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Abstract 

 

Arthropod-borne-viruses (arboviruses) pose a global threat due to their ability to be 

transmitted by hematophagous insects to vertebrate hosts resulting in a range of serious 

infectious diseases. Sindbis virus (SINV) is the prototype arbovirus of the genus 

Alphavirus in the family Togaviridae.  The purpose of this study was to investigate the 

use of a fluorescent tagged reporter virus in both in vitro and in vivo environments. The 

fluorescent protein GFP was inserted between the Capsid and PE2 in the genome of 

TR339; SINV TaV-GFP (Wm. Klimstra Lab). This virus construct should have the same 

infectivity and virulence as wild type TR339, leaving a fluorescent ‘path’ in infected cells 

that may reveal virus transit.  Virus stocks were grown in BHK-21 vertebrate cells and 

C7-10 mosquito cells.  Two Aedes albopictus mosquito cell lines, C7-10 and C6/36, were 

then challenged with vertebrate and mosquito grown reporter virus. Evidence of GFP 

were seen as early as 6 hours post infection (p.i.) in all samples. Infected C7-10 cells with 

the vertebrate grown reporter virus were fixed for 1 hour in chilled 4% buffered 

paraformaldehyde; GFP was shown to be resilient to both fixation and light quenching. 

Ultimately, Ae. aegypti mosquitoes were challenged with a viremic bloodmeal at a titer of 

107 PFU/ml and midguts were dissected over several days. The presence of GFP was 

observed in midgut columnar epithelial cells as early as day 3 p.i. and remained localized 

even at day 30 p.i.  This is in agreement with published work on the interaction of TR339 

in Ae. aegypti gut, signaling this viral construct as a means to visualize wild-type 

infection. 
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Chapter 1: Introduction 

Arthropod-borne viruses (arboviruses) pose a global threat due to their ability to 

be transmitted by mosquitoes and ticks to vertebrate hosts resulting in a range of serious 

human and animal diseases (Strauss and Strauss, 1994). Sindbis virus (SINV) is an 

arbovirus of the genus Alphavirus in the family Togaviridae. SINV is a positive sense 

single, stranded RNA virus that was isolated from Culex species mosquitoes collected in 

a CO2 trap in Sindbis, Egypt in 1952 (Taylor et al., 1955). Female mosquitoes are the 

primary biological vectors of the virus. The virus is imbibed during a bloodmeal, which is 

required by female mosquitoes in order to enrich their eggs with protein and cholesterol 

for egg maturation (Clements, 1996).  

The SINV genome is ~11.7kb and codes for 4 nonstructural proteins (NSP1-4) 

and 3 structural proteins; capsid (C), and the envelope proteins E1 and E2 (McKnight et 

al., 1996). Genes for these structural proteins are located in an open reading frame and 

following translation, are proteolytically cleaved to form C, PE2, 6K, and E1. The C-

protein is cleaved via an autoprotease and then PE2 and E1 are co-translationally inserted 

into the membrane of the endoplasmic reticulum where they are separated. The precursor 

protein, PE2 is then cleaved into matured E2 and E3, the latter is discarded. C-protein and 

+RNA progeny genome are then assembled into an icosahedral capsid, surrounded by E1 

and E2, and enclosed into a host-derived membrane bilayer (Watson et al., 1991). The 

variant of SINV used in this investigation is the strain TR339. This strain is generated by 

the transfection of the ancestral strain AR339 into BHK cells (McKnight et al., 1996). 

This consensus sequence TR339 eliminates cell culture-adapted mutations that are 

present in laboratory strains of AR339 (Klimstra et al., 1998). 
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Arbovirus transmission can occur either horizontally or vertically. In both cases, 

the mosquito will take in a viremic bloodmeal from an infected vertebrate. For a vertical 

transmission, the virus crosses from the gut into the ovaries, leading to infected male and 

female progeny mosquitoes. In a horizontal transmission, the virus must make it from the 

gut to the salivary glands. This allows the virus escape in the mosquito spit, thereby 

infected the next vertebrate the permissive mosquito bites. Horizontal transmission is the 

main route of transmission for SINV. Additionally, humans are a dead end host for SINV 

as the viremia is too low a titer to cause an infection for subsequent mosquitoes that feed 

on an infected human.  

For SINV transmission, virions imbibed during the blood feeding must first cross 

the midgut via infection and/or paracellular transport, the gut-infection barrier, and next 

cross the gut-escape barrier to enter the hemolymph (Chamberlain and Sudia, 1961, 

Hardy et al., 1976). The mosquito midgut is a simple columnar epithelium surrounded by 

a basement membrane, muscle bundles (Bowers et al., 1995), nerve fibers (Brown et al., 

1985), and tracheoles (Romoser et al., 2004). Paracellular transport could occur from the 

structural changes the gut undergoes during engorgement on a bloodmeal creating gaps 

that may act as a by-pass mechanism, a ‘leaky gut’ (Houk, 1977). Following infection 

with SINV via an intrathoracic route, virus was identified in midgut associated muscles, 

but not in the muscles surrounding the ovaries.  Ultrastructural difference in cell-to-cell 

junctions and basal lamina, were identified between the midgut and ovaries (Vo et al., 

2010).  Evidence of paracellular route was not supported.   

In order for a disseminated infection to occur, the virus must penetrate the luminal 

interface between the bloodmeal and the midgut cells. The bloodmeal typically has three 
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barriers to reach the apical cell surface composing the gut-infection barrier. First is a 

peritrophic matrix (PM) that prevents direct contact of the viremic bloodmeal with the 

epithelial layer (Okuda et al., 2007). Secondly the columnar cells that make up the 

midgut are covered with microvilli including a complex microvilli-associated network 

(MN) further separating virions in the infectious bloodmeal from direct contact with the 

apical aspect of the epithelial layer (Zieler et al., 2000). Third is the epithelial cell entry 

and amplification (Abell and Brown, 1993). 

 It has been noted that there are a variety of luminal surface characteristics in 

midgut cells. While the majority (99-99.9%) of midgut cells are heavily microvilliated, 

there are cells that are relatively bare of microvilli. The spatial frequencies of these cells 

are uniform throughout the midgut except for a complete absence in the extreme posterior 

end (Zieler et al., 2000). Work with malaria shows that these cells appear to be similar to 

those shown susceptible to being invaded by the parasite (Shahabuddin and Pimenta, 

1998, Zieler et al., 1998). It may be possible that the absence of the microvilli, and thus 

the MN, allows direct contact between the virions in the bloodmeal and the luminal 

surface of the midgut cells.  

These dissemination pathways were attempted to be visualized directly in this 

study. One difficulty in visualizing the spread of an arbovirus infection is in locating the 

virus itself. Typically this is accomplished via immunochemistry where an antibody to 

the virus is used in conjunction with a secondary antibody labeled with a fluorochrome 

such as Fluorescein isothiocyanate (FITC) or directly visualized with transmission 

electron microscopy. Utilizing immunochemistry in a living host can be difficult. Several 

variations of an expression virus have been developed in order to ease this process. Initial 
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work for this study displayed some promise looking directly at the morphology of the gut 

but was moved towards testing of these expression viruses. 

One method is inserting the fluorescent gene with a double promotor in a non-

coding region of the genome. An example of a double promoter tag was done with 

SVHR, a heat resistant variant of AR339, with a green fluorescent protein (GPF) 

downstream of E1 from the Brown lab at North Carolina State University (Wang, 2008). 

Since SINV is a single stranded RNA virus, it is prone to high mutation rates making the 

large complex required for a double promoter tag to lose the expression tag within the 

first few infection cycles. Tagging upstream of the authentic subgenomic promoter in 

Venezuelan equine encephalitis virus has been done with some success as well (Caley et 

al., 1999) but still has the same retention problem. By tagging upstream allows for the 

expression of the fluorescent tag prior to the translation of structural proteins.  

Smaller additions directly to a structural can be made such as fusion of mApple 

and Venus fluorescent proteins to E2 while retaining the functional structure of E2 

(Tsvetkova et al., 2013). This should retain a functionally similar virus that will not as 

readily lose the fluorescent tag. Tsvetkova and colleagues (2013) found, that while 

infectivity remained at similar levels to wild type SINV, the two fluorescent-tagged 

viruses displayed varying cell entry behavior when investigated at the single-particle 

level.  

This study used a different virus construct for monitoring the spatial-temporal 

characteristics of SINV infection. This expression virus was designed via insertion of a 

GFP gene between capsid and E2 with the autoprotease on the 3’ end of the insert. 

Thosea asigna virus (TaV) 2A-like protease is inserted at the 5’ end between the 
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expression contruct and E2 (Fig 1) (Sun et al., 2014). This setup when used with a small 

expression protein (<750 nucleotides) better retains the expression protein. The structural 

proteins are unchanged between the expression virus and wild-type TR339. This lead to 

the expression of the reporter protein closely mimicking the infection of the unmodified 

virus (Sun et al., 2014).  

 

 

Figure 1. (A) The unmodified parental SINV and (B) modification by insertion of 

expression protein and TaV 2A-like protease. (C) Genomic structure around the insertion 

site showing the capsid autoprotease and TaV 2A-like protease sequence. (Sun et al., 

2014) 

Mosquito models used were Aedes aegypti and Aedes albopictus, the Yellow 

Fever mosquito and Asian Tiger mosquito, respectively. Both species are endemic to the 

United States and coexist in many urban areas of Florida (Alto et al., 2003). The native 

Graphic redacted, paper copy available upon request to 
home institution.
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species Ae. aegypi has been steadily declining as the invasive Ae. albopictus continues to 

encroach into both rural and suburban areas (O’Meara et al., 1995, Alto et al., 2003, 

Gratz, 2004). Therefore Ae. albopictus is speculated to become the principle vector of 

arboviruses in the world (Moore 1997). Both species are susceptible hosts to SINV and 

provide a competent lab arbovirus-host system.  
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Chapter 2: Methods and Materials 

Vertebrate cell culture 

 Cultured BHK-21 cells were grown at 37ºC, 5% CO2 in enriched minimal 

essential media (EMEM) supplemented with 10% fetal bovine serum, 5% tryptose 

phosphate broth, and 20µg/ml Gentamycin. Confluent cell monolayers were lifted with 

0.25% Trypsin, passaged and maintained in 25cm2 flasks until needed.  

Invertebrate cell culture 

 Cultured C7-10 and C6/36 (Ae. albopictus) larval cells (Singh, 1967) were grown 

at 28ºC, 5% CO2 in EMEM supplemented with 10% fetal bovine serum, 5% tryptose 

phosphate broth, and 20µg/ml Gentamycin. Cells were split and passaged when confluent 

monolayers were present and maintained in 25cm2 flasks until needed.  

Expression virus 

 Expression virus, TR339 TaV-eGFP, was provided by William Klimstra’s lab, 

University of Pittsburg. The reporter protein eGFP gene sequence was inserted as a 

fusion capsid reporter to wild type SINV strain TR339. The first five amino acids of E3 

were inserted in frame to the reporter and the reporter followed by Thosea asigna virus 

(TaV) 2A-like protease. This creates a reporter protein in frame with a leading capsid 

auto-protease and trailing TaV 2A-like protease which allows the cleavage of the reporter 

protein in the cytoplasm of the infected cell leaving the constructed progeny virus 

identical to wild type TR339. 
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Virus infection of invertebrate cell lines 

Cultured C7-10 and C6/36 cells were grown in Nunc® Lab-Tek® 2 chamber 

slides 

(http://www.sigmaaldrich.com/catalog/product/sigma/c6682?lang=en&region=US). 

Daily rocking was required for C7-10 cells to avoid clumping. Pre-confluent cells were 

challenged with 100µl of 107 plaque forming units (PFU)/ml expression virus at a 

multiplicity of infection (MOI) of 0.1 for 1 hour at room temperature (RT).   

Serial virus passage 

 Cultured BHK-21 cells were grown to pre-confluence in 25cm2 flasks. A 200µl 

dilution of expression virus was allowed to be adsorbed for 1 hour at RT and washed in 

PBS-D to remove inoculum, then replaced with 3ml of cell media, EMEM. Virus was 

incubated for 24 hours; the media was harvested from the flask, and spun down at 2000 

rpm (36 G) for 10 minutes. Passaged virus progeny was collected in the supernatant and 

titration via plaque assay on BHK-21 cells was performed in parallel of the passage being 

repeated. For each passage 200µl of undiluted virus medium was utilized to model in vivo 

behavior. This was repeated for a total of 5 passages. 

Double overlay plaque assay 

 Cultured BHK-21 cells were grown to pre-confluence in 25cm2 flasks. Pre-

confluent monolayers were challenged with 200µl of known dilutions of virus. Inoculum 

was removed and cells covered in a 1:1 mixture of 2X MEM and 2% agarose and 

incubated for a further 48-60 hours. For expression virus, at 6-12 hr post-infection (p.i.) 
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flasks were surveyed for GFP as the start of a plaque will be evident as small foci of GFP 

labeled cells. Once visible plaques are observed a neutral red 1% agarose solution is 

overlaid as a second layer and further incubated for 12 hours. A plaque is identifiable by 

a localized clearing or plaque that consists of lysed cells (Hernandez et al., 2005). 

Plaques were counted and titer calculated via converting number of plaques at known 

dilution to stock plaque forming units per ml (PFU/ml). 

Light-challenge of infected invertebrate cells 

 TR339 TaV-eGFP infected C7-10 cells in Nunc® Lab-Tek® 2 chamber slides at 

72 hr p.i. were fixed in 4% paraformaldehyde in Na cacodylate buffer at 7.4 pH for 30 

minutes at RT. Cells were observed immediately following fixation, imaged continuously 

for 30 minutes, and then imaged every 30 minutes over 24 hours. The culture well plate 

was then left on a windowsill in the presence of sunlight for 72 hours and imaged again 

for evidence of GFP quenching. 

Hatching and rearing of mosquitoes 

 Mosquitoes were reared and maintained at 27°C ± 0.5, 80% ± 2 RH, and a 16:8 hr 

(light:dark) photoperiod with a 1hr brown-up and brown-down to simulate dawn and 

dusk. Colonized Ae. agypti and Ae. albopictus eggs were reared as previously described 

(Bowers et al., 1995).  Females were placed into cohorts of fifty at 5-7 days post-

emergence, allowing time for females to have mated; males were disposed.  
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Virus infection of mosquitoes 

 Cohorts of fifty females, 5-7 days post-emergence were caged together for 48 

hours, deprived of carbohydrates for 24 hours, and proffered a viremic bloodmeal to 

infect mosquitoes with SINV through the oral route of infection. Eighteen ml warmed 

(37°C) defibrinated bovine blood (Colorado Serum Inc. CO) and 2ml TR339 at a titer of 

108 PFU/ml was added to a small collagen sausage casing for an overall titer of 107 

PFU/ml TR339. For fluorescence; 1ml TR339 TaV-eGFP (William Klimstra, University 

of Pittsburgh) was added to blood to make a 10ml bloodmeal with titers ranging from 

2.25 x 105 to 1.35 x 107 PFU/ml virus suspensions. The filled collagen casings were 

presented to the mosquitoes for one hour as previously described by Lyski and colleagues 

(2011). After 1 hour the mosquitoes were briefly chilled and engorged females were 

separated from unfed females. Engorged females were gently returned to cages for 

further analysis and nonfed females discarded.  

Morphology and gut ultrastructure 

 Midguts were resected from Ae. aegypti and Ae. albopictus at day 7 p.i., and split 

into anterior midgut, posterior midgut, and hindgut. Tissue was then fixed for 48 hours 

with 2% gluteraldehyde and 0.1% tannic acid in 0.1M cacodylate buffer (pH 7.4) at 4°C. 

A secondary fixation with 1.0% OsO4 for 30 minutes was applied and then dehydrated 

via increasing (30%, 50%, 70%, 95%, 100%) concentrations of ETOH washes then put 

into propylene oxide transitional fluid. Samples were then embedded into Epon 812 resin 

with a 3:7 ratio of NMA: DDSA for a slightly softer than medium hardness of resin (Luft, 

1973). For light level analysis, sections were cut at 1-2 microns and stained with 0.1% 

methylene blue (pH 11) for 90 seconds on a hotplate. For STEM analysis gold-silver 
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ultrathin sections were cut and strained with uranyl acetate and lead citrate (Miller et al., 

1993). 

Scanning electron microscopy of midgut basal lamina surface 

 The midgut of an adult Ae. albopictus female unbloodfed and allowed to mate 

was resected onto a piece of carbon tape on an aluminum stub in PBS. No chemical 

fixation was used and the midgut was immediately placed into an environmental scanning 

electron microscope (ESEM). Images were taken using a large field detector and chamber 

pressure around 1 Torr. One tracheole was chosen and a series of high resolution images 

were taken and stitched together using Photoshop. 

Confocal analysis of guts and salivary glands 

 Midguts of bloodfed Ae. aegypti mosquitoes were dissected over a time-course 

from 1 to 11 days p.i. with both gut and salivary glands (SG) sampled at day 30 p.i. 

Dissections were made directly onto a microscope glass slide via butt pull or while 

submerged under chilled PBS. The butt-pulled guts were immediately fixed via 

submerging in chilled 4% paraformaldehyde in 0.1M Cacodylate buffer for 5 minutes 

followed by applying cover slips using VECTASHIELD Mounting Medium from Vector 

Labs (https://www.vectorlabs.com/catalog.aspx?prodID=427). Guts and SG dissected 

under PBS were transferred to chilled 4% paraformaldehyde for 5 minutes and then 

placed into handmade wells of 60% glycerol and cover slipped. Selected samples were 

stained with DRAQ5 for 5-10 minutes prior to mounting. Samples were then viewed via 

an Olympus FluoView1000 confocal microscope for presence of GFP and evidence of 

virus. 
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Leg assay and measure of cytopathic effect (CPE) 

 At days 7, 9, and 12 p.i. of TR339 challenged mosquitoes, legs were removed and 

placed into cryovials and stored in a -20°C freezer. For fluorescence, legs were sampled 

for each resected gut. BHK-21 cells were cultured at 37°C in EMEM, supplemented with 

20µg/ml Gentamycin and 2.5 µg/ml Amphotericin-B. Preconfluent BHK-21 cells in 6 

well plates were challenged with a single leg and scored for the absence or presence of 

CPE at 48 hours p.i. of BHK-21 cells. Detection of CPE in a leg assay is due to the 

presence of virus in the hemolymph and indicates disseminated virus outside the gut of 

the mosquito hemolymph.  
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Chapter 3: Results 

Virus infection of invertebrate cell lines 

 Expression virus was adsorbed onto pre-confluent C7-10 cells for 1 hour on a 

platform rocker set on low speed at RT in 25 mm2 flasks. Cells were washed once with 

PBS to clear inoculum and 3 mL of EMEM was added to flask that was then incubated at 

37°C and 5% CO2 for 24 hours. Parental expression virus, TR339 TaV-eGFP pass 1, and 

expression progeny virus, TR339 TaV-eGFP pass 2, were used to challenge C7-10 and 

C6/36 cell lines. Infected cells were detected by fluorescent expression of GFP at hours 0, 

6, 12, 24, and 48 post infection (p.i.). Presence of GFP was observed initially at 6 hours 

p.i. with a growing infection perceived until reaching confluent fluorescence at 24 hours 

p.i. (Fig 2). Amount of fluorescence was calculated in ImageJ (NIH ver. 1.46r) by 

counting number of cells showing fluorescence divided by total number of cells in 10 

random 100 um2 squares (Table 1).   
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Figure 2. Fluorescent confocal images of C7-10 cells (Column I) and C6/36 cells 

(Column III) infected with SINV TaV-eGFP at 0 hr, 6 hr, 12, and 48 hr p.i. Column II 

and Column IV bright field overlay, respectively. 100µm scale bar.  
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Table 1. Percentage of infected cells versus total number of cells in C7-10 and C6/36 

cells with both stock TR339 TaV-eGFP and passaged TR339 TaV-eGFP. Measurements 

were taken at a random selection of 10 100x100µm regions for each treatment. 

Cell 
type Virus 

0 hours 
p.i. 

6 hours 
p.i. 

12 hours 
p.i. 

24 hours 
p.i. 

48 hours 
p.i. 

C7-10 TR339 TaV-eGFP pass 1 0% 3% 4% 18% 82% 

 

TR339 TaV-eGFP pass 2 0% 1% 7% 20% 75% 

       

C6/36 TR339 TaV-eGFP pass 1 0% 3% 3% 8% 34% 

 

TR339 TaV-eGFP pass 2 0% 2% 5% 7% 13% 

 

Virus titer and fluorescence in progeny expression virus 

Expression virus was previously passaged once in the vertebrate cell line, BHK-

21. Expression virus was further serial passaged four times in BHK-21 cells to bring the 

expression virus to its 5th passage in a vertebrate cell line. Titration of passaged 

expression virus was calculated using plaque assays on BHK-21 cells (Table 2).  At 18 

hours p.i. for each plaque assay, plaques were viewed for fluorescence of GFP (Fig 3). 

Titration was shown to increase to titers greater than 1x108 PFU/mL, required for per os 

infection of mosquitoes, while retaining the GFP fluorescent tag. 
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Table 2. Titration of virus replication and expression of GFP for TR339 TaV-eGFP over 

5 passages in BHK-21 cells. (+) indicates presence of GFP in infected cells. 

Starting titer 
(PFU/ml) 

MOI 
(PFU/cell) 

Passage titer 
(PFU/ml) 

Passage      
# 

GFP 
expression 

2.3x106 0.0375 3.0x108 2 + 

3.0x108 14.9 1.0x109 3 + 

1.0x109 50 1.3x1010 4 + 

1.3x1010 640 1.5x108 5 + 

 

 

Figure 3. Fluorescent confocal image (A) and bright field overlay (B) of a virus plaque in 

BHK-21 cells at 18 hours p.i.  Plaque is visualized by expression of GFP in infected cells 

surrounded by clear uninfected cells. 100µm scale bar. 
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Quenching challenge of GFP in infected invertebrate cells 

 Cells infected with TR339 TaV-eGFP were fixed for 30 minutes with 4% 

paraformaldehyde in 0.1 M Na cacodylate buffer; leakage of GFP was not observed 

following chemical fixation (Fig. 4). Cells were then placed under the 488nm Argon 

laser, GFP excitation wavelength, for 30 minutes and then re-exposed to the beam once 

every 30 minutes for 24 hours. Infected cells still showed strong fluorescence (Figs. 5 & 

6). Cells were then left on a windowsill for 72 hours in direct sunlight and GFP still 

remained visible in infected cells (Fig 7).  

 

Figure 4. Fluorescent confocal image with LSM overlay of infected C7-10 cells pre (A) 

and post (B) fixation in 4% paraformaldehyde. 100µm scale bar. 
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Figure 5. Fluorescent confocal images of paraformaldehyde fixed infected C7-10 cells 

before (A) and after (B) treatment of 30 minute continuous scanning with 488nm Argon 

laser. 100µm scale bar. 
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Figure 6. Fluorescent confocal image of paraformaldehyde fixed infected C7-10 cells 

before (A) and after (B) treatment of 20 hour scanning with 488nm Argon laser every 30 

minutes. 100µm scale bar. 

 

Figure 7. Fluorescent confocal image (A) and bright field overlay (B) of 

paraformaldehyde fixed infected C7-10 cells after 72 hours of access to direct sunlight. 

100µm scale bar. 
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Structural response of gut to non bloodfed/bloodfed/viremic bloodfed  

Aedes aegypti mosquitoes were split into three cohorts: nonbloodfed, bloodfed, 

and viremic bloodfed with TR339. Whole guts were dissected at day 7 p.i. and sectioned 

into anterior midgut (AMG), posterior midgut (PMG), and hindgut (HG). Samples were 

then fixed in 2% gluteraldehyde in Na cacodylate buffer and secondarily fixed in 1% 

OsO4 and embedded in Epon 812. Blocks were sectioned on an ultramicrotome (Sorvall-

Porter MT2). Differential staining and long wispy microvilli can be seen in the AMG and 

PMG (Figs. 8 & 9).  The HG shows a classic brush border (Fig. 10). The trachea and 

muscle bundles attach to the thick basement membrane (Figs. 11 & 12). Physiological 

evidence of digestion following a bloodmeal was observed in the PMG and not in AMG 

or HG; muscles show some disorganization when fed viremic bloodmeal (Table 3, Fig. 

13). A comparison study in Ae. albopictus shows less distension due to a bloodmeal (Fig. 

14). Legs assayed showing dissemination as early as day 7 p.i. (Table 4) 
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Figure 8. Semithin cross-section of AMG for nonblooded (A), bloodfed (B), and viremic 

bloodfed (C). Basal surface of the AMG is covered with longitudinal muscle segments. 

Differential staining of cells can be seen in the nonblooded and bloodfed segments.  

Bloodfed AMG is significantly distended when compared to nonblooded AMG. There is 

an increased disorganization in microvilli caused by this distention. Microvillar height is 

also noted to be longer than the classic brush border found in other digestive epithelial 

tissue.  

 

Figure 9. Semithin cross-section of PMG for nonbloodfed (A), bloodfed (B), and viremic 

bloodfed (C). Basal surface of the PMG is covered with longitudinal and circular muscle 

segements. There is a noticeable distention of the PMG in response to a bloodmeal. 

Additionally there appears to be a lack in relaxation of muscle segments in response to 

the viremic bloodmeal. Microvillar height is noted to be longer than the classic brush 

border. The microvilli also show disorganization in bloodfed PMG when compared to 

nonbloodfed PMG.  
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Figure 10. Semithin cross-section of hindgut (HG) for nonbloodfed (A), bloodfed (B), 

and viremic bloodfed (C). A classic brush border appearance of microvilli is visible 

which supports the function of the hindgut as mainly expulsion instead of digestion. 

Circular and longitudinal muscle bands are visible as well has some tracheoles.  

Malpighian tubule cross-sections and ovaries are visible along the edges of the images. 

There is little visible difference between nonbloodfed and bloodfed HG.  

 

Figure 11. STEM cross-section of Ae. aegypti midgut. (A) Low magnification image 

showing cross section from lumen (L) to the basement membrane (MB) with several 

longitudinal muscle bundles (M) and trachea (T). (B) Heavy distribution of microvilli 

line the lumen of midgut epithelial cells. (C) Basal lateral aspect showing basal infoldings 

of cell membrane deep into the cells and thick electron-dense BM. 
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Table 3. Average length of microvilli and inner circumferential length in PMG across 

nonbloodfed, bloodfed, and viremic bloodfed treatments. Inner circumferential length 

measured according to interface between microvilli and luminal membrane. 

Treatment Microvilli length 
(um) StdErr Inner Circumferential 

length (um) StdErr 

Nonblooded 5.21 0.17 1087 112 
Bloodfed 5.86 0.33 1022 148 
Viremic 
bloodfed 5.57 0.32 1246 179 
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Figure 12. Electronmicrograph of the basal lamina surface (hemolymph) of Ae. 

albopictus midgut.  Prominent tracheoles, as well as circular and longitudinal muscle 

bands are visible.  Whole-mount fresh tissue without chemical fixation was observed.  

Images were taken at 10kV using a large field detector (LFD) at a chamber pressure of 

0.974 torr and room temperature.  Insert is a higher resolution image demonstrating the 

branching of the tracheoles into small diameter tracheoles and circular muscle fiber. 
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Figure 13. Semithin cross-section of Ae. aegypti PMG for nonblooded (A-C), bloodfed 

(D-F), and viremic bloodfed (G-I). Stained with methylene blue and imaged with LSM. 

Differentially stained cells are noted more in the nonblooded guts while the blooded guts 

appear more distended. Viremic bloodfed guts are more heavily in-folded and lumen 

collapsed compared with mock bloodfed in 2 of the samples. 100µm scalebar.  
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Figure 14. Semithin cross-section of Ae. albopictus PMG from nonblooded (A-C), 

bloodfed (D-F), and viremic bloodfed (G-I) adult female mosquitoes. Stained with 

methylene blue and imaged with LSM. 100µm scalebar.  
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Table 4. Dissemination based on leg assay(# disseminated/ # mosquitoes fed) from 

TR339 stock infected Ae. aegypti and Ae. albopictus. No data for days 9 and 12 with Ae. 

albopictus. 

  Day 7 Day 9 Day 12 
Ae. aegypti 1/9 1/5 0/5 
Ae. albopictus 1/5 - - 
 

Mosquito midguts infected per os with expression virus 

Aedes aegypti adult female mosquitoes were fed expression virus at day’s 5-10 

post-emergence. Guts were either dissected directly onto glass microscope slides via a 

butt-pull method or dissected under PBS and placed into handmade wells filled with 60% 

glycerol in DI water and coversliped. Legs were taken for CPE leg assay to determine 

dissemination of virus. Infections of midguts were localized via GFP fluorescence. At 

day 3 p.i. a small focus of GFP presenting cells was observed in the epithelial cells of the 

gut (Fig. 15). At day 5 p.i. the area of GFP presenting cells covered approximately 50% 

of the gut (Fig. 16).  This suggest cell-to-cell spread of the infection cell-to-cell. There 

was a difference seen between the butt-pull and under solution resection techniques seen 

in day 5 p.i. infections (Fig. 17). Peristaltic muscle cells intimately associated with the 

outside of the infected guts did not display any fluorescence at days 3 and 5 p.i. as well as 

negative leg assays, together indicative of a lack of dissemination (Table 5). 
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Figure 15. Fluorescent confocal image of Ae. aegypti midgut infected with SINVTaV-

GFP at day 3 p.i. Localized foci of infection is observed in MG epithelial cells. 100µm 

scale bar. 
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Figure 16. Fluorescent confocal image of Ae. aegypti midgut infected with SINVTaV-

GFP at day 5 p.i. Larger area of infection probably due to cell-to-cell spread of virus 

observed. 150µm scale bar. 
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Figure 17. Fluorescent confocal image of Ae. aegypti midgut infected with SINVTaV-

GFP at day 5 p.i. via resection under PBS fluid method. Three distinct foci of infection 

are evident as varying sizes. Concentrations of GFP in the foci are potentially infected 

entroendocrine cells. 100µm scale bar. 

 

Table 5. Midgut infection of TR339 TaV-eGFP bloodmeals and dissemination via leg 
assay. 

Bloodmeal titer (PFU/ml) Midgut infection (%) Dissemination (%) 
2.25x10^5 8.0% (2/25) 0.0% 
2.25x10^5 0.0% (0/12) 0.0% 
9.9x10^6 3.7% (1/27) 0.0% 

1.35x10^7 13.3% (2/15) 0.0% 
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Disseminated infection 

Disseminated virus was observed in mosquitoes at 30 days pi. Guts, legs, and SGs 

were removed. Localized foci of infection in gut were identified (Fig. 18). In the SG GFP 

was seen in the proximal lateral lobe with gross pathology in the distal lateral lobe (Fig 

19). Virus was not detected in the medial lobe.  

 

Figure 18. Fluorescent confocal image of Ae. aegypti midgut at day 30 p.i.  [green GFP, 

blue DRAQ5] . A single virus focus is localized to the epithelium and muscle bundles are 

not identified.  One Malpighian tubule is draped across the gut structure. 50µm scale bar. 
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Figure 19. Fluorescent confocal image with bright field overlay of Ae. aegypti SG at day 

30 p.i. Persistence of expression virus localized in SG proximal lateral (PL) lobe at day 

30 p.i. Gross cytopathology observed in distal aspect (DL) of the infected lateral lobe. 

The medial lobe (ML) was refractory to infection. 50µm scale bar. 
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Chapter 4: Discussion 

 The initiative for the cell culture experiments in this investigation was due to a 

lack of expression protein seen in initial attempts to feed Ae. albopictus an expression 

virus, SVHR-GFP, that was a double promoter tag. It raised the following concerns to 

address:  

1. mutational loss of the expression protein complex 

2. the inability of mosquito cells to maintain the expression of the protein 

3. quenching of the expression signal over the period of days in the mosquito and 

during the dissection itself under the dissecting microscope lamp 

4. choice of fixation of the tissue allowing the expression protein to ‘bleed out’ or 

turning the protein off 

Hence cell culture experiments were designed to determine whether the expression virus 

was able to infect mosquito cell lines and if so, then if the expression protein was still 

fluorescent after dissection and fixation of infected tissue with the new SINV TaV-GFP 

expression virus.   

 It was demonstrated that virus will infect two different strains of Ae. albopictus 

cells, C7-10 and C6/36, with both a first passage and second passage virus. Initial 

detection of GFP was seen at 6 hours. Initial budding of E2 is known to occur in chicken 

embryo fibroblasts at 2-3 hr p.i. with matured virions starting to bud at 4-5hr p.i., with 

maximal production closer to 6-8hr p.i. (Birdwell and Strauss, 1974, Pierce et al., 1974). 

Thus the expression of GFP in infected cells seen as early as 6 hr p.i. shows the potential 

for expression of GFP to show up within the first round of infection, tagging the initial 
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infection sites. The percentage of GFP stained cells continued to increase throughout the 

48 hour study, indicating good retention of the expression protein within an invertebrate 

cell line. The C6/36 cells were slower to start which may be caused by a lower density of 

cells as they did not plate on the glass cover slip as densely as C7-10 cells. The brightness 

of the GFP expression in the invertebrate line is well above background, suggesting that 

the expression of GFP being produced in this manner will be clearly visible in tissue. 

 The retention of the expression protein in vertebrate cell lines was investigated. 

TR339 is known to acquire heparan-sulfate receptor mutations in a low number of 

passages in BHK cells (Klimstra et al., 1998). The expression virus was passaged 4 times 

in BHK cells in this lab without diluting the progeny virus between passages to replicate 

infection in a host. Titers increased in each passage to useable concentrations (Pierro et 

al., 2007) without loss of expression protein which is consistent with previous work (Sun 

et al., 2014). On the fifth passage there was a drop in titer either corresponding to a 

change from T-25 to T-75 flasks used to increase volume yield or established cyclic titer 

variations with high MOIs (Johnston et al., 1975).   

 An aside observation was made during the double overlay plaque assays for 

calculating progeny virus. A normal plaque assay technique requires several days to 

prepare and read the assay. After the initial infection of the cell monolayer for SINV it 

takes between 2-3 days before plaques of sufficient size and displaying CPE to develop. 

A further 12-24 hours is required with the second neutral red overlay to clearly 

differentiate the uninfected cells from the plaques with CPE in order to quantify the 

number of plaques and get a titer calculation. With the use of this expression virus, flasks 

were observed as early as 6 hours p.i. with the initial formation of plaques glowing with 
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the expression protein. It was trivial to quantify the plaques and get a titer for the virus 

within 12 hours of starting the assay allowing the eventual plaque to grow in size in order 

to avoid missing it upon observation. Another advantage to this method is the size of the 

plaques are small enough to allow for a higher density of plaques to be counted whereas 

with the double overlay method at 2-3 days p.i. the plaques would have grown into each 

other leading to miscounts. Besides a quicker assay time, this leads to higher confidence 

in an accurate reading. 

 During dissections it is possible that infected tissue will be under a bright 

dissecting lamp and under fixatives. Fixation used for gut resections is chilled 4% 

paraformaldehyde to retain cellular and membrane integrity. How well a mosquito cell 

will line retain the GFP reporter during this process was examined. C7-10 cells were 

incubated for 72 hr p.i. with the reporter virus. Confocal microscopy checked that the 

majority of cells were expressing the reporter and still attached to the flask. The cells 

were then washed with PBS and fixed for 30 minutes in chilled 4% paraformaldehyde. 

Re-imaging the same field of view post fixation showed the infected cells still attached to 

the flask did not lose the reporter protein, while loose cells were washed away. The cells 

were then left exposed to laser light at the excitation wavelength for GFP for 30 minutes 

and then for 20 hours. While there was a decrease in intensity after both trials, the 

expression was still well above background. The cells were then left on a window sill 

with direct sunlight for 72 hours. The original field of view couldn’t be relocated but 

infected cells showing clear expression of GFP were imaged. This shows the hardiness of 

the chosen expression protein, eGFP, to handle a fixation regiment and presentation of 

light that exceeds to what resected tissues will be exposed. It is assumed then that special 



36 
 

conditions will not be required during dissections in order to maintain the visible level of 

fluorescence with confidence. 

 The mosquito gut is a cell monolayer with three regions of structural and 

functional differences along the longitudinal axis. These three regions of the gut have 

three different functions which are reflected by the gross morphology and makeup of the 

composite cells. The anterior region (foregut) is primarily used as a conduit of the 

bloodmeal to the posterior midgut. The diameter of the gut in this region is smaller than 

the midgut and heavily covered in longitudinal muscles. As such it was not expected to 

see much of a difference between treatments. The hindgut finishes adsorption and 

expulsion of the bloodmeal, having classic brush border microvilli and closely associated 

circumferential muscles (Vo et al., 2010). Again no difference between treatments was 

expected and semithin sectioning of these regions of the gut revealed no structural 

difference between treatments.  

The posterior midgut region acts as the traditional stomach of the mosquito, as 

such it expands to hold the bloodmeal and is heavily covered in muscles and tracheoles. 

Semithin sectioning of these regions in Ae. aegypti showed disorganization in the 

elongated microvilli and distension in the bloodfed treatments.  Two of the guts of the 

virus treatment group showed in folding of the epithelium but verification of infection 

was not possible. This pattern was not observed in the Ae. albopictus midguts.  This 

shows potential promise of a morphological difference in SINV infected midguts with 

Ae. aegypti, but the experiment needs to be redeveloped with controls for verifying viral 

infection in the gut as well as ensuring sections are being taken through regions that are 

infected. 
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 Three total blood feeds to investigate early time points p.i. were conducted with 

expression SINV and Ae. aegypti mated adult female mosquitoes. Aedes aegypti was the 

mosquito of choice because they are easy feeders compared to Ae. albopictus. The first 

barrier the virus encounters in the luminal epithelial lining of the midgut, where there is a 

thick layer of microvilli and the formation of a peritropic membrane. While the exact 

mechanism of infection is unclear, SINV antigens have been shown to be evident in 

localized patches of epithelial cells in the midgut (Ciano, 2010; Pierro et al., 2007). 

Furthermore it has been speculated that biochemical processes in the epithelial cells 

lining the midgut restricts the ability of the virus to infect other midgut cells along the 

luminal surface (Pierro et al., 2007). It was to be expected then to see localized infection 

of midgut epithelial cells. Fluorescence at day 3 p.i. was seen to be a single focus. At day 

5 p.i. the infection covered a larger portion of the gut but still was seen to start from a 

small finite number of initial sites. Negative leg assays show that this infection is evident 

prior to dissemination of SINV into the hemolymph. This follows directly with previous 

results of SINV antigens found in localized isolated patches in Ae. aegypti (Lyski, 2013). 

It is evident that utilizing TaV tagging mimics natural infection of the wild type virus 

closely in Ae. aegypti. 

 Two methods of dissection were used to accomplish gut resections. When the guts 

were resected while submerged in chilled PBS there appeared concentrations of GFP. 

Initially these regions look non-cellular compared to epithelial digestive cells of the gut, 

something supported by the size of GFP, 26.9 kDa (Tsien, 1998) or potential charge 

(Tsvetkova et al., 2013). Further investigation with the nuclear stain, DRAQ5, showed 

that these regions have small nuclei located more basal to the gut lining with processes 
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that extend out towards the apical surface.  The morphology of these cells suggest them 

to be enteroendocrine cells (Brown et al., 1995). Work is planned to verify these are 

enteroendocrine cells via immunohistochemistry and direct labeling of virus to see if 

SINV is highly concentrated in these cells. This may also suggest the site of amplification 

and eventual escape for disseminated virus as the basal morphology of such cells are 

modified compared to other epithelial digestive cells (Brown et al., 1995). 

 In order for an infected mosquito to be capable of transmitting virus by bite, the 

SG must be infected. These bilateral tri-lobed glands synthesize and release a large 

repertoire of secretory products (Almeras et al., 2010; Kelly et al., 2012). An established 

infection in these glands allows for the transmission of the virus during the suck-and-spit 

behavior when imbibing a bloodmeal (Clements, 1996). It has been previously 

demonstrated in Aedine mosquitoes that a persistent infection of SINV is localized to the 

lateral lobes of the SG not the medial lobe (Ciano et al., 2014). In addition gross 

pathology is found in the distal lateral lobes leaving the proximal lateral lobe intact. This 

allows for the SG to retain function so the now infectious mosquito can imbibe more 

bloodmeals. Guts and SG were dissected at day 30 p.i. with expression virus and 

secondarily labeled with DRAQ5. Infected guts showed evidence that the infection in the 

midgut epithelial cells remained localized while SG showed gross pathology in a distal 

lateral lobe with expression of GFP localized to the adjoining proximal lateral lobe. The 

expression of GFP therefore lasted 30 days in a live host and followed previous work on 

the location of persistent infection of wild type SINV. Furthermore there seemed to be no 

ill effect to the mosquito host, making this a promising route for further investigation of 
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mosquito-host interactions without the need for costly and time intensive 

immunohistochemistry techniques.  

 The present investigation has shown good retention of the expression of TR339 

TaV-eGFP in both mosquito cell lines C7-10 and C6/36 and adult female Ae. aegypti and 

Ae. albopictus midgut and SG tissues. In general the infection pattern follows established 

literature for wild-type SINV. The establishment of a titration protocol with fluorescent-

tagged virus improves upon the standard plaque assay for a quicker and more accurate 

titration without moving to more complicated genomic techniques. This suggests TaV 

tagging of the SINV genome with a small fluorescent probe to be a beneficial tool in 

studying the infection of SINV in the mosquito host. Further work is planned to study 

TR339 TaV-eGFP in other mosquito species and tissues.  
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