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ABSTRACT 

 

Missing data bias results if adjustments are not made accordingly. This thesis addresses this issue 

by exploring a scenario where data is missing at random depending on a covariate x. Four 

methods for comparing groups while adjusting for missingness are explored by conducting 

simulations: independent samples t-test with predicted mean stratification, independent samples 

t-test with response propensity stratification, independent samples t-test with response propensity 

weighting, and an analysis of covariance. Results show that independent samples t-test with 

response propensity weighting and analysis of covariance can appropriately adjust for bias. 

ANCOVA is the stronger method when the ANCOVA assumptions are met. When the 

ANCOVA assumptions are not met, a t-test with inverse response propensity score weighting is 

the superior method.
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CHAPTER 1 

THE PROBLEM OF MISSING DATA 

 

1.1  Why is it Important to Treat the Missing Data? 

 

This paper will discuss ways to handle missing data. The following example is given to illustrate 

how missing data can bias results. Throughout the paper, this example will be discussed in 

reference to different methods to analyze the data in order to reduce bias. 

 

1.1.1  Motivational example 

 

In a hypothetical study, a professor wants to compare the final exam scores of two sections of the 

same class that she teaches. At the end of the semester, she collects the scores from both 

sections. After collecting the scores, she notices that the mean FinalExam score of Section 1 is 

73% while in Section 2 the FinalExam mean is 84%. After examining this using an independent 

samples t-test she found that 𝑡 = 2.1057, 𝑝 = .0429. The initial conclusion would be that the 

second section had higher scores than the first. However, after an in-depth look at the data, she 

notices that in Section 2, there were several students that dropped out. In Section 1, each student 

remained enrolled. She goes through her records, and now looking at the full data, she notices 

that students who scored low on Exam1 in Section 2 dropped the class before the FinalExam. 

Intuitively, it seems that the absence of weaker students may be the reason why the mean 

FinalExam score in Section 2 is higher. 
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The hypothetical data set is shown below. 

 

Table 1.1. Exams Scores for Students that Remained Enrolled 

 Section 1   Section 2 

 Exam 1 Final Exam  Exam 1 Final Exam 

  78 76   59 56 

  51 46   69  - 

  70 70   90 95 

  95 86   71  - 

  71 57   100 95 

  95 92   94 93 

  69 66   85 89 

  87 82   57 47 

  96 91   88 82 

  72 79   87 86 

  73 67   85 88 

  95 86   90  - 

  99 92   99 97 

  87 80   71  - 

  80 72   64  - 

  88 84   52  - 

  81 74   86 84 

  62 36   91 89 

  78 72   86 80 

  72 64   70  - 

  70 67   89 94 

Mean 79.47619 73.28571   80.14286 83.92857 

SD 12.65156 14.57101   14.11838 14.76724 

 

Table 1.1 shows the scores that the students in both classes received on their FinalExam. As can 

be seen, some students in Section 2 dropped the course and their scores are missing. Notice that 

in Section 2, the mean is significantly higher than in Section 1, but in Section 2 there is a high 

percentage of dropouts (𝑡 = 2.1057, 𝑝 = .0429). 
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Table 1.2 Exams Scores for All Students Adding the Scores Had All Students Remained Enrolled 

  Section 1   Section 2 

 Exam 1 Final Exam  Exam 1 
Final 

Exam 

  78 76   59 56 

  51 46   69 64 

  70 70   90 95 

  95 86   71 64 

  71 57   100 95 

  95 92   94 93 

  69 66   85 89 

  87 82   57 47 

  96 91   88 82 

  72 79   87 86 

  73 67   85 88 

  95 86   90 83 

  99 92   99 97 

  87 80   71 57 

  80 72   64 62 

  88 84   52 36 

  81 74   86 84 

  62 36   91 89 

  78 72   86 80 

  72 64   70 66 

  70 67   89 94 

Mean 79.47619 73.28571   80.14286 76.52381 

SD 12.65156 14.57101   14.11838 17.7528 

 

Table 1.2 shows all the scores, including the scores in Section 2 as if those students had not 

dropped the course. As depicted, the means of both classes are similar (𝑡 = .6461, 𝑝 = .5219). 

 

Below is a scatterplot for the FinalExam grades as a function of the Exam1 grades. “1” is for the 

students in Section 1, “2” is for students in Section 2, and “0” is for the grades that the students in 

Section 2 who dropped the course would have received for the FinalExam if they had stayed. 
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Figure 1.1 FinalExam Grades as a Function of Exam1 Grades 

 

 

As can be seen in the illustration above, doing the analysis ignoring the missing observations can 

bias the result of a study.  

 

Throughout this paper the following notation will be used: 

𝑋 = 𝐸𝑥𝑎𝑚1 𝑠𝑐𝑜𝑟𝑒𝑠 

𝑌 = 𝐹𝑖𝑛𝑎𝑙𝐸𝑥𝑎𝑚 𝑠𝑐𝑜𝑟𝑒𝑠 

In each group, X and Y have a joint distribution: 
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𝐹𝑗(𝑋, 𝑌), 

where: 

𝑗 = {
1,   Section 1
2,   Section 2

 

The comparison of interest is: 

𝐸1(𝑌) − 𝐸2(𝑌), 

where FinalExam scores between the two sections are compared. 

 

Notice that Y = FinalExam score is being treated as a value that exists even though the student 

dropped the course. In this paper, the missing values will be treated as though they are true 

values that exist but are unknown. This is similar to how missing data is treated in various 

settings, such as in clinical trials and social sciences. Similarly, they consider that every subject 

in the study has a “true” value. If the value is missing, then it may be treated as a latent value and 

needs to be estimated (Schafer and Graham 2002). 

 

1.2  Missing Data Mechanisms 

 

Let Y be the variable of interest. 

 

According to Rubin (1976), and Little and Rubin (2002), there are three missing data 

mechanisms: 
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1.2.1  Missing at Random (MAR) 

 

Missingness is related to an observed variable other than 𝑌, the dependent variable that is 

missing. For instance, a researcher may be interested in testing 𝑌 = 𝑖𝑛𝑐𝑜𝑚𝑒 𝑙𝑒𝑣𝑒𝑙  of certain 

families within a town. It is noted that several Hispanic families are not reporting their income 

level. Thus, missingness is related to the observable variable of ethnicity, which the researcher 

has been able to collect, rather than related to 𝑌 directly. However, this does not mean 𝑌 is not 

affected by MAR data. If the Hispanics in the town have a lower income level than the rest of the 

population, then 𝑌 is going to be over-estimated. Therefore, this needs to be accounted for when 

conducting the analysis of data. 

 

1.2.2  Missing Completely at Random (MCAR) 

 

Missingness is not related to 𝑌 in any facet and it is not related to other variables either because 

it is completely random. For instance, in the study described above there may be missing data 

due to the researcher losing a file with part of the data, or data on certain households that could 

not be collected due to reasons such as the family members being out on vacations, working, or 

in the hospital when the researcher is trying to collect the data. In these cases, the data is MCAR 

because it is not related to 𝑌 nor other variables. MCAR data does not bias the results. 
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1.2.3  Missing Not at Random (MNAR) 

 

Missing data is related to 𝑌, even after adjusting for other variables. In the example described 

above, if individuals with lower incomes failed to report it, the researcher would have MNAR 

data. MNAR is the most dangerous out of the three missing data mechanisms, since it biases the 

results of the study. 

 

MAR and MCAR are considered ignorable missing data because the researcher has sufficient 

information to adjust for the bias, while MNAR is considered non-ignorable missing data 

because it biases the results and there is not enough information to adjust for it. Ideally the 

researcher prefers MCAR or MAR. When conducting a study, the researcher can prevent MNAR 

data by collecting information on other variables, thus converting MNAR to MAR. 

 

In the motivational example that this thesis uses, MAR missingness is considered, since students 

drop out of the class based on scores received previously, which the professor has collected. It 

will be considered that each student has taken Exam1. Therefore, the professor has complete data 

for Exam1 scores from each student while there are missing scores from FinalExam. Students 

that did poorly in Exam1 had higher chances of dropping the course. Thus, missingness depends 

on Exam1, which is a variable that has been collected. Therefore, data is missing at random 

(MAR). 
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1.3  Use of T-test to Analyze Data without Missingness Adjustment 

 

1.3.1  Simulation: No Missingness Adjustment 

 

In this section, a simulation is conducted using MAR data. The data is then analyzed using an 

independent samples equal variance t-test ignoring the missing data testing whether 𝐸1(𝑌) =

𝐸2(𝑌). All simulations in this thesis were done using SAS Version 9.2. 

 

Let: 

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

 

Since in a regular lecture hall at the University of North Florida there are 140 students in the 

class, the simulation will have 𝑛 = 140. 

 

Thus: 

𝑋 = 𝐸𝑥𝑎𝑚1 𝑆𝑐𝑜𝑟𝑒 

where: 

𝑋~𝐵𝑒𝑡𝑎(4, .8) ∗ 100 

Notice that in both sections, the distribution of the Exam1 score is the same. 

 

Let: 

𝑌 = 𝐹𝑖𝑛𝑎𝑙𝐸𝑥𝑎𝑚 𝑆𝑐𝑜𝑟𝑒, 
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where: 

𝑌 = 𝑋 − 13 + 𝜖, 

𝜖 = 5 ∗ 𝑍, 

and 

𝑍~𝑁(0,1). 

 

This means that in both sections, students’ FinalExam scores are an average of 13 points lower 

than their Exam1 scores. 

 

Therefore, both classes have the same Exam1 score and FinalExam score distributions. 

 

The following graph shows an example of the distribution of X: 

 

Figure 1.2 Distribution of Exam1 Grades 
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𝐸(𝑋) = 83.333 

𝜎(𝑋) = 15.4746 

 

The drop rate is altered for each class. The probability 𝑝𝐷(𝑥) of dropping given the Exam1 score 

is: 

𝑝𝐷(𝑥) =
𝑒𝛽0+𝛽1∗𝑥

1 + 𝑒𝛽0+𝛽1∗𝑥
. 

 

Various combinations of (𝛽0, 𝛽1) are considered such that the probability of dropping 𝑝𝐷(𝑥) for 

a student with a score of x = 95 (grade 95 in Exam1) is 5%. Thus, both classes have the same 

distribution for X and Y, and the only difference is their drop rate 𝑝𝐷(𝑥) (with higher chances of 

dropping the course for students with lower values of x). Notice that since the data is being 

generated assuming 𝐸1(𝑌) = 𝐸2(𝑌), and at 𝛼 = .05, 5% of the simulations should find a 

significant difference between the two groups.  

 

A simulation with 1,000 replicates was conducted for each combination of (𝛽0, 𝛽1) between the 

two sections, and the percentage of false positives (significant p-values) were recorded in the 

table below: 
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Table 1.3 Independent Samples with Equal Variance T-test without Missingness Adjustment 

for Different Drop Rates: Type I Error Rate 

    Section 1 

  Type 1 2 3 4 5 6 7 8 9 

  Drop% 24.46 21.97 19.06 15.98 13.33 11.09 9.21 7.23 5.96 

  𝛽0 6.06 5.06 4.06 3.06 2.06 1.06 0.06 -0.94 -1.94 

  𝛽1 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 

Section 

2 

1 4.8%                 

2 7.9% 3.9%               

3 12.9% 6.9% 5.1%             

4 22.7% 11.9% 6.9% 5.1%           

5 37.4% 22.9% 13.1% 8.6% 4.5%         

6 46.5% 31.6% 20.0% 10.1% 6.5% 4.4%       

7 56.3% 41.5% 28.3% 15.1% 9.1% 5.8% 4.6%     

8 63.8% 51.2% 33.0% 20.5% 11.1% 6.8% 5.3% 6.1%   

9 67.3% 53.8% 38.9% 26.1% 16.6% 9.6% 5.6% 5.1% 5.1% 

                      
 

As can be seen from the table above, the greater that the dropout patterns differ between the two 

sections, the higher number of false positives were obtained, meaning that the t-test detects a 

difference in the mean of the FinalExam scores between the two sections when in reality there is 

none. Notice that along the diagonal, the percentage of false positives is close to 5%, which is 

what it is expected to be at 𝛼 = .05, given the fact that both sections have the same FinalExam 

distribution and the same dropout pattern. 

 

To further illustrate the effect of the difference in drop rates, the following graph shows the drop 

rate for Section 1 (𝛽0 = 6.055561, 𝛽1 = −.09) in grey and Section 2 (𝛽0 = 4.055561, 𝛽1 =

−.07) in black. As shown in the above table, 12.90% of the simulations detected a difference 

between the means when in reality there was not one.  
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Figure 1.3 Drop Rate as a Function of Exam1 Grades 

 

As can be seen in the graph above, the grey line (representing Section 1) is above the black line 

(representing Section 2) through the graph, meaning that students in Section 1 have a higher 

chance of dropping than in Section 2. Even though the drop rates are only slightly different, the 

Type I error rate is inflated. 

 

1.4  Conclusion 

 

Without missingness adjustment, the analysis of data is biased for MAR data. The following 

chapters will explore three methods discussed by Little (1986) and the use of analysis of 

covariance. Conducting simulations, I will first explore the Type I error rate of each method. If 
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the Type I error rate is close to 5% at 𝛼 = .05, then I will proceed to conduct further simulations 

to test the power of the method. 
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CHAPTER 2 

LITTLE’S METHODS FOR MISSINGNESS ADJUSTMENT 

 

2.1 Overview of Little’s Methods for Adjusting for Missingness 

 

In his article “Survey Nonresponse Adjustments for Estimates of Means,” Little (1986) discusses 

the risk of analyzing data when observations are missing and addresses methods to adjust for 

missingness. 

 

Little defines the respondents’ mean as the mean of the observed responses without making any 

adjustments for missingness: 

�̅�𝑅 = ∑
𝑦𝑖

𝑛𝑅

𝑛𝑅

𝑖=1

 

where 

𝑖 = 1,2, … 𝑛𝑅 

𝑅 = 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑡𝑠 

𝑛𝑅 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑡𝑠. 

 

In the motivational example given above, the number of respondents is the number of students 

who remained enrolled and took the final exam. The respondents’ mean for the FinalExam 

scores in Section 2 is the mean that the professor initially calculated where she did not account 

for the missing observations: 
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�̅�𝑅 = 83.9286 

 

As was seen in the motivational example, the respondents’ mean has a potential for bias. 

 

Little proposes a method to adjust for missingness. He recommends that observations be 

classified into C adjustment cells defined by a covariate x. Then, the adjusted mean is calculated 

by: 

�̅�𝐴 = ∑ 𝑝𝑐 ∗ �̅�𝑐𝑅

𝐶

𝑐=1

, 

where 

𝑐 = 1,2, … , 𝐶 

𝑝𝑐 =
𝑛𝑐

𝑛
. 

 

In the motivational example, for Section 2, three adjustment cells can be created by grouping the 

Exam1 scores into terciles. Let, 

𝑐 = {
1,                    if 𝑥 ≤ 70
2,          if 70 < 𝑥 ≤ 88
3,                    if 88 < 𝑥

 

 

Then, 
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Table 2.1 Information Needed for Adjusted Mean 

 c = 1 c = 2 c = 3 

𝑦𝑐𝑅 47+56 89+88+84+80+86+82 94+95+89+93+97+95 

�̅�𝑐𝑅 51.5 84.83 93.83 

𝑛𝑐 6 8 7 

𝑛 21 21 21 

𝑝𝑐 6/21 8/21 7/21 

 

�̅�𝐴 = ∑ 𝑝𝑐 ∗ �̅�𝑐𝑅

3

𝑐=1

= 78.3095 

Even though this result is not the true value of �̅�, it is closer than �̅�𝑅 is. Thus, if the adjustment 

cells are appropriately created, this method can reduce the bias when calculating the mean. 

 

The variance may be calculated by: 

𝑉𝑎𝑟(�̅�𝐴) = ∑
𝑝𝑐

2𝑆𝑐𝑅
2

𝑛𝑐𝑅
.

𝐶

𝑐=1

 

 

The bias for �̅�𝐴 is given by: 

𝐵𝑖𝑎𝑠(�̅�𝐴) = ∑(𝑝
𝑐

− 𝜋𝑐) ∗ 𝐸(𝑦
𝑐𝑅

) +

𝐶

𝑐=1

∑ 𝜋𝑐 ∗ (𝐸(𝑦
𝑐𝑅

) − 𝐸(𝑦
𝑐
)) .

𝐶

𝑐=1

 

 

Notice that for the first term, as the sample size increases, 𝑝𝑐 → 𝜋𝑐. Thus, 

lim
𝑛→∞

∑(𝑝
𝑐

− 𝜋𝑐) ∗ 𝐸(𝑦
𝑐𝑅

)

𝐶

𝑐=1

= 0 

However, the second term does not go to 0 as n increases, since respondents’ and 

nonrespondents’ distribution of Y may differ. Therefore, as 𝑛 → ∞,  𝐸(𝑦𝑐𝑅) ≠ 𝐸(𝑦𝑐). The adjusted 
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mean �̅�𝐴 has zero bias if 𝐸(𝑦𝑐𝑅) = 𝐸(𝑦𝑐), that is, if the mean of Y is the same for respondents and 

nonrespondents given stratifier c.  

 

Let: 

𝑟 = {
1,    if the ithobservation was collected (student remained enrolled)

0,               if  the ithobservation was not collected (student dropped)
 

 

Then, cells should be created such that y and r are independent given c. Two potential stratifiers 

are: 

 

Predicted Mean Stratification: The adjustment cells c are created based on the predicted value of 

y. This can be done by modeling the distribution of y given x. Then, �̂�(𝑥) is the predicted mean 

of y given x. Therefore, �̂�(𝑥) is grouped into C intervals. Even though it is unlikely that y and r 

are completely independent within each cell, in each interval their relationship will be weaker, 

and therefore bias will be reduced. In the motivational example, as was shown above, these 

adjustment cells may be formed according to the students’ Exam1 scores. 

 

Response Propensity Stratification: The adjustment cells c are created based on the response 

propensity. Let 𝑝𝑅(𝑥) = 𝑝𝑟(𝑟 = 1|𝑥). Then, 𝑝𝑅(𝑥) can be estimated by �̂�𝑅(𝑥) from the logistic 

regression of the response indicator r on x, and adjustment cells are formed by grouping �̂�𝑅(𝑥). 

Similarly to the groups created by the predicted mean stratification, in each adjustment cell the 

relationship between y and r will be weaker, thus reducing the bias. 
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Weighting by the Inverse of the Response Propensity Score: A third method that Little mentions 

in his paper is using the response propensity score, but rather than forming adjustment cells, each 

y for the respondents is weighted by the inverse of �̂�𝑅(𝑥). Little reports that he prefers the 

previous two methods over this one, because for extremely low values of �̂�𝑅(𝑥), the variance 

becomes inflated. 

 

The following two chapters will evaluate these three methods for adjusting for missingness based 

on predicted mean stratification, response propensity stratification, and weighting by the inverse 

of the response propensity score. 
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CHAPTER 3 

MISSINGNESS ADJUSTMENT BASED ON PREDICTED MEAN 

 

3.1  Use of T-Test to Analyze Data Using Predicted Mean Stratification Missingness 

Adjustment 

 

3.1.1  Generation of Data 

 

In the following set of simulations, data is generated similarly to the data in Chapter 1 (Section 

1.3). Therefore, both classes have the same Exam1 score distribution and FinalExam score 

distribution. The FinalExam score means are compared between the two sections using an 

independent samples t-test assuming unequal variances using �̅�𝐴 and 𝑉𝑎𝑟(�̅�𝐴) as described by 

Little, and using Satterthwaite’s approximation for degrees of freedom: 

𝑑𝑓 =
(𝑉𝑎𝑟(�̅�1) + 𝑉𝑎𝑟(�̅�2))

2

∑ ∑

(
𝑝𝑗𝑐

2 ∗ 𝑠𝑗𝑐𝑅
2

𝑛𝑗𝑐𝑅
)

𝑛𝑗𝑐𝑅 − 1
3
𝑐=1

2
𝑗=1

 

 

The null hypothesis is 𝐸1(𝑌) = 𝐸2(𝑌). 
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3.1.2  Simulation 1. Predicted Mean Stratification: Type I Error Rate 

 

In the first set of simulations, I stratified according to the predicted mean. The FinalExam scores 

are related to Exam1 scores. Therefore, I used x as the covariate for stratifying by the predicted 

mean. 

 

The data was split into adjustment cells such that the relationship between the drop rate and the 

FinalExam grades is minimally dependent given Exam1 grades. The way this was conducted was 

by splitting the data into terciles according to Exam1. Thus, students whose Exam1 scores fell in 

the first tercile were in adjustment cell 1, students in the middle tercile were in adjustment cell 2, 

and students in the upper tercile were in adjustment cell 3. 

 

I ran simulations using Little’s formula and comparing the group means with an independent 

samples unequal variance t-test at different drop rates. If any adjustment cell had one or fewer 

observations, then the mean and variance of this adjustment cell could not be calculated; 

therefore, this replicate had to be discarded. The simulations were created such that there is no 

difference between Section 1 and Section 2 with respect to either Exam1 or FinalExam. 

Therefore, 5% of the p-values should be significant at 𝛼 = .05, regardless of the drop rate. 

Below are the results with the percentage of significant p-values out of 1,000 replicates. If 

replicates were discarded due to having one or fewer observations in a cell, the number of 

discarded replicates is reported after the percentage of significant p-values: 
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Table 3.1 Independent Samples with Unequal Variance T-test using Predicted Mean 

Stratification for Missingness Adjustment: Type I Error Rate 

    Section 1 

  Type 1 2 3 4 5 6 7 8 9 

  Drop% 24.46 21.97 19.06 15.98 13.33 11.09 9.21 7.23 5.96 

  𝛽0 6.06 5.06 4.06 3.06 2.06 1.06 0.06 -0.94 -1.94 

  𝛽1 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 

Section 

2 

1 23.6%                 

2 26.1% 23.2%               

3 28.2% 24.4% 24.3%             

4 31.7% 27.9% 25.9% 24.0%           

5 35.3% 31.0% 28.6% 27.6% 26.2%         

6 37.3% 34.2% 31.0% 25.4% 26.8% 26.0%       

7 39.5% 36.8% 33.2% 28.4% 28.9% 23.4% 27.0%     

8 44.5% 40.6% 34.3% 33.0% 26.7% 25.8% 25.9% 27.6%   

9 42.9% 39.4% 34.6% 33.9% 28.5% 26.5% 25.9% 23.7% 24.7% 

                      
 

As can be seen from the simulations, the Type I error rate is still noticeably high. Notice, 

however, that for extremely different drop patterns the Type I error rate is slightly lower than 

when conducting the simulations without any adjustments for missing data. This means that 

when the drop rates are drastically different, using this method gives slightly improved results 

over not adjusting for missingness at all. Something surprising was that along the diagonal, 

where the dropout patterns are similar for both sections, the Type I error rate is higher than in the 

previous set of simulations where no adjustments were done. I decided to investigate further, to 

see the origin of this. 
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3.1.3  Simulation 2. Predicted Mean Stratification: Normally Distributed and Fixed Cells.  

 

Since an assumption for a t-test is that the data has to be normally distributed, I decided to 

investigate whether the lack of normality within adjustment cells is what is causing this high 

Type I error rate along the diagonal. Therefore, I created an unrealistic scenario where each 

adjustment cell has a normal distribution. Let, 

𝑋|𝑐 = 1~𝑁(50, 10) 

𝑋|𝑐 = 2~𝑁(75, 10) 

𝑋|𝑐 = 3~𝑁(85, 10) 

 

The groups were fixed in advance such that each group was normally distributed. However, y 

and r are more strongly associated than in the previous simulation, since the observations are not 

being ranked and divided into terciles. 

 

Below are the results. Notice that on the left of the slash bar are the percent of significant p-

values and on the right of the bar are the number of replicates that had to be ignored due to 

having at least one cell with one or fewer observations: 
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Table 3.2 Independent Samples with Unequal Variance T-test using Predicted Mean 

Stratification for Missingness Adjustment: Normally Distributed and Fixed Cells 

    Section 1 

  Type 1 2 3 4 5 6 7 8 9 

  Drop% 45.10 40.10 34.40 28.40 22.62 17.24 12.65 9.25 6.73 

  𝛽0 6.06 5.06 4.06 3.06 2.06 1.06 0.06 -0.94 -1.94 

  𝛽1 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 

Section 

2 

1 5.2%                 

2 6.3% 4.6%               

3 10.9% 6.7% 5.1%             

4 19.0% / 1 10.3% 5.7% 4.7%           

5 27.3% 17.6% 10.3% 6.0% 4.2%         

6 33.5% 28.9% 16.2% 9.5% 5.7% 5.9%       

7 43.3% 31.1% 23.7% 13.2% 7.6% 4.5% 5.0%     

8 47.9% 37.6% 25.1% 14.8% 10.0% 7.0% 4.3% 4.2%   

9 49.6% 38.4% 27.1% 17.6% 9.9% 6.9% 4.9% 6.9% 5.3% 

                      
 

Now it can be seen that along the diagonal, the Type I error rate is as expected (around 5%). This 

indicates that a possible explanation for the extremely high Type I error rate in the previous 

simulation along the diagonal was due to the lack of normality within the adjustment cells or the 

way the cells were formed based on the observed covariate. Therefore, if each adjustment cell 

has a normal distribution, when the two sections have similar expected grades and similar drop 

rates, the t-test is able to correctly detect that the two groups are not different. However, as the 

drop rates differ, the Type I error becomes higher. Additionally, one replicate in one of the 

simulations had to be dropped due to having an adjustment cell with one or fewer observations. 

Thus, having a normal distribution within each cell only gives better results if the drop rate 

patterns are the same between the two sections. 
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3.1.4 Simulation 3. Predicted Mean Stratification: Normally Distributed and Random Cells. 

 

I decided to re-do the unrealistic simulation above generating random data coming from Normal 

distributions with means 50, 75, and 85, and standard deviations 10, but instead of fixing the 

groups, I decided to rank the data and group the data in terciles of the covariate x. 

 

Below are the results of the simulations: 

 

Table 3.3 Independent Samples with Unequal Variance T-test using Predicted Mean 

Stratification for Missingness Adjustment: Normally Distributed and Random Cells 

    Section 1 

  Type 1 2 3 4 5 6 7 8 9 

  Drop% 45.10 40.10 34.40 28.40 22.62 17.24 12.65 9.25 6.73 

  𝛽0 6.06 5.06 4.06 3.06 2.06 1.06 0.06 -0.94 -1.94 

  𝛽1 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 

Section 

2 

1 9.6% / 1                 

2 9.2% / 2 10.9%               

3 11.5% / 3 10.1% 9.8%             

4 14.7% / 1 12.8% 10.6% 11.4%           

5 17.8% / 1 15.7% 12.7% 11.9% 11.5%         

6 23.4% / 2 20.1% 15.8% 13.7% 13.8% 13.6%       

7 28.1% / 1 22.9% 21.6% 17.6% 13.4% 10.7% 14.0%     

8 29.3% / 1 26.0% 21.4% 16.4% 16.7% 14.0% 13.0% 12.2%   

9 29.7% 25.4% 22.9% 17.1% 14.7% 13.8% 11.7% 14.5% 13.5% 

                      
 

The Type I error rate is still high, but it is lower than it was in previous simulations. Along the 

diagonal the Type I error rate was increased in comparison to the previous set of simulations 

with fixed normal groups. This is possibly due to the fact that now that the groups are not fixed 

with a normal distribution, the assumption of normality in the t-test is being violated again. 
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3.1.5 Simulation 4. Predicted Mean Stratification: Beta Distribution and Fixed Cells. 

 

I conducted simulations in which each of the three groups had a non-normal distribution and 

compared the Type I error rates. 

 

In the following set of simulations, the adjustment cells were fixed such that: 

𝑋|𝑐 = 1~𝐵𝑒𝑡𝑎(1, 4) ∗ 40 

𝑋|𝑐 = 2~70 + 𝐵𝑒𝑡𝑎(4, 1) ∗ 30 

𝑋|𝑐 = 3~40 + 𝐵𝑒𝑡𝑎(10, 10) ∗ 30 

Below are the results: 

 

Table 3.4 Independent Samples with Unequal Variance T-test using Predicted Mean Stratification 

for Missingness Adjustment: Beta Distribution and Fixed Cells 

    Section 1 

  Type 1 2 3 4 5 6 7 8 9 

  Drop% 67.76 63.40 57.87 51.00 42.49 32.58 22.18 13.80 8.25 

  𝛽0 6.06 5.06 4.06 3.06 2.06 1.06 0.06 -0.94 -1.94 

  𝛽1 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 

Section 

2 

1 7.6% / 631                 

2 6.9% / 523 5.8% / 314               

3 16.2% / 396 9.7% / 186 5.9% / 64             

4 26.3% / 398 17.0% / 182 6.3% / 31 4.2%           

5 40.5% / 403 28.9% / 159 17.6% / 39 10.0% / 1 4.3%         

6 45.3% / 395 38.8% / 150 30.2% / 33 19.6% / 1 8.8% 4.9%       

7 53.1% / 392 43.9% / 164 42.6% / 31 36.3% / 1 20.9% 7.9% 5.9%     

8 52.2% / 397 51.7% / 178 52.8% / 32 45.8% / 1 31.4% 14.9% 5.8% 5.3%   

9 57.8% / 413 56.8% / 180 54.3% / 36 50.6% / 4 37.0% 16.7% 8.3% 5.4% 4.7% 
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Not only is the Type I error rate high, but also has numerous replicates that had to be discarded 

due to one of the adjustment cells having one or fewer observations. When adjustment cells have 

non-normal distribution and when there is an extreme drop rate, this method detects a difference 

between groups when there is none, or cannot analyze the data due to having an empty cell. 

 

3.1.6  Simulation 5. Predicted Mean Stratification: Beta Distribution and Random Cells 

 

In the next set of simulations I used the same distributions as above, but rather than fixing the 

groups, I ranked the data and grouped it based on terciles of x. 

 

Below are the results: 

 

Table 3.5 Independent Samples with Unequal Variance T-test using Predicted Mean Stratification for 

Missingness Adjustment: Beta Distribution and Random Cells 

    Section 1 

  Type 1 2 3 4 5 6 7 8 9 

  Drop 67.76 63.40 57.87 51.00 42.49 32.58 22.18 13.80 8.25 

  𝛽0 6.06 5.06 4.06 3.06 2.06 1.06 0.06 -0.94 -1.94 

  𝛽1 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 

Section 

2 

1 13.3% / 955                 

2 7.3% / 918 5.9% / 778               

3 16.0% / 844 10.2% / 606 9.1% / 293             

4 19.6% / 811 13.5% / 542 9.7% / 153 9.7% / 19           

5 28.3% / 813 18.8% / 515 16.1% / 174 13.7% / 18 10.2%         

6 31.7% / 817 27.4% / 504 19.1% / 141 18.4% / 10 15.8% 14.1%       

7 37.4% / 802 30.6% / 533 24.6% / 175 21.1% / 17 18.6% 14.3% 15.8%     

8 38.4% / 797 31.2% / 529 28.0% / 156 24.7% / 9 20.5% 19.0% 15.8% 13.2%   

9 35.9% / 816 36.1% / 504 28.3% / 170 26.0% / 8 23.2% 18.5% 16.6% 17.0% 14.8% 
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There was a high Type I error rate and excessive discarded replicates due to adjustment cells 

with one or fewer observations. Thus, this method is not appropriate when the cells have a non-

normal distribution or when there is an extreme dropout rate. 

 

3.2  Conclusion 

 

In this chapter I conducted simulations where I generated data for two sections with similar Y 

(FinalExam) distributions but different drop rates. I compared the two sections with an 

independent samples unequal variance t-test adjusting for missingness using Little’s predicted 

mean stratification for missing data adjustment using X (Exam1) as the covariate. Based on the 

simulations conducted above, it appears that if the dropout patterns are different between the two 

groups, this method may be an improvement over ignoring missing data as long as there are no 

cells with one or fewer observations. However, the Type I error rate is still excessively high, 

making this method inappropriate. 

 

In the next chapter, I will explore missingness adjustment based on the response propensity. 
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CHAPTER 4 

MISSINGNESS ADJUSTMENT BASED ON RESPONSE PROPENSITY 

 

4.1  Use of T-Test to Analyze Data Using the Response Propensity to Adjust for Missingness 

 

4.1.1  Simulation 1. Response Propensity Stratification: Type I Error Rate 

 

In the next set of simulations, realistic random data is generated in the same manner as in the 

original simulations (Chapter 1, Section 1.3). In order to create groups based on the response 

propensity, let: 

𝑟 = {
1,    if student remains enrolled
0,                  if student drops out

 

 

A logistic regression is used to model the probability �̂�𝑅(𝑥) of a student remaining enrolled as a 

function of their Exam1 score x. Students are ranked based on their response propensity score 

�̂�𝑅(𝑥) for each section and grouped into terciles. Thus, students whose �̂�𝑅(𝑥) scores fell in the 

first tercile were in adjustment cell 1, students in the middle tercile were in adjustment cell 2, and 

students in the upper tercile were in adjustment cell 3. This simulation tested whether 𝐸1(𝑌) =

𝐸2(𝑌). 

 

Using Little’s formula for means and standard deviations, simulations are conducted comparing 

the group means with an independent samples unequal variance t-test at different drop rates. If 

any adjustment cell had one or fewer observations, then the mean and variance of this adjustment 
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cell could not be calculated and this replicate had to be discarded. Since the simulations were 

created such that there was no difference between Section 1 and Section 2, 5% of the p-values 

should be significant at 𝛼 = .05, regardless of the drop rate. Below are the results with the 

percentage of significant p-values out of 1,000 replicates. If any replicate was discarded due to 

having one or fewer observations in a cell, the number of discarded replicates are reported after 

the percentage of significant p-values: 

 

Table 4.1 Independent Samples with Unequal Variance T-test using Response Propensity 

Stratification for Missingness Adjustment: Type I Error Rate 

    Section 1 

  Type 1 2 3 4 5 6 7 8 9 

  Drop% 24.46 21.97 19.06 15.98 13.33 11.09 9.21 7.23 5.96 

  𝛽0 6.06 5.06 4.06 3.06 2.06 1.06 0.06 -0.94 -1.94 

  𝛽1 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 

Section 

2 

1 23.6%                 

2 26.1% 23.2%               

3 28.2% 24.4% 24.3%             

4 31.7% 27.9% 25.9% 24.0%           

5 35.3% 31.0% 28.6% 27.6% 26.2%         

6 37.3% 34.2% 31.0% 25.4% 26.8% 26.0%       

7 39.5% 36.8% 33.2% 28.4% 28.9% 23.4% 27.0%     

8 44.5% 40.6% 34.3% 33.0% 26.7% 25.83% / 1 25.9% 27.6%   

9 42.9% 39.4% 34.6% 33.9% 28.5% 26.5% 25.9% 23.7% 24.7% 

                      
 

Even though the results seem better than analyzing the data without making adjustments for 

missing observations, the Type I error rate remains excessively high. Along the diagonal where 

even though the dropout patterns are the same between the two classes the Type I error rate is 

higher than in the simulations where no missingness adjustments were made. Thus, this method 

seems to only show an improvement over a t-test without adjusting for missingness if the 
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dropout patterns are substantially different between the two sections, but not if the dropout 

patterns are similar. 

 

4.1.2  Simulation 2. Inverse Response Propensity Weighting without Stratification: Type I Error 

Rate 

 

The following set of simulations uses the same data that was used in previous simulations, and 

an independent samples t-test is conducted based on the method that Little describes where 

observations are weighted by the inverse of the response propensity score. Below are the results: 

 

Table 4.2 Independent Samples with Unequal Variance T-test using Inverse Response 

Propensity without Stratification for Missingness Adjustment: Type I Error Rate 

    Section 1 

  Type 1 2 3 4 5 6 7 8 9 

  Drop 24.46 21.97 19.06 15.98 13.33 11.09 9.21 7.23 5.96 

  𝛽0 6.06 5.06 4.06 3.06 2.06 1.06 0.06 -0.94 -1.94 

  𝛽1 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 

Section 

2 

1 18.6%                 

2 15.9% 13.4%               

3 16.3% 11.4% 9.0%             

4 13.3% 9.1% 7.7% 5.7%           

5 13.4% 11.1% 8.0% 7.6% 4.8%         

6 13.0% 11.3% 7.2% 6.4% 5.6% 4.4%       

7 13.7% 9.4% 8.1% 5.2% 5.1% 3.9% 4.7%     

8 12.4% 9.0% 6.3% 5.5% 4.8% 4.1% 3.8% 5.8%   

9 13.1% 8.9% 9.0% 6.4% 4.2% 4.1% 4.1% 3.2% 4.6% 

                      
 

In these simulations, the Type I error rate seems to have diminished in comparison with the other 

methods. It appears that the largest number of false positives is when 𝛽1 is furthest away from 
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zero. This makes intuitive sense, since 𝛽1 is the part of the dropout that depends on x. Therefore, 

for extremely low values of x, the dropout is extremely high, and it is possible that the lowest 

values of x are not being represented by observed values of y. 

 

It appears that this method is giving improved results in comparison to previous methods. The 

Type I error rate is higher than 5%, but it is not as excessively high as when using previous 

methods. The next step is to examine the power for this method. It is possible, as Little explains 

in his paper, that the reason why the t-test is not detecting a difference between means is due to 

extremely large variance rather than appropriately correcting for bias. Therefore, the next 

simulations will show whether this method has an appropriate power in detecting a difference 

when there is a real difference between the two sections. 

 

4.1.3  Simulation 3. Inverse Response Propensity Weighting without Stratification with Different 

E(Y) between the Sections: Power 

 

In the following simulation, the Exam1 scores have the same distribution as in previous 

simulations. However, the FinalExam scores will be different between the two sections: 

Section 1: 𝑌 = 𝑋 − 13 + ϵ 

Section 2: 𝑌 = 𝑋 − 8 + 𝜖 

where: 

𝜖 ~ 𝑍 ∗ 5, 𝑎𝑛𝑑 

𝑍 ~ 𝑁(0,1). 
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Thus, 

𝐸1(𝑌) − 𝐸2(𝑌) = 5. 

 

Simulations were conducted to see whether conducting a t-test weighting by the inverse of the 

response propensity score is able to detect this difference. First, a simulation with 1,000 

replicates was run with no drop rate, and an independent samples t-test with equal variances was 

conducted. In this simulation, 74.70% of the times the t-test was able to detect the difference 

between the two sections. Therefore, 74.70% power is an appropriate goal. 

 

The following table shows the percentage of the times that the t-test with the inverse �̂�𝑅(𝑥) 

weighting adjustment discussed detects the difference between the two sections. 

 

Table 4.3 Independent Samples with Unequal Variance T-test using Inverse Response 

Propensity Weighting without Stratification for Missingness Adjustment with Different E(Y) 

between the Sections: Power 

    Section 1 

  Type 1 2 3 4 5 6 7 8 9 

  Drop% 24.46 21.97 19.06 15.98 13.33 11.09 9.21 7.23 5.96 

  𝛽0 6.06 5.06 4.06 3.06 2.06 1.06 0.06 -0.94 -1.94 

  𝛽1 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 

Section 

2 

1 65.1%                 

2 56.5% 66.1%               

3 58.2% 61.2% 63.0%             

4 55.8% 59.6% 62.1% 63.1%           

5 52.3% 58.5% 60.6% 64.4% 67.1%         

6 54.5% 60.7% 62.4% 67.6% 67.1% 67.9%       

7 55.0% 60.5% 62.1% 66.8% 67.6% 66.5% 70.9%     

8 54.8% 57.6% 65.0% 65.9% 67.5% 67.7% 67.9% 70.1%   

9 56.5% 60.4% 65.6% 65.4% 67.5% 68.5% 69.5% 68.6% 70.8% 
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The results above show an acceptable level of power, between 52% and 70%, depending on the 

level of drop rate. Thus, it would seem that this method has an appropriate power and an 

improved Type I error rate in comparison to previous methods or not adjusting for missingness. 

As shown on the table, the power increases as 𝛽1 gets closer to zero. This is consistent with 

results from previous simulations, where a 𝛽1 that is closer to zero brings less biased results. 

Therefore, for extremely low values of x, the dropout is extremely high, and it is possible that the 

lowest values of x are not being represented by observed values of y.  

 

4.1.4 Simulation 4. Inverse Response Propensity Weighting without Stratification with Different 

E(Y) between the Sections: Power 

 

In the following simulation, the Exam1 scores have the same distribution as in previous 

simulations. However, the FinalExam scores are different between the two classes: 

 

Section 1: 𝑌 = 𝑋 − 13 + ϵ 

Section 2: 𝑌 = .85 ∗ 𝑋 + 4.5 + 𝜖 

 

where: 

𝜖 ~ 𝑍 ∗ 5 

𝑍 ~ 𝑁(0,1) 

 

Then: 
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𝐸1(𝑌) − 𝐸2(𝑌) = 5 

 

I now conduct simulations to see whether conducting a t-test weighting by the inverse of the 

response propensity score is able to detect this difference. A simulation with 1,000 replicates was 

done without missing observations, and an independent samples with equal variances t-test was 

conducted. 81.00% of the times the t-test was able to detect the difference between the two 

sections. 

 

The following table shows the percentage of the times that the t-test with inverse response 

propensity weighting detects the difference between the two sections according to each drop rate. 

 

Table 4.4 Independent Samples with Unequal Variance T-test using Inverse Response 

Propensity Weighting without Stratification for Missingness Adjustment with Different 

E(Y) between the Sections: Power 

    Section 1 

  Type 1 2 3 4 5 6 7 8 9 

  Drop% 24.46 21.97 19.06 15.98 13.33 11.09 9.21 7.23 5.96 

  𝛽0 6.06 5.06 4.06 3.06 2.06 1.06 0.06 -0.94 -1.94 

  𝛽1 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 

Section 

2 

1 67.9%                 

2 62.2% 69.6%               

3 63.6% 66.1% 68.5%             

4 60.5% 66.0% 67.3% 68.0%           

5 57.3% 63.7% 64.9% 70.0% 72.9%         

6 60.6% 64.8% 69.2% 73.9% 72.2% 74.3%       

7 61.3% 66.5% 67.5% 74.6% 73.1% 73.5% 76.5%     

8 61.0% 64.3% 70.7% 71.8% 74.4% 75.3% 74.9% 76.4%   

9 62.1% 66.4% 71.3% 71.6% 72.1% 75.7% 76.6% 74.2% 77.3% 
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As can be seen in the above table, this method is showing an appropriate amount of power. 

Between 57% and 77% of the simulations detected a difference between the two sections when a 

difference was present. 

 

4.2  Conclusion 

 

In this chapter, I first conducted simulations where I generated data for two sections with similar 

Y (FinalExam) distributions but differing drop rates. I compared the two sections with an 

independent samples unequal variance t-test adjusting for missingness using Little’s inverse 

response propensity stratification for missing data adjustment, using �̂�𝑅(𝑥) as the covariate. To 

estimate �̂�𝑅(𝑥), I used a logistic regression to calculate the probability of r (whether the student 

took the final exam or not) based on x (the Exam1 score). I created adjustment cells based on 

terciles of �̂�𝑅(𝑥), and implemented Little’s method this way using different drop rates for each 

section. This method showed an excessive amount of Type I error rate. 

 

In the second part of this chapter, I used the estimated response propensity to adjust for 

missingness, but I weighted the observations by the inverse of �̂�𝑅(𝑥) rather than using 

stratification. The simulations showed a reduced amount of Type I error rates. Therefore, I 

proceeded to evaluate whether this method has an appropriate level of power. I generated new 

data where the distribution of Y is different for each section, and I conducted simulations where I 

compared the two sections for different drop rates. The analysis using this method was able to 

detect the difference between the groups in 52% to 77% of the simulations depending on the 
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dropout patterns. A t-test without missing data was able to detect the difference between the two 

sections in 74% to 81% of the simulations. This indicates that this method can accurately 

compare the difference between the two sections when the drop rates differ. This method seems 

considerably more accurate when 𝛽1 (the dropout associated with the covariate x) is closer to 

zero. This is expected, since when x is extremely low and 𝛽1 is further from zero, there is an 

excessive number of missing observations; therefore, there are no y values observed when x is 

extremely low. 

 

Out of the methods discussed, it appears that using an independent samples t-test with equal 

variances weighting by the inverse of the response propensity is giving the best results. It has the 

lowest percentage of Type I error, and it seems to have an appropriate amount of power to detect 

a difference between the two sections when a difference is present. 
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CHAPTER 5 

USE OF ANALYSIS OF COVARIANCE TO ADJUST FOR MISSINGNESS 

 

5.1  Use of Analysis of Covariance to Estimate Group Differences 

 

5.1.1  Analysis of Covariance 

 

In clinical trials, researchers use an analysis of covariance sometimes to compare the difference 

in response to treatments between the groups. In the context of this paper, notice that rather than 

comparing the FinalExam score means between the two sections, ANCOVA would compare the 

FinalExam score mean given Exam1 score: 

𝐸1(𝑌|𝑋 = 𝑥0) = 𝐸2(𝑌|𝑋 = 𝑥0) 

 

ANCOVA assumes that the slopes the regression lines for both sections are parallel and both 

sections have the same expected baseline (Kutner et al. 2005). Then: 

𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑋𝑖𝑗 + 𝜖𝑖𝑗 

where  

𝛽11 = 𝛽12, 

𝐸1(𝑋) = 𝐸2(𝑋), 

and 

𝜖𝑖𝑗 ~ 𝑁(0, 𝜎2). 

Thus, 
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𝐸1(𝑌) − 𝐸2(𝑌) = 𝐸1(𝐸1(𝑌|𝑋)) − 𝐸2(𝐸2(𝑌|𝑋)) 

= 𝐸1(𝛽01 + 𝛽11𝑋) − 𝐸2(𝛽02 + 𝛽12𝑋) 

= 𝛽01 + 𝛽11𝐸1(𝑋) − 𝛽02 − 𝛽12𝐸2(𝑋) 

= 𝛽01 − 𝛽02 

 

In his paper “On Efficiency of Constrained Longitudinal Data Analysis versus Longitudinal 

Analysis of Covariance”, Lu (2010) discusses randomized clinical trials where subjects may drop 

out after a few visits, and he compares constrained longitudinal data analysis (cLDA) and 

longitudinal analysis of covariance when analyzing these data sets. However, since this thesis is 

concerned with ANCOVA only, cLDA will not be discussed. 

 

In his Web Appendix, Lu shows that if the probability of drop-out depends on the baseline value, 

then ANCOVA gives an unbiased estimate of the between-group differences. He assumes that 

the data is missing at random and the probability of missingness depends on the observed 

baseline and treatment group. 

 

The estimated postbaseline mean in group j is: 

�̂�𝑗 = �̂�0𝑗 + �̂�1�̅�, 

where �̅� is the observed baseline mean for subjects included in the analysis from both groups. 

Thus, the estimated mean difference at postbaseline time points between groups is: 

�̂�1 − �̂�2 = �̂�01 + �̂�1�̅� − �̂�02 − �̂�1�̅� = �̂�01 − �̂�02. 

which is an unbiased estimate of 𝛽01 − 𝛽02. 
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Lu conducts simulations comparing two treatment groups with three models of missing data: in 

the first model, missingness is MAR and depends on the previously observed value. In the 

second model, missingness depends also on the treatment group. In the third model, intermittent 

MCAR missingness is generated. He furthermore generated two other scenarios where the third 

model is combined with the first and the second models. The simulations showed a Type I error 

rate between 5.0% and 5.3% and a power between 73.1% and 91.2%. 

 

In the following section, I will examine the Type I error rate and power of ANCOVA using this 

paper’s scenario and compare it to the t-test using inverse response propensity weighting. 

 

5.1.2  Simulation 1. ANCOVA: Type I Error Rate 

 

Data was generated similarly to previous simulations with: 

𝑌 = 𝑋 − 13 + 𝜖 

for both sections. 

 

Then, 𝐸1(𝑌|𝑋 = 𝑥0 ) = 𝐸2(𝑌|𝑋 = 𝑥0) was tested using a regular ANCOVA in 1,000 replicates 

at each drop rates. Since both sections have the same expected conditional outcome, 5% of the p-

values should be significant at 𝛼 = .05. The table below shows the Type I error rate for 

simulations with different drop rates. 
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Table 5.1. ANCOVA Assuming Equal E(Y) for both Sections: Type I Error Rate   

    Section 1 

  Type 1 2 3 4 5 6 7 8 9 

  Drop% 24.46 21.97 19.06 15.98 13.33 11.09 9.21 7.23 5.96 

  𝛽0 6.06 5.06 4.06 3.06 2.06 1.06 0.06 -0.94 -1.94 

  𝛽1 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 

Section 2 

1 4.90%                 

2 4.30% 5.90%               

3 5.40% 5.60% 5.60%             

4 4.50% 5.60% 5.20% 6.10%           

5 4.90% 6.60% 5.90% 6.30% 5.50%         

6 5.10% 6.40% 4.90% 6.40% 5.20% 4.50%       

7 5.30% 5.40% 5.90% 4.80% 5.90% 3.70% 4.70%     

8 4.70% 5.20% 5.60% 5.20% 5.80% 4.70% 4.60% 4.50%   

9 6.60% 5.50% 4.70% 5.20% 4.50% 4.70% 5.10% 4.90% 4.90% 

 

 

The Type I error rate is around 5%, which is what is expected. Therefore, in the following set of 

simulations I will test the power of using ANCOVA to adjust for missing data. 

 

5.1.3  Simulations 2. ANCOVA: Power 

In this set of simulations, in order to test the power of ANCOVA, data was generated such that: 

𝑌1 = 𝑋 − 13 + 𝜖 

𝑌2 = 𝑋 − 8 + 𝜖 

 

Simulations with 1,000 replicates using an ANCOVA to compare the two sections at each drop 

rate were conducted. Since both sections have a different 𝐸𝑗(𝑌|𝑋 = 𝑥0), it is expected that there 

will be a high percentage of significant p-values. Below are the results. 
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Table 5.2. ANCOVA Assuming Different E(Y) between the Sections: Power 

     Section 1 

  Type 1 2 3 4 5 6 7 8  9 

  Drop% 24.46 21.97 19.06 15.98 13.33 11.09 9.21 7.23  5.96 

   𝛽0 6.06 5.06 4.06 3.06 2.06 1.06 0.06 -0.94  -1.94 

   𝛽1 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02  -0.01 

Section 

2 

1 100.0%                  

2 100.0% 100.0%                

3 100.0% 100.0% 100.0%              

4 100.0% 100.0% 100.0% 100.0%            

5 100.0% 100.0% 100.0% 100.0% 100.0%          

6 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%        

7 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%      

8 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%    

9 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%  100.0% 

 

The ANCOVA detected the difference in conditional means in 100% of the simulations, 

regardless of the drop rate. This method is showing appropriate Type I error rate and strong 

power. 

 

5.1.4  Simulations 3. ANCOVA Using Inverse Propensity Weighting: Type I Error Rate 

 

In the next set of simulations, a combination of Little’s inverse propensity weighting method and 

ANCOVA were used to see whether this combination would improve upon these two methods 

individually. An ANCOVA using the inverted propensity weighting method was used with:  

𝑌 = 𝑋 − 13 + 𝜖 

for both sections.  

 

Below are the results. 
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Table 5.3. ANCOVA with Inverse Propensity Weighting Assuming Equal E(Y) for both 

Sections: Type I Error Rate 

    Section 1 

  Type 1 2 3 4 5 6 7 8 9 

  Drop% 24.46 21.97 19.06 15.98 13.33 11.09 9.21 7.23 5.96 

  𝛽0 6.06 5.06 4.06 3.06 2.06 1.06 0.06 -0.94 -1.94 

  𝛽1 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 

Section 2 

1 7.80%                 

2 7.80% 8.50%               

3 8.00% 5.70% 6.80%             

4 6.10% 7.20% 6.10% 6.70%           

5 7.40% 7.60% 6.50% 6.40% 5.60%         

6 7.70% 7.80% 5.00% 7.00% 5.40% 4.40%       

7 6.80% 7.00% 7.20% 5.00% 6.10% 3.80% 4.50%     

8 5.90% 7.30% 5.80% 6.40% 5.90% 4.50% 4.70% 4.60%   

9 8.50% 6.40% 5.50% 5.00% 4.50% 5.00% 5.40% 5.10% 4.80% 

 

In using ANCOVA, the Type I error rate was slightly higher using the inverted propensity 

weighting than without it. 

 

5.2  Conclusion 

In this chapter, I first conducted simulations generating data for the two sections with similar Y 

(FinalExam) distributions but different drop rates. I compared the two sections using an Analysis 

of Covariance. The Type I error rate was close to 5%; in fact, the Type I error was lower using 

ANCOVA than using an independent samples t-test with inverse propensity weighting. I then 

proceeded to investigate the power of using ANCOVA to adjust for missingness, and this 

method had a higher power than the independent samples t-test with inverse propensity 

weighting. Using a combination of ANCOVA and inverse propensity weighting had a slightly 

higher Type I error rate; therefore, I did not proceed to investigate the power of this method, 

since it appears that ANCOVA without any weighting is a better method. 
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Analysis of covariance is based on the assumptions that 𝛽1 and E(X) are equal in both sections. 

The next chapter will compare the performances of the ANCOVA and the independent samples 

t-test with inverse response propensity score weighting. 
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CHAPTER 6 

ANCOVA LIMITATIONS AND INVERSE RESPONSE PROPENSITY SCORE 

WEIGHTING SOLUTIONS 

 

6.1 Limitations of ANCOVA 

 

The previous chapter showed that ANCOVA appears to be a more powerful test than 

independent samples t-test with inverse response propensity weighting for missingness 

adjustment. However, in the previous simulations it was assumed that the ANCOVA 

assumptions were met. In this chapter, the focus is on exploring what happens when the 

ANCOVA assumptions are not met, but ANCOVA is mistakenly used regardless. 

 

ANCOVA is based on the following two assumptions: 

(1) 𝛽11 = 𝛽12, and 

(2) 𝐸1(𝑋) = 𝐸2(𝑋). 

 

Thus, 

𝐸1(𝑌) − 𝐸2(𝑌) = (𝛽01 − 𝛽11𝐸1(𝑋)) − (𝛽02 − 𝛽12𝐸2(𝑋)) 

= (𝛽01 − 𝛽02) + (𝛽11𝐸1(𝑋) − 𝛽12𝐸2(𝑋)) 

= 𝛽01 − 𝛽02, 

and this is how it is possible to compare group means for Y using ANCOVA. 
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However, if either of the above assumptions are violated, then this comparison cannot take place. 

 

(1) Assume that 𝛽11 ≠ 𝛽12. 

 

Then, 

𝐸1(𝑌|𝑋 = 𝑥0) − 𝐸2(𝑌|𝑋 = 𝑥0) = (𝛽01 − 𝛽02) + (𝛽11 − 𝛽12)𝑥0 

is sensitive to the choice of 𝑥0.  

 

(2) Assume 𝐸1(𝑋) ≠ 𝐸2(𝑋). 

 

Then,  

𝐸1(𝑌) − 𝐸2(𝑌) = (𝛽01 − 𝛽02) + (𝛽11𝐸1(𝑋) − 𝛽12𝐸2(𝑋)), 

and 𝐸1(𝑌) − 𝐸2(𝑌) cannot be estimated as a simple linear combination of parameters. 

 

This chapter explores the use inverse response propensity weighting and ANCOVA for situations 

when ANCOVA assumptions are violated. 

 

6.1.1  Different E(X) and Equal E(Y) between the Sections 

 

In the following simulations, random data was generated so that the two sections have a different 

Exam1 score mean but the same FinalExam mean: 

𝑋1~𝐵𝑒𝑡𝑎(4, .8) 



46 

 

𝑌1 = 𝑋 − 13 + 𝜖 

and 

𝑋2~𝐵𝑒𝑡𝑎(4, 1.13) 

𝑌2 = 𝑋 − 8 + 𝜖. 

Then, 

𝐸1(𝑋) = 83 

𝐸1(𝑌) = 70 

and 

𝐸2(𝑋) = 78 

𝐸2(𝑌) = 70. 

 

Thus, both sections have a different mean Exam1 score and the same FinalExam score. The 

interest is in the difference between FinalExam scores between the two classes. Therefore, since 

both classes have the same expected FinalExam score, when conducting the analysis, a 

significant difference between the sections should not be found. 

 

6.1.1.1 Use of ANCOVA when E(X) is Different but E(Y) is Equal between the Sections: Type I 

Error Rate 

 

In this simulation, an Analysis of Covariance is used fitting 𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑋𝑖𝑗 and testing 𝛽01 =

𝛽02. Since 𝐸(𝑌) is equal for both sections, the test conducted should not detect a difference 
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between the two sections. However, since 𝐸(𝑌|𝑋 = 𝑥0) is different for both sections, ANCOVA 

is probably going to find a significant difference. 

 

Table 6.1. ANCOVA with Different E(X) and Equal E(Y) for Both Sections: Type I Error Rate  

    Section 1 

  Type 1 2 3 4 5 6 7 8 9 

  Drop%  31.98  28.24  24.29 20.16   16.75  13.01 10.14   7.85 6.13  

  𝛽0 6.06 5.06 4.06 3.06 2.06 1.06 0.06 -0.94 -1.94 

  𝛽1 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 

Section 

2 

1 100.0%                 

2 100.0% 100.0%               

3 100.0% 100.0% 100.0%             

4 100.0% 100.0% 100.0% 100.0%           

5 100.0% 100.0% 100.0% 100.0% 100.0%         

6 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%       

7 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%     

8 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%   

9 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

 

As it was expected, there was a 100% Type I error. Both sections had the same FinalExam score 

mean, but due to the difference in baseline the ANCOVA found a significant difference between 

both sections. The reason for this is because ANCOVA is detecting 𝐸1(𝑌|𝑋 = 𝑥0) ≠ 𝐸2(𝑌|𝑋 =

𝑥0), rather than just comparing 𝐸1(𝑌) − 𝐸2(𝑌). 

 

6.1.1.2  Use of Independent Samples T-Test with Inverse Response Propensity Score Weighting 

when E(X) is Different but E(Y) is Equal between the Sections: Type I Error Rate 

 

In the following simulations, the same scenario as above is simulated and an independent 

samples t-test with inverse response propensity score weighting is used. Below are the results: 
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Table 6.2. Independent Samples T-Test with Inverse Response Propensity Score Weighting with 

Different E(X) and Equal E(Y) for Both Sections: Type I Error Rate 

    Section 1 

  Type 1 2 3 4 5 6 7 8 9 

  Drop% 24.46 21.97 19.06 15.98 13.33 11.09 9.21 7.23 5.96 

  𝛽0 6.06 5.06 4.06 3.06 2.06 1.06 0.06 -0.94 -1.94 

  𝛽1 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 

Section 2 

1 18.10%                 

2 15.90% 15.70%               

3 11.90% 13.20% 10.60%             

4 13.60% 10.10% 8.10% 6.90%           

5 14.20% 10.10% 8.60% 6.10% 5.80%         

6 14.00% 10.90% 8.90% 6.10% 5.20% 4.50%       

7 15.50% 10.20% 7.90% 5.70% 4.10% 3.70% 3.60%     

8 14.50% 11.50% 7.50% 5.20% 4.00% 4.40% 4.60% 4.60%   

9 14.10% 10.20% 7.60% 5.00% 3.20% 4.30% 4.80% 4.70% 3.20% 

 

Even though for high drop rates the Type I error rate was 18.10%, this method was able to give 

improved estimates compared to ANCOVA when both sections have a different Exam1 mean 

and the same FinalExam mean. 

 

6.1.2  Equal E(X), Different X and Y Relationship, Equal E(Y) 

 

In the following simulations, random data was generated so that the two sections have the same 

Exam1 score mean, the same FinalExam mean, but a different relationship between Exam1 and 

FinalExam scores: 

𝑋~𝐵𝑒𝑡𝑎(4, .8) 

𝑌1 = 𝑋 − 13 + 𝜖 

𝐸1(𝑌) = 70, 
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and 

𝑌2 = 1.15𝑋 − 25 + 𝜖 

𝐸2(𝑌) = 70. 

 

It is clear that the ANCOVA assumption of equal slopes is being violated. 

 

6.1.2.1  Use of ANCOVA when E(X) and E(Y) are Equal but Assumption of Equal Slopes is 

Violated: Type I Error Rate 

 

In the following set of simulations, and ANCOVA is being used to analyze the data. 

 

Table 6.3. ANCOVA with Equal E(X), Equal E(Y), and Different Relationship between X and Y in Both 

Sections: Type I Error Rate 

    Section 1 

  Type 1 2 3 4 5 6 7 8 9 

  Drop% 24.46 21.97 19.06 15.98 13.33 11.09 9.21 7.23 5.96 

   𝛽0 6.06 5.06 4.06 3.06 2.06 1.06 0.06 -0.94 -1.94 

   𝛽1 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 

Section 

2 

1 38.40%                 

2 39.10% 37.20%               

3 36.20% 35.30% 34.30%             

4 35.60% 34.10% 30.20% 26.10%           

5 34.10% 31.20% 29.10% 23.80% 21.80%         

6 31.70% 31.70% 26.50% 24.80% 21.00% 19.00%       

7 33.40% 30.90% 25.90% 23.20% 20.10% 16.50% 16.30%     

8 33.50% 27.40% 26.50% 22.20% 20.30% 16.20% 16.10% 14.50%   

9 32.90% 29.60% 24.30% 20.50% 16.80% 15.40% 16.00% 13.80% 12.60% 
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As shown in the above table, the Type I error rate is high. The ANCOVA detected a large 

number of significant differences between the groups when in fact there are no differences in 

mean FinalExam score means. Additionally, notice that the larger the dropout, the higher the 

Type I error rate becomes. As in the previous simulations, this is likely due to the high dropout 

among students with low scores. 

 

6.1.2.2  Use of Independent Samples T-Test with Inverse Response Propensity Weighting when 

E(X) and E(Y) are Equal but ANCOVA Assumption of Equal Slopes is Violated: Type I Error 

Rate 

 

In the following simulations, the same scenario as above is represented, but rather than analyzing 

the data with an ANCOVA, the independent samples t-test with inverse response propensity 

weighting is used. 
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Table 6.4. Independent Samples T-Test with Inverse Response Propensity Score Weighting 

with Equal E(X), Equal E(Y), and Different Relationship between X and Y in Both Sections: 

Type I Error Rate 

    Section 1 

  Type 1 2 3 4 5 6 7 8 9 

  Drop% 24.46 21.97 19.06 15.98 13.33 11.09 9.21 7.23 5.96 

  𝛽0 6.06 5.06 4.06 3.06 2.06 1.06 0.06 -0.94 -1.94 

  𝛽1 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 

Section 

2 

1 19.70%                 

2 15.80% 14.20%               

3 14.70% 11.60% 9.80%             

4 11.40% 8.60% 7.10% 6.60%           

5 11.70% 10.10% 8.20% 7.00% 4.70%         

6 10.60% 9.90% 6.50% 6.30% 5.70% 6.10%       

7 11.00% 8.30% 6.80% 6.00% 6.00% 4.30% 5.40%     

8 10.80% 8.90% 7.90% 5.00% 4.90% 4.50% 5.00% 5.90%   

9 10.40% 8.30% 8.30% 7.10% 3.80% 5.10% 4.80% 4.80% 5.00% 

 

As shown in the table above, even though when the dropout is high the Type I error is also high, 

it is still more reasonable than when an ANCOVA was used. The higher Type I error rate with 

the higher dropout is possibly due to those extreme observations that are not being represented. 

 

6.2  Conclusion 

 

This chapter explored scenarios where the ANCOVA assumptions are violated. It was found that 

when 𝐸(𝑋) or 𝛽1 are different between the groups, ANCOVA is an inappropriate tool and a t-test 

with inverse response propensity score weighting can control Type I error rates. 

 

It was found that when the Exam1 score means are different between the two classes, the 

ANCOVA detected differences in FinalExam score means 100% of the times when the 
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simulations were set such that there were no differences in FinalExam score means. However, 

independent t-tests with inverse response propensity weighting had a Type I error rate between 

3.20% and 18.10%, showing that this method is superior to ANCOVA when the baselines are 

different between the two groups. 

 

Additionally, it was found that when 𝐸1(𝑋) = 𝐸2(𝑋) and 𝐸1(𝑌) = 𝐸2(𝑌) but the relationships 

between X and Y were different (meaning the two sections had different slopes connecting 

Exam1 and FinalExam scores), the Type I error rate for ANCOVA was excessively high 

(12.60% to 39.10%), while the Type I error rate for independent samples t-test with inverse 

response propensity weighting was again between 3.80% and 19.70%. 
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CHAPTER 7 

DISCUSSION 

 

This thesis addressed the importance of missing data and explored four methods for comparing 

group means while adjusting for missingness: independent samples with unequal variances t-test 

with predicted mean stratification, independent samples with unequal variances t-test with 

response propensity stratification, independent samples with equal variances t-test with inverse 

response propensity score weighting, and analysis of covariance. 

 

Before testing the missingness adjustment methods, a set of simulations using an independent 

samples t-test assuming equal variances with no missingness adjustment was conducted. It was 

found that when the drop patterns are equal between the two sections, the Type I error rate was 

around 5%, indicating that in these situations a t-test is an appropriate tool to compare two group 

means. However, when the drop patterns differed between the two sections, the Type I error rate 

increased, making this tool inappropriate for group comparisons. 

 

The two stratification methods suggested by Little were evaluated. It was found that when the 

dropout patterns differed between the two sections, these two methods offered a slight 

improvement over a t-test without any missingness adjustment. However, they still had an 

excessively high Type I error rate. Furthermore, when the drop patterns were similar between the 

two sections, the Type I error rate was increased in comparison to t-test without missingness 

adjustment. This appeared to be due to the lack of normality within the cells. 
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It was found that independent samples t-test with inverse response propensity weighting and 

ANCOVA can both control bias caused by dropout. When 𝐸1(𝑋) = 𝐸2(𝑋) and 𝛽11 = 𝛽12, 

ANCOVA was found to be a stronger tool than inverse response propensity weighting: it had the 

least amount of Type I error rate and the highest power. However, the use of ANCOVA is not 

appropriate if the assumptions are not met. In this case, using an independent samples equal 

variances t-test with inverse response propensity score weighting is more appropriate, and 

simulations supported this by showing that it had a lower level of Type I error rate and 

appropriate power when the dropout is not extreme. 

 

Therefore, an independent samples t-test assuming equal variances may be used when the drop 

patterns are equal between the two sections. Otherwise, if ANCOVA assumptions are met, the 

group means may be compared using this tool. If the drop patterns are different the two sections 

and the ANCOVA assumptions are not met, then a t-test with inverse response propensity 

weighting is an appropriate tool as long as the dropout is not extremely high. 

 

These methods are relatively simple to implement, and they are applicable in studies aimed to 

compare groups. Examples of potential research settings that may use these two methods are 

educational settings, clinical trials, survey research, and other studies involving group 

comparisons where it is possible to collect data that may be used as a covariate. 
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This thesis illustrates the importance of collecting information that may be used as a covariate. 

Data predictive of outcome as well as data related to dropout may be used in the study if 

missingness is an issue. 

 

A potential limitation of this study is the fact that the drop rates considered were not extremely 

high. The Type I error rate and power of ANCOVA did not appear to be affected by the drop 

rate; however, if extreme drop rates were considered, it is possible that ANCOVA would not 

have enough power to detect a difference between groups. Similarly, in the simulations involving 

t-test weighted by the inverse response propensity score, the Type I error rate started becoming 

inflated as the drop rate increased. It appears that in these situations it is possible that the extreme 

values are missing and not represented by any observations. 

 

In future research involving inverse response propensity weighting, it would be interesting to 

find a way of estimating the lowest values of Y that are not being represented due to excessive 

missingness. It is possible that using regression imputation to estimate those values might be a 

possible substitute. Additionally, since this study only considered moderate drop rates (below 

31%), scenarios with more extreme drop rates should be considered in future research to see 

whether this method can handle the amount of missing data. Finally, further research could 

explore the application of inverse response propensity weighting in other settings where the goal 

may not be comparisons of two groups, but other forms of estimation. 
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