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ABSTRACT 

The focus of this thesis is the development and implementation of a neural network model predictive 

controller to be used for controlling the integrated recycle heat exchanger (Intrex) in a 300MW 

circulating fluidized bed (CFB) boiler.  Discussion of the development of the controller will include data 

collection and preprocessing, controller design and controller tuning.  The controller will be 

programmed directly into the plant distributed control system (DCS) and does not require the 

continuous use of any third party software. 

 

The intrexes serve as the loop seal in the CFB as well as intermediate and finishing superheaters.  Heat is 

transferred to the steam in the intrex superheaters from the circulating ash which can vary in 

consistency, quantity and quality.  Fuel composition can have a large impact on the ash quality and in 

turn, on intrex performance.  Variations in MW load and airflow settings will also impact intrex 

performance due to their impact on the quantity of ash circulating in the CFB.  Insufficient intrex heat 

transfer will result in low main steam temperature while excessive heat transfer will result in high 

superheat attemperator sprays and/or loss of unit efficiency. 

 

This controller will automatically adjust to optimize intrex ash flow to compensate for changes in the 

other ash properties by controlling intrex air flows.  The controller will allow the operator to enter a 

target intrex steam temperature increase which will cause all of the intrex air flows to adjust 

simultaneously to achieve the target temperature.  The result will be stable main steam temperature 

and in turn stable and reliable operation of the CFB.
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Chapter 1 : Introduction to the Circulating Fluidized Bed (CFB) Boiler 

 

1.1 CFB Background 

 

In the power generation industry, the circulating fluidized bed boiler (CFB) is a relatively new technology 

when compared with boilers traditionally used for power generation.  Fluidized bed boilers were 

adapted to burn petroleum coke and coal mining waste in the US in the early 1980’s.  Due to the ability 

to burn inexpensive renewable and “waste” fuels while maintaining lower emissions than standard 

pulverized coal units, the demand for CFB boilers has increased.  As demand increased for CFB’s, so has 

the size of the CFB.  When the CFB’s at JEA’s Northside Generating Station were built in the early 2000’s 

they were the largest in the world at 297MW each.  By 2009 the world’s largest CFB was 460 MW.  

Today units are available at over 600MW. (1) 

 

The JEA owned Foster Wheeler CFB’s that are the topic of this research were built as part of a 

demonstration project with a partnership between the US Department of Energy and JEA. (2) They have 

gone through years of modifications and process improvements. The process and control improvements 

made to the existing system eliminated the need for costly modifications to the intrexes. (3) (4)  As new 

CFB’s are designed and constructed, CFB manufacturers continue to modify designs to try to improve 

performance while at the same time boiler owners work to do the same to existing units.  This project 

applies advanced controls to further improve the performance of the CFB.
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1.2 CFB Steam generation and superheat 

 

In a CFB boiler, feedwater enters the boiler drum located on top of the boiler.  The water exits the boiler 

drum and moves into the water wall tubes that surround the combustor.  As the water is heated in 

these tubes it turns to steam and enters the top of the boiler drum.  This area of the boiler is the steam 

generating section.   

 

Steam leaves the boiler drum and is heated to higher temperatures in the cyclones and superheat 

sections of the boiler.  The superheat sections add superheat to the steam before it is sent to the 

turbine.  The boiler that is the focus of this project has a primary superheater (PSH) with an outlet 

temperature between 750 and 800 degrees F followed by three intrex superheaters.  Steam leaving the 

last intrex superheater moves to the high pressure section of the steam turbine with a steam 

temperature of 1000F.  This temperature is controlled by attemperating the steam using feedwater 

between the primary superheater and first intrex and between the second and third intrex.  An overview 

of the steam path can be seen in Figure 1-1. 
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Figure 1-1 Steam Path Overview 
 



3 
 

If the steam picks up too much superheat, more feedwater is needed for attemperation.  Overheating 

the Intrex tubes and/or excessive attemperator spray has the potential to cause metallurgical problems.  

If the attemperator is not able to keep the steam temperature down to 1000F, there is loss of turbine 

efficiency and potential to damage the steam turbine from overheating.  If the intrexes do not pick up 

enough heat there is potential for water induction into the turbine which would also cause damage.  

Any deviation in main steam temperature from 1000F will impact turbine efficiency. 

 

1.3 CFB Hot Loop 

 

In a CFB, fuel and air are added to the combustor.  The fuel mixes with bed material at the bottom of the 

combustor where it is fluidized by air nozzles in the floor of the boiler.  Limestone is also added to the 

boiler combustion process in order to control SO2 production and to act as additional bed material.  The 

combination of fuel, ash, and limestone makes up the bed material.  Some of the smaller bed material 

moves up through the combustor and out through the top with the boiler gas.  It enters the cyclones 

where the heavier bed material falls out of the boiler gasses and enters the top of the intrex.   

 

Bed materials move through the intrex and back to the combustor.  The intrex provides the seal in the 

loop between the higher pressure combustor and the lower pressure cyclones.  The tubes in the intrex 

have direct contact with the bed material and heat is absorbed from the bed material through the tubes 

into the main steam.  This cycle is shown with the red arrows in Figure 1-2.  
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Figure 1-2 CFB Hot Loop 
 

1.4 Current Intrex Control configuration 

 

Many factors can impact the steam temperature increase through the intrexes including steam flow and 

the temperature of the bed material as well as the manner in which bed material moves through the 

intrexes.  The intrex air flow controls can be used to change the flow of bed material through the 

intrexes.  Each section of the intrex has an independent air flow control damper.  These sections can be 

seen in Figure 1-3. 

 

Using the airflow controls to move more bed material through the intrex tubes will result in more heat 

being added to the steam.  Using the airflow controls to move more material through the bypass 

channel will result in less heat being added to the steam.  The red arrows in Figure 1-4 show the flow of 

material through the tubes in an intrex superheater and the orange arrows show the bypass flow. 
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In the previous control configuration the intrex air flows were set depending on unit MW load only so at 

a certain load the intrex air flows would be the same regardless of other boiler parameters.  In this 

configuration, the steam passing through the intrexes can pick up too much superheat under certain 

boiler conditions.  In some instances the attemperator cannot provide enough attemperation spray to 

keep steam temperature down to 1000F even when spraying the maximum amount of possible 

feedwater.  This increases the potential for damage to the intrexs and turbine while at the same time 

reducing efficiency.  There can also be times when the intrexes pick up too little superheat which can 

result in low main steam temperature and the potential for turbine water induction. 

 

The rate at which the material moves through the intrexes is also an important factor.  If the material 

does not move through the intrexes quickly enough, material will back up into the cyclone and it will 

plug.  Once the cyclone plugs, the circulation of material through the hot loop will stop.  Without proper 

hot loop flow, the boiler will not operate and will be forced to come off line.  It is not uncommon for the 

operator to place the intrex air flow controls in manual and adjust them to try to move more ash 

through the intrexes if they have indications that the cyclones are plugging.  This often has a negative 

impact on intrex heat transfer but enables the unit to continue to operate.  The ideal intrex control 

system would provide intrex heat transfer control while preventing cyclone plugging. 

 

1.5 Organization of Thesis 

 

This Thesis will provide a solution to the current intrex control problems using a multiple input neural 

network model predictive controller.  Other types of advanced controllers have been successfully 

applied to CFB boiler control applications. (5)  Neural Networks have been utilized in the past for 

modeling and predicting CFB boiler operations. (6)  The controller that is the topic of this Thesis will 
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maintain intrex differential temperature to stabilize main steam temperature and allow the operator to 

control how much superheat is added to the main steam in the intrex.  In order to accomplish this, the 

model will use inputs from the plant along with air flows generated by an optimization algorithm to 

determine how to adjust the intrex air flows to compensate for changes in the properties of the bed 

material. 

 

There are many considerations to be made when considering the application of a neural network model 

predictive controller.  These considerations along with the general structure of the neural network 

model predictive controller will be discussed in detail in chapter 2.  Many of the considerations revolve 

around the data that will be used for modeling.  Chapter 3 will discuss data collection and preprocessing.  

The discussion on preprocessing will include data point selection, data set reduction, and data 

normalization. 

 

A detailed discussion of the development of the neural network model specific to this thesis takes place 

in chapter 4.  The structure of the neural network, discussed briefly in chapter 2, is selected through 

testing from two different structures.  A genetic algorithm that uses the data selected in chapter 3 to 

tune the neural network is discussed in detail along with various parameters of the genetic algorithm 

that are tested in an attempt to find those which provide optimal tuning of the neural network.  Genetic 

algorithms have been successfully implemented in a wide range of controls applications. (7) (8) 

 

The development and structure of the controller optimization algorithm is discussed in chapter 5.  The 

optimization algorithm includes a linear congruential random number generator for generating random 

airflows that are applied to the controller’s neural network model to determine the optimum air flow 

setting for the current boiler parameters. The optimization algorithm and neural network model 
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developed in chapter 4 are programmed directly into the plant distributed control system (DCS).  The 

implementation of the controller into the DCS is discussed in chapter 6.   

 

The results of the controller implementation, shown in chapter 7, verify the ability of the neural network 

model predictive controller to successfully use the intrex air flow to control intrex differential 

temperature which will result in stable main steam temperature.  Conclusions of this Thesis are 

discussed in chapter 8 along with opportunities for future research that may improve this application as 

well as opportunities for additional applications of this research to other areas of CFB control.  
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Chapter 2 : Overview of the Neural Network Model Predictive Controller 

 

2.1 System Considerations for Neural Network Model Predictive Controllers 

 

When considering a system for neural network control, there are many considerations to be made.  

Most processes can be controlled by much simpler, traditional methods.  Systems that can be accurately 

mathematically modeled using well-established physics based relationships may not always benefit from 

a neural network model which is empirical in nature and requires training data to generate. (9)  In order 

to successfully implement a neural network model predictive controller one must consider: 

1. System Complexity 

2. Process Knowledge 

3. Reliability and Repeatability of Instrumentation 

4. Data availability 

5. Process Control Requirements 

6. Resources available for controller implementation 

 

 

For systems that require only single input-single output PID controllers, an intelligent neural network 

control system would not likely be necessary. (10)  Neural network controllers are ideal for complex, 

multiple input, multiple output systems.  The neural network controller can adjust many parameters 

simultaneously to reach a desired output.  In order to control the heat transferred to the steam in the 

intrex, 10 air control dampers are controlled simultaneously by 5 different controller outputs.  

Numerous other boiler parameters will be used to model the intrex heat transfer. 
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Process knowledge is the starting off point for the neural network design.   One of the advantages of a 

neural network controller is that the physics of the process do not need to be completely understood to 

design a neural network controller (11) (12).  The neural network will “learn” how the system works by 

using training data.  Knowing what process parameters impact the variable that will be controlled by the 

neural network can reduce unnecessary inputs and reduce system complexity.  The list can start out 

large and then be reduced by analyzing the relationships between collected data.  For the intrex, testing 

has shown that manipulating the intrex airflows has the ability to impact intrex heat transfer.  In 

addition to the intrex air flows, there are dozens of other boiler parameters believed to impact intrex 

heat transfer. 

 

Process parameters that are deemed important must have reliable and repeatable instrumentation.  

Unreliable instrumentation will make neural network model tuning difficult and can cause the controller 

model to incorrectly predict the results of control changes.  Averaging values from redundant 

instruments can increase the availability of the network by reducing the possibility of failure from a 

single instrument failure.  In the intrexes, both sides measure the same parameters and past experience 

along with historical data has shown that when all instrumentations and controls are working properly, 

the instrumentation from each of the two sides can be considered redundant and averaged. 

 

For optimal neural network training, data should be available for all operating conditions. (9)  If data is 

not available for all operating conditions, testing and data collection should be performed to expand the 

data set.  Similar quantities of data should be available for all operating conditions as too much data at 

limited operating conditions will cause the network to be over trained for those conditions causing poor 

performance under other operating conditions (9). 

 



11 
 

Different processes can have very different control requirements.  The response of the process to 

controls changes will have a large impact on the control scheme.  The CFB has approximately a five 

minute lag from the time the fuel is changed to the time the MW output changes.  Air flow changes in 

the intrex will have a much more immediate impact.  In the case of the intrexes, there is not a desire to 

have the steam temperature change quickly but rather to be able to maintain it to a set temperature 

when other boiler parameters change.  Having a system that doesn’t require a fast response allows for a 

controller that has a slower response. 

 

Using a predictive controller to control a process can require much more computing resources than a 

traditional PID controller as typical DCS systems have a single logic block to handle PID controls but can 

require the combinations of dozens to hundreds of logic blocks to implement a model predictive 

controller. (13)  The speed at which the controller has to respond has a direct impact on the amount of 

required computing resources.  For slower processes the computing does not have to happen as rapidly 

and less computing resources are needed.  The requirements for the intrex are such that the controller 

can be programmed directly into the DCS controller without the use of external computing resources.  

This eliminates the need for additional communication interfaces between the DCS and a dedicated 

neural network machine and also eliminates the need for the continuous use of third party neural 

network software. 

 

2.2 Neural Network Model Predictive Control Structure 

 

The neural network controller for this project will be a model predictive controller.  The controller 

structure will consist of a neural network model of the intrex and a predictive controller that will apply 

air flow inputs to the model and compare the model output error to the current output error.  If the 
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applied airflows result in a lower error than those currently applied to the live plant, the airflows from 

the predictive controller will be applied to the live plant.  The block diagram for the neural network 

model predictive controller can be seen in Figure 2-1. 
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Figure 2-1 Model Predictive Controller Block Diagram 
 

The neural network structure will consist of multiple nodes and layers.  Each node will have multiple 

inputs multiplied by weights and then summed together with a constant.  The output of the summation 

will be applied to an activation function.  The outputs from the first layer will serve as the inputs to the 

next layer.  The structure of the neural network node can be seen in Figure 2-2. 
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Figure 2-2  Neural Network Node 
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Chapter 3 : Data Collection and Pre-Processing 

 

As discussed in Chapter 2, good data is essential for the design of a neural network model. (9)  

Insufficient data can result in poor performance and excessive data will require excessive computing 

resources to implement.  The first step in creating a neural network controller is a good data collection 

and preprocessing plan.  The focus of this project is the A intrex.  The main steam is supplied to the high 

pressure turbine from the outlet of the A intrex.  Because of this, controlling the A intrex steam 

temperature increase has the greatest potential for a positive impact on main steam temperature. 

 

3.1 Data Point Selection 

 

In order to model the intrex, the properties of the steam and bed material passing through it must be 

determined.  Some of these properties either have a direct measurement or another measurement with 

a direct relationship where others do not.  There are however many measurements that can be 

combined to determine parameters without direct measurements or direct relationships. 

 

Data was collected from the plant information (PI) system using the PI Datalink software add on for 

Microsoft Excel.   Data was not collected from failed redundant instruments.  Data was collected for the 

time period from March – August 2013 in five minute intervals.  Periods of operation below 178MW 

were excluded from the dataset as those are outside the range of normal unit operation.  A list of the 

collected points can be seen in Table 3.1. 
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Table 3-1 Initial Data Point Set 

Tag Name Description 
PS:N1:N01SI34TE821 Intrex Cell AB temperature 1 
PS:N1:N01SI34TE822 Intrex Cell AB temperature 2 
PS:N1:N01SI34TE824 Intrex Cell AB temperature 3 
PS:N1:N01SI34TE825 Intrex Cell AB temperature 4 
PS:N1:N01SI34TE827 Intrex Cell AB temperature 5 
PS:N1:N01SI34TE828 Intrex Cell AB temperature 6 
PS:N1:N01SI34TE805 Intrex Cell AA temperature 1 
PS:N1:N01SI34TE806 Intrex Cell AA temperature 2 
PS:N1:N01SI34TE807 Intrex Cell AA temperature 3 
PS:N1:N01SI34TE808 Intrex Cell AA temperature 4 
PS:N1:N01SI34TE809 Intrex Cell AA temperature 5 
PS:N1:N01SI34TE810 Intrex Cell AA temperature 6 
PS:N1:N01SI34TE811 Intrex Cell AA temperature 7 
PS:N1:N01SI34TE812 Intrex Cell AA temperature 8 

PS:N1:N01SI34TE861 Intrex Downleg Temperature 
PS:N1:N01SI34TE850 Intrex Upleg Temperature 1 
PS:N1:N01SI34TE851 Intrex Upleg Temperature 2 
PS:N1:N01SI34TE483 Intrex Return Temperature A 
PS:N1:N01SI34TE484 Intrex Return Temperature B 
PS:N1:1SI34FI800A Intrex Cell AB1 Air Flow 
PS:N1:1SI34FI800B Intrex Cell AB2 Air Flow 
PS:N1:1SI34FI800C Intrex Cell AB3 Air Flow 
PS:N1:1SI34FI816A Intrex Cell AA1 Air Flow 
PS:N1:1SI34FI816B Intrex Cell AA2 Air Flow 
PS:N1:1SI34FI816C Intrex Cell AA3 Air Flow 
PS:N1:1FSHSPFL_A Intrex Startup Channel Air Flow A 
PS:N1:1FSHSPFL_B Intrex Startup Channel Air Flow B 
PS:N1:1FSHDFL Intrex Downleg Air Flow 
PS:N1:1FSHSPUPG_FL Intrex Upleg Air Flow 
PS:N1:N01SI34TE537 Main Steam Temperature to intrex A A  
PS:N1:N01SI34TE538 Main Steam Temperature to intrex A B 
PS:N1:1AVGBEDDP Average Furnace Bed Pressure 
PS:N1:N01BB34PT422 Furnace Freeboard Pressure 1 
PS:N1:N01BB34PT472 Furnace Freeboard Pressure 2 
PS:N1:N01BB34PT482 Furnace Freeboard Pressure 3 
PS:N1:1TOTPAFLOW Total Primary Air Flow 
PS:N1:1TOTAIRFLOW Total Air Flow 
PS:N1:1SOLIDFUELFLW Total Solid Fuel Flow 

PS:N1:N01GG34JT003 Total Unit Megawatt Load 
PS:N1:1FNHEATIN Total Heat Input 
PS:N1:1AVGFBTMP Average Furnace Bed Temperature 
PS:N1:1TOTALLIME Total limestone flow 
PS:N1:1SF_KLB_H Main steam flow 
PS:N1:1INTRXADIF_TMP Intrex A Differential Steam Temperature 
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The original data points were believed to have an impact on intrex performance based on process 

knowledge and past experience.  Additional process knowledge was used to reduce the data set.  The 

two intrex cells each contain nine thermocouples.  All of the measurements in each cell were averaged 

together to reduce those data points from 18 points to two.  This not only reduces data points but also 

reduces the potential for a single instrument failure causing the neural network model to malfunction.  

If one of the instruments malfunctions, the control system will remove it from the average and the 

model will continue to function properly.  The two upleg temperatures were also averaged together.   

 

There is no desire to control the two sides of the intrex differently so controls on either side of the intrex 

can be averaged together.  This was done for the intrex cell air flows, intrex startup channel air flows, 

and intrex return temperatures.  Other parameters outside of the intrex can also be averaged such as 

redundant thermocouples and Furnace Freeboard Pressure.  

 

Not all of the boiler parameters that are outside of the intrex have an immediate impact on intrex 

performance.  Five minute time delays were also included for some of the parameters outside of the 

intrex to attempt to capture any delayed impact to intrex performance.  The data set with averaged 

points and five minute delays included can be seen in Table 3-2. 
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Table 3-2 Data Points with Averages and Delays 

Parameter Description Included Tags 

Avg A1 AF Intrex Average A1 Air Flow PS:N1:1SI34FI800A, PS:N1:1SI34FI816A 

Avg A2 AF Intrex Average A2 Air Flow PS:N1:1SI34FI800B, PS:N1:1SI34FI816B 

Avg A3 AF Intrex Average A3 Air Flow PS:N1:1SI34FI800C, PS:N1:1SI34FI816C 

Avg SUC AF Intrex Average Startup 
Channel Air Flow 

PS:N1:1FSHSPFL_A, PS:N1:1FSHSPFL_B 

DNLG AF Intrex Downleg Air Flow PS:N1:1FSHDFL 

UPLG AF Intrex Upleg Air Flow PS:N1:1FSHSPUPG_FL 

Cell AB Ave Temp Intrex Average Cell AB 
Temperature 

PS:N1:N01SI34TE821, PS:N1:N01SI34TE822, 
PS:N1:N01SI34TE824, PS:N1:N01SI34TE825, 
PS:N1:N01SI34TE827, PS:N1:N01SI34TE828 

Cell AA Ave Temp Intrex Average Cell AA 
Temperature 

PS:N1:N01SI34TE805, PS:N1:N01SI34TE806, 
PS:N1:N01SI34TE807, PS:N1:N01SI34TE808, 
PS:N1:N01SI34TE809, PS:N1:N01SI34TE810, 
PS:N1:N01SI34TE811, PS:N1:N01SI34TE812 

DNLG Temp Intrex Downleg Temperature PS:N1:N01SI34TE861 

UPLEG TEMP Intrex Upleg Temperature PS:N1:N01SI34TE850, PS:N1:N01SI34TE851 

Avg RTN TE Intrex Average Return 
Temperature PS:N1:N01SI34TE483, PS:N1:N01SI34TE484 

STM IN TE Intrex Steam Inlet 
Temperature 

PS:N1:N01SI34TE537, PS:N1:N01SI34TE538 

AVG BED Average Furnace Bed Pressure PS:N1:1AVGBEDDP 

AVG FB Average Furnace Freeboard PS:N1:N01BB34PT422, PS:N1:N01BB34PT472, 
PS:N1:N01BB34PT482 

Total PA Total Primary Air Flow PS:N1:1TOTPAFLOW 

TOT AIR Total Secondary Air Flow PS:N1:1TOTAIRFLOW 

TOT FUEL Total Solid Fuel Flow PS:N1:1SOLIDFUELFLW 

MW Total unit Megawatt Load PS:N1:N01GG34JT003 

Heat in Total Unit Heat Input PS:N1:1FNHEATIN 

AVG FB Temp Average Furnace Bed 
Temperature PS:N1:1AVGFBTMP 

Limestne Flow Limestone Flow PS:N1:1TOTALLIME 

Steam Flow Main Steam Flow PS:N1:1SF_KLB_H 

Main stm deviation Main Steam Temperature 
Deviation from 1000F PS:N1:1INTRXADIF_TMP, STM IN TE 

intrex a TEMP 
INCREASE 

Intrex A Steam Temperature 
Increase PS:N1:1INTRXADIF_TMP 

TOT FUEL -5 Total Fuel Flow with 5 minute 
lag 

PS:N1:1SOLIDFUELFLW 

Limestne Flow -5 Total Limestone Flow with 5 
minute lag PS:N1:1TOTALLIME 
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3.2 Dataset Reduction by Stepwise Regression 

 

In order to reduce the complexity of the model the original data set can be reduced to eliminate 

unnecessary variables.  Stepwise regression was selected for dataset reduction.  Stepwise regression is a 

collection of related methods that are designed to work effectively with large data sets. (14)  

 

Regression analysis is used to explore the statistical relationships between variables.  Linear regression 

attempts to find a line of the form y=mx+b that is the best fit of the relationship between the variables.  

When linear regression is used to model a relationship between two variables, the ability of the model 

to account for the variability in the relationship is called the coefficient of determination (R2).  In order 

to calculate the R2 value, the error sum of squares and total sum of squares are needed.  The error sum 

of squares is calculated by squaring and summing the differences between the actual output values (yi) 

and the predicted model output values (ŷi) as seen in equation 3-1.  The total sum of squares is the 

measure of the total variability in the response and is calculated from equation 3-2.  The ratio of SSE to 

SST is the proportion of variability in the relationship between the variables that cannot be accounted 

for by the regression model.  By subtracting this number from 1, the proportion of variability in the 

relationship between the variables that can be accounted for by the regression model can be calculated.  

The R2 value can be calculated from equation 3-3.  The closer the R2 value is to 1, the more accurate the 

regression model is. (14) 

 

Equation 3-1: Error Sum of Squares 

    ∑(    ̂ )
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Equation 3-2: Total Sum of Squares 

    ∑(    ̅)
 

 

   

 

 

Equation 3-3: Coefficient of Determination (R2) 

     
   
   

 

 

The relevance of the inputs to a regression model can be determined through hypothesis testing.  In the 

case of the regression model, the null hypothesis H0 would be that the regression coefficient for a given 

input would equal to zero.  If the null hypothesis is rejected, the alternate hypothesis, the regression 

coefficient is not equal to zero, would be accepted.   In order to determine whether or not to reject the 

null hypothesis, the P-value is used.  The P-value is the probability that the test statistic will take on a 

value that is at least as extreme as the observed value of the statistic when the null hypothesis is true.  A 

typical cutoff value for the P-value, referred to as α, is 0.05.  This can be interpreted as meaning that 

there is only a 5% chance that the null hypothesis is true or a 95% chance that the null hypothesis is 

false. (14) 

 

In order to perform the stepwise regression for data selection, data was needed for varying operating 

conditions.  Testing was performed for one week at which time the intrex airflows were adjusted to 

values that they are not normally operated at.  In addition to collecting the data from the test period, 

points were taken from the standard operating condition data collected from March through August and 

added to the dataset.  The combined dataset was loaded into Minitab 16 statistical analysis software for 

the purposes of performing a stepwise regression to reduce the size of the data set. 
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The stepwise regression tool in Minitab allows the user to select which data is the response and which 

data to use to attempt to predict that response.  It also allows the user to select predictors to be used in 

every model.  For the purposes of this project, the intrex air flows are included in every model since they 

are going to be the means of control.  With the stepwise regression function, Minitab will automatically 

add/remove the other predictors from the model based on the P-value calculated for each predictor.  

Minitab allows for the user to set the α value and also allows for the stepwise regression to be 

performed by adding predictors, removing predictors, or both.  The analysis of the intrex data set was 

performed using an α of 0.05 to add or remove predictors and with both the add and remove function 

active.  This allowed for a reduction of the dataset from 25 variables to 20 variables which can be seen in 

Table 3-3.   

Table 3-3 Reduced Dataset from Stepwise Regression 

Parameter 
Description Regression 

Coefficient P-Value 

Constant Regression Constant 805.1 N/A 

Avg A1 AF Intrex Average A1 Air Flow 0.00128 0.000 

Avg A2 AF Intrex Average A2 Air Flow -0.00084 0.001 

Avg A3 AF Intrex Average A3 Air Flow 0.001 0.000 

Avg SUC AF Intrex Average Startup Channel Air Flow 0.0004 0.000 

DNLG AF Intrex Downleg Air Flow 0.00082 0.011 

UPLG AF Intrex Upleg Air Flow -0.0001 0.013 

Cell AB Ave Temp Intrex Average Cell AB Temperature 0.0284 0.000 

Cell AA Ave Temp Intrex Average Cell AA Temperature 0.0154 0.000 

DNLG Temp Intrex Downleg Temperature -0.0049 0.02 

UPLEG TEMP Intrex Upleg Temperature 0.014 0.000 

STM IN TE Intrex Steam Inlet Temperature -0.8355 0.000 

AVG BED Average Furnace Bed Pressure 0.032 0.027 

AVG FB Average Furnace Freeboard -0.324 0.000 

Total PA Total Primary Air Flow 0.00557 0.000 

Heat in Total Unit Heat Input -0.00482 0.000 

AVG FB Temp Average Furnace Bed Temperature -0.0081 0.000 

Limestne Flow Limestone Flow -0.0092 0.000 

Steam Flow Main Steam Flow -0.0118 0.000 

Main stm deviation Main Steam Temperature Deviation from 1000F 0.592 0.000 

TOT FUEL -5 Total Limestone Flow with 5 minute lag 0.0148 0.033 
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The stepwise regression output from Minitab predicts an R2 value of 92.30% with the predictors from 

Table 3-3.  The complete output file from Minitab can be seen in Appendix A.   By multiplying each 

variable by the associated coefficient from Table 3-3 and then adding the constant from the Table, the 

regression model output of the intrex differential temperature can be calculated.  The regression model 

output equation can be seen in equation 3-4. 

 

Equation 3-4: Regression Model Output 

                 ∑(                       )

  

   

 

 

The regression model will serve as the baseline for model performance.  The goal is to find a better 

model of the system using a neural network than that found by using the regression.  In order to verify 

model performance, the mean squared error (MSE) and the coefficient of determination (R2) will be 

calculated. 

 

3.3 Data normalization 

 

Before the data can be used to for neural network modeling, it must be normalized. (15)  Normalization 

of the data effectively removes the units from the data by rescaling all of the variables to the same 

scale.  In theory, data normalization is not necessary as the model tuning should tune out the scales.  In 

reality, if the data is not normalized and the variables are on varying scales, the model will take a long 

time to tune and is more likely to get stuck in a local minimum in the error surface.  Tuning weights for 

variables with contrasting ranges can be challenging.  This will also degrade the performance any 

dynamic tuning algorithms. (15)    
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Normalization can mean different things from rescaling variables in a data set to have the same scale 

(vector length) to transforming data to be zero mean with a standard deviation of one.  The variables for 

this project will be normalized to be zero mean with a standard deviation of one.   

 

To perform the normalization, the mean and standard deviation are required for each variable in the 

data set.  The mean for each variable is subtracted from that variable and the result is divided by the 

standard deviation for that variable as seen in equation 3-5.  In statistics this is also called standardizing.   

 

Equation 3-5: Normalization 

               
    ̅

 
 

 

The mean and standard deviation were calculated for each variable in the data set.  It is important to 

note that if new data are added to the existing data set that these values may need to be updated.  

Matlab programs were written to automatically normalize and un-normalize the data set.  The Matlab 

programs written for the normalization and inverse normalization can be seen in Figures 3-1 and 3-2 

respectively. 

 

 

 

 

 

 

 

 
 

Figure 3-1 Matlab Normilization Function 

function [normdata]= mmnorm(normmat,data) 

  
% This function will take in data and an associated normalization matrix  
% (normmat)containing the mean and standard deviation of the data set  
% and perform normalization.  The normalized data will be returned. 

  
normdata = zeros(size(data,1),size(data,2));    %Initialize the matrix 
x=normmat(1,:);                                 %Get mean for each variable 
y=normmat(2,:);                                 %Get SD for each variable 
parfor i=1:size(data,2)                         %Normalize the data 
    normdata(:,i) = ((data(:,i)-x(i)))/y(i); 
end 
end 
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Figure 3-2 Matlab Inverse Normalization Function 

function [normdata]= immnorm(normmat,data) 

  
% This function will take in data and an associated normalization matrix  
% (normmat) containg the mean and standard deviation of the data set and  
% perform inverse normalization.  The un-normalized data will be returned. 

  
normdata = zeros(size(data,1),size(data,2));    %Initialize the matrix 
x=normmat(1,:);                                 %Get mean for each 

variable 
y=normmat(2,:);                                 %Get SD for each variable 
parfor i=1:size(data,2)                         %Un-Normalize the data 
    normdata(:,i) = ((data(:,i)*y(i)))+x(i); 
end 
end 
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Chapter 4 : Neural Network Modeling 

 

When designing the neural network model, there are many considerations to be made.  The number of 

input variables was previously determined by stepwise regression and the number of output variables is 

already known to be one.  The number of layers, number of nodes in each layer, and the activation 

function need to be determined.  The method for training the neural network must also be determined. 

 

4.1 Neural Network Model Structure 

 

Neural Networks with one hidden layer are considered universal approximators according to the 1989 

paper written by Hornik, Stinchcombe, and White. (16)  This means that in most cases a system can be 

successfully modeled with only one hidden layer.  The model for this project will use one hidden layer 

with an input and output layer. 

 

The number of input layer nodes typically matches the number of input variables which will be the case 

for this project.  The number of output nodes is set by the number of model outputs which in this case is 

one.  Many “rules of thumb” exist for determining the number of hidden layer nodes, one being that the 

number of hidden layer nodes is typically between the number of input and output nodes. (17) (18)In 

reality, the ideal number of nodes in the hidden layer is dependent on the system the model is based on 

and the “rules of thumb” are a starting point. (19) (18) This project will use testing to select the number 

of hidden layer nodes.
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The output of each node in the neural network with the exception of the node in the output layer will be 

applied to an activation function.  There are many types of activation functions that are commonly used.  

If a linear activation function is used, the neural network acts as a combination of linear regressions with 

each node representing a single regression.   

 

Activation functions for neural networks are typically a form of sigmoid function.  The sigmoid functions 

are non-linear “S” shaped functions that limit the output value of the node. (20)  The sigmoid function 

also enables the network to model non-linear functions.  For the Intrex Neural Network model, it is 

desired to have the output of the transfer function for each node fall between 1 and -1.  This would 

typically be done with a tan-sigmoid activation function.  The shape of the tan-sigmoid activation 

function can be seen in Figure 4-1.   

 

 

Figure 4-1 Tan-Sigmoid Activation Function 
 

 

The tan-sigmoid activation function is implemented in the model program using equation 4-1.   This 

equation can also be easily implemented into the DCS. 

 

Equation 4-1: Tan-sigmoid Activation Function 

      ( )   
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A Matlab routine was written for the neural network.  This routine will be called by the main program.  

The program takes in the input and output data, the network weights and constants, and the number of 

layer 1 and layer 2 nodes and returns the MSE, individual error values, maximum error and the neural 

network output.  The Matlab routine can be seen in Figure 4-2. 

 

4.2 Neural Network Training Algorithm  
Figure 4-2  Matlab Code for Neural Network Model Simulation 

function [MSE,err,maxer,out]= 

neurnet(inA,outA,l1w,l1c,l2w,l2c,olw,olc,lay1n,lay2n) 

  
%Network Structure 
%   lay1n defines the number of neurons in the input layer.  lay2n defines 
%   the number of neurons in the second layer.  The output layer will  
%   always be 1 neuron.  Weights will be applied before the summing blocks  
%   for each neuron.  Constants will be added at each summing block. 
%   The output of each neuron will pass through an activation function 

  
%Inputs: 
%   inA = input data set (variables in different columns) 
%   outA = expected output for each input 
%   l1w = layer 1 weights 
%   l1c = layer 1 constants 
%   l2w = layer 2 weights 
%   l2c = layer 2 counstants 
%   olw = output layer weights 
%   olc = output layer constant 
%   lay1n = number of first layer neurons 
%   lay2n = number of second layer neurons 
%    
%Outputs: 
%   MSE = Mean square error 
%   err = raw error values 
%   maxer = maximum error 
%   out = neural net output 

  
out = zeros(1,size(inA,1));                  %Initialize Weight Matrix 
weights1=reshape(l1w,size(inA,2),lay1n);     %reshape weight matrix 
l1c=repmat(l1c,size(inA,1),1);               %Create l1 constant matrix   
lay1out = (inA*weights1)+l1c;                %layer 1 summing node 
lay1out = 2./(1+exp(-2.*lay1out))-1;         %layer 1 activation function    
weights2=reshape(l2w,lay1n,lay2n);           %reshape weight matrix 
lay2out = lay1out*weights2;                  %layer 2 summing node part 1 
l2c=repmat(l2c,size(inA,1),1);               %create l2 constant matrix 
lay2out = lay2out+l2c;                       %layer 2 summing node part2 
lay2out = 2./(1+exp(-2*lay2out))-1;          %layer 2 activation function 
weightsout=transpose(olw);                   %transpose out weights 
out = lay2out*weightsout+olc;                %output summing node 
err = outA-out;                              %calculate error 
maxer = max(err);                            %find maximum error 
MSE = mean((err).^2);                        %calculate MSE 
end 
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There are many types of algorithms used to train the weights in a neural network.  Two of the more 

common algorithms are gradient descent and stochastic search methods.  Both algorithms attempt to 

minimize a cost function which is typically the mean squared error (MSE).  Gradient Descent tends to 

tune faster but also tends to find a local minimum in the error surface where stochastic search methods 

are better at finding the global minimum but require much more time and processing resources to 

implement. (21)  The MSE is calculated using equation 4-2 where yi is the actual value, ŷi is the model 

output, n is the population size and p is the number of predictors. 

 
Equation 4-2: Mean Squared Error 
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This project employs a stochastic search method called a genetic algorithm.  The genetic algorithm starts 

with a randomly generated population.  Each member of the population is a set of neural network 

weights and constants.  Each member is applied to a neural network in order to calculate the MSE for 

each member.  The members of the population with the best MSE are chosen to be parents for the next 

generation in the algorithm and the remainder of the population is removed.   

 

Features are randomly selected from the parents and used to generate new children to complete the 

population for the next generation using crossover.  A percentage of the total neural network weights 

and constants that make up the children will then be mutated.  This mutation can be adjusted to be 

from 0-100%.  In addition to the percentage of weights and constants to be mutated, the amount of 

mutation must also be considered.  A flow chart of the genetic algorithm can be seen in Figure 4-3   
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Generate Initial Population of 750

Calculate MSE for each Member of Population

Select Members of Population with the lowest MSE for 

Parents (best 30%)

Perform Crossover using random Parents to Generate New 

Members of Population (Children)

Select Random Parameters in Children for Mutation

Multiply Parameters to be Mutated by the Mutation Function

Combine Parents and Children to form new population of 

750

Is the generation at 750?

NO

Population Member with best MSE is saved as the optimum 

Neural Network Weights

YES

 

Figure 4-3 Genetic Algorithm Flow Chart 
 

The calculation for the amount of mutation starts with a random number between -1 and 1.  The 

random number is then multiplied by a mutation function which limits the maximum and minimum 

mutation.  The mutation function can be set to a specific amount or varied as the algorithm progresses 

from one generation to the next.  For this project, constant mutation is tested as well as mutations that 

decay as the generation increases.   The linear mutation decay function can be seen in equation 4-3.   
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Equation 4-3: Genetic Algorithm Linear Mutation Decay Function  
 

        ( )      
                            ( )

                 
    

 

The mutation starts at up to 50% (+/- .5) and then decreases linearly in relationship to the generation 

number until it reaches a maximum of 10% (+/-.1) at the final generation.  The purpose of the linear 

decays is to promote faster learning in early generations and prevent overshoot and promote fine 

tuning in later generations. Figure 4-4 shows an example of the progression of the mutation over 400 

generations with the linear mutation decay function applied. 

 

Figure 4-4  Genetic Algorithm Linear Mutation Decay Function 
 

 

The cosine mutation decay function has an overall decay but will periodically increase and decrease as 

the generation increases.  A decaying cosine function is added to the linear mutation decay function so 

the overall cosine decay function has an overall decay similar to the linear mutation decay function 
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starting at 60% and decreasing to 10%.   The equation for the cosine mutation decay function can be 

seen in equation 4-4.   

 

Equation 4-4: Genetic Algorithm Cosine Mutation Decay Function.  
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The periodic increase in mutation enhances the ability of the genetic algorithm to escape from a local 

minimum should one be found.  Figure 4-5 shows an example of the progression of the mutation over 

400 generations with the cosine mutation decay function applied. 

 

 

Figure 4-5  Genetic Algorithm Cosine Mutation Decay Function. 
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For the purposes of comparing the decay functions, the mutation functions were plotted together in 

Figure 4-6.  A constant mutation of 25% will be compared with the mutation decay functions. 

 

 

 

Figure 4-6 Genetic Algorithm Mutation Functions 
 

 

Matlab code was written to generate and mutate the children.  This code can be seen in Figure 4-7.  The 

mutation function active in the code is the constant mutation function.  The mutation decay functions 

are commented out and highlighted.  The selection of parents for the next generation requires the 

neural network function from Figure 4-2 to calculate the MSE.  Both the neural network and genetic 

algorithm functions are written into the Matlab program for the intrex model. 
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function w = genalg(parents,mut,totgen,gen,pop) 
  

%   This program will generate a new population of weights and constants  

%   using the below inputs 

 
%Inputs 
%   Parents = matrix of parent weights 
%   mut = mutation 
%   totgen = total number of generations 
%   gen = current generation number 
%   pop = Size of population to generate  
% 
%Outputs 
%   w = weighs 

  
numc = pop - size(parents,1);       %number of children to generate 
% make children 
w = zeros(numc,size(parents,2)); 
parfor i = 1:numc                   %for the number of children 
%   generate 2x1 matrix of ints from 1:number of parents     
    x = randi(size(parents,1),2,1);  
%   generate 1xnumber of weights matrix of ints from 1:2     
    y = randi(2,1,size(parents,2));  
%   convert 2's to 1 and 1's to 0 to select first parent     
    p1=y-1;   
%   convert 2's to 0 to select second parent     
    p2=abs(y-2);                     
%   combine parts frome each parent for each weight     
    w(i,:)=p1(1,:).*parents(x(1),:)+p2(1,:).*parents(x(2),:);  
end 
% mutate children 
%   determine which weights will be mutated 
mutloc = randi(numc*size(parents,2),1,ceil(mut*numc*size(parents,2))); 
%   mutation varies from 50% to 10% as the generation number is increased 
%mutation = .4*(totgen-gen)/totgen+.1 ; 
%   mutation decays from 60% to 10% with an added cosine function 
%mutation =(.4*(totgen-gen)/totgen+.1)+.1*((totgen-

gen)/totgen)*cos(20*gen/totgen*pi); 
%   Constant Mutation of 25% 
mutation = .25; 
%   determine the amount of mutation for each weight (-1:1 * mutation) 
mutmul = (1-(rand(1,length(mutloc))*2)*mutation); 
%   generate an empty matrix for the new children         
mutmat = ones(numc,size(parents,2)); 

         
for i = 1:length(mutloc)            %for each mutation 
    mutmat(mutloc(i)) = mutmul(i);  %fill in the mutation matrix     
end 
w = w .* mutmat;                    %generate new children 
% make population of parents and children 
w = cat(1,parents,w);     
end 

Figure 4-7 Matlab Code for Genetic Algorithm 
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4.3 Neural Network Training and Testing Programs 

 

In order to train and test the neural network, the data previously collected must be imported into 

Matlab and normalized.  The original data set was divided sequentially into 25 groups.  The testing data 

set was divided sequentially into 4 groups.  Group 2 from the original data set and groups 1 and 3 from 

the testing data set were combined to create a training data set.  Group 12 from the original data set 

and groups 2 and 4 from the testing data set were combined to create a testing data set.  The import 

and load functions were written into the main Matlab program and can be seen in Figure 4-8. 

 

 

 

 

 

 

 

 

 

 

 

 

The next portion of the program defines the network structure and parameters for the genetic 

algorithm.  These parameters can be adjusted to find structure and genetic algorithm parameters that 

generate the best model weights for the lowest MSE.  Figure 4-9 shows this portion of the program. 

%Nerual Network Model Program 
clear 

  
%get training data 
intrain = xlsread('Training_Data_in2'); 
outtrain = xlsread('Training_Data_out2'); 

  
%get testing data 
intest = xlsread('Testing_Data_in2'); 
outtest = xlsread('Testing_Data_out2'); 

  
%Get normalization Matrix 
innormmat=xlsread('STD_Norm_in'); 
outnormmat=xlsread('STD_Norm_out'); 

  
%Perform Normalization 
intrain = mmnorm(innormmat,intrain); 
outtrain = mmnorm(outnormmat,outtrain); 
intest = mmnorm(innormmat,intest); 
outtest = mmnorm(outnormmat,outtest); 

Figure 4-8 Matlab Data Input and Normalization 
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The previously discussed neural network and genetic algorithm programs are utilized in the main neural 

network program training routine.  An additional program was written to convert the weight matrix to a 

form more easily used by the neural network.  This code can be seen in Figure 4-10 and the Neural 

Network Training portion of the main program can be seen in Figure 4-11. 

 

 

%Define Neural Network Structure 
%[MSE,err,maxer,out]= neurnet(inA,outA,l1w,l1c,l2w,l2c,olw,lay1n,lay2n); 
L1N = 20;                          %number of neurons in layer 1 
L2N = 15;                          %number of neurons in layer 2 
nL1w = L1N * size(intrain,2);      %number of layer 1 weights 
nL1c = L1N;                        %number of layer 1 constants 
nL2w = L2N*L1N;                    %number of layer 2 weights 
nL2c = L2N;                        %number of layer 2 constants 
nOLw = L2N;                        %number of output layer weights 
nOLc = 1; 
Totw = nL1w+nL1c+nL2w+nL2c+nOLw+nOLc;    %total number of weights 
nin = size(intrain,2); 

  
%Set Genetic Algorithm parameters 
mutation = .1;                     %amount of mutation in genetic algorithm 
pop = 750;                         %population (number of sets of weights) 
numpar = 225;                      %number of parents to use to generate children 
generations = 750;                 %number of generations 

  
%Generate inital weights from -1 to 1 
w = (rand(pop,Totw)-.5)*2; 

function [lay1w, lay1c, lay2w, lay2c, outw]=expweights(w,l1n,l2n,numins) 

  
a=l1n*numins;   %Range for layer 1 weights 
b=a+1;          %min for layer 1 constants 
c=a+l1n;        %max for layer 1 constants 
d=c+1;          %min for layer 2 weights 
e=c+l1n*l2n;    %max for layer 2 weights 
f=e+1;          %min for layer 2 constants 
g=e+l2n;        %max for layer 2 constants 
h=g+1;          %min for output layer weights 
i=size(w,2);    %max for output layer weights 
lay1w=w(1:a);   %layer 1 weights 
lay1c=w(b:c);   %layer 1 constants 
lay2w=w(d:e);   %layer 2 weights 
lay2c=w(f:g);   %layer 2 constants 
outw=w(h:i);    %output layer weights 

outc=1;     %output layer Constant 
end 

Figure 4-9 Matlab Neural Network Model Structure and Genetic algorithm parameters 

Figure 4-10 Matlab Weight Conversion 
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The training routine will repeat and output the MSE for each generation.  The best set of weights will be 

the parent with the lowest MSE from the final generation.  The MSE is the primary metric for how well 

the model is performing.  In order to find the best model, the outputs of models with similar MSE values 

will need to be looked at.  Two models can have similar MSE values but very different trends and 

histograms.  The histogram of the raw errors between the plant and the models and plots of the model 

outputs vs. the actual plant output were generated and reviewed to look for undesired results.   Matlab 

code was also written to generate the histograms and plots to compare the plant output to the 

regression model output and the neural network model output.  For the Matlab code written for testing, 

see appendix B. 

 

%Training 
    MSE = zeros(1,generations); 
    %for each generation 
    for j = 1:generations 
        % calculate the error for each parent 
        mse=zeros(1,size(w,1));                 %Initialize mse 
        error=zeros(size(w,1),size(intrain,1)); %Initialize error 
        maxer=zeros(1,size(w,1));               %Initialize maxer 
        out = zeros(size(w,1),size(intrain,1)); %Initialize out 
        parfor k = 1:size(w,1);                 %For each parent weight 
            %Convert Weights for NN program 
            [l1w, l1c, l2w, l2c, outw,outc]=expweights(w(k,:),L1N,L2N,nin); 
            %Calculate the mse for the parent 
            [mse(k), error(k,:), maxer(k),out(k,:)] =  

        neurnet(intrain,outtrain,l1w,l1c,l2w,l2c,outw,outc,L1N,L2N); 
        end 

  
        %capture best MSE 
        MSE(j) = min(mse); 
        % find the best weights 
        parent=zeros(numpar,Totw); 
        for kk = 1:numpar;                %for one to the number of parents 
            keep = find(mse == min(mse)); %find the location of minimum error 
            parent(kk,:) = w(keep(1),:);  %Store the parent with minimum error  
            mse(keep) = 10000000;         %maximize error for that parent 
        end 
        %Generate new weights 
        w = genalg(parent,mutation,generations,j,pop); 

Figure 4-11 Matlab Neural Network Training program 
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4.4 Neural Network Testing 

 

To determine which genetic algorithm parameters and neural network structure generate the best 

results, a testing matrix was generated.  The testing parameters are listed in Table 4-1.  Each test was 

run using 750 generations. 

 

Table 4-1 Neural Network Testing Parameters 

Parameter Value 1 Value 2 Value 3 

GA Mutation 10% 15% 20% 

GA Parents 30% of Population 40% of Population N/A 

GA Mutation Function Constant 25% Linear Decay Function Cosine Decay Function 

NN Layer 2 Nodes 10 15 N/A 

 

 

The MSE and neural network weights were captured for each test run.  The MSE values for each set of 

test parameters were averaged to determine which genetic algorithm parameters produced the best 

results.  The averaged MSE for each parameter can be seen in Table 4-2.  The Cosine mutation decay 

function with 10% population mutation and 30% of the population being used as parents provided the 

best results.  The complete results can be seen in appendix C. 

 

Table 4-2 Neural Network Genetic Algorithm Parameter Performance 

  

Mutation Decay Function 

Constant Linear Cosine 

MSE (°F2) 3.151 2.967 2.932 

  

Mutation % 

10 20 30 

MSE (°F2) 2.902 3.026 3.125 

  

Parents 

30% 40%   

MSE (°F2) 3.008 3.027   
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The optimum parameters highlighted in Table 4-2 were used to test each of the neural network 

structures with ten and fifteen and hidden layer nodes each an additional four times.  The MSE for each 

structure was averaged to determine the optimal number of hidden nodes in the neural network.  The 

averaged MSE along with the top three MSE values for each structure can be seen in Table 4-3.  The top 

three MSE values using fifteen hidden layer nodes are all better than the best MSE value using ten 

neural network nodes.  Fourteen of the forty four tests that were performed provided MSE values less 

than the 2.909 MSE value that the regression model provided with the same input data. 

 

Table 4-3 Neural Network Results with Varied Hidden Layer Nodes 

Hidden 
Nodes 

Average MSE 
(°F2) 

MSE 1 
(°F2) 

MSE 2 
(°F2) 

MSE 3 
(°F2) 

10 3.043 2.688 2.739 2.774 

15 2.915 2.429 2.496 2.584 

 

The performance of the two neural networks that generated the lowest MSE was compared with the 

performance of the regression model.   The percentages of output values for the three best error ranges 

were calculated along with the percentage of errors above +/- 5.5 degrees F for each model and can be 

seen in Table 4-4.  Beyond +/- 2.5 F the error percentages for each model are all within .3%.  The Neural 

Network Model with the MSE of 2.496 has over 8% more errors at the +/- .5 range than either of the 

other two models.  

 

Table 4-4 Model Error Percentages 

Error Range (F)  +/- .5   +/- 1.5   +/- 2.5   > +/- 5.5 

Regression % 43.32% 84.37% 93.14% 1.66% 

NN MSE 2.429 % 42.47% 84.85% 93.14% 1.36% 

NN MSE 2.496 % 51.38% 86.24% 92.93% 1.43% 
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 Histograms were generated for all three models.  These histograms can be seen in Figure 4-12.  The 

histograms of the regression model and the neural network model with the lowest MSE appear similar.  

The neural network model with the second lowest MSE has a noticeably larger number of errors that are 

less than +/- .5 degree F from the actual plant output.   

 

 

Figure 4-12 Model Output Error Histograms 
 

 

The R2 value was calculated for both neural network model sand the regression model using the testing 

data set.  The R2 value for the regression model that was generated using the data for data point 

selection was 92.30%.  Re-calculating the R2 value for the regression model using the larger testing data 

set resulted in an R2 value of 92.10.  The neural network models both had a better R2 value than the 

regression model.  The MSE and R2 values for all three models can be seen in Table 4-5. 
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Table 4-5 MSE and R2 Values for Regression and NN Models 

Parameter Regression Model NN Model  
(Lowest MSE) 

NN Model (Second 
Lowest MSE) 

MSE (°F2) 2.909 2.429 2.496 

R2 (%) 92.100 92.940 93.150 

 

 

Data was collected from 9/1/2013 12:00PM to 9/2/2013 12:00 PM in one minute intervals, a period 

outside of the original dataset.  All three of the model outputs for that timeframe were plotted against 

the plant output for the same timeframe and can be seen in Figure 4-13. 

 

 

 

Figure 4-13 Intrex Plant Differential Temperature vs. Intrex Model Differential Temperatures 
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When looking at Figure 4-13 it appears that all of the model outputs are very similar over the 24 hour 

period.  In order to be able to differentiate between the models, the timeframe from 6:05 AM to 12:00 

PM on 9/2/13 was looked at in Figure 4-14.  In the 130F to 135F operating range, both the regression 

model and the neural network (MSE 2.496) model trend the plant output very closely.  The other neural 

network model appears to have constant -0.5 degree offset.  Above 140F both neural networks are 

closer than the regression model.   

 

After a comparison of MSE and R2 values for the regression model and two neural network models as 

well as the histograms and trends, the neural network model with the MSE of 2.496 was selected for use 

with the model predictive controller.  The neural network model with the MSE of 2.496 will be 

programmed into the DCS and act as the model for the model predictive controller.  A trend from the 

same time period as that in Figure 4-14 was generated with the other neural network model removed 

and can be seen in Figure 4-15.  It should be noted that even though the regression model does perform 

with accuracy close to that of the neural networks, for the given data set the regression model is not 

going to improve any further but the neural network model may be further optimized by altering the 

neural network structure or tuning algorithm. 
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Figure 4-14 Performance of Regression and Both Neural Network Models 
 

 

Figure 4-15 Performance of Regression Model and Best Neural Network Model 
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Chapter 5 : Controller Optimization Algorithm 

 

Many optimization algorithms, sometimes referred to as cost function minimization algorithms, have 

been used for a model predictive controller.  Mathematical Optimization Methods such as the Newton-

Rapshon optimization algorithm proposed by Soloway and Haley (22)  are common in model predictive 

control.  An extended dynamic matrix control algorithm using a neural network as a non-linear 

prediction model was proposed by Draeger, Engell, and Ranke. (11)  Advanced stochastic optimization 

methods such as the genetic algorithm optimization proposed by Yu and Zhu have also been researched. 

(23) The choice of which method to use will depend largely on the required system performance and the 

system resources that are available to implement the controller.  In the case of the controller for this 

project, there are limited resources to work with but the rate of response does not have to be extremely 

fast as the overall plant process response is on the order of minutes. 

 

5.1 Optimization Algorithm Operation 

 

One of the goals of this project is to program the neural network model predictive controller directly 

into the plant DCS.  Both the mathematical and advanced stochastic methods referenced above require 

programming capabilities and/or computational resources beyond what can be practically programmed 

into the plant DCS used for this project.  The optimization algorithm for this controller uses a simple 

stochastic approach.  The optimization algorithm generates completely random combinations of intrex 
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airflows using a linear congruential random number generator which will be discussed in more detail in 

section 5-2.  Each combination is applied to the neural network model as it is generated along with the 

other current plant parameters.  The error for the current airflows is compared with the stored previous 

best error.  If the current airflow error is better than the previous, the new airflows become the output 

of the optimization algorithm.  Once every 60 seconds the stored best airflows are re-applied to the 

model and the error value is updated.  This is required to compensate for changing plant conditions.  A 

block diagram of the optimization algorithm can be seen in Figure 5-1.   

 

None of the airflows that are stored as a result of having the lowest error are reused to generate the 

next set of airflows as they would be in a learning algorithm such as a genetic algorithm or particle 

swarm optimization.  This would require the collection of a number of results before the output could 

be updated.  Each collection would require one complete module scan.  The typical scan time of the DCS 

used for this project is 250ms.  It can be increased to some degree but will be limited by the amount of 

other logic in the control module.  The time required for a learning algorithm will severely slow the 

optimization algorithm. 
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Figure 5-1 Optimization Algorithm Block Diagram 
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To ensure the set point of the controller remains at a realizable value, the minimum and maximum 

capabilities of the plant are also calculated.  The setpoint for the controller is limited by these 

capabilities.  The error signals for the minimum and maximum capabilities are also updated every 60 

seconds to compensate for changing plant process variables.  The block diagram for the optimization 

algorithm in Figure 5-1 is the same as the ones used to calculate the minimum and maximum plant 

capabilities.  To calculate the maximum intrex capabilities, the set point is set at 300F, a point above any 

that will ever be reached.  To calculate the minimum intrex capabilities, the set point is set at 0F, a point 

below any that will ever be achieved. 

 

5.2 Linear Congruential Random Number Generator 

 

In order to generate the random numbers for the optimization algorithm multiple linear congruential 

random number generators (RNG’s) were programmed into the DCS.  The linear congruential RNG is a 

common random number generator that can be implemented using DCS function codes and does not 

require a lot of memory.   

 

The equation for the linear congruential RNG can be seen in equation 5-1.  The “m” is the modulus and 

must be greater than 0.  The “a” is the multiplier and the “c” is the increment value, both of which must 

be between 0 and the value of “m”.  The initial Xn is the seed value or previous value.   The maximum 

period of the RNG will be defined by the modulus value m in the equation.  In order to achieve the 

maximum period, c and m must be relatively prime, a-1 must be divisible by all prime factors of m, and 

a-1 must be a multiple of 4 if m is a multiple of 4. 
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Equation 5-1: Linear Congruential Random Number Generator. 

     (     )      

 

The RNG used for the optimization algorithm can be seen in equation 5-2.  The values for the equation 

were selected to provide a full period of numbers from 0 to 99.  The random number generator will 

generate numbers from 0 to 99.  An example of the RNG output with a seed value of zero can be seen in 

Figure 5-2. 

 

Equation 5-2: Linear RNG for Generating numbers from 0 to 99 

     (       )        

 

Figure 5-2 Linear Congruential Random Number Generator Output 
 

There are five RNG’s used for the optimization algorithm.  Each RNG is seeded at different times using 

the internal DCS clock.  One RNG is seeded every 13 seconds.  The value of the seed is the sum of the 

current minute and second of the DCS clock scaled from zero to 100.  An example of 40 iterations of the 

five RNG’s can be seen in Figure 5-3.  The five values on each line represent the percentage of each 

airflow value that will be used as an input for the neural network. 
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Figure 5-3 Output From all 5 Random Number Generators 
 

 

The RNG outputs are each scaled to an acceptable airflow range before going to the neural network.  

The ranges should be limited to values for which data has been collected and used for neural network 

tuning.  Having values outside of the tuning dataset can result in unpredictable operation.  The 

minimum and maximum airflow values for the output of the optimization algorithm can be seen in Table 

5-1. 

 

Table 5-1 Optimization Algorithm Min/Max Values 

Parameter Minimum Maximum 

Cell A1 Air Flow 500 3000 

Cell A2/A3 Air Flow 500 3000 

SUC Air Flow 0 2000 

DNLG Air Flow 2000 4000 

UPLG Air Flow 3000 9000 
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Chapter 6 : Distributed Control System (DCS) Integration 

 

6.1 DCS Function Codes and Logic Structure 

 

The DCS utilized for this project is an ABB Symphony Harmony Infi-90 system.  The DCS controller 

module used in this project is a BRC300 Bridge Controller module.  The programming software used to 

program the controller is ABB Composer with Automation Architect.  In order to program the DCS, 

function codes are tied together and conFigured to perform control functions.  Function code operation 

and configuration instructions can be found in the ABB Function Code Application Manual. (13)   

 

Function codes are saved as “blocks” in the controller.  The BRC300 can hold 9999 blocks.  Each block is 

assigned a block number.  The blocks are scanned in order of the block number.  In most applications of 

this type of DCS, the time for one complete scan of the DCS blocks is set to 250ms.  This number is 

adjustable but is limited by the capabilities of the controller and amount of control logic. 

 

For most DCS applications, the plant response is much slower than the DCS scan time making the order 

in which the blocks execute somewhat unimportant.  Most digital signals are held for at least a second 

giving the processor multiple scans to read the value and react.  For this project, there will be many 

signals that change with each scan making the order in which the blocks scan critical for proper 

operation.  The flow chart in Figure 6-1 shows the order of operation for the DCS logic for this project 

with numbers representing the order in which each set of blocks is scanned. 



47 
 

Timing 

Functions

(1) Random 

Number 

Generator 

Constants

(2)
Random 

Number 

Generator 

Seeding

(3)

Inputs from the 

Plant

(5)

Random 

Number 

Generator

(4)

Verification Min 

Max Signal 

Select

(6)

Verification 

Control Signal 

Select

(7)

NN Control 

Model

(9)

NN Verification 

Model

(8)

Optimization 

Controller

(11)

Min/Max 

Calculation

(10)

Controller 

Output Signal 

Selection

(12)

PLANT

DCS CONTROLLER PLANT

 

Figure 6-1 DCS Logic Order of Operation 
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6.2 DCS Timing Signals and Scan time 

 

For this controller, there will be functions which will not operate on every module scan.  These functions 

will be triggered by timing signals.  There are three functions that will operate periodically which will be 

discussed later in more detail.  Timing signals are generated using the internal DCS clock.  A one scan 

pulse is generated at 20 seconds, one at 40 seconds, and one at 59 seconds using the seconds from the 

DCS clock.  The “memory” function code acts like an S/R flip flop.  When the seconds value for the clock 

is at one of the above values, the S/R is set.  The digital time delay function code (TD-DIG) has a higher 

block number than the S/R so the output of the S/R will provide a “1” to the input of the TD-DIG.  The 

TD-DIG will immediately provide a “1” to the “reset” on the S/R block so that on the next scan, the 

output of the S/R will go to “0”.  The logic for the one pulse scans can be seen in Figure 6-2. 

 

 

Figure 6-2 DCS Logic for timing signals 
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The default scan time of the controller module is 250ms.  With a 250ms scan time, all blocks will be 

scanned four times each second.  This will provide the optimization algorithm, to be discussed in more 

detail in section 6-9, with four different airflow input combinations per second.  With these settings, the 

processor utilization of the BRC300 controller was less 10% so the scan time was adjusted to 100ms by 

using the segment control function code.  This allowed for ten different input combinations of airflows 

per second.  With these settings, the processor utilization was still less than 10%.  Even though the 

processor utilization was less than 10%, the scan time was left at 100ms to leave room for future 

expansion. 

 

6.3 DCS Random Number Generation 

 

The random number generators will provide random inputs to the neural network for determining 

optimum airflow values.  Five random number generators are utilized for this project.  They will provide 

random airflow values for: 

1) Intrex cell A1 airflow, 

2) Intrex cell A2/A3 airflow, 

3) Intrex startup channel airflow, 

4) Intrex down leg airflow and 

5) Intrex up leg airflow. 

Each random number generator will be seeded separately at different times. 

 

The seeding of the random number generators is done using the DCS clock.  The seed is the sum of the 

clock seconds and minutes values scaled from 0 to 99.  One random number generator is seeded every 

13 seconds.  This is accomplished using S/R function codes and TD-DIG function codes.  The first S/R 

block will be set when the controller starts.  The S/R block provides a “1” to two TD-DIG blocks. One TD-



50 
 

DIG block sends a pulse to the associated RNG to force it to seed and the other will wait 13 seconds and 

then reset the S/R for the associated RNG seed and set the S/R for the next RNG seed.  This will continue 

for each RNG and then repeat.   The DCS logic for seeding the random number generators can be seen in 

Figure 6-3.   

 

 

Figure 6-3 DCS Logic for Random Number Generator Seeding 
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The random number generators will use the seeds from the seed logic and the equation for a linear 

congruent number generator from equation 5-2 to generate random numbers.  The benefits of using the 

linear congruential random number generator are that they do not require a lot of system resources and 

that they can be implemented using DCS function codes.  The disadvantage is that there is not a 

dedicated DCS function code for modulus or rounding which is required for the linear congruential 

random number generator.  

 

 In order to get a rounded value, a series of multiplexer function codes were used.  The multiplexer will 

round the input select value in order to select an input.  The multiplexers were combined to generate a 

multiplexer with 100 inputs with a constant from 0 – 99 attached to each input.  When the value to be 

rounded is used as the input to the multiplexer, the rounded value is generated at the output.  The logic 

for the linear congruential random number generator can be seen in Figure 6-4. 

 

To Rounding 

Logic

 

Figure 6-4 DCS Logic for Random Number Generation 
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6.4 DCS Signal Inputs and preprocessing 

 

The ABB infi-90 DCS has a multi-level communication structure.  The top level of communications is the 

plant loop.  Process Control Units (PCU’s) communicate with each other over the plant loop.  In some 

cases, multiple loops can be tied together so PCU’s can communicate with PCU’s on other loops.  The 

PCU’s on a loop each have a loop address and a unique PCU address.  Each PCU contains one or more 

controller modules and a communication module that ties the controllers to the loop.  The controllers 

and communication modules communicate with each other using a communications bus called 

controlway.  Each communication and control module in a PCU has a distinct controlway address.  If a 

controller has associated field input modules, it communicates with those modules over an I/O 

expander bus. 

 

Since the controller for this project is being tied into a pre-existing control system, the controller inputs 

will come from other controllers over the DCS communication system and not directly from field inputs.  

Input signals are brought into the controller from modules in other PCU’s using analog loop input (AI/L) 

function codes.  The AI/L function code uses the PCU address, control module controlway address and 

function code block number for the analog output function code (AO/L) in the PCU where the signal 

originates.   

 

Once the signals are brought into the controller that will be used for the neural network, they are 

checked for validity and averaged where averaging is used.  Any signals that are found to have bad 

quality resulting from communications or instrument failure will automatically be removed from any 

average that they are calculated into.  An on/off block was also added so a signal could be “forced” out 

of the average if it was not indicated as bad quality but still was not reading correctly.  If one of the non 
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redundant inputs or all of a redundant set of inputs go to bad quality or are forced out using the on/off 

block, the neural network model will become invalid and the logic will trigger a bad quality alarm that 

will automatically bypass the neural network controller.  This will also occur if all of the signals for an 

averaged input go bad quality or are forced out of the average.  The bypass logic will be discussed 

further in section 6-10. 

 

The signals are normalized using equation 3-5 with the same standard deviations and averages that 

were used for normalization in the model development.  Any signals that utilize delayed values also have 

the five minute delay values generated.  Figure 6-5 shows the above functions programmed into the DCS 

using DCS function codes for the average freeboard signal.  The normalized signals are tied to the inputs 

of the neural network model. 

 

 

Figure 6-5 DCS Logic for Signal Input and Preprocessing 
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The only signal that utilized a time delay was the total fuel flow.  The time delayed value of the fuel flow 

was generated using a “Delay” function code.  The Delay function code was set up to delay the total fuel 

flow by five minutes and sample every two seconds.  The logic for the time delayed fuel flow input can 

be seen in Figure 6-6. 

 

 

Figure 6-6 DCS Logic for time delayed inputs 
 

 

 

6.5 DCS Minimum/Maximum Intrex Differential Temperature Airflow Verification Signal Selection 

 

The controller will calculate the minimum and maximum intrex differential temperature that can be 

achieved by manipulating the airflows.  The method of determining these values will be discussed in 

section 6-8.   These values will be reapplied to the input of the neural network control model once every 

60 seconds to re-verify the values.   

 

Each air flow signal has a set of selection logic.  The output from the associated random number 

generator (0-99) is converted to an airflow value.  The value is then transferred to the input of an 
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“analog  transfer” function code.  Under normal operation this signal is passed through the analog 

transfer block and then passes through a second analog transfer block on to the control airflow 

verification signal selection logic.  The first analog transfer is switched to the airflow values that are 

currently saved as those that generate the lowest intrex differential temperature for a single scan by the 

timing signal that pulses at 40 seconds.  Under this condition, those values will be passed to the input of 

the neural network models.  The second analog transfer is switched to the airflow values that are 

currently saved as those that generate the highest intrex differential temperature for a single scan by 

the timing signal that pulses at 20 seconds.  Under this condition, those values will be passed to the 

input of the neural network models.  The min/max switching logic for the intrex A1 cell airflow can be 

seen in Figure 6-7. 

 

 

Figure 6-7 DCS Logic for Min/Max Intrex Differential Temperature Airflow Verification Signal Selection 

 

6.6 DCS Control Airflow Verification Signal Selection 

 

The controller will calculate the airflows required to achieve the operator entered intrex differential 

temperature set point.  The method of determining these values will be discussed in section 6-9.   These 

values will be reapplied to the input of the neural network control model once every 60 seconds to re-

verify the values.   
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Each air flow signal has a set of selection logic that uses the output of the min/max selection logic and 

the control airflow signal as inputs to an analog transfer function code.  Under normal operation the 

signal from the min/max airflow selection logic is passed through the analog transfer function code.  The 

analog transfer is switched to the currently saved control airflow values for a single scan by the timing 

signal that pulses at 59 seconds.  The value that is passed through the analog transfer is then normalized 

using the same normalization parameters used in model development.  The normalized airflows are 

used as inputs for the neural network control model discussed in section 6-7.  The control airflow 

switching logic for the intrex A1 cell airflow can be seen in Figure 6-8. 

 

 

Figure 6-8 DCS Control Airflow Verification Signal Selection 
 

 

6.7 DCS Neural Network Model Logic 

 

The Neural Network model predictive controller has two neural network models.  The first model, the 

verification model, is used to verify model accuracy and uses all inputs from the plant.  The second 

model, the control model, uses inputs from the plant and the intrex airflow inputs from the control 

airflow signal selection logic in Figure 6-8.  Each model has the same model structure as the neural 

network model generated in Matlab.   
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Each input into the neural network nodes in each layer is applied to a two-input summing function code.  

This function code has a programmable gain for each input which is where the neural network weights 

will be programmed.  The outputs of each of the summing nodes are summed together with each other 

as well as with the node constant.  That value is then passed on to a tan sigmoid activation function.  

The equation for the tan sigmoid activation function can be seen in equation 4-1.  A single input layer 

node for the verification neural network model can be seen in Figure 6-9. 

 

 

Figure 6-9 DCS Verification Neural Network Model Layer 1 Node 
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The input layers for the neural networks each have twenty nodes.  In order to reduce the number of 

controller blocks required to implement the neural network models, common inputs are shared for the 

layer 1 logic.  The only inputs that are not shared between the verification neural network model and 

the control neural network model are the intrex air flows.  A single input layer node for the control 

neural network model can be seen in Figure 6-10. 

 

 

Figure 6-10 DCS Control Neural Network Model Layer 1 Node 
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Every output value from the layer 1 nodes is used as an input values for each of the layer 2 nodes for the 

same model.  The layer 2 nodes for the verification and control neural network models are independent 

and do no share any input or output values.  Each model has fifteen layer 2 nodes.  The layer 2 nodes for 

both models have the same structure.  A layer 2 node for the verification neural network model can be 

seen in Figure 6-11. 

 

 

Figure 6-11 Verification Neural Network Model Layer 2 Node 
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The outputs from the fifteen layer 2 nodes are each used as an input to the output layer node.  There is 

no tan-sigmoid activation function on the output layer nodes.  The output values are un-normalized by 

reversing equation 3-5 and using the same standard deviation and average values used for 

normalization.  The output layer for the verification model provides a value for the intrex differential 

temperature that is compared with the plant intrex differential temperature.  The difference between 

the verification model output and the plant value for intrex differential temperature is calculated and 

passed to the control model.  The output node for the verification neural network model can be seen in 

Figure 6-12. 

 

 

Figure 6-12 DCS Verification Neural Network Model Output Node 
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The verification model error value is added to the output of the last summing block in the Control model 

output node so the error signal of the control neural network can be properly calculated.  This function 

will not compensate for a poorly performing model.  It is only meant to fine tune the controller by a few 

degrees.  If the verification model error signal is large, it will have a greater impact on the control model 

output than the intrex airflows that are being tested and the controller will not function properly.  The 

control neural network model output node provides values to be used for calculating minimum and 

maximum controller capabilities as well as for calculating the optimum intrex airflows required to meet 

the operator entered setpoint for intrex differential temperature.  The control neural network output 

node can be seen in Figure 6-13. 

 

 

Figure 6-13 DCS Verification Neural Network Model Output Node 
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Each Neural network model contains 751 weights and constants.  Manually entering these numbers 

would be very time consuming and one wrong entry will make the model malfunction.  In order to 

ensure that the weights and constants were entered properly, they were exported from Matlab into an 

excel spreadsheet.  The DCS Control Logic was exported into an access database.  The block numbers for 

the weights and constants were ordered in groups so each group of weights and constants could be 

copied and pasted from the excel spreadsheet into the access database.  The weights and constants 

were pasted into the access database and then the updated access database was imported back into the 

DCS which applied all of the weights and constants to the neural network models.   

 

6.8 DCS Intrex Differential Temperature Minimum/Maximum Capability Calculations 

 

In order to determine the minimum intrex differential temperature that can be achieved using the 

model predictive controller, the error between the output value of control model and zero set point is 

calculated.  The current error is compared with the saved best error value.  If the current error is better 

than the previously saved error, it will be stored along with the control model output and the airflows 

that provide the minimum intrex differential temperature will be updated.  

 

One potential problem that arrives from this configuration is that when the plant parameters change in 

a way that causes the error to increase, a better error may not be possible and the past error is no 

longer relevant.  In order to overcome this problem, the stored airflows that provide the minimum 

intrex differential temperature are reapplied to the model once every 60 seconds and the associated 

error value is updated.  This is accomplished in a single scan using the single scan pulse that activates 

when the DCS clock is at 40 seconds.  The logic for selecting the airflow values that generate the 

minimum intrex differential temperature can be seen in Figure 6-14. 



63 
 

 

Figure 6-14 DCS Calculation of the Airflow Values for Minimum Intrex Differential Temperature 
 

In order to determine the maximum intrex differential temperature that can be achieved using the 

model predictive controller, the error between the output value of control model and set point of 300 is 

calculated.  The current error value is used to capture the airflows and error associated with the airflows 

required for the maximum intrex differential temperature in the same manner as that used for the 

minimum intrex differential temperature.  The error and airflows for the maximum intrex differential 

temperature are verified once a minute by the single scan pulse that activates when the DCS clock is at 

20 seconds.  The logic for selecting the airflow values that generate the maximum intrex differential 

temperature can be seen in Figure 6-15. 
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Figure 6-15 DCS Calculation of the Airflow Values for Maximum Intrex Differential Temperature 

 

6.9 DCS Control Optimization 

 

This controller will allow the operator to enter a setpoint for the desired intrex differential temperature.  

The setpoint is compared with the minimum and maximum capabilities of the controller.  If the setpoint 

falls outside of the range that the controller is capable of controlling to, the closest value to the setpoint 

within the range will be selected as the setpoint and an alarm will be issued to alert the operator.  The 

setpoint is compared to the control model output in order to generate an error signal.  The current error 

is compared with the saved best error value.  If the current error is better than the previously saved 

error, it will be stored along with the control model output and the airflows that provide the intrex 
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differential temperature closest to the setpoint will be updated.  The portion of the logic used for 

selecting a setpoint can be seen in Figure 6-16. 

 

 

Figure 6-16 DCS Controller Setpoint Selection 

 

As with the min/max error calculations there is the potential problem that when the plant parameters 

change in a way that causes the error to increase, a better error may not be possible and the past error 

is no longer relevant.  This problem is overcome by reapplying the stored airflows that provide the 

lowest error between intrex differential temperature and the setpoint to the control model once every 

60 seconds and updating the associated error value.  This is accomplished in a single scan using the 

single scan pulse that activates when the DCS clock is at 59 seconds.  The logic for selecting the airflow 

values that generate the minimum error between intrex differential temperature and the setpoint can 

be seen in Figure 6-17.  The logic also contains a dead band that is set to +/- .25 degrees F.  This is to 

prevent the airflows from changing unnecessarily.  
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Figure 6-17 DCS Control Optimization Logic 
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6.10 DCS Controller Output Signal Selection 

 

The current logic for the intrex airflows uses curves that apply a specific airflow setpoint to a PID 

controller for specific unit loads.  The logic already contains a transfer switch that was installed 

previously.  A “remote control memory” (RCM) function code is used to allow the operator to switch 

back and forth between the new neural network control and the airflow curves that are already 

installed.  In order for the operator to be able to turn on the neural network controls, at least one input 

signal for each neural network input must be good quality.  If all of the input signals for any neural 

network input go bad quality, the neural network will automatically turn off.  The logic for selecting the 

neural network controller can be seen in Figure 6-18. 

 

 

Figure 6-18 DCS Neural Network Controller On/Off Logic 
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In addition to intrex differential temperature, it is very important to maintain ash flow through the 

intrex.  If the ash flow through the intrex stops, the ash will continue to build up in the cyclone.  Without 

the circulation of ash through the hot loop, effective heat transfer cannot take place and the unit will 

have to come off line.  In order to prevent cyclone plugging, a flush function was added to the airflow 

selection logic.  There are five pressure indications in the inlet of the intrex.  When the pressure 

indications are negative intrex ash flow is good.  When all of the pressure indications are positive intrex 

ash flow is poor.  The flush sequence will increase all of the airflow values until the pressure indications 

show that the intrex ash flow has improved.  The flush will last no less than five minutes.  The flush 

sequence will take place if four of the five pressure indications are positive for 30 seconds, all five or the 

pressure indications are positive, or four of the pressure indications read a pressure greater than 5” of 

water.  The DCS logic for flushing the intrex can be seen in Figure 6-19. 

 

Figure 6-19 DCS Intrex Flush Logic 
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The output of the flush logic will stay active for at least five minutes once it is activated before it the 

system will switch back to normal control.  This is to prevent system instability that may result from the 

plugged cyclone detection turning on and off if the system is operating near the threshold.  To increase 

stability, a lag function was also added to keep the airflows from changing too rapidly.  The lag blocks 

are set to allow the airflows to reach 63% of their change in value in 10 seconds and 99% of their change 

in value in 50 seconds.  This logic can be seen in Figure 6-20 along with the AO/L blocks that will be used 

as the inputs into the live system. 

 

 

Figure 6-20 DCS Neural Network Controller Output to Plant Logic 
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Chapter 7 : Testing and Results 

 

In order to verify that the neural network model was functioning properly in the DCS, the output of the 

verification neural network model was compared to the actual intrex differential temperature.  A DCS 

trend was generated to compare the model performance to the plant.  The largest deviation between 

the signals reached nearly 2.5 degrees F during a time that the actual intrex differential temperature 

was climbing rapidly.  The deviation between the signals was less than 0.5 degrees F for the majority of 

the timeframe.  The neural network model tracks the live plant with enough accuracy for the neural 

network model predictive controller to function properly.  The trend of the plant intrex differential 

temperature and the verification Neural Network Model can be seen in Figure 7-1. 

 

To verify the operating range of the neural network, the minimum and maximum intrex differential 

temperatures generated by the controller were compared to the plant intrex differential temperature.  

A DCS trend was generated to verify the neural network model predictive controller had a sufficient 

controllable range.  The results show that under most circumstances the controller will have the ability 

to control the intrex temperature within a range of 5 degrees F.  This is sufficient for the purposes of this 

project and can be beneficial to the plant.  The range may be increased by performing additional airflow 

testing and using that data to re-tune the neural network.  A trend of the plant intrex differential 

temperature vs. the minimum and maximum ranges of the controller can be seen in Figure 7-2. 
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Figure 7-1 Intrex Differential Temperature vs. Verification Neural Network Model Output 
 

 

Figure 7-2 Neural Network Control Min/Max Capabilities vs. Intrex Differential Temperature 
 

Intrex DT     
Model Out   

Intrex DT     
Min Temp 
Max Temp 
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It can be seen in Figures 7-1 and 7-2 that the plant intrex differential temperature is continuously 

changing.  With this temperature continuously changing, the main steam attemperator valves have to 

continuously modulate to try to control main steam temperature.  If the intrex differential temperature 

was constant, the control of the main steam temperature would be more stable.   

 

The set point for the neural network model predictive controller was set to 136 degrees F and left at 

that state for approximately 90 minutes.  During this time, the actual intrex temperature was compared 

with the output of the neural network control model.  The control model is the model that the 

optimization algorithm applies random airflows to in order to try to reach the operator entered intrex 

differential temperature.  Figure 7-3 shows the output of the actual intrex differential temperature, the 

neural network control model output and the airflow values that would be applied to keep the neural 

network control model output at the set point. 

 

 

Figure 7-3 Intrex Differential temperature vs. Controller Model Output and Optimized Air Flows 
 

Intrex DT           Set Point                  A2/A3 Air Flow              DNLG Air Flow 
Control DT           A1 Air Flow                  SUC Air Flow                UPLG Air Flow 
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It can be seen in Figure 7-3 that the controller optimization algorithm continuously modulates the intrex 

airflows for the controller model to keep the output of the controller model at the 136 degree F 

setpoint.  The controller model output is able to be controlled to within +/-.1 degrees F for the majority 

of the time period.  The maximum deviation was approximately -0.5 degrees F at approximately 9:10 

AM.  This was the result of the plant parameters changing to the point that the maximum controllable 

temperature fell below the setpoint for a short time.  Another timeframe of approximately 90 minutes 

with a setpoint of 33 degrees F is plotted in Figure 7-4.  During this timeframe it can be seen that the 

controller setpoint is often higher than the maximum controllable temperature and the neural network 

controller model output trends below the setpoint during these circumstances.  With a setpoint near the 

edge of the controllable range, the output is less stable than that seen in Figure 7-3 but the system will 

still control to the setpoint when able. 

 

 

Figure 7-4 Intrex Differential Temperature vs. Controller Model Output and Optimized Air Flows with 
Controller Setpoint near The Edge of The Controllable Range 

 

Intrex DT           Set Point                  A2/A3 Air Flow              DNLG Air Flow 
Control DT           A1 Air Flow                  SUC Air Flow                UPLG Air Flow 
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In addition to the stability of the controller, it is also important to look at the response.  A series of step 

changes were made to the intrex differential temperature setpoint over a timeframe of approximately 

90 minutes.  The typical response time was found to be less than 60 seconds with the airflows reacting 

very rapidly to achieve the new setpoint.  The overshoot was typically low but the controller does not 

have any programming that will prevent overshoot in the control model.  This was considered before 

the programming was done and if overshoot had been an issue, logic would have been added to limit 

the overshoot by allowing only airflows with better errors on the same side of the setpoint as the 

current output to be used.  The controller output airflows are sufficiently damped and the recovery from 

overshoot is quick enough that the additional overshoot protection was not deemed necessary.  There is 

still the potential for deviation where the setpoint is outside of the controllable range.  Figure 7-5 shows 

the series of step responses that were made.  The airflows shown are the undamped signals within the 

controller.  Figure 7-6 shows a closer view of approximately the first half of the step response sequence. 

 

 

Figure 7-5 Neural Network Model Predictive Controller Step Response 
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Figure 7-6 Neural Network Model Predictive Controller magnified Step Response  
 

In order to tie the airflows setpoints from the neural network model predictive controller to the live 

plant, a unit outage will be required after which point a unit startup would be required to perform 

testing.  No unit outage followed by a unit startup is scheduled within the timeframe of this project.  The 

original intent was to manually input the airflow setpoints to match the output of the neural network 

controller.  From the Figures above it can be seen that the airflows have to constantly adjust to maintain 

a temperature.  At the time of the test, the plant airflows were at constant values.  With this it can be 

seen how much the intrex differential temperature changes due to other plant parameters.  The airflows 

cannot be set quickly enough manually to properly show controller performance.  
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Chapter 8 Conclusions and Areas of Future Work 

 

8.1 Conclusions 

 

This project has shown that a neural network model can be utilized to successfully model an intrex 

superheater in a circulating fluidized boiler with enough accuracy to be utilized for model predictive 

control.  When compared to the regression model, the neural network model had better performance.  

The additional performance comes with additional costs in time and complexity.  Training the neural 

network in Matlab required days of testing where Minitab was able to provide a regression model 

almost instantly.  The neural network model required fifty pages of DCS logic to implement where the 

regression model would have only required one page.   If accuracy is the primary objective, the neural 

network model is preferred even with the greater time and resource requirements. 

 

The use of the linear congruential random number generator was found to work very well for the 

optimization algorithm.  The majority of the resources used for the random number generators were 

required for performing number rounding.  Of the six pages of logic required to implement the five 

random number generators, approximately five pages were dedicated to rounding.  The remaining logic 

was easily implemented in the DCS and required little system resources. 

 

The optimization algorithm as a whole had response times much better than those required and much 

better than what was anticipated at the start of this project.  A controller scan time of 100ms was found  
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to be more than sufficient for the purposes of this project.  The system stability was also much better 

than expected when the controller setpoint was within the range of the controller.   The range of the 

controller was on the low end of what was expected but is still sufficient to be beneficial. 

 

8.2 Areas of Future work 

 

In order to determine which system variables to use for inputs into the neural network, a stepwise linear 

regression was used.  This method provided sufficient results but may have eliminated other variables 

that did not have a linear relationship.  Any such variables would not have been useful for a linear 

regression model but may have been useful for the neural network model and may have provided a 

more accurate neural network model.  Future research should include alternate methods of selecting 

which system variables to use for inputs into the neural network model. 

 

The neural network module utilized for the model predictive controller was tuned using a genetic 

algorithm.  The genetic algorithm has many parameters that can be adjusted to alter how it finds 

optimal weights for the neural network.   The ability of the genetic algorithm to find the optimal weights 

depends on the size of the population, number of parents in the population and the manner in which 

the population is mutated.  This project showed three different methods of mutation with the cosine 

decay mutation function providing the most accurate results.  With further research into the genetic 

algorithm parameters, it is believed that a better neural network model may be possible.  There are also 

other stochastic optimization algorithms such as particle swarm that may provide different results. 

 

Neural network structures with ten and fifteen hidden layer nodes were tested to determine which 

provided the best results.  Between these two structures, the neural network with fifteen hidden layers 
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provided better results.  There are many other combinations of layer one and layer two nodes that 

could be tested to find the optimum structure for this application.  When the structure of the neural 

network changes, the number of weights changes.  With different population sizes, different genetic 

algorithm parameters will likely be required for different neural network structures to find the optimum 

weights.   

 

For the purposes of this project, the neural network model predictive controller was programmed into 

the DCS using pre-defined function codes.  In general, the vast majority of DCS programming is done 

using function codes and any engineer or technician who works with a DCS system on regular basis will 

be familiar with the function codes associated with their DCS system.  The DCS system for this project 

does have the ability to accept code programmed using C.  This is typically only done by the DCS 

manufacturer for specialized applications and very little documentation is available on the topic.  Future 

research should include a neural network model predictive controller programmed into the DCS using C 

instead of function codes.  This would likely require less controller resources as the C programming 

language is more flexible than the pre-defined function blocks which would allow the programming to 

be done more efficiently. 

 

In addition to the intrex, there are other systems within the CFB which can benefit from a neural 

network model predictive controller such as the one implemented in this project.  There is little to no 

direct measurement of the properties of the bed material throughout the CFB hot loop.  Neural network 

model predictive controllers may also prove beneficial to other control loops that are directly or 

indirectly impacted by the properties of the bed material.  Future work may include neural network 

model predictive control of combustor bed level, fuel distribution and limestone distribution as well as 

numerous other processes within the CFB control system. 
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Appendix A - Minitab Stepwise Regression Results 

Stepwise Regression: intrex a TEMP IN versus Avg A1 AF, Avg A2 AF, ...  
 
  Alpha-to-Enter: 0.05  Alpha-to-Remove: 0.05 

 

 

Response is intrex a TEMP INCREASE on 25 predictors, with N = 5886 

 

 

Step                       1         2         3         4         5         6 

Constant               95.47    881.56    947.16    937.86    924.68    869.75 

 

Avg A1 AF            0.00518   0.00097   0.00124   0.00120   0.00107   0.00105 

T-Value                11.35      4.62      8.31      8.05      7.23      7.29 

P-Value                0.000     0.000     0.000     0.000     0.000     0.000 

 

Avg A2 AF           -0.00290  -0.00331  -0.00184  -0.00165  -0.00160  -0.00101 

T-Value                -3.55     -8.89     -6.92     -6.19     -6.05     -3.90 

P-Value                0.000     0.000     0.000     0.000     0.000     0.000 

 

Avg A3 AF           -0.00090   0.00264   0.00076   0.00069   0.00059   0.00053 

T-Value                -1.30      8.40      3.37      3.07      2.65      2.46 

P-Value                0.193     0.000     0.001     0.002     0.008     0.014 

 

Avg SUC AF          -0.00324  -0.00039  -0.00031  -0.00009  -0.00015   0.00025 

T-Value               -14.44     -3.74     -4.19     -1.12     -1.87      3.15 

P-Value                0.000     0.000     0.000     0.261     0.061     0.002 

 

DNLG AF              0.01147   0.00159   0.00044   0.00044   0.00035   0.00094 

T-Value                11.01      3.33      1.28      1.30      1.04      2.86 

P-Value                0.000     0.001     0.201     0.195     0.298     0.004 

 

UPLG AF              0.00129   0.00012  -0.00002  -0.00002   0.00008  -0.00029 

T-Value                12.35      2.57     -0.61     -0.72      2.18     -7.16 

P-Value                0.000     0.010     0.543     0.472     0.029     0.000 

 

STM IN TE                      -0.8688   -0.9401   -0.9283   -0.9247   -0.8833 

T-Value                        -150.18   -221.97   -209.39   -209.01   -183.35 

P-Value                          0.000     0.000     0.000     0.000     0.000 

 

Main stm deviation                        0.6851    0.6796    0.6728    0.6348 

T-Value                                    75.29     74.93     74.39     70.48 

P-Value                                    0.000     0.000     0.000     0.000 

 

AVG FB                                              -0.166    -0.239    -0.178 

T-Value                                              -8.45    -11.24     -8.55 

P-Value                                              0.000     0.000     0.000 

 

Cell AB Ave Temp                                             0.00642   0.02614 

T-Value                                                         8.78     20.76 

P-Value                                                        0.000     0.000 

 

Heat in                                                               -0.00607 

T-Value                                                                 -18.96 

P-Value                                                                  0.000 

 

S                       5.87      2.67      1.90      1.89      1.88      1.83 

R-Sq                   14.01     82.22     90.95     91.06     91.17     91.68 

R-Sq(adj)              13.92     82.20     90.94     91.05     91.16     91.67 
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Step                       7         8         9        10        11        12 

Constant               852.4     833.0     811.5     806.9     808.9     807.1 

 

Avg A1 AF            0.00112   0.00113   0.00117   0.00117   0.00118   0.00130 

T-Value                 7.83      8.03      8.37      8.32      8.42      9.17 

P-Value                0.000     0.000     0.000     0.000     0.000     0.000 

 

Avg A2 AF           -0.00097  -0.00081  -0.00083  -0.00087  -0.00083  -0.00093 

T-Value                -3.81     -3.21     -3.30     -3.47     -3.32     -3.72 

P-Value                0.000     0.001     0.001     0.001     0.001     0.000 

 

Avg A3 AF            0.00064   0.00080   0.00097   0.00097   0.00093   0.00099 

T-Value                 2.99      3.75      4.57      4.56      4.39      4.70 

P-Value                0.003     0.000     0.000     0.000     0.000     0.000 

 

Avg SUC AF           0.00025   0.00019   0.00027   0.00031   0.00032   0.00031 

T-Value                 3.19      2.53      3.51      4.07      4.16      3.99 

P-Value                0.001     0.011     0.000     0.000     0.000     0.000 

 

DNLG AF              0.00112   0.00090   0.00095   0.00084   0.00089   0.00081 

T-Value                 3.44      2.79      2.94      2.63      2.77      2.53 

P-Value                0.001     0.005     0.003     0.009     0.006     0.011 

 

UPLG AF             -0.00026  -0.00012  -0.00013  -0.00014  -0.00013  -0.00012 

T-Value                -6.67     -2.86     -3.16     -3.47     -3.22     -2.88 

P-Value                0.000     0.004     0.002     0.001     0.001     0.004 

 

STM IN TE            -0.8727   -0.8567   -0.8443   -0.8331   -0.8324   -0.8348 

T-Value              -179.68   -170.69   -162.96   -148.60   -148.78   -149.06 

P-Value                0.000     0.000     0.000     0.000     0.000     0.000 

 

Main stm deviation    0.6255    0.6075    0.6018    0.5970    0.5952    0.5930 

T-Value                69.92     67.46     67.09     66.34     66.25     66.08 

P-Value                0.000     0.000     0.000     0.000     0.000     0.000 

 

AVG FB                -0.229    -0.316    -0.283    -0.312    -0.320    -0.306 

T-Value               -10.85    -14.17    -12.55    -13.47    -13.79    -13.17 

P-Value                0.000     0.000     0.000     0.000     0.000     0.000 

 

Cell AB Ave Temp      0.0306    0.0243    0.0286    0.0330    0.0328    0.0281 

T-Value                23.43     17.25     19.28     19.35     19.26     14.66 

P-Value                0.000     0.000     0.000     0.000     0.000     0.000 

 

Heat in             -0.00972  -0.01166  -0.00499  -0.00566  -0.00437  -0.00448 

T-Value               -21.59    -24.35     -5.57     -6.27     -4.69     -4.81 

P-Value                0.000     0.000     0.000     0.000     0.000     0.000 

 

Total PA             0.00670   0.00647   0.00759   0.00610   0.00610   0.00595 

T-Value                11.41     11.12     12.83      9.28      9.31      9.09 

P-Value                0.000     0.000     0.000     0.000     0.000     0.000 

 

Cell AA Ave Temp                0.0126    0.0164    0.0170    0.0179    0.0150 

T-Value                          11.06     13.50     14.00     14.60     11.23 

P-Value                          0.000     0.000     0.000     0.000     0.000 

 

Steam Flow                               -0.0110   -0.0093   -0.0105   -0.0108 

T-Value                                    -8.79     -7.23     -8.05     -8.25 

P-Value                                    0.000     0.000     0.000     0.000 

 

AVG FB Temp                                        -0.0076   -0.0102   -0.0109 

T-Value                                              -5.18     -6.59     -7.01 

P-Value                                              0.000     0.000     0.000 
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Limestne Flow                                                -0.0072   -0.0075 

T-Value                                                        -5.25     -5.49 

P-Value                                                        0.000     0.000 

 

UPLEG TEMP                                                              0.0109 

T-Value                                                                   5.28 

P-Value                                                                  0.000 

 

S                       1.81      1.79      1.78      1.77      1.77      1.76 

R-Sq                   91.86     92.03     92.13     92.17     92.21     92.24 

R-Sq(adj)              91.85     92.01     92.11     92.15     92.18     92.22 

 

 

Step                      13        14        15 

Constant               805.0     802.9     805.1 

 

Avg A1 AF            0.00130   0.00129   0.00128 

T-Value                 9.21      9.13      9.06 

P-Value                0.000     0.000     0.000 

 

Avg A2 AF           -0.00086  -0.00085  -0.00084 

T-Value                -3.38     -3.34     -3.32 

P-Value                0.001     0.001     0.001 

 

Avg A3 AF            0.00101   0.00101   0.00100 

T-Value                 4.76      4.76      4.72 

P-Value                0.000     0.000     0.000 

 

Avg SUC AF           0.00036   0.00040   0.00040 

T-Value                 4.53      4.85      4.87 

P-Value                0.000     0.000     0.000 

 

DNLG AF              0.00085   0.00085   0.00082 

T-Value                 2.66      2.66      2.56 

P-Value                0.008     0.008     0.011 

 

UPLG AF             -0.00012  -0.00011  -0.00010 

T-Value                -2.87     -2.57     -2.49 

P-Value                0.004     0.010     0.013 

 

STM IN TE            -0.8351   -0.8341   -0.8355 

T-Value              -149.14   -148.41   -147.68 

P-Value                0.000     0.000     0.000 

 

Main stm deviation    0.5926    0.5915    0.5920 

T-Value                66.06     65.85     65.90 

P-Value                0.000     0.000     0.000 

 

AVG FB                -0.298    -0.316    -0.324 

T-Value               -12.67    -12.59    -12.78 

P-Value                0.000     0.000     0.000 

 

Cell AB Ave Temp      0.0295    0.0292    0.0284 

T-Value                14.76     14.58     13.94 

P-Value                0.000     0.000     0.000 

 

Heat in             -0.00451  -0.00480  -0.00482 

T-Value                -4.84     -5.10     -5.12 

P-Value                0.000     0.000     0.000 

 

Total PA             0.00600   0.00615   0.00557 

T-Value                 9.17      9.34      7.81 
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P-Value                0.000     0.000     0.000 

 

Cell AA Ave Temp      0.0152    0.0155    0.0154 

T-Value                11.36     11.50     11.45 

P-Value                0.000     0.000     0.000 

 

Steam Flow           -0.0113   -0.0111   -0.0118 

T-Value                -8.53     -8.37     -8.64 

P-Value                0.000     0.000     0.000 

 

AVG FB Temp          -0.0074   -0.0079   -0.0081 

T-Value                -3.55     -3.73     -3.86 

P-Value                0.000     0.000     0.000 

 

Limestne Flow        -0.0079   -0.0077   -0.0092 

T-Value                -5.73     -5.59     -5.94 

P-Value                0.000     0.000     0.000 

 

UPLEG TEMP            0.0129    0.0134    0.0140 

T-Value                 5.82      6.02      6.25 

P-Value                0.000     0.000     0.000 

 

DNLG Temp            -0.0051   -0.0047   -0.0049 

T-Value                -2.46     -2.25     -2.33 

P-Value                0.014     0.025     0.020 

 

AVG BED                          0.030     0.032 

T-Value                           2.05      2.21 

P-Value                          0.040     0.027 

 

TOT FUEL -5                               0.0148 

T-Value                                     2.13 

P-Value                                    0.033 

 

S                       1.76      1.76      1.76 

R-Sq                   92.25     92.26     92.26 

R-Sq(adj)              92.23     92.23     92.24 
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Appendix B – Matlab Code for Model Development 

B-1 Matlab Code to Calculate Neural Network Model Output 

function [MSE,err,maxer,out]= 

neurnet(inA,outA,l1w,l1c,l2w,l2c,olw,olc,lay1n,lay2n) 

  
%Network Structure 
%   lay1n defines the number of neurons in the input layer.  lay2n defines 
%   the number of neurons in the second layer.  The output layer will  
%   always be 1 neuron.  Weights will be applied before the summing blocks  
%   for each neuron.  Constants will be added at each summing block. 
%   The output of each neuron will pass through an activation function 

  
%Inputs: 
%   inA = input data set (variables in different columns) 
%   outA = expected output for each input 
%   l1w = layer 1 weights 
%   l1c = layer 1 constants 
%   l2w = layer 2 weights 
%   l2c = layer 2 counstants 
%   olw = output layer weights 
%   olc = output layer constant 
%   lay1n = number of first layer neurons 
%   lay2n = number of second layer neurons 
%    
%Outputs: 
%   MSE = Mean square error 
%   err = raw error values 
%   maxer = maximum error 
%   out = neural net output 

  
out = zeros(1,size(inA,1));                      %Initialize Weight Matrix 
weights1=reshape(l1w,size(inA,2),lay1n);         %reshape weight matrix 
l1c=repmat(l1c,size(inA,1),1);                   %Create l1 constant matrix   
lay1out = (inA*weights1)+l1c;                    %layer 1 summing node 
lay1out = 2./(1+exp(-2.*lay1out))-1;             %layer 1 activation function    
weights2=reshape(l2w,lay1n,lay2n);               %reshape weight matrix 
lay2out = lay1out*weights2;                      %layer 2 summing node part 1 
l2c=repmat(l2c,size(inA,1),1);                   %create l2 constant matrix 
lay2out = lay2out+l2c;                           %layer 2 summing node part2 
lay2out = 2./(1+exp(-2*lay2out))-1;              %layer 2 activation function 
weightsout=transpose(olw);                       %transpose out weights 
out = lay2out*weightsout+olc;                    %output summing node 
err = outA-out;                                  %calculate error 
maxer = max(err);                                %find maximum error 
MSE = mean((err).^2);                            %calculate MSE 
end 
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B-2 Matlab Code for Genetic Algorithm Population Generation 

function w = genalg(parents,mut,totgen,gen,pop) 

  
%Inputs 
%   Parents = matrix of parent weights 
%   mut = mutation 
%   totgen = total number of generations 
%   gen = current generation number 
%   pop = Size of population to generate  
% 
%Outputs 
%   w = weighs 

  
numc = pop - size(parents,1);       %number of children to generate 
% make children 
w = zeros(numc,size(parents,2)); 
parfor i = 1:numc                      %for the number of children 
%   generate 2x1 matrix of ints from 1:number of parents     
    x = randi(size(parents,1),2,1);  
%   generate 1xnumber of weights matrix of ints from 1:2     
    y = randi(2,1,size(parents,2));  
%   convert 2's to 1 and 1's to 0 to select first parent     
    p1=y-1;   
%   convert 2's to 0 to select second parent     
    p2=abs(y-2);                     
%   combine parts frome each parent for each weight     
    w(i,:)=p1(1,:).*parents(x(1),:)+p2(1,:).*parents(x(2),:);  
end 
% mutate children 
%   determine which weights will be mutated 
mutloc = randi(numc*size(parents,2),1,ceil(mut*numc*size(parents,2))); 
%   mutation varies from 50% to 10% as the generation number is increased 
%mutation = .4*(totgen-gen)/totgen+.1 ; 
%   mutation decays from 60% to 10% with an added cosine function 
mutation =(.4*(totgen-gen)/totgen+.1)+.1*((totgen-

gen)/totgen)*cos(20*gen/totgen*pi); 
%   Constant Mutation of 25% 
%mutation = .25; 
%   determine the amount of mutation for each weight (-1:1 * mutation) 
mutmul = (1-(rand(1,length(mutloc))*2)*mutation); 
%   generate an empty matrix for the new children         
mutmat = ones(numc,size(parents,2)); 

         
for i = 1:length(mutloc)            %for each mutation 
    mutmat(mutloc(i)) = mutmul(i);  %fill in the mutation matrix     
end 
w = w .* mutmat;                    %generate new children 
% make population of parents and children 
w = cat(1,parents,w);     
end 
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B-3 Matlab Code for Data Normalization 

function [normdata]= mmnorm(normmat,data) 

  
% This function will take in data and an associated normalization matrix  
% (normmat)containing the mean and standard deviation of the data set  
% and perform normalization.  The normalized data will be returned. 

  
normdata = zeros(size(data,1),size(data,2));    %Initialize the matrix 
x=normmat(1,:);                                 %Get mean for each variable 
y=normmat(2,:);                                 %Get SD for each variable 
parfor i=1:size(data,2)                         %Normalize the data 
    normdata(:,i) = ((data(:,i)-x(i)))/y(i); 
end 
end 

 

 

function [normdata]= immnorm(normmat,data) 

  
% This function will take in data and an associated normalization matrix  
% (normmat) containg the mean and standard deviation of the data set and  
% perform inverse normalization.  The un-normalized data will be returned. 

  
normdata = zeros(size(data,1),size(data,2));    %Initialize the matrix 
x=normmat(1,:);                                 %Get mean for each variable 
y=normmat(2,:);                                 %Get SD for each variable 
parfor i=1:size(data,2)                         %Un-Normalize the data 
    normdata(:,i) = ((data(:,i)*y(i)))+x(i); 
end 
end 
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B-4 Matlab Code for Neural Network Model Training and Testing 

%Nerual Network Model Program 
clear 

  
%get training data 
intrain = xlsread('Training_Data_in2'); 
outtrain = xlsread('Training_Data_out2'); 

  
%get testing data 
intest = xlsread('Testing_Data_in2'); 
outtest = xlsread('Testing_Data_out2'); 

  
%Get normalization Matrix 
innormmat=xlsread('STD_Norm_in'); 
outnormmat=xlsread('STD_Norm_out'); 

  
%Perform Normalization 
intrain = mmnorm(innormmat,intrain); 
outtrain = mmnorm(outnormmat,outtrain); 
intest = mmnorm(innormmat,intest); 
outtest = mmnorm(outnormmat,outtest); 

  
%Define Neural Network Structure 
%[MSE,err,maxer,out]= neurnet(inA,outA,l1w,l1c,l2w,l2c,olw,lay1n,lay2n); 
L1N = 20;                           %number of neurons in layer 1 
L2N = 15;                           %number of neurons in layer 2 
nL1w = L1N * size(intrain,2);       %number of layer 1 weights 
nL1c = L1N;                         %number of layer 1 constants 
nL2w = L2N*L1N;                     %number of layer 2 weights 
nL2c = L2N;                         %number of layer 2 constants 
nOLw = L2N;                         %number of output layer weights 
nOLc = 1; 

  
Totw = nL1w+nL1c+nL2w+nL2c+nOLw+nOLc;    %total number of weights 
nin = size(intrain,2); 

  
%Set Genetic Algorithm parameters 

  
mutation = .1;                     %amount of mutation in genetic algorithm 
pop = 750;                          %population (number of sets of weights) 
numpar = 225;                       %number of parents to use to generate 

children 
generations = 750;                  %number of generations 

  
%Generate inital weights from -1 to 1 
w = (rand(pop,Totw)-.5)*2; 
%load('C:\Documents and Settings\I&C ENGINEER\Desktop\N01 Intrex A NN\MATLAB 

Final\Test Weights\Test07.mat') 
%w=weightout; 

  
%Training 
    MSE = zeros(1,generations); 
    %for each generation 
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    for j = 1:generations 
        % calculate the error for each parent 
        mse=zeros(1,size(w,1));                 %Initialize mse 
        error=zeros(size(w,1),size(intrain,1)); %Initialize error 
        maxer=zeros(1,size(w,1));               %Initialize maxer 
        out = zeros(size(w,1),size(intrain,1)); %Initialize out 
        parfor k = 1:size(w,1);                 %For each parent weight 
            %Convert Weights for NN program 
            [l1w, l1c, l2w, l2c, outw,outc]=expweights(w(k,:),L1N,L2N,nin); 
            %Calculate the mse for the parent 
            [mse(k), error(k,:), maxer(k),out(k,:)] = 

neurnet(intrain,outtrain,l1w,l1c,l2w,l2c,outw,outc,L1N,L2N); 
        end 

  
        %capture best MSE 
        MSE(j) = min(mse); 
        % find the best weights 
        parent=zeros(numpar,Totw); 
        for kk = 1:numpar;                %for one to the number of parents 
            keep = find(mse == min(mse)); %find the location of minimum error 
            parent(kk,:) = w(keep(1),:);  %Store the parent with minimum 

error  
            mse(keep) = 10000000;         %maximize error for that parent 
        end 
        %Generate new weights 
        w = genalg(parent,mutation,generations,j,pop); 

         
    end 

     
%Plot the MSE     
Figure('Name','MSE','numbertitle','off','color','w') 
plot(MSE) 
%Capture the weight with the lowest MSE 
weightout = parent(1,:); 

  
%Training Verification 
%Generate Intrex Output using best weights and training data 
[l1w, l1c, l2w, l2c, outw,outc]=expweights(weightout,L1N,L2N,nin); 
[msetr, errortr, maxertr,outtr] = 

neurnet(intrain,outtrain,l1w,l1c,l2w,l2c,outw,outc,L1N,L2N); 
outtrn= immnorm(outnormmat,outtr); 
%Get Actual intrex differential temperature 
outtrainx = xlsread('Training_Data_out2'); 
%Plot the training output data vs the NN output with the best weights 
Figure('Name','Training Verification','numbertitle','off','color','w') 
plot(outtrainx) 
hold on 
plot(outtrn,'r') 

  
%Testing 
%Generate Intrex Output using best weights and testing data 
[l1w, l1c, l2w, l2c, outw,outc]=expweights(weightout,L1N,L2N,size(intest,2)); 
[msetst, errortst, maxertst,outtst] = 

neurnet(intest,outtest,l1w,l1c,l2w,l2c,outw,outc,L1N,L2N); 
outtst= immnorm(outnormmat,outtst); 
%Get Actual intrex differential temperature 
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outtstx = xlsread('Testing_Data_out2'); 
%Plot the testing output data vs the NN output with the best weights 
Figure('Name','Testing Verification','numbertitle','off','color','w') 
plot(outtstx) 
hold on 
plot(outtst,'r') 

  
%Calculate Regression output 
intestx=xlsread('Testing_Data_In2');    %Get Input Data 
re=xlsread('regresscon');               %Get regression coefficients 
regtesta=transpose(intestx); 
regtesta(21,:)=1; 
regouta=re*regtesta;                    %Caclulate output of regression model 

  
plot(regouta,'g') 

  
%Calculate MSE for regression and NN models 
regmse=mean((outtstx-transpose(regouta)).^2) 
nnmse=mean((outtstx-outtst).^2) 

  
%Plot Regression Error Histogram 
Figure('Name','Regression Error Histogram','numbertitle','off','color','w') 
hold on 
E=outtstx-transpose(regouta);         %Calculate Raw testing error 
range=round(min(E)):1:round(max(E));  %Determine the error range 
hist(E,range)                         %Plot error histogram 

  
teststdr=std(E);                       %calculate error standard deviation 
testmeanr=mean(E);                     %calculate error mean 

  
%Training data error 
Figure('Name','Training Error Histogram','numbertitle','off','color','w') 
hold on 
E=outtrainx-outtrn;                   %Caclulate Raw training error 
range=round(min(E)):1:round(max(E));  %determine the error range 
hist(E,range)                         %Plot error histogram 
trainstd=std(E);                      %calculate error standard deviation 
trainmean=mean(E);                    %calculate error mean 
clear E range 

  
%Testing data error 
Figure('Name','Testing Error Histogram','numbertitle','off','color','w') 
hold on 
E=outtstx-outtst;                     %Calculate Raw testing error 
range=round(min(E)):1:round(max(E));  %Determine the error range 
h42=hist(E,range);                         %Plot error histogram 
teststd=std(E);                       %calculate error standard deviation 
testmean=mean(E);                     %calculate error mean 

  
%get testing data 
intest1m = xlsread('Testing_Data_in_1min'); 
outtest1m = xlsread('Testing_Data_out_1min'); 
intest1mx=intest1m; 
intest1m = mmnorm(innormmat,intest1m); 
outtest1m = mmnorm(outnormmat,outtest1m); 
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%Generate Intrex Output using best weights and testing data 
[l1w, l1c, l2w, l2c, outw,outc]=expweights(weightout,L1N,L2N,size(intest,2)); 
[msetst1m, errortst, maxertst,outtst1m] = 

neurnet(intest1m,outtest1m,l1w,l1c,l2w,l2c,outw,outc,L1N,L2N); 
outtst1m= immnorm(outnormmat,outtst1m); 
%Get Actual intrex differential temperature 
outtstx1m = xlsread('Testing_Data_out_1min'); 
%Plot the testing output data vs the NN output with the best weights 
Figure('Name','Testing 1 min Verification','numbertitle','off','color','w') 
plot(outtstx1m,'g') 
hold on 
plot(outtst1m,'m') 

  
re=xlsread('regresscon'); 
regtest=transpose(intest1mx); 
regtest(21,:)=1; 
regout=re*regtest; 
plot(regout,'b'); 
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Appendix C – Neural Network Testing Results 

 

 

Test # Parents L2 Nodes Decay % Mut MSE STD Mean

1 225 (30%) 10 None(25%) 10 3.198 1.7866 -0.0837

2 225 (30%) 10 None(25%) 15 3.1486 1.7709 0.1161

3 225 (30%) 10 None(25%) 20 3.1458 1.7739 -0.0062

4 225 (30%) 10 Linear 10 2.9768 1.7256 0.0016

5 225 (30%) 10 Linear 15 2.8604 1.691 0.0429

6 225 (30%) 10 Linear 20 2.9528 1.7183 -0.0357

7 225 (30%) 10 Cosine 10 2.6875 1.6383 0.0666

8 225 (30%) 10 Cosine 15 3.0278 1.7385 0.0801

9 225 (30%) 10 Cosine 20 3.3537 1.8314 0.0272

10 225 (30%) 15 None(25%) 10 2.9695 1.708 -0.2309

11 225 (30%) 15 None(25%) 15 3.0335 1.742 0.0125

12 225 (30%) 15 None(25%) 20 3.0268 1.7395 -0.0447

13 225 (30%) 15 Linear 10 2.8601 1.6901 -0.0675

14 225 (30%) 15 Linear 15 3.094 1.7592 -0.0145

15 225 (30%) 15 Linear 20 3.2209 1.7946 -0.0389

16 225 (30%) 15 Cosine 10 2.496 1.5785 -0.0722

17 225 (30%) 15 Cosine 15 2.8213 1.6799 0.01114

18 225 (30%) 15 Cosine 20 3.2687 1.8083 0.000217

19 300 (40%) 10 None(25%) 10 3.3289 1.812 -0.2162

20 300 (40%) 10 None(25%) 15 3.3397 1.806 -0.2803

21 300 (40%) 10 None(25%) 20 3.1988 1.788 -0.0539

22 300 (40%) 10 Linear 10 2.9628 1.7173 -0.1206

23 300 (40%) 10 Linear 15 2.9203 1.7091 -0.0128

24 300 (40%) 10 Linear 20 3.1373 1.7715 -0.0109

25 300 (40%) 10 Cosine 10 2.7738 1.6657 -0.0096

26 300 (40%) 10 Cosine 15 2.9907 1.7301 0.0693

27 300 (40%) 10 Cosine 20 3.146 1.779 -0.0123

28 300 (40%) 15 None(25%) 10 3.1005 1.7554 -0.1417

29 300 (40%) 15 None(25%) 15 3.2298 1.7956 0.0823

30 300 (40%) 15 None(25%) 20 3.0855 1.7561 0.0521

31 300 (40%) 15 Linear 10 2.7674 1.6457 -0.245

32 300 (40%) 15 Linear 15 2.8389 1.6848 -0.0347

33 300 (40%) 15 Linear 20 3.048 1.7564 -0.0152

34 300 (40%) 15 Cosine 10 2.6993 1.6431 0.0233

35 300 (40%) 15 Cosine 15 3.0085 1.7348 -0.0092

36 300 (40%) 15 Cosine 20 2.9145 1.7073 -0.1385

All tests performed with a population of 750
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Appendix D – DCS Logic for Neural Network Model Predictive Controller Implementation 

D-1 DCS Timing Logic and Executive blocks 
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D-2 DCS Input Logic 

Intrex Cell AB Average Bed Temperature 
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Intrex Cell AA Average Bed Temperature 
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Intrex Upleg and Downleg Temperatures, Total Solid Fuel Flow 
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Intrex Cell A1, A2, and A3 Average Air Flows 
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Intrex Average Startup Channel, Downleg, and Upleg air flows 
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Average Furnace Freeboard, Heat input, Furnace Bed Temperature and Intrex Differential Temperature 
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Main Steam Flow, Furnace Bed Level, Primary Air Flow, Total Limestone Flow and Main Steam 
Temperature Deviation 
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D-3 DCS Neural Network Model Logic 

Model Verification and Control Neural Networks Layer 1 Node 1.  *Only the first node of the layer is 
shown since only the weights and constants differ for the remaining 19 nodes. 
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Model Verification Neural Network Layer 2 Node 1.  *Only the first node of the layer is shown since only 
the weights and constants differ for the remaining 14 nodes. 
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Control Verification Neural Network Layer 2 Node 1.  *Only the first node of the layer is shown since only 
the weights and constants differ for the remaining 14 nodes. 
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Model Verification Neural Network Output Node 
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Control Neural Network Output Node.   
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D-4 DCS Random Number Generation Logic 

Random Number Generator Rounding Constant Blocks 
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Random Number Generator 1.  *Only the first random number generator is shown since only the seed 
input and output connections differ for the other 4 random number generators.  
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Random Number Generator Seed Logic 
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D-5 DCS Optimization Logic 

Optimization Algorithm Air Flow Input Signal Normalization 
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Optimization Algorithm Controller Airflow Selection 
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Random Number Generator Output Signal Conversion to Air Flow Values 
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Optimization Algorithim Minimum/Maximim Controller Capability Air Flow Selection 
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Intrex Flush Logic and Controller Output Signal Conditioning 
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