Reads the transaction data for a given account number
VBTrans readTransaction() raises(Unknown);

I I Inserts the transaction data into the database
I I for a given account number

string insertTransaction() raises(Unknown);

II Updates the transaction data in the database
II for a given account number and trans id

string update Transaction() raises(Unknown);
};

interface VBAccount {

I /Gets Last made transaction for an Account
VB Transaction getTransaction(in string sld) raises(Unknown);

I /Puts Last made transaction for an Account
VBTransaction putTransaction(in string sld, in VBTrans objltem) raises(Unknown);

II Reads the account data for a given account number
VBAcct readAccount() raises(Unknown);

I I Inserts the account data into the database
II for a given account number

string insertAccount() raises(Unknown);

II Updates the account data in the database
II for a given account number

string updateAccount() raises(Unknown);
} ;

interface VB Manager {
II Gets an account object
VBAccount getAccount(in string I d) raises(Unknown);

II Puts an account object
VBAccount putAccount(in string Id, in VBAcct objltem) raises(Unknown);

};

II End ofVBBank.idl

- 88 -

Makefile for VisiBroker:

.SUFFIXES: .java .class .idl .module

.java. class:
vbjc $<

.idl.module:
idl2java -boa$<
touch$@

default: all

clean:
rm -rfVBBankObjects
rm -f*.class *.tmp *.module*~

IDLS =\
VBBank.idl

MODULES= $(IDLS:.idl=.module)

SRCS =\
VBTransactionlmpl.java \
VBAccountlmpl.java \
VBManagerlmpl.java \
VBDBServer.java \
VBServer.java \
VBClientThread.java \
VBClient.java

CLASSES= $(SRCS:.java=.class)

all: $(MODULES) $(CLASSES)

- 89 -

APPENDIXN

Orbix 2000 Application

II Michelle McKeller- Graduate Project
II Corba- Orbix 2000
II client

package OBBankObjects;

importjava.io.*;
importjava.util. *;
import org.omg.CORBA. *;
import org.omg.CosNaming. *;
import org.omg.CosNaming.NamingContextPackage. *;
import java.lang. *;
import java.net.MalformedURLException;

public class client
{

public static void main(String[] args)
{

try
{

String typeTest = '"';
String numCiients = '"';
String Uri="";
String fileName="";
String inLine = "";
Filename;
boolean bToken =false;
intiNum=O;
int ilndex = 0;
int iTokenCt = 0;

//Retrieving command line arguments
if (args.length < 6)
{

System.out.println("At least 6 command-line arguments are needed.");
System.exit(O);

II Type of test we're running, read, insert, or update
type Test= args[2].trim().toUpperCase();
System.out.println("typeTest: " + type Test);

//Number of Clients running
numCiients = args[3].trim();
System.out.println("numCiients: " + numCiients);

II Convert from string to int we'll need this value for, for loops
iNurn= Integer.valueOf(numCiients).intValue();
System.out.println("Number of Clients running will be:"+ iNurn);

II Name of text file we'll be using for the test
fileName= args[4].trim();

- 90 -

ncRef.resolve(path));

);

System.out.println("fileName: " +fileName);

II URL should be in the format of "http:llneptune.cocse.unf.edu:2400lmmckellerl0rbix/server"
Uri= args[5].trim();
System.out.println("URL: " +Uri);

II Reading in data from file given on command line
I I However many clients are supposed to run, that is how
II many lines we will read, one for each client, then
II spawn a client thread.
System.out.println("Searching for file entered on command line ... ");

name= new File(fileName);

if(name.exists())
{

II Create and initialize the ORB
org.omg.CORBA.ORB orb= ORB.init(args, null);

org.omg.CORBA.Object objRef= orb.resolve_initial_references("NameService");

org.omg.CosNaming.NamingContext ncRef=
org.omg.CosNaming.NamingContextHelper.narrow(objRef);

org.omg.CosNaming.NameComponent nc =new NameComponent(Url, "");

N ameComponent path[] = { nc};

OBBankObjects.OBBankObjects.OBManager mgr =
OBBankObjects.OBBankObjects.OBManagerHelper.narrow(

System.out.println("Getting manager object");

if(mgr=null)
{

System.out.println("Error: Manager object equals null.");
System.exit(O);

System.out.println("File found, reading in 1 line per client thread.");
FileReader inFile = new FileReader (name);
BufferedReader inBuff= new BufferedReader(inFile);

II Reading in one line per client requested, then spawning the client thread
for (ilndex = 0; ilndex < iNurn; ilndex++)
{

if((inLine = inBuff.readLine()) !=null)
{

StringTokenizer st =new StringTokenizer(inLine, "\t\n\r", bToken

String [] items= new String [(st.countTokens())] ;

try
{

iTokenCt = 0;
while (st.hasMoreTokens())
{

String word= st.nextToken();

items[iTokenCt] =word;

iTokenCt = iTokenCt + 1;

}
}catch(NoSuchEiementException e)

- 91 -

}

II If any of the fields were empty, this is going
II to get thrown, but thats acceptable

II Spawning a client thread and passing it the string array of data
I I that we read in

new OBBankObjects.OBCiientThread(args, type Test,
String.valueOf(ilndex + 1), Uri, items, mgr).startO;

command line.");

}
//End of client

}else
{

}
}catch(Exception e)
{

}else
{

II The file has to have as many rows in it as there are clients listed
I I on the command line if not, this error occurs
System.out.println("File does not support number of clients on

System.exit(O);

System.out.println("File Name entered on command line does not exist.");
System.exit(O);

System.out.println("An error occurred processing request.");

- 92 -

II Michelle McKeller- Graduate Project
II Corba - Orbix 2000
II OBCiientThread

package OBBankObjects;

import org.omg.CORBA.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import java.lang. *;
importjava.io.*;
import java.net.MalformedURLException;
importjava.util.*;

public class OBCiientThread extends Thread
{

String aTypeTest, a Uri, aCiientNum;
String [] aArgs;
String [] aDataltems;
OBBankObjects.OBBankObjects.OBManager mgr =null;

public OBCiientThread(String [] args, String typeTest, String clientNum, String Uri, String [] dataltems,
OBBankObjects.OBBankObjects.OBManager obMgr)

{
aArgs = args;

aTypeTest = typeTest;
aCiientNum = clientNum;
aUrl =Uri;
aDataltems = dataltems;
mgr=obMgr;

public void run()
{

long time I = 0;
long time2 = 0;

try
{

File Writer Log= new File Writer("dbDataLog.txt", true);
BufferedWriter w =new BufferedWriter(Log);

OBBankObjects.OBBankObjects.OBAccount acct =null;
OBBankObjects.OBBankObjects.OBTransaction trans= null;
String [] acctData = null;
String [] transData =null;
String rowsAffected = "";
inti=O;

II Deciding whether to read, insert, or update
if (aTypeTest.equals("READ"))
{

I I Reads an account record
II mimics a heavy load

I I Start timer
timel = System.currentTimeMillis();

II Reading the main account record
acct = mgr.getAccount(aDataltems[O]);

if (ace!= null)
{

I I Stop timer
time2 = System.currentTimeMillis();

System.out.println("Read account failed constructing account object.");
}else
{

- 93 -

database.");

was: " + acctData[i]);

record into the database.");

acctData = acct.readAccountO;

II Stop timer
time2 = System.currentTimeMillisO;

if (acctData[O].trimO = '"')
{

}else
{

System.out.println("Read account failed reading record from the

w.write("Returned data was: ");

for (i = 0; i < 25; i++)
{

w.write(acctData[i]);
w.newLineO;

System.out.println("Account data returned from server

}else if(aTypeTest.equals("INSERT"))
{

I I Inserts a new transaction record
II mimics a light load

I I Start timer
time!= System.currentTimeMillisO;

II Inserting a transaction record
acct = mgr.getAccount(aDataltems[O]);

if(acct= null)
{

}else
{

I I Stop timer
time2 = System.currentTimeMillisO;

System.out.println("Insert transaction failed constructing account object.");

trans = acct.putTransaction(aDataltems[O], aDataltems);
rowsAffected = trans.insertTransactionO;

II Stop timer
time2 = System.currentTimeMillisO;

if (rowsAffected.trimO = "")
{

}else
{

System.out.println("Transaction insert failed when trying to insert

w.write("Rows affected:"+ rowsAffected);
w.newLineO;

System.out.println("Rows affected: " + rowsAffected);

}else if(aTypeTest.equals("UPDATE"))
{

II Updates an existing account record
II mimics a heavy load

II Start timer

- 94 -

the record in the database.");

record into the database.");

time!= System.currentTimeMillis();

acct = mgr.putAccount(aDataltems[O], aDataltems);

if (acct = null)
{

}else
{

II Stop timer
time2 = System.currentTimeMillis();

System.out.println("Update account failed constructing account object.");

rowsAffected = acct.updateAccount();

II Stop timer
time2 = System.currentTimeMillis();

if (rowsAffected = "")

{

}else
{

System.out.println("Update account failed when trying to update

w.write("Rows affected:"+ rowsAffected);
w.newLine();

System.out.println("Rows affected: "+ rowsAffected);

}else if(aTypeTest.equals("INSERTACCT"))
{

II Inserts a new account record
II mimics a heavy load

II Start timer
time! = System.currentTimeMillis();

II Inserting a new account
acct = mgr.putAccount(aDataltems[O], aDataltems);

if (acct = null)
{

}else
{

II Stop timer
time2 = System.currentTimeMillis();

System.out.println("Insert account failed constructing account object.");

rowsAffected = acct.insertAccount();

II Stop timer
time2 = System.currentTimeMillis();

if (rowsAffected = "")
{

}else
{

System.out.println("Insert Account failed when trying to insert

w.write("Rows affected:"+ rowsAffected);
w.newLine();

System.out.println("Rows affected: "+ rowsAffected);

}else if(aTypeTest.equals("READTRANS"))

- 95 -

);

transaction object.");

record from the database.");

II This retrieves the last transaction record for the account
II mimics a light load

II Start timer
time!= System.currentTimeMillisO;

acct = mgr.getAccount(aDataltems[O]);

if (acct = null)
{

}else
{

II Stop timer
time2 = System.currentTimeMillisO;

System.out.println("Read transaction failed constructing the account object."

trans= acct.getTransaction(aDataitems[O]);
if (trans = null)
{

}else
{

II Stop timer
time2 = System.currentTimeMillisO;

System.out.println("Read transaction failed constructing

transData = trans.readTransaction();

II Stop timer
time2 = System.currentTimeMillis();

if(transData[O].trim() = "")
{

}else
{

System.out.println("Read transaction failed reading the

w.write("Returned data was: ");

for (i = 0; i < 4; i++)
{

w.write(transData[i]);
w.newLine();

System.out.println("Transaction data
returned from server was: " + transData[i]);

object.");

}
}else if (aTypeTest.equals("UPDATETRANS"))
{

II Start timer
timel = System.currentTimeMillis();

acct = mgr.getAccount(aDataltems[O]);

if (acct =null)
{

}else
{

II Stop timer
time2 = System.currentTimeMillis();

System.out.println("Update transaction failed constructing the account

trans= acct.putTransaction(aDataltems[O], aDataltems);

- 96 -

transaction object.");

if (trans = null)
{

}else
{

II Stop timer
time2 = System.currentTimeMillisO;

System.out.println("Update transaction failed constructing the

rowsAffected =trans. update Transaction();

I I Stop timer
time2 = System.currentTimeMillis();

if (rowsAffected.trim() = "")
{

System.out.println("Update transaction failed when
updating the record in the database.");

);

}else
{

w.closeO;

w.write("Rows affected:"+ rowsAffected);
w.newLine();

System.out.println("Rows Affected: "+ rowsAffected

}catch(IOException e)
{

System.out.println("An error occurred writing to the dbDataLog file.");
e.printStackTraceO;

} catch(Exception e)
{

try
{

System.out.println("An error has occurred in the Client.");
e.printStackTraceO;

File Writer Log= new File Writer("timelog.txt", true);
BufferedWriter w =new BufferedWriter(Log);
w.write("Time spent on Client "+ aCiientNum + ": "+ (time2- timel) +" Milliseconds");
w.newLine();
w.close();

}catch(IOException e)
{

System.out.println("Problem occurred creating log file: "+e);

System.out.println("Time spent on Client"+ aCiientNum + ": "+ (time2- time!)+" Milliseconds");

II End ofOBCiientThread

- 97 -

II Michelle McKeller- Graduate Project
II Corba - Orbix 2000
II server

package OBBankObjects;

import org.omg. *;
import org.omg.CORBA. *;
import org.omg.PortableServer. *;
import org.omg.CosNaming. *;

import java. text.DateFormat;
import java. io.IOException;
import java.net.MalformedURLException;

public class server {

public static ORB global_ orb= null;

II create_simple_poaO --Create a POA for simple servant management.
static POA create_simple_poa(

)
{

String poa_name,
POA parent_poa,
POAManager poa_manager

II Create a policy list. Policies not set in the list get default values.
org.omg.CORBA.Policy[] policies= new org.omg.CORBA.Policy[l];
inti=O;
POA new_poa =null;

II Make the POA multi-threaded.
II Note: application server code may be called in multiple threads
II so it must be thread safe.
policies[i++] = parent_poa.create_thread_policy(ThreadPolicyValue.ORB_CTRL_MODEL);
if(! (i=l))
{

}

System.out.println("Policy creation failed");
System.exit(I);

try
{

new_poa = parent_poa.create_POA(poa_name, poa_manager, policies);
} catch (org.omg.PortableServer.POAPackage.AdapterAlreadyExists ex)
{

System.out.println("Failed to create the POA with exception : "+ex.toStringO);
System.exit(l);

} catch (org.omg.PortableServer.POAPackage.lnvalidPolicy ex)
{

}

System.out.println("Failed to create the POA with exception : "+ex.toStringO);
System. exit(!);

return new _poa;

II mainO -- set up a POA, create and export object references.
public static void main(String args[])
{

Servant the_OBBankObjects_OBManager =null;
org.omg.CORBA.Object tmp_ref= null;

OBBankObjects.OBBankObjects.OBDBServer dbServer =null;
String ServerUrl = "";
String Driver="";
String dbURL = "";
String User="";
String Password="";

- 98 -

try
{

if (args.length < 7)
{

System.out.println("At least 7 command-line arguments are needed.");
System.exit(O);

ServerUrl = args[2].trim();
System.out.println("ServerUrl: "+ ServerUrl);
Driver= args[3].trim();
System.out.println("Driver: "+Driver);
dbURL = args[4].trim();
System.out.println("dbUrl: "+ dbURL);
User= args[S].trim();
System.out.println("User: "+User);
Password= args[6].trim();
System.out.println("pass: "+Password);

II Initialise the ORB and Root POA.
System.out.println("Initializing the ORB");

try
{

global_ orb= ORB.init(args, null);
tmp _ref= global_ orb.resolve _initial_references("RootPOA");

System.out.println("Created root POA");
} catch (org.omg.CORBA.ORBPackage.InvalidName ex)
{

}

System.out.println("Caught an unexpected exception while resolving to the RootPOA : "+ ex.toStringO);
System.exit(l);

II Create a Database Server Object
try{

dbServer =new OBBankObjects.OBBankObjects.OBDBServer(Driver, dbURL, User, Password);
System.out.println("Created oracle database connection");

} catch(Exception e)
{

System.out.println("Failing to establish oracle connection: ");
e.printStackTrace();

POA root_poa = POAHelper.narrow(tmp_ref);
POAManager root_poa_manager = root_poa.the_POAManager();

System.out.println("Connecting to the name server ... ");

tmp_ref= global_orb.resolve_initial_references("NameService");
org.omg.CosNaming.NamingContext default_ context=

org.omg.CosNaming.NamingContextHelper.narrow(tmp_ref);

if(default_ context= null)
{

}

System.out.println("Failed to get reference to the NameService");
System. exit(!);

System.out.println("Name Server Connected");

II Now create our own PO A.

System.out.println("Creating new poa ... ");

POA my_poa = create_simple_poa("my_poa", root_poa, root_poa_manager);

System.out.println("POA created.");

- 99 -

}

byte[] oid;
org.omg.CosNaming.NameComponent name;

try{

II Create a servant for interface OBBankObjects.OBManager.
System.out.println("Creating manager servant for use ... ");

the_OBBankObjects_OBManager =new
OBBankObjects.OBBankObjects.OBManagerlmpl(my _poa, dbServer);

oid =my _poa.activate _object(the_ OBBankObjects_ OBManager);

System.out. println("Manager servant created.");

tmp _ref= my _poa.id _to _reference(oid);

name= new NameComponent(ServerUrl, "");
NameComponent path[]= {name};

default_context.rebind(path, tmp _ref);

System.out.println("Binded to Manager Impl Object");

} catch (org.omg.PortableServer.POAPackage.ServantAiready Active ex)
{

System.out.println("Caught an exception while trying to activate an object: "+ ex.toStringO);
System.exit(l);

} catch (org.omg.PortableServer.POAPackage.WrongPolicy ex)
{

System.out.println("Caught an exception while trying to activate an object: "+ ex.toStringO);
System.exit(l);

} catch (org.omg.PortableServer.POAPackage.ObjectNotActive ex)
{

System.out.println("Caught an exception while trying to create a reference : "+ ex.toStringO);
System.exit(l);

}

II Activate the POA Manager.
try
{

root_poa_manager.activateO;

System.out.println("Activated root poa manager");

} catch (org.omg.PortableServer.POAManagerPackage.Adapterlnactive ex)
{

}

System.out.println("Failed while trying to activate the root poa manager : " + ex.toStringO);
System.exit(l);

/!Let the ORB process requests.
System.out.println("Waiting for requests ... ");
global_ orb.runO;

catch (Exception e)
{

System.out.println("Unexpected CORBA exception: "+ e.toStringO);
}

II Ensure that the ORB is properly shutdown and cleaned up.
try
{

global_ orb.shutdown(true);
}
catch (Exception e)
{

II Do nothing.
}
return;

-100-

}
}

I I End of server

-101-

II Michelle McKeller- Graduate Project
II Corba- Orbix 2000
II OBDBServer

package OBBankObjects.OBBankObjects;

import OBBankObjects. *;
import java.net. *;
import java.sql. *;
importjava.io.*;

public class OBDBServer {

}

String sDriver = "";
String sdbURL = "";
String sUser = "";
String sPassword = "";
String dbaseURL = "";
Connection dbConnection;
Statement query;

I I Constructor
public OBDBServer(String Driver, String dbURL, String User, String Password)
{

sDriver =Driver; lloracle.jdbc.driver.OracleDriver
sdbURL = dbURL; II "jdbc:oracle:thin:@manatee.cocse.unf.edu: 1521 :sid I
sUser =User;
sPassword = Password;

initialize();

public void initialize()
{

try
{

Class.forName(sDriver);
System.out.println("Looking for oracle driver.");
dbaseURL = sdbURL;
dbConnection = DriverManager.getConnection(dbaseURL, sUser, sPassword);
System.out.println("Making db connection.");
query= dbConnection.createStatement();

catch(SQLException e)

}

{
System.out.println("failed");

e.printStackTrace();

catch(CiassNotFoundException e)
{

System.out.println("failed cl");

public int runDBinOrUpQuery(String sSq!Query)
{

int rows= 0;

try
{

rows= query.executeUpdate(sSq!Query);

catch(SQLException e)
{

System.out.println("failed");
e.printStackTrace();

-102-

return rows;

public ResultSet runDBReadQuery(String sSqiQuery)
{

ResultSet results= null;

try

results= query .executeQuery(sSqiQuery);
}
catch(SQLException e)

{
System.out.println("failed");

e.printStackTraceO;

return results;

II End ofOBDBServer

-103-

II Michelle McKeller- Graduate Project
II Corba- Orbix 2000
II OBManagerlmpl

package OBBankObjects.OBBankObjects;

import OBBankObjects. *;
import org.omg.CORBA.ORB;
import org.omg.PortableServer.*;
import org.omg.CORBA.StringHolder;

public class OBManagerlmpl
extends OBManagerPOA

org.omg.PortableServer.POA m_poa =null;
OBBankObjects.OBBankObjects.OBDBServer dbSvr;
String myMgrPoa = "";

II Constructor ofOBManagerlmpl
public OBManagerlmpl(

)
{

org.omg.PortableServer.POA the_poa, OBBankObjects.OBBankObjects.OBDBServer mydbServer

m_poa = the_poa;
this.dbSvr = mydbServer;

try
{

org.omg.CORBA.Policy[] policies= new org.omg.CORBA.Policy[l];

inti= 0;
policies[i++] = the _poa.create _thread _policy(ThreadPolicy Value. ORB_ CTRL _MODEL);

myMgrPoa = String.valueOf(i);

m_poa = the_poa.create_POA(myMgrPoa, the_poa.the_POAManager(), policies);

llm_poa = the_poa.create_POA("ManagerPOA", the_poa.the_POAManager(), policies);

}catch (Exception e)
{

System.out.println("Exception occurred in the manager imp!: ");
e.printStackTrace();

public OBBankObjects.OBBankObjects.OBAccount getAccount(
java.lang.String Id

)
throws org.omg.CORBA.SystemException,
OBBankObjects.OBBankObjects.Unknown
{

OBBankObjects.OBBankObjects.OBAccount myAcct =null;

try
{

OBBankObjects.OBBankObjects.OBAccountlmpl myAcctlmpl =new
OBBankObjects.OBBankObjects.OBAccountlmpl(m_poa, Id, dbSvr);

long time! = 0;
String xld = '"';

time!= System.currentTimeMillis();

xld = Id + String.valueOf(time!);

m_poa.activate_object_with_id(xld.getBytes(), myAcctlmpl);

-104-

II get the CORBA Object Reference for this servant
myAcct = OBBankObjects.OBBankObjects.OBAccountHelper.narrow(

m__poa.servant_to_reference(myAcctimpl));

} catch (Exception e)
{

System.out.println("Exception occurred getting account object: ");
e.printStackTrace();

return myAcct;

public OBBankObjects.OBBankObjects.OBAccount putAccount(
java.lang.String Id,
java.lang.String[] Data

)
throws org.omg.CORBA.SystemException,
OBBankObjects.OBBankObjects.Unknown
{

OBBankObjects.OBBankObjects.OBAccount myAcct =null;

try
{

OBBankObjects.OBBankObjects.OBAccountlmpl myAcctimpl =new
OBBankObjects.OBBankObjects.OBAccountimpl(m__poa, Id, Data, dbSvr);

long time!= 0;
String xld = "";

time! = System.currentTimeMillis();

xld = Id + String.valueOf(timel);

m__poa.activate_object_with_id(xld.getBytes(), myAcctlmpl);

II get the CORBA Object Reference for this servant
my Acct = OBBankObjects.OBBankObjects.OBAccountHelper.narrow(

m__poa.servant_to_reference(myAcctlmpl));

} catch (Exception e)
{

System.out.println("Exception occurred putting account object: ");
e.printStackTrace();

return my Acct;

public org.omg.PortableServer.POA _ default_pOA()
{

return m __poa;

II End ofOBManagerlmpl

-105-

II Michelle McKeller- Graduate Project
II Corba- Orbix 2000
II OBAccountimpl

package OBBankObjects.OBBankObjects;

import OBBankObjects.*;
importjava.sql.*;
import org.omg.CORBA.ORB;
import org.omg.PortableServer.*;
import org.omg.CORBA.StringHolder;

public class OBAccountlmpl
extends OBAccountPOA

org.omg.PortableServer.POA m_poa =null;
private String Id;
private String Data[];

private OBBankObjects.OBBankObjects.OBDBServer dbSvr;

//Constructor of OBAccountimpl
public OBAccountlmpl(

)
{

org.omg.PortableServer.POA the_poa, String sld, OBBankObjects.OBBankObjects.OBDBServer mydbSvr

m _poa = the _poa;
this.ld = sld;

this.dbSvr = mydbSvr;

try
{

org.omg.CORBA.Policy[] policies= new org.omg.CORBA.Policy[l];

String myAcctPoa = "";
long time!= 0;
inti=O;

time! = System.currentTimeMillis();

policies[i++] = the _poa.create _thread _policy(ThreadPol icy Value. ORB_ CTRL _MODEL);

myAcctPoa = Id + String.valueOf(time!);

m_poa = the_poa.create_FOA(myAcctPoa, the_poa.the_POAManager(), policies);

} catch (Exception e)
{

System.out.println("Exception occurred in the account imp!: ");
e.printStackTrace();

II Overloaded Constructor
public OBAccountlmpl(

)
{

org.omg.PortableServer.POA the_poa, String sld, String[] sData, OBBankObjects.OBBankObjects.OBDBServer mydbSvr

II initialise all the fields in the object so that there are no null values
m_poa =the _poa;
this.ld = sld;
this. Data= sData;

this.dbSvr = mydbSvr;

try
{

org.omg.CORBA.Policy[] policies= new org.omg.CORBA.Policy[l];

String myAcctPoa = "";
long time! = 0;

-106-

inti=O;

time! = System.currentTimeMillisO;

policies[i++] = the _poa.create _thread _policy(ThreadPolicyValue.ORB _ CTRL _MODEL);

myAcctPoa = Id + String.valueOf(time!);

m_poa = the_poa.create_POA(myAcctPoa, the_poa.the_POAManager(), policies);

} catch (Exception e)
{

System.out.println("Exception occurred in the account impl: ");
e.printStackTraceO;

II Used to get the transaction object
public OBBankObjects.OBBankObjects.OBTransaction getTransaction(

java.lang.String sld
)
throws org.omg.CORBA.SystemException,
OBBankObjects.OBBankObjects.Unknown
{

OBBankObjects.OBBankObjects.OBTransaction myTrans =null;

try
{

OBBankObjects.OBBankObjects.OBTransactionlmpl myTranslmpl = new
OBBankObjects.OBBankObjects.OBTransactionlmpl(m_poa, sld, dbSvr);

long time 1 = 0;
String xld = "";

time! = System.currentTimeMillis();

xld = Id + String.valueOf(time!);

m_poa.activate_object_with_id(xld.getBytes(), myTranslmpl);

II get the CORBA Object Reference for this servant
myTrans = OBBankObjects.OBBankObjects.OBTransactionHelper.narrow(

m_poa.servant_to_reference(myTranslmpl));

}catch (Exception e)
{

System.out.println("Exception occurred creating transaction object: ");
e.printStackTrace();

return myTrans;

II Used to put a transaction object
public OBBankObjects.OBBankObjects.OBTransaction putTransaction(

java.lang.String sld,
java.lang.String[] sData

)
throws org.omg.CORBA.SystemException,
OBBankObjects.OBBankObjects.Unknown
{

OBBankObjects.OBBankObjects.OBTransaction myTrans =null;

try
{

OBBankObjects.OBBankObjects.OBTransactionlmpl myTranslmpl = new
OBBankObjects.OBBankObjects.OBTransactionlmpl(m_poa, sld, sData, dbSvr);

long time! = 0;
String xld = "";

-107-

time!= System.currentTimeMillis();

xld = Id + String.valueOf(time l);

m_poa.activate_object_with_id(xld.getBytes(), myTranslmpl);

II get the CORBA Object Reference for this servant
myTrans = OBBankObjects.OBBankObjects.OBTransactionHelper.narrow(

m_poa.servant_to_reference(myTranslmpl));

} catch (Exception e)
{

System.out.println("Exception occurred creating transaction object: ");
e.printStackTrace();

return myTrans;

II Used to read an account
public synchronized java.lang.String[] readAccount(
)
throws org.omg.CORBA.SystemException,
OBBankObjects.OBBankObjects.Unknown
{

String [] InfoData =new String [25];

String sqlQuery ="SELECT acct_num, pin_num, acct_status_cd, acct_type_cd, ssn, last_ name, first_ name, middle_initial,
prim_address, prim_city, prim_state_cd, prim_zip_cd, prim_zip_cd_ext, sec_address, sec_ city, sec_state_cd, sec_zip_cd,
sec_zip_cd_ext, prim_phone_num, sec_phone_num, fax_num, create_dt, modified_dt, comments, addtl_comments FROM accounts
WHERE acct_num = "' + Id + "'";

System.out.println("Sql query being sent to the db is: " + sqlQuery);

ResultSet results= dbSvr.runDBReadQuery(sq!Query);

try
{

results.next();

InfoData[O] = results.getString("acct_num");
System.out.println("result: "+ InfoData[O]);

InfoData[l] = results.getString("pin_num");
System.out.println("result: " + InfoData[l]);

InfoData[2] = results.getString("acct_status_cd");
System.out.println("result: " + InfoData[2]);

InfoData[3] = results.getString("acct_type_cd");
System.out.println("result: "+ InfoData[3]);

InfoData[4] = results.getString("ssn");
System.out.println("result: "+ InfoData[4]);

InfoData[S] = results.getString("last_ name");
System.out.println("result: " + InfoData[S]);

InfoData[6] = results.getString("first_ name");
System.out.println("result: " + InfoData[6]);

InfoData[7] = results.getString("middle_initial");
System.out.println("result: "+ InfoData[7]);

InfoData[8] = results.getString("prim_address");
System.out.println("result: "+ InfoData[8]);

InfoData[9] = results.getString("prim_city");
System.out.println("result: "+ InfoData[9]);

-108-

return InfoData;

II Used to insert a new account

}

lnfoData[!O] = results.getString("prim_state_cd");
System.out.println("result: " + InfoData[l 0]);

InfoData[ll] = results.getString("prim_zip_cd");
System.out.println("result: "+ InfoData[ll]);

InfoData[l2] = results.getString("prim_zip_cd_ext");
System.out.println("result: " + InfoData[12]);

InfoData[13] = results.getString("sec_address");
System.out.println("result: "+ InfoData[l3]);

InfoData[l4] = results.getString("sec_city");
System.out.println("result: " + InfoData[14]);

InfoData[IS] = results.getString("sec_state_cd");
System.out.println("result: "+ InfoData[lS]);

InfoData[l6] = results.getString("sec_zip_cd");
System.out.println("result: "+ InfoData[l6]);

InfoData[l7] = results.getString("sec_zip_cd_ext");
System.out.println("result: " + InfoData[17]);

InfoData[l8] = results.getString("prim__phone_num");
System.out.println("result:"+ InfoData[l8]);

InfoData[l9] = results.getString("sec__phone_num");
System.out.println("result: "+ InfoData[19]);

InfoData[20] = results.getString("fax_num");
System.out.println("result: "+ InfoData[20]);

InfoData[21] = results.getString("create_dt");
System.out.println("result: "+ InfoData[21]);

InfoData[22] = results.getString("modified_dt");
System.out.println("result: "+ InfoData[22]);

InfoData[23] = results.getString("comments");
System.out.println("result: "+ InfoData[23]);

InfoData[24] = results.getString("addtl_comments");
System.out.println("result: " + InfoData[24]);

catch(SQLException e)
{

System.out.println("Read transaction failed: "+e);

public synchronized java.lang.String insertAccount(
)
throws org.omg.CORBA.SystemException,
OBBankObjects.OBBankObjects.Unknown
{

String sMessage = 1
"

1
;

String sqiQuery ="INSERT INTO accounts(acct_num, pin_num, acct_status_cd, acct_type_cd, ssn,
last_ name, first_ name, middle_initial, prim_address, prim_city, prim_state_cd, prim_zip_cd, prim_zip_cd_ext, sec_address, sec_city,
sec_state_cd, sec_zip_cd, sec_zip_cd_ext, prim__phone_num, sec_phone_num, fax_num, create_dt, modified_dt, comments,
addtl_comments) ";

sq!Query = sqiQuery +"VALUES("1 + Data[O] + 111
, "

1 +Data[I]+ 1
", "

1 + Data[2] + 111
,

1
" + Data[3] +

"
1
, "' + Data[4] + "', '" + Data[S] + "', "' + Data[6] + "', "' + Data[7] + "1

, '" + Data[8] + 1
", "'+ Data[9] + "', "' + Data[lO] + 1

",
111 +

Data[II]+"',"'+ Data[l2] + 111
, "'+ Data[13] + '", '" + Data[14] + "1

,
1
" + Data[IS] + "1

, "';

-109-

sqlQuery = sqJQuery + Data[l6] + "', "'+ Data[17] + "', "' + Data[18] + "',"' + Data[19] + "1
, "

1 +
Data[20] + "', "'+ Data[21] + "1

, "
1 + Data[22] + "', "1 + Data[23] + "', 1

" + Data[24] + "')";

System.out.println("Sql query being sent to the db is: "+ sqJQuery);

int rows = dbSvr.runDBinOrUpQuery(sqlQuery);

sMessage ="Number of rows affected:"+ String.valueOf(rows);

return sMessage;

II Used to update an existing account
public synchronized java.lang.String updateAccount(
)
throws org.omg.CORBA.SystemException,
OBBankObjects.OBBankObjects.Unknown
{

String sMessage = "";

String sq!Query ="UPDATE accounts SET pin_num ="'+Data[!]+ "1
, acct_status_cd = 111 + Data[2] + 1

", acct_type_cd = " 1 +
Data[3] + "', ssn = "1 + Data[4] +"',last_ name='"+ Data[5] +"',first_ name="'+ Data[6] + "', middle_initial = "' + Data[7] + "',
prim_address = "' + Data[8] + "', prim_city = "' + Data[9] + "', ";

sqlQuery = sq!Query + "prim_state_cd ="' + Data[IO] + "', prim_zip_cd = 1
" +Data[! I]+ "1

,

prim_zip_cd_ext = 111 + Data[l2] + 111
, sec_address ="'+Data[B)+"', sec_city ="' + Data[14] + "1

, sec_state_cd = "1 +Data[IS]+"',
sec_zip_cd = "' + Data[16];

sqlQuery = sqlQuery + "', sec_zip_cd_ext = "1 + Data[17] + "1
, prim_phone_num = "' + Data[18] + "',

sec_phone_num = "' + Data[l9] + "1
, fax_num = 111 + Data[20] + "', create_dt = 111 + Data[21] + "', modified_dt="' + Data[22] + 111

,

comments='"+ Data[23] + "1
, addtl_comments = "' + Data[24] +"'WHERE acct_num = "1 + Id + ""';

System.out.println("Sql query being sent to the db is: " + sq!Query);

int rows= dbSvr.runDBinOrUpQuery(sq!Query);

sMessage ="Number of rows affected:"+ String.valueOf(rows);

return sMessage;

public org.omg.PortableServer.POA _ default_POAO
{

return m_poa;

II End ofOBAccountimpl

-110-

II Michelle McKeller- Graduate Project
II Corba - Orbix 2000
II OBTransactionlmpl

package OBBankObjects.OBBankObjects;

import OBBankObjects. *;
importjava.sql.*;
import org.omg.CORBA.ORB;
import org.omg.PortableServer. *;
import org.omg.CORBA.StringHolder;

public class OBTransactionimpl
extends OBTransactionPOA

org.omg.PortableServer.POA m_poa =null;
private String Id;
private String Data[];

private OBBankObjects.OBBankObjects.OBDBServer dbSvr;

II Constructor
public OBTransactionimpl(

org.omg.PortableServer.POA the_poa, String sld, OBDBServer mydbSvr

m _poa = the _poa;
this.Id = sld;

this.dbSvr = mydbSvr;

try
{

String myTransPoa = "";
long time!= 0;
inti=O;

org.omg.CORBA.Policy[] policies= new org.omg.CORBA.Policy[l];

policies[i++] =the _poa.create _thread_policy(ThreadPolicyValue.ORB _ CTRL _MODEL);

timel = System.currentTimeMillisO;

myTransPoa = Id + String.valueOf(time!);

m_poa = the_poa.create_POA(myTransPoa, the_poa.the_POAManagerO, policies);

}catch (Exception e)
{

II Overloaded Constructor
public OBTransactionimpl(

System.out.println("Exception occurred in the transaction imp!: ");
e. printStackTraceO;

org.omg.PortableServer.POA the_poa, String sld, String[] sData, OBDBServer mydbSvr

m_poa = the _poa;
this.Id = sld;
this.Data= sData;

this.dbSvr = mydbSvr;

try
{

String myTransPoa = "";
long time! = 0;
inti=O;

org.omg.CORBA.Policy[] policies= new org.omg.CORBA.Policy[l];

-111-

policies[i++] = the _poa.create _thread _policy(ThreadPolicyValue.ORB _ CTRL _MODEL);

time! = System.currentTimeMillisO;

myTransPoa = Id + String.valueOf(time!);

m_poa = the_poa.create_POA(myTransPoa, the_poa.the_POAManagerO, policies);

} catch (Exception e)
{

System.out.println("Exception occurred in the transaction imp!: ");
e.printStackTraceO;

II Used to read a transaction record for an account
public synchronized java.Iang.String[] readTransaction(
)
throws org.omg.CORBA.SystemException,
OBBankObjects.OBBankObjects.Unknown
{

String [] InfoData =new String [4];

String sq!Query ="SELECT trans_id, acct_num, trans_type_cd, trans_amt, create_dt FROM transactions WHERE acct_num = "1

+ Id + 111 AND trans_id =(SELECT MAX(trans_id) FROM transactions WHERE acct_num = "1 + Id + "1
)";

System.out.println("Sql query being sent to the db is: "+ sq!Query);

ResultSet results= dbSvr.runDBReadQuery(sq!Query);

return InfoData;

if (results= null)
{

InfoData[O] = "";
}else
{

try
{

}

results.nextO;
InfoData[O] = results.getString("acct_num");
System.out.println("results: " + InfoData[O]);

InfoData[l] = results.getString("trans_type_cd");
System.out.println("results:"+ InfoData[l]);

InfoData[2] = results.getString("trans_amt");
System.out.println("results: "+ InfoData[2]);

InfoData[3] = results.getString("create_dt");
System.out.println("results: "+ InfoData[3]);

catch(SQLException e)
{

System.out.println("Read transaction failed: "+e);

II Used to insert a transaction record for an account
public synchronized java.Iang.String insertTransaction(
)
throws org.omg.CORBA.SystemException,
OBBankObjects.OBBankObjects. Unknown
{

String sMessage = "";

String sq!Query ="INSERT INTO transactions(trans_id, acct_num, trans_type_cd, trans_amt, create_dt)
VALUES (trans_id_sequence.NEXTVAL, "1 + Data[O] + "1

,
111 +Data[!]+ "1

, "
1 + Data[2] + 111

, "
1 + Data[3] + "1

)";

-112-

System.out.println("Sql query being sent to the db is: "+ sq!Query);

int rows= dbSvr.runDBinOrUpQuery(sq!Query);

sMessage ="Number of rows affected: "+ String.valueOf(rows);

return sMessage;

II Used to update a transaction record for an account
public synchronized java.lang.String update Transaction(
)
throws org.omg.CORBA.SystemException,
OBBankObjects.OBBankObjects.Unknown
{

String sMessage = 1
"

1
;

String sq!Query ="UPDATE transactions SET trans_type_cd = 111 +Data[!]+ "1
, trans_amt = 1

" + Data[2] + "',
create_dt = 111 + Data[3] + "1 WHERE acct_num ="' + Data[O] + "1 AND trans_id =(SELECT MAX(trans_id) FROM transactions
WHERE acct_num = "1 + Data[O] + "1

)";

System.out.println("Sql query being sent to the db is: " + sq!Query);

int rows = dbSvr.runDBinOrUpQuery(sq!Query);

sMessage ="Number of rows affected: "+ String.valueOf(rows);

return sMessage;

public org.omg.PortableServer.POA _ default_POA()
{

return m_poa;

I I End of OBTransactionimpl

-113-

II Michelle McKeller- Graduate Project
II Corba- Orbix 2000
II OBBank.idl

module OBBankObjects {
exception Unknown{};

};

typedef string OBAcct[25];
typedef string OBTrans[4];

interface OBTransaction {
I I Reads the transaction data for a given account number
OBTrans readTransaction() raises(Unknown);

II Inserts the transaction data into the database
II for a given account number

string insertTransaction() raises(Unknown);

II Updates the transaction data in the database
II for a given account number and trans id

string updateTransaction() raises(Unknown);
};

interface OBAccount {

//Gets Last made transaction for an Account
OBTransaction getTransaction(in string sld) raises(Unknown);

//Puts Last made transaction for an Account
OBTransaction putTransaction(in string sld, in OBTrans objltem) raises(Unknown);

I I Reads the account data for a given account number
OBAcct readAccount() raises(Unknown);

II Inserts the account data into the database
II for a given account number

string insertAccount() raises(Unknown);

I I Updates the account data in the database
II for a given account number

string updateAccount() raises(Unknown);
};

interface OBManager {
II Gets an account object
OBAccount getAccount(in string !d) raises(Unknown);

II Puts an account object
OBAccount putAccount(in string Id, in OBAcct objltem) raises(Unknown);

};

II End ofOBBank.idl

-114-

Build.xml document:

<project name="generated_app" default="build_all" basedir=".">

<property name="idl_flags" value="-1/opt/iona/orbix_art/1.2/idl-jbase=-POBBankObjects:-Ojava_output -jpoa=-POBBankObjects:
Ojava_output "/>
<property name="clpath"

value="/usr/local/jdkl.3/lib/classes lll.zip:$0RACLE _ HOME/jdbc/lib/classes lll.zip:/etc/opt/iona/domains:/opt/iona/orbix _ art/1.2/cl
asses/ orb ix2000 .j ar:/opt/iona/orb ix _ art/1.2/ classes/ omg.j ar:/etc/ opt/iona:/etc/opt/iona/ domains:/ opt/iona/ orbix _ art/1.2/classes/ orbix200
0 .jar:/opt/iona/ orbix _ art/1.2/ classes/omg.j ar:/etc/ opt/iona:/etc/opt/iona:/etc/ opt/iona/ domains :export:/ opt/iona/orbix _ art/1.2/ demos/ clas
ses:/etc/opt/iona:/etc/opt/iona/domains"/>
<target name="init">
<tstamp/>
<property name=" classes" value="classes"/>
<mkdir dir="$ {classes}"/>

</target>

<target name="idl_compile" depends="init">
<exec dir="./" command="/opt/iona/orbix_art/1.2/bin/idl ${idl_flags} OBBank.idl" output="idl_compiler.out"/>
<exec dir="./" command="cat idl_compiler.out"/>
</target>

<target name="build_all" depends="idl_compile">
<javac classpath="./classes:${ clpath}"

srcdir=" ./" destdir=" ./classes"/>
</target>

<target name="runserver" depends="">
<java classpath=" ./classes:$ { clpath}"

jvmargs="-Dorg.omg.CORBA.ORBCiass=com.iona.corba.art.artimpi.ORBimpl -
Dorg.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpi.ORBSingleton"

args=" -ORBdomain _name default-domain
http://neptune.cocse.unf.edu:2400/mmckeller/Orbix/OBBank0bjects/OBBank0bjects/server oracle.jdbc.driver.OracleDriver
jdbc:oracle:thin:@manatee.unf.edu: 1521 :sid1 mmckel unfunf200 I"

fork="yes"
classname="OBBankObjects.server"/>

</target>

<target name="runclient" depends="">
<java classpath=" ./classes:${ clpath}"

jvmargs="-Dorg.omg.CORBA.ORBCiass=com.iona.corba.art.artimpi.ORBimpl -
Dorg.omg.CORBA.ORBSingletonCiass=com.iona.corba.art.artimpi.ORBSingleton"

args="-ORBdomain_name default-domain UPDATETRANS 200 UpdateTrans.txt
http://neptune.cocse.unf.edu:2400/mmckeller/Orbix/OBBank0bjects/OBBank0bjects/server"

fork="yes"
classname="OBBankObjects.client"/>

</target>

<target name=" info" depends="">
<echo message=" help:"/>
<echo message="build.xml options:"/>
<echo message='"'/>
<echo message="info Prints out this message."/>
<echo message="build_all Deletes class files, IDL compiler generated files"/>
<echo message=" and rebuilds everything."/>
<echo message=" clean Removes all class files."/>
<echo message="clean_all Removes all generated files."/>
<echo message="runserver Run the server. "/>
<echo message="runclient Run the client."/>
</target>

<target name="clean" depends="">
<deltree dir="classes"/>
<delete dir="./" includes="idl_compiler.out,ant_env.csh ant_env.sh, *.ref'/>
</target>
<target name="clean_all" depends="">
<del tree dir="OBBankObjects"/>

-115-

<deltree dir="classes"/>
<de !tree dir='java_ output"/>
<delete dir=" ./" includes="idl_ compiler.out,ant_ env .csh ant_ env .sh, *.ref'/>
<deltree dir="idlgen"/>
<delete dir="./" includes="./*.ref'/>
<delete dir="./" includes="build.xml"/>
<delete dir=" ./" includes="idl_compiler.out"/>

</target>

</project>

-116-

APPENDIXO

Directory Structure for Project CD

Under the folder GPMcKeller on the CD are all of the folders you will need to run the
three applications. When trying to run the applications, you need to keep the same
directory structure that exists under the folders. Also, the scripts are set to test with 25
clients, if you wish to change this number you must edit the script. If you need to run the
applications on different machines other than neptune for the server, dsp for the client,
and manatee for the database, then you will have to change the scripts to the new
machine names.

1. BashProfile for Server - the . bash _profile file you need to have setup as your
. bash_profile on your server

2. Corba- all of the files to run the Java 2 ORB client-server application.
To test each one of the test files, a separate script has been established that starts the
client, they are:
clcbinsacct- tests inserting an account
clcbinstrans- tests inserting a transaction for an account
clcbreadacct- tests reading an account
clcbreadtrans- tests reading the last transaction for an account
clcbupdacct- tests updating an account
clcbupdtrans - tests updating the last transaction for an account
To start the server: svrcb
To start the naming service: svrcbnamesvr
In order to test a different number of clients, the particular clcb* file you are running
has to be modified with the number you want to run.

3. Database scripts -All of the scripts you need to create the database that is used by the
applications. AD.sql is the script to run, it will run the rest of the scripts. To drop the
database, run the droptables.sql file.

4. Docs- the graduate project paper.

5. Orbix- all of the files to run the Orbix 2000 client-server application. It is extremely
important that this directory structure is kept and the directory names stay the same,
or the application will not run. Orbix uses .xml files to run their applications instead
of standard scripts. A separate .xml document has been provided to test each one of
the test files, they are in the script folder under the Orbix folder, in order to run them
with the ant shell that Orbix provides, you must rename the one you want to use to
build.xml. The .xml documents are:
InsertAcct.xml - tests inserting an account

-117-

InsertTrans.xml - tests inserting a transaction for an account
ReadAcct.xml -tests reading an account
ReadTrans.xml - tests reading the last transaction for an account
UpdateAcct.xml -tests updating an account
UpdateTrans.xml- tests updating the last transaction for an account
The build.xml file is also used with ant to start the server and client.
The Orbix services are automatically running as background daemons under userid
mmckeller.

6. Test Files- includes the original Excel spreadsheets used to create the flat text files
with that were used for testing, and the actual text test files. In order to create a new
test file out of a spreadsheet, when saving the spreadsheet as a text file, the file type
must be Text (Tab delimited)(* .txt) or the client cannot process the file correctly due
to tokenizing the record based on tabs.

7. VisiBroker- all of the files needed to run the VisiBroker client-server application.
To test each one of the test files, a separate script has been established that starts the
client, they are:
clvbinsacct - tests inserting an account
clvbinstrans - tests inserting a transaction for an account
clvbreadacct- tests reading an account
clvbreadtrans - tests reading the last transaction for an account
clvbupdacct -tests updating an account
clvbupdtrans - tests updating the last transaction for an account
To start the server: svrvb
To start the naming service: svrvbnamesvr
In order to test a different number of clients, the particular clvb* file you are running
has to be modified with the number you want to run.

C£1 D:\Burn lhis\GPMcKeller l!!ll.iJI3
file I,dit ~iew Jielp

,, till
1 rs·ashPr'ii'iliei""ior!
1: l.. ~.~.~~~!J
l

Docs

VisiBroker

Corba

D
Orbix

Database
scripts

Test Files

Directory structure for project CD

-118-

VITA

Michelle Leigh McKeller has a Bachelor of Science degree in Computer Information

Systems, Fall 1996 from the University of North Florida and will be graduating from the

University of North Florida with a Master of Science degree in Computer and

Information Sciences, Fall2001. Dr. Sanjay P. Ahuja of the University ofNorth Florida

is serving as Michelle's graduate project adviser. Michelle is currently employed as a

senior systems programmer analyst at Homeside Lending, Inc and has been with the

company since receiving her Bachelor's degree in 1996.

Michelle has worked extensively with VB, C++, and SQL in her current employed

position and has hopes of broadening her career toward more development using Java

and Web development. Michelle's academic work has included use of Java, C, COBOL,

Oracle, TCL, PHP, Perl, Python, and various other languages. Michelle enjoys spending

time with her long-time boyfriend, friends, and family.

-119-

	UNF Digital Commons
	2001

	CORBA: A Quantitative and Qualitative Comparison of Industrial Strength, Commercial CORBA ORBs for the JAVA Platform
	Michelle Leigh McKeller
	Suggested Citation

	Title Page
	CONTENTS
	ABSTRACT
	Chapter 1: INTRODUCTION
	Chapter 2: DISTRIBUTED SYSTEMS
	Chapter 3: MIDDLEWARE
	Chapter 4: CORBA
	4.1 CORBA Services
	4.2 CORBA Architecture
	4.3 Interface Definition Language

	Chapter 5: ORBS
	5.1 Java 2 ORB
	5.2 VisiBroker
	5.3 Orbix 2000

	Chapter 6: PROJECT DESCRIPTION
	6.1 Scenario
	6.2 Database and Connectivity
	6.3 Services
	6.4 Servers
	6.5 Factory Classes
	6.6 Clients

	Chapter 7: TESTING
	Chapter 8: RESULTS AND COMPARISONS
	8.1 Java 2 ORB
	8.1.1 Quantitative Comparison
	8.1.2 Qualitative Comparison

	8.2 VisiBroker
	8.2.1 Quantitative Comparison
	8.2.2 Qualitative Comparison

	8.3 Orbix 2000
	8.3.1 Quantitative Comparison
	8.3.2 Qualitative Comparison

	8.4 Additional Comparisons

	Chapter 9: CONCLUSIONS
	REFERENCES
	FIGURES
	Figure 1: Software and hardware service layers in distributed systems

	TABLES
	Table 1: CORBA Services
	Table 2: Additional Comparison Results

