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Abstract 

The intent of this project was to research and analyze the changes 

in college mathematics curricula and to establish the need for a change 

in the current college-preparatory mathematics program. The research 

indicates that colleges are emphasizing computer applications, statistics, 

and discrete mathematics. One response to the change is the course 

designed in this project. 

Presented in this work is a one-semester course in mathematical 

modeling and statistical analysis of data. It also includes topics in 

probability, sampling, and algorithms. The methods of instruction include 

discussion, cooperative learning, lecture, projects, labs, computer 

investigations, problem solving, and writing. Students of this course will 

learn to value mathematics, reason and communicate mathematically, 

and gain confidence in their abilities to solve problems. 



Chapter 1 : Introduction 

Thecollege-preparatorycurricuJum .. in mathematicshas

remained virtually unchanged during the past thirty years. In most 

high schools, students who intend to enter college are required to 

take Algebra I, Geometry, and Algebra II. They are encouraged to 

take Pre-Calculus and advanced placement Calculus if they are 

mathematically gifted and if time permits. These courses have 

served for many years as a preparation for college for those 

students who are adept and achievement-oriented in 

mathematics. 

However, there are many secondary school students who are 

not mathematically gifted but who are still planning on a college 

career(Leitzel & Osborne, 1985). Once these students complete 

the college-preparatory requirement of Geometry and Algebra II, 

they find their choices are quite limited. They can pursue the 

honors track and take Pre-Calculus or Calculus, which is intended 

to prepare them for the possibility of a career in mathematics, 

science, or engineering. They can take basic courses such as 

consumer math, general math, business math, or liberal arts math 

which are not college-preparatory. Or they can choose the third, 

increasingly popular, option of taking no mathematics in their 

senior year. 
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The omission of a mathematics course from the senior's 

schedule can have a devastating effect on the student's 

performance in freshman college mathematics courses. Terrel 

BeJI,JheJorrnerSecretaryoLEducationadmitsJhat:

Too often American students don't take enough 

mathematics courses in high school, effectively shutting 

them out of many courses in science and other fields which 

depend on a mathematical background. Without a strong 

background in mathematics, students face limited 

opportunities in postsecondary studies and in many career 

areas (Romberg, 1984, p. v). 

Tomorrow's college students will need to be able to think 

algorithmically in order to maximize their use of computers(Steen, 

1989). The infusion of calculators and computers into the 

workplace has dramatically changed the mathematical needs of 

most professions over the last decade. Tedious calculations have 

virtually been eliminated due to these revolutionary tools. "To help 

today's students prepare for tomorrow's world, the goals of school 

mathematics must be appropriate for the demands of a global 

economy in an age of information"(Steen, 1989, p. 19). 

Colleges are presently in a state of transition in their 

mathematics curricula. They are adding courses in discrete 

mathematics and statistics as well as in computer applications and 

programming (Steen, 1989). Many colleges are de-emphasizing 
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the role of calculus as the sole keystone of advanced 

mathematics. Computers are having an impact on all areas of the 

college curriculum. These changes at the collegiate level raise 

thequestion othowhighschoolscan besLprovide.forstudents

mathematical needs. Is it important or even necessary to 

introduce topics in high school that students will encounter in 

college outside of the traditional calculus courses? Is a new 

course needed or should the algorithmic approach be 

incorporated into the existing curriculum? What are the 

alternatives for students who do not excel in mathematics but are 

headed for college nonetheless? 

In An Agenda for Action (1980), the National Council of 

Teachers of Mathematics (NCTM) recommended that "a flexible 

curriculum with a greater range of options should be designed to 

accommodate the diverse needs of the student population" (p. 1 ). 

We are currently in a period of major curricular reforms in 

mathematics. The focus of this project assumes that certain 

changes need to be made in the current mathematics curriculum 

to better prepare students for the future. On the basis of 

recommendations from the literature, it will propose a practical 

program for incorporating new topics and methods of thinking into 

the traditional college-preparatory mathematics program, 

especially applicable to high school students who are college-
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bound but do not intend to major in mathematics, science, or 

engineering. 
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Chapter 2: Review of Related Literature 

The decade of the 1980s has produced volumes of

research and opinion papers about educational reform. The U. S. 

Department of Education's report: A Nation at Risk: The 

Imperative for Education Reform (1983) shocked the general 

public into the realization that serious deficiencies existed in the 

nation's schools. It proved to be a catalyst for much of the 

research conducted in the ensuing six years. The focus of this 

paper is the changing role of mathematics in the world in general 

and specifically in secondary schools. 

An Historical Perspective 

Beginning with Plato's Academy and the Roman quadrivium, 

students have been required to study mathematics to learn to think 

clearly (Steen, 1989). About 500 years ago, arithmetic and 

algebra became part of the educational system in response to 

expanding commerce. Geometry and arithmetic are now 

paradigms of school mathematics although they may not be 

especially relevant in today's society. 

Mathematics educators have a long history of reforms. At the 

turn of the century, E. H. Moore urged that schools abolish the 

separation of algebra, geometry, and physics (Cooney, 1988). At 
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the same time, John Perry emphasized the importance of 

applications and laboratory teaching techniques in teaching 

mathematics. After World War II, the Commission on Post-War 

Plans pointed to seriousshqrtoomingsof Americans' mathematical

knowledge. Some claimed considerable success in curricular 

reform during the post-war era of "modern mathematics". 

However, others have noted that the "modern" approach was 

sterile and notation-bound. Surprisingly few studies were 

conducted to analyze the effects of the reform movement of the 

1950s and 1960s. 

In the 1960s there was considerable belief that intellectualism 

could lead society toward the resolution of all its problems 

(Cooney, 1988). Mathematics teachers were told to teach the 

structure of mathematics and all else would fall into place. In the 

1970s the buzzword was "relevant." We saw the emergence and 

proliferation of competency-based educational programs with their 

behavioral objectives. The era of anti-intellectualism was 

manifested eventually in the "back to basics" movement. 

Today the pendulum of educational reform is swinging back 

toward an emphasis on conceptualization and analysis (Steen, 

1989). In mathematics, the trend is toward algorithmic thinking 

and the use of technology. Our economy is increasingly reliant on 

the processing and transfer of information. Computers and 

calculators are essential tools for many occupations. Students 
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need a heightened awareness of mathematical concepts, but not 

necessarily the ones we are currently teaching in our secondary

schools. 

Mathematical sciences are no longer a requirement for future

scientists only. Mathematics should be an essential ingredient in 

the education of all Americans. Yet many reports (NCTM, 1985; 

Robitaille & Garden, 1989; United States Department of Education 

[USDOE], 1983) cite serious deficiencies in the mathematical 

performance of U. S. students compared to other nations and to 

our own expectations. Students in this country drop out of 

mathematics at alarming rates, averaging about 50% each year 

after mathematics becomes an elective subject (Steen, 1989). 

Goldenstein, Ronning, and Walter (1988) found that today's 

students are taking more courses, but less rigorous academic 

course loads. In the senior year, the average American student 

earns only 0.4 credit in mathematics and 0.3 credit in science 

(Brodinsky, 1985). This is substantially less coursework than their 

counterparts take in Japan, West Germany, and the U.S.S.R. In 

those countries, all students take at least one course each in 

science and mathematics each year in the upper secondary 

school. 

As recently as 1980, most states required only one year of 

mathematics and one year of science for high school graduation, 

with many states having no requirements for specific curricular 
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courses (Brodinsky, 1985). A Nation at Risk (USDOE, 1983) 

provided a turning point for curricular reform. One year after its 

release, 48 states were considering new high school graduation 

requirements and 35 had already approved changes (USDOE,

1984). Florida now requires three years of mathematics and three 

years of science for graduation. Many recent reports 

(Henningsen, 1985; NCTM, 1985, 1989; Ralston & Young, 1983) 

have stressed the need for four years of mathematics for college­

bound students. 

However, raising the graduation requirements will not 

necessarily improve the achievement of students in mathematics 

and sciences nor result in a better education for all students 

(Brodinsky, 1985). It will increase the number of courses offered in 

these areas in which there is already a shortage of qualified 

teachers. It will also force non-college-bound students to take 

college-preparatory-level mathematics and science courses, 

which they and their teachers will find frustrating. Simply 

increasing the number of courses required for high school 

graduation will not solve the mathematical and scientific 

deficiencies of American society. More useful alternatives to 

improving the quality and quantity of mathematics and science 

education include: improving the quality of science and math 

instruction in elementary schools, increasing the supply of 

mathematics and science teachers, improving science lab 
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facilities, and developing appropriate mathematics and science 

classes for vocational and other non-college-bound students. 

What is Currently Offered

Secondary mathematics programs today generally consist of 

two groups of courses: the formal math track and the "remedial" 

track (Brodinsky, 1985). The formal math track includes theoretical 

treatments of concepts and skills at the abstract level, commonly 

presented by chalkboard-lectures and computational 

assignments. Remedial-type courses involve review of previously 

taught concepts, usually with the same method of presentation, but 

with more emphasis on paper-and-pencil skills. Both tracks are 

often deficient in concept development and emphasize 

memorization and manual calculation. 

The traditional college-preparatory curriculum consists of 

separate year-long courses in Algebra I, Geometry, Algebra II, and 

Pre-Calculus (Conference Board of the Mathematical Sciences 

[CBMS], 1983). This sequence is adequate for many college­

bound students. However, it is not preparing the majority of 

students with the types of skills and modes of thinking which they 

will need in the college curriculum. It ignores significant topics that 

are rather common in the real world, such as probability and 

statistics, estimation and approximation, and uses of computers. 
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There is much debate about what is included and what 

should be included in the pre-calculus course. Maurer (1983) 

notes that the content of the course varies widely but usually 

contains lots of review of topics from algebra and geometry;

coordinate geometry, especially conics and functions; exponential, 

logarithmic, and circular functions; vector geometry; permutations, 

combinations, and elementary probability; sequences and series; 

and elementary theory of equations. Topics which are generally 

not taught in pre-calculus or anywhere else in high school include 

algebraic proof; algebraic structures; mathematical induction; 

combinatorics, including set notation, Sigma and Pi notation; 

recursive methods; matrix algebra; and graph theory. 

Computers have been introduced into most schools today 

(Maurer, 1983). High school mathematics departments are very 

gradually incorporating them as teaching tools in traditional math 

classes. However, the computer is not being utilized for its ability 

to present a new mode of thought or as an object of mathematical 

study. 

For very capable mathematics students, advanced 

placement (AP) calculus is the zenith of high school mathematics 

training. The advanced placement exams, first offered in the late 

1950s, were taken in 1981 by about 33,000 students (Maurer, 

1983). That calculus should be the culmination of high school 

mathematics was a fine idea when the AP program began, but 
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calculus is no longer the sole keystone of advanced mathematics, 

argues Maurer. However, at the high school level the old idea is 

still prevalent and is reinforced by the current AP program. 

The College Board has recently developed a new AP

course and exam in computer science which was first given in 

1984. It is equivalent to a full-year introductory college course in 

computer science (Maurer, 1983). The emphasis of the course is 

how to think and write well algorithmically, using block-structured 

programs and data structures. AP computer science is a viable 

alternative or supplement to AP calculus for mathematically­

oriented students. 

Changes in the College Mathematics Curriculum 

Many experts (Maurer, 1983; Ralston, 1983; Steen, 1981) 

agree that the current curriculum for mathematics in the first two 

years of college is not serving as large a proportion of students as 

it should. They also feel that the mathematics community is ripe 

for change. Arguments in favor of a change in curriculum are 

motivated by changes wrought in the fabric of science, technology, 

and education by computers and computer science. Computer 

scientists have more use for discrete mathematics than for the 

continuous mathematics of calculus. The second industrial 

revolution, which focuses on the immaterial (knowledge, 

communications, and information) will force upon all scientists and 
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educators a new world view which will require an emphasis on 

discrete mathematics at least equal to the emphasis on classical 

analysis (Ralston, 1983). 

There are some arguments against a major change in

college mathematics curriculum (Ralston, 1983). The current 

curriculum has served the mathematics, science, engineering, and 

other communities reasonably well for a long time. Unlike 

calculus, discrete mathematics has no fundamental theorems or 

unifying ideas. It is harder to grasp, so should be avoided by 

weaker college freshmen. Certain mathematics educators feel 

that discrete mathematics would not reinforce high school 

mathematics lessons as well as the current curricula of calculus 

and linear algebra. 

Among mathematicians who agree that discrete 

mathematics should become a major emphasis in the 

undergraduate curriculum, there is some disagreement on how to 

incorporate it with calculus. Ralston (1983) believes in a single 

integrated curriculum including topics from discrete mathematics 

and calculus in both years to serve all disciplines including 

mathematics itself. Maurer (1983) argues in favor of two separate 

one-year sequences, one calculus and one discrete mathematics. 

This plan would not interfere with the content of the advanced 

placement calculus course presently taught in thousands of high 

schools throughout the country. After successful completion of that 
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needed to meet the goals: raise expectations, increase breadth of 

courses, use calculators, engage students, encourage teamwork, 

assess objectives, require mathematics, demonstrate connections, 

stimulate creativity, reduce fragmentation, require writing, and

encourage discussion. 

Will high schools utilize the new "standards" to implement 

changes in course content, presentation, emphasis, or course 

offerings? Or will they continue with the traditional college­

preparatory track through Algebra II, Pre-Calculus, and Calculus? 

Ernest Boyer, president of the Carnegie Foundation for the 

Advancement of Teaching, thinks that we need to take "a creative 

look at curriculum in relation to the future and not to the past" 

(Brandt, 1988, p. 9). 

Many experts (CBMS, 1983; Maurer, 1983; Romberg, 1984; 

Steen, 1989) recommend a streamlining of the current traditional 

college-preparatory curriculum to make room for new topics and 

approaches to mathematics instruction. The advent of calculators 

and computers has made tedious manipulative drill practically 

obsolete (CBMS, 1983). Teachers can reduce the time they 

spend on fractions, long division, graphing by hand, pencil-and­

paper algorithms, reading and interpolating from tables. In 

geometry, many authorities advocate a de-emphasis of two­

column proofs. In pre-calculus, less time could be spent reviewing 

topics from algebra and geometry (CBMS, 1983; Steen, 1981 ). 
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Some topics currently taught in high school could be moved to the 

junior high mathematics curriculum (Maurer, 1983). 

A plethora of topics could be added to the present college­

preparatory mathematics curriculum in order to make it relevant to 

tomorrow's college students (Brodinsky, 1985; CBMS, 1983). In 

algebra, emphasis needs to be placed on understanding 

functions. Computers can be utilized to evaluate and to graph 

functions. Probability and statistics, patterns, data collection, 

observation, estimation, and conjecture could supplement the 

present algebra curriculum. Because too often word problems in 

algebra are contrived and unrealistic, problems could be devised 

which reflect actual applications in science and business. 

Brodinsky (1985) and CBMS (1983) further note that geometry 

could be taught with a transformational approach, incorporating 

computer graphics packages to help students visualize geometric 

relationships. It could also include algebraic methods, analytic 

geometry, and vector algebra, especially in three dimensions. 

Computers can be incorporated into all areas of the 

mathematics curriculum (CBMS, 1983). In pre-calculus, 

computers can enable students to perform qualitative analysis of 

the graphs of functions. Students can develop algorithms to solve 

problems, then program computers to do it. Even those who are 

not mathematically gifted can benefit from access to computers. 
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Computers offer a fresh window into mathematics for students who 

are not headed for careers in science or technology. 

In addition to incorporating new topics, mathematics educators 

need to re-examine their approach and emphasis to the traditional

courses (CBMS, 1983). Calculators and computers should be 

included in all levels of mathematics instruction, kindergarten 

through grade twelve. Rote skills are not a prerequisite to learning 

problem-solving processes, which should be the primary focus of 

mathematics instruction. Higher order thinking skills can be taught 

to large numbers of students (Brodinsky, 1985). 

Extensive inservice training needs to be provided for current 

teachers to keep them abreast of the change,s in focus of 

mathematics. The retraining problem is of paramount importance 

(Maurer, 1983). If this were a period when a flood of new young 

teachers were entering the profession, already versed in 

algorithmics, then the problem might not be so serious; but of 

course, exactly the opposite is the case. It is a monumental task to 

get experienced teachers to look at their subject areas in a new 

light. 

Teachers and publishers need to confer on the content of 

new textbooks (Brodinsky, 1985; Romberg, 1984). New materials 

emphasizing problem solving and the algorithmic approach will 

need to be supplemented with detailed, usable curriculum 
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guidelines. Computer courseware needs to be developed that is 

user-friendly and compatible with the curriculum guidelines. 

Non-Traditional Mathematics Curricula

What creative mathematical alternatives have been developed 

and implemented during the years since An Agenda for Action 

(NCTM, 1980) was published? New courses for senior year 

electives for college-bound students fall into three main 

categories: discrete mathematics, elementary statistics, and 

computer science. The Conference Board of the Mathematical 

Sciences (CBMS, 1983) considers all of these topics to be more 

important than what is now taught in trigonometry. 

Discrete mathematics is appearing gradually and 

experimentally on the high school level as a reaction to the new 

emphasis in college mathematics. The content of the course 

varies widely but usually includes basic combinatorics, graph 

theory, discrete probability, recursion, and development of 

algorithms (Brodinsky, 1985; Steen, 1989). Where it is offered, it is 

generally an honors level course and an alternative to pre­

calculus or calculus. 

Brodinsky (1985) recommends that college-bound students 

take at least one semester of statistics in their junior or senior year, 

as well as trigonometry and computer usage. Elementary statistics 
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involves collection and analysis of data, probability, interpretation 

of tables, graphs, surveys, and sampling (CBMS, 1983). 

Computer courses can emphasize applications or 

programming and algorithms (NCTM, 1980). Both approaches are

important and students should have the opportunity to take either 

or both before they graduate from high school. Computer courses 

should be taken in addition to, not instead of, the usual pre-college 

mathematics courses (Brodin sky, 1985). 

In summary, teachers should strive for a fresh, new 

approach in their teaching of all math courses. They can 

emphasize algorithmic thinking as an essential part of problem 

solving (CBMS, 1983). They can facilitate learning through 

discovery by involving students in data gathering and investigation 

of mathematical ideas. They can utilize a variety of instructional 

methods, active learning, written expression, and continual 

assignments. Teachers can minimize rote memorization, lecture, 

one method/one answer, and routine worksheets (Steen, 1989). 

Maurer (1983) feels that an algorithmic frame of mind should 

become pervasive throughout secondary mathematics. 
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Chapter 3: Research Procedures 

Determining the Needs of Students 

The related literature has shown that the typical traditional 

college-preparatory curriculum is not serving the mathematical 

needs of a majority of college-bound students (CBMS, 1983; 

Henningsen, 1985; NCTM, 1980). A large percentage of seniors 

are taking no math courses at all. 

Consultation with college mathematics instructors will help 

to identify areas of mathematical deficit they have observed in 

incoming freshmen; such information will indicate those areas of 

mathematics appropriate for high school study. The course titles 

that college admissions officers consider to be academically 

sound and relevant to college mathematics will direct the design of 

a senior elective mathematics course. The perceptions of college 

freshmen and sophomores regarding the adequacy of their 

mathematical backgrounds will also suggest how such a course 

might be structured. 

Determining Objectives and Selecting Content 

As with many mathematics courses, the objectives of this 

senior elective mathematics course will focus on mastering the 

content of the course. The content will be derived from curriculum 
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guides of established courses and pilot programs currently being 

offered throughout the country as alternatives to calculus and pre­

calculus. The Florida Academic Scholars Program offers honors 

scholarships to Florida residents at state universities (USDOE,

1984). They require at least four years of high school 

mathematics, and they specify particular courses. The curriculum 

frameworks for these courses can be obtained from the Florida 

Department of Education when determining what content to 

include in this new course. The International Baccalaureate 

Program offers an alternative to the advanced placement program 

that could provide options which may be appropriate to include in 

the content selected for this course. 

Textbooks and computer courseware provide a major 

source of content. Publishers will be contacted for examination 

copies of their latest materials relevant to alternative mathematics 

curricula. Decisions regarding the appropriateness of materials 

will be made based on professional experience, 

recommendations from colleagues, and professional reviews in 

educational journals. 

How to Organize Content and Learning Experiences 

This course is to be an alternative to traditional mathematics 

instruction because the present curriculum is not appropriate for 

all college-bound students. Logic and professional experience 

24 



dictate that innovative approaches should be tried. Students are 

often bored and unmotivated with the lecture/drill format so 

common in secondary mathematics courses. Every effort will be 

made to present the topics of this course in active, unusual, and

relevant ways. This will be a point in the curriculum where 

computer science and software can be utilized effectively because 

they provide a means to reveal to students the living, evolving 

character of mathematics (Steen, 1986). The availability of 

applicable software will be a determining factor in organizing the 

content of the course with appropriate learning experiences. 

Evaluation 

This new course will be evaluated before, during, and after 

its implementation by several colleagues in secondary 

mathematics. A checklist will be developed so that they may 

easily report their perceptions of the appropriateness of the 

content and the likely effectiveness of the course as a whole. It is 

extremely important to evaluate new programs so that objectives, 

content, and learning experiences can be revised to better serve 

the students. 
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Chapter 4: Design of the Course 

Need for the Course 

The present college-preparatory curricula in mathematics are not

adequately preparing all students for the math they will encounter in their 

college courses. Colleges are placing more emphasis on statistics, 

computer applications, and discrete mathematics while de-emphasizing 

the role of calculus in many majors. The review of related literature 

affirms the need for college-bound students to take four years of math in 

high school. However, many high school seniors wishing to take math 

must choose between the rigorous, honors level calculus or pre-calculus 

courses and the remedial or review courses which are not college­

preparatory. 

This course is designed for high school seniors who do not 

necessarily want or need calculus but who do intend to go to college. 

The projects, cooperative group activities, and labs should appeal to 

students with a wide range of mathematical abilities and interests. 

In their Standards (1989), the NCTM emphasizes that 

mathematics teachers need to take a fresh approach in their teaching. 

They should try to incorporate a variety of instructional methods to 

cultivate students' abilities to investigate and find meaning in new 

situations, to make conjectures, and to use flexible strategies to solve 

problems. In addition to lecture and teacher-led discussions, NCTM 

recommends that students be provided the opportunity for small group 



work, individual explorations, peer instruction, and teacher-moderated 

class discussions. 

Prerequisites

27 

Students enrolled in the course must have completed Algebra II 

and be able to read and use formulas. They should be juniors or seniors 

in high school. The course is intended for college-bound students, but 

students of all ability levels could be admitted. 

Course Overview 

The course will encompass an 18-week semester and will consist 

of four broad topics: statistics, sampling, probability, and algorithms. 

Many instructional methods will be employed including discussion, 

cooperative learning, lecture, projects (with student-generated or 

collected data), labs, computer investigations, textbook problems and 

exercises, reading, and writing. Students will have the opportunity to 

work with their peers in cooperative problem solving but will also learn to 

think for themselves. 

Students of this course will investigate problems from many 

perspectives. They will explore, formulate and test conjectures, and 

discuss and apply the results of their investigations. The students will 

also use technology to enhance many of their explorations. 



Goals and Objectives 

After completing this course, students will: 

-understand statistical reasoning

-use statistical methods to analyze data 

-use appropriate graphs to represent data 

-use poweriul tools of technology 

-find mathematical solutions to everyday problems 

-reason and communicate mathematically. 

Curriculum Units 

28 

The traditional algebra and geometry topics that the student has 

studied up to this point were probably dominated by memorization of 

facts and procedures. This course will give the student a view of 

mathematics as a problem-solving tool. It will emphasize conceptual 

understandings, multiple representations and connections, and 

mathematical modeling. The course will begin with a two week 

introduction to one-variable statistics. The emphasis of this unit will be 

the graphical representations of lists of data. Students will generate 

several types of graphs including line plots, histograms, stem-and-leaf 

plots, and pie charts using real data. Most of the data used in the course 

will concern current events and topics of interest to teenagers such as 

sports, music, cars, SAT scores, and male/female ratios. 
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Collecting, representing, and processing data are activities of 

major importance to contemporary society. To enhance their social 

awareness and career opportunities, students should learn to use 

statistical techniques in solving problems and in evaluating statistical

claims they encounter in their daily lives. Two-variable statistics will be 

studied for five to six weeks. In order to recognize the relationships 

between two variables, the students need to have a thorough 

understanding of functions. They will analyze linear, quadratic, and 

exponential functions and learn how to recognize them from their graphs 

or from data points. Unlike traditional algebraic word problems where 

students insert values into formulas and solve for the unknown, statistical 

problems require the student to study a list of data points and recognize 

the function or relationship between them. 

Students will create scatter plots from real world data, fit lines to 

their data, and analyze the results. The students will learn methods of 

linear regression, correlation, and standard error of estimate. They will 

do a research project to see whether there is an association between two 

variables. The data can be collected from almanacs or other resources, 

or it can be collected by the students. 

The class discussions generated by the research projects will lead 

naturally into the next unit on sampling. Students need to acquire 

intuitive notions of randomness, representativeness, and bias in 

sampling to enhance their ability to evaluate statistical claims. Random 

samples can be generated by rolling ten-sided dice, by drawing numbers 
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out of a box, by a computer or calculator, or by looking them up in a table. 

Sampling will be explored for approximately four weeks. Students will 

learn about sampling distributions and will see the relationships among 

various samples from one population by graphing them as box plots.

Their familiarity with box plots should also help them to visualize the 

concept of a confidence interval. The students will complete a research 

project in which they create a random sample of their peers, choose a 

random variable, collect and analyze the data from their sample, and 

predict the mean of the population based on their sample. 

Probability provides concepts and methods for dealing with 

uncertainty and for interpreting predictions based on uncertainty. Formal 

concepts of theoretical probability will be developed only after a 

conceptual base is established through an intuitive approach. 

Probability will be introduced through simulations using dice, coins and 

random numbers. Students will learn the differences between 

experimental and theoretical probability and will solve problems using 

both methods. Students will learn how to calculate and use permutations 

and combinations. They will explore the fascinating world of Pascal's 

triangle and the binomial theorem. They will use Venn diagrams to find 

probabilities of events within a sample space. By the end of the three to 

four week unit on probability, the students will be calculating and 

analyzing binomial distributions. 

The development and analysis of algorithms are the basis for 

computer methods of solving problems. Students should be given the 
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opportunity to construct mathematics from an algorithmic point of view. 

An algorithm is a step-by-step procedure that tells a person or a 

computer how to perform a task or solve a problem. By this time students 

should be familiar with the algorithmic approach to problem solving since

the statistical models they create are actually algorithms. In the last two 

weeks of the term, students will be exposed to mathematical problems 

and real world situations for which they can create algorithms to produce 

solutions. 

Various types of algorithms will be discussed, including direct 

computation, enumeration, iteration, and recursion. Iteration is a useful 

technique in solving problems involving sequences and series. At this 

point in the course, students should be familiar with summation notation, 

combinations and permutations, the binomial theorem, and set theory. 

Students can create algorithms utilizing some or all of these concepts. 

They can use mathematical induction to prove their algorithms correct. 

Finally, the students will translate some of their algorithms into BASIC 

computer programs and run them on computers. 



Weekly Plan 

Week 1: One-variable Statistics: line plots, histograms, stem-and-leaf

plots, pie charts of frequency distributions. 

Week 2: Mean, median, quartile, box plots, outliers. 

Week 3: (test 1) Two-variable Statistics: graphing data 

Week 4: Scatter plots: fitting lines to data 

Week 5: linear regression, error, correlation 

Week 6: (test 2) recognizing functions from graphs 

Week 7: analyzing linear, quadratic, and exponential functions 

Week 8: applications (lab/project) 

Week 9: (test 3) Sampling: random numbers 

Week 10: sampling distributions, box plots 

Week 11: confidence intervals 

Week 12: (test 4) applications (lab/project) 
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Week 13: Probability: counting (permutations & combinations), binomial 

theorem, Pascal's triangle 

Week 14: sample space, events, Venn diagrams 

Week 15: conditional probability, binomial distributions (test 5) 

Week 16: Algorithms: sequences and series, iteration 

Week 17: induction, programming (group project) 

Week 18: review, exam 



33 

Learning Experiences 

The following is a sample of the activities included in this course. 

One lesson is presented for each instructional week of the course, 

corresponding to the weekly plan on the previous page.

Activity week 1: Baseball Cards (graphing one variable data) 

The following are the number of home runs that Hank Aaron hit in 

each of his 21 years with the Braves (1954 to 1974): 13, 27, 26, 44, 30, 

39, 40, 34, 45, 44, 24, 32, 44, 39, 29, 44, 38, 47, 34, 40, 20. How can we 

make an interesting chart or graph to represent the data? In how many 

years did he hit 40 or more home runs? How many years was the 

number of home runs in the 30s, 20s, and 1 Os? 

Students' responses can lead to discussion about various means 

of graphing frequency distributions. They will probably be familiar with 

line plots, histograms, and pie charts. The data should be graphed by all 

methods suggested by the students as well as stem-and-leaf plots. The 

graphs can be compared and the purposes and effects of each should be 

discussed. 

Students will choose which graphing technique they prefer and 

baseball cards will be distributed. Each student will use the chosen 

technique to make a graph to represent the number of hits in the career 

of his or her chosen player. 

A follow-up activity to this exercise is to use computer software to 

generate graphs of various baseball statistics for professional players or 



teams. Students also enjoy analyzing sports statistics of their school's 

teams. 

Activity week 2: Estimating Time (median, quartile, box plots)
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The class is divided into two large groups and students within the 

groups work in pairs. Each pair will need a watch or school clock with a 

second hand or digital display. One student in each pair estimates when 

one minute has passed while the other student watches the clock and 

records the actual time. 

The students in one group concentrate quietly on the timing task, 

while half the students in the second group exert constant effort to distract 

their partners. The partners then switch roles so that data is collected on 

all students. The estimates for both groups will be listed and students will 

be asked which group gave the better estimates. Students will suggest 

finding the mean of the numbers, which is a useful measure of central 

tendency and should be examined. 

Are there any other ways to find a central number of a list of data? 

When the numbers are listed in order, the median can be found. In this 

experiment, the means and the medians may be quite close, but the 

distracted group should have a greater variation in their answers. This 

provides the opportunity to discuss quartiles and range. Box-and­

whisker plots can be created for the two groups to show that there is a 

difference in the data even though the two medians might not vary by a 
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significant amount. Also, any numbers falling outside the "normal" range 

can be examined as outliers. 

This activity was adapted from an exercise in NCTM's Standards 

(1989, p. 1 07). The Standards contain many useful suggestions and

exercises for incorporating statistics into the existing middle school and 

high school curricula. 

Activity week 3: Education Statistics (two variable graphing) 

The chart on the following page represents the number of special 

education students in Florida enrolled in each exceptionality by age for 

the 1988-89 school year. The data are from the Florida Department of 

Education (1990, p. 36). How would one display this information 

graphically? After class discussion, each student will draw a graph to 

represent one exceptionality. They will then exchange graphs and each 

will write a legend and description of someone else's graph. They can 

speculate on reasons for the trends and patterns they observe. 

As a group activity, students can create graphs comparing related 

exceptionalities (mental or physical or emotional) and examine them for 

evidence of when students tend to enter and drop out of programs, or 

switch to more severe programs. The class can discuss reasons for the 

trends they discover. 
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Possible discussion questions include: 

How many variables are shown on the table? (three) 

What would make an interesting graph? 

How can one graph three variables in two dimensions?
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For what ages are the total numbers of special education students 

increasing? decreasing? 

What are some reasons why the change occurs when it does? 

This exercise can lead to the examination and graphical representation 

of other real world data collected from almanacs or textbooks. After 

graphing sets of data by hand, students can be introduced to computer 

software that will produce various types of graphs for data they enter. 

Activity week 4: Car Mileage (scatter plots) 

Students will investigate the possible relationship between car 

age and mileage. They can collect data from the school parking lot when 

people are arriving or departing. For as many cars as possible, they will 

ask the driver for the model year and the odometer reading rounded to 

the nearest thousand miles. Back in class, students will list their 

collected data together as one sample. 

The class will work in small groups to graph the data on a grid, 

preferably on graph paper. The horizontal axis will represent the model 

years from oldest to newest. The vertical axis will represent miles in 

thousands. After they construct the graphs they should see why these 

graphs are called scatter plots. Points will be scattered on the graph, not 
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in a line or exactly on a curve. Real world data rarely is. However, there 

should be a pattern to the arrangement of the points. Students should 

notice the negative correlation (the higher the model year, the lower the 

number of miles). They can see the descending nature of the points and 

guess where to put a "best" line that would represent the trend of the data 

points. 

Students should find the equation of the line which they think best 

describes the data and use the equation to predict, for example, the 

expected mileage of a 1982 car. They will then write a summary 

paragraph about the information displayed in the graph and include 

inferences they believe are supported by their analyses of the data. 

Activity week 5: Car Mileage (regression analysis) 

The class can discuss the variety of equations generated by the 

previous week's experiment on car mileage. Different groups may have 

used different strategies in determining the "best" line. There are lots of 

ways to generate a line of linear regression. 

The car mileage graphs can be examined in terms of the "errors" 

between the actual data points and the lines generated by the students. 

By minimizing these errors (or actually their squares), the least squares 

line can be determined for a given set of points. This continuing activity 

can also lead to a discussion of the correlation coefficient which is 

closely related to the slope of the regression line and the size of the 

errors. Computer software and scientific calculators can be utilized in 



calculating equations of regression lines as well as correlation 

coefficients. 

Activity week 6: Pendulum Experiment (recognizing functions from 

graphs) 
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After learning how to fit lines to data, students will conduct an 

experiment to discover a relationship between the length of a pendulum 

and its period. A pendulum device can be created using fishing line with 

a fishing weight at the end. For various lengths of line, students will use 

a stopwatch to measure the length of time it takes the pendulum to 

complete one period. Due to the small amounts of time involved, it is 

best to measure the duration of ten periods and divide by ten. Also, to 

get a good model of the data, students should be sure to make 

measurements for very short lengths of line. 

After collecting their data, students will construct scatter plots of the 

data points comparing length of pendulum (in em.) to length of period (in 

sec.). As they try to fit a line to the data, they will discover that the 

relationship between the two variables is not linear but quadratic. This 

provides the opportunity to explore and discuss methods of determining 

what type of function best describes the data. 

Activity week 7: Green Globs (recognizing equations from graphs) 

Computers or graphics calculators can enhance the study of 

functions and their graphs. Many public domain programs will graph a 
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function entered by the student. This saves much time and tedium 

usually associated with graphing by plotting points, and allows the 

student to see very quickly how various equations are related. Sunburst 

Communications produces two programs which require the student to

recognize or analyze a graph shown on the monitor. 

Interpreting Graphs familiarizes the student with the graph as a 

functional relationship. A student is given a situation and asked to 

choose which of three graphs best represents the relationship between 

two variables. Another Sunburst program, Green Globs and Graphing 

Eguations contains four excellent activities. In the first, "Linear and 

Quadratic Graphs", the student is provided with a graph and must write 

an equation for it. The program then displays the graph of the student's 

equation as well as the original graph. The student can revise the 

equation until it matches the computer's. The level of difficulty is adjusted 

automatically depending on the accuracy of the student's answers. 

In "Green Globs", students must enter equations to create graphs 

that will hit 13 green globs scattered randomly on a grid. "Tracker" 

requires students to locate linear and quadratic graphs that are hidden in 

a coordinate plane, then determine their equations. "Equation Plotter" is 

a general utility program that can be used to graph any general functions 

entered by the student. The first two activities should prove very useful in 

this course. Students will gain valuable experience recognizing and 

identifying functions from their graphs. They will also acquire some 

awareness of the capabilities of microcomputers. 
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Activity week 8: Project (two variable statistics) 

This project is the culmination of the unit on statistics. Each 

student will collect numerical data from an almanac or statistical abstract 

about one sample (cities or states or people) concerning two variables. 

Each will construct a scatter plot to represent the relationship between 

the two variables. Students will analyze their graphs to determine 

whether there is a correlation and if there is a linear, quadratic, or 

exponential relationship between the variables. The results will be 

presented in a written report including a detailed explanation of the 

findings. 

Format: 

1. Title of report. The title should accurately describe the study. 

Example: "Comparison of average annual salary and percent of 

college graduates by state, 1987" 

2. List the data. Tables of data may be reproduced but sources must be 

cited. Example: "Source: Statistical Abstract of the United States. 

1989, p. 405" 

3. Graph the data. Make a clear and accurate scatter plot of all the data 

points in the sample. Label the graph and both axes. Identify the 

units that the numbers represent. 

4. Calculate the coefficient of correlation. Explain the meaning of the 

resulting number. 
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5. Determine the relationship between the two variables if one exists. 

Does it appear to be linear, quadratic, or exponential? Explain the 

process you follow to make the determination. If there is a 

relationship, fit a curve to the data and find its equation. 

6. Conclusion. Interpret the results, speculate on reasons for the 

relationship (or lack of one), describe your expectations and any 

surprises you encountered. 

Activity week 9: Sampling the Class 

Have each student answer five "yes or no" type questions on a 

small piece of paper. Collect the papers and have one student calculate 

the proportion of yeses. Possible questions include: "Are you an only 

child?; Did you watch the Super Bowl on TV this year?; Do you think 

abortion should be illegal?; Is your father older than your mother?; Do 

you have a computer at home?''. 

For each question, the class will discuss whether they are a 

representative sample of the U. S. population. Why or why not? If they 

are not a representative sample, how would one go about finding a 

representative sample? This should lead to suggestions about ways to 

generate random samples. 

The class can be treated as a population and random samples of 

various sizes can be compared. At this point, random numbers should 

be generated by a hands-on method, either by rolling 1 0-sided dice, 

drawing numbered chips out of a container, or spinning spinners in 
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circles that are divided into 10 equal sectors numbered 0 through 9. 

After students see random numbers produced in this tangible way, they 

can use and appreciate random number tables or generate random 

numbers by computer or calculator. 

Students in groups will generate samples of 10, 20 30, and 40% of 

their class. First they will predict the range of the number of yeses in 

each trial for one of the five questions already answered by the class. 

Then each group will conduct 12 trials for a particular percentage of the 

population. After the groups finish the experiment, results from all four 

groups will be recorded on separate number lines. The class can 

compare and discuss the differences in the distributions and what effect 

sample size has on the accuracy of one's predictions. 

Activity week 10: Green M&Ms (sampling distributions) 

This activity should be planned to coincide with a candy sale 

conducted by some club on campus if possible. The teacher presents 

the class with a large bag of M&Ms and asks what the probability is of 

picking a green M&M if one were to close his or her eyes and grab one 

out of the bag. Students can estimate the probability from their previous 

experience eating the product. 

After recording their estimates, the teacher will empty the bag into 

a glass jar or bowl and have the students estimate the probability while 

looking at the large quantity of candy. The teacher will then generate 

discussion about how to calculate the probability. Students may suggest 
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counting all the M&Ms in the jar and comparing the total number to the 

number of green ones. Some will probably come up with the idea of 

sampling. They can take samples from the big jar or they can each buy a 

box or bag of M&Ms. Each box is a sample.

Students will count and record the number and percentage of 

green M&Ms in their boxes. The data from their samples can be used to 

generate discussion about sampling distributions and standard error of 

the mean. The mean of the samples can be compared to the 

hypothetical mean (their estimates) as well as the established mean 

(1 0% green). 

The results of this activity can be carried over into the next unit on 

confidence intervals. When one uses sample means to predict the mean 

of a population, how accurate is the estimate? 

Activity week 11: Sampling the School (confidence intervals) 

In a small school, it is possible to survey the entire school. In a 

large school, it might be more practical to survey just the senior class. 

Either one would comprise a relatively large population. Devise a 

questionnaire with no more than 10 questions, some yes-or-no, some 

numerical. Have all students answer the questions anonymously during 

homeroom or English class in order to have the largest possible 

response. 

Select the most interesting or controversial question from the 

survey to analyze. Students work in groups to generate random samples 
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of the population and extract the data for their sample. Compare the 

sample means or proportions for all the groups. Can we use the sample 

data to predict the mean (or proportion of yeses) for the whole 

population? Would you predict a number (point estimate) or a range of 

numbers (interval estimate)? If you use a range how wide should it be? 

These questions and the students' previous experiences with sampling 

distributions will lead to a discussion of confidence intervals. 

Once a confidence interval has been established, the actual 

population mean (or proportion) can be calculated. This is quite a 

tedious job since the population is large. The students should gain an 

appreciation for sampling to determine statistics for large populations. 

Activity week 12: Project (sampling) 

For this project, students will take random samples of their peers, 

ask a yes-no question on a topic of their choice, and report on the results. 

Format: 

1. Title of the project. It should be descriptive. Example: "Seniors' 

Opinions of School Cafeteria Food" 

2. State the survey question. It should be a yes-no question for a survey 

of 30 students. 

3. State the population you are sampling. Examples: "all girls in my 

school; all students taking French at my school" 

Hint: As a pretest, ask your question to some of your classmates to see if 

they interpret it exactly as you intend. Is it possible they may not 
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tell you the truth? Will you ask for a verbal answer or a secret 

ballot? Change your procedures or the wording of your question, 

if necessary. 

4. Explain how you will use random sampling to select 30 students. 

5. State the names of those in your sample. Ask them your question and 

record the results. 

6. What is your sample proportion? 

7. Construct a 95% confidence interval for the percentage of yeses in the 

population. 

8. Report the results of your survey in the form of an article for the school 

newspaper. Be sure to explain the meaning of the confidence 

interval in your article. 

Activity week 13: The Remote Control (counting) 

At home, I have a remote control which is supposed to control both 

my VCR and my television. However, one day I found that it had no effect 

on the VCR. It wouldn't play, rewind, or fast forward a tape. I knew the 

batteries were not dead because it worked fine on all functions of the TV. 

When I turned the remote control over, I discovered that the cover of the 

battery compartment was missing. Switches were exposed that set the 

control to be compatible with various brands of TVs and VCRs. 

Assuming that someone had flipped one or more of the VCR switches, 

and unable to locate the instruction manual, I began flipping switches to 

see if I could find the right combination to work my brand of VCR. How 



many settings would I need to try to assure that I tried them all? There 

are five switches and each has two settings (on or off). 
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This problem can be discussed in small groups. The group 

members can present various strategies for determining the answer. The 

ensuing class discussion should include strategies for efficiency in 

testing all the possibilities. Related examples include guessing on a 

multiple choice or true-false test, lottery numbers, and number of license 

plates possible for particular configurations of letters and numbers. Also, 

telephone company officials in New York City have recently announced 

that it will soon be necessary to start another area code for the city 

because they have used almost all the numbers possible for one area 

code. How many seven digit numbers are possible in each area code? 

Numbers cannot begin with zero. Are there any other restrictions? 

Activity week 14: Free Throws (probability simulation) 

Scott has just learned a new way to shoot free throws in 

basketball. Using his old method, his average of shots made was 60%. 

Using the new method, he scored 9 out of his first 1 0 shots. Can he 

conclude that the new method really is better than the old method? The 

class can discuss the question and identify the problem: What are the 

chances of shooting at least 9 out of 1 0 if you normally shoot 60%? 

Students will model the problem using their spinners or polyhedral 

dice numbered 0-9. To simulate the 60% probability, they will assign six 

digits (4-9) to the event that a basket is made, and four digits (0-3) to the 
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event that it is missed. Students work in pairs rolling or spinning ten 

times. If nine or more "baskets" occur, the trial counts as a success. They 

repeat the experiment nine more times and determine the percentage of 

successes. This figure is their estimate of the probability of Scott making 

9 or more baskets in 1 0 attempts. 

The results of this activity should be pooled for the whole class to 

get a more accurate estimate of the probability. This simulation exercise 

can be expanded to even larger numbers of trials using a random 

number table or a computer program. 

Activity week 15: Language Students (conditional probability) 

Who gets better grades: students who take Spanish or students 

who take Latin? The class can generate a random sample of students 

who take Spanish and another sample of those who take Latin. They 

can compare the list of students in each sample to the honor roll list for 

the previous term. The result will be paired qualitative (nonnumerical) 

data. How can we represent the data in a graph or chart? Students will 

suggest Venn diagrams since they were studied the previous week. 

They may also come up with the idea of a two-way table to summarize 

the findings. Each cell of the table contains the number of students 

who are in two categories (i.e. Latin students who are on the honor roll). 



Honor Roll 

Not Honor Roll 

Total 

Latin Spanish 

8 8 

10 14 

18 22 

Total 

16 

24 

40
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What is the probability that a student takes Spanish? What is the 

probability that a student takes Latin and is not on the honor roll? What is 

the probability that a student takes Latin QL is not on the honor roll? 

These are questions that could be answered with the aid of Venn 

diagrams. They concern probabilities of unions and intersections of sets. 

This discussion should lead to conditional probability questions. 1f 

a student takes Latin, what is the probability that he or she is not on the 

honor roll? 1f a student is not on the honor roll, what is the probability that 

he or she takes Latin? Students can understand and compute 

conditional probabilities from two-way tables. This activity can lead to 

derivation of formulas if the studetns fill in the two-way table with 

probabilities of the intersections of events and compare them to the 

probabilities of the events themselves. 

Activity week 16: Number of Ancestors (sequences and series) 

The concept of an algorithm can be introduced by having the 

students write detailed, step-by-step instructions for completing familiar 

tasks. Imagine that they are instructing a robot or an alien from another 

world how to complete the task. It is imperative that they include every 



step. Possible tasks to describe include brushing teeth, going to the 

grocery store, or calculating the number of minutes in your life. 
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After students have some experience writing algorithms, they can 

be introduced to sequences and series and develop algorithms to find a 

particular term or the sum of terms. How many ancestors have you had 

in the last n generations (for n = any whole number)? Class discussion 

should yield the sequence 2, 4, 8, 16, ... to represent one's ancestors. 

Students can work in small groups to develop algorithms to find the sum 

of any number of terms. Sequences should be examined from an explicit 

perspective, based on the positions of the terms, as well as in terms of 

recurrence relations, where each term is expressed as a function of 

previous terms. The Fibonacci sequence (1, 1, 2, 3, 5, 8, 13, 21, ... ) is 

one which can be defined recursively. It also is fascinating to study 

because of its frequent occurrences in nature. 

Activity week 17: Making Change (mathematical induction) 

Some people have proposed that the U.S. penny should be 

abolished. Others argue that replacing the penny with a 2-cent coin 

would not give enough flexibility for pricing merchandise. What prices 

could still be paid with exact change if the penny were abolished and a 

coin worth 2 cents were introduced? Students can check to see what 

values can be obtained using only 2-cent and 5-cent coins. To model the 

problem, they could use chips in two colors to represent the two 

denominations of coins. 
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After trying several numbers, the students should discover that the 

only prices that would be impossible are 1 cent and 3 cents. How can 

they prove their hypothesis for very large numbers, or indeed all integers 

greater than or equal to 4? Within their groups, they can look for patterns

and arrangements of the coins. If they can find a way to show that for any 

(kth) number, they can exchange some coins to make the next (k+ 1 th) 

number, they will have discovered inductive proof. Once the students 

internalize the principle of mathematical induction, they can use it to 

prove relationships and formulas, especially in algebraic and geometric 

series. 
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Textbooks 

Topics from several textbooks will be studied. This table indicates 

which chapters will provide materials during each unit of instruction. 

Unit Textbooks

Introduction Ex~loriog Dsal!a, chapters 1-5 

Statistics Ex~loring D;ata, chapters 6-7 

Statistics, chapter 11 

Pr~-Q;alculu~. chapters 2, 3, 11, 18 

Sampling Ex~loring Surveys, chapters 1-6 

St;ati~tics, chapters 8-10 

Probability St;atistics, chapters 4-6 

Pre-Q;aiQulus, chapter 9 
~ ~ 
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Evaluating Student Progress 

Two goals of this course are for students to understand statistical 

reasoning and to reason and communicate mathematically. Too often in 

high school mathematics classes, students get by on memorization and 

being able to manipulate formulas. They do not gain any true insight into 

mathematical thinking. To ensure that students are gaining true 

understanding, they will write about their statistical experiences 

throughout the course By elaborating on processes and explaining the 

results of their studies, students will be thinking mathematically. 

Acquisition of knowledge will be assessed by means of five tests, 

a semester exam, projects, group assignments, individual homework 

assignments, and participation in class. The tests and exam will contain 

a variety of questions reflecting the various teaching and learning modes 

of the course. Assessments should yield information about students' 

understanding of concepts and procedures, ability to solve problems and 

interpret the results, ability to reason and communicate mathematically, 

and overall disposition toward mathematics. 

Notes to Prospective Instructors 

It is hoped that this work will inspire mathematics teachers to 

incorporate some of the concepts of data analysis into their courses. 

Most of the included activities are applicable to younger age groups. 

One variable statistics could be introduced in Algebra I. Probability and 



mathematical modeling can be incorporated into the current Algebra II 

curriculum. 
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It is beyond the scope of this work to include every activity to be 

completed in a semester course. The weekly outline and suggested 

activities should provide the instructor with a starting point in developing 

and refining a new course. Encourage students to discover, discuss, 

analyze, and enjoy mathematics. 
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Chapter 5: Conclusions 

The course presented in this work is one answer to the dilemma of 

how to prepare high school students mathematically for the future. It 

includes many topics and teaching methods that were recommended in 

NCTM's Standards (1989). It challenges the students to reason 

algorithmically and to model mathematical problems. The hands-on 

activities should intrigue students of all ability levels. 

As this course is taught, it will emerge and evolve. The curriculum 

and time schedule are flexible to allow for exploration and discovery. 

Some of the activities and experiments may lead to explorations of 

related topics. The course may dictate more group and individual 

projects and fewer tests. Depending on the composition of the class, 

more theoretical concepts could be examined. 

This course is not the only alternative course possible for college­

bound seniors. A case could be made for a course in discrete 

mathematics or a traditional (theoretical) course in probability and 

statistics. Some schools offer SAT preparation courses for math credit. 

An advanced geometry course could be designed to explore three- and 

four-dimensional geometry, transformations, and an introduction to 

topology. A mathematical exploration course could be devised to 

examine exciting new mathematical topics like fractals and chaos. 

Alternative courses should be tried in the secondary mathematics 
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curriculum so that students will learn to approach problems from various 

perspectives. 

One problem I have to resolve is selection of an appropriate title 

for this new course. The main thrust of the course is collecting and 

analyzing data. My first inclination was to call the course "Data Analysis". 

However, in taking an informal survey of some juniors and seniors in 

high school, I found that they would be reluctant to sign up for courses 

called "Data Analysis" or "Algorithms" because they sound too difficult. 

Some students indicated they would be interested in courses called 

"Probability and Statistics", "Discrete Math", "Algebra Ill", "Geometry II", 

and "Statistics Lab". Of these choices, I feel that "Statistics Lab" best 

describes the course, so it is currently my most likely course title. 
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