
UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

2015

Virtualization Components of the Modern
Hypervisor
Sean McAdams
University of North Florida

This Master's Thesis is brought to you for free and open access by the
Student Scholarship at UNF Digital Commons. It has been accepted for
inclusion in UNF Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more information, please
contact Digital Projects.
© 2015 All Rights Reserved

Suggested Citation
McAdams, Sean, "Virtualization Components of the Modern Hypervisor" (2015). UNF Graduate Theses and Dissertations. 599.
https://digitalcommons.unf.edu/etd/599

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNF Digital Commons

https://core.ac.uk/display/71998957?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu
https://digitalcommons.unf.edu
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu

Virtualization Components of the Modern Hypervisor

by

Sean McAdams

A thesis submitted to the

School of Computing

in partial fulfillment of the requirements for the degree of

Master of Science in Software Engineering

UNIVERSITY OF NORTH FLORIDA

SCHOOL OF COMPUTING

August, 2015

ii

Copyright© 2015 by Sean McAdams

All rights reserved. Reproduction in whole or in part in any form requires the prior

written permission of Sean McAdams or designated representative.

The opinions and conclusions expressed herein represent the sole opinion of the

author and do not necessarily represent the opinion of the University of North

Florida or its employees.

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

iv

ACKNOWLEDGEMENT

I wish to thank all of the professors who have given me advice and pushed me to

complete this thesis after all the time that I have spent on it. I also want to thank my

friends who listened to me complain about it constantly while encouraging me to keep

moving forward.

v

CONTENTS

List of Figures .. viii

Abstract .. ix

Chapter 1: Introduction ... 1

Chapter 2: On Hypervisors and Virtualization ... 5

2.1: Type 1 Hypervisor.. 5

2.2: Type 2 Hypervisor.. 6

2.3: Virtualization Types ... 8

2.4: Container-Based Virtualization .. 11

Chapter 3: Core components of the Modern Hypervisor .. 13

3.1: Paravirtual Block (Disk) Drivers ... 15

3.2: Paravirtual Network Drivers .. 17

3.3: Paravirtual Memory Drivers .. 19

3.4: Huge Pages/LargePages ... 20

3.5: Hypervisor Enabled Components .. 21

3.5.1: Network Bridging vs. Network Address Translation 21

3.5.2: Memory Compression ... 21

3.5.3: Hypervisor Disk Swapping .. 21

3.5.4: Resource Overcommitting ... 22

3.5.5: Kernel Samepage Merging / Transparent Page Sharing 22

vi

3.5.6: SSD Support .. 23

Chapter 4: A look at the hypervisors of today .. 24

4.1: VMWare VSphere/Workstation/Player ... 24

4.2: Xen/XenServer .. 25

4.3: KVM ... 26

4.4: Hyper-V ... 26

4.5: Oracle VM Server/VirtualBox .. 27

4.6: Parallels Desktop/Virtuozzo Containers .. 27

Chapter 5: Purpose and Goals .. 28

Chapter 6: Existing Research ... 30

Chapter 7: Methods and Results.. 33

7.1: Methods ... 33

7.2: Results .. 37

7.2.1: Parallel no modifications (PNM) vs. Parallel with paravirtualization (PWP) 38

7.2.2: Single no modifications (SNM) vs. Single with paravirtualization (SWP) 39

7.2.3: Single no modifications (SNM) vs. Parallel no modifications (PNM) 40

7.2.4: Single with paravirtualization (SWP) vs. Parallel with paravirtualization (PWP) 42

7.2.5: Cross hypervisor comparison for single no modifications (SNM) 44

7.2.6: Cross hypervisor comparison for single with paravirtualization (SWP) 45

7.2.7: Cross hypervisor comparison for parallel no modifications (PNM) 46

7.2.8: Cross hypervisor comparison for parallel with paravirtualization (PWP) 47

7.2.9: Network performance ... 48

vii

Chapter 8: Conclusions .. 50

Chapter 9: Future Work ... 54

References.. 57

Appendix A: XenServer Host Configurations .. 60

Appendix B: KVM Host Configurations .. 61

Appendix C: Guest Configurations .. 64

Appendix D: Physical System Specifications ... 66

Appendix E: Performance Metrics ... 67

Appendix F: LinqPad Script ... 71

Appendix G: Batch Scripts ... 91

Appendix H: Parallel Execution v1.0 .. 105

viii

LIST OF FIGURES

Figure 1: VMWare Architecture - Type 1 Hypervisor ... 6

Figure 2: Hosted Architecture - Type 2 hypervisor .. 7

Figure 3: Binary Translation ... 9

Figure 4: Hardware-assisted Virtualization .. 10

Figure 5: Paravirtualization... 11

Figure 6: Container-Based Virtualization ... 12

Figure 7: KVM Emulated Network Device vs VirtIO Paravirtual Network Device 18

Figure 8: Xen paravirtual network architecture .. 19

Figure 9: Example output of the statistical comparison from LinqPad script 37

Figure 10: Results for Parallel No Modifications vs Parallel with paravirtualization 39

Figure 11: Results for Single no Modifications vs Single with paravirtualization 40

Figure 12: Results for Single no Modifications vs Parallel no Modifications 42

Figure 13: Results for Single with paravirtualization vs Parallel with paravirtualization 43

Figure 14: Results for Single no Modifications across Hypervisors 44

Figure 15: Results for Single with paravirtualization across Hypervisors 45

Figure 16: Results for Parallel no Modifications across Hypervisors 46

Figure 17: Results for Parallel with paravirtualization across Hypervisors 47

Figure 18: Results for Network testing by adapter type ... 48

Figure 19: Results for Network tests across hypervisors .. 49

Figure 20: Overall results across hypervisors ... 53

ix

ABSTRACT

Virtualization is the foundation on which cloud services build their business. It supports

the infrastructure for the largest companies around the globe and is a key component for

scaling software for the ever-growing technology industry. If companies decide to use

virtualization as part of their infrastructure it is important for them to quickly and reliably

have a way to choose a virtualization technology and tweak the performance of that

technology to fit their intended usage. Unfortunately, while many papers exist discussing

and testing the performance of various virtualization systems, most of these performance

tests do not take into account components that can be configured to improve performance

for certain scenarios. This study provides a comparison of how three hypervisors

(VMWare vSphere, Citrix XenServer, and KVM) perform under different sets of

configurations at this point and which system workloads would be ideal for these

configurations. This study also provides a means in which to compare different

configurations with each other so that implementers of these technologies have a way in

which to make informed decisions on which components should be enabled for their

current or future systems.

1

Chapter 1

INTRODUCTION

Virtualization has changed the way the computing industry works. Many different types

of virtualization exist, but in the context of this study, I will refer to the type called

“hardware virtualization” as just virtualization. Virtualization for purposes of this study

will be the emulation or simulation of hardware devices or features using software.

For large companies, such as Microsoft or IBM, virtualization has revolutionized how

businesses utilize computer hardware. Still, like most technologies, virtualization

products took time to advance to the point where they could be put to widespread use

across the industry. Several of these virtualization products have proven to be leaders in

the industry and are used heavily in the business world. Across each of these products,

we see implementations of very similar if not identical components. Often, different

terms or names are used for these components, but each is implemented for a particular

purpose such as performance, security, or administration. The focus of this study is to

use a subset of these components and perform a quantitative analysis on how each

component affects the performance of the systems being virtualized. The majority of the

components focused on in this study are the components identified as “paravirtualization”

drivers and affect CPU, disk, network, and memory performance. These components are

discussed in detail later in the paper. A second focus of this study is to identify a common

2

and scientific way to analyze the performance effects of these components so that the

benefits or detriments of any one component can be quantitatively identified.

Three major virtualization products available today are VMware ESXi (more recently

called VMware vSphere), XenServer, and KVM (Kernal-based Virtual Machine). There

are other major products on the market, such as Hyper-V, the virtualization technology

backed by Microsoft, but this study will focus on the former three. These three were

chosen because they are some of the most widely used virtualization products currently

on the market and they provide a high level of flexibility to the user when managing

specific components [Hwang13].

Each virtualization component has different uses depending on the implementation.

Some components (such as the “paravirtualization” drivers) may improve disk I/O,

optimize CPU usage, or reduce the RAM used by a virtual machine. However, since any

of the major hypervisors can contain dozens to hundreds of components, it is hard to

determine which ones help the most and what benefits they give to a particular business.

Also, currently, many of the major companies developing hypervisors tend to market

towards datacenter-sized businesses. However, small business can benefit from this

technology even without having datacenter-scale computing systems to use for

virtualization. Reusing old hardware and even using new hardware to its full potential

benefits businesses of all sizes. Millions of combinations of hardware and software

configurations can be applied to hypervisors, yet there are very few ways of quantitativly

comparing these configurations with each other.

3

 “Modern computers are sufficiently powerful to use virtualization to present the illusion

of many smaller virtual machines (VMs), each running a separate operating system

instance” [Barham08]. This is because of software called the Virtual Machine Manager

(VMM) or “hypervisor” on the computer hosting the virtual machines provides emulated

hardware to each virtual machine running an operating system. This allows the host to

run many virtual machines in parallel, each with its own separate operating system, even

if the operating system was originally designed to be an exclusive consumer of the

hardware interfaces of a system. The implementation of a hypervisor is very complex.

“Successful partitioning of a machine to support the concurrent execution
of multiple operating systems poses several challenges. Firstly, virtual
machines must be isolated from one another: it is not acceptable for the
execution of one to adversely affect the performance of another. This is
particularly true when virtual machines are owned by mutually untrusting
users. Secondly, it is necessary to support a variety of different operating
systems to accommodate the heterogeneity of popular applications.
Thirdly, the performance overhead introduced by virtualization should be
small.” [Barham08]

Virtualization technology has been available to the industry since the existence of early

mainframes, but only recently has it gained popularity for small business and personal

use. Only recently has computer hardware advanced to a point where systems that are

capable of running multiple operating systems in parallel are inexpensive and readily

available to the public. Under most workloads, a modern operating system does not use a

majority of a modern computer system’s resources at a given time. Virtualization allows

all of a system’s resources to be utilized by distributing them over several virtual

machines that could be executing different intensity workloads. One of the benefits to

4

this is that with better resource utilization a company or user can save money by not

having to purchase a dedicated physical system for every running operating system.

5

Chapter 2

ON HYPERVISORS AND VIRTUALIZATION

In order to understand the differences between the major hypervisors currently available,

it is important to know that there are two different types of hypervisors. These types are

explained below.

2.1 Type 1 Hypervisor

The first type of hypervisor is the “Type 1” hypervisor. This is when the software that

drives the hypervisor runs directly on the system hardware. It has a very high efficiency

because there is little to no middleware between the hypervisor and the hardware. This is

often called a “Bare-Metal” approach. VMWare’s vSphere product and Citrix’s

XenServer are examples of this type of hypervisor. Figure 1 is a diagram of VMWare’s

hypervisor architecture which is an example of a type 1 hypervisor.

6

Figure 1: VMWare Architecture - Type 1 Hypervisor on x86 Architecture [VMWare06]

2.2 Type 2 Hypervisor

The second type of hypervisor is the “Type 2” hypervisor; the virtualization layer runs as

an application on a host system. The host system handles all of the hardware device

support and the virtualization layer handles the emulation of the hardware for the virtual

systems. This is considered a “Hosted” architecture. Examples of this architecture can be

seen with KVM, VirtualBox, and VMWare Player or Workstation. Figure 2 is an

example of a “Type 2” hypervisor, the operating system can run the virtualization layer

(hypervisor) alongside other applications, while at the same time the hypervisor can be

running its own operating system with applications as well.

Graphic redacted, paper copy available upon request to
home institution.

7

Figure 2: Hosted Architecture - Type 2 hypervisor on x86 Architecture [VMWare06]

The differences between the two hypervisor types can sometimes be difficult to

determine. In many ways, both types of hypervisors are the same; the main distinction

between the two is how the “Host” layer is classified. In a Type 2 hypervisor, it is easy

to identify the host operation system because it is being used to interact with the

Virtualization layer and additional software can be run in parallel to the virtualization

software. While with a Type 1 hypervisor, the only services the hypervisor provides is a

very basic management console with no ability to run applications in parallel, it can only

be used as a hypervisor. However, even Type 1 systems have a “Host” system, usually

Graphic redacted, paper copy available upon
request to home institution.

8

Unix or Linux, in which all the processes required by the hypervisor run. KVM is

usually considered a Type 2 hypervisor because it is run on top of Linux; if every Linux

module besides the ones required by KVM were removed, then it would essentially be a

Type 1 hypervisor. Several distributions of Linux such as Proxmox VE and RHELV

(Red Hat Enterprise Linux Virtualization) attempt to do this so that they can get the best

performance possible out of a virtualization server.

2.3 Virtualization Types

Instructions executed by the virtual machines have to be translated in some way in order

to be executed on the physical resources of the host. When working with modern

operating systems there exists four levels of execution privilege, called Rings (levels 0-

3). Ring 0 is the most privileged ring and is where an operating system is normally

expected to be run so that it has direct control over the physical resources. A hypervisor

also expects to be run in Ring 0 and this presents a problem, since the systems it needs to

hosts cannot be run in the same ring as the hypervisor. Each hypervisor can potentially

host virtual machines in two different ways: Modified or Unmodified. Both of these

methods of hosting allow for (and often require) different solutions for how privileged

instructions can be executed.

1) Unmodified Guest Systems (Full Virtualization) - When the guest operating system

is unmodified and cannot be differentiated from an operating system running

directly on hardware. This can be done using several techniques:

9

a. Binary Translation / Emulation: “This technique is used for the emulation of a

processor architecture over another processor architecture. Thus, it allows

executing unmodified guest operating systems by emulating one instruction set

by another through translation of code [Rodriguez12]. Example Systems are

QEMU (which stands for Quick Emulator) and VMWare. QEMU is the package

that both KVM and Xen used to provide very basic support for unmodified guest

systems. QEMU emulates common hardware devices and exposes them to the

guest operation system. Usually the emulated devices are older more commonly

supported hardware devices [IBM12A]. QEMU then directs the virtual I/O

requests back to the hypervisor where they are translated to real I/O requests (see

Figure 3). VMware does a similar process with its Binary Translation. This is

useful when a system needs to be virtualized but the guest system cannot be

modified.

Figure 3: Binary Translation [VMWare07B]

Graphic redacted, paper copy
available upon request to

home institution.

10

b. Hardware assisted: The hardware itself is designed with virtualization in mind

and automatically traps certain system calls from guest systems. This allows

some I/O requests to bypass the translation layer and sends them directly to the

hypervisor which then determines whether to execute the requests or not. Both

Intel and AMD have supported hardware assisted virtualization since at least

2006 [VMWare07B]: Intel’s hardware assisted setting is called Virtual Machine

Control Structures (VT-x) while AMD’s is called Virtual Machine Control

Blocks (AMD-V). With these technologies in place “privileged and sensitive

calls are set to automatically trap to the hypervisor, removing the need for either

binary translation or paravirtualization” (see Figure 4) [VMWare07B].

Figure 4: Hardware-assisted Virtualization [VMWare07B]

2) Paravirtualization or OS assisted virtualization: The other way that a guest machine

could be hosted is utilizing paravirtualization. Additional software (Drivers, tools,

etc.) is installed onto the hosted guest machine that allows communication between

the guest machines and the hypervisor (see Figure 5). Most mature hypervisors have

some number of paravirtualization features. Systems that are paravirtualized

Graphic redacted, paper copy
available upon request to

home institution.

11

historically have superior performance to the unmodified guest systems; however,

the compatibility of the paravirtualization software and the guest machines tends to

be less likely than with emulated solutions [IBM12A]. There are two major

disadvantages to the paravirtualization technique:

a. Guest OS must be modified at some point during the virtualization process

[Motika11].

b. Every hypervisor tends to create its own version of paravirtualization

software, so it is more difficult to move a guest machine from one hypervisor

to another [Motika11].

Figure 5: Paravirtualization [VMWare07B]

2.4 Container-Based Virtualization

Another form of virtualization is called “Container-Based Virtualization.” This is a

parallel concept to a hypervisor but is implemented in a very different way. In this

approach, all guest machines need to be the same base images as the host machine. Some

Graphic redacted, paper copy
available upon request to home

institution.

12

resources are shared such as system libraries and executables. Each virtual machine runs

in its own “container” and does not virtualize the hardware of the system since they are

all using the same system kernel and the kernel manages the resources of the system (see

Figure 6). Systems virtualized in this way sometimes require a custom modified kernel,

which needs to be run in all of the virtual machines. Examples of this are OpenVZ,

Parallels Virtuozzo Container, and Docker. This approach can significantly reduce the

overhead that is seen in hypervisors by removing the redundant kernel level resources

[Soltesz07].

This approach will not be tested or explained in extensive detail for this study since it is

not a hypervisor and does not follow the same approaches as the other virtualization

products in this study.

Figure 6: Container-Based Virtualization [Soltesz07]

Graphic redacted, paper copy available upon request to
home institution.

13

Chapter 3

CORE COMPONENTS OF THE MODERN HYPERVISOR

As stated before, each hypervisor creates its own implementation of components, such as

the paravirtualization tools, which are intended to improve some aspect of the virtual

system. It is difficult and less productive to breakdown each and every component that

each and every hypervisor implements so only a subset of components will be discussed.

Also, while this study focuses on the use of the Microsoft Windows Server operating

system as the guest systems for the actual experiment, all of the core components below

are also available to many Linux distributions and other operating system. Of the

components below the ones marked as “WT” (Will Test) will be analyzed for

performance benefits in this study. “Will Test” compnents were chosen based on

performance suggestions in the reference material ([VMWare11], [RedHat14], and

[IBM12A]). The other components are included to have a more complete list of available

components for hypervisors in general and as potential future work based on this study.

There are two categories of components available when using a hypervisor:

1) Components that when configured change how the guest machine acts, either

by changing the hardware the guest can see and/or access or by modifying the

guest directly.

2) Components that are enabled on the hypervisor, in which the guest machines

are unaware of the modification.

14

Components that affect the way guest machines act by modifying the guest directly are

considered paravirtualization components. Each hypervisor implements these slightly

differently. VMWare’s implementation is included as part of its VMware Tools

installation. XenServer paravirtualization drivers are included in its software package

called XenServer Tools, and KVM has a set of windows drivers called VirtIO-win that

are provided for free by Fedora. Because of the disparity between the implementation of

the VMWare and XenServer tools these drivers are not compatible with any other

hypervisor other than the one they were designed for. The VirtIO drivers, however, are

based on a standard that was presented to unify the different virtual I/O implementations

currently present on Linux [Russell08]. It is the hope of the designers and developers of

the VirtIO interfaces that VMWare and Xen will adopt the same standards, which would

allow the guest machines to easily be moved from one hypervisor to another [Russell08].

The other components that change how the guest machine act are the interfaces in which

the emulation device exposes to the guest operation system. QEMU has a wide variety of

devices that it supports emulation for, some that are intended to provide improved

performance and some that provide a wider range of operating system compatibility.

Determining which of these is best suited for the virtualization environment being used

can be time consuming and difficult.

Common components in the first category include: Paravirtual Block (Disk) Drivers,

Paravirtual Network Drivers, Paravirtual Memory Drivers, Huge Pages/LargePage,

Network Bridging, Network Address Translation, Memory Compressions, Hypervisor

15

Disk Swapping, Resource Overcommiting, Kernal Samepage Merging/Transparent Page

Merging, and SSD Support.

3.1 Paravirtual Block (Disk) Drivers (WT)

KVM, by default, uses QEMU to emulate an IDE disk type. When Microsoft Windows

Server 2008 R2 is running the system sees it as “QEMU HARDDISK ATA Device.” It

is supported by many versions of the Microsoft Windows operating system. For the

paravirtual disk support KVM uses the VirtIO drivers. When loaded into a Microsoft

Windows Server 2008 R2 system it displays “Red Hat VirtIO SCSI Disk Device” as the

driver name and as the name suggests it is a SCSI type device. In order for the VirtIO

drives to be installed the Operation System must be pre-loaded with the driver before

installation or the system needs to be started with another disk interface type (such as the

default IDE interface) so that the paravirtualization drivers can be installed and then the

system can be modified to use the VirtIO disk type.

VMWare is different from both XenServer and KVM in that its default disk type is not an

IDE interface, it is instead a SCSI interface. The difference between the default SCSI

interface and the paravirtual SCSI interface is the storage controller installed with

VMWare tools. For both the default and the paravirtual configurations the driver

displayed by the operating system shows “VMware Virtual disk SCSI Disk Device.” For

the default configuration, however, the storage controller shown was “LSI Adapter, SAS

3000 Series” while the paravirtual configuration displayed “Vmware PVSCSI

16

Controller.” The paravirtualization drivers are included with VMware Tools, which can

be installed into the operating system after it has been installed onto the guest machine.

“VMware Paravirtualized SCSI (PVSCSI) is a special purpose drive for high-

performance storage adapters that offer greater throughput and lower CPU utilization for

virtual machines. They are best suited for environments which guest applications are very

I/O intensive [VMWare09B].” It is important to note that the PVSCSI driver is not

supported by all operating systems as it is designed for newer systems, Microsoft

Windows Server 2008 R2 is one of the supported systems.

XenServer, by default, uses the same emulated IDE disk that KVM does (by using

QEMU). However, its paravirtual disk drivers have less recent documentation available

for them. When loaded the Windows guest system sees the paravirtual driver as

“XENSRC PVDISK SCSI Disk Device.” According to the official Xen webpage

“PVSCSI allows high performance passthrough of SCSI devices (or LUNs) from dom0 to

a Xen PV or HVM guest. PVSCSI can be used to passthrough a tape drive, tape

autoloader or basically any SCSI/FC device. By using PVSCSI the guest can have direct

access to the SCSI device (required by for example some management tools). PVSCSI

can also be used to passthrough multiple SCSI devices or the whole SCSI HBA”

[Xen15].

17

3.2 Paravirtual Network Drivers (WT)

Each of the products in this study provide a way of using the e1000 Network Adapter, a

gigabit network adapter that is widely supported by operating systems. However, by

default, XenServer does not expose this driver as its default emulated network device.

For this study, this was remedied by replacing the default emulated device (rtl8139) with

the e1000 device. This allows the network configuration across the three hypervisors to

be as close as possible, providing a better performance comparison. When loaded onto a

Windows guest, the e1000 adapter appears as “Intel(R) PRO/1000 MT Network

Connection.”

With KVM, the network paravirtual driver for Windows guests is called virtio-net and

appears as “Red Hat VirtIO Ethernet Adapter” when installed. With the VirtIO drivers

“when the guest OS performs a network instruction, the instruction is handled by the

virtio kernel module on the guest OS. The guest machine does not try to perform OUT

instruction (as in the case of emulation) therefore, the processor is not moved to the root

operation mode, and there is no VM exit (the VM exit is called when the queue is out of

buffers, consequently the instruction cannot be handled)” (see figure 7) [Motika11].

18

Figure 7: KVM Emulated Network Device (left) vs. VirtIO Paravirtual Network Device

(right) [Motika11]

VMware’s paravirtual network device is called VMXNET3 and appears as “vmxnet3

Ethernet Adapter” in the guest operating system. “The paravirtualized network adapters

in the VMXNET family implement an idealized network interface that passes network

traffic between the virtual machine and the physical network interface cards with minimal

overhead” [VMWare11]. VMXNET3 is the third generation of VMware’s network

paravirtualization drivers and supports many new features that previous versions did not.

It was introduced in VMware ESXi 4.0 and was a complete rework of the previous

generation (VMXNET2) [VMWare09A]. VMXNET3 is available through the VMware

Tools installation and is installed at the same time as the paravirtual disk drivers.

XenServer’s paravirtual network device is called “Citrix PV Network Adapter #0”, it is

included with the install of XenServer tools. “Privileged domains, called `driver'

domains, use their native device drivers to access I/O devices directly, and perform I/O

operations on behalf of other unprivileged domains, called guest domains. Guest domains

Graphic redacted, paper copy available upon request to home
institution.

19

use virtual I/O devices controlled by paravirtualized drivers to request the driver domain

for device access” (see Figure 8) [Cox06].

Figure 8: Xen paravirtual network architecture [Cox06]

3.3 Paravirtual Memory Drivers (WT)

For all three hypervisors the main purpose of the memory drivers is to provide memory

mallooning. In a virtual environment, often some virtual machines will be idle more

often than others. While those machines are idle their memory is being unused. With

memory ballooning the hypervisor can reclaim some of that memory for use in other

systems that need it more. This is only required when resources are over committed

(discussed in more detail below) and guests machines are allocated more cumulative

memory than is available to the physical machine. KVM’s driver for memory ballooning

Graphic redacted, paper copy available upon
request to home institution.

20

is the VirtIO Balloon (virtio-balloon) driver. When creating a virtual machine in a KVM

environment the minimum and the maximum allocated virtual memory can be defined

and in the machine definition. VMware’s driver is called “vmmemctrl” and the minimum

and maximum memory allocations can be set when creating the virtual machine through

the creation wizard. In XenServer this processes is part of their “Dynamic Memory

Control” and can be configured using their XenCenter management interface or through

direct modification of the machine definition.

3.4 Huge Pages/LargePages

Large Pages allow the hypervisor to allocate memory pages in 2MB sets instead of 4KB

sets. This can reduce Translation Lookaside Buffer (TLB) misses since larger memory

ranges can be stored in the TLB. It is supported by all three hypervisors but requires

specific configurations of the host and guest systems. KVM has two different version, the

first is the standard “Huge Pages” which is actually enabled on the Linux host itself, the

second is “Transparent Huge Pages” which can be enabled for certain guest machines

[RedHat14]. In XenServer “Huge Pages” can be enabled in the Linux host in a similar

way to KVM. In VMware the setup is done automatically when the guest OS is set to use

Large Pages. For Microsoft Windows based systems Large Pages must be enabled

through the OS for it to take advantage of the change on the hypervisor.

21

3.5 Hypervisor Enabled Components

3.5.1 Network Bridging vs. Network Address Translation (NAT)

Network bridging is where the hypervisor simulates a physical network connection for

the guest. The guest is given a physical IP address and can be access directly on the

LAN/VLAN that it is part of. In Network Address Translation (NAT) all traffic is routed

through the hypervisor’s physical network interface and the guest machine is only

accessible through the hypervisor.

3.5.2 Memory Compression

In memory compression the hypervisor compresses memory pages in a compression

cache during high memory utilization. This reduces overall memory usage but can also

reduce overall memory performance since it will need to decompress the pages before

using them again [VMWare11].

3.5.3 Hypervisor Disk Swapping

Operating systems have used swapping for managing high memory usage for a while;

however, allowing the hypervisor to swap memory for the guest machines increases

performance compared to classic operating system based swapping techniques. The

22

hypervisors can better manage the location that the memory is swapped to because it has

access to the entire physical disk while the guest machine has access to only the space

allocated to it by the hypervisor [VMWare11].

3.5.4 Resource Overcommitting

In this process the host machine’s physical resources are over allocated to multiple guest

machines. An example of this over allocation would be allocating two guest machines

4GB of virtual memory each on a host that has only 6GB of physical memory available.

This allows a user to continue to run guest machines even if the host has reached capacity

for certain resources. This is possible because the host manages the resources and re-

allocated unused resource to other guest machines. However, “over-committing processor

resources can cause performance penalties. When a processor must switch context from

one process to another process, the switch affect performance of the system” [IBM12A].

3.5.5 Kernel Samepage Merging / Transparent Page Sharing

Often related to memory over-commitment, page sharing is a useful technique for saving

memory for a hypervisor. This process allows the hypervisor to share duplicate pages

across guest machines by identifying duplicate pages in memory and merging them

without the guest machine’s knowledge. However, besides the performance penalties that

it incurs, there is also a limitation to this technique; in that many hypervisors (such as

VMWare) do not allow sharing of large pages [VMWare11].

23

3.5.6 SSD Support

With the advent of Solid State Disk (SSD) technologies many of the current disk

performance bottle necks no longer exist. Many hypervisors have steps a user can take to

optimize performance for systems with an SSD, such as using an SSD as a swap partition

[VMWare11].

24

Chapter 4

A LOOK AT THE HYPERVISORS OF TODAY

There are many hypervisors in today’s market, it would be impractical to list and describe

all of them in a single document. However, some hypervisor implementations stand out

from the rest as industry leaders [Hwang13]. These hypervisors include:

4.1 VMWare VSphere/Workstation/Player

One of the largest providers of virtualization products today is VMWare. They provide

enterprise and personal virtualization solutions for a variety of system configurations.

The one used in this study was VMWare VSphere, also known as VMWare ESXi, and is

marketed as a business solution. It is intended to be installed as the operating system on a

physical system. However, many of the other solutions provided by VMWare run as

applications in an existing operating system. These solutions are VMWare Player,

VMWare Workstation, and VMWare vFusion. All of these are considered Type 2 or

“hosted” hypervisors and run in parallel to an existing host operating system. VMWare

Player is a free (for personal use) product that has very basic capabilities for hosting

virtual machines. VMWare workstation is a pay to use product with more extensive

features, such as snapshots and many of the advanced configuration settings. VMWare

vFusion is a Mac OSX based solution to allow virtualization on most Apple OSX based

systems and provides functionality comparable to VMWare workstation.

25

VMWare vSphere, however, is the flagship Type 1 or “bare metal” hypervisor solution

provided by VMWare. This has all of the features of the hosted products plus an

extensive list of custom configurations and even includes remote and local command line

management interfaces. VMWare VSphere is intended as an enterprise business product

and can be scaled to support very large infrastructures. However, even though it is

marketed as an enterprise application it also functions very well for small scale systems,

such as in a small business environment or in a small software team.

4.2 Xen/XenServer

Xen is an open-source hypervisor that was first introduced in 2003 with the publishing of

“Xen and the Art of Virtualization” [Barham08]. It was originally developed with idea

that, while “allowing unmodified operating systems to be hosted” is extremely useful, “It

also has its drawbacks” [Barham08]. It was built with paravirtualization in mind, where

the guest operating system can be modified before being hosted on the hypervisor.

Currently Citrix is major supporter of Xen, their enterprise operating system called

XenServer provides a bare metal implementation of Xen and automatically provides

many of the changes required for a guest machine. The source code for Xen is Open

Source and available online.

26

4.3 KVM

KVM stands for Kernel-based virtual machine, it is an open-source hypervisor that is

included as part of the Linux kernel as of version 2.6.20 which came out in February of

2007 [Linux07]. At first glance it appears that it would be a Type 2 hypervisor, but when

all un-required modules of the Linux kernel and the software installed by default are

removed it is essentially a Type 1 hypervisor. KVM was originally created by a company

called Qumranet in 2006. At the time Xen was the most widely used open-source

hypervisor, but it required a custom built operating system to utilize. KVM was created

as a module in the Linux kernel which allowed for fast adoption and modifications

[IBM12B].

“The fact that the Virtual Machine Monitor (VMM) is part of the kernel model reduces

the cost of switching between the VMM mode and the host mode. This also makes the

KVM thinner than other VMMs, because the functionality of running a guest OS is not

needed on the KVM, and neither is the memory management. The guest OS is a regular

Linux process: it is scheduled like other processes, and its memory is managed by the

Linux kernel” [Motika11].

4.4 Hyper-V

Hyper-V is Microsoft’s hypervisor solution for the Microsoft Windows operating system.

It was released well after VMware, Xen, and KVM but it focused on virtualizing systems

27

using the Windows kernel as a base rather than the Linux kernel. Hyper-V has been

available since Microsoft Windows Server 2008 and a slimmed down version of the

technology, Microsoft Hyper-V Server, was released shortly after that removed the

overhead of the host Windows installation and simulated a Type 1 hypervisor.

4.5 Oracle VM Server/VirtualBox

Another contender for hypervisors in the software industry is Oracle and their Oracle VM

Server and Oracle VM VirtualBox. The Server solution is intended for datacenters and

would be considered a Type 1 hypervisor while their VirtualBox solution is a Type 2

product and is available as an application for many operation systems. [Kumar10]

4.6 Parallels Desktop/Virtuozzo Containers

Another set of virtualization solutions that has been gaining momentum in the

virtualization industry are the products created by the company Parallels, Inc. Their

Parallels Desktop product is the most widely known solution allowing virtualization of

several different operating systems on the OSX operating system for Macintosh

computers. This is considered a Type 2 hypervisor as it is an application. The Parallels

Virtuozzo Containers product is a container-based virtualization solution targeted

towards the datacenter and enterprise markets.

28

Chapter 5

PURPOSE AND GOALS

The goal of the study is to identify common hypervisor components that could be used to

increase system performance, evaluate how each of them affects the performance of a

virtual machine, and provide a method in which to compare these components across

hypervisors. As an example, paravirtual network drivers are often used to provide

additional network performance, but there is little information on how significant that

increase is. In addition, all of the industry leading hypervisors have some implementation

of paravirtualization drivers; however, very little information is available showing the

performance difference of these drivers across hypervisor products.

Most performance comparisons such as [VMWare07A], [Suganaya12], [Che08],

[Mohan12], [Deshane08], and [Chierici10] may implement some of these components

(though most did not mention that they even knew they existed) but do not look at the

performance improvements from each components, only of the entire hypervisor. When

creating a real world virtual environment an out-of-the-box configuration is rarely left

unmodified, time is taken to tweak performance based on how that system is planning to

be used. It would be beneficial to know what components to enable and what

performance improvements can be gained from implementing these components when a

system is initially setup or while tuning performance over time for particular workflows.

This study is intended to identify some of these components, explain what they do, and

29

determine what performance benefits they give, and provide a way to quantitatively

compare their performance differences. As virtualization products evolve and other

hypervisors appear, these virtualization products will need to implement these or similar

sets of components to be competitive and users will need ways of evaluating these

features for use in a production system.

In this study, three of the most popular and powerful virtualization technologies currently

available are used: VMware vSphere (also known as VMware ESXi), XenServer, and

KVM. With these three technologies, a defined set of components are implemented and

performance tests are performed on a Windows Server 2008 R2 virtual machine to gauge

what benefits the components provide. Microsoft’s Windows Server 2008 R2 was the

chosen operating system because it is very commonly used in enterprise environments.

This topic would likely be beneficial to anyone implementing virtualization technology

on a small or large scale. However, this would be more beneficial on a small scale since

the hardware being used is closer to small business infrastructure hardware than the

infrastructure of companies that can afford their own datacenters and/or dedicated

servers. Large companies would likely invest a lot of money and time to optimize their

virtualization systems; however, this paper would be a highly beneficial start to that level

of research. What this study does provide for both large and small companies is a method

with which to test these virtualization components individually, which is currently not

available.

30

Chapter 6

EXISTING RESEARCH

Several studies provide performance comparisons between sets of hypervisors. However,

no study focuses on the individual components of a hypervisors. There are also many

studies describing how to implement individual components of specific hypervisors,

which tend to be mostly white papers or technical manuals written by their respective

companies. Still, none of those studies provides performance benchmarks on these

components.

The study that was most similar to this research is [Suganaya12], written by a student at

the University of North Florida. The researcher did a performance comparison with the

SPECvirt_sc2010 benchmark of the three hypervisors that being used in this research

study. The difference between this study and the study of [Suganaya12] is that there is

no documentation provided stating that additional components or features were enabled

on the hypervisor. Only standard installs of all three hypervisors appear to be used in

[Suganaya12]. A problem with using the default installations is that VMWare and

XenServer have several of the components enabled by default while KVM does not, this

is at least one cause of the performance disparities seen in that study. Another difference

between [Suganaya12] and this study is that SPECvirt_sc2010 is not used, instead

PassMark Performance Test is used. The SPEC benchmark is focused on testing multiple

workloads running on multiple virtual machines and uses older operating system

31

workflows. PassMark has a series of benchmarks geared towards testing individual

machine performance for specific resource types. Therefore, the PassMark software will

act as a normal application and have no knowledge of other systems running on the

hypervisor. Using PassMark, this study will show how the systems perform under parallel

homogenous workloads and how that performance might degrade as system counts

increase.

Another very similar study to [Suganaya12] is [Xianghua08]. It compares KVM, Xen,

and VMWare using a series of tools: UBench, IOZone, Netperf, Sysbench, and a couple

custom benchmarks for Gzip and LAME performance. In [Xianghua08] the authors do

not explore enabling any of the performance components even though they do mention it

as possible future work. In addition, their base systems for Xen and KVM were on

CentOS while Fedora will be used in this study, which is constantly updated with the

latest versions of KVM, since it is maintained directly by the Red Hat Corporation.

Another research project with objectives similar to those of this study is [VMWare07A].

It is a performance study done by VMware using a couple testing tools including

PassMark (one of the testing tool used in this study). The authors use the CPU and

memory benchmarks from PassMark to compare a system hosted native (non-virtualized)

to systems hosted on ESX and Xen. In almost all the tests they performed Xen

performed worse than VMWare ESX. The tests were done on Windows Server 2003

which was a very common operating system then, however, Windows Server 2008 R2

32

will be use in this study since many corporations have migrated to the later versions of

Windows Server.

Similar to [VMWare07A], [Che08] presents a similar project where a performance

comparison between two hypervisors was performed, however, it focuses on Xen and

KVM for its performance testing. It also uses a different set of benchmarks, LINMARK

(used for the CPU benchmark), LMBench (used for the memory benchmark), and

IOZone (for I/O benchmarks). Their tests were performed on Xen and KVM hosted

Fedora Core 8 and utilized Windows XP virtual machines. In [Che08] a majority of the

performance tests showed Xen with better performance results. It is worth noting that

these systems (Xen/KVM) have been through many changes since 2008 and the results in

this paper are outdated. However, it is a good reference for comparing how these

systems have improved in the last few years.

[Chierici10] and [Deshane08] also focus on comparing the Xen and KVM hypervisors.

[Chierici10] focuses on general performance, performance isolation, and scalability. The

authors used IOZone and the Phoronix Test Suite for their general performance tests and

SPECweb2005 for their performance isolation tests. To test scalability, they compiled

Apache on a single guest and then slowly increased the machine count and ran the same

command in parallel on all the machines. [Deshane08] used three performance tools:

hep-spec06 (for CPU performance), iperf (for network performance), and bonnie++ (for

disk performance). Again, both studies found Xen to have the best performance and

stability.

33

Chapter 7

METHODS AND RESULTS

7.1 Methods

Four system images were created on each hypervisor using the configurations described

in the Machine Definition section below. Two were setup with the no modifications

configuration and two were setup with the paravitualization configuration. Tests were

performed with the following permutations on each hypervisor:

For Disk, CPU, and Memory tests:

1) Single no modification guest

2) Two no modification guests in parallel

3) Single paravirtual configuration guest

4) Two paravirtual configuration guests in parallel

Disk CPU and Memory tests were performed using PassMark PerformanceTest 8.0.

For network tests:

1) Two no modification guests, one as server, one as client

2) Two paravirtual configuration guests, one as server, one as client

3) Two no modification guests using the e1000 Ethernet emulator, one as server,

one as client

Network tests were performed using NT TCP Testing Tool.

34

Every test was run a minimum of 30 times (general considered to be a good number for

student t-distribution tests [Hogg10]) per machine in order to get a reliable set of

measures. 9 CPU tests, 3 disk tests, 7 memory tests, and 1 network test (a total of 20

tests) were performed on each of the guest machines. For the single machine tests (1 and

3 above) were triggered from a remote machine using the psexec.exe utility and a batch

file (included as Appendix G). For the multiple machine tests the psexec.exe utility was

used to execute the ParallelExecution.exe tool (source code included as Appendix H)

which orchestrated the synchronization of the tests across each machine. Each test was

run 30 times in sequence using the scripting functionality of the PassMark

PerformanceTest tool by creating a script file configured to run a specific test 30 times

(see Appendix G). Results for each test were written to a comma-separated values (CSV)

file as they completed. Results for the all the tests were collected using the batch files that

executed the tests via the xcopy utility. Tests were performed in this manner to eliminate

variability and ensure all tests were executed identically.

The network tests were also executed remotely using the psexec.exe tool. The NT

Testing TCP Tool requires a client and a server for testing, all tests were performed using

one guest machine as the server and another as the client. The results of the test were

written to a text file and collected with the xcopy utility. Additional batch files were

created for this process as well to ensure consistency (see Appendix G).

35

Data analysis and aggregation were done in C# using LinqPad as the development tool.

LinqPad was chosen for its light footprint and ability to create C# scripts quickly. Two

statistical analysis packages were used to run the tests for each data set, multiple

packages were used to ensure correctness for the test results. The first statistical package

used was R, a programming language with libraries specializing in statistical analysis.

Interaction with R was facilitated by R.NET, an open source library that allows for easy

communication between Microsoft .NET based applications and the R programming

language. The second statistical analysis package used was the TDistribution class from

the Microsoft .NET library

(System.Web.UI.DataVisualization.Charting.StatisticFormula). The StudentDistribution

methods used were isolated and pulled out into the LinqPad script so that they could be

more accessible (see Appendix F).

The output files from the test runs are parsed programmatically with the LinqPad script in

order to pull the data into a more manageable format. The different result sets were then

compared as follows:

1) Parallel no modifications(PNM) vs. Parallel with paravirtualization(PWP)

2) Single no modifications(SNM) vs. Single with paravirtualization(SWP)

3) Single no modifications(SNM) vs. Parallel no modifications(PNM)

4) Single with paravirtualization(SWP) vs. Parallel with paravirtualization(PWP)

5) Cross hypervisor comparison for single no modifications(SNM)

6) Cross hypervisor comparison for single with paravirtualization(SWP)

7) Cross hypervisor comparison for parallel no modifications(PNM)

36

8) Cross hypervisor comparison for parallel with paravirtualization(PWP)

9) Comparison of all three network configurations: paravirtualization vs. no

modifications vs. e1000 network adapter.

10) Cross hypervisor comparison of network performance for both single and

parallel test configurations

Comparison results were then displayed in several ways in order to extract useful

comparisons (see Figure 9). The first way was a grade based on the highest mean for the

data sets, labeld “Comparison Grades” in Figure 9. The set with the highest mean is

given a grade of 100% and the set(s) with the lower mean is given a grade relative to the

set with the highest mean (the “Winner” in Figure 9). The second way was an aggregates

view which displayed a comparison of the mean, standard deviation, the smallest value,

the largest value, and the number of items in the data set for each pair of data sets

compared (see “Comparison Results” section of Figure 9). Immediately below the

display of the aggregate data in the same section is the p-value from a TTest between the

data sets and whether that p-value indicates that the sets are statistically different. The

sections labeled “Interesting Results” and “Interesting Results Std Dev” are used for

creating the result graphs in the next section. Each data set was normalized using a

calculated interquartile range (IQR) with a generous margin to prevent it from removing

important results. The IQR is the range in which a majority of the items in a data set fall

into, this removed any extreme outliers from the data set that may have been caused by

unexpected circumstances (see Appendix F for implementation).

37

Figure 9: Section of output for the statistical comparison from the LinqPad script

7.2 Results

Several of the result sets ended showing statistically insignificant differences or

statistically significant differences but by a very slim margin. This section will focus on

the “Interesting Results”, defined as data points in the comparison set that vary by more

than 10% and the difference is statistically significant (p-value < .05 using the null

38

hypothesis). This means that all results not displayed showed an insignificant amount of

difference or no change. For example, in the comparisons across each hypervisor types

the tests not displayed are the tests that showed no interesting difference between each

hypervisor.

The graphs in the next sections are built using the “Interesting Results” and the

“Interesting Results Standard Deviation” sections of the LinqPad script results (see

Figure 9). The Y-Axis of the graphs (Figures 10-19) represent the “Interesting Results” of

all the “Comparison Grades” as described earlier. The error bars represent the standard

deviation percentage relative to the highest mean for that set of results (the “Interesting

Results Std Dev” section of Figure 9).

7.2.1 Parallel no modifications (PNM) vs. Parallel with paravirtualization (PWP)

The most surprising outcome of the tests for this category was the VMWare tests. There

were minimal changes in performance with the introduction of paravirtualization, only 3

(2 shown in Figure 10) of the 19 tests showed any improved performance. This shows

that the default installation of VMWare is well tuned. In comparison the XenServer tests

showed an increase in performance for 14 (4 shown in Figure 10) of the 19 different tests

and KVM showed improvement in 13 (6 shown in Figure 10) of the 19 tests.

39

Figure 10: Results for Parallel No Modifications vs. Parallel with paravirtualization

7.2.2 Single no modifications (SNM) vs. Single with paravirtualization (SWP)

The results for the single machine tests were very similar to the results for the parallel

machine tests. However, the most interesting set of results from this category are from

“Random Seek + RW” in the XenServer’s SWP configuration. The drastic performance

degradation is surprising from a system built with Xen, the hypervisor which used to rely

on paravirtualization for its performance. Overall VMWare saw very little performance

improvements for 7 of 19 tests and a performance degradation for 3 of 19 tests when

using the SWP configuration. XenServer saw an improvement for 10 (2 shown in Figure

11) of 19 tests and a significant degradation on 1 of the 19 tests. KVM saw improvement

for 11 (6 shown in Figure 11) of 19 tests.

0%

20%

40%

60%

80%

100%

120%

140%

160%

Interesting Results for Parallel No Mods vs Parallel w/

Paravirt

Parallel No Mods Parallel

40

Figure 11: Results for Single no Modifications vs. Single with paravirtualization

7.2.3 Single no modifications (SNM) vs. Parallel no modifications (PNM)

As expected with a comparison of the SNM and PNM configurations the SNM

configurations consistently had the best performance. With any system where multiple

processes are running simultaneously, one or both of the processes will suffer to some

extent. The main focus of this comparison is to see which of the three systems had the

least degradation from the SNM configuration to the PNM configuration. Many of the

CPU based tests have very little change between the two configurations. This is likely

because each machine was given a dedicated core on the host machine so there was

minimal contention for processor resources. Both XenServer and VMWare showed a

0%

20%

40%

60%

80%

100%

120%

Interesting Results for Single No Mods vs Single w/ Paravirt

Single No Mods Single

41

decrease in performance from SNM to PNM in 9 of 19 tests. KVM showed a decrease in

performance for 7 out of 19 tests (see Figure 12). The most interesting degradations in

this test category are the disk performance tests, in which every hypervisor saw a

decrease of more than 50%. This decrease means that with parallel machines running the

overall disk performance is reduced even though multiple machines are running at the

same time. An important thing to consider in this category is that any performance

reduction of more than 50% means that the overall system performance decreased and

thrashing occurred. This is because the average of these tests (the values displayed in the

graphs) are taken from individual machines which means that for the parallel machine

configuration all results would be doubled to get total system performance of the host for

a given test.

42

Figure 12: Results for Single no Modifications vs. Parallel no Modifications

7.2.4 Single with paravirtualization (SWP) vs. Parallel with paravirtualization (PWP)

Similar to the SNM vs. PNM results all of the interesting results in the SWP vs. PWP

tests show the SWP configuration to have the better performance. The major differences

of this test comparison to the SNM vs. PNM test is that 2 out of 3 of the VMware disk

tests and all of the Xen disk tests now had a less than 50% performance reduction.

0%

20%

40%

60%

80%

100%

120%

140%

V
M

W
a

re
 -

 C
P

U
 -

 P
ri

m
e

 N
u

m
b

e
rs

V
M

W
a

re
 -

 C
P

U
 -

 P
h

y
si

cs

V
M

W
a

re
 -

 D
is

k
 -

 S
e

q
u

e
n

ti
a

l
W

ri
te

V
M

W
a

re
 -

 D
is

k
 -

 S
e

q
u

e
n

ti
a

l
R

e
a

d

V
M

W
a

re
 -

 D
is

k
 -

 R
a

n
d

o
m

 S
e

e
k

 +
 R

W

V
M

W
a

re
 -

 M
e

m
o

ry
 -

 D
a

ta
b

a
se

 O
p

e
ra

ti
o

n
s

V
M

W
a

re
 -

 M
e

m
o

ry
 -

 R
e

a
d

 U
n

ca
ch

e
d

V
M

W
a

re
 -

 M
e

m
o

ry
 -

 W
ri

te

V
M

W
a

re
 -

 M
e

m
o

ry
 -

 T
h

re
a

d
e

d

X
E

N
 -

 C
P

U
 -

 P
ri

m
e

 N
u

m
b

e
rs

X
E

N
 -

 C
P

U
 -

 P
h

y
si

cs

X
E

N
 -

 D
is

k
 -

 S
e

q
u

e
n

ti
a

l
W

ri
te

X
E

N
 -

 D
is

k
 -

 S
e

q
u

e
n

ti
a

l
R

e
a

d

X
E

N
 -

 D
is

k
 -

 R
a

n
d

o
m

 S
e

e
k

 +
 R

W

X
E

N
 -

 M
e

m
o

ry
 -

 D
a

ta
b

a
se

 O
p

e
ra

ti
o

n
s

X
E

N
 -

 M
e

m
o

ry
 -

 R
e

a
d

 U
n

ca
ch

e
d

X
E

N
 -

 M
e

m
o

ry
 -

 W
ri

te

X
E

N
 -

 M
e

m
o

ry
 -

 T
h

re
a

d
e

d

K
V

M
 -

 C
P

U
 -

 P
h

y
si

cs

K
V

M
 -

 D
is

k
 -

 S
e

q
u

e
n

ti
a

l
W

ri
te

K
V

M
 -

 D
is

k
 -

 S
e

q
u

e
n

ti
a

l
R

e
a

d

K
V

M
 -

 D
is

k
 -

 R
a

n
d

o
m

 S
e

e
k

 +
 R

W

K
V

M
 -

 M
e

m
o

ry
 -

 R
e

a
d

 U
n

ca
ch

e
d

K
V

M
 -

 M
e

m
o

ry
 -

 W
ri

te

K
V

M
 -

 M
e

m
o

ry
 -

 T
h

re
a

d
e

d

Interesting Results for Single No Mods vs Parallel No Mods

Single No Mods Parallel No Mods

43

Meaning that overall disk performance increased for the host. KVM still showed an

overall decrease in disk performance. (see Figure 13)

Figure 13: Results for Single with paravirtualization vs. Parallel with paravirtualization

0%

20%

40%

60%

80%

100%

120%

140%

V
M

W
a

re
 -

 C
P

U
 -

 P
ri

m
e

 N
u

m
b

e
rs

V
M

W
a

re
 -

 C
P

U
 -

 P
h

y
si

cs

V
M

W
a

re
 -

 D
is

k
 -

 S
e

q
u

e
n

ti
a

l
W

ri
te

V
M

W
a

re
 -

 D
is

k
 -

 S
e

q
u

e
n

ti
a

l
R

e
a

d

V
M

W
a

re
 -

 D
is

k
 -

 R
a

n
d

o
m

 S
e

e
k

 +
 R

W

V
M

W
a

re
 -

 M
e

m
o

ry
 -

 D
a

ta
b

a
se

 O
p

e
ra

ti
o

n
s

V
M

W
a

re
 -

 M
e

m
o

ry
 -

 R
e

a
d

 U
n

ca
ch

e
d

V
M

W
a

re
 -

 M
e

m
o

ry
 -

 W
ri

te

V
M

W
a

re
 -

 M
e

m
o

ry
 -

 L
a

te
n

cy

V
M

W
a

re
 -

 M
e

m
o

ry
 -

 T
h

re
a

d
e

d

X
E

N
 -

 C
P

U
 -

 P
ri

m
e

 N
u

m
b

e
rs

X
E

N
 -

 C
P

U
 -

 P
h

y
si

cs

X
E

N
 -

 D
is

k
 -

 S
e

q
u

e
n

ti
a

l
W

ri
te

X
E

N
 -

 D
is

k
 -

 S
e

q
u

e
n

ti
a

l
R

e
a

d

X
E

N
 -

 D
is

k
 -

 R
a

n
d

o
m

 S
e

e
k

 +
 R

W

X
E

N
 -

 M
e

m
o

ry
 -

 D
a

ta
b

a
se

 O
p

e
ra

ti
o

n
s

X
E

N
 -

 M
e

m
o

ry
 -

 W
ri

te

X
E

N
 -

 M
e

m
o

ry
 -

 T
h

re
a

d
e

d

K
V

M
 -

 C
P

U
 -

 F
lo

a
ti

n
g

 P
o

in
t

M
a

th

K
V

M
 -

 C
P

U
 -

 P
ri

m
e

 N
u

m
b

e
rs

K
V

M
 -

 C
P

U
 -

 P
h

y
si

cs

K
V

M
 -

 D
is

k
 -

 S
e

q
u

e
n

ti
a

l
W

ri
te

K
V

M
 -

 D
is

k
 -

 S
e

q
u

e
n

ti
a

l
R

e
a

d

K
V

M
 -

 D
is

k
 -

 R
a

n
d

o
m

 S
e

e
k

 +
 R

W

K
V

M
 -

 M
e

m
o

ry
 -

 D
a

ta
b

a
se

 O
p

e
ra

ti
o

n
s

K
V

M
 -

 M
e

m
o

ry
 -

 R
e

a
d

 U
n

ca
ch

e
d

K
V

M
 -

 M
e

m
o

ry
 -

 W
ri

te

K
V

M
 -

 M
e

m
o

ry
 -

 T
h

re
a

d
e

d

Interesting Results for Single w/Paravirt vs Parallel w/

Paravirt

Single Parallel

44

7.2.5 Cross hypervisor comparison for single no modifications (SNM)

For all of the interesting results in this category of tests KVM had the poorest

performance. This shows that KVM “out of the box” generally has worse performance

than the other two hypervisors (see Figure 14). The two other hypervisors are very close

in performance in most of the interesting categories except for the “Random Seek + RW”

test in which Xen had a significantly better performance than any other the other

hypervisors. Why this is the case is uncertain, perhaps certain optimizations are in place

for the default install of Xen that are not in the other hypervisors.

Figure 14: Results for Single no Modifications across Hypervisors

0%

20%

40%

60%

80%

100%

120%

Interesting results for single with no modification by

hypervisor

VMWare XEN KVM

45

7.2.6 Cross hypervisor comparison for single with paravirtualization (SWP)

This test set has several interesting data points when compared to the previous test

configuration. In this test scenario KVM actually performed as well or better than the

other hypervisors in most of the interesting results. We see a drastic improvement of disk

performance and significant increases in several other tests for KVM in this test scenario.

Also several of the CPU tests no longer show significant differences between the

hypervisors, indicating that the paravirtualization drivers equalized the performance

across the hypervisors for several tests. From these results we can see very minimal

differences between hypervisors except for a couple scenarios. (see Figure 15)

Figure 15: Results for Single with paravirtualization across Hypervisors

0%

20%

40%

60%

80%

100%

120%

Interesting results for single with paravirtualization by

hypervisor

VMWare XEN KVM

46

7.2.7 Cross hypervisor comparison for parallel no modifications (PNM)

The results for this test scenario are very similar to the single machine no modifications

results. KVM shows significantly low disk performance while the other hypervisors stay

relatively close. It is interesting to note that the variance in the disk performance tests in

both Xen and VMWare are significantly larger than with the single machine results (see

Figure 16). This is possibly due to some disk operations on individual guests blocking

while others execute. This increase in variance is not seen in the KVM tests which could

potentially mean that the algorithm used for disk I/O in KVM has a way of reducing

blocking.

Figure 16: Results for Parallel no Modifications across Hypervisors

0%
20%
40%
60%
80%

100%
120%
140%
160%
180%

Interesting results for parallel with no modifications by

hypervisor

VMWare XEN KVM

47

7.2.8 Cross hypervisor comparison for parallel with paravirtualization (PWP)

For this comparison similar results to the “SWP by hypervisor” were expected to be seen,

in which many of the tests would show a leveling out of performance across all

hypervisors. However, in several scenarios, specifically the disk tests, this was not the

case. For the sequential read and write tests Xen showed a dramatic increase in

performance when compared the other hypervisors. KVM also showed less of an increase

in performance than it showed in the SWP configuration indicating that the read

performance in a parallel guest machine configuration has not been optimized as much as

the other two hypervisors (see Figure 17). It would be interesting to see if this trend

continued to appear with additional parallel machine being added.

Figure 17: Results for Parallel with paravirtualization across Hypervisors

0%

20%

40%

60%

80%

100%

120%

140%

160%

Interesting results for parallel with paravirtualization by

hypervisor

VMWare XEN KVM

48

7.2.9 Network performance

7.2.9.1 Network performance across adapter types

All hypervisors except VMware had interesting results from network performance

comparisons. KVM showed the largest improvement from the addition of

paravirtualization which performed at 50x to 60x (5000-5900%) when compared to the

no modification configuration and 5.1x to 5.9x (510-590%) when compared to the e1000

network adapter configuration. XenServer’s paravirtualization configuration performed at

22x (2187%) and 1.1x (112%) when compared to the no modification configuration and

the e1000 network adapter configuration respectively for the receiving client, for the

sender XenServer performed at 24x (2424%) and 2.3x (233%) respectively. (see Figure

18)

Figure 18: Results for Network testing by adapter type

0%

20%

40%

60%

80%

100%

120%

140%

KVM - Receiver KVM - Sender Xen - Receiver Xen - Sender

Interesting network results by adapter type

para nomod e1000

49

7.2.9.2 Network performance across hypervisors

VMWare performed the best in every network configuration by at least 1.6x (163%) and

up to 100x (9995%). The most interesting result from this comparison is that the

VMware tests themselves did not vary much between the types, however, it consistently

and significantly out-performed both other hypervisors. The closest results in this

category came from the paravirtualization configuration of the receiving client in which

VMWare performed at 1.6x (163%) when compare to KVM’s performance and 2.7x

(272%) when compared to XenServer (see Figure 19). This comparison is very important

to the overall perceived performance of the hypervisors and with the ever increasing

internet connectivity that the current industry demands will be a deciding factor for a

company choosing a hypervisor solution.

Figure 19: Results for Network tests across hypervisors

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Receiver - para Receiver -

nomod

Receiver - e1000 Sender -para Sender -nomod Sender -e1000

Interesting network results by hypervisor

KVM VMWare Xen

50

Chapter 8

CONCLUSIONS

12,900 data points were collected in this study and 492 comparisons were made, even

still there are additional ways of relating this data that could result in additional

conclusions being drawn. It is important that the methods of this study be considered in

the conclusions. These hypervisors will continue to evolve and in several years the results

in this study will not be valid anymore and additional studies will need to be performed.

However, the methods presented in this study can be used for any future releases of these

or any other hypervisors. With the highly configurable and flexible nature of hypervisors

there will be an ever-growing number of components that an end user could add when

setting them up. The methods in this paper provide the following key benefits over

traditional performance testing:

1) A way of testing and analyzing specific configurations

2) A way of quantifying results based on statistical analysis rather than just means

3) A way of gathering large quantities of data without manual intervention

4) A way of analyzing the performance variation when using n-# of parallel

machines executing work simultaneously.

5) A way of comparing results that provides an “inner” view of the performance

variation of a configuration. e.g. How adding or removing the configuration

affected the hypervisor itself

51

6) A way of comparing an “outer” view of the performance variation of a

configuration. E.g. How adding or removing the configuration affected the

hypervisor’s relative performance when compared to other hypervisors

Based on the final results from the performance analysis made, the following conclusions

could be implied about the hypervisors tested in this study:

1) The “out of the box” performance of KVM is worse than the “out of the box”

performance of the other systems. We can see this in the results from section

7.2.5, KVM’s performance in many categories is lower than the other system’s.

The importance of this conclusion is when looking at many other performance

evaluation studies on these hypervisors. Most studies take the default installation

of these systems and perform tests without any modifications, which would

consistently place the systems that require configurations at the bottom of these

tests. In practice, these systems would be configured before use in an actual

business setting and would perform closer to the results seen in sections 7.2.7 or

7.2.8. However, the negative aspect of this is that it may steer people away from

the technology if the “out of the box” experience is not comparable to the other

systems, as that is often the first impression of a technology.

2) The paravirtualization implementation in VMware actually provides very little

performance improvement in any category. This can be seen from the results in

section 7.2.1 and 7.2.2 in which there are very few categories that show any

change in performance when paravirtualization is implemented. This is surprising

since usually paravirtualization is considered a way of optimizing performance of

52

a virtual machine. In VMWare, however, it appears that the method they use for

resource consumption is sophisticated enough to not require paravirtualization

and still have comparable performance to other hypervisors in the industry. The

paravirtualization drivers are likely either drivers optimized for much larger

workloads/parallel configurations (such as the balloon driver) or used for

administration purposes.

3) XenServer’s disk performance showed an unexpected result as well. When adding

the paravirtualization drivers the “Random Seek + RW” test showed a significant

decrease in performance (see sections 7.2.1 and 7.2.2). However, this decrease

brought it closer to the performance of the other two hypervisors. It appears that

in the no modification configuration that optimizations were made specifically for

workflows similar to the “Random Seek + RW” test. Why this occurs is a subject

for another study.

4) KVM, even in the paravirtualization configurations, has an overall decrease in

disk performance when using parallel machines (see sections 7.2.3 and 7.2.4). All

of the disk tests were roughly 50% or lower when the single configurations were

compared to the parallel configurations, meaning that the overall disk

performance decreased. This means that for disk I/O heavy workloads KVM

would perform better if a single VM was used rather than multiple VMs trying to

write to disk simultaneously.

5) The overall results can be seen in (Figure 20) the graph below. VMware had the

best overall performance, however, each hypervisor had at least one category in

which it had the highest score (even if only by a small percentage). These results

53

are based on the PWP configuration as it was deemed to be the most likely

scenario in a live production environment.

Figure 20: Overall results across hypervisors

It is important to note that the configurations used in this study are just a small number of

what is available for these hypervisors. The ones chosen were based on common industry

practices at the time of the study’s writing.

CPU Network Disk Memory Overall

VMware 98% 100% 74.95% 90.57% 92%

XEN 96.68% 33.81% 96% 92.18% 89.03%

KVM 91.81% 57.95% 61.04% 95% 85.26%

0%

20%

40%

60%

80%

100%

120%

Final comparison grade by hypervisor

VMware XEN KVM

54

Chapter 9

FUTURE WORK

There are near endless possibilities for future work on this subject. Each and every

configuration possible could be used in later studies. In particular a couple of

configurations that have the potential to be the most interesting are the following:

1. Resource overcommitting – There are several different setups available for

resource overcommitment including memory and CPU. Determining if any one

hypervisor handles resource sharing worse than the others would be an intensive

and interesting study.

2. Higher parallelization count – Testing the performance degradation of running a

higher number of machines (four, eight, sixteen, etc.) could provide insight to see

how quickly performance degrades as the machine counts increases. However,

with the configuration from this study it is likely that the physical system could

not handle a higher load than four parallel machines without having major

resource contention. A machine with better physical specifications, such as a

datacenter server, would need to be used to test the higher machine counts.

3. Solid state disks – Seeing the relative performance of each hypervisor when using

SSDs would be an interesting study focus. SSDs are very popular now, even in

enterprise companies and datacenters. One or more of the hypervisors might have

specific optimizations that increase performance for SSDs.

55

4. Large Pages – Large Pages as defined in Chapter 4 of this study increases the

memory page size for a system. This would be an interesting addition to the

current study and could be done with any system configuration. It is important to

note that Large Pages/Huge Pages must be enabled for the guest and the host

machines to have an effect and cannot be used in parallel with page sharing.

5. Different I/O modes and Disk Caching for KVM – KVM in particular has a large

number of configurations that any guest machine can use. Disk caching, for this

study was set to “none” to prevent the cache from skewing the final results;

however, there are other disk caching modes available such as “writeback” and

“writethrough” that both perform differently under different workloads. In

addition the I/O mode for a guest can be “native” or “threads” which change how

the system writes to the disk. Both of these options could potentially give

interesting results.

6. Video/Graphics testing – One subject not touched on in this study is graphics and

GPU virtualization. It would be interesting to see the performance differences of

the different hypervisor under tests designed to test the GPU directly. PassMark

Performance test actually provides these tests and they could be used in a very

similar manner as the other tests were in this study.

In addition to different configurations additional hypervisors could also be used,

Microsoft’s Hyper-V product was excluded from this study merely to limit scope. It and

56

other hypervisors are very popular in the industry and could be included in further

studies.

57

REFERENCES

Print Publications:

[Barham03]
Barham, Paul, et al. "Xen and the art of virtualization." Proceedings of the nineteenth

ACM symposium on Operating System principles. New York, NY, USA, 2003. 164-177.

[Che08]
Che, Jianhua, et al. "Performance Measuring and Comparing of Virtual Machine
Monitors." IEEE/IFIP International Conference on Embedded and Ubiquitous

Computing. Hangzhou, China, 2008.

[Chierici10]
Chierici, Andrea and Riccardo Veraldi. "A Quantitative Comparison Between Xen and
KVM." 17th International Conference on Computing in High Energy and Nuclear

Physics. 2010.

[Cox06]
Cox, Alan L and Willy Zwaenepoel. "Optimizing Network Virtualization in Xen." Proc.

USENIX Annual Technical Conference. 2006.

[Deshane08]
Deshane, Todd, et al. "Quantitative Comparison of Xen and KVM." Xen Summit. Boston,
MA, 2008.

[Hwang13]
Hwang, Jinho, Sai Zeng, Frederick Y. Wu, and Tim Wood. "A component-based
performance comparison of four hypervisors." In Integrated Network Management (IM

2013), 2013 IFIP/IEEE International Symposium on, pp. 269-276. IEEE, 2013.

[Hogg10]
Hogg, Robert V and Elliot A. Tannis. "Probability and Statistical Inference." Pearson

Education, Inc 2010.

[Mohan12]
Mohan, Biju R and Deepak K Damodaran. "Performance Measuring and Comparison of
VirtualBox and VMware." International Proceedings of Computer Science &

Information Technology 27. 2012.

58

[Motika11]
Motika, Gal and Shlomo Weiss. "Virtio network paravirtualization driver:
Implementation and performance of a de-facto standard." Computer Standards and

Interfaces 34.1 (2011): 36-47.

[Rodriguez12]
Rodriguez-Haro, Fernando, et al. "A summary of virtualization techniques."
Iberoamerican Conference on Electronics Engineering and Computer Science. 2012.

[Russell08]
Russell, Rusty. virtio: Towards a De-Facto Standard For Virtual I/O Devices. Canberra,
Australia: SIGOPS Oper. Syst. Rev, 2008.

[Soltesz07]
Soltesz, Stephen, et al. Container-based Operation System Virtualization: A Scalable,

High-performance Alternative to Hypervisors. Princeton, New Jersey: EuroSys, 2007.

[Suganaya12]
Suganaya, Sridharan. A Performance Comparison of Hypervisors for Cloud Computing.
Jacksonville, FL: UNF Thesis and Dissertations. Paper 269, 2012.
http://digitalcommons.unf.edu/etd/269.

[VMWare06]
VMWare, Inc. Virtualization Overview. Palo Alto, CA, 2006. White Paper

[VMWare07A]
VMWare, Inc. A Performance Comparison of Hypervisors. Palo Alto, CA, 2007. White
Paper

[VMWare07B]
VMWare, Inc. Understanding Full Virtualization, Paravirtualization, and Hardware

Assist. Palo Alto, CA, 2007. White Paper

[VMWare09A]
VMware, Inc. Performance Evaluation of VMXNET3 Virtual Network Device. Palo Alto,
CA: VMware, Inc, 2009. White Paper

[VMWare09B]
VMware, Inc. What is new in VMWare vShpere 4: Storage. Palo Alto, CA: VMware,
2009. White Paper

[VMWare11]
VMWare, Inc. Performance Best Practices for VMware vSphere 5.0. Palo Alto, CA,
2007-2011. White Paper

59

[Xianghua08]
Xianghua, Xu, et al. "Quantifying Performance Properties of Virtual Machine."
International Symposium on Information Science and Engineering. 2008.
Electronic Sources:

[IBM12A]
IBM Corporation. Best practices for KVM. 2012. https://www-
01.ibm.com/support/knowledgecenter/linuxonibm/liaat/liaatbestpractices_pdf.pdf, last
accessed September 26. 2015

[IBM12B]
IBM. On the Origin of KVM. 13 Fedruary 2012. IBM Software Defined.
https://www.ibm.com/developerworks/community/blogs/ibmvirtualization/entry/on_the_
origin_of_kvm13?lang=en, last accessed September 26, 2015

[Kumar10]
M. Kumar, S. Roberts and C. Kawalek, "The Most Complete and Integrated," Oracle
Corporation, 500 Oracle Parkway, Redwood Shores, CA, 2010.
http://www.oracle.com/us/technologies/virtualization/virtualization-strategy-wp-
183617.pdf, last accessed September 26, 2015

[Microsoft08]
Microsoft, Inc. How to Use NTttcp to Test Network Performance. 15 April 2008.
http://msdn.microsoft.com/en-us/windows/hardware/gg463264.aspx, last accessed
September 26, 2015

[RedHat14]
Red Hat, Inc. 5.4. Huge Pages and Transparent Huge Pages (THP). 2014. Red Hat, Inc.
5th. https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/6/html/Virtualization_Tuning_and_Optimization_Guide/
sect-Virtualization_Tuning_Optimization_Guide-Memory-Huge_Pages.html, last
accessed September 26, 2015

[Linux07]
Linux 2.6.20 Release Notes. 5 February 2007. http://kernelnewbies.org/Linux_2_6_20,
last accessed September 26, 2015

[Xen15]
Paravirtualized SCSI: XEN PVSCSI. n.d. http://wiki.xen.org/wiki/Paravirtualized_SCSI,
last accessed September 26, 2015

60

APPENDIX A

XENSERVER HOST CONFIGURATIONS

After initial tests were conducted on the no modification configuration of XenServer the

following was done to the host system to allow the guest machines to use the e1000

adapter type:

1) Move the original qemu file XenServer uses to boot virtual machines:

 mv /usr/lib/xen/bin/qemu-dm /usr/lib/xen/bin/qemu-dm.orig

2) Create new file ‘/usr/lib/xen/bin/qemu-dm’ with the following contents:

#!/bin/bash

oldstring=$@

newstring=${oldstring/=rtl8139/=e1000}

exec /usr/lib/xen/bin/qemu-dm.orig $newstring

3) Enable execute for new file: chmod 755 /usr/lib/xen/bin/qemu-dm

This process overrides the default network adapter that XenServer uses when booting a

virtual machine. With this in place any virtual machines that would normally be booted

with the rtl8139 network adapter are now booted with the e1000 network adapter.

61

APPENDIX B

KVM HOST CONFIGURATIONS

The base install for the system used to host KVM is a little more complicated since

Fedora was used instead of a dedicated system like VMWare and XenServer provide.

With that in mind a bit of modification to the host was required to reduce the overhead of

running a full version of Linux in parallel with KVM. The changes did not include any

direct modifications to the guest machines. They are used to get the Fedora install match

the other hypervisors a little more closely. The following is how the host machine was

setup:

1) The ‘/home’ partition was removed from the default partition schema. This is done

because we do not have a need for a ‘/home’ partition since the machine will be

dedicated to hosting guest machines.

2) No additional users were added to the system, the ‘root’ user is all that was required

for administration.

a. To allow ‘root’ to log into the GUI the following needs to be removed or

commented out in the ‘/etc/pam.d/lxdm’ file: auth required

pam_succeed_if.so user != root quiet

3) KVM and the management tools associated to KVM (e.g. virt-manager) were

installed along with a Network Time Protocol (NTP) service to allow the clocks on

the Host and Guest machines to sync to the same NTP servers as VMWare and

XenServer.

62

a. Install applications: yum -y install kvm virt-manager libvirt ntp

b. Configure NTP: Change server IPs in /etc/ntp.conf to be trusted NTP

server(s)

c. Start the NTP service: systemctl start ntpd.service

d. Enable the NTP service so that it starts with the Host: systemctl enable

ntpd.service

4) Applications that were not required for KVM to function were removed

a. yum remove clipit audit smartmontools gxine pidgin osmo abiword

gnumeric leafpad xpad gnomebaker asunder sylpheed transmission

5) System was changed to only boot to run level 3, which does not start the GUI and

other ancillary applications.

a. unlink /etc/systemd/system/default.target

b. ln -s /lib/systemd/system/runlevel3.target default.target

6) By default both VMWare and XenServer utilize Bridged networking (described

above in the paper) for their guest machines on standard installation, however, KVM

defaults to NAT. The normal service for managing network interfaces on Fedora is

called NetworkManager, but this service does not properly provide the support for

Bridged networking that is required for this configuration. So the NetworkManager

service was disabled and a networking service that supports network bridges was

enabled.

a. systemctl stop NetworkManager.service

b. disable NetworkManager.service

c. systemctl start network.service

63

d. systemctl enable network.service

7) VMWare and XenServer both also provide graphical remote management tools (e.g

VMWare v-Sphere Client and Citrix XenCenter), KVM does not provide this out of

the box, so a slight modification is required for ease of administration. Linux has very

good support for Virtual Network Computing (VNC) which is a way to access the

system’s user interface remotely. Utilizing this it provides us with an easy and

familiar way to remotely manage the Host and Guests.

a. Install the VNC server:

i. yum -y install tigervnc-server

b. Set the VNC service to listen on port 5900:

i. cp /lib/systemd/system/vncserver@.service

ii. /etc/systemd/system/vncserver@:0.service

c. replace <USER> tags in vncserver@:0.service just created with 'root' user.

This sets the default login for VNC as the ‘root’ user.

d. Add an exception to the Host’s firewall to allow VNC connections publicly

i. firewall-cmd --permanent --zone=public --add-service vnc-server

e. Configure the VNC password by running: vncpasswd

f. Reload the service daemon: systemctl daemon-reload

g. Enable the VNC service: systemctl enable vncserver@:0.service

h. Restart the system so that the changes take affect

i. Run the ‘vncserver’ command to verify it has been activated correctly

mailto:/lib/systemd/system/vncserver@.service
mailto:/etc/systemd/system/vncserver@:0.service
mailto:vncserver@:0.service

64

APPENDIX C

GUEST CONFIGURATIONS

The operating system used for this research study was Microsoft Windows Server 2008

R2 SP1.

Each guest was configured with the following on each hypervisors:

1) 2 vCPUs each pinned to their own logical core.

2) 1536 MB of Memory

3) 40GB of disk space persistent and allocated up front

For KVM two additional steps were performed:

4) A bridged network interface was added through the Virtual Machine Manager

(virt-manager) and used as the source device for each guest machine’s virtual

network interface.

5) Disk cache mode was set to ‘none’

Once started each machine had the following steps applied:

1) Administrator password was set

2) Windows activation key was set

3) IE ESC was disabled

4) PassMark Performance 8.0 was downloaded and installed.

5) PassMark Performance 8.0 was opened and license key was installed

6) Net TCP Testing Tool was downloaded and installed

a. Standard install using “Everyone” configuration

65

b. NTttcp_x64.exe was renamed to NTttcpr.exe and NTttcps.exe

c. InBound Firewall rule added to allow connections for NTttcpr.exe

d. OutBound Firewall rule added to allow connections for NTttcps.exe

7) Microsoft .Net 4.0 was downloaded and installed (required for ParallelExecution

v1.0)

8) ParallelExecution v1.0 was downloaded and extracted to

‘C:\Users\Administrator\Desktop\ParallelExecution\’

9) Folder named ‘results’ was added to ‘C:\’

10) Sharing privileges added to allow results to be mapped as a network drive

(Properties -> Sharing -> Advanced Sharing -> Share this Folder)

66

APPENDIX D

PHYSICAL SYSTEM SPECIFICATIONS

1) Hardware Specifications

a. Model: Dell OptiPlex 980

b. CPU Cores: 4CPUs x 2.795 GHz

c. Processor: Intel Core i7 860, Processor Sockets: 1, Processor Cores per

Socket: 4, Logical Processors: 8, Hyperthreading enabled

d. Memory: 4019.36 MB DDR3

e. Disk Storage: 460.75 GB, 7200 RPM, 16MB Cache, Format: VMFS 5.54

- 1MB Block Size

f. Network: Intel Corporation 82578DM Gigabit Network Connection

2) Software Versions

a. Hypervisors

i. VMware ESXi - 5.1.0, Release build-838463

ii. XenServer - 6.2.0-70446ac

iii. KVM - QEMU version 1.4.2 on Fedora 19 (3.9.5-

301.fc19.x86_64)

b. Testing Tools

i. CPU, RAM, Disk: PassMark Performance 8.0

ii. Network: NT Testing TCP Tool v3.0

67

APPENDIX E

PERFORMANCE METRICS

1) PassMark Performance Test 8.0 (Taken from ‘Help’ files for the application):

a. CPU Mark – Measures CPU performance.

i. Integer Math – In Millions of Operations per second – Tests how quickly

the CPU can perform mathematical integer operations. An integer is

considered a whole number with no fractional part. The test uses integer

buffers totaling about 240kb per core.

ii. Floating Point Math – In Millions of operations per second – Same

operations as integer math but using floating point numbers. Uses the

same size memory buffers as integer math per core.

iii. Prime Number Test – In Millions of primes per second – Tests how

quickly the CPU can search for prime numbers. Uses the Sieve of Atkin

formula with a limit of 32 million.

iv. Multimedia Instructions – In Millions of Matrices per second – Measures

the Streaming SIMD Extensions (SSE) capabilities of a CPU. SSE is a set

of CPU instructions that have been introduced into CPUs to enable blocks

of data to be processed at higher speeds. Test measures the number of

times a 4x4 matrix can be multiplied by a 4 dimensional vector per

second, with the vector represented by a 128-bit floating point number and

the matrix being represented by 4 128-bit floating point numbers.

68

v. Compression Test – In Kbytes processed per second – Tests speed in

which CPU can compress blocks of data.

vi. Encryption Test – In Mbytes transferred per second – Tests speed in which

the CPU can encrypt data using several encryption techniques, Including

TwoFish, AES, Salsa20, and SHA256.

vii. Physics Test – In Frames per second – Uses basic Physics engine to test

how quickly a CPU can calculate physics interactions of several hundred

object colliding.

viii. Sorting Test – In Thousands of String per second – uses qqSort algorithm

to test how quickly the CPU can sort strings.

ix. Single Core Test – In Millions of operations per second – Uses floating

point, string sorting, and data compression tests to test the performance of

a single core.

b. Memory Mark – Measures memory performance.

i. Database Operations – In thousands of operations per second - This makes

heavy use of C++ STL containers to test the performance of memory in

maintaining large structures of data like that in a database.

ii. Read Cached – In Mbytes transferred per second - This test measures the

time taken to read a small block of memory. The block is small enough to

be held entirely in cache (if one is present)

iii. Read Uncached – In Mbytes transferred per second - This test measures

the time taken to read a large block of memory when the block is too large

to be held in cache.

69

iv. Write – In Mbytes transferred per second - This test measures the time

taken to write information into memory.

v. Latency – In Nanoseconds - Time it takes for a single byte of memory to

be transferred to the CPU for processing. Measured in nanoseconds, lower

values are better.

vi. Threaded Test – In Mbytes transferred per second - Nearly identical

operations to the Read Uncached test, however being performed by two

separate processes simultaneously to test how well memory copes with

multiple concurrent accesses.

c. Disk Mark – Measures disk drive performance.

i. Sequential Read – In Mbytes transferred per second - A large test file is

created on the disk under test. The file is read sequentially from start to

end.

ii. Sequential Write – In Mbytes transferred per second - A large file is

written to the disk under test. The file is written sequentially from start to

end.

iii. Random Seek + RW – In Mbytes transferred per second - A large test file

is created on the disk under test. The file is read randomly; a seek is

performed to move the file pointer to a random position in the file, a 16KB

block is read or written then another seek is performed. The amount of

data actually transferred is highly dependent on the disk seek time.

d. 2D & 3D Graphics – PassMark Performance Test has several tests for 2D and 3D

graphics but these will not be used in the paper.

70

2) NT TCP Testing Tool – “NTttcp is a multithreaded, asynchronous application that

sends and receives data between two or more endpoints and reports the network

performance for the duration of the transfer. It is essentially a Winsock-based port of

the ttcp tool that measures networking performance in terms of bytes transferred per

second and CPU cycles per byte.” [Microsoft08]

71

APPENDIX F

LINQPAD SCRIPT

void Main()
{
 //NETWORK TESTS
 var fileIdentifiers = new List<string>(){
"results_remote_bridge_para", "results_remote_bridge_nomod",
"results_remote_bridge_e1000" };

 var networkTests = new List<string>();

 //Add mappings for senders and receivers
 networkTests.AddRange(fileIdentifiers.Select(f => "Receiver - " +
f));
 networkTests.AddRange(fileIdentifiers.Select(f => "Sender - " + f));

 var rootNetDirectory = "C:\\Users\\Sean
McAdams\\Dropbox\\Thesis\\Network Tests";

 var files = NetworkResultsParser.GetTxtFilesInDirectoryTree(new
DirectoryInfo(rootNetDirectory));

 var networkResults = new OneDimensionalDataSet<double?>();

 //For each file get throughput and add to results.
 foreach(var file in files){
 string columnForFile = null;
 foreach(var fileIdentifier in fileIdentifiers){
 if(file.Name.Contains(fileIdentifier)){
 columnForFile = file.Directory.Name + " - " + fileIdentifier;
 break;
 }
 }
 if(columnForFile == null){
 ("INVALID FILE - " + file.Name).Dump();
 } else {
 networkResults.AddItem(columnForFile,
NetworkResultsParser.GetThroughput(file.FullName));
 }
 }

 //Copy results from nomod into e1000 column since VMWare defaults to
e1000
 networkResults.GetItems("VMWare - Receiver -
results_remote_bridge_nomod").ForEach(r =>
networkResults.AddItem("VMWare - Receiver -
results_remote_bridge_e1000", r));

72

 networkResults.GetItems("VMWare - Sender -
results_remote_bridge_nomod").ForEach(r =>
networkResults.AddItem("VMWare - Sender - results_remote_bridge_e1000",
r));

 //DISK, MEMORY, AND CPU TESTS
 var rootPath = "C:\\Users\\Sean McAdams\\Dropbox\\Thesis\\Parallel
Perf Tests\\";
 var rootPath2 = "C:\\Users\\Sean McAdams\\Dropbox\\Thesis\\Perf
Tests\\";

 var folderDictionary = new Dictionary<string, string[]>(){
 {"VMWare", new string[]{"Results-VMWare-1", "Results-VMWare-2"}},
 {"XEN", new string[]{"Results-XEN-1", "Results-XEN-2"}},
 {"KVM", new string[]{"Results-KVM-1", "Results-KVM-2"}},
 };

 var fileDictionary = new Dictionary<string, string>(){
 {"{0}results-{1}CPU_INTEGERMATH.csv", "CPU - Integer Math"},
 {"{0}results-{1}CPU_FLOATINGPOINTMATH.csv", "CPU - Floating Point
Math"},
 {"{0}results-{1}CPU_PRIME.csv", "CPU - Prime Numbers"},
 {"{0}results-{1}CPU_SSE.csv", "CPU - Extended Instructions (SSE)"},
 {"{0}results-{1}CPU_COMPRESSION.csv", "CPU - Compression"},
 {"{0}results-{1}CPU_ENCRYPTION.csv", "CPU - Encryption"},
 {"{0}results-{1}CPU_PHYSICS.csv", "CPU - Physics"},
 {"{0}results-{1}CPU_SORTING.csv", "CPU - Sorting"},
 {"{0}results-{1}CPU_SINGLETHREAD.csv", "CPU - Single Threaded"},
 {"{0}results-{1}DI_WRITE.csv", "Disk - Sequential Write"},
 {"{0}results-{1}DI_READ.csv", "Disk - Sequential Read"},
 {"{0}results-{1}DI_RANDOM.csv", "Disk - Random Seek + RW"},
 {"{0}results-{1}ME_ALLOC_S.csv", "Memory - Database Operations"},
 {"{0}results-{1}ME_READ_CACHED.csv", "Memory - Read Cached"},
 {"{0}results-{1}ME_READ_UNCACHED.csv", "Memory - Read Uncached"},
 {"{0}results-{1}ME_WRITE.csv", "Memory - Write"},
 {"{0}results-{1}ME_LARGE.csv", "Memory - Available RAM"},
 {"{0}results-{1}ME_LATENCY.csv", "Memory - Latency"},
 {"{0}results-{1}ME_THREADED.csv", "Memory - Threaded"}
 };

 //File Name Format: results-TEST_NAME.csv (forgot to append 'multi-'
during testing)
 var parallelFileMappings = new List<FileMapping>();
 foreach(var key in folderDictionary.Keys){
 foreach(var fileKeyItem in fileDictionary.Keys){
 var fileKey = string.Format(fileKeyItem, "", "");
 //One folder for each machine
 parallelFileMappings.Add(new FileMapping(key, rootPath +
folderDictionary[key][0] + "\\" + fileKey, fileDictionary[fileKeyItem],
key + " - " + fileDictionary[fileKeyItem]));
 parallelFileMappings.Add(new FileMapping(key, rootPath +
folderDictionary[key][1] + "\\" + fileKey, fileDictionary[fileKeyItem],
key + " - " + fileDictionary[fileKeyItem]));
 }
 }

73

 //File Name Format: nomod-results-multi-TEST_NAME.csv
 var parallelNoModsFileMappings = new List<FileMapping>();
 foreach(var key in folderDictionary.Keys){
 foreach(var fileKeyItem in fileDictionary.Keys){
 var fileKey = string.Format(fileKeyItem, "nomod-", "multi-");
 //One folder for each machine
 parallelNoModsFileMappings.Add(new FileMapping(key, rootPath +
"NoMod-" + folderDictionary[key][0] + "\\" + fileKey,
fileDictionary[fileKeyItem], key + " - " +
fileDictionary[fileKeyItem]));
 parallelNoModsFileMappings.Add(new FileMapping(key, rootPath +
"NoMod-" + folderDictionary[key][1] + "\\" + fileKey,
fileDictionary[fileKeyItem], key + " - " +
fileDictionary[fileKeyItem]));
 }
 }

 //File Name Format: results-single-TEST_NAME.csv
 var singleFileMappings = new List<FileMapping>();
 foreach(var key in folderDictionary.Keys){
 foreach(var fileKeyItem in fileDictionary.Keys){
 var fileKey = string.Format(fileKeyItem, "", "single-");
 singleFileMappings.Add(new FileMapping(key, rootPath2 +
folderDictionary[key][0] + "\\" + fileKey, fileDictionary[fileKeyItem],
key + " - " + fileDictionary[fileKeyItem]));
 }
 }

 //File Name Format: nomods-results-single-TEST_NAME.csv
 var singleNoModsFileMappings = new List<FileMapping>();
 foreach(var key in folderDictionary.Keys){
 foreach(var fileKeyItem in fileDictionary.Keys){
 var fileKey = string.Format(fileKeyItem, "nomods-", "single-");
 singleNoModsFileMappings.Add(new FileMapping(key, rootPath2 +
"NoMods-" + folderDictionary[key][0] + "\\" + fileKey,
fileDictionary[fileKeyItem], key + " - " +
fileDictionary[fileKeyItem]));
 }
 }

 //method used to convert the string values of each cell of the csv
into the doubles that i want
 Func<string, double?> converter = (value) => {
 double result;
 return double.TryParse(value, out result) ? result : (double?)
null;
 };

 //Get csvs into datastructures for easy viewing and processing
 var parallelNoModsResults =
PerformanceResultsParser.ParseFiles("Parallel No Mods",
parallelNoModsFileMappings, converter);
 var parallelResults = PerformanceResultsParser.ParseFiles("Parallel",
parallelFileMappings, converter);
 var singleNoModsResults = PerformanceResultsParser.ParseFiles("Single
No Mods" , singleNoModsFileMappings, converter);

74

 var singleResults = PerformanceResultsParser.ParseFiles("Single" ,
singleFileMappings, converter);

 //View the resulting data
 (new List<Tuple<string, DataTable>> () {
 Tuple.Create("Parallel No Mods Results",
parallelNoModsResults.AsDataTable()),
 Tuple.Create("Parallel Results w/ Paravirt",
parallelResults.AsDataTable()),
 Tuple.Create("Single No Mods Results",
singleNoModsResults.AsDataTable()),
 Tuple.Create("Single Results w/ Paravirt",
singleResults.AsDataTable()),
 Tuple.Create("Network Results", networkResults.AsDataTable())
 }).Dump("Result Tables");

 DataCompare.DoCrossCompare(new List<OneDimensionalDataSet<double?>>()
{ parallelNoModsResults, parallelResults }).Dump("Parallel No Mods vs
Parallel w/ Paravirt", 10);

 DataCompare.DoCrossCompare(new List<OneDimensionalDataSet<double?>>()
{ singleNoModsResults, singleResults }).Dump("Single No Mods vs Single
w/ Paravirt", 10);

 DataCompare.DoCrossCompare(new List<OneDimensionalDataSet<double?>>()
{ singleNoModsResults, parallelNoModsResults }).Dump("Single No Mods vs
Parallel No Mods", 10);

 DataCompare.DoCrossCompare(new List<OneDimensionalDataSet<double?>>()
{ singleResults, parallelResults }).Dump("Single w/ Paravirt vs
Parallel w/ Paravirt", 10);

 DataCompare.DoInnerCompare(singleNoModsResults,
fileDictionary.Values).Dump("Single No Mods cross Hypervisors", 10);

 DataCompare.DoInnerCompare(singleResults,
fileDictionary.Values).Dump("Single w/ Paravirt cross Hypervisors",
10);

 DataCompare.DoInnerCompare(parallelNoModsResults,
fileDictionary.Values).Dump("Parallel No Mods cross Hypervisors", 10);

 DataCompare.DoInnerCompare(parallelResults,
fileDictionary.Values).Dump("Parallel w/ Paravirt cross Hypervisors",
10);

 //NETWORK RESULTS - Output stored differently from above so different
manipulation needs to be done.

 //split network results by type so that we can compare all 3
configurations by hypervisor
 var networkResultsSplit = fileIdentifiers.Select(i => (new
OneDimensionalDataSet<double?>() {
 SetName =
i.Substring(i.LastIndexOf("_") + 1),

75

 Data = networkResults.Data.Where(d =>
d.Key.Contains(i)).ToDictionary(k => k.Key.Substring(0,
k.Key.IndexOf("- " + i)), v => v.Value)
 })).ToList();

 DataCompare.DoCrossCompare(networkResultsSplit).Dump("Network No Mods
and Network w/ Paravirt", 10);

 DataCompare.DoInnerCompare(networkResults,
networkTests).Dump("Network No Mods and Network w/ Paravirt cross
Hypervisors", 10);

}

public class ComparisonResult
{
 public bool SetsAreDifferent { get; set; }
 public TwoDimensionalDataSet<double> SetComparison { get; set; }
 public TwoDimensionalDataSet<object> TTestResults { get; set; }
}
public static class DataCompare
{
 static DataCompare(){
 RDotNet.REngine.SetEnvironmentVariables();
 }

 //column names are in the format: "%%setname%% - %%Test%%"
 public static string GetName(string value, string test){
 return value.Substring(0, value.IndexOf(test)).Replace(" ",
"").Replace("-", "");
 }

 //Compares multiple data sets accross each other, matching columns
are found and compared
 public static List<Tuple<string, DataTable>>
DoCrossCompare(List<OneDimensionalDataSet<double?>> resultsSets){
 if(resultsSets.Select(x => x.SetName).Distinct().Count() <
resultsSets.Count){
 throw new ArgumentException("All result sets must have a unique
set name.");
 }

 var stdDev = new TwoDimensionalDataSet<double>();
 var comparisonResults = new OneDimensionalDataSet<DataTable>();
 var comparisonGrades = new TwoDimensionalDataSet<object>();
 var interestingResults = new TwoDimensionalDataSet<object>();
 var interestingResultsStdev = new TwoDimensionalDataSet<object>();

 var testList = new List<string>();
 foreach (var resultSet in resultsSets)
 {
 testList.AddRange(resultSet.Data.Keys);
 }

 foreach(var test in testList.Distinct()){
 List<List<int>> winners = new List<List<int>>();
 var allMeans = new Dictionary<string, double>();

76

 //compare each item with each other so if A, B and C then we test
A vs B, A vs C, and B vs C
 //If we have A, B, C, and D then we test A vs B, A vs C, A vs D,
B vs C, B vs D, C vs D
 for(int i = 0; i < resultsSets.Count; i++){
 for(int j = i + 1; j < resultsSets.Count; j++){
 var comparisonResult =
DataCompare.CompareDataSets(string.Format("{0} - {1} vs {2}", test,
resultsSets[i].SetName, resultsSets[j].SetName),
 resultsSets[i].GetItems(test).Where(x =>
x.HasValue).Select(x => x.Value).ToList(),
 resultsSets[i].SetName,
 resultsSets[j].GetItems(test).Where(x =>
x.HasValue).Select(x => x.Value).ToList(),
 resultsSets[j].SetName);

 stdDev.SetItem(test, resultsSets[i].SetName,
comparisonResult.SetComparison.GetItem(resultsSets[i].SetName,
"Standard Deviation"));
 stdDev.SetItem(test, resultsSets[j].SetName,
comparisonResult.SetComparison.GetItem(resultsSets[j].SetName,
"Standard Deviation"));
 comparisonResults.AddItem(test,
comparisonResult.SetComparison.AsDataTable());
 comparisonResults.AddItem(test,
comparisonResult.TTestResults.AsDataTable());

 allMeans[resultsSets[i].SetName] =
comparisonResult.SetComparison.GetItem(resultsSets[i].SetName, "Mean");
 allMeans[resultsSets[j].SetName] =
comparisonResult.SetComparison.GetItem(resultsSets[j].SetName, "Mean");

 //Set this round's winner(s)
 if(comparisonResult.SetsAreDifferent) {//Not a Tie
 winners.Add(new List<int>() {
allMeans[resultsSets[i].SetName] > allMeans[resultsSets[j].SetName] ? i
: j });
 } else { //Tie
 winners.Add(new List<int>() { i, j });
 }

 }
 }

 //In order to truly have a winner they must have won or tied
every round with the other items
 var winsOrTiesRequired = resultsSets.Count - 1;
 var trueWinners = winners.SelectMany(w => w).GroupBy(w =>
w).Where(g => g.Count() >= winsOrTiesRequired).Select(g =>
g.Key).ToList();

 var maxMean = new List<double>(allMeans.Values).Max();

 //Set is interesting if the grade is < 90% of the max and someone
lost

77

 var isInteresting = allMeans.Values.Any(v => v / maxMean < .9) &&
resultsSets.Count != trueWinners.Count;

 //Build grade based on largest mean, grade = ((mean / maxMean) *
100)%
 //If set is interesting, add it to the interesting results
 foreach(var resultSet in resultsSets){
 var setGrade = Math.Round((allMeans[resultSet.SetName] /
maxMean) * 100.0, 2) + "%";
 comparisonGrades.SetItem(resultSet.SetName, test, setGrade);
 if(isInteresting){
 var stdDevGrade = Math.Round((stdDev.GetItem(test,
resultSet.SetName) / maxMean) * 100.0, 2) + "%";
 //interestingResults.SetItem(resultSet.SetName, test,
(Math.Truncate(allMeans[resultSet.SetName] * 1000.0) / 1000.0) + " (" +
setGrade + ")");
 interestingResults.SetItem(resultSet.SetName, test,
setGrade);
 interestingResultsStdev.SetItem(resultSet.SetName, test,
stdDevGrade);
 }
 }

 //Set the winner row for this test based on the found winners
 comparisonGrades.SetItem("Winner", test, string.Join(" And ",
trueWinners.Select(w => resultsSets[w].SetName)));

 }

 var results = new List<Tuple<string, DataTable>>();
 results.Add(Tuple.Create("Comparison Grades",
comparisonGrades.AsDataTable()));
 results.Add(Tuple.Create("Comparison Results",
comparisonResults.AsDataTable()));
 if(interestingResults.Data != null){
 results.Add(Tuple.Create("Interesting Results",
interestingResults.AsDataTable()));
 results.Add(Tuple.Create("Interesting Results Std Dev",
interestingResultsStdev.AsDataTable()));
 }
 return results;
 }

 //Compares within a data set based on the test list passed, finds all
the columns that contain each test and compares them to each other
 public static List<Tuple<string, DataTable>>
DoInnerCompare(OneDimensionalDataSet<double?> resultsSet,
IEnumerable<string> testList){

 var stdDev = new TwoDimensionalDataSet<double>();
 var comparisonResults = new OneDimensionalDataSet<DataTable>();
 var comparisonGrades = new TwoDimensionalDataSet<object>();
 var interestingResults = new TwoDimensionalDataSet<object>();
 var interestingResultsStdev = new TwoDimensionalDataSet<object>();

 foreach(var test in testList.Distinct()){

78

 var columnsToCompare = new
List<string>(resultsSet.Data.Keys).Where(x =>
x.Contains(test)).ToList();
 if(columnsToCompare.Count <= 1){
 string.Format("Test {0} does not have enough items for
comparison. Items: {1}", test, string.Join(", ",
columnsToCompare)).Dump();
 continue;
 }
 List<List<int>> winners = new List<List<int>>();
 var allMeans = new Dictionary<string, double>();

 //compare each item with each other so if A, B and C then we test
A vs B, A vs C, and B vs C
 //If we have A, B, C, and D then we test A vs B, A vs C, A vs D,
B vs C, B vs D, C vs D
 for(int i = 0; i < columnsToCompare.Count; i++){
 for(int j = i + 1; j < columnsToCompare.Count; j++){
 string name1 = GetName(columnsToCompare[i], test);
 string name2 = GetName(columnsToCompare[j], test);
 var comparisonResult =
DataCompare.CompareDataSets(string.Format("{0} - {1} vs {2}", test,
name1, name2),

resultsSet.GetItems(columnsToCompare[i]).Where(x =>
x.HasValue).Select(x => x.Value).ToList(),
 name1,

resultsSet.GetItems(columnsToCompare[j]).Where(x =>
x.HasValue).Select(x => x.Value).ToList(),
 name2);

 stdDev.SetItem(test, name1,
comparisonResult.SetComparison.GetItem(name1, "Standard Deviation"));
 stdDev.SetItem(test, name2,
comparisonResult.SetComparison.GetItem(name2, "Standard Deviation"));
 comparisonResults.AddItem(test,
comparisonResult.SetComparison.AsDataTable());
 comparisonResults.AddItem(test,
comparisonResult.TTestResults.AsDataTable());

 allMeans[columnsToCompare[i]] =
comparisonResult.SetComparison.GetItem(name1, "Mean");
 allMeans[columnsToCompare[j]] =
comparisonResult.SetComparison.GetItem(name2, "Mean");

 //Set this round's winner(s)
 if(comparisonResult.SetsAreDifferent) {//Not a Tie
 winners.Add(new List<int>() { allMeans[columnsToCompare[i]]
> allMeans[columnsToCompare[j]] ? i : j });
 } else { //Tie
 winners.Add(new List<int>() { i, j });
 }
 }
 }

79

 //In order to truly have a winner they must have won or tied
every round with the other items
 var winsOrTiesRequired = columnsToCompare.Count - 1;
 var trueWinners = winners.SelectMany(w => w).GroupBy(w =>
w).Where(g => g.Count() >= winsOrTiesRequired).Select(g =>
g.Key).ToList();

 var maxMean = new List<double>(allMeans.Values).Max();

 //Set is interesting if the grade is < 90% of the max and someone
lost
 var isInteresting = allMeans.Values.Any(v => v / maxMean < .9) &&
allMeans.Count != trueWinners.Count;

 //Build grade based on largest mean, grade = ((mean / maxMean) *
100)%
 //If set is interesting, add it to the interesting results
 foreach(var column in columnsToCompare){
 var setGrade = Math.Round((allMeans[column] / maxMean) * 100.0,
2) + "%";
 comparisonGrades.SetItem(GetName(column, test), test,
setGrade);
 if(isInteresting){
 var stdDevGrade = Math.Round((stdDev.GetItem(test,
GetName(column, test)) / maxMean) * 100.0, 2) + "%";
 //interestingResults.SetItem(GetName(column, test), test,
(Math.Truncate(allMeans[column] * 1000.0) / 1000.0) + " (" + setGrade +
")");
 interestingResults.SetItem(GetName(column, test), test,
setGrade);
 interestingResultsStdev.SetItem(GetName(column, test), test,
stdDevGrade);
 }
 }

 //Set the winner row for this test based on the found winners
 comparisonGrades.SetItem("Winner", test, string.Join(" And ",
trueWinners.Select(w => GetName(columnsToCompare[w], test))));

 }

 var results = new List<Tuple<string, DataTable>>();
 results.Add(Tuple.Create("Comparison Grades",
comparisonGrades.AsDataTable()));
 results.Add(Tuple.Create("Comparison Results",
comparisonResults.AsDataTable()));
 if(interestingResults.Data != null){
 results.Add(Tuple.Create("Interesting Results",
interestingResults.AsDataTable()));
 results.Add(Tuple.Create("Interesting Results Std Dev",
interestingResultsStdev.AsDataTable()));
 }
 return results;
 }

80

 public static ComparisonResult CompareDataSets(string comparisonName,
List<double> set1, string set1Name, List<double> set2, string set2Name,
bool removeTails = true){
 var test = new TTestResult(){
 TestName = comparisonName,
 SetOne = new TTestSet() { SetData = set1 },
 SetTwo = new TTestSet() { SetData = set2 }
 };

 if(removeTails){
 test.SetOne.RemoveTails();
 test.SetTwo.RemoveTails();
 }

 var table = new TwoDimensionalDataSet<double>();

 table.SetItem(set1Name, "Mean", test.SetOne.Mean);
 table.SetItem(set1Name, "Standard Deviation", test.SetOne.StdDev);
 table.SetItem(set1Name, "Min", test.SetOne.Min);
 table.SetItem(set1Name, "Max", test.SetOne.Max);
 table.SetItem(set1Name, "Samples", test.SetOne.SampleSize);
 table.SetItem(set2Name, "Mean", test.SetTwo.Mean);
 table.SetItem(set2Name, "Standard Deviation", test.SetTwo.StdDev);
 table.SetItem(set2Name, "Min", test.SetTwo.Min);
 table.SetItem(set2Name, "Max", test.SetTwo.Max);
 table.SetItem(set2Name, "Samples", test.SetTwo.SampleSize);

 var totalsTable = new TwoDimensionalDataSet<object>();

 //This is where R is run
 var rResult = test.RNETResult;

 //Microsoft's p value
 var mP = test.p;

 //p < .05 = significant difference
 var areDifferent = rResult == null ? false : (double) rResult["p
value"] <.05;
 totalsTable.SetItem("P Value", "-", rResult == null ? (double?)
null: (double?) rResult["p value"]);
 totalsTable.SetItem("Significant Difference?", "-", areDifferent);

 //P values can be a little off, but if they are off by .001 or more
then the result could be wrong
 if(rResult != null && Math.Abs(((double) rResult["p value"]) - mP)
>= .001){
 throw new Exception("The p values between the two frameworks do
not match, this could mean that one or the other is wrong.");
 }
 return new ComparisonResult() { SetComparison = table, TTestResults
= totalsTable, SetsAreDifferent = areDifferent};
 }
}

public static class PerformanceResultsParser{
 public static OneDimensionalDataSet<string> ParseFiles(string
SetName, List<FileMapping> fileMappings){

81

 return ParseFiles(SetName, fileMappings, (value) => { return value;
});
 }

 public static OneDimensionalDataSet<T> ParseFiles<T>(string SetName,
List<FileMapping> fileMappings, Func<string, T> mapping){
 var results = new OneDimensionalDataSet<T>() { SetName = SetName };
 //For each file that we found and mapped read the CSV data with
CsvReader
 foreach(var fromToItem in fileMappings)
 {
 var path = fromToItem.FilePath;
 if (System.IO.File.Exists(path))
 {
 using (StreamReader sr = new StreamReader(path))
 {
 using (var csv = new CsvHelper.CsvReader(sr))
 {
 csv.Configuration.HasHeaderRecord = true;
 List<string> myStringColumn= new List<string>();
 //Data rows are seperated by 8 additional rows of metadata
about the test run so skip 8 lines after each row
 int take = 120, skip = 8, totalCount = 0, index = 0;
 while (csv.Read())
 {
 if(index == 0){
 string
stringField=csv.GetField<string>(fromToItem.OriginalColumnName);
 results.AddItem(fromToItem.ResultingColumName,
mapping(stringField));

 totalCount++;
 if(totalCount == take){
 break;
 }
 }

 index++;
 //Reset index to tell the next iteration to read in the
next row
 if(skip == 0 || index == skip){
 index = 0;
 }
 }
 }
 }
 } else {
 ("File not found: " + path).Dump();
 }
 }
 return results;
 }
}

public static class NetworkResultsParser{
 public static double GetThroughput(string filePath){

82

 Regex networkParserRegex = new
Regex(".*Throughput\\(Mbps\\)=(?<throughput>\\d+.*?\\d+).*");

 string text = System.IO.File.ReadAllText(filePath);

 Match match = networkParserRegex.Match(text);

 return double.Parse(match.Groups["throughput"].Value);
 }

 public static List<System.IO.FileInfo>
GetTxtFilesInDirectoryTree(System.IO.DirectoryInfo root, bool
includeThisDirectory = false)
 {
 List<System.IO.FileInfo> files = new
List<System.IO.FileInfo>();

 // First, process all the files directly under this folder
 if(includeThisDirectory){
 files.AddRange(root.GetFiles("*.txt"));
 }

 if (files != null)
 {
 // Now find all the subdirectories under this directory.
 System.IO.DirectoryInfo[] subDirs = root.GetDirectories();

 foreach (System.IO.DirectoryInfo dirInfo in subDirs)
 {
 // Resursive call for each subdirectory.
 files.AddRange(GetTxtFilesInDirectoryTree(dirInfo,
true));
 }
 }
 return files;
 }
}

//POCO
public class FileMapping {
 public string SystemClass { get; set; }
 public string FilePath { get; set; }
 public string OriginalColumnName { get; set; }
 public string ResultingColumName { get; set; }

 public FileMapping(string systemClass, string filePath, string
originalColumnName, string resultingColumName){
 this.SystemClass = systemClass;
 this.FilePath = filePath;
 this.OriginalColumnName = originalColumnName;
 this.ResultingColumName = resultingColumName;
 }
}

public class TTestResult{
 public string TestName { get; set; }

83

 public TTestSet SetOne { get; set; }
 public TTestSet SetTwo { get; set; }

 public int DegreesOfFreedom {
 get
 {
 if(SetOne == null || SetTwo == null){
 return -1;
 }

 var s1Variance = this.SetOne.Variance;
 var s1Count = this.SetOne.SampleSize;
 var s2Variance = this.SetTwo.Variance;
 var s2Count = this.SetTwo.SampleSize;

 // ((v1 / count1) + (v2 / count2)) ^ 2
 var top = Math.Pow((s1Variance / s1Count) + (s2Variance /
s2Count), 2.0);

 // (((v1 / count1) ^ 2) / (count1 - 1)) + (((v2 / count2) ^ 2) /
(count2 - 1))
 var bottom = (Math.Pow((s1Variance/s1Count), 2.0) / (s1Count -
1)) + (Math.Pow((s2Variance/s2Count), 2.0) / (s2Count - 1));

 return (int) Math.Round(top / bottom, 0,
MidpointRounding.AwayFromZero);
 }
 }

 public double t {
 get
 {
 if(SetOne == null || SetTwo == null){
 throw new InvalidOperationException("Both sets must be
populated");
 }

 return (this.SetOne.Mean - this.SetTwo.Mean) /
Math.Sqrt((this.SetOne.Variance / this.SetOne.SampleSize) +
(this.SetTwo.Variance / this.SetTwo.SampleSize));
 }
 }

 public double p {
 get
 {
 return StatisticalAnalysis.StudentsDistribution(this.t,
this.DegreesOfFreedom, false);
 }
 }

 public Dictionary<string, object> RNETResult {
 get
 {
 var engine = RDotNet.REngine.GetInstance();
 RDotNet.NumericVector group1 =
engine.CreateNumericVector(this.SetOne.SetData);

84

 engine.SetSymbol("group1", group1);
 RDotNet.NumericVector group2 =
engine.CreateNumericVector(this.SetTwo.SetData);
 engine.SetSymbol("group2", group2);

 // Test difference of mean and get the P-value.
 try {
 //used invisible() because latest R version printed test
details to the console
 var testResult =
RDotNet.SymbolicExpressionExtension.AsList(engine.Evaluate("invisible(t
.test(group1, group2, conf.level = 0.95))"));
 Dictionary<string, object> results = new Dictionary<string,
object>();
 results.Add("t value",
testResult["statistic"].AsNumeric().First());
 results.Add("p value",
RDotNet.SymbolicExpressionExtension.AsNumeric(testResult["p.value"].AsN
umeric()).First());
 results.Add("Degrees Of Freedom",
RDotNet.SymbolicExpressionExtension.AsNumeric(testResult["parameter"].A
sNumeric()).First());
 results.Add("Mean - Set One",
testResult["estimate"].AsNumeric().ElementAt(0));
 results.Add("Mean - Set Two",
testResult["estimate"].AsNumeric().ElementAt(1));
 results.Add("conf.int - 1",
testResult["conf.int"].AsNumeric().ElementAt(0)); //I Have no idea what
these are supposed to represent
 results.Add("conf.int - 2",
testResult["conf.int"].AsNumeric().ElementAt(1)); //I Have no idea what
these are supposed to represent
 results.Add("null.value",
testResult["null.value"].AsNumeric().ElementAt(0));

results.Add("alternative",testResult["alternative"].AsCharacter().Eleme
ntAt(0));
 results.Add("method",
testResult["method"].AsCharacter().ElementAt(0));
 return results;
 } catch(Exception e){
 //Don't care about the constant data sets exception
 if(e.Message.Contains("data are essentially constant")){
 return null;
 } else {
 e.Dump();
 this.TestName.Dump();
 throw;
 }
 }

 }
 }

}

public class TTestSet{

85

 public List<double> SetData { get; set; }
 public int SampleSize {
 get
 {
 return this.SetData == null ? -1 : this.SetData.Count;
 }
 }

 public double Min {
 get
 {
 return this.SetData == null ? -1 : this.SetData.Min();
 }
 }

 public double Max {
 get
 {
 return this.SetData == null ? -1 : this.SetData.Max();
 }
 }

 public double Sum {
 get
 {
 return this.SetData == null ? -1 : this.SetData.Sum();
 }
 }

 public double Mean {
 get
 {
 return this.SetData == null ? -1 : this.Sum / this.SampleSize;
 }
 }

 public double Variance {
 get
 {
 if(this.SetData == null){
 return -1;
 }

 double mean = this.Mean;

 double result = this.SetData.Sum(num => Math.Pow((num - mean),
2));

 return result / (this.SampleSize - 1); //Of a population so
sample - 1
 }
 }

 public double StdDev {
 get
 {
 return Math.Sqrt(this.Variance);

86

 }
 }

 public double RemovedAbove { get; set; }
 public double RemovedBelow { get; set; }

 public void RemoveTails(double removalLevel = 5) {
 var sorted = this.SetData.OrderBy(s => s).ToList();
 var middle = sorted.Count / 2.0;

 //first quartile median = middle * .5, third quartile median =
middle * 1.5 so a quartile's median is really middle * (quartile# / 2)
 Func<int, double> GetQuartileMedian = (quartile) =>
 {
 //if median is between two numbers (a + b) / 2, otherwise
(a + a) / 2
 return ((sorted.ElementAt((int) Math.Floor(middle *
(quartile / 2))) + sorted.ElementAt((int) Math.Ceiling(middle *
(quartile / 2)))) / 2);
 };

 var firstQuartileMedian = GetQuartileMedian(1);
 var thirdQuartileMedian = GetQuartileMedian(3);

 //iqr is the Interquartile Range, increasing the removal level
increases the range of accepted numbers for the set
 var iqr = (thirdQuartileMedian - firstQuartileMedian) *
removalLevel;
 var top = thirdQuartileMedian + iqr;
 var bottom = firstQuartileMedian - iqr;

 List<double> itemsOutsideIQR = this.SetData.Where(value => value >
top || value < bottom).ToList();

 foreach(var item in itemsOutsideIQR){
 this.SetData.Remove(item);
 }

 this.RemovedAbove = top;
 this.RemovedBelow = bottom;
 }
}

public interface IDimensionalDataSet {
 string SetName { get; set; }
 DataTable AsDataTable();
}

public class TwoDimensionalDataSet<T> : IDimensionalDataSet{
 public string SetName { get; set; }
 public Dictionary<string, Dictionary<string, T>> Data { get; set; }

 public void SetItem(string row, string column, T value){
 if(Data == null){
 Data = new Dictionary<string, Dictionary<string, T>>();
 }
 if(!Data.ContainsKey(row)){

87

 Data[row] = new Dictionary<string, T>();
 }
 Data[row][column] = value;
 }

 public bool HasItem(string row, string column){
 return Data != null && Data.ContainsKey(row) &&
Data[row].ContainsKey(column);
 }

 public T GetItem(string row, string column){
 if(Data == null){
 throw new InvalidOperationException("No data has been added to
the set yet.");
 }
 if(!Data.ContainsKey(row)){
 throw new IndexOutOfRangeException(string.Format("No item exists
at index {0} - {1}", row, column));
 }
 return Data[row][column];
 }

 public DataTable AsDataTable(){
 if(Data == null){
 throw new InvalidOperationException("No data has been added to
the set yet.");
 }
 DataTable table = new DataTable(SetName ?? "");

 table.Columns.Add(new DataColumn("*", typeof(string)));
 foreach(var column in new List<Dictionary<string,
T>>(Data.Values).SelectMany(x => x.Keys).Distinct()){
 table.Columns.Add(new DataColumn(column, typeof(object))); //
Object because i want to be able to use nullable primatives
 }

 foreach(var row in Data.Keys){
 var dataRow = table.NewRow();
 dataRow["*"] = row;
 foreach(var key in Data[row].Keys){
 dataRow[key] = Data[row][key];
 }
 table.Rows.Add(dataRow);
 }
 return table;
 }
}

public class OneDimensionalDataSet<T> : IDimensionalDataSet {
 public string SetName { get; set; }
 public Dictionary<string, List<T>> Data { get; set; }

 public void AddItem(string column, T value){
 if(Data == null){
 Data = new Dictionary<string, List<T>>();
 }
 if(!Data.ContainsKey(column)){

88

 Data[column] = new List<T>();
 }
 Data[column].Add(value);
 }

 public bool HasItem(string column){
 if(Data == null){
 return false;
 }
 return Data.ContainsKey(column);
 }

 public List<T> GetItems(string column){
 if(Data == null){
 throw new InvalidOperationException("No data has been added to
the set yet.");
 }
 if(!Data.ContainsKey(column)){
 throw new IndexOutOfRangeException(string.Format("No item exists
at index {0}", column));
 }
 return Data[column];
 }

 public DataTable AsDataTable(){
 if(Data == null){
 throw new InvalidOperationException("No data has been added to
the set yet.");
 }
 DataTable table = new DataTable(SetName ?? "");

 foreach(var column in Data.Keys){
 table.Columns.Add(new DataColumn(column, typeof(object))); //
Object because i want to be able to use nullable primatives
 }

 List<DataRow> dataRows = new List<DataRow>();
 foreach(var column in Data.Keys){
 var dataRow = table.NewRow();
 var items = Data[column];
 for (int i = 0; i < items.Count; i++)
 {
 if(dataRows.Count <= i){
 dataRows.Add(table.NewRow());
 }
 dataRows.ElementAt(i)[column] = items.ElementAt(i);
 }
 }
 foreach (var dataRow in dataRows)
 {
 table.Rows.Add(dataRow);
 }
 return table;
 }
}

89

//Methods are decompiled from .NET framework
System.Web.UI.DataVisualization.Charting.StatisticFormula.TDistribution
//i do not take credit for these methods, I pulled them out because i
wanted direct access to the method without going through the charting
api
public class StatisticalAnalysis
{
 private static double GammLn(double n)
 {
 double[] numArray = new double[6]
 {
 76.1800917294715,
 -86.5053203294168,
 24.0140982408309,
 -1.23173957245015,
 0.00120865097386618,
 -5.395239384953E-06
 };
 if (n < 0.0)
 throw new ArgumentOutOfRangeException("n");
 double num1;
 double num2 = num1 = n;
 double d = num1 + 5.5;
 double num3 = d - (num1 + 0.5) * Math.Log(d);
 double num4 = 1.00000000019001;
 for (int index = 0; index <= 5; ++index)
 num4 += numArray[index] / ++num2;
 return -num3 + Math.Log(2.506628274631 * num4 / num1);
 }

 private static double BetaCF(double a, double b, double x)
 {
 int num1 = 100;
 double num2 = 3E-07;
 double num3 = 1E-30;
 double num4 = a + b;
 double num5 = a + 1.0;
 double num6 = a - 1.0;
 double num7 = 1.0;
 double num8 = 1.0 - num4 * x / num5;
 if (Math.Abs(num8) < num3)
 num8 = num3;
 double num9 = 1.0 / num8;
 double num10 = num9;
 int num11;
 for (num11 = 1; num11 <= num1; ++num11)
 {
 int num12 = 2 * num11;
 double num13 = (double)num11 * (b - (double)num11) * x /
((num6 + (double)num12) * (a + (double)num12));
 double num14 = 1.0 + num13 * num9;
 if (Math.Abs(num14) < num3)
 num14 = num3;
 double num15 = 1.0 + num13 / num7;
 if (Math.Abs(num15) < num3)
 num15 = num3;
 double num16 = 1.0 / num14;

90

 double num17 = num10 * (num16 * num15);
 double num18 = -(a + (double)num11) * (num4 +
(double)num11) * x / ((a + (double)num12) * (num5 + (double)num12));
 double num19 = 1.0 + num18 * num16;
 if (Math.Abs(num19) < num3)
 num19 = num3;
 num7 = 1.0 + num18 / num15;
 if (Math.Abs(num7) < num3)
 num7 = num3;
 num9 = 1.0 / num19;
 double num20 = num9 * num7;
 num10 = num17 * num20;
 if (Math.Abs(num20 - 1.0) < num2)
 break;
 }
 if (num11 > num1)
 throw new InvalidOperationException("Invalid Result");
 else
 return num10;
 }

 private static double BetaIncomplete(double a, double b, double x)
 {
 if (x < 0.0 || x > 1.0)
 throw new ArgumentOutOfRangeException("x");
 double num = x == 0.0 || x == 1.0 ? 0.0 : Math.Exp(GammLn(a +
b) - GammLn(a) - GammLn(b) + a * Math.Log(x) + b * Math.Log(1.0 - x));
 if (x < (a + 1.0) / (a + b + 2.0))
 return num * BetaCF(a, b, x) / a;
 else
 return 1.0 - num * BetaCF(b, a, 1.0 - x) / b;
 }

 public static double StudentsDistribution(double tValue, int
degreesOfFreedom, bool oneTailed)
 {
 tValue = Math.Abs(tValue);
 if (degreesOfFreedom > 300)
 degreesOfFreedom = 300;
 if (degreesOfFreedom < 1)
 throw new ArgumentOutOfRangeException("degreesOfFreedom");
 double num = 1.0 - BetaIncomplete((double)degreesOfFreedom /
2.0, 0.5, (double)degreesOfFreedom / ((double)degreesOfFreedom + tValue
* tValue));
 if (oneTailed)
 return (1.0 - num) / 2.0;
 else
 return 1.0 - num;
 }

}

91

APPENDIX G

BATCH SCRIPTS

1) Paravirtual Network Testing Script

@echo off
setlocal EnableDelayedExpansion

set user=Administrator
set password=***OMITTED***

set host1=192.168.1.123
set host2=192.168.1.124
set host3=192.168.1.125
set host4=192.168.1.126
set host5=192.168.1.127
set host6=192.168.1.128

set local=192.168.1.129
set fileSender="C:\Program Files (x86)\Microsoft Corporation\NT
Testing TCP Tool\NTttcps.exe"
set fileReceiver="C:\Program Files (x86)\Microsoft Corporation\NT
Testing TCP Tool\NTttcpr.exe"
set filePrefix=C:\Results\network_results_remote_bridge_para
REM 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25 26 26 28 29 30
set list=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 26 28 29 30

NET USE U: "\\%host1%\Results" %password% /USER:Self\%user%
NET USE V: "\\%host2%\Results" %password% /USER:Self\%user%
NET USE W: "\\%host3%\Results" %password% /USER:Self\%user%
NET USE X: "\\%host4%\Results" %password% /USER:Self\%user%
NET USE Y: "\\%host5%\Results" %password% /USER:Self\%user%
NET USE Z: "\\%host6%\Results" %password% /USER:Self\%user%

xcopy U:\network_results* "C:\Users\Jarga\Dropbox\Thesis\Network
Tests\VMWare - Sender" /i /d /q /y /c
xcopy V:\network_results* "C:\Users\Jarga\Dropbox\Thesis\Network
Tests\VMWare - Receiver" /i /d /q /y /c
xcopy W:\network_results* "C:\Users\Jarga\Dropbox\Thesis\Network
Tests\Xen - Sender" /i /d /q /y /c
xcopy X:\network_results* "C:\Users\Jarga\Dropbox\Thesis\Network
Tests\Xen - Receiver" /i /d /q /y /c
xcopy Y:\network_results* "C:\Users\Jarga\Dropbox\Thesis\Network
Tests\KVM - Sender" /i /d /q /y /c
xcopy Z:\network_results* "C:\Users\Jarga\Dropbox\Thesis\Network
Tests\KVM - Receiver" /i /d /q /y /c

92

NET USE /DELETE U:
NET USE /DELETE V:
NET USE /DELETE W:
NET USE /DELETE X:
NET USE /DELETE Y:
NET USE /DELETE Z:
pause

REM VMWare
(for %%a in (%list%) do (
 taskkill /s %host1% /u Self\%user% /p %password% /IM NTttcps.exe
/f
 taskkill /s %host2% /u Self\%user% /p %password% /IM NTttcpr.exe
/f

 echo ""%fileReceiver% -m 1,0,%host1% 1,1,%host1% -a 8 -fr -f
"%filePrefix%_%%a.txt"""
 echo ""%fileSender% -m 1,0,%host2% 1,1,%host2% -a 6 -f
"%filePrefix%_%%a.txt"""

 REM pause

 psexec.exe \\%host2% -i -d -u Self\%user% -p %password% -
accepteula %fileReceiver% -m 1,0,%host1% 1,1,%host1% -a 8 -fr -f
"%filePrefix%_%%a.txt"
 psexec.exe \\%host1% -i -d -u Self\%user% -p %password% -
accepteula %fileSender% -m 1,0,%host2% 1,1,%host2% -a 6 -f
"%filePrefix%_%%a.txt"

 REM Wait 30 seconds
 PING 1.1.1.1 -n 1 -w 30000 >NUL
 REM pause
))

REM Wait 2 minutes
PING 1.1.1.1 -n 1 -w 120000 >NUL

REM XEN
(for %%a in (%list%) do (
 taskkill /s %host3% /u Self\%user% /p %password% /IM NTttcps.exe
/f
 taskkill /s %host4% /u Self\%user% /p %password% /IM NTttcpr.exe
/f

 psexec.exe \\%host4% -i -d -u Self\%user% -p %password% -
accepteula %fileReceiver% -m 1,0,%host3% 1,1,%host3% -a 8 -fr -f
"%filePrefix%_%%a.txt"
 psexec.exe \\%host3% -i -d -u Self\%user% -p %password% -
accepteula %fileSender% -m 1,0,%host4% 1,1,%host4% -a 6 -f
"%filePrefix%_%%a.txt"

 REM Wait 30 seconds
 PING 1.1.1.1 -n 1 -w 30000 >NUL
 REM pause
))

93

REM Wait 2 minutes
PING 1.1.1.1 -n 1 -w 120000 >NUL

REM KVM
(for %%a in (%list%) do (
 taskkill /s %host5% /u Self\%user% /p %password% /IM NTttcps.exe
/f
 taskkill /s %host6% /u Self\%user% /p %password% /IM NTttcpr.exe
/f

 psexec.exe \\%host6% -i -d -u Self\%user% -p %password% -
accepteula %fileReceiver% -m 1,0,%host5% 1,1,%host5% -a 8 -fr -f
"%filePrefix%_%%a.txt"
 psexec.exe \\%host5% -i -d -u Self\%user% -p %password% -
accepteula %fileSender% -m 1,0,%host6% 1,1,%host6% -a 6 -f
"%filePrefix%_%%a.txt"

 REM Wait 30 seconds
 PING 1.1.1.1 -n 1 -w 30000 >NUL
 REM pause
))

pause

2) E1000 and No modifications Testing Script

@echo off
setlocal EnableDelayedExpansion

set user=Administrator
set password=***OMITTED***

set host1=192.168.1.123
set host2=192.168.1.124
set host3=192.168.1.125
set host4=192.168.1.126
set host5=192.168.1.127
set host6=192.168.1.128

set local=192.168.1.129
set fileSender="C:\Program Files (x86)\Microsoft Corporation\NT
Testing TCP Tool\NTttcps.exe"
set fileReceiver="C:\Program Files (x86)\Microsoft Corporation\NT
Testing TCP Tool\NTttcpr.exe"
set filePrefix=C:\Results\network_results_remote_bridge_e1000
REM 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25 26 26 28 29 30
set list=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 26 28 29 30

NET USE U: "\\%host1%\Results" %password% /USER:Self\%user%
NET USE V: "\\%host2%\Results" %password% /USER:Self\%user%
NET USE W: "\\%host3%\Results" %password% /USER:Self\%user%
NET USE X: "\\%host4%\Results" %password% /USER:Self\%user%

94

NET USE Y: "\\%host5%\Results" %password% /USER:Self\%user%
NET USE Z: "\\%host6%\Results" %password% /USER:Self\%user%

xcopy U:\network_results_remote_bridge*
"C:\Users\Jarga\Dropbox\Thesis\Network Tests\VMWare - Sender" /i /d
/q /y /c
xcopy V:\network_results_remote_bridge*
"C:\Users\Jarga\Dropbox\Thesis\Network Tests\VMWare - Receiver" /i
/d /q /y /c
xcopy W:\network_results_remote_bridge*
"C:\Users\Jarga\Dropbox\Thesis\Network Tests\Xen - Sender" /i /d /q
/y /c
xcopy X:\network_results_remote_bridge*
"C:\Users\Jarga\Dropbox\Thesis\Network Tests\Xen - Receiver" /i /d
/q /y /c
xcopy Y:\network_results_remote_bridge*
"C:\Users\Jarga\Dropbox\Thesis\Network Tests\KVM - Sender" /i /d /q
/y /c
xcopy Z:\network_results_remote_bridge*
"C:\Users\Jarga\Dropbox\Thesis\Network Tests\KVM - Receiver" /i /d
/q /y /c

NET USE /DELETE U:
NET USE /DELETE V:
NET USE /DELETE W:
NET USE /DELETE X:
NET USE /DELETE Y:
NET USE /DELETE Z:
pause

:VMWare
(for %%a in (%list%) do (
 taskkill /s %host1% /u Self\%user% /p %password% /IM NTttcps.exe
/f
 taskkill /s %host2% /u Self\%user% /p %password% /IM NTttcpr.exe
/f

 echo ""%fileReceiver% -m 1,0,%host1% 1,1,%host1% -a 8 -fr -f
"%filePrefix%_%%a.txt"""
 echo ""%fileSender% -m 1,0,%host2% 1,1,%host2% -a 6 -f
"%filePrefix%_%%a.txt"""

 REM pause

 psexec.exe \\%host2% -i -d -u Self\%user% -p %password% -
accepteula %fileReceiver% -m 1,0,%host1% 1,1,%host1% -a 8 -fr -f
"%filePrefix%_%%a.txt"
 psexec.exe \\%host1% -i -d -u Self\%user% -p %password% -
accepteula %fileSender% -m 1,0,%host2% 1,1,%host2% -a 6 -f
"%filePrefix%_%%a.txt"

 REM Wait 60 seconds
 PING 1.1.1.1 -n 1 -w 60000 >NUL
 REM pause
))

REM Wait 2 minutes

95

PING 1.1.1.1 -n 1 -w 120000 >NUL

:XEN
(for %%a in (%list%) do (
 taskkill /s %host3% /u Self\%user% /p %password% /IM NTttcps.exe
/f
 taskkill /s %host4% /u Self\%user% /p %password% /IM NTttcpr.exe
/f

 psexec.exe \\%host4% -i -d -u Self\%user% -p %password% -
accepteula %fileReceiver% -m 1,0,%host3% 1,1,%host3% -a 8 -fr -f
"%filePrefix%_%%a.txt"
 psexec.exe \\%host3% -i -d -u Self\%user% -p %password% -
accepteula %fileSender% -m 1,0,%host4% 1,1,%host4% -a 6 -f
"%filePrefix%_%%a.txt"

 REM Wait 30 seconds
 PING 1.1.1.1 -n 1 -w 120000 >NUL
 REM pause
))

REM Wait 2 minutes
PING 1.1.1.1 -n 1 -w 120000 >NUL

:KVM
REM KVM
(for %%a in (%list%) do (
 taskkill /s %host5% /u Self\%user% /p %password% /IM NTttcps.exe
/f
 taskkill /s %host6% /u Self\%user% /p %password% /IM NTttcpr.exe
/f

 psexec.exe \\%host6% -i -d -u Self\%user% -p %password% -
accepteula %fileReceiver% -m 1,0,%host5% 1,1,%host5% -a 8 -fr -f
"%filePrefix%_%%a.txt"
 psexec.exe \\%host5% -i -d -u Self\%user% -p %password% -
accepteula %fileSender% -m 1,0,%host6% 1,1,%host6% -a 6 -f
"%filePrefix%_%%a.txt"

 REM Wait 30 seconds
 PING 1.1.1.1 -n 1 -w 360000 >NUL
 REM pause
))

:END
pause

3) Paravirtual Parallel Testing Script

@echo off
setlocal EnableDelayedExpansion

set user=Administrator
set password=***OMITTED***

96

set host1=192.168.1.123
set host2=192.168.1.124
set host3=192.168.1.125
set host4=192.168.1.126
set host5=192.168.1.127
set host6=192.168.1.128

set remoteScript="C:\Program
Files\PerformanceTest\PerfTests.ptscript"

set local=192.168.1.129
set
file="C:\Users\Administrator\Desktop\ParallelExecution\ParallelExecu
tion.exe"

set localCmd="ParallelExecution.exe" -f "C:\Program
Files\PerformanceTest\PerformanceTest64.exe" -t 300000 -a "/s
"%remoteScript%" /NO3D" -r
"%host1%,%host2%,%host3%,%host4%,%host5%,%host6%"

set list=CPU_INTEGERMATH CPU_FLOATINGPOINTMATH CPU_PRIME CPU_SSE
CPU_COMPRESSION CPU_ENCRYPTION CPU_PHYSICS CPU_SORTING
CPU_SINGLETHREAD DI_WRITE DI_READ DI_RANDOM ME_ALLOC_S
ME_READ_CACHED ME_READ_UNCACHED ME_WRITE ME_LARGE ME_LATENCY
ME_THREADED

NET USE U: "\\%host1%\Results" %password% /USER:Self\%user%
NET USE V: "\\%host2%\Results" %password% /USER:Self\%user%
NET USE W: "\\%host3%\Results" %password% /USER:Self\%user%
NET USE X: "\\%host4%\Results" %password% /USER:Self\%user%
NET USE Y: "\\%host5%\Results" %password% /USER:Self\%user%
NET USE Z: "\\%host6%\Results" %password% /USER:Self\%user%

xcopy U:*results-multi* "C:\Users\Jarga\Dropbox\Thesis\Parallel
Perf Tests\Results-VMWare-1" /i /d /q /y /c
xcopy V:*results-multi* "C:\Users\Jarga\Dropbox\Thesis\Parallel
Perf Tests\Results-VMWare-2" /i /d /q /y /c
xcopy W:*results-multi* "C:\Users\Jarga\Dropbox\Thesis\Parallel
Perf Tests\Results-XEN-1" /i /d /q /y /c
xcopy X:*results-multi* "C:\Users\Jarga\Dropbox\Thesis\Parallel
Perf Tests\Results-XEN-2" /i /d /q /y /c
xcopy Y:*results-multi* "C:\Users\Jarga\Dropbox\Thesis\Parallel
Perf Tests\Results-KVM-1" /i /d /q /y /c
xcopy Z:*results-multi* "C:\Users\Jarga\Dropbox\Thesis\Parallel
Perf Tests\Results-KVM-2" /i /d /q /y /c

NET USE /DELETE U:
NET USE /DELETE V:
NET USE /DELETE W:
NET USE /DELETE X:
NET USE /DELETE Y:
NET USE /DELETE Z:
pause

set setScript=""
(for %%a in (%list%) do (

97

 echo "Starting: " %%a
 set setScript="(echo LOOP 30 & echo { & echo CLEARRESULTS & echo
RUN %%a & echo } REPORTSUMMARYCSV "C:\Results\results-multi-%%a.csv"
) ^> %remoteScript%"
 echo "Set script: " !setScript!

 REM Kill perf test windows and prev running jobs
 taskkill /s %host1% /u Self\%user% /p %password% /IM
PerformanceTest64.exe /f
 taskkill /s %host1% /u Self\%user% /p %password% /IM
ParallelExecution.exe /f
 taskkill /s %host2% /u Self\%user% /p %password% /IM
PerformanceTest64.exe /f
 taskkill /s %host2% /u Self\%user% /p %password% /IM
ParallelExecution.exe /f
 taskkill /s %host3% /u Self\%user% /p %password% /IM
PerformanceTest64.exe /f
 taskkill /s %host3% /u Self\%user% /p %password% /IM
ParallelExecution.exe /f
 taskkill /s %host4% /u Self\%user% /p %password% /IM
PerformanceTest64.exe /f
 taskkill /s %host4% /u Self\%user% /p %password% /IM
ParallelExecution.exe /f
 taskkill /s %host5% /u Self\%user% /p %password% /IM
PerformanceTest64.exe /f
 taskkill /s %host5% /u Self\%user% /p %password% /IM
ParallelExecution.exe /f
 taskkill /s %host6% /u Self\%user% /p %password% /IM
PerformanceTest64.exe /f
 taskkill /s %host6% /u Self\%user% /p %password% /IM
ParallelExecution.exe /f

 REM Set script contents
 psexec.exe \\%host1% -i -d -u Self\%user% -p %password% -
accepteula cmd.exe /c !setScript!
 psexec.exe \\%host2% -i -d -u Self\%user% -p %password% -
accepteula cmd.exe /c !setScript!
 psexec.exe \\%host3% -i -d -u Self\%user% -p %password% -
accepteula cmd.exe /c !setScript!
 psexec.exe \\%host4% -i -d -u Self\%user% -p %password% -
accepteula cmd.exe /c !setScript!
 psexec.exe \\%host5% -i -d -u Self\%user% -p %password% -
accepteula cmd.exe /c !setScript!
 psexec.exe \\%host6% -i -d -u Self\%user% -p %password% -
accepteula cmd.exe /c !setScript!

 REM Start local server
 start cmd.exe /k "%localCmd%"

 REM echo "%file% -s "!local!""

 psexec.exe \\%host1% -i -d -u Self\%user% -p %password% -
accepteula %file% -s "%local%"
 psexec.exe \\%host2% -i -d -u Self\%user% -p %password% -
accepteula %file% -s "%local%"

98

 psexec.exe \\%host3% -i -d -u Self\%user% -p %password% -
accepteula %file% -s "%local%"
 psexec.exe \\%host4% -i -d -u Self\%user% -p %password% -
accepteula %file% -s "%local%"
 psexec.exe \\%host5% -i -d -u Self\%user% -p %password% -
accepteula %file% -s "%local%"
 psexec.exe \\%host6% -i -d -u Self\%user% -p %password% -
accepteula %file% -s "%local%"

 REM Wait 40 minutes
 PING 1.1.1.1 -n 1 -w 2400000 >NUL
 REM pause

 REM Kill local server
 taskkill /IM ParallelExecution.exe /f
))

pause

4) No Modifications Parallel Testing Script

@echo off
setlocal EnableDelayedExpansion

set user=Administrator
set password=***OMITTED***

set host1=192.168.1.123
set host2=192.168.1.124
set host3=192.168.1.125
set host4=192.168.1.126
set host5=192.168.1.127
set host6=192.168.1.128

set remoteScript="C:\Program
Files\PerformanceTest\PerfTests.ptscript"

set local=192.168.1.129
set
file="C:\Users\Administrator\Desktop\ParallelExecution\ParallelExecu
tion.exe"

set localCmd="ParallelExecution.exe" -f "C:\Program
Files\PerformanceTest\PerformanceTest64.exe" -t 300000 -a "/s
"%remoteScript%" /NO3D" -r
"%host1%,%host2%,%host3%,%host4%,%host5%,%host6%"

set list=CPU_INTEGERMATH CPU_FLOATINGPOINTMATH CPU_PRIME CPU_SSE
CPU_COMPRESSION CPU_ENCRYPTION CPU_PHYSICS CPU_SORTING
CPU_SINGLETHREAD DI_WRITE DI_READ DI_RANDOM ME_ALLOC_S
ME_READ_CACHED ME_READ_UNCACHED ME_WRITE ME_LARGE ME_LATENCY
ME_THREADED

99

NET USE U: "\\%host1%\Results" %password% /USER:Self\%user%
NET USE V: "\\%host2%\Results" %password% /USER:Self\%user%
NET USE W: "\\%host3%\Results" %password% /USER:Self\%user%
NET USE X: "\\%host4%\Results" %password% /USER:Self\%user%
NET USE Y: "\\%host5%\Results" %password% /USER:Self\%user%
NET USE Z: "\\%host6%\Results" %password% /USER:Self\%user%

xcopy U:\nomod-results-multi*
"C:\Users\Jarga\Dropbox\Thesis\Parallel Perf Tests\NoMod-Results-
VMWare-1" /i /d /q /y /c
xcopy V:\nomod-results-multi*
"C:\Users\Jarga\Dropbox\Thesis\Parallel Perf Tests\NoMod-Results-
VMWare-2" /i /d /q /y /c
xcopy W:\nomod-results-multi*
"C:\Users\Jarga\Dropbox\Thesis\Parallel Perf Tests\NoMod-Results-
XEN-1" /i /d /q /y /c
xcopy X:\nomod-results-multi*
"C:\Users\Jarga\Dropbox\Thesis\Parallel Perf Tests\NoMod-Results-
XEN-2" /i /d /q /y /c
xcopy Y:\nomod-results-multi*
"C:\Users\Jarga\Dropbox\Thesis\Parallel Perf Tests\NativeIOMode-
Results-KVM-1" /i /d /q /y /c
xcopy Z:\nomod-results-multi*
"C:\Users\Jarga\Dropbox\Thesis\Parallel Perf Tests\NativeIOMode-
Results-KVM-2" /i /d /q /y /c

NET USE /DELETE U:
NET USE /DELETE V:
NET USE /DELETE W:
NET USE /DELETE X:
NET USE /DELETE Y:
NET USE /DELETE Z:
pause

set setScript=""
(for %%a in (%list%) do (

 echo "Starting: " %%a
 set setScript="(echo LOOP 30 & echo { & echo CLEARRESULTS & echo
RUN %%a & echo } REPORTSUMMARYCSV "C:\Results\nomod-results-multi-
%%a.csv") ^> %remoteScript%"
 echo "Set script: " !setScript!

 REM Kill perf test windows and prev running jobs
 taskkill /s %host1% /u Self\%user% /p %password% /IM
PerformanceTest64.exe /f
 taskkill /s %host1% /u Self\%user% /p %password% /IM
ParallelExecution.exe /f
 taskkill /s %host2% /u Self\%user% /p %password% /IM
PerformanceTest64.exe /f
 taskkill /s %host2% /u Self\%user% /p %password% /IM
ParallelExecution.exe /f
 taskkill /s %host3% /u Self\%user% /p %password% /IM
PerformanceTest64.exe /f
 taskkill /s %host3% /u Self\%user% /p %password% /IM
ParallelExecution.exe /f

100

 taskkill /s %host4% /u Self\%user% /p %password% /IM
PerformanceTest64.exe /f
 taskkill /s %host4% /u Self\%user% /p %password% /IM
ParallelExecution.exe /f
 taskkill /s %host5% /u Self\%user% /p %password% /IM
PerformanceTest64.exe /f
 taskkill /s %host5% /u Self\%user% /p %password% /IM
ParallelExecution.exe /f
 taskkill /s %host6% /u Self\%user% /p %password% /IM
PerformanceTest64.exe /f
 taskkill /s %host6% /u Self\%user% /p %password% /IM
ParallelExecution.exe /f

 REM Set script contents
 psexec.exe \\%host1% -i -d -u Self\%user% -p %password% -
accepteula cmd.exe /c !setScript!
 psexec.exe \\%host2% -i -d -u Self\%user% -p %password% -
accepteula cmd.exe /c !setScript!
 psexec.exe \\%host3% -i -d -u Self\%user% -p %password% -
accepteula cmd.exe /c !setScript!
 psexec.exe \\%host4% -i -d -u Self\%user% -p %password% -
accepteula cmd.exe /c !setScript!
 psexec.exe \\%host5% -i -d -u Self\%user% -p %password% -
accepteula cmd.exe /c !setScript!
 psexec.exe \\%host6% -i -d -u Self\%user% -p %password% -
accepteula cmd.exe /c !setScript!

 REM Start local server
 start cmd.exe /k "%localCmd%"

 REM echo "%file% -s "!local!""

 psexec.exe \\%host1% -i -d -u Self\%user% -p %password% -
accepteula %file% -s "%local%"
 psexec.exe \\%host2% -i -d -u Self\%user% -p %password% -
accepteula %file% -s "%local%"
 psexec.exe \\%host3% -i -d -u Self\%user% -p %password% -
accepteula %file% -s "%local%"
 psexec.exe \\%host4% -i -d -u Self\%user% -p %password% -
accepteula %file% -s "%local%"
 psexec.exe \\%host5% -i -d -u Self\%user% -p %password% -
accepteula %file% -s "%local%"
 psexec.exe \\%host6% -i -d -u Self\%user% -p %password% -
accepteula %file% -s "%local%"

 REM Wait 40 minutes
 PING 1.1.1.1 -n 1 -w 2400000 >NUL
 REM pause

 REM Kill local server
 taskkill /IM ParallelExecution.exe /f
))

pause

101

5) Paravirtual Single Testing Script

@echo off
setlocal EnableDelayedExpansion

set user=Administrator
set password=***OMITTED***

set host1=192.168.1.123
set host2=192.168.1.124
set host3=192.168.1.125
set host4=192.168.1.126
set host5=192.168.1.127
set host6=192.168.1.128

set remoteScript="C:\Program
Files\PerformanceTest\PerfTests.ptscript"

set local=192.168.1.129
set file="C:\Program Files\PerformanceTest\PerformanceTest64.exe"

REM CPU_INTEGERMATH CPU_FLOATINGPOINTMATH CPU_PRIME CPU_SSE
CPU_COMPRESSION CPU_ENCRYPTION CPU_PHYSICS CPU_SORTING
CPU_SINGLETHREAD DI_WRITE DI_READ DI_RANDOM ME_ALLOC_S
ME_READ_CACHED ME_READ_UNCACHED ME_WRITE ME_LARGE ME_LATENCY
ME_THREADED
set list=CPU_INTEGERMATH CPU_FLOATINGPOINTMATH CPU_PRIME CPU_SSE
CPU_COMPRESSION CPU_ENCRYPTION CPU_PHYSICS CPU_SORTING
CPU_SINGLETHREAD DI_WRITE DI_READ DI_RANDOM ME_ALLOC_S
ME_READ_CACHED ME_READ_UNCACHED ME_WRITE ME_LARGE ME_LATENCY
ME_THREADED

NET USE U: "\\%host1%\Results" %password% /USER:Self\%user%
NET USE W: "\\%host3%\Results" %password% /USER:Self\%user%
NET USE Y: "\\%host5%\Results" %password% /USER:Self\%user%

xcopy U:\results-single* "C:\Users\Jarga\Dropbox\Thesis\Perf
Tests\Results-VMWare-1" /i /d /q /y /c
xcopy W:\results-single* "C:\Users\Jarga\Dropbox\Thesis\Perf
Tests\Results-XEN-1" /i /d /q /y /c
xcopy Y:\results-single* "C:\Users\Jarga\Dropbox\Thesis\Perf
Tests\Results-KVM-1" /i /d /q /y /c

NET USE /DELETE U:
NET USE /DELETE W:
NET USE /DELETE Y:
pause

set setScript=""
(for %%a in (%list%) do (

 REM for /f "usebackq tokens=2 delims=:" %%f in (`ipconfig ^|
findstr /c:"IPv4 Address"`) do set local=%%f
 REM set local = !local:~1!
 REM echo "Local IP: " !local!

102

 echo "Starting: " %%a
 set setScript="(echo LOOP 30 & echo { & echo CLEARRESULTS & echo
RUN %%a & echo } REPORTSUMMARYCSV "C:\Results\results-single-
%%a.csv") ^> %remoteScript%"
 echo "Set script: " !setScript!

 REM Kill perf test windows and prev running jobs
 taskkill /s %host1% /u Self\%user% /p %password% /IM
PerformanceTest64.exe /f
 taskkill /s %host3% /u Self\%user% /p %password% /IM
PerformanceTest64.exe /f
 taskkill /s %host5% /u Self\%user% /p %password% /IM
PerformanceTest64.exe /f

 echo "%file% /s "%remoteScript%" /NO3D"

 REM Set script contents
 psexec.exe \\%host1% -i -d -u Self\%user% -p %password% -
accepteula cmd.exe /c !setScript!
 psexec.exe \\%host3% -i -d -u Self\%user% -p %password% -
accepteula cmd.exe /c !setScript!
 psexec.exe \\%host5% -i -d -u Self\%user% -p %password% -
accepteula cmd.exe /c !setScript!

 psexec.exe \\%host1% -i -d -u Self\%user% -p %password% -
accepteula %file% /s %remoteScript% /NO3D
 psexec.exe \\%host3% -i -d -u Self\%user% -p %password% -
accepteula %file% /s %remoteScript% /NO3D
 psexec.exe \\%host5% -i -d -u Self\%user% -p %password% -
accepteula %file% /s %remoteScript% /NO3D

 REM Wait 40 minutes
 PING 1.1.1.1 -n 1 -w 2400000 >NUL
 REM pause
))

pause

6) No Modifications Single Testing Script

@echo off
setlocal EnableDelayedExpansion

set user=Administrator
set password=***OMITTED***

set host1=192.168.1.123
set host2=192.168.1.124
set host3=192.168.1.125
set host4=192.168.1.126
set host5=192.168.1.127
set host6=192.168.1.128

103

set remoteScript="C:\Program
Files\PerformanceTest\PerfTests.ptscript"

set local=192.168.1.129
set file="C:\Program Files\PerformanceTest\PerformanceTest64.exe"

REM CPU_INTEGERMATH CPU_FLOATINGPOINTMATH CPU_PRIME CPU_SSE
CPU_COMPRESSION CPU_ENCRYPTION CPU_PHYSICS CPU_SORTING
CPU_SINGLETHREAD DI_WRITE DI_READ DI_RANDOM ME_ALLOC_S
ME_READ_CACHED ME_READ_UNCACHED ME_WRITE ME_LARGE ME_LATENCY
ME_THREADED
set list=CPU_INTEGERMATH CPU_FLOATINGPOINTMATH CPU_PRIME CPU_SSE
CPU_COMPRESSION CPU_ENCRYPTION CPU_PHYSICS CPU_SORTING
CPU_SINGLETHREAD DI_WRITE DI_READ DI_RANDOM ME_ALLOC_S
ME_READ_CACHED ME_READ_UNCACHED ME_WRITE ME_LARGE ME_LATENCY
ME_THREADED

NET USE U: "\\%host1%\Results" %password% /USER:Self\%user%
NET USE W: "\\%host3%\Results" %password% /USER:Self\%user%
NET USE Y: "\\%host5%\Results" %password% /USER:Self\%user%

xcopy U:\nomods-results-single* "C:\Users\Jarga\Dropbox\Thesis\Perf
Tests\NoMods-Results-VMWare-1" /i /d /q /y /c
xcopy W:\nomods-results-single* "C:\Users\Jarga\Dropbox\Thesis\Perf
Tests\NoMods-Results-XEN-1" /i /d /q /y /c
xcopy Y:\nomods-results-single* "C:\Users\Jarga\Dropbox\Thesis\Perf
Tests\NoMods-Results-KVM-1" /i /d /q /y /c

NET USE /DELETE U:
NET USE /DELETE W:
NET USE /DELETE Y:
pause

set setScript=""
(for %%a in (%list%) do (

 REM for /f "usebackq tokens=2 delims=:" %%f in (`ipconfig ^|
findstr /c:"IPv4 Address"`) do set local=%%f
 REM set local = !local:~1!
 REM echo "Local IP: " !local!

 echo "Starting: " %%a
 set setScript="(echo LOOP 30 & echo { & echo CLEARRESULTS & echo
RUN %%a & echo } REPORTSUMMARYCSV "C:\Results\nomods-results-single-
%%a.csv") ^> %remoteScript%"
 echo "Set script: " !setScript!

 REM Kill perf test windows and prev running jobs
 taskkill /s %host1% /u Self\%user% /p %password% /IM
PerformanceTest64.exe /f
 taskkill /s %host3% /u Self\%user% /p %password% /IM
PerformanceTest64.exe /f
 taskkill /s %host5% /u Self\%user% /p %password% /IM
PerformanceTest64.exe /f

 echo "%file% /s "%remoteScript%" /NO3D"

104

 REM Set script contents
 psexec.exe \\%host1% -i -d -u Self\%user% -p %password% -
accepteula cmd.exe /c !setScript!
 psexec.exe \\%host3% -i -d -u Self\%user% -p %password% -
accepteula cmd.exe /c !setScript!
 psexec.exe \\%host5% -i -d -u Self\%user% -p %password% -
accepteula cmd.exe /c !setScript!

 psexec.exe \\%host1% -i -d -u Self\%user% -p %password% -
accepteula %file% /s %remoteScript% /NO3D
 psexec.exe \\%host3% -i -d -u Self\%user% -p %password% -
accepteula %file% /s %remoteScript% /NO3D
 psexec.exe \\%host5% -i -d -u Self\%user% -p %password% -
accepteula %file% /s %remoteScript% /NO3D

 REM Wait 40 minutes
 PING 1.1.1.1 -n 1 -w 2400000 >NUL
 REM pause
))

pause

105

APPENDIX H

PARALLEL EXECUTION V1.0

1) Options.cs

using CommandLine;
using CommandLine.Text;
using System.Collections.Generic;
using System.Text;

namespace ParallelExecution
{
 public class Options
 {
 [Option(shortName: 's', longName: "server", HelpText = "Server
to use as the controller of the processes when running as a client.")]
 public string Server { get; set; }

 [Option(shortName: 'p', longName: "port", HelpText = "Port to
connect to when running as a client or port to activly listen to
connections on if running as the server.", DefaultValue = 8888)]
 public int Port { get; set; }

 [Option(shortName: 't', longName: "timeout", HelpText =
"Timeout on for the server to stop accepting connections or the client
to stop waiting for a command (in milliseconds).", DefaultValue =
180000)]
 public int Timeout { get; set; }

 [Option(shortName: 'u', longName: "useserver", HelpText = "Use
this flag to execute the file on the server as well.")]
 public bool UseServer { get; set; }

 [OptionList('r', "receivers", Separator = ',', HelpText = "All
the receiving clients that will be used to execute the processes,
separated by a comma.")]
 public IList<string> Clients { get; set; }

 [Option(shortName: 'f', longName: "fileName", HelpText = "File
to execute.")]
 public string File { get; set; }

 [Option(shortName: 'a', longName: "arguments", HelpText =
"Arguments to pass to the file.")]
 public string Arguments { get; set; }

 [HelpOption]
 public string GetUsage()
 {

106

 var help = new HelpText
 {
 Heading = new HeadingInfo("\r\nParallel Execution
Application", "1.0"),
 Copyright = new CopyrightInfo("Sean McAdams", 2014),
 AdditionalNewLineAfterOption = true,
 AddDashesToOption = true,
 };
 help.AddPreOptionsLine("\r\nExample Usage:
ParallelExecution.exe -u -f notepad.exe -r \"172.0.0.0\"");
 help.AddPreOptionsLine(" Usage:
ParallelExecution.exe -s \"172.0.0.0\"");
 help.AddOptions(this);
 return help;
 }
 }
}

2) CommandExecutionClient.cs

using System;
using System.Net.Sockets;
using System.IO;
using System.Diagnostics;

namespace ParallelExecution
{
 public class CommandExecutionClient
 {
 private int _port;
 private string _server;
 private int _timeout;

 public CommandExecutionClient(int port, string server, int
timeout)
 {
 this._port = port;
 this._server = server;
 this._timeout = timeout;
 }

 public Process Start()
 {
 using (var client = new TcpClient(_server.Trim(), _port))
 {
 var stream = client.GetStream();

 using (var writer = new StreamWriter(stream))
 using (var reader = new StreamReader(stream))
 {
 reader.BaseStream.ReadTimeout = this._timeout;
 var command = reader.ReadLine();

107

 if (command == null)
 {
 Console.WriteLine("Failed to read TCP
Stream!!");

 return null;
 }

 var index =
command.IndexOf(ParallelExecutionMaster.CommandDelimiter);
 if (index > -1)
 {
 var fileName = command.Substring(0, index);
 var arguments = command.Substring(index +
ParallelExecutionMaster.CommandDelimiter.Length);

 Console.WriteLine("Executing command: {0} {1}
at {2}", fileName, arguments, DateTime.Now.ToString("O"));

 Process process = null;

 if (string.IsNullOrWhiteSpace(arguments))
 {
 process = Process.Start(fileName);
 }
 else
 {
 process = Process.Start(fileName,
arguments);
 }

 writer.WriteLine("Success");
 writer.Flush();

 return process;
 }

 Console.WriteLine("Invalid Format Command Format
Sent to Client!");

 writer.WriteLine("Failed");
 }
 }
 return null;
 }
 }
}

3) CommandExecutionServer.cs

using System;

108

using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Net.Sockets;
using System.Threading.Tasks;
using System.Diagnostics;
using System.IO;

namespace ParallelExecution
{
 public class CommandExecutionServer
 {
 private IList<string> _clients;
 private bool _runOnServer = false;
 private int _port;
 private int _serverTimeout;
 private string _fileName;
 private string _arguments;
 private IList<string> _clientRemainingToConnect = new
List<string>();
 private IList<TcpClient> _connectedClients = new
List<TcpClient>();

 public CommandExecutionServer(string fileName, string
arguments, IList<string> clients)
 {
 _fileName = fileName;
 _arguments = arguments;
 _clients = clients;
 _clientRemainingToConnect = _clients;
 }

 public CommandExecutionServer(int port, string fileName, string
arguments, IList<string> clients)
 {
 _fileName = fileName;
 _arguments = arguments;
 _clients = clients;
 _clientRemainingToConnect = _clients;
 _port = port;
 }

 public CommandExecutionServer(int port, int serverTimeout,
string fileName, string arguments, IList<string> clients)
 {
 _fileName = fileName;
 _arguments = arguments;
 _clients = clients;
 _clientRemainingToConnect = _clients;
 _port = port;
 _serverTimeout = serverTimeout;
 }

109

 public CommandExecutionServer(int port, int serverTimeout,
string fileName, string arguments, IList<string> clients, bool
runOnServer)
 {
 _fileName = fileName;
 _arguments = arguments;
 _clients = clients;
 _clientRemainingToConnect = _clients;
 _port = port;
 _serverTimeout = serverTimeout;
 _runOnServer = runOnServer;
 }

 public bool Start()
 {
 var serverListener = new TcpListener(IPAddress.Any, _port);

 var watch = new Stopwatch();

 serverListener.Start();
 watch.Start();

 while (watch.ElapsedMilliseconds < _serverTimeout)
 {
 if (serverListener.Pending())
 {
 var connection = serverListener.AcceptTcpClient();
 var client = (connection.Client.RemoteEndPoint as
IPEndPoint).Address.ToString();
 if (_clientRemainingToConnect.Contains(client))
 {
 _clientRemainingToConnect.Remove(client);
 _connectedClients.Add(connection);
 }
 else
 {
 Console.WriteLine("Recieved unexpected
connection request from {0}, closing connection.", client);
 connection.Close();
 }
 }

 if (_clientRemainingToConnect.Count == 0)
 {
 watch.Stop();
 Console.WriteLine("Server waited {0} ms for clients
to connect!", watch.ElapsedMilliseconds);
 return StartExecution();
 }

 }

 watch.Stop();

110

 Console.WriteLine("Server waited {0} ms for clients to
connect!", watch.ElapsedMilliseconds);

 return false;
 }

 private bool StartExecution()
 {
 Console.WriteLine("All client are now connected, sending
command to each client!");

 var tasks = new List<Task<bool>>();

 for (int i = 0; i < _connectedClients.Count; i++)
 {
 var connection = _connectedClients[i];
 tasks.Add(new Task<bool>(() =>
 {
 Console.WriteLine("Triggering command: {0}
{1} at {2} for Machine {3}", _fileName.Trim(), _arguments,
DateTime.Now.ToString("O"), (connection.Client.RemoteEndPoint as
IPEndPoint).Address.ToString());

 var stream = connection.GetStream();

 using (var writer = new
StreamWriter(stream))
 using (var reader = new
StreamReader(stream))
 {
 writer.WriteLine("{0}{1}{2}",
_fileName.Trim(), ParallelExecutionMaster.CommandDelimiter,
_arguments);

 writer.Flush();

 var returnVal = reader.ReadLine();

 return "Success".Equals(returnVal);
 }

 }
));
 }

 tasks.ForEach(task => task.Start());

 if (_runOnServer)
 {
 Console.WriteLine("Executing command: {0} {1} at {2}",
_fileName, _arguments, DateTime.Now.ToString("O"));

 if (string.IsNullOrWhiteSpace(_arguments))
 {

111

 Process.Start(_fileName);
 }
 else
 {
 Process.Start(_fileName, _arguments);
 }

 }

 tasks.ForEach(task => task.Wait());

 var result = tasks.All(task => task.Result);

 Console.WriteLine(result ? "Processes started!" : "At least
one of the clients failed to start the process!");

 return result;
 }
 }
}

4) ParallelExecutionMaster.cs

using CommandLine;
using System;
using System.Linq;

namespace ParallelExecution
{
 public class ParallelExecutionMaster
 {
 /// <summary>
 /// Delimiter to use between the filename and arguments when
sending the execution request from the server so the client can parse
it easier, needs to be an uncommon series of characters
 /// </summary>
 public const string CommandDelimiter = "||";

 static void Main(string[] args)
 {
 var options = new Options();

 var parser = new Parser();

 //If parsing was successful verify either a server is given
or the file and receivers are given
 if (parser.ParseArguments(args, options) &&
(!string.IsNullOrWhiteSpace(options.Server) ||
(!string.IsNullOrWhiteSpace(options.File) && options.Clients != null &&
options.Clients.Any())))
 {

112

 //If No Server is Given assume Current Box is the
Server otherwise process act as if you are a client
 if (string.IsNullOrWhiteSpace(options.Server))
 {
 var server = new
CommandExecutionServer(options.Port, options.Timeout, options.File,
options.Arguments, options.Clients, options.UseServer);

 var result = server.Start();

 Console.WriteLine(result ? "Execution Successful!
Processes Running." : "An Error Occured while attempting to execute the
processes!");
 }
 else
 {
 var client = new
CommandExecutionClient(options.Port, options.Server, options.Timeout);

 var process = client.Start();

 if (process != null)
 {
 Console.WriteLine("Process Started!");
 process.WaitForExit();
 Console.WriteLine("Process Complete!");
 }
 else
 {
 Console.WriteLine("Error occured when
attempting to execute process!");
 }

 }
 }
 else
 {
 Console.WriteLine(options.GetUsage());
 return;
 }

 Console.WriteLine("Press Enter To Close The Console!");
 Console.ReadLine();
 }
 }
}

113

VITA

Sean McAdams has a Bachelor of Science in Computer and Information Sciences from

the University of North Florida and expects to receive a Master of Science in Software

Engineering from the University of North Florida, October 2015. Dr. Roger Eggen of the

University of North Florida is serving as Sean McAdams’ thesis advisor. Sean is a

software developer currently employed by OceansideTen Management, LLC and is the

owner of Sigma 8, LLC a contract software development firm. Sean has over 5 years of

experience in software development and has worked in enterprise environments for some

of the largest financial corporations in the world. His recent work mostly includes

Microsoft based solutions using the .NET framework in the C# programming language

and continually pushes himself to learn new technologies to expand his skills. Sean’s goal

is to expand his knowledge of software development and build his company into a

successful software development firm.

	UNF Digital Commons
	2015

	Virtualization Components of the Modern Hypervisor
	Sean McAdams
	Suggested Citation

	Title - Virtualization Components of the Modern Hypervisor
	Acknowledgement
	Contents
	List of Figures
	Abstract
	Chapter 1. Introduction
	Chapter 2. On Hypervisors and Virtualization
	2.1 Type 1 Hypervisor
	2.2 Type 2 Hypervisor
	2.3 Virtualization Types
	2.4 Container-Based Virtualization

	Chapter 3. Core Components of the Modern Hypervisor
	3.1 Paravirtual Block (Disk) Drivers (WT)
	3.2 Paravirtual Network Drivers (WT)
	3.3 Paravirtual Memory Drivers (WT)
	3.4 Huge Pages/LargePages
	3.5 Hypervisor Enabled Components
	3.5.1 Network Bridging vs. Network Address Translation (NAT)
	3.5.2 Memory Compression
	3.5.3 Hypervisor Disk Swapping
	3.5.4 Resource Overcommitting
	3.5.5 Kernel Samepage Merging / Transparent Page Sharing
	3.5.6 SSD Support

	Chapter 4. A Look at the Hypervisors of Today
	4.1 VMWare VSphere/Workstation/Player
	4.2 Xen/XenServer
	4.3 KVM
	4.4 Hyper-V
	4.5 Oracle VM Server/VirtualBox
	4.6 Parallels Desktop/Virtuozzo Containers

	Chapter 5. Purpose and Goals
	Chapter 6. Existing Research
	Chapter 7. Methods and Results
	7.1 Methods
	7.2 Results
	7.2.1 Parallel no modifications (PNM) vs. Parallel with paravirtualization (PWP)
	7.2.2 Single no modifications (SNM) vs. Single with paravirtualization (SWP)
	7.2.3 Single no modifications (SNM) vs. Parallel no modifications (PNM)
	7.2.4 Single with paravirtualization (SWP) vs. Parallel with paravirtualization (PWP)
	7.2.5 Cross hypervisor comparison for single no modifications (SNM)
	7.2.6 Cross hypervisor comparison for single with paravirtualization (SWP)
	7.2.7 Cross hypervisor comparison for parallel no modifications (PNM)
	7.2.8 Cross hypervisor comparison for parallel with paravirtualization (PWP)
	7.2.9 Network performance
	7.2.9.1 Network performance across adapter types
	7.2.9.2 Network performance across hypervisors

	Chapter 8. Conclusions
	Chapter 9. Future Work
	References
	Appendix A. Xenserver Host Configurations
	Appendix B. KVM Host Configurations
	Appendix C. Guest Configurations
	Appendix D. Physical System Specifications
	Appendix E. Performance Metrics
	Appendix F. LINQPad Script
	Appendix G. Batch Scripts
	Appendix H. Parallel Execution V1.0

