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ABSTRACT 

 Harmful algal blooms are exponential increases in autotrophic microorganisms 

that proliferate in such a way that the surrounding environment, the local economy and 

the health of regional populations are negatively affected.  Among the causes of these 

blooms are anthropogenic inputs of excess nitrogen and phosphorus into the environment 

through overfertilization.  Floating treatment wetlands (FTW) have emerged as a novel 

method of reducing the negative impacts of these nutrient inputs by using artificial rafts 

to float normally emergent wetland plants on the surface of water bodies to assimilate 

excess nutrients.  Because their use is so new, only limited research has been performed 

on their effectiveness.  This mesocosm-level study evaluated the performance of a FTW 

consisting of a community of yellow canna (Canna flaccida), blue flag iris (Iris 

hexagona) and bulltongue arrowhead (Saggittaria lancifolia) in simulated stormwater of 

varying nitrogen and phosphorus concentrations.  The community of plants displayed 

nitrogen limitation, while the cyanobacteria-dominated algal community that developed 

displayed phosphorus limitation, leading to the conclusion that in order for this 

community of macrophytes to limit algal growth, nitrogen must be present to support 

their growth and concurrent assimilation of the algae-limiting nutrient phosphorus.  

Canna and iris were found to significantly outperform arrowhead in terms of biomass 

gains.  The study also showed that the size of the plants may be of great importance in the 

ability of FTWs to limit algal development.  Despite the fact that the community of plants 

in this study were unable to limit the development of algae, the use of FTWs remains 

promising and further research should be done to continue to enhance our understanding 

of their strengths and weaknesses.   
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INTRODUCTION 

Harmful algal blooms (HABs) are exponential increases in autotrophic 

microorganisms that proliferate in such a way that the surrounding environment is 

negatively affected (Heisler et al. 2008).  These deleterious impacts can come in the form 

of chemical toxins, as well as development of hypoxia/anoxia, light deprivation, and 

indiscriminate killing of aquatic life after algal blooms reach high densities.  Excessive, 

sudden proliferations of cyanobacteria, dinoflagellates, diatoms, green algae, or a number 

of other organisms can form HABs.  Algal blooms affect the environment, the local 

economy and the health of regional populations.  Many areas of Florida have been 

affected by HABs, including the Indian River Lagoon (Phlips et al. 2010), Florida Bay 

(Goleski et al. 2010), Tampa Bay (Badylak et al. 2007) and the Lower St. Johns River 

(Malecki et al. 2004).   

During blooms, dense algal populations shadow the benthos, reduce light levels and 

cause the death of submerged aquatic vegetation (Hauxwell et al. 2004, Malecki et al. 

2004, Oakey et al. 2004).  Death of the vegetation reduces the dissolved oxygen 

availability because of the lowered photosynthetic rates.  As the bloom grows, it depletes 

available nutrients, and the death of the algal community begins.  Dead algae sink to 

benthos causing a bloom of saprophytic bacteria.  As those bacteria decompose the algae, 

they consume most of the available dissolved oxygen (Paerl et al. 1998, Bricker et al. 

1999).  The loss of available dissolved oxygen results in massive fish kills and an anoxic 
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dead zone.  Moreover, HABs may also produce toxins that are harmful to other 

organisms, such as the neurotoxic diatom Pseudo-nitzcschia spp., the hepatotoxic 

Microsystis spp. of blue-green algae, and the neurotoxic dinoflagellate Karenia brevis 

(Cronberg et al. 1999, Smayda 1997, Heisler et al. 2008, Lelong et al. 2012, Pierce et al. 

2003).   

In addition to the biological harm caused by HABs, these blooms have a significant 

effect on many facets of the economy of the United States including public health, 

commercial fisheries, recreation/tourism as well as having monitoring/management costs.  

It has been estimated that harmful algal blooms can have an annual economic impact of 

over $620,000,000.00 (estimate from 1987-1992 period, adjusted for inflation to 2014 

dollars; Anderson et al. 2000).  Toxic blooms of cyanobacteria can affect human health 

by reducing the quality of potable drinking water (Fisher et al. 2009), and blooms of 

Karenia brevis may result in airborne toxins that can cause respiratory distress in local 

populations as well (Pierce et al. 2003).  It is imperative, therefore, that these blooms are 

controlled or at least ameliorated.   

High nutrient levels and increased population and development have been shown to 

directly correlate with increased occurrence and intensities of HABs (Phlips et al. 2006, 

Heisler et al. 2008).  For example, in Puget Sound (Washington), the average decadal 

maximum amount of paralytic shellfish toxin (average annual maximum toxin level for 

each decade), which has been monitored since the 1950’s, increased from 500 to 5000 (a 

ten-fold increase) as the population rose from 1 million to 3.5 million (only a 3.5-fold 

increase; Trainer et al. 2003).   The use of fertilizer has also increased, and this increase 

in its use corresponds closely with the number of HABs.  Indiscriminate and over-
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fertilization causes the nutrient levels in waterways to increase as stormwater runoff 

flushes the excess fertilizers into them.  It has even been hypothesized that nutrient-rich 

groundwater can leach into marine waters and trigger blooms in the Gulf of Mexico (Hu 

et al. 2006).  The “Dead Zone” at the mouth of the Mississippi River, caused by 

eutrophication from agricultural fertilizers used in the Midwest, has been well 

documented (Dagg and Breed 2003).  Strong correlations between nitrogen-loading (2.5-

fold increase from 1940’s-1990’s) and long-term chlorophyll levels in Chesapeake Bay 

have been shown as well (Kemp et al. 2005).   

It is not simply the amount of nutrients in the water that influences HABs, but also 

their proportions (Heil et al. 2007). While low nitrogen:phosphorus (N:P) ratios resulting 

from P-loading eutrophication from concentrated animal operations has been associated 

with dinoflagellate blooms on the West Florida Shelf of the Gulf of Mexico (in the 

vicinity of Tampa Bay), eutrophication composed of moderate N:P ratios just to the south 

result in dominant blooms of cyanobacteria (vic. Charlotte Bay), and eutrophication 

displaying N:P ratios greater than 48, found even further south, result in diatom-

dominated blooms.  It is clear from this that the composition of the nutrient loading is as 

important as the quantity, and efforts must be made to reduce eutrophication of any type.   

Removal of nutrients has been shown in many cases to significantly reduce HABs in 

freshwater (e.g. Lake Washington), and in estuarine environments (e.g. Mumford Cove, 

CT) (Edmondson 1970, Vaudrey et al. 2010).  One way to remove nutrients from water 

bodies and prevent their transmission downstream is to take advantage of stormwater 

control structures, such as wet detention ponds, which temporarily store stormwater 

runoff (SJRWMD 2012).  Historically, littoral macrophytes have been planted at the 
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edges of stormwater ponds as a best management practice to help manage high nutrient 

levels in stormwater (DB Environmental 2005).  However, one characteristic of 

stormwater detention ponds is that the water level tends to fluctuate dramatically.  As the 

planted macrophytes are fixed in position, they will be submerged in high water 

conditions and above the water line in low water conditions.   

Floating treatment wetlands (FTWs) enable those normally littoral macrophytes to 

float in mats on the surface of the water and change elevation with the water level.  The 

root systems of these plants are therefore always in the water, and the plants can 

continuously take up nutrients from the water.  In addition, floating the plants in lieu of 

planting them on the shores increases the surface area of the plant’s roots that are 

exposed to the nutrient-rich water (Stewart et al. 2008).  Much of the nutrient-

assimilating strength of FTWs comes from the interaction between the plants and the 

microbes that live on and among the plants and mats, and floating the plants in the water 

as opposed to planting them on the shore of the pond provides much more surface area 

for processes such as nitrification, denitrification and phosphorus adsorption to take place 

(Tanner and Headley 2011, Wang and Sample 2014).  Other advantages of floating 

treatment wetlands include the fact that they do not require modification to existing 

detention ponds in order to be employed, they do not require additional land area for 

treatment, and they do not take away from the requisite storage volume of detention 

ponds (Winston et al. 2013).  As opposed to constructed treatment wetlands, in which the 

plants senesce and reintroduce the assimilated nutrients back into the system, FTWs 

provide for easy harvesting of the plants so that they can be easily removed and 

composted in another location for removal of the assimilated nutrients from the system 
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(White 2008).  Finally, FTWs are aesthetically pleasing so they can be employed in 

public places where other unsightly equipment might not be feasible.  Drawbacks of the 

FTW systems include some initial cost and annual maintenance, as the plants need to be 

harvested to prevent the nutrients from re-entering the pond when the plants senesce.  If 

employed in excess, the system would shadow the benthos and could prevent growth of 

aquatic plants; while this could be managed by moving the system periodically, but that 

adds to the maintenance costs.   

There are a number of types of mats including buoyant fibrous matrix mats and 

closed-cell foam mats.  Each has its own benefits and drawbacks.  The fibrous matrix 

mats provide better environment for beneficial microbes, while the foam mats provide for 

customization of shape (for aesthetics), easier harvesting and reuse of the mats.  FTWs 

can be used to control nutrient levels in stormwater, wastewater and agricultural runoff, 

and can take up heavy metals as well (Headley and Tanner 2006, Ladislas et al. 2013). 

There have been relatively few studies performed on floating treatment wetlands 

(Chen et al. 2009, Tanner and Headley 2011, Winston et al. 2013).  Chen et al. (2009) 

tested the nitrogen and phosphorus uptake ability of individual plant species while 

growing the plants in a nutrient recycling system.  They found that Australia canna 

(Canna generalis) outperformed Golden Fleece iris (Iris pseudacorus), arrow arum 

(Peltandra virginica), dwarf papyrus (Cyperus haspan), pickerelweed	
   (Pontederia 

cordata), bulltongue arrowhead (Sagittaria lancifolia) and calla lily (Zantedeschia 

aethiopica) in removing nitrogen and phosphorus directly from the water column.  

However this study only focused on nutrient assimilation by individual species.  As 

floating treatment wetlands typically consist of a community of plants rather than a 
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monoculture, it is important to assess the performance of plants in that polyculture.  As 

well, that study did not assess the impacts of the plants on the development of algae.   

Chang, et al. (2012, 2013) studied the effect of FTWs on water nutrient levels at 

multiple scales including microcosm, mesocosm, and full-lake.  They showed that FTWs 

composed of soft rush (Juncus effusus) and pickerelweed (Pontederia cordata), deployed 

over 8.7% of a wet detention pond’s surface, were capable of removing over 15% of total 

nitrogen, 20% of nitrate/nitrite-nitrogen, 51% of ammonia-nitrogen and 47% of total 

phosphorus. However, their study did not assess the growth of algae.  In a separate study, 

a FTW consisting of a community of Juncus effusus and Canna flaccida was shown to 

reduce effluent nitrogen and phosphorus concentrations in a simulated stormwater pond 

by 58%-83% and 45%-75%, respectively, with the Juncus accumulating both more 

nitrogen and more phosphorus than the Canna (White and Cousins 2013).  Winston et al. 

(2013) performed a field study which involved monitoring nutrient levels in two 

stormwater detention ponds both before and after application of a floating treatment 

wetland community.  They found that while the FTW was able to improve the nutrient 

removal capability of the detention pond, the reduction was not always significant.    

It has been suggested that species mixtures may be even more effective than 

monocultures at removing excess nutrients, and more research needs to be done to 

evaluate this proposal (White 2008).  As well, further research needs to be done to 

evaluate the performance of individual species and communities under varying nutrient 

loading rates (White and Cousins 2013).   
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The goals of the study were to investigate the response of a three-species floating 

treatment wetland community to stormwater of varying nutrient compositions, that 

community’s potential effectiveness in removing excess nutrients from the stormwater 

and its potential ability to limit algae growth.  The project will also provide the 

opportunity to investigate how varying nutrient levels impact the development of algal 

communities.    

METHODS 

The project was conducted in two phases, both in the greenhouse on the fourth floor 

roof of the Biology Building at The University of North Florida.  The first phase was 

designed to assess the response of the floating treatment wetland community to water of 

varying nutrient compositions.  The second phase was designed to assess the ability of 

the plants themselves to reduce nutrient levels and to limit the development of algae 

under high nutrient loading conditions.  Each phase was designed to assess the nutrient 

removal capability of the community, as well as the development of the algal community.  

Phase one was conducted from 6 September 2013 thru 31 December 2013.  Phase two 

was conducted from 22 April 2014 thru 2 June 2014.   

Phase I involved fifteen 1.15 m diameter mesocosms (0.17 m depth; 123 L total 

capacity) consisting of five nutrient treatments with three replicates of each (Figures 1 & 

2).   Each pool contained a floating treatment wetland community that consisted of two 

individuals of each of three species of common and readily available ornamental wetland 

plants (six total individuals).  Plants that formed the community under investigation in 

this study included yellow canna (Canna flaccida), blue flag iris (Iris hexagona) and 



	
   	
   	
  8	
  

bulltongue arrowhead (Saggittaria lancifolia).  All are wetland plants indigenous to 

Florida (Tobe et al. 1998).  All have been used and studied individually in conjunction 

with FTWs (i.e. Chen 2009, Chang 2012, White and Cousins 2013).  The plants are 

ornamental, and the supplier (Beeman’s Nursery©, New Smyrna Beach, FL) stated that 

these were some of the most used ornamental plants in their Beemat© floating treatment 

wetlands (Beeman F, 2013, personal communication).  In addition, the SJRWMD 

recommends these plants for aquascaping because they are slow growers, do not require 

tremendous maintenance and will not spread uncontrollably, overtake the surrounding 

area and stifle diversity (SJRWMD 2012).  Two individuals of each of these three species 

were floated in each pool, for a total of six plants in each. 

Five nutrient treatments were established as follows:  high nitrogen + high 

phosphorus (HNHP), low nitrogen + low phosphorus (LNLP), high nitrogen + low 

phosphorus (HNLP), low nitrogen + high phosphorus (LNHP), low nitrogen + low 

phosphorus (LNLP) and zero nitrogen + zero phosphorus (0N0P) (Table 1).  The levels 

of nitrogen and phosphorus were established from unpublished data provided by the 

Florida Department of Environmental Protection related to its development of the 

Numeric Nutrient Criteria for Florida’s Waters that recently went into effect (Frydenborg 

R, personal communication, 26 July 2013).  That data came from one hundred lakes 

throughout Florida which had been sampled in each of the four seasons in one year, for a 

total of 291 lake*years.  The LN and LP treatment levels were set as the averages of the 

total nitrogen (TN) & total phosphorus (TP) values for these lakes (1.27 mg L-1 & 0.08 

mg L-1, respectively), while the HN and HP treatments were set three standard deviations 

above those levels (3.69 mg L-1 & 0.46 mg L-1, respectively).  As it was not feasible to 
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transport actual stormwater to the greenhouse for use, the water for the pools was 

municipal water that was allowed to off-gas for 24 hours prior to the nutrients and any 

plants being added. Relative amounts of ammonium-nitrogen and nitrate-nitrogen were 

set at 1:1 based on the findings of a similar ratio in a review of seven colored lakes along 

the Upper St. Johns River, by the St. Johns River Water Management District 

(SJRWMD) (Fisher 2009).  Nutrient levels and ratios similar to the HNHP treatment 

employed in this experiment have been used in previous studies when simulating high-

nutrient stormwater (i.e. DB Environmental 2005).  Nitrogen was provided in the form of 

ammonium nitrate (NH4NO3) and phosphorus was provided in the form of 

monopotassium phosphate (KH2PO4), both common inorganic fertilizers.  Nutrients were 

provided in an initial pulse, and no additional nutrients were provided over the course of 

the study.  Mesocosms were distributed in a randomized block design with each of the 

five nutrient treatments randomly distributed in each of three single rows.  Water level 

was maintained to within 2.5 cm of the initial volume throughout the study by 

supplementing the mesocosms with local municipal water.   

The floating treatment wetland system that was employed was the Beemat© system, 

produced in New Smyrna Beach, FL.  Each system consisted of a 1 cm thick closed-cell 

foam mat that provided buoyancy, with 7.5 cm diameter holes spaced 12 cm apart in 

which specially designed perforated cups could be installed to secure the plants.  

Perforations in the cups both allowed water to enter the cup and allowed the roots of the 

plant to extend unimpeded outside the cup.  Plants were secured in the cups by first 

wrapping the plant in coconut fiber to provide substrate, then securing that assembly in 

the cup with a specially designed clip, which also acted to secure the cup in the mat.  
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Mats were cut such that each individual mat held three plants in a triangular arrangement.  

Each of these individual mats held one each of the selected species, and two of these mat-

plant assemblies were allowed to float freely in each mesocosm.   

Phase II was designed to assess the ability of the plants themselves to reduce nutrient 

levels and to limit the development of algae under high nutrient loading conditions 

(Figures 3 & 4).  It consisted of a single nutrient treatment (HNHP) in nine of the same 

mesocosms used in phase one.  A complete floating treatment wetland community (the 

same community used in phase one) was floated in three of the mesocosms (“planted”).  

In three other mesocosms, the complete system less plants was floated (mats, cups, 

coconut fiber) to act as the control (“unplanted”).  In the final three mesocosms, only 

nutrients were added (“blank”).  The treatments were distributed in a completely 

randomized design.  Phase II was conducted from 22 April 2014 thru 2 June 2014.   

Initial and final water testing was conducted with a LaMotte SMART 2 Colorimeter 

to measure the NO3
--N, NHx-N & PO4

3- levels.  Nitrate-nitrogen was tested using the 

cadmium reduction method, ammonia/ammonium-nitrogen was tested using the 

Nesslerization method and phosphate was tested using the ascorbic acid reduction 

method.  All tests had a detection range of 0 - 3.0 mg L-1, and all test methods have been 

approved by the U.S. Environmental Protection Agency (40 CFR 136).   

To assess the relative success of each species of plant in the various nutrient 

environments, initial and final wet biomass was measured for each plant.  Because plants 

were acquired with their roots having already grown into the coconut fiber substrate, it 

was not possible to separate the plant from the fiber to measure the initial biomass of the 
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plant alone without damaging the root system.  As such, both initial and final biomass 

measurements included the coconut fiber substrate.  The units were allowed to drain for 

approximately 12 hours prior to weighing to eliminate as much water as possible.  

A number of analyses were used to assess algal development, including algal cell 

counts, chlorophyll-a levels and ash-free dry mass.  Samples of algae for cell count were 

taken by denuding a randomly selected 21 cm2 area of the bottom of the each mesocosm 

(one area in each pool, eliminating any area influenced by FTW shadowing).  Samples 

were preserved in 2.5% glutaraldehyde and refrigerated.  Algae were identified and 

quantified at the group level (bacillariophyta, chlorophyta and cyanobacteria).  

Biovolume was quantified by applying known geometric sizes and shapes to the cell 

count of each group (Wetzel and Likens 1991, Hillebrand 1999).  Samples for 

determination of ash-free dry mass (afdm) were taken by denuding all algae from each 

mesocosm, suspending the denuded algae in the full volume of water in each pool, and 

drawing a 150 mL sample of this suspension.  Those samples were immediately vacuum 

filtered onto glass fiber filters and dried at 70°C until a consistent mass was achieved (dry 

mass).  Dry samples were then combusted at 500°C for two hours and reweighed (ash 

mass).  Ash-free dry mass was calculated as the difference between the dry and ash mass 

(Zhu and Lee 1997).  Samples for chl-a determination were taken at the same time as 

samples for ash-free dry mass were taken.  Algae were mechanically suspended in the 

mesocosm water samples and chl-a measurements of whole, non-acidified cells were 

immediately taken using a Turner TD-700 Fluorometer (Wetzel and Likens 1991).  

Biovolume, ash-free dry mass and chlorophyll-a were all reported as per [pool] surface 

area concentrations (cm-2).   
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In Phase I, the performance of the floating treatment wetland community (in 

terms of total wet biomass increase) was compared between each nutrient treatment level.  

Performance of individual species (biomass increase) between nutrient treatment levels 

were also compared, as were comparisons between species across all nutrient treatments.  

The ability of the FTW to reduce nutrient concentration at each nutrient treatment level 

was compared as well.  Algal development (ash-free dry mass, chlorophyll-a, cell-count 

data) was also compared across nutrient treatment levels.  All of these comparisons were 

made using one-way ANOVA (with Tukey’s HSD).   

In Phase II, the effect of the plants in the floating treatment wetland on the 

nutrient levels was assessed by comparing nutrient levels in the three treatments (planted, 

unplanted and blank) by one-way ANOVA (with Tukey’s HSD).  The development of 

algae (ash-free dry mass, chlorophyll-a, biovolume) was assessed by comparing the 

development of algae in the planted treatments with the development of algae in the non-

planted control treatments through a t-test (there was no algae to assess in the blank 

treatments).  All statistical tests were performed using IBM SPSS Statistics v.22.   

 

RESULTS 

PHASE I 

Nutrients – With respect to final nutrient concentrations, no significant 

differences were found in NHx-N (F4,8 = 1.299, P = 0.348, log transformed), NO3
--N (F4,8 

= 0.973, P = 0.473) or PO4
3--P (F4,8 = 2.378, P = 0.138) concentrations of any treatment.  

Across all treatments, final nutrient levels were: NHx-N (0.13 ± 0.02 mg L-1), NO3
--N 
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(0.10 ± 0.01 mg L-1) and PO4
3--P (0.10 ± 0.01 mg L-1) (Table 2; data reported throughout 

is mean ± sem, unless otherwise noted).  In the high nitrogen treatments, 94.17% 

(±0.79%) of available NHx-N and 93.50% (±0.61%) of available NO3
--N was assimilated, 

and in the low nitrogen treatments 78.64% (±2.54%) of available NHx-N and 78.50% 

(±3.11%) of available NO3
--N was assimilated.  In the high phosphorus treatments, 

94.7% (±0.67%) of available PO4
3--P was assimilated, while in the low phosphorus 

treatments 61.33% (±5.35%) of available PO4
3--P was assimilated.  While the percentage 

data make it appear that the higher nutrient treatments resulted in a more complete 

reduction of nutrients, those higher percentages were simply a result of the higher initial 

concentration (e.g. a reduction from 10 mg L-1 to 1 mg L-1 is a 90% reduction, while a 

reduction from 3 mg L-1 to 1 mg L-1 is “only” a 33% reduction); all treatments, whether 

initially high- or low-concentration, ended up at statistically similar concentrations.   

Community Biomass - When percent biomass increase of whole floating treatment 

wetland communities (combined growth of all plants in each replicate) was compared 

across nutrient treatment levels, the plant communities in the high nitrogen treatments 

showed a greater percent increase in biomass, but those increases were not significantly 

greater than the increases seen in the other treatments (F4,8 = 2.255, P = 0.152) (Figure 5).  

The biomass of HNHP and HNLP communities increased by 16.27% (±4.05%) and 

19.24% (±2.34%), respectively, while the LNHP and LNLP communities only increased 

by 6.55% (±1.77%) and 3.69% (±3.76%).  The communities in the ONOP treatment also 

increased in biomass by 10.00% (±6.22%), and their increase was between that of the 

high and low nitrogen treatments.    
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Interspecific Plant Comparison - When comparing the performance of individual 

plant species across all treatments to determine which are generally best suited for 

employment in a floating treatment wetland, significant differences were found (F2,85 = 

10.151, P < 0.001) (Figure 6).  The metric of percent biomass was used to level the 

comparison between species because significant differences were observed in initial 

biomass between species (F2,87 = 4.320, P = 0.016).  A Tukey’s post-hoc test showed that 

arrowhead performed significantly worse than both canna and iris in terms of percent 

biomass increase. The arrowhead showed a percent biomass increase of only 2.03% 

(±2.70%), while the canna and iris showed much greater mean percent biomass increases 

of 19.10% (±2.78%) and 14.67% (±2.78%), respectively.  This low result from the 

arrowhead correlates with the high number of individuals (12) that experienced decreases 

in biomass, as compared with canna (2) and iris (4).  In terms of absolute biomass, canna 

showed the greatest increase (15.53 ± 2.68 g), followed by iris (9.03 ± 1.49 g) and finally 

arrowhead (0.90 ± 1.88 g).  

Intraspecific Plant Comparison - Within species, comparisons were made of 

absolute biomass changes between nutrient treatments.  Prior to comparing biomass 

changes, the similarity of initial biomass (within species) between treatments was 

confirmed through one-way ANOVA.  It was confirmed that there were no significant 

differences in initial arrowhead biomass between nutrient treatments (F4,25 = 0.629, P = 

0.646), and the same was true with canna (F4,25 = 2.736, P = 0.051); homogeneity of 

variance could not be established for initial iris biomass, so a Kruskal-Wallis test was 

performed to confirm that initial biomass was uniform between treatments (H = 0.944, P 

> 0.05).  As the initial biomass within each species was determined to be similar across 
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all treatments, it was not used as a covariate.  Canna was the only species which showed 

significant differences in biomass change between treatments (F4,23 = 3.645, P = 0.019), 

with the high nitrogen treatments generally exhibiting a greater increase in biomass 

(Figure 7).  Neither arrowhead (F4,23 = 2.255, P = 0.094) (Figure 8) nor iris (F4,25 = 1.082, 

P = 0.389) (Figure 9) showed significant differences in biomass change between nutrient 

treatments, although arrowhead experienced a mean biomass decrease in both low 

nitrogen treatments and those differences approached significance.    

Algae - Significant differences were seen in algal ash-free dry mass (AFDM) 

between nutrient treatments (F4,8 = 5.455, P = 0.020 [sqrt transformed]), with Tukey’s 

post-hoc tests showing that both high phosphorus treatments developed significantly 

more algae than the HNLP and ONOP, and the LNLP treatment developed amounts 

similar to all treatments (Figure 10).  The HNHP and LNHP treatments developed very 

similar amounts of algae in terms of AFDM, with means of 1.47 ± 0.05 mg cm-2 and 1.47 

± 0.17 mg cm-2, respectively.  The HNLP and ONOP treatments also developed very 

similar, albeit lower, amounts of algae, with means of 0.87 ± 0.06 mg cm-2 and 0.91 ± 

0.15 mg cm-2, respectively.  The algae that developed in the LNLP treatment fell between 

these two groups, and was statistically similar to all treatments.   

Patterns similar to the AFDW development were seen in final chlorophyll-a 

concentrations (F4,8 = 4.414, P = 0.035 [log transformed]), although the significant 

groupings were not necessarily the same (Figure 11).  In terms of statistical significance, 

the LNHP treatment (0.64 ± 0.27 µg cm-2) showed a seven-fold increase in algae over the 

ONOP treatment (0.09 ± 0.04 µg cm-2), with the other three treatments (HNHP, HNLP, 

LNLP) developing levels of algae between and statistically similar to both of these two 
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treatments.  In general, both ash-free dry weight and chlorophyll-a development was 

generally higher in the high phosphorus treatments than in the low and zero phosphorus 

treatments.    

When algal development was measured in terms of total biovolume, significant 

differences were seen between groups (F4,8 = 7.890, P = 0.007 [sqrt transformed]), but a 

different pattern was exhibited (Figure 12).  In this case, Tukey’s post-hoc tests showed 

that the high nitrogen treatments developed significantly more algal biovolume than the 

low and zero nitrogen treatments.  Biovolume development in the HNHP treatment was 

2.47 ± 0.86 mm3 cm-2 and in the HNLP treatment it was 1.86 ± 0.60 mm3 cm-2.  Much 

lower levels were seen in the LNHP (0.47 ± 0.21 mm3 cm-2), LNLP (0.22 ± 0.10 mm3 cm-

2) and ONOP (0.18 ± 0.05 mm3 cm-2) treatments.   

Algal community composition, determined by cell count, was dominated by 

cyanobacteria across all treatment levels, with only occasional appearances of 

chlorophyta (in one replicate each of LNHP and LNLP) and bacillariophyta (in one 

replicate each of LNHP and ONOP) at lower nutrient levels (Figure 13).  Significant 

differences were found in the biovolume of cyanobacteria that developed between 

nutrient treatment levels (F4,8 = 7.271, P = 0.009 [sqrt transformed]) (Figure 14).  The 

high nitrogen treatments produced generally more cyanobacteria (HNHP = 2.47 ± 0.86 

mm3 cm-2; HNLP = 1.86 ± 0.60 mm3 cm-2) than the low nitrogen treatments (LNHP = 

0.403 ± 0.25 mm3 cm-2; LNLP = 0.22 ± 0.10 mm3 cm-2; ONOP = 0.16 ± 0.06 mm3 cm-2).  
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PHASE II 

Nutrients - When final nutrient levels were compared between the three planting 

treatments in Phase II (planted, unplanted and blank), significant differences were found 

(Table 3).  Final NO3
--N levels were significantly (F2,6 = 785.330, P < 0.001) lower in the 

planted (0.03 ± 0.01 mg L-1) and unplanted (0.06 ± 0.02 mg L-1) treatments than in the 

blank treatment (1.59 ± 0.05 mg L-1) (Figure 15).  While both the planted and unplanted 

treatments reduced the NO3
--N concentration (by 98.67% ± 0.33%  and 96.33% ± 1.20%, 

respectively) significantly more (F2,6 = 4594.056, P < 0.001) than the blank treatment 

(1.67% ± 0.01% ), no significant differences were found between the planted and 

unplanted treatments when compared with Tukey’s post-hoc test.  On the other hand, 

final NHx-N levels were significantly (F2,6 = 6.722, P = 0.029) lower in the blank 

treatments (0.01 ± 0.01 mg L-1) than in the planted (0.04 ± 0.01 mg L-1) and unplanted 

(0.04 ± 0.01 mg L-1) treatments (Figure 16).   The planted and unplanted treatments 

reduced the NHx-N levels by 97.33% ± 0.67% and 97.00% ± 0.58%, respectively, while 

the NHx-N levels in the blank treatment were reduced even beyond these levels (99.67% 

± 0.33%).  While significant (F2,6 = 7.125, P = 0.026) differences were found between the 

unplanted and blank treatments in terms of NHx-N concentration percent reduction, no 

significant differences were found between the planted and unplanted treatments when 

compared by Tukey’s post-hoc test.  Significant differences were also seen in PO4
3--P 

reduction between the treatments, both in terms of final concentration (F2,6 = 1081.752, P 

< 0.001) and percent concentration reduction (F2,6 = 2253.469, P < 0.001) (Figure 17).  

The planted treatment reduced the PO4
3--P levels by 93.67% ± 0.67% to 0.03 ± 0.00 mg 

L-1, and the unplanted treatment reduced phosphorus levels by 92.00% ± 0.67% to 0.04 ± 
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0.01 mg L-1; phosphate levels in the blank treatment remained high at 0.46 ± 0.01 mg L-1, 

representing a decrease of only 3.33% ± 0.33%.  Tukey’s post-hoc test, however, 

revealed no significant differences in final phosphorus levels or percent reduction 

between the planted and unplanted treatments.   

Algae - There were no significant differences in algal development by any metric 

between experimental (planted) and control (unplanted) treatments when compared by t-

test, but development was slightly higher in experimental treatments than in control 

treatments; there was no algal development to assess in the blank treatments.  Algal ash-

free dry mass was 1.08 ± 0.10 mg cm-2 in the experimental treatments and 1.04 ± 0.11 mg 

cm-2 in the control (t4 = 0.245, P = 0.819) (Figure 18).  Chlorophyll-a levels in 

experimental treatments were 0.763 ± 0.133 µg cm-2 while they were 0.722 ± 0.156 µg 

cm-2 in control treatments (t4 = 0.203, P = 0.849) (Figure 19).  Finally, algal biovolume 

was 0.707 ± 0.188 mm3 cm-2 in the experimental treatments and 0.384 ± 0.203 mm3 cm-2 

in the control (t4 = 1.166, P = 0.308) (Figure 20).  The population of algae that developed 

in all replicates was composed entirely of cyanobacteria.  

 

DISCUSSION 

PHASE I 

Nutrients – The fact that final nutrient concentrations showed no significant 

differences between any of the various nutrient treatment levels indicates that plant and 

algal communities were able to assimilate available nutrients only up to a point where a 

common equilibrium baseline was reached, but were not able to completely eliminate all 

nutrients from the water.  It is likely that nutrients remained in the water for a number of 
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reasons.  The algal community that developed was found to be dominated by 

cyanobacteria (esp. Calothrix), many taxa of which are able to fix nitrogen (Smith 1983).  

Cyanobacteria were found to be present in every replicate of every treatment level in the 

study, and this could explain why NHx-N and NO3
--N could still be detected at the end of 

the study.  Phosphate was likely returned to the water through the death and 

decomposition of plant and algal tissue within the mesocosm (Mitsch and Gosselink 

2007).  The increase in nutrient concentrations seen in the ONOP treatments was likely 

due to the nutrients being imported with the nursery pond water that was carried by the 

coconut fiber and plant tissue; there is no other way that the PO4
3--P especially could 

have been brought into the mesocosm, as phosphorus does not exist in a gaseous phase at 

any point in its nutrient cycle (while nitrogen does).  The increase in nitrogen in the 

ONOP treatments could also be explained by the presence of cyanobacteria.  From the 

similarities in final nutrient levels it is evident that the there was not a high enough 

nutrient load placed on the macrophytes to show differences in nutrient removal 

efficiency between the treatments.  While the levels used in this study were higher than in 

some other studies, this study ran over a much longer period.  For example, Wang and 

Sample (2014) used actual pond water with 1.19 mg L-1 N and 0.15 mg L-1 P in a 

mesocosm study (compared to the 3.7 mg L-1 N & 0.45 mg L-1 P used in the present 

study).  However in that study, the water in the mesocosms was replaced every seven 

days.  Because one of the goals of the present study was to evaluate the development of 

algae, replacing the water was not an option.  While differences in nutrient removal 

efficiency of the FTW between the treatments were not able to be elucidated, based on 

the similarities of the final nutrient concentrations it could be concluded that a lack of 
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nitrogen did not limit the system’s capacity to assimilate phosphorus, and that a lack of 

phosphorus did not limit the systems capacity to assimilate nitrogen.  

White and Cousins (2013) performed a long-term evaluation of nutrient 

assimilation in floating treatment wetland communities of Canna flaccida  and Juncus 

effusus, although that study was a “press” rather than a “pulse” experiment.  They found 

that a 95% FTW cover, under a nutrient loading rate of 0.24 mg L-1 d-1 N and 0.02 mg L-1 

d-1 P (approximately the same N:P ratio as the HNHP treatment in the present study), 

could reduce the concentrations of those nutrients by 88% & 81%, respectively with a 3 

day hydraulic retention time (a second phase of that study also showed that an 

approximate doubling of that loading rate lowered the nutrient reduction performance of 

the FTW by approximately 8%).  The present study provided an initial pulse of 

approximately 20 days worth of the nutrients supplied by White and Cousins, and ran the 

study over approximately three months.  While that means that relatively less nutrients 

overall were supplied in the present study, the percent coverage of FTW was also 

considerably less (20%).  Even though there were differences between the studies, both 

showed similar final nutrient levels following treatment by the floating wetlands.  White 

and Cousins showed final effluent levels of 0.14 mg L-1 N and 0.02 mg L-1 P, and the 

present study found final nutrient levels (for the HNHP treatment) of 0.19 mg L-1 N and 

0.03 mg L-1 P.  This indicates that there may be a nutrient concentration floor below 

which nutrients can be assimilated.   

There was a tradeoff that had to be made when conducting Phase I of the study.  

There were only enough funds available for limited water testing, which included only 

initial and final testing.  The study also had to run long enough for a measurable amount 
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of algae to develop and for a measurable amount of growth to take place in the plant 

community.  As such, in the extended time that it took for the algae to develop and the 

plants to grow, the available nutrients in all treatments were reduced to equilibrium levels 

and differences between nutrient treatments were not able to be measured.  Future studies 

should include intermediate water testing to track the reduction in nutrients.  If additional 

water testing were available it would also afford the opportunity to change from the 

“pulse” perturbation experiment employed in the present study, which involves a single, 

instantaneous alteration of conditions, to a “press” perturbation experiment, which 

involves continuous and sustained alteration of conditions (Bender et al. 1984).  The 

press experiment would have the advantage of maintaining nutrient levels at elevated 

levels to potentially distinguish differences in nutrient assimilation between treatments.   

Plant Community - While the plant communities in the two high nitrogen 

treatments showed greater biomass increases than those in the other three treatments, the 

difference was not statistically significant.  The lack of a statistically significant result 

was most likely due to the high level of within-group variation and small sample size.  

Both high nitrogen treatments had a community replicate that showed a much lower 

biomass increase than the other two replicates at that treatment level, and in both of these 

cases that low replicate was the only replicate in that treatment level in which an 

individual plant died (negative change in biomass).  The loss of the individual from those 

treatments caused a substantial change in biomass increase for that replicate, and a 

subsequent substantial increase in the within group variance for that treatment level.  The 

death of these individuals could have been caused by any number of reasons.  Despite the 

lack of a statistically significant result, the trend was that nitrogen levels had more of an 
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impact on plant growth than phosphorus levels.  The increase in biomass of the ONOP 

communities could have been facilitated by nutrients imported in the nursery pond water 

that was carried by the coconut fiber husks, a conclusion that is supported by the fact that 

an increase in nutrients was also seen in these ONOP treatments.  It could also be 

explained by the fact that one of the community replicates exhibited a 22% increase in 

biomass (the second highest biomass increase across all treatments), while the other two 

replicates at this treatment level only exhibited an average increase of 4%; the high 

average biomass increase seen for this treatment level could therefore simply be a result 

of a single treatment having a community of particularly robust individuals.  While the 

biomass increases of the floating treatment wetland communities were not significantly 

different between treatments, these results indicate that this community of plants will 

have greater success in high nitrogen conditions, and that phosphorus levels will have 

less of an effect.   

Plant differences – Canna was the most successful species across all treatments, 

showing an average biomass increase of almost 20% across all treatments.   Canna 

showed significantly greater success when nitrogen and/or phosphorus was high, but less 

so when they were not, suggesting that this species has a high requirement for these 

nutrients.  Iris also showed that it was a good candidate  for employment in floating 

treatment wetlands with a mean biomass increase of 15% across all treatments.  While 

there were no significant differences in iris performance across the treatments, this 

species seems to be less impacted by the differences in the nutrient combinations 

presented in this study.  When comparing canna and iris, canna showed both a greater 

percent increase in biomass as well as a greater absolute increase, meaning that it could 
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be able to assimilate more total N & P than iris.  This information would be useful for 

those trying to design a floating treatment wetland with limited space.  Arrowhead, 

however, did not perform well at all.  Overall, 43% (13/30) of the arrowhead individuals 

showed either zero or negative changes in biomass over the course of the study, and 

every nutrient treatment level contained at least one of these individuals.  This lack of 

success was especially evident in both low nitrogen treatments.  Although arrowhead is 

an emergent wetland species that has adapted to wet soil, these results suggest that it may 

not be the best choice for use in a totally immersed condition such as floating treatment 

wetlands.   

When compared to results of other studies, both similarities and differences can 

be seen.  Chen (2009) tested similar species in a floating treatment wetland application 

(Australia canna [Canna generalis], golden fleece iris [Iris pseudacorus] and bulltongue 

arrowhead (Sagittaria lancifolia]), however he tested each species separately as opposed 

to testing them as part of a community.  As in the present study, canna was found to be 

the most successful in terms of biomass increase, however differences were seen in the 

results of the iris and arrowhead.  Chen found that arrowhead actually showed success in 

a  FTW application, while the success of the iris was more measured.  This result could 

be due to the much higher (c. 3x) concentration of nutrients employed in that study.  It is 

possible that arrowhead has a higher nutrient requirement than iris does, and that it is 

very successful at higher nutrient concentrations while being very limited at lower 

nutrient concentrations; at the same time, iris could respond similarly across many 

nutrient conditions.  Alternatively, the differences in these results could suggest that 

arrowhead is not as able to compete for nutrients when employed as part of a community; 
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this result could imply that arrowhead would not be a good choice for use in a floating 

treatment wetland when a community is preferred (i.e. when a high level of importance is 

placed on aesthetics), but it may perform better in a monoculture.  Another aspect of the 

performance of macrophytes in FTW applications is the tissue nutrient concentration.  

While both Chen’s study and the present study found that canna outperformed iris in 

terms of overall biomass increase, Chen found that iris had a higher tissue nitrogen 

content than canna (he found that canna and iris performed similarly in terms of tissue 

phosphorus content).  Tissue nutrient concentrations vary widely between species.  

Tanner (1996) grew various wetland species (although none of the current subjects) under 

similar (albeit not floating) treatment wetland conditions and found tissue nitrogen 

contents between species ranging from 12-32 mg g-1 and tissue phosphorus 

concentrations ranging from 1-8 mg g-1.  These results suggest that both biomass 

increases and tissue nutrient content factors should be taken into consideration to provide 

a higher level of evaluation of macrophyte nutrient removal efficiency.  In addition, even 

when the removal efficiency is known for a particular species under a certain set of 

conditions, designers and managers should remember that removal efficiencies can vary 

widely when grown under differing conditions (Brisson and Chazarenc 2009).  

Algal concentration – When measured by ash-free dry mass and chlorophyll-a, 

phosphorus levels affected algal development more than nitrogen levels.  As phosphorus 

is widely considered to be the limiting nutrient in freshwater ecosystems (Schindler 

1974), it is understandable that the treatments with higher relative amounts of phosphorus 

would result in more algal development.  However, this result does conflict with the 

results of a similar mesocosm study, in which a high phosphorus, low nitrogen treatment 
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resulted in lower algal biomass than treatments with high nitrogen availability (Dunn 

2007).   

Algal community composition –  Across all treatments, the algal community that 

developed was dominated by cyanobacteria.  While diatoms are another predominant 

group of algae that form dense blooms in eutrophic freshwater lakes (Bellinger and Sigee 

2010), the community of cyanobacteria that developed in this study is consistent with the 

community composition that would be expected given the N:P ratios that were tested.  

Smith (1983) reported that a N:P ratio of 29:1 is the threshold that delineates 

cyanobacteria-dominated communities; a N:P ratio of less than 29:1 typically results in a 

cyanobacteria-dominated community, while a ratio above 29:1 typically results in a non-

cyanobacteria-dominated communities (i.e. domination by diatoms or other algal groups).  

In the present study, three of the four nutrient treatments tested had ratios of less than 

29:1 (LNLP [16:1], HNHP [8:1] & LNHP [3:1]), while only one had a N:P ratio greater 

than 29:1 (HNLP [46:1]).  It is likely that the community composition of algae that 

developed in this study was influenced by the types and quantities of algae that developed 

in ponds at the nursery and were imported with the plant specimens.  This could explain 

why even the HNLP treatment (N:P = 46:1) developed an algal community that was 

dominated by cyanobacteria.  As it was only a peripheral goal of the study to examine the 

algal community composition under different nutrient loading conditions, preference was 

given to establishing nutrient conditions that were representative of Florida lakes rather 

than nutrient conditions which would highlight differences in algal community 

development.   
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The fact that chlorophyll-a levels and ash-free dry mass data indicated that greater 

algal development occurred in the high phosphorus treatments rather than the high 

nitrogen treatment, while the cell-count and biovolume calculations showed the opposite 

trend is difficult to explain.   Simple visual observation of the algae in the pools supports 

the conclusion that the high phosphorus treatments resulted in greater development of 

algae.  It has been reported that environmental conditions such as nutrient ratios can 

affect cell growth.  Caperon and Meyer (1972) reported that nitrogen limitation resulted 

in higher growth rates of multiple species of marine phytoplankton, but at lower 

carbon:volume ratios; this trend would result in nitrogen-limited treatments showing a 

falsely high biovolume reading if relying solely on application of a generic formula to 

simple cell counts.  Overall, that finding suggests that a possible explanation for the 

discrepancy in the results of the current study could be that there was variability in the 

growth patterns of the algae between nutrient treatments.  Some treatments could have 

resulted in fewer, larger cells while other treatments could have resulted in more smaller 

cells; as the biovolume was calculated by applying the same generic formula to all cells, 

without respect to possible differences in cell size between treatments, changes in growth 

patterns such as this would have skewed the results.  However, while Caperon and Meyer 

specifically reported that there was a correlation between nitrogen limitation and growth 

pattern changes, that same correlation could not be found between N:P ratios and 

biovolume calculations in the present study when applying these findings.  Despite there 

not being a parallel finding between these two studies, the possibility still exists that the 

different nutrient treatments in the present study could have altered the growth patterns of 

the algae, and therefore caused the discrepancy seen in the algae results.  
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An interesting discrepancy that was seen was that the FTW plant community 

showed generally, albeit not significantly, greater biomass increases in the high nitrogen 

treatments (indicating nitrogen limitation), while two of the three algal metrics showed 

that the algae experienced (again, not significantly) greater success in high phosphorus 

treatments (indicating phosphorus limitation).  While cyanobacteria have evolved 

mechanisms that make them excellent competitors for phosphorus, such as the production 

of phosphatases and the ability to sequester “luxury phosphorus” (Coleman 1992, 

Reynolds 2006, Carey et al. 2012), these results show that they still exhibit susceptibility 

to phosphorus limitation.  This is not surprising, given that freshwater systems are usually 

phosphorus limited (Schindler 1974).  These results confirm that limiting phosphorus 

levels is more important than limiting nitrogen levels in order to effectively curb 

cyanobacteria blooms.  A second conclusion is that in order for it to be possible for this 

community to be successful in limiting a cyanobacteria bloom, there needs to be 

sufficient nitrogen available to support plant growth; that growth would in turn facilitate 

increased uptake of phosphorus to compete with cyanobacteria and possibly limit their 

development.  These results also indicate that FTWs composed of plants with a greater 

affinity for phosphorus might be more able to limit algal development by competing for 

that resource.   

PHASE II 

Nutrients – Surprisingly, no significant differences were seen in nutrient reduction 

between the planted and unplanted treatments.  This study therefore showed that this 

community of plants did not contribute significantly to the nutrient reduction ability of 

the floating treatment wetlands.  Results may be different however, if the plants were 
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bigger.  The plants that were employed in this study were juvenile – if larger, more 

mature plants were employed, then those would likely be able to assimilate more 

nutrients, and therefore have more of an impact on nutrient levels.  The size and maturity 

of macrophytes employed in FTWs becomes even more important when one considers 

the finding by Pietro et al. (2006) that tissue phosphorus concentration of macrophytes 

can increase with increasing ash-free dry mass; while this might not be true for all 

macrophytes, this finding does indicate that some larger macrophytes could be much 

more able to outcompete algae for phosphorus both due to their larger size as well as the 

higher concentration at which they can sequester phosphorus in their tissue.  Dunn (2007) 

showed that epiphytic algae was able to outcompete submerged aquatic vegetation in 

mesocosm experiments in which they had to compete for limited nutrients, showing that 

algae are vigorous nutrient competitors.  The size and maturity of any plants employed in 

floating treatment wetlands should therefore be considered, with preference given to 

larger, more mature plants which will be more able to compete with the algal community 

for available nutrients.  The present results indicate that small, immature plants compete 

poorly with algae for available nutrients, at least under the limited conditions of this 

study.   

That the blank treatment showed NHx-N being almost completely eliminated from 

the system without the presence of either plants or algae suggests that NH4
+ could have 

left the system via deprotonation to NH3 and subsequent volatile loss.  While more 

common in urea-based fertilizers, all fertilizers containing ammonium are susceptible to 

loss via volatilization (Mikkelsen 2009).  The high temperatures and constant air 

movement in the greenhouse, and the “flooded” nature of the pools all contribute to a 
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greater likelihood of this type of loss occurring.  Alternatively, the ammonium could have 

been converted to nitrate through nitrification, but no analogous increase in nitrate 

concentrations was seen.  No assessment of an appropriate nitrifying bacterial community 

was made in this study, but is unlikely that a consortium of nitrifying bacteria could have 

established without the surface area provided by the root system of the floating 

macrophytes, with which these bacteria typically form symbiotic relationships (Sooknah 

and Wilkie 2004).  Chen (2009) also saw that ammonium-nitrogen was undetectable at 

the conclusion of a similar 10-week study.  As the same volatile loss of NHx-N could 

have happened in the planted and unplanted treatments, it is difficult to be able to 

attribute the reduction in NHx-N in those treatments to the plants or algae.  The lack of 

living biomass in the blank treatments prevented any additional NHx-N from being 

reintroduced into the water through death and decomposition, or through waste 

generation, so final NHx-N levels were even below those of the planted & unplanted 

treatments where these processes were occurring.  These observations from Phase II of 

the elimination of NHx-N by mechanisms other than assimilation by algae or plants 

necessarily make the same NHx-N results from Phase I inconclusive as well. 

Despite this study showing no effect of the plants on nutrient removal, other 

studies have found that the living plant component of floating treatment wetlands plays 

an essential role in the system’s ability to reduce nutrient concentrations in the water.  In 

addition to taking up nutrients themselves, the plants are able to contribute to the system 

by providing increased surface area, oxidizing the rhizosphere and excreting bioactive 

compounds that supplement the important biofilm of microorganisms which also 

contributes to the nutrient removal effectiveness of floating treatment wetlands (Van de 
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Moortel et al. 2010, Tanner and Headley 2011).   While no biomass information was 

available from Van de Moortel et al. (2010), plants evaluated by Tanner and Headley 

(2011) were far larger than those employed in the present study, and, as previously 

mentioned, this could potentially explain why the findings were different.   

Algae – The plants were not able to limit the development of algae in the same 

way that they were not able to reduce the nutrient concentration.  Consideration should 

again be given to the fact that the plants employed in this study were relatively small 

when compared to those employed in floating treatment wetlands in other studies (i.e. 

White and Cousins 2013).  That the Beemat© system is able to support larger, more 

mature plants is important, as the size and maturity of the plants may be critical to the 

system’s ability to outcompete algae for available nutrients.  Future studies should 

employ larger, deeper mesocosms to investigate the ability of larger plants to compete for 

nutrients than smaller ones.  Community composition of the algae in the planted and 

unplanted treatments was not different, with both being entirely composed of 

cyanobacteria – the plants therefore exhibited no observable effect on the types of algae 

that developed.  Moreover, community composition of the algae that developed in Phase 

II was similar to that of Phase I; this was not surprising, considering that the plants came 

from the same nursery and likely imported the same algae from the same ponds. 

General Conclusions - Floating treatment wetlands are a novel method of 

reducing nutrient concentrations in lakes and possibly limiting the development of 

harmful algal blooms.  However, much more research is needed to determine exactly how 

these systems work, and how to employ them in the most effective fashion.  One of the 

major conclusions of the present study was that the size of the plants in the FTW may be 
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of great importance, as small plants are simply unable to assimilate enough nutrients to 

limit the development of algae.  In addition, arrowhead was found to be much less 

successful when employed as part of this community and that it may perform better as a 

monoculture, while canna showed that it could remain successful as part of a community.  

The present study was unable to determine the ability of a floating treatment wetland 

system to remove NHx-N because of the observed losses apparently via volatilization.  

Another conclusion was that this specific community of plants displayed some level of 

nitrogen limitation, and that it would require enough nitrogen in the system to facilitate 

the requisite uptake of phosphorus that would truly limit a bloom of cyanobacteria.  

Alternatively, a FTW composed of plants with a greater affinity for phosphorus might be 

more able to compete with algae for that resource and be more able to limit algal 

development.  Despite the fact that the results of this study were relatively inconclusive 

with respect to the ability of floating treatment wetlands to limit the development of 

algae, their use remains promising and further research should be done to continue to 

enhance our understanding of their strengths and weaknesses.  
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APPENDIX I – TABLES 
 
 

Table 1  Nutrient concentrations (mg L-1) and ratios for each treatment level in Phase I 

Tag Description 
Nitrogen 

concentration 
Phosphorus 

concentration 
N:P 

Ratio 
HNHP high nitrogen + high phosphorus 3.69 0.46 8:1 

HNLP high nitrogen + low phosphorus 3.69 0.08 46:1 

LNHP low nitrogen + high phosphorus 1.27 0.46 3:1 

LNLP low nitrogen + low phosphorus 1.27 0.08 16:1 

0N0P zero nitrogen + zero phosphorus 0.00 0.00 0:0 
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Table 3  Nutrient concentrations in floating treatment wetland 
mesocosms, by planting treatment in Phase 2 [mean (sem)]. 

     
  

Planted 

  
NHx-N   NO3

--N   PO4
3--P 

Nutrient Concentration 
   

 
Initial (mg L-1) 1.60 (0.05) 1.66 (0.05) 0.47 (0.02) 

 
Final (mg L-1) 0.04 (0.01) 0.03 (0.01) 0.03 (0.00) 

 
Change (mg L-1) -1.56 (0.06) -1.63 (0.05) -0.44 (0.02) 

  Change (%) -97.3 (0.7) -98.7 (0.3) -93.7 (0.7) 

     
  

Unplanted 

  
NHx-N   NO3

--N   PO4
3--P 

Nutrient Concentration 
   

 
Initial (mg L-1) 1.56 (0.03) 1.68 (0.06) 0.50 (0.02) 

 
Final (mg L-1) 0.04 (0.01) 0.06 (0.02) 0.04 (0.01) 

 
Change (mg L-1) -1.52 (0.03) -1.63 (0.08) -0.46 (0.02) 

  Change (%) -97.0 (0.6) -96.3 (1.2) -92.0 (1.7) 

     
  

Blank 

  
NHx-N   NO3

--N   PO4
3--P 

Nutrient Concentration 
   

 
Initial (mg L-1) 1.62 (0.08) 1.61 (0.05) 0.48 (0.01) 

 
Final (mg L-1) 0.01 (0.01) 1.59 (0.05) 0.46 (0.03) 

 
Change (mg L-1) -1.61 (0.08) -0.05 (0.00) -0.02 (0.00) 

  Change (%) -99.7 (0.3) -1.7 (0.7) -3.3 (0.3) 
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APPENDIX II – FIGURES 

	
  

	
  

Figure 2  Layout diagram of Phase I.   

	
  

	
  

Figure 3  Photograph of Phase I in progress. 
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Figure 4  Layout diagram of Phase II. 

	
  

Figure 5  Photograph of Phase II in progress.  
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Figure 6  Percent change in total biomass of floating treatment 
wetland communities by nutrient treatment in Phase I 

 (mean ± sem). 
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investigation, across all nutrient treatment levels, in Phase I  
(mean ± sem). 
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Figure 8  Change in biomass of C. flaccida by nutrient 

treatment level in Phase I (mean ± sem). 
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Figure 9  Change in biomass of S. lancifolia by nutrient 

treatment level in Phase I (mean ± sem).  
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Figure 10  Change in biomass of I. hexagona by nutrient 

treatment level in Phase I (mean ± sem).  
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(mg cm-2) by nutrient treatment level in Phase I 
(mean ±  sem).  
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Figure 12  Final algal chlorophyll-a concentration (µg cm-2) 

by nutrient treatment level in Phase I (mean ±  sem). 
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Figure 13  Final algal biovolume concentration  

(mm3 cm-2) by nutrient treatment level in Phase I  
(mean ±  sem). 
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Figure 14  Algal community composition (biovolume concentration) 
for each replicate, by nutrient treatment level, in Phase I.  
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Figure 15  Cyanobacterial biovolume concentration (mm3 cm-2), 

by nutrient treatment level in Phase I (mean ± sem). 
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Figure 19  Final algal ash-free dry mass concentration  

(mg cm-2) by planting treatment in Phase II (mean ± sem). 
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Figure 20  Final algal chlorophyll-a concentration (µg cm-2) 

by planting treatment in Phase II (mean ±  sem).  
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