
UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

2003

An Architectural Pattern for Adaptable Middleware
Infrastructure
Jason J. Mitchell
University of North Florida

This Master's Project is brought to you for free and open access by the
Student Scholarship at UNF Digital Commons. It has been accepted for
inclusion in UNF Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more information, please
contact Digital Projects.
© 2003 All Rights Reserved

Suggested Citation
Mitchell, Jason J., "An Architectural Pattern for Adaptable Middleware Infrastructure" (2003). UNF Graduate Theses and Dissertations.
289.
https://digitalcommons.unf.edu/etd/289

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNF Digital Commons

https://core.ac.uk/display/71998922?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu
https://digitalcommons.unf.edu
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu

AN ARCHITECTURAL PATTERN FOR
ADAPTABLE MIDDLEWARE

INFRASTRUCTURE

by

Jason J. Mitchell

A project submitted to the
Department of Computer and Information Sciences

in partial fulfillment of the requirement for the
degree of

Master of Science in Computer and Information
Sciences

UNIVERSITY OF NORTH FLORIDA
DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES

April, 2003

Copyright(©) 2003 by Jason J. Mitchell

All rights reserved. Reproduction in whole or in part in any form requires the prior

written permission of Jason J. Mitchell or designated representative.

ii

APPROVAL BY THE PROJECT COMMITTEE

The project "An Architectural Pattern for Adaptable Middleware Infrastructure"

submitted by Jason J. Mitchell in partial fulfillment of the requirements for the degree of

Master of Science in Computer and Information Sciences has been

Approved by the Project Committee: Date

._....Charles Winton, Ph.D.
Graduate Director

111

Signature Deleted

Signature Deleted

Signature Deleted

ACKNOWLEDGEMENT

I wish to explicitly express gratitude towards my eternal companion for enabling me all

the successes of my life.

1V

CONTENTS

List of Figures .. vii

Abstract ... viii

Chapter 1: The Role of Middleware and Approaches to It. 1

1.1 Distributed Communication ... 1

1.2 Approaches to Middleware-Based Architecture 2

1.3 Discussion ... 3

Chapter 2: An Architectural Pattern Approach ... 5

2.1 The Problem .. 5

2.2 The Application Programming Interface (API) Perspective 7

2.3 The Messaging Perspective .. 8

Chapter 3 : A Case Study ... 11

3.1 The Problem Domain .. 11

3.2 The Design .. 12

3.3 Case 1 COM+ .. 15

3.3.1 Client Side ,', 15

3.3.2 Server Side : ... 16

3.4 Case 2: .NET Remoting .. 17

3 .4.1 Client Side .. 17

3.4.2 Server Side ... 18

3.5 Case 3: Web Service .. 18

v

3.5.1 Server Side .. 19

3.6 Summary of Case Studies ... 20

Chapter 4: Conclusions .. 21

References ... 22

Appendix A: Adaptable Middle ware Pattern ... 25

Appendix B: Source Code .. 29

Vita ... 30

Vl

FIGURES

Figure 1: Distributed Application Layers ... 1

Figure 2: Component Based Architecture ... 5

Figure 3: Decoupling Diagram .. 6

Figure 4: Approaches to Message Interpretation .. 9

Figure 5: Application Architecture ... 11

Figure 6: .NET Message .. 13

Figure 7: Interface Definition .. 14

Figure 8: COM+ Client ... 15

Figure 9: COM+ Server .. 16

Figure 10: .NET Remoting Client .. 17

Figure 11: .NET Remoting Server ... 18

Figure 12: Web Service Server ... 19

Figure 13: Pattern for API Abstraction ... 26

Figure 14: Message Interpretation ... 27

Vll

ABSTRACT

Middleware technologies change so rapidly that designers must adapt existing software

architectures to incorporate new emerging ones. This project proposes an architectural

pattern and guidelines to abstract the communication barrier whereby allowing the

developer to concentrate on the application logic.

We demonstrate our approach and the feasibility of easily upgrading the middleware

infrastructure by implementing a sample project and three case studies using three

different middlewares on the .NET framework.

V111

Chapter 1

THE ROLE OF MIDDLEWARE AND APPROACHES TO IT

1.1 Distributed Communication

Software applications need to be distributed for many reasons. Because of the

increasing need to build these applications and the existence of so many

communication protocols, certain types of middle wares have been developed to

isolate developers from dealing with low-level details that are foreign to the core

functionality of the application at hand. True distributed systems application should

not be aware of such communication boundaries; ideally, it should be handled by

the underlying run-time systems themselves. However the state of the art in

distributed computing and large-scale enterprise development in general isn't quite

there yet. An approach that was popularized by CORBA [OMG98] consists of

introducing a software layer that abstracts out many of the subtleties associated with

communication issues.

Application

Middleware

OS

Hardware

Figure 1: Distributed Application Layers

- 1 -

Figure 1 shows how a new layer of software called middleware now sits between

applications and the operating system abstracting the network communication

heterogeneity and simplifying distributed communication for the application

developers. New demands are now being placed on the middleware layer and taken

away from the application developer. Factors such as component integration,

adaptive environments, and real-time interactions drive middlewares to new heights

[Tripathi02]. Thus, the variety and complexity of middlewares is increasing.

1.2 Approaches to Middleware-Based Architectures

There is a plethora of middleware architectures, frameworks, and protocols. They

try to tackle different problems and complexities. Each additional feature of a

middleware has a cost associated with it; most of the time it's a performance hit or a

new leaming curve to tackle for the team.

New policy-driven middleware approaches like QuO handle many scenarios such

as dynamic security requirements, ad hoc networking of devices, and context-aware

computing [Tripath02].

Resource management becomes a key factor in the middleware arena. Resource

awareness and dynamic reallocation of resources are impmiant responsibilities of a

resource management system. A way of adapting to the network via reflection

teclmiques is a key approach one framework has attempted to accomplish

[DuranOO].

-2-

Many other examples ofmiddleware architectures make use of some ofthe aspects

discussed already. Some examples are Artie Bean developed at the University of

Tromso [AndersonO 1], a composable reflective framework at the University of

California, Irvin [Venkatasubramanian01], an open network platform protocol

developed at Ericson [Jozic], and an Advanced Communication Toolkit (ACT)

developed at Rutgers University [Francu99].

Most of these implementations are either built or based on commercial object

oriented middleware technologies such as OMG's CORBA, Sun's RMI,

Microsoft's COM+, and IBM's MSQ. All ofthese commercial implementations

offer great advantages when building a distributed system, and work well for

certain scenarios.

It is even easy to choose which one will work best for the current implementation of

the application given its domain. The unavoidable problem that arises is change:

the domain, the complexity, the environment, or the application will change, and

this may mean that the middleware infrastructure needs to be changed to adapt to

the new requirements. What designers have to do is expect the inevitable and

prepare for it.

1.3 Discussion

Let us suppose that we have chosen a middleware and have written a client/server

system. This means that we have an application logic that interfaces with the

middleware Application Programming Interface (API). This also means that we

- 3-

have probably defined a messaging infrastructure whereby we have defined the

messages being passed between certain components of the application. Most of the

time this is done by means of some sort of interface definition language (ID L) so

the messaging infrastructure knows how to marshal/un-marshal the complex types

across the network, which calls for mappings between our application-specific

complex types and the types defined as our messages. An application so designed

is inherently prone to be tightly dependent on the middleware in question!

What does this mean for our application developers? They would potentially need

to modify large segments of the logic that uses the middleware API when evolution

imposes the use of a new middleware. This also means that they would need to

write a new set of classes to map to the new set of interface definition types. This

not only means more development but the applications themselves need to be

recompiled, retested, and redeployed.

This is far too much overhead for something that could have been avoided from the

begim1ing. This project will show how an approach to avoid these pitfalls, which

could lead to a better utilization of resources such as time and money.

-4-

Chapter 2

AN ARCHITECTURAL PATTERN APPROACH

2.1 The Problem

Figure 2 depicts a component-based architecture with different fmms of

middleware used between them. The point here is that many different middlewares

may and should be used to handle different scenarios in the context of a distributed

enterprise system. The task for the architect is to design the system in such a way

such that adapting to change is accomplished with minimal effort.

Business
Domain
Seri.ice

Figure 2: Component Based Architecture showing various middlewares

- 5-

While only four different middlewares are mentioned, dozens more (some of which

were mentioned in the previous chapter) could be used interchangeably depending

on certain requirements of the system. For instance, if the web server and the

business domain service interact within the local area network .NET remoting

offers the best performance. If however our business domain service needs to be

used with applications over the wide area network, then we might want to use web

services because they are designed to go over the HTTP protocol and pass through

firewalls.

This requires a layer of abstraction between the applications and the middleware.

Abstraction Layers

~jF.w.;~~~~::t:[]·~ L=.__) .. TCPChannel ... L::_)

Figure 3: Deco up ling Diagram

- 6-

Figure 3 shows several two-component diagrams. The top picture shows that an

application can be coupled to the three different middlewares that it may use. The

diagram at the bottom illustrates an approach to de-couple the application from the

middleware API by creating an abstraction layer that existing middleware

infrastructure details can easily be bound to, which will allow new bindings

containing different middleware infrastructure logic to be cleanly bound to the

generic host that uses it.

This abstraction layer must remain thin enough as to not to compromise the

flexibility of the concrete middleware and not to introduce unnecessary

dependencies in the application with respect to it

In the previous chapter we discussed two key areas where system designs can cause

a lot of overhead when trying to switch between middlewares. The first was the

Application Programming Interface (API) and the second was in the messaging

infrastructure. We shall now explain these in more detail.

2.2 The Application Programming Interface (API) Perspective

Each application must be written to interact with the API of the middleware. This

means that we must reference external libraries and couple some business logic to

interoperate with the middleware. Switching to a new middleware therefore entails

changing that code to now interface with the new middleware's API. Now that we

have changed some of our business logic the whole system needs to be retested and

the interaction code needs to be redeployed.

- 7-

An example of this scenario that is often found is when the application logic is built

so that it obtains a reference to the remote server to then pass it through the code to

be called upon when necessary; which could potentially (tightly) couple the system

to the middleware.

The solution to this is to have the host applications bind to an interface. Then,

implement code to bind the logic between the interface and the middleware. This

not only allows new bindings to be introduced but also saves us from having to

recompile, and even re-test the application logic that uses it.

2.3 The Messaging Perspective

The other place where designers might not foresee the need for future changes is in

the messaging between the components. Two applications communicate with each

other through the transfer of complex data types.

Current implementations of middleware offer some sort of interface definition

language to define the complex types so that they can be marshaled and un

marshaled to be sent across the network

This creates a problem when designers couple the application to this data

representation. With each message being passed between applications we must

define the types and instruct the middle ware how to send types across the network.

A substantial an1ount of work is required to map large data objects in any interface

- 8-

definition language. When applied several times to different middleware, the

headache ofre-implementation surfaces quickly [Emmerich99].

Interpretation of messages is done
in the interface definition
language defined by middleware.

Interpretation of messages is done
in the applications themselves
(i.e. parsed by XML parsers).

Figure 4: Approaches to Message Interpretation

Figure 4 shows two approaches. The first entails defining the data types within the

middleware, which means that we must do this for each middleware. The second

approach entails interpreting the data types in the applications themselves.

To allow for extensibility an "open binding" approach [Fitzpatrick98] allows for

self-description or meta-data information and late binding. This means that the

applications will be responsible for parsing and interpreting the messages being

- 9-

passed across. The only thing the middleware knows about is that a character string

is being passed across. This exchanging of strings is where the flexibility and

decoupling of data and messaging definition come into play.

The current primary choice for this is the extensible markup language (XML),

which offers a generic loosely coupled integration environment. The messaging

infrastructure is overall more extensible and adaptable and lays the messaging

infrastructure foundation for a heterogeneous and diverse market of middleware

communications [NusserO 1].

With the introduction of an adapter-like pattern abstracting the API and an

extensible messaging infrastructure the groundwork will be laid for our

architectural pattern, which when instantiated appropriately leads to highly flexible

and adaptive distributed systems. This will become more and more impmiant as

many new middlewares will be introduced in the next years to come.

Appendix A describes our pattern in a format similar to the one used by Stephen

Stelting [Stelting02], and includes a recipe for instantiating this pattern. In the next

chapter we will demonstrate case studies that use our pattern.

- 10-

Chapter 3

A CASE STUDY

3.1 Problem Domain

Our concern
will be here.

Data Collection

Reporting

Figure 5: Application Architecture

The application that spawns our case studies is a sports statistic application used to

report real time statistics of athletic events. Figure 5 shows the architectural layout

of our example application.

The figure also highlights the communication linlc our case study focuses on. We

will use the terms "web server" and "application server" to distinguish between the

two servers.

Depending on factors such as network layout, performance requirements, and

flexibility we would choose among many different middlewares to best fulfill the

-11 -

requirements of the system. For our case study we will use three different types of

middleware all provided by the .NET framework. We chose the .NET framework

because of the inherent XML tools it provided. We could have just as easily used

any other platform.

3.2 Design

For our design we will now instantiate our architectural pattem (c.f. Appendix A)

and develop a solution that will enable the swapping of a new middleware easily.

The second step in the pattem "Implementation" section is about allowing our

applications to interpret the messaging infrastructure. We also mention that the best

way to do this is by using XML as the format for passing such messages.

The .NET framework offers some great tools when it comes to serializing classes

into character streams using XML. For our case studies we have decided to use

these tools.

We just have to create our complex types that we would like to use and then auto

generate the XML marshaling of the complex type to a character string, which

implies that we will not have to describe our types to the middleware; we only

express one type of message going across the middleware, namely a simple

character string.

-12-

public class Team : DataSet {

Reads a character
string into our
object.

protected override void ReadXmlSerializable(XmlReader reader)

protected override System.Xml.Schema.XmlSchema GetSchemaSerializable()
}

Marshals our object to a
character string so we can
oass it over the wire.

Figure 6: NET Message

Therefore, the messaging infrastructure will be the same for any middleware we

decide to use. We will not mention the messaging in the three different case studies

because they are all the same. Our applications will do the interpretation (parsing)

of the messages independent of the middleware. This de-coupling allows the

middlewares to change and we will never have to describe to the middleware how

to marshal our messaging infrastructure.

Figure 6 above shows the portion of a class that was auto-generated by the .NET

framework It shows that the tool will create the methods to marshal any complex

data type into a character string and read from a character string back into our

object. This class has all of our typed parameters being passed across for ease of

use within our other code.

- 13-

Allows us to pass
theXML
serialization

string GetTeamByid(string teamrequest);

Figure 7: Interface Definition

This allows our application logic to handle any changes in our communication

messages without ever changing the middleware. This also means that if we

change the middleware we don't have to map our objects or define our complex

types to the middleware.

The first step of our pattern describes a way to de-couple the middleware API from

the host application. To do this we will create an interface that the host will bind to.

Then we will implement the interface with a class that will act as a bridge to the

target that will service the request.

The code above in Figure 7 is the interface that the client code would bind to. The

implementation of this object will be dynamically loaded. As long as the interface

doesn't change, the host application logic would not have to change or be re-

compiled or be re-tested.

-14-

3.3 Case 1: COM+

3.3 .1 Client side:

Using Microsoft's distributed communication protocol COM+, Figure 8 shows an

example inC# of how to obtain a reference to the remote server and invoke the

service layer to retrieve the team.

This class would implement the Item Service interface and act as a proxy to the

remote server. There are references and configuration setup that would be coupled

with this class. This implementation of the client side API to COM+ retains all

syntax referring to COM+. The (XML) messaging is returned to the host and its

code knows nothing about the interactions with COM+.

public class COMTeamClient : ITeamService
{

}

public string GetTeamByld(string teamrequest)
{

}
}

try
{

}

TeamMgr mgr =new TeamMgr();
return mgr.GetTeamByld(teamrequest);

catcb(Exception ex)
{
throw ex;

Figure 8: COM+ Client

- 15-

[Transaction(Transaction Option. Required)]
[Guid("822A6BC5-1C84-4052-838E-FA47E6EDADC3")]
public class TeamComponentService : ServicedComponent, ITeamService
{

public string GetTeamByld(string teamld)
{

return new TeamService().GetTeamByld(teamld);
}

} This is how we
forward the request.

Figure 9: COM+ Server

The class in Figure 8 implements the ITeamService interface. This is done so the

web server application can bind to this interface and won't need to be changed if we

add a new implementation.

3.3 .2 Server side:

Now on the server side, the class that accepts the COM+ request wbuld then

forward the reque.st onto the service layer as show in Figure 9. The service layer

would retrieve the respective team and retum the XML payload string to this

method to be passed back over COM+.

Just like with the client's side, all API references are kept within this abstraction

layer so that they are not coupled with the applications that are using them.

Furthermore, these classes would be kept in a separately linked library so that none

of the application logic using this abstraction layer would have to be re-compiled

after the initial release.

- 16-

3 .4 Case 2: .NET Remoting

Let's suppose that COM+ did not suffice as a middleware between the applications.

Now we have to change all of the code that references the COM+ API and change it

so it will then reference .NET remoting syntax.

3.4.1 Client Side:

Figure 10 shows the implementation of the same interface mentioned before but

now this implementation obtains a reference using a different set of API libraries.

Notice we will not have to change any of the code that uses this implementation.

As long as we dynamically load this class we won't have to compile, test, or re-

deploy and host application code.

public classs RemotingTeamClient : ITeamService
{
public string GetTeamByid(string teamrequest)

{
try
{

string uri= "http://localhost/TeamService/Team.rem";
TeamMgr mgr = (ITeamService) Activator.GetType(typeof

(ITeamService),uri);

}

}
}

return mgr. GetTeamBy Id(teamrequest);
}
catch(Exception ex)
{
throw ex;

Figure 10: .NET Remoting Client

-17-

Obtains a reference to a
.NET remoting server.

3.4.2 Server Side:

public class TeamRemotingService : MarshalByRefObject, ITeamService
{

}

public TeamRemotingService()
This is how you set
an object up to use
.NET remoting.

{
}

public Team GetTeamByld(int teamld)
{

return new TeamService().GetTeamByld(teamld);
}

Figure 11: .NET Remoting Server

Figure 11 shows how to setup a server object to be obtainable by .NET remoting,

using middleware-specific syntax, and there is some configuration necessary to set

this up as well. The minimal configuration changes and the new implementation of

this class is all that was needed to swap out one middleware infrastmcture to

another one from the server end: Once again, we didn't have to make any changes

to the TeamMgr class and anything it uses. This saves us from having to test it.

3.5 Case 3: Web Services

As a third example we will now communicate with the remote server using web

services. Under the .NET framework we would need to change some configuration

infom1ation, such as add a reference to the web service, and compile the web

service proxy. Each toolkit used to create a web client or server would be different.

- 18-

Once the proxy is built you just refer to it like any other object. The .NET

framework has done a lot to make the integration with web services very seamless.

There are many more protocols such as CORBA that make it more difficult to

integrate with.

The server side pmiion is not so straightforward. Not only one needs to extend a

web class, but also to mark each method as one published by this web service.

Figure 12 shows an example of this.

3.5.1 Server Side:

public class TeamService : WebService, ITeamService
~----~

{ --============' Necessary to
create a web

[WebMethod] service.
public Team GetTeamByld(int teamld\------___J
{

I }
}

I
This is the trigger to
expose this method as
a web service call.

return new TeamService().GetTeamByld(teamid);

Figure 12: Web Service Server

- 19-

Above is an example of how to listen to web services under the .NET framework

The web service method GetTeamByld will listen for a request. Once a request is

accepted this service will then passed the request onto the web service independent

service layer that will service this request.

3.6 Summary of Case Studies

As shown in all three cases, the decoupling of the middleware infrastructure :fi:om

our business applications can be achieved by applied our architectural pattern,

which calls for the separation of the application from API-specific functionality,

and the introduction of an extensible messaging framework. We demonstrated this

strategy with three different middlewares but this could just as easily been done

with any middleware on the market.

-20-

Chapter 4

CONCLUSIONS

The case studies presented in our project demonstrate that swapping among three

different middlewares can be accomplished by a small amount of configuration

changes and only a few systematic modifications to the source code. The real key

is that none of the actual business logic on the client and server side needed to be

recompiled or tested. Only the code that depended on the specific middleware

infrastructure dependent had to be altered.

Since changes associated with the middleware are inevitable for some application

domains, developers should prepare in advance to face them. In this project we

have presented an architectural pattern that enables the interchanging of

middlewares with minimal effort and overhead for the development team.

-21-

REFERENCES

[AndersonO 1]
Anderson, Anders. "Artie Beans: Configurable and Reconfigurable Enterprise
Component Architectures". IEEE Distributed Systems Online, 2001, Vol2,
Number 7. See http:/ I dsonline. computer. org/0 107 /features/ an dO 107 .htm

[DuranOO]
Duran, Hector. "A Resom-ce Management Framework for Adaptive
Middleware ". IEEE, March 2000 pp 206-209.

[Emmerich99]
Emmerich, Wolfgang. Schwarz, Walter. Finkelstein, Anthony. "Markup Meets
Middleware ". ACM. Proceedings of the Seventh IEEE Workshop on Future
Trends of Distributed Computing Systems. December 20 1999, Tunisia, South
Africa,p 261.

[Fitzpatrick98]
Fitzpatrick, Torn. Blair, G. Coulson, G. Davies, N. Robin, P. "Supporting
Adaptive Multimedia Applications through Open Bindings". Proceedings of the
International Conference on Configurable Distributed Systems, March 04-06,
1998. Annaolis, Maryland.

[Francu99]
Franco, Cristian. Marsic, Ivan. "An Advanced Communication Toolkit for
Implementing the Broker Pattern" .. Proceedings of the 191

h IEEE International
Conference on Distributed Computing Systems. May 31- June 4 1999. Austin,
Texas, p 458.

[GeihsOl]
Geihs, Kmi. "Middleware Challenges Ahead". IEEE-Computer, Jan-June 2001,
Volume 34, pp 24-30.

[Charles97]
Thompson, Charles. "A Scout's Guide to Three-Tier Architecture". Database
Programming and Design, August 1997.

[Gold-Berstein98]
Gold-Berstein, Beth. "Race to the Middle", Database Programming & Design:
Volume 11, February 1998, pp 28-33.

- 22-

[Jozic]
Jozic, Danijel. Osmanlic, T. Huljenic, D. Sinkovic, V. "Open Network Platform
for Multiprotocol Communication". Proceedings ofthe 25th Annual IEEE
Conference on Local Computer Networks. November 09-10, 2000, Tampa,
Florida.

[Mullender02]
Mullender, Maarten. "Some Architectural Patterns for the Enterprise",
Webcast, Microsoft 2002. See
http://www.microsoft.comJusa/webcasts/ondemand/960.asp

[Nusser01]
Nusser, Gerd. Schimkat, Dieter. "Rapid Application Development of
Middleware Components by Using XML ", Proceedings of the 12th
International Workshop on Rapid System Prototyping. June 25-27, 2001,
Monterey, California.

[OMG98]
OMG. "The Common Object Request Broker: Architecture and Specification
Revision 2.2 ". 492 Old Connecticut Path, Framingham, MA 01701, USA,
Febrary 1998.

[Schaeffer99]
Schaeffer, Jonathan. Sztipanovits, Janos. Karsai, Gabor. Moore, Michael.
Ledeczi, Alcos. Long, Earl. The Enterprise Model for Developing Distributed
Applications. Proceedings of the IEEE Conference and Workshop on
Engineering of Computer-Based Systems. March 07-12, 1999, Nashville,
Tennessee, pp 225.

[Stelting02]
Stelting, Stephen. Maassen, Olav. Applied Java Patterns. Published by Sun
Microsystems Press A Prentice Hall Title. 2002.

[Tripathi02]
Tripathi, Anand. "Challenges Designing Next-Generation Middleware
Systems". Communications of the ACM, June 2002, Volume 25, No.6, pp 39-
42.

[V enkatasubramanianO 1]
Venl<atasubramanian, Nalini. Deshpande, Mayur. Mohapatra, Shivjit. Sebastian,
Gutierrez-Nolasco, Wickramasuriya, Jehan. "Design and Implementation of a
Composable Reflective Middleware Framework". Proceedings ofthe 21st
International Conference on Distributed Computing Systems, April 16-19,
2001, Mesa, Arizona, pp 644.

- 23-

[Venkatasubramanian02]
Venkatasubramanian, N alini. "Safe Composability of Middle ware Services".
Communications of the ACM, June2002, Vol45, No.6, pp 49-52 .

. NET Remoting, Tutorial, Microsoft 2002.
See http:/ /msdn.microsoft.com/library/ default. asp ?url=/library/ en
us/dndotnet/html/hawkremoting.asp

.NET Remoting, Tutorial, 2002.
See http://www.dotnetremoting.cc/

-24-

APPENDIX A

Adaptable Middleware Pattern

Pattem Properties

Type: Behavioral

Level: Component/ Architectural

Purpose

To introduce an abstraction layer that decouples the application from the middleware being

used.

Introduction

Let's assume we have a distributed system. We would then probably decide to go with

some form of middleware between applications. We might then later decide to switch

middlewares. We want to limit the changes necessary to switch between them. We would

also like to limit any other effmis such as testing, compiling, and deploying already

completed systems.

Applicability

This pattern is very useful when distributed systems are using some sort of middleware. It

is also applicable when the two communicating applications are built tmder different

platforms.

Description

-25-

This pattem is broken up into two parts. It involves separating the application logic from

the Application Programming Interface (API) and separating the data interpretation from

the middleware.

To separate the API we define an interface between the target and host application. On

both sides we build the business logic to bind to these interfaces. This implies that once the

logic is built and tested as long as the interfaces don't change this existing logic also

doesn't need to be changed either.

Now to separate the data from the communication medium we define a way to have our

applications actually interpret the data independently of the transpmi. Providing meta-data

information within our data messages does this. We will only allow one type of message to

be passed across the middleware and that is a character string. This interface will adapt to

any middleware of choice.

Implementation

The host application will ~
bind to this interface.

I
I

<<interface» k. Middleware Implementation

Interface ---------

I
I
I
I

Each new middleware will ~
have a new adaptation
and interface with the API.

F1gure 13: Pattern for API Abstraction

-26-

As shown in Figure 13, each service will have an interface defined, and each version of

middleware will implement the interface, providing the middleware integration now

decoupled from the application.

Secondly, the messaging infrastructure will be defined by passing a character string as the

in parameter and returning a character string as the output. This way we can pass XML

messages and the interpretation of the messages will be done with our application

independent of the middleware.

Figure 14 shows where the interpretation of messages can take place. If the interpretation

is done independent of the middleware then there is no need to re-do any mapping or

defining of the types with the new middleware.

Messages are
interpreted within
application using
XML parsers.

g Client With XMLII------§-l Server With XML I

Figure 14: Message Interpretation

-27-

Benefits and Drawbacks

This will significantly reduce the overhead of switching to a new middleware

infrastructure. This will also provide a way in which the application logic doesn't have to

be retested and deployed. Only the code integrated the new API will have to be written and

tested. Thirdly, this messaging infrastructure provides for a more extensible framework

The only drawback might be a loss of flexibility with respect to the services that specific

middlewares might provide.

-28-

APPENDIX B

Source Code

Attached to this document is the entire source code ofthis demonstration application on a

CD. It is a .NET solution with multiple projects containing all C# code.

-29-

VITA

Jason Mitchell has a Bachelor of Science degree from University ofNorth Florida in

Computer Science, 2000. Jason expects to receive his Master of Science in Computer

and Information Sciences fi:om the University ofNorth Florida, May 2003. Dr. Arturo

Sanchez of the University ofNorth Florida is serving as Jason's project advisor. Jason is

cunently employed as a systems engineer at TNT Logistics and has been with the

company for one year. Prior to that, Jason worked for ECI Telecom as a software

engineer for two years.

Jason has interests in software engineering, project management, and distributed systems.

Jason has extensive experience in the J2EE and .NET platform frameworks in both the

presentation and business tiers. Jason has also done extensive relational data modeling.

Jason has been married for 9 months.

- 30-

	UNF Digital Commons
	2003

	An Architectural Pattern for Adaptable Middleware Infrastructure
	Jason J. Mitchell
	Suggested Citation

	Title Page
	Contents
	List of Figures
	Abstract
	Chapter 1: The Role of Middleware and Approaches to It
	1.1 Distributed Communication
	1.2 Approaches to Middleware-Based Architectures
	1.3 Discussion

	Chapter 2: An Architectural Pattern Approach
	2.1 The Problem
	2.2 The Application Programming Interface (API) Perspective
	2.3 The Messaging Perspective

	Chapter 3: A Case Study
	3.1 Problem Domain
	3.2 Design
	3.3 Case 1: COM+
	3.3.1 Client side
	3.3.2 Server side

	3.4 Case 2: .NET Remoting
	3.4.1 Client Side
	3.4.2 Server Side

	3.5 Case 3: Web Services
	3.5.1 Server Side

	3.6 Summary of Case Studies

	Chapter 4: Conclusions
	References
	Appendix A: Adaptable Middleware Pattern
	Appendix B: Source Code

