N
UNF UNIVERSITY of . .
NORTH FLORIDA. UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

2013

Neural Network Based Control of Integrated
Recycle Heat Exchanger Superheaters in
Circulating Fluidized Bed Boilers

David D. Biruk
University of North Florida

Suggested Citation

Biruk, David D., "Neural Network Based Control of Integrated Recycle Heat Exchanger Superheaters in Circulating Fluidized Bed
Boilers" (2013). UNF Graduate Theses and Dissertations. 470.
https://digitalcommons.unf.edu/etd/470

This Master's Thesis is brought to you for free and open access by the

Student Scholarship at UNF Digital Commons. It has been accepted for \

inclusion in UNF Graduate Theses and Dissertations by an authorized

administrator of UNF Digital Commons. For more information, please UNF UNIVERSITY of
contact Digital Projects. NORTH FLORIDA.

© 2013 All Rights Reserved

http://digitalcommons.unf.edu
http://digitalcommons.unf.edu
https://digitalcommons.unf.edu
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu

NEURAL NETWORK BASED CONTROL OF INTEGRATED RECYCLE HEAT EXCHANGER SUPERHEATERS IN
CIRCULATING FLUIDIZED BED BOILERS
by
David D. Biruk

A thesis submitted to School of Engineering
in partial fulfillment of the requirements for the degree of
Master of Science in Electrical Engineering
UNIVERSITY OF NORTH FLORIDA
COLLEGE OF COMPUTING, ENGINEERING AND CONSTRUCTION
November 2013

The thesis of David Biruk is approved: (Date)

Dr. Chiu Choi

Dr. Daniel Cox

Dr. O. Patrick Kreidl

Accepted for the School of Engineering

Dr. Murat Tiryakioglu
Director of the School of Engineering

Accepted for the College of Computing, Engineering and Construction

Dr. Mark A. Tumeo
Dean of the College of Computing, Engineering and Construction

Accepted for the University

Dr. Len Roberson
Dean of the Graduate School

CONTENTS

LIST OF FIGURES. ...ttt ettt ettt teeee ettt ettt ee et et ee e et et ettt et e e e e et e ee e et st et et e e seseeeeeseeesenesenesenenesenenenenennns vi
LIST OF TABLES ...ttt ettt ettt eeeeee ettt e e e e e e et eeee et e e ee e e e e e e e et et ee e e et et st e e seseeeeeeeeeneneseeenenenesenenanenennns ix
ABSTRACT ...ttt ettt ettt et s bt s bt st e bt e bt e bt e e bt e she e s a et e a bt et e e bt e be e ebe e ehe e e ae e et e e bt e eheenheeeaneeabe e beenbeenes X
Chapter 1 : Introduction to the Circulating Fluidized Bed (CFB) BOIlEFcccccuveeeeciiieeeciee et 1
IO R O 3 - =T €4 o 10 o USSPt 1
1.2 CFB Steam generation and SUPEINEATcoccuiiii ittt e ebre e e e bre e e e eanes 2
RS 3 1 = o o Yo o N 3
1.4 Current Intrex Control coNfigUrationcoocuiiii it e e e 4
1.5 Organization Of ThESIS....cuuiiiiiiiiie ettt e et e e e st e e e s bte e e e sbteeessbtaeeessteeesssreeessnnes 6
Chapter 2 : Overview of the Neural Network Model Predictive Controllerccovvveeeeieiniciiiieeeeee s 9
2.1 System Considerations for Neural Network Model Predictive Controllersccccoeuveeiviciieneiinnennnn. 9
2.2 Neural Network Model Predictive CoONtrol SErUCTUIecoceeveeriiriieiicieeeeseeee e 11
Chapter 3 : Data Collection and Pre-ProCeSSINGccccccuiiieicciieeecccieee ettt e e ettt e et e e e eevee e e e evee e e e ereeeeeeanes 13
3.1 Data POINt SEIECHION ... ettt ettt e b e sbe e st e st et e be e bt e sbeesaeeeaeean 13
3.2 Dataset Reduction by StEPWISE REEIESSIONcccuiieiiiiiie e ettt ettt e et e e e e tae e e e bee e e e eateeas 17
3.3 Data NOMMAlZAtIONooueiieeeeetee ettt ettt e b e s he e st sttt b e b e ae e st et an 20
Chapter 4 : Neural Network MOAEIING........coo ittt e et e e et e e e e tae e e e ebte e e e eraeeaesanes 23
4.1 Neural NetWork MOdel STFUCTUIE ...c.eeiuiiiiieiieieeieetee sttt sttt sree s e e s 23
4.2 Neural Network Training AlgOrithmcooiiiiiiiicee e e e e e e 25
4.3 Neural Network Training and Testing Programs.........ccccuvieiicieeeiiciieeeeiieee e ecteeeesireeeeesreeeeessaraeeesnes 32
4.4 NeUral NETWOIK TESTING ..uveiiiciiee ittt ettt ette e e st e e e s e tre e e s ebt e e e s sbteeessstaeesesraeeesassaeeesnes 35

Chapter 5 : Controller Optimization AIOrithmc..oiiiiiiiii e 41

5.1 Optimization AlZOrithm OPerationcciicciiiiiiiie e e s ssbee e e e 41
5.2 Linear Congruential Random NUMber GENEIator.......cuviiieiieeiiiiiee ettt e e 43
Chapter 6 : Distributed Control System (DCS) INtEratioNnceevvciieeiiiiiee it e e 46
6.1 DCS Function Codes and LOZIC SErUCTUIEeiiiiiiiee ettt tae e e e rtre e e earae e s enrree s enreeas 46
6.2 DCS TimMing Signals and SCaN tiMB...ccccuiiii ettt et e e etee e e rtre e e e eabe e e s enbaee s enreeas 48
6.3 DCS Random NUMDBEr GENEIAtiONcccueiiuiiiiieiieeie ettt ettt st st sb e sae e saeeeaeeas 49
6.4 DCS Signal INpUtS and PrepProCESSINGuuiiicciieeeeeiieeeeciee e eette e e eetee e e e etee e e esbeeeeesteeeeesabeeesensseeesennsenas 52

6.5 DCS Minimum/Maximum Intrex Differential Temperature Airflow Verification Signal Selection ...54

6.6 DCS Control Airflow Verification Signal Selection.........cccoociviiiiciii i 55
6.7 DCS Neural Network Model LOZIC......ccuuiiiieiiiee ittt ettt e et e e e svee e e e e s snbeee e enneeas 56
6.8 DCS Intrex Differential Temperature Minimum/Maximum Capability Calculationscccveue... 62
6.9 DCS Control Optimizationeiiiceieee e e e e e e e rbe e e e e eabee e s e sabreeeennreeas 64
6.10 DCS Controller Output Signal SEIECTIONccciiiiiiee et e e 67
Chapter 7 : Testing and RESUILSuviiiieiiiie et et e et e e e et e e e e ebt e e e e sbteeeeebsaeeesnreeaesnnes 70
Chapter 8 Conclusions and Areas Of FULUIE WOIK........cccuiiiiiiiiie it ccceee ettt e ecvte e e e evtee e e enraeeeeanes 76
8.1 CONCIUSIONS .ttt ettt sttt ettt e s bt e s bt e sa e e e ab e e abeeabeesbeesaeesabeeabe e beebeenneesaeeensean 76
8.2 Areas Of FULUINE WOIK.....oouiiieiieeite ettt ettt e b e sbe e st e st et e e be e bt e sneesaeeeaeean 77
Appendix A - Minitab Stepwise Regression RESUILS........cccuiiiiiiiiiiiciiiie et 79
Appendix B — Matlab Code for Model DevelopmeENT........c.uueiiciiieiciiie ettt aree e s aaae e 83
B-1 Matlab Code to Calculate Neural Network Model QUtPUL.........ceeeciieeiiiiiie e 83

B-2 Matlab Code for Genetic Algorithm Population Generation........ccccueeieeiveeiiiiieeeeiiee e 84

B-3 Matlab Code for Data Normalization..........c.ceeiiiiiiieiiieene e 85
B-4 Matlab Code for Neural Network Model Training and TeStiNgcccvevveviveeiiiiieeeciiee e 86
Appendix C— Neural Network TeSting RESUILScccciiiiieiiee ettt e e e rnaee e 90
Appendix D — DCS Logic for Neural Network Model Predictive Controller Implementation 91
D-1 DCS Timing Logic and EXECULIVE DIOCKSccocuviiiieieee ettt 91
(D T @R [T o 10 e =4[92
D-3 DCS Neural NetWork MOl LOGICuveieecuiiieeeciiiee ettt ettt ectte e e e etee e e e etae e e eeaae e e eeanaeeeensaeeesnananeeean 99
D-4 DCS Random Number GeNneration LOZICuuiucvieieiiiieiieiiiee e ettt e esree e esvee e e sbee e s sivee e s nree e s saveeas 104
D-5 DCS OPLIMIZAtiON LOGIC .uuvvviereiiiiiiiiiieeeeeeeeeiiiitte et s s s erireree et e s s s ssibtreeeeesssssssbesaeeeessssssnsssneaeeesssnnas 107
21T o FTeT =4 =T o] o1 SRR 112
VT A et e sttt et e h e bt bt a et e et e R e bt b e e R et s R et e et e et e bt e e he e sheesaneeaneear e e neeres 115

LIST OF FIGURES

Figure 1-1 Steam Path OVEIVIEWcciccuiiiiiiiiieecciiee ettt ettt e st e e st e e e sstaeeessabaeeessnsaeeeenasseeesnnsreeenas 2
FISUIE 1-2 CFB HOt LOOP w.vtttiiiiiiiiiiiitiie ettt ettt e e e e ettt e e e e s sttt e e e e e e e saasbbeeeeesesssnnsenaaaeeesannas 4
Figure 1-3 Intrex Air flow CONTrol [aYOUL.........coiciiiiiecieee e et e e et e e e e e e e e e saaaeeeeas 5
Figure 1-4 Intrex Material Flow Top View (Left) and Side View (Right).......c.cccoeeiiieiiiiiiiccee e, 5
Figure 2-1 Model Predictive Controller BIOCK Diagramcececuiiieeciiiiee et e et e e 12
Figure 2-2 Neural NETWOTK NOGEuuiiieeecee et ettt e e e e abe e e e e are e e e e nneee e enreeas 12
Figure 3-1 Matlab Normilization FUNCHIONccccuiii ittt e et e et e e e e 21
Figure 3-2 Matlab Inverse Normalization FUNCLIONciiiiiiiiiiiiiccee et 22
Figure 4-1 Tan-Sigmoid Activation FUNCHIONc.uuiiiiiiiie e e ree e s 24
Figure 4-2 Matlab Code for Neural Network Model Simulation.........cccceeeciiiiiiciie e, 25
Figure 4-3 Genetic Algorithm FIOW Chartcooo ittt e e e 27
Figure 4-4 Genetic Algorithm Linear Mutation Decay FUNCLIONcoocviiiiiiiiie i 28
Figure 4-5 Genetic Algorithm Cosine Mutation Decay FUNCLION.ccceeieiiiiiecciiiee et 29
Figure 4-6 Genetic Algorithm Mutation FUNCLIONSeiiieiiiiee ettt e e e e e 30
Figure 4-7 Matlab Code for Genetic AlGOritNMcccuiiiiiiiieeee e e e et 31
Figure 4-8 Matlab Data Input and NOrmalizationcececuiieeeciiii e e et 32
Figure 4-9 Matlab Neural Network Model Structure and Genetic algorithm parameters.........cccoee.nn.eee. 33
Figure 4-10 Matlab Weight CONVEISION ...c....uviiiiiiieeciiee ettt ettt e e e tee e e e e e s s are e e s snbaeeesareeas 33
Figure 4-11 Matlab Neural Network Training Programceecccieieeiiieee e svee e e e 34
Figure 4-12 Model Output Error HiStOZramS........uuiiiiiiiiiieiiieee ettt e e s svee e e ve e e s ave e e e enbe e e e s areeas 37

Vi

Figure 4-13 Intrex Plant Differential Temperature vs. Intrex Model Differential Temperatures............... 38

Figure 4-14 Performance of Regression and Both Neural Network Modelsccocoeerieiniiiinieciiiennee. 40
Figure 4-15 Performance of Regression Model and Best Neural Network Modelccccoeveeeiniieenennneen. 40
Figure 5-1 Optimization Algorithm Block DIagramcoieciiiieeiiiiie ettt e e e 42
Figure 5-2 Linear Congruential Random Number Generator QULPUL........cccvveiiiiiiieeeiieee e, 44
Figure 5-3 Output From all 5 Random NUMbEr GENEratorsS.......ccceieeeciieeeeeiiee e e 45
Figure 6-1 DCS Logic Order Of OPeration.........ccucciieieiiiiie ettt esree e et e e et e e e e ate e e e e abe e e e enbeeeeenreeas 47
Figure 6-2 DCS Logic for tiMiNg SIZNAIScc..uiiiiieie et e e et e e e e e e e be e e e e enreeas 48
Figure 6-3 DCS Logic for Random Number Generator SEediNgccccveeivriiiiiiiiiiee e 50
Figure 6-4 DCS Logic for Random Number GENErationccceecueeiiiiiiiieniieeniee et 51
Figure 6-5 DCS Logic for Signal Input and PreproCesSiNg.........uuucuiiieiiiieieeiiiieeesiieeeescree e e ssreee e sseee s esveeas 53
Figure 6-6 DCS Logic for time delayed iNPULScc.eiiriieiiieiie ettt st st be e e 54

Figure 6-7 DCS Logic for Min/Max Intrex Differential Temperature Airflow Verification Signal Selection 55

Figure 6-8 DCS Control Airflow Verification Signal Selection...........coocciiiieciiei e 56
Figure 6-9 DCS Verification Neural Network Model Layer 1 NOde.........cecoecuiieeeeiiiiececieee e 57
Figure 6-10 DCS Control Neural Network Model Layer 1 NOde........ccccuiieeiiieieeciiiee et et 58
Figure 6-11 Verification Neural Network Model Layer 2 NOdeccoccvieeeciiieecccieee et 59
Figure 6-12 DCS Verification Neural Network Model Output NOde.........ccoocviiieiiiiieecciee e, 60
Figure 6-13 DCS Verification Neural Network Model Output NOdecccccvveiiiiiiieicciiee e, 61
Figure 6-14 DCS Calculation of the Airflow Values for Minimum Intrex Differential Temperature............ 63
Figure 6-15 DCS Calculation of the Airflow Values for Maximum Intrex Differential Temperature 64

Vii

Figure 6-16 DCS Controller Setpoint SEIECHIONuiviiiiiiice e 65

Figure 6-17 DCS Control Optimization LOGIC......cccuueiiiiiiiiiiiiiieeeiiiee et esree e stee e s sree e s e e s snre e e s sareeas 66
Figure 6-18 DCS Neural Network Controller On/Off LOZIC ...c.ecvuevieeiiieciierieesiie e cte et stee e 67
Figure 6-19 DCS INTreX FIUSN LOZIC...ccccuiiiiiiiee ettt e e st e e st e e et e e e e abe e e s e aree e s enbeeeeennreeas 68
Figure 6-20 DCS Neural Network Controller Output to Plant LOIC.......cceeeecuiveiiiiiiieceieee e 69
Figure 7-1 Intrex Differential Temperature vs. Verification Neural Network Model Output..................... 71
Figure 7-2 Neural Network Control Min/Max Capabilities vs. Intrex Differential Temperature................ 71
Figure 7-3 Intrex Differential temperature vs. Controller Model Output and Optimized Air Flows 72

Figure 7-4 Intrex Differential Temperature vs. Controller Model Output and Optimized Air Flows with

Controller Setpoint near The Edge of The Controllable RaNge........coooccuiiieeeiiiiicciieeee e 73
Figure 7-5 Neural Network Model Predictive Controller Step RESPONSEueevvvviiieiiiiiee e 74
Figure 7-6 Neural Network Model Predictive Controller magnified Step Responsecccccceeeevcveeeennneen. 75

viii

LIST OF TABLES

Table 3-1 Initial Data POINT SETcoiiiieie ettt ettt e bt e e s e sbee e sateesbeeesanes 14
Table 3-2 Data Points with Averages and Delays........ccuuiiiviiiiieiiiiieeeritee et erree e see e sree e s ree e s 16
Table 3-3 Reduced Dataset from StEPWISE REZIESSION ...ccccuviiieiiiiiie ettt 19
Table 4-1 Neural Network Testing ParameEters.......cccucuieeeiciieee et e et eeree e e eree e e e ire e e e e sabe e e s e enbaee e eneeeas 35
Table 4-2 Neural Network Genetic Algorithm Parameter Performancecccoccvvveecciieeecciiee e, 35
Table 4-3 Neural Network Results with Varied Hidden Layer NOdEScccueeeeciieeecciieeeecieee e 36
Table 4-4 Model Error PEICENTAZESuuvieiiiiieeeciieeeecttee e ettt e e e ette e e esateeeesbteeeeeareeeeestesesastaeesannteneeennsenas 36
Table 4-5 MSE and R* Values for Regression and NN MOEISoceueeiereeiieeeeieieeeseeeeseeeeseseeeeeeseens 38
Table 5-1 Optimization Algorithm Min/MaxX ValUESccueeieiieeiiieieesieesee e ete e ereesve e e saveeveereeres 45

ABSTRACT

The focus of this thesis is the development and implementation of a neural network model predictive
controller to be used for controlling the integrated recycle heat exchanger (Intrex) in a 300MW
circulating fluidized bed (CFB) boiler. Discussion of the development of the controller will include data
collection and preprocessing, controller design and controller tuning. The controller will be
programmed directly into the plant distributed control system (DCS) and does not require the

continuous use of any third party software.

The intrexes serve as the loop seal in the CFB as well as intermediate and finishing superheaters. Heat is
transferred to the steam in the intrex superheaters from the circulating ash which can vary in
consistency, quantity and quality. Fuel composition can have a large impact on the ash quality and in
turn, on intrex performance. Variations in MW load and airflow settings will also impact intrex
performance due to their impact on the quantity of ash circulating in the CFB. Insufficient intrex heat
transfer will result in low main steam temperature while excessive heat transfer will result in high

superheat attemperator sprays and/or loss of unit efficiency.

This controller will automatically adjust to optimize intrex ash flow to compensate for changes in the
other ash properties by controlling intrex air flows. The controller will allow the operator to enter a
target intrex steam temperature increase which will cause all of the intrex air flows to adjust
simultaneously to achieve the target temperature. The result will be stable main steam temperature

and in turn stable and reliable operation of the CFB.

Chapter 1 : Introduction to the Circulating Fluidized Bed (CFB) Boiler

1.1 CFB Background

In the power generation industry, the circulating fluidized bed boiler (CFB) is a relatively new technology
when compared with boilers traditionally used for power generation. Fluidized bed boilers were
adapted to burn petroleum coke and coal mining waste in the US in the early 1980’s. Due to the ability
to burn inexpensive renewable and “waste” fuels while maintaining lower emissions than standard
pulverized coal units, the demand for CFB boilers has increased. As demand increased for CFB’s, so has
the size of the CFB. When the CFB'’s at JEA’s Northside Generating Station were built in the early 2000’s
they were the largest in the world at 297MW each. By 2009 the world’s largest CFB was 460 MW.

Today units are available at over 600MW. (1)

The JEA owned Foster Wheeler CFB’s that are the topic of this research were built as part of a
demonstration project with a partnership between the US Department of Energy and JEA. (2) They have
gone through years of modifications and process improvements. The process and control improvements
made to the existing system eliminated the need for costly modifications to the intrexes. (3) (4) As new
CFB’s are designed and constructed, CFB manufacturers continue to modify designs to try to improve
performance while at the same time boiler owners work to do the same to existing units. This project

applies advanced controls to further improve the performance of the CFB.

1.2 CFB Steam generation and superheat

In a CFB boiler, feedwater enters the boiler drum located on top of the boiler. The water exits the boiler
drum and moves into the water wall tubes that surround the combustor. As the water is heated in
these tubes it turns to steam and enters the top of the boiler drum. This area of the boiler is the steam

generating section.

Steam leaves the boiler drum and is heated to higher temperatures in the cyclones and superheat
sections of the boiler. The superheat sections add superheat to the steam before it is sent to the
turbine. The boiler that is the focus of this project has a primary superheater (PSH) with an outlet
temperature between 750 and 800 degrees F followed by three intrex superheaters. Steam leaving the
last intrex superheater moves to the high pressure section of the steam turbine with a steam
temperature of 1000F. This temperature is controlled by attemperating the steam using feedwater
between the primary superheater and first intrex and between the second and third intrex. An overview

of the steam path can be seen in Figure 1-1.

Steam
600F-630F
Feedwater for
Drum Attemperation
Cyclone,
Combustor HEA
PSH
Intrex Intrex Intrex Malir?OSﬂeFam
c B A to Turbine

Figure 1-1 Steam Path Overview

If the steam picks up too much superheat, more feedwater is needed for attemperation. Overheating
the Intrex tubes and/or excessive attemperator spray has the potential to cause metallurgical problems.
If the attemperator is not able to keep the steam temperature down to 1000F, there is loss of turbine
efficiency and potential to damage the steam turbine from overheating. If the intrexes do not pick up
enough heat there is potential for water induction into the turbine which would also cause damage.

Any deviation in main steam temperature from 1000F will impact turbine efficiency.

1.3 CFB Hot Loop

In a CFB, fuel and air are added to the combustor. The fuel mixes with bed material at the bottom of the
combustor where it is fluidized by air nozzles in the floor of the boiler. Limestone is also added to the
boiler combustion process in order to control SO, production and to act as additional bed material. The
combination of fuel, ash, and limestone makes up the bed material. Some of the smaller bed material
moves up through the combustor and out through the top with the boiler gas. It enters the cyclones

where the heavier bed material falls out of the boiler gasses and enters the top of the intrex.

Bed materials move through the intrex and back to the combustor. The intrex provides the seal in the
loop between the higher pressure combustor and the lower pressure cyclones. The tubes in the intrex
have direct contact with the bed material and heat is absorbed from the bed material through the tubes

into the main steam. This cycle is shown with the red arrows in Figure 1-2.

Heat
Recover
@ ,7 Area ’
Combustor
e — Cyclone
A
Secondary Secondary -
AirN Air
Fuel and
Fuel and Secor_'ndary
Secondary o A/
\ / Intrex
\ Intrex and Bed Material =
Seal Pot Hot G
Air ot Gas

Primary ﬁ D
Air
Figure 1-2 CFB Hot Loop

1.4 Current Intrex Control configuration

Many factors can impact the steam temperature increase through the intrexes including steam flow and
the temperature of the bed material as well as the manner in which bed material moves through the
intrexes. The intrex air flow controls can be used to change the flow of bed material through the
intrexes. Each section of the intrex has an independent air flow control damper. These sections can be

seen in Figure 1-3.

Using the airflow controls to move more bed material through the intrex tubes will result in more heat
being added to the steam. Using the airflow controls to move more material through the bypass
channel will result in less heat being added to the steam. The red arrows in Figure 1-4 show the flow of

material through the tubes in an intrex superheater and the orange arrows show the bypass flow.

4

Return
Channel

Up Leg
Air FLow

Cell AA1 Air Flow

Cell AA2 Air Flow

Cell AA3 Air Flow

Startup Channel A Air Flow

Return
Channel

Cell AB1 Air Flow

Cell AB2 Air Flow

Cell AB3 Air Flow

Startup Channel B Air Flow

Figure 1-3 Intrex Air flow control layout

Return

Channel

Bypass

Return

Channel

Return
Channel

Figure 1-4 Intrex Material Flow Top View (Left) and Side View (Right)

In the previous control configuration the intrex air flows were set depending on unit MW load only so at
a certain load the intrex air flows would be the same regardless of other boiler parameters. In this
configuration, the steam passing through the intrexes can pick up too much superheat under certain
boiler conditions. In some instances the attemperator cannot provide enough attemperation spray to
keep steam temperature down to 1000F even when spraying the maximum amount of possible
feedwater. This increases the potential for damage to the intrexs and turbine while at the same time
reducing efficiency. There can also be times when the intrexes pick up too little superheat which can

result in low main steam temperature and the potential for turbine water induction.

The rate at which the material moves through the intrexes is also an important factor. If the material
does not move through the intrexes quickly enough, material will back up into the cyclone and it will
plug. Once the cyclone plugs, the circulation of material through the hot loop will stop. Without proper
hot loop flow, the boiler will not operate and will be forced to come off line. It is not uncommon for the
operator to place the intrex air flow controls in manual and adjust them to try to move more ash
through the intrexes if they have indications that the cyclones are plugging. This often has a negative
impact on intrex heat transfer but enables the unit to continue to operate. The ideal intrex control

system would provide intrex heat transfer control while preventing cyclone plugging.

1.5 Organization of Thesis

This Thesis will provide a solution to the current intrex control problems using a multiple input neural
network model predictive controller. Other types of advanced controllers have been successfully
applied to CFB boiler control applications. (5) Neural Networks have been utilized in the past for

modeling and predicting CFB boiler operations. (6) The controller that is the topic of this Thesis will

maintain intrex differential temperature to stabilize main steam temperature and allow the operator to
control how much superheat is added to the main steam in the intrex. In order to accomplish this, the
model will use inputs from the plant along with air flows generated by an optimization algorithm to
determine how to adjust the intrex air flows to compensate for changes in the properties of the bed

material.

There are many considerations to be made when considering the application of a neural network model
predictive controller. These considerations along with the general structure of the neural network
model predictive controller will be discussed in detail in chapter 2. Many of the considerations revolve
around the data that will be used for modeling. Chapter 3 will discuss data collection and preprocessing.
The discussion on preprocessing will include data point selection, data set reduction, and data

normalization.

A detailed discussion of the development of the neural network model specific to this thesis takes place
in chapter 4. The structure of the neural network, discussed briefly in chapter 2, is selected through
testing from two different structures. A genetic algorithm that uses the data selected in chapter 3 to
tune the neural network is discussed in detail along with various parameters of the genetic algorithm
that are tested in an attempt to find those which provide optimal tuning of the neural network. Genetic

algorithms have been successfully implemented in a wide range of controls applications. (7) (8)

The development and structure of the controller optimization algorithm is discussed in chapter 5. The
optimization algorithm includes a linear congruential random number generator for generating random
airflows that are applied to the controller’s neural network model to determine the optimum air flow

setting for the current boiler parameters. The optimization algorithm and neural network model

developed in chapter 4 are programmed directly into the plant distributed control system (DCS). The

implementation of the controller into the DCS is discussed in chapter 6.

The results of the controller implementation, shown in chapter 7, verify the ability of the neural network
model predictive controller to successfully use the intrex air flow to control intrex differential
temperature which will result in stable main steam temperature. Conclusions of this Thesis are
discussed in chapter 8 along with opportunities for future research that may improve this application as

well as opportunities for additional applications of this research to other areas of CFB control.

Chapter 2 : Overview of the Neural Network Model Predictive Controller
2.1 System Considerations for Neural Network Model Predictive Controllers

When considering a system for neural network control, there are many considerations to be made.
Most processes can be controlled by much simpler, traditional methods. Systems that can be accurately
mathematically modeled using well-established physics based relationships may not always benefit from
a neural network model which is empirical in nature and requires training data to generate. (9) In order
to successfully implement a neural network model predictive controller one must consider:

System Complexity
Process Knowledge

Reliability and Repeatability of Instrumentation

1

2

3

4. Data availability
5. Process Control Requirements
6

Resources available for controller implementation

For systems that require only single input-single output PID controllers, an intelligent neural network
control system would not likely be necessary. (10) Neural network controllers are ideal for complex,
multiple input, multiple output systems. The neural network controller can adjust many parameters
simultaneously to reach a desired output. In order to control the heat transferred to the steam in the
intrex, 10 air control dampers are controlled simultaneously by 5 different controller outputs.

Numerous other boiler parameters will be used to model the intrex heat transfer.

Process knowledge is the starting off point for the neural network design. One of the advantages of a
neural network controller is that the physics of the process do not need to be completely understood to
design a neural network controller (11) (12). The neural network will “learn” how the system works by
using training data. Knowing what process parameters impact the variable that will be controlled by the
neural network can reduce unnecessary inputs and reduce system complexity. The list can start out
large and then be reduced by analyzing the relationships between collected data. For the intrex, testing
has shown that manipulating the intrex airflows has the ability to impact intrex heat transfer. In
addition to the intrex air flows, there are dozens of other boiler parameters believed to impact intrex

heat transfer.

Process parameters that are deemed important must have reliable and repeatable instrumentation.
Unreliable instrumentation will make neural network model tuning difficult and can cause the controller
model to incorrectly predict the results of control changes. Averaging values from redundant
instruments can increase the availability of the network by reducing the possibility of failure from a
single instrument failure. In the intrexes, both sides measure the same parameters and past experience
along with historical data has shown that when all instrumentations and controls are working properly,

the instrumentation from each of the two sides can be considered redundant and averaged.

For optimal neural network training, data should be available for all operating conditions. (9) If data is
not available for all operating conditions, testing and data collection should be performed to expand the
data set. Similar quantities of data should be available for all operating conditions as too much data at
limited operating conditions will cause the network to be over trained for those conditions causing poor

performance under other operating conditions (9).

10

Different processes can have very different control requirements. The response of the process to
controls changes will have a large impact on the control scheme. The CFB has approximately a five
minute lag from the time the fuel is changed to the time the MW output changes. Air flow changes in
the intrex will have a much more immediate impact. In the case of the intrexes, there is not a desire to
have the steam temperature change quickly but rather to be able to maintain it to a set temperature
when other boiler parameters change. Having a system that doesn’t require a fast response allows for a

controller that has a slower response.

Using a predictive controller to control a process can require much more computing resources than a
traditional PID controller as typical DCS systems have a single logic block to handle PID controls but can
require the combinations of dozens to hundreds of logic blocks to implement a model predictive
controller. (13) The speed at which the controller has to respond has a direct impact on the amount of
required computing resources. For slower processes the computing does not have to happen as rapidly
and less computing resources are needed. The requirements for the intrex are such that the controller
can be programmed directly into the DCS controller without the use of external computing resources.
This eliminates the need for additional communication interfaces between the DCS and a dedicated
neural network machine and also eliminates the need for the continuous use of third party neural

network software.

2.2 Neural Network Model Predictive Control Structure

The neural network controller for this project will be a model predictive controller. The controller
structure will consist of a neural network model of the intrex and a predictive controller that will apply

air flow inputs to the model and compare the model output error to the current output error. If the

11

applied airflows result in a lower error than those currently applied to the live plant, the airflows from
the predictive controller will be applied to the live plant. The block diagram for the neural network

model predictive controller can be seen in Figure 2-1.

Plant Plant
Paramers
Intrex NN Model
Model Output Error
Predictive Test Air Flow
Controller Set Point
Optimization _
Algorithm Output Air Flow
Intrex

Figure 2-1 Model Predictive Controller Block Diagram

The neural network structure will consist of multiple nodes and layers. Each node will have multiple
inputs multiplied by weights and then summed together with a constant. The output of the summation
will be applied to an activation function. The outputs from the first layer will serve as the inputs to the

next layer. The structure of the neural network node can be seen in Figure 2-2.

Input 1
Input 2 -
Activation
Input 3 Function
S Output

Input n

Figure 2-2 Neural Network Node

12

Chapter 3 : Data Collection and Pre-Processing

As discussed in Chapter 2, good data is essential for the design of a neural network model. (9)
Insufficient data can result in poor performance and excessive data will require excessive computing
resources to implement. The first step in creating a neural network controller is a good data collection
and preprocessing plan. The focus of this project is the A intrex. The main steam is supplied to the high
pressure turbine from the outlet of the A intrex. Because of this, controlling the A intrex steam

temperature increase has the greatest potential for a positive impact on main steam temperature.

3.1 Data Point Selection

In order to model the intrex, the properties of the steam and bed material passing through it must be
determined. Some of these properties either have a direct measurement or another measurement with
a direct relationship where others do not. There are however many measurements that can be

combined to determine parameters without direct measurements or direct relationships.

Data was collected from the plant information (Pl) system using the Pl Datalink software add on for
Microsoft Excel. Data was not collected from failed redundant instruments. Data was collected for the
time period from March — August 2013 in five minute intervals. Periods of operation below 178MW
were excluded from the dataset as those are outside the range of normal unit operation. A list of the

collected points can be seen in Table 3.1.

13

Table 3-1 Initial Data Point Set

Tag Name

Description

PS:N1:NO1SI34TE821

Intrex Cell AB temperature 1

PS:N1:NO1SI34TE822

Intrex Cell AB temperature 2

PS:N1:NO1SI34TE824

Intrex Cell AB temperature 3

PS:N1:NO1SI34TE825

Intrex Cell AB temperature 4

PS:N1:NO1SI34TE827

Intrex Cell AB temperature 5

PS:N1:NO1SI34TE828

Intrex Cell AB temperature 6

PS:N1:NO1SI34TE805

Intrex Cell AA temperature 1

PS:N1:NO1SI34TE806

Intrex Cell AA temperature 2

PS:N1:NO1SI34TE807

Intrex Cell AA temperature 3

PS:N1:NO1SI34TE808

Intrex Cell AA temperature 4

PS:N1:NO1SI34TE809

Intrex Cell AA temperature 5

PS:N1:NO1SI34TE810

Intrex Cell AA temperature 6

PS:N1:NO1SI34TE811

Intrex Cell AA temperature 7

PS:N1:NO1SI34TE812

Intrex Cell AA temperature 8

PS:N1:NO1SI34TE861

Intrex Downleg Temperature

PS:N1:NO1SI34TE850

Intrex Upleg Temperature 1

PS:N1:NO1SI34TE851

Intrex Upleg Temperature 2

PS:N1:NO1SI34TE483

Intrex Return Temperature A

PS:N1:NO1SI34TE484

Intrex Return Temperature B

PS:N1:1SI34FI800A

Intrex Cell AB1 Air Flow

PS:N1:1SI134FI800B

Intrex Cell AB2 Air Flow

PS:N1:1SI34FI800C

Intrex Cell AB3 Air Flow

PS:N1:1SI34FI816A

Intrex Cell AA1 Air Flow

PS:N1:1SI34FI816B

Intrex Cell AA2 Air Flow

PS:N1:1SI34F1816C

Intrex Cell AA3 Air Flow

PS:N1:1FSHSPFL_A

Intrex Startup Channel Air Flow A

PS:N1:1FSHSPFL_B

Intrex Startup Channel Air Flow B

PS:N1:1FSHDFL

Intrex Downleg Air Flow

PS:N1:1FSHSPUPG_FL

Intrex Upleg Air Flow

PS:N1:NO1SI34TE537

Main Steam Temperature to intrex A A

PS:N1:NO1SI34TE538

Main Steam Temperature to intrex A B

PS:N1:1AVGBEDDP

Average Furnace Bed Pressure

PS:N1:NO1BB34PT422

Furnace Freeboard Pressure 1

PS:N1:NO1BB34PT472

Furnace Freeboard Pressure 2

PS:N1:NO1BB34PT482

Furnace Freeboard Pressure 3

PS:N1:1TOTPAFLOW

Total Primary Air Flow

PS:N1:1TOTAIRFLOW

Total Air Flow

PS:N1:1SOLIDFUELFLW

Total Solid Fuel Flow

PS:N1:N01GG34JT003

Total Unit Megawatt Load

PS:N1:1FNHEATIN

Total Heat Input

PS:N1:1AVGFBTMP

Average Furnace Bed Temperature

PS:N1:1TOTALLIME

Total limestone flow

PS:N1:1SF_KLB_H

Main steam flow

PS:N1:1INTRXADIF_TMP

Intrex A Differential Steam Temperature

14

The original data points were believed to have an impact on intrex performance based on process
knowledge and past experience. Additional process knowledge was used to reduce the data set. The
two intrex cells each contain nine thermocouples. All of the measurements in each cell were averaged
together to reduce those data points from 18 points to two. This not only reduces data points but also
reduces the potential for a single instrument failure causing the neural network model to malfunction.
If one of the instruments malfunctions, the control system will remove it from the average and the

model will continue to function properly. The two upleg temperatures were also averaged together.

There is no desire to control the two sides of the intrex differently so controls on either side of the intrex
can be averaged together. This was done for the intrex cell air flows, intrex startup channel air flows,
and intrex return temperatures. Other parameters outside of the intrex can also be averaged such as

redundant thermocouples and Furnace Freeboard Pressure.

Not all of the boiler parameters that are outside of the intrex have an immediate impact on intrex
performance. Five minute time delays were also included for some of the parameters outside of the
intrex to attempt to capture any delayed impact to intrex performance. The data set with averaged

points and five minute delays included can be seen in Table 3-2.

15

Table 3-2 Data Points with Averages and Delays

Parameter Description Included Tags

Avg A1 AF Intrex Average Al Air Flow PS:N1:1SI34FI800A, PS:N1:1SI34FI816A
Avg A2 AF Intrex Average A2 Air Flow PS:N1:1S134FI800B, PS:N1:1SI134FI816B
Avg A3 AF Intrex Average A3 Air Flow PS:N1:1SI34FI800C, PS:N1:1SI34FI816C
Avg SUC AF Intrex Average Startup PS:N1:1FSHSPFL_A, PS:N1:1FSHSPFL_B

Channel Air Flow
DNLG AF Intrex Downleg Air Flow PS:N1:1FSHDFL
UPLG AF Intrex Upleg Air Flow

PS:N1:1FSHSPUPG_FL

Cell AB Ave Temp

Intrex Average Cell AB
Temperature

PS:N1:NO1SI34TE821, PS:N1:NO1SI34TE822,
PS:N1:NO1SI34TE824, PS:N1:NO1SI34TE825,
PS:N1:NO1SI34TE827, PS:N1:NO1SI34TE828

Cell AA Ave Temp

Intrex Average Cell AA
Temperature

PS:N1:NO1SI34TE805, PS:N1:NO1SI34TE806,
PS:N1:NO1SI34TE807, PS:N1:NO1SI34TE80S,
PS:N1:NO1SI34TE809, PS:N1:NO1SI34TE810,
PS:N1:NO1SI34TE811, PS:N1:NO1SI34TE812

DNLG Temp Intrex Downleg Temperature PS:N1:NO1SI34TE861
UPLEG TEMP Intrex Upleg Temperature PS:N1:NO1SI34TE850, PS:N1:NO1SI34TE851
Avg RTN TE Intrex Average Return
Temperature PS:N1:NO1SI34TE483, PS:N1:NO1SI34TE484
STM IN TE Intrex Steam Inlet PS:N1:NO1SI34TE537, PS:N1:NO1SI34TE538
Temperature
AVG BED Average Furnace Bed Pressure PS:N1:1AVGBEDDP
AVG FB Average Furnace Freeboard PS:N1:N0O1BB34PT422, PS:N1:NO1BB34PT472,
PS:N1:NO1BB34PT482
Total PA Total Primary Air Flow PS:N1:17TOTPAFLOW
TOT AIR Total Secondary Air Flow PS:N1:1TOTAIRFLOW
TOT FUEL Total Solid Fuel Flow PS:N1:1SOLIDFUELFLW
MW Total unit Megawatt Load PS:N1:N01GG34JT003
Heat in Total Unit Heat Input PS:N1:1FNHEATIN
AVG FB Temp Average Furnace Bed

Temperature

PS:N1:1AVGFBTMP

Limestne Flow

Limestone Flow

PS:N1:1TOTALLIME

Steam Flow

Main Steam Flow

PS:N1:1SF_KLB_H

Main stm deviation

Main Steam Temperature
Deviation from 1000F

PS:N1:1INTRXADIF_TMP, STM IN TE

intrex a TEMP Intrex A Steam Temperature
INCREASE Increase PS:N1:1INTRXADIF_TMP
TOT FUEL -5 Total Fuel Flow with 5 minute PS:N1:1SOLIDFUELFLW
lag
Limestne Flow -5 Total Limestone Flow with 5
minute lag PS:N1:1TOTALLIME

16

3.2 Dataset Reduction by Stepwise Regression

In order to reduce the complexity of the model the original data set can be reduced to eliminate
unnecessary variables. Stepwise regression was selected for dataset reduction. Stepwise regression is a

collection of related methods that are designed to work effectively with large data sets. (14)

Regression analysis is used to explore the statistical relationships between variables. Linear regression
attempts to find a line of the form y=mx+b that is the best fit of the relationship between the variables.
When linear regression is used to model a relationship between two variables, the ability of the model
to account for the variability in the relationship is called the coefficient of determination (R?). In order
to calculate the R? value, the error sum of squares and total sum of squares are needed. The error sum
of squares is calculated by squaring and summing the differences between the actual output values (y;)
and the predicted model output values (V;) as seen in equation 3-1. The total sum of squares is the
measure of the total variability in the response and is calculated from equation 3-2. The ratio of SS; to
SSt is the proportion of variability in the relationship between the variables that cannot be accounted
for by the regression model. By subtracting this number from 1, the proportion of variability in the
relationship between the variables that can be accounted for by the regression model can be calculated.
The R? value can be calculated from equation 3-3. The closer the R*value is to 1, the more accurate the

regression model is. (14)

Equation 3-1: Error Sum of Squares

n
$S5 =) i =9
i=1

17

Equation 3-2: Total Sum of Squares

n
SSr =) =7
i=1

Equation 3-3: Coefficient of Determination (R?)

RZ=1-—
SSr

The relevance of the inputs to a regression model can be determined through hypothesis testing. In the
case of the regression model, the null hypothesis Hy would be that the regression coefficient for a given
input would equal to zero. If the null hypothesis is rejected, the alternate hypothesis, the regression
coefficient is not equal to zero, would be accepted. In order to determine whether or not to reject the
null hypothesis, the P-value is used. The P-value is the probability that the test statistic will take on a
value that is at least as extreme as the observed value of the statistic when the null hypothesis is true. A
typical cutoff value for the P-value, referred to as a, is 0.05. This can be interpreted as meaning that
there is only a 5% chance that the null hypothesis is true or a 95% chance that the null hypothesis is

false. (14)

In order to perform the stepwise regression for data selection, data was needed for varying operating
conditions. Testing was performed for one week at which time the intrex airflows were adjusted to
values that they are not normally operated at. In addition to collecting the data from the test period,
points were taken from the standard operating condition data collected from March through August and
added to the dataset. The combined dataset was loaded into Minitab 16 statistical analysis software for

the purposes of performing a stepwise regression to reduce the size of the data set.

18

The stepwise regression tool in Minitab allows the user to select which data is the response and which
data to use to attempt to predict that response. It also allows the user to select predictors to be used in
every model. For the purposes of this project, the intrex air flows are included in every model since they
are going to be the means of control. With the stepwise regression function, Minitab will automatically
add/remove the other predictors from the model based on the P-value calculated for each predictor.

Minitab allows for the user to set the a value and also allows for the stepwise regression to be

performed by adding predictors, removing predictors, or both. The analysis of the intrex data set was

performed using an a of 0.05 to add or remove predictors and with both the add and remove function

active. This allowed for a reduction of the dataset from 25 variables to 20 variables which can be seen in

Table 3-3.
Table 3-3 Reduced Dataset from Stepwise Regression
Description Regression

Parameter Coefficient P-Value
Constant Regression Constant 805.1 N/A
Avg Al AF Intrex Average Al Air Flow 0.00128 0.000
Avg A2 AF Intrex Average A2 Air Flow -0.00084 0.001
Avg A3 AF Intrex Average A3 Air Flow 0.001 0.000
Avg SUC AF Intrex Average Startup Channel Air Flow 0.0004 0.000
DNLG AF Intrex Downleg Air Flow 0.00082 0.011
UPLG AF Intrex Upleg Air Flow -0.0001 0.013
Cell AB Ave Temp Intrex Average Cell AB Temperature 0.0284 0.000
Cell AA Ave Temp Intrex Average Cell AA Temperature 0.0154 0.000
DNLG Temp Intrex Downleg Temperature -0.0049 0.02
UPLEG TEMP Intrex Upleg Temperature 0.014 0.000
STM IN TE Intrex Steam Inlet Temperature -0.8355 0.000
AVG BED Average Furnace Bed Pressure 0.032 0.027
AVG FB Average Furnace Freeboard -0.324 0.000
Total PA Total Primary Air Flow 0.00557 0.000
Heat in Total Unit Heat Input -0.00482 0.000
AVG FB Temp Average Furnace Bed Temperature -0.0081 0.000
Limestne Flow Limestone Flow -0.0092 0.000
Steam Flow Main Steam Flow -0.0118 0.000
Main stm deviation Main Steam Temperature Deviation from 1000F 0.592 0.000
TOT FUEL -5 Total Limestone Flow with 5 minute lag 0.0148 0.033

19

The stepwise regression output from Minitab predicts an R value of 92.30% with the predictors from
Table 3-3. The complete output file from Minitab can be seen in Appendix A. By multiplying each
variable by the associated coefficient from Table 3-3 and then adding the constant from the Table, the
regression model output of the intrex differential temperature can be calculated. The regression model

output equation can be seen in equation 3-4.

Equation 3-4: Regression Model Output

20

Intrex DT = 805.1 + Z(Parameteri X Coef ficient;)
i=1

The regression model will serve as the baseline for model performance. The goal is to find a better
model of the system using a neural network than that found by using the regression. In order to verify
model performance, the mean squared error (MSE) and the coefficient of determination (R?) will be

calculated.
3.3 Data normalization

Before the data can be used to for neural network modeling, it must be normalized. (15) Normalization
of the data effectively removes the units from the data by rescaling all of the variables to the same
scale. In theory, data normalization is not necessary as the model tuning should tune out the scales. In
reality, if the data is not normalized and the variables are on varying scales, the model will take a long
time to tune and is more likely to get stuck in a local minimum in the error surface. Tuning weights for
variables with contrasting ranges can be challenging. This will also degrade the performance any

dynamic tuning algorithms. (15)

20

Normalization can mean different things from rescaling variables in a data set to have the same scale
(vector length) to transforming data to be zero mean with a standard deviation of one. The variables for

this project will be normalized to be zero mean with a standard deviation of one.

To perform the normalization, the mean and standard deviation are required for each variable in the
data set. The mean for each variable is subtracted from that variable and the result is divided by the

standard deviation for that variable as seen in equation 3-5. In statistics this is also called standardizing.

Equation 3-5: Normalization

X, — X
o

Normalized X; =

The mean and standard deviation were calculated for each variable in the data set. It is important to
note that if new data are added to the existing data set that these values may need to be updated.
Matlab programs were written to automatically normalize and un-normalize the data set. The Matlab
programs written for the normalization and inverse normalization can be seen in Figures 3-1 and 3-2

respectively.

function [normdatal= mmnorm(normmat,data)

% This function will take in data and an associated normalization matrix

% (normmat)containing the mean and standard deviation of the data set

% and perform normalization. The normalized data will be returned.

normdata = zeros(size(data,l),size(data,?2)):; $Initialize the matrix

x=normmat (1, :); %Get mean for each variable

y=normmat (2, :); %Get SD for each variable

parfor i=l:size(data,2) %$Normalize the data
normdata (:,1i) = ((data(:,1)-x(1)))/y(i);

end

end

Figure 3-1 Matlab Normilization Function

21

function [normdatal= immnorm (normmat,data)

This function will take in data and an associated normalization matrix
(normmat) containg the mean and standard deviation of the data set and

o® o° o°

perform inverse normalization. The un-normalized data will be returned.
normdata = zeros (size(data,l),size(data,2)); %$Initialize the matrix
x=normmat (1, :); %$Get mean for each
variable
y=normmat (2, :) ; %Get SD for each variable
parfor i=l:size(data,2) %$Un-Normalize the data

normdata(:,1) = ((data(:,1)*y(i)))+x (i)

end
end

Figure 3-2 Matlab Inverse Normalization Function

22

Chapter 4 : Neural Network Modeling

When designing the neural network model, there are many considerations to be made. The number of
input variables was previously determined by stepwise regression and the number of output variables is
already known to be one. The number of layers, number of nodes in each layer, and the activation

function need to be determined. The method for training the neural network must also be determined.

4.1 Neural Network Model Structure

Neural Networks with one hidden layer are considered universal approximators according to the 1989
paper written by Hornik, Stinchcombe, and White. (16) This means that in most cases a system can be
successfully modeled with only one hidden layer. The model for this project will use one hidden layer

with an input and output layer.

The number of input layer nodes typically matches the number of input variables which will be the case
for this project. The number of output nodes is set by the number of model outputs which in this case is
one. Many “rules of thumb” exist for determining the number of hidden layer nodes, one being that the
number of hidden layer nodes is typically between the number of input and output nodes. (17) (18)In
reality, the ideal number of nodes in the hidden layer is dependent on the system the model is based on
and the “rules of thumb” are a starting point. (19) (18) This project will use testing to select the number

of hidden layer nodes.

23

The output of each node in the neural network with the exception of the node in the output layer will be
applied to an activation function. There are many types of activation functions that are commonly used.
If a linear activation function is used, the neural network acts as a combination of linear regressions with

each node representing a single regression.

Activation functions for neural networks are typically a form of sigmoid function. The sigmoid functions
are non-linear “S” shaped functions that limit the output value of the node. (20) The sigmoid function
also enables the network to model non-linear functions. For the Intrex Neural Network model, it is
desired to have the output of the transfer function for each node fall between 1 and -1. This would
typically be done with a tan-sigmoid activation function. The shape of the tan-sigmoid activation

function can be seen in Figure 4-1.

0.5r

-05+

Figure 4-1 Tan-Sigmoid Activation Function

The tan-sigmoid activation function is implemented in the model program using equation 4-1. This

equation can also be easily implemented into the DCS.

Equation 4-1: Tan-sigmoid Activation Function

2
Tansig(x) = m -1

24

A Matlab routine was written for the neural network. This routine will be called by the main program.
The program takes in the input and output data, the network weights and constants, and the number of
layer 1 and layer 2 nodes and returns the MSE, individual error values, maximum error and the neural

network output. The Matlab routine can be seen in Figure 4-2.

function [MSE,err,maxer,out]=
neurnet (inA,outA,1llw,11lc, 12w, 12c,0lw,0lc,layln,lay2n)

o

Network Structure
layln defines the number of neurons in the input layer. lay2n defines
the number of neurons in the second layer. The output layer will
always be 1 neuron. Weights will be applied before the summing blocks
for each neuron. Constants will be added at each summing block.
The output of each neuron will pass through an activation function

o

o° oo

oe

o\°

Inputs:
inA = input data set (variables in different columns)
outA = expected output for each input
1llw = layer 1 weights
1llc = layer 1 constants
12w layer 2 weights
12c layer 2 counstants
olw = output layer weights

d° 0 o od° P o° oe
Il

o\°

% olc = output layer constant
% layln = number of first layer neurons
% lay2n = number of second layer neurons
%
%Outputs:
% MSE = Mean square error
% err = raw error values
maxer = maximum error

o° o

out = neural net output

out = zeros(l,size(inA,1)); $Initialize Weight Matrix

weightsl=reshape (1llw,size (inA,2),layln);
llc=repmat (llc,size(inA,1),1);
laylout = (inA*weightsl)+llc;
laylout 2./ (l+exp(-2.*laylout))-1;
weights2=reshape (12w, layln, lay2n);
lay2out = laylout*weights2;
l12c=repmat (12c,size (inA,1),1);
lay2out = lay2out+l2c;

lay2out = 2./ (l+exp(-2*lay2out))-1;
weilightsout=transpose (olw) ;

out = lay2out*weightsout+olc;

err = outA-out;

maxer = max(err);

MSE = mean((err)."2);
end

$reshape weight matrix
$Create 11 constant matrix
$layer 1 summing node

%$layer 1 activation function
%reshape weight matrix
$layer 2 summing node part 1
$create 12 constant matrix
$layer 2 summing node part2
%$layer 2 activation function
%transpose out weights
%output summing node
Scalculate error

%$find maximum error
%calculate MSE

Figure 4-2 Matlab Code for Neural Network Model Simulation

25

There are many types of algorithms used to train the weights in a neural network. Two of the more
common algorithms are gradient descent and stochastic search methods. Both algorithms attempt to
minimize a cost function which is typically the mean squared error (MSE). Gradient Descent tends to
tune faster but also tends to find a local minimum in the error surface where stochastic search methods
are better at finding the global minimum but require much more time and processing resources to
implement. (21) The MSE is calculated using equation 4-2 where y; is the actual value, ¥; is the model

output, n is the population size and p is the number of predictors.

Equation 4-2: Mean Squared Error

SSg Y —9)?

MSE = =
n—-p-1 n—-p-1

This project employs a stochastic search method called a genetic algorithm. The genetic algorithm starts
with a randomly generated population. Each member of the population is a set of neural network
weights and constants. Each member is applied to a neural network in order to calculate the MSE for
each member. The members of the population with the best MSE are chosen to be parents for the next

generation in the algorithm and the remainder of the population is removed.

Features are randomly selected from the parents and used to generate new children to complete the
population for the next generation using crossover. A percentage of the total neural network weights
and constants that make up the children will then be mutated. This mutation can be adjusted to be
from 0-100%. In addition to the percentage of weights and constants to be mutated, the amount of

mutation must also be considered. A flow chart of the genetic algorithm can be seen in Figure 4-3

26

Generate Initial Population of 750

A

Calculate MSE for each Member of Population -

A

Select Members of Population with the lowest MSE for
Parents (best 30%)

A

Perform Crossover using random Parents to Generate New
Members of Population (Children)

A

Select Random Parameters in Children for Mutation

Y NO

Multiply Parameters to be Mutated by the Mutation Function

A

Combine Parents and Children to form new population of
750

Is the generation at 7507

YES
v

Population Member with best MSE is saved as the optimum
Neural Network Weights

Figure 4-3 Genetic Algorithm Flow Chart

The calculation for the amount of mutation starts with a random number between -1 and 1. The
random number is then multiplied by a mutation function which limits the maximum and minimum
mutation. The mutation function can be set to a specific amount or varied as the algorithm progresses
from one generation to the next. For this project, constant mutation is tested as well as mutations that

decay as the generation increases. The linear mutation decay function can be seen in equation 4-3.

27

Equation 4-3: Genetic Algorithm Linear Mutation Decay Function

total generations — generation(x)

mutation(x) = .4 X -
total generations

The mutation starts at up to 50% (+/- .5) and then decreases linearly in relationship to the generation
number until it reaches a maximum of 10% (+/-.1) at the final generation. The purpose of the linear
decays is to promote faster learning in early generations and prevent overshoot and promote fine
tuning in later generations. Figure 4-4 shows an example of the progression of the mutation over 400

generations with the linear mutation decay function applied.

0.6 .

0.2 I T i

-0.2 LIy i
0.4~ IS]

-0.6~ .

[[[[[[[

0 50 100 150 200 250 300 350 400

Figure 4-4 Genetic Algorithm Linear Mutation Decay Function

The cosine mutation decay function has an overall decay but will periodically increase and decrease as
the generation increases. A decaying cosine function is added to the linear mutation decay function so

the overall cosine decay function has an overall decay similar to the linear mutation decay function

28

starting at 60% and decreasing to 10%. The equation for the cosine mutation decay function can be

seen in equation 4-4.

Equation 4-4: Genetic Algorithm Cosine Mutation Decay Function.

total generations — generation(x) 4

mutation(x) = 4 X -
total generations

total generations — generation(x) 20 x generation(x) X «
X

0S(

total generations total generations

The periodic increase in mutation enhances the ability of the genetic algorithm to escape from a local
minimum should one be found. Figure 4-5 shows an example of the progression of the mutation over

400 generations with the cosine mutation decay function applied.

0.6

. T ™~ -
) N /\¥// —
-0.4+n ’/K\ //\ ‘// \\\ //J\\/ N

-0.61~

L L L L [[L

0 50 100 150 200 250 300 350

Figure 4-5 Genetic Algorithm Cosine Mutation Decay Function.

29

400

For the purposes of comparing the decay functions, the mutation functions were plotted together in

Figure 4-6. A constant mutation of 25% will be compared with the mutation decay functions.

Constant 25%

05 Linear Decay 50% -10%

’ Cosine Decay 60% - 10%
0.4
0.3
0.2
0.1

0 [[[r r r [[

0 50 100 150 200 250 300 350 400

Figure 4-6 Genetic Algorithm Mutation Functions

Matlab code was written to generate and mutate the children. This code can be seen in Figure 4-7. The
mutation function active in the code is the constant mutation function. The mutation decay functions
are commented out and highlighted. The selection of parents for the next generation requires the
neural network function from Figure 4-2 to calculate the MSE. Both the neural network and genetic

algorithm functions are written into the Matlab program for the intrex model.

30

function w = genalg(parents,mut, totgen, gen, pop)

o\

This program will generate a new population of weights and constants
using the below inputs

o

%Inputs
% Parents = matrix of parent weights
% mut = mutation
% totgen = total number of generations
% gen = current generation number
% pop = Size of population to generate
%Outputs
% w = weighs
numc = pop - size(parents,l); $number of children to generate
% make children
w = zeros (numc,size (parents,?2));
parfor i = l:numc %$for the number of children
% generate 2x1 matrix of ints from l:number of parents
x = randi (size(parents,1l),2,1);
% generate lxnumber of weights matrix of ints from 1:2

y = randi(2,1,size(parents,2));

convert 2's to 1 and 1's to 0O to select first parent
pl=y-1;

convert 2's to 0 to select second parent

p2=abs (y-2);

combine parts frome each parent for each weight

o

o

oe

w(i,:)=pl(l,:).*parents(x(1l),:)+p2(1l,:).*parents (x(2),:);
end
% mutate children
% determine which weights will be mutated
mutloc = randi (numc*size (parents,2),1l,ceil (mut*numc*size (parents,?2)));
% mutation varies from 50% to 10% as the generation number is increased
$mutation = .4* (totgen-gen)/totgen+.1 ;
% mutation decays from 60% to 10% with an added cosine function
$mutation =(.4* (totgen-gen) /totgen+.1l)+.1* ((totgen-
gen) /totgen) *cos (20*gen/totgen*pi) ;
% Constant Mutation of 25%
mutation = .25;
% determine the amount of mutation for each weight (-1:1 * mutation)
mutmul = (1l-(rand(l,length(mutloc)) *2)*mutation);
% generate an empty matrix for the new children
mutmat = ones (numc,size (parents,2));
for i = l:length(mutloc) $for each mutation
mutmat (mutloc (i)) = mutmul (i) ; $fill in the mutation matrix
end
w = W .* mutmat; %generate new children

[

% make population of parents and children
w = cat (l,parents,w);
end

Figure 4-7 Matlab Code for Genetic Algorithm

31

4.3 Neural Network Training and Testing Programs

In order to train and test the neural network, the data previously collected must be imported into
Matlab and normalized. The original data set was divided sequentially into 25 groups. The testing data
set was divided sequentially into 4 groups. Group 2 from the original data set and groups 1 and 3 from
the testing data set were combined to create a training data set. Group 12 from the original data set
and groups 2 and 4 from the testing data set were combined to create a testing data set. The import

and load functions were written into the main Matlab program and can be seen in Figure 4-8.

$Nerual Network Model Program
clear

%get training data
intrain = xlsread('Training Data in2');
outtrain = xlsread('Training Data out2');

%get testing data
intest = xlsread('Testing Data in2');
outtest = xlsread('Testing Data out2'");

%$Get normalization Matrix
innormmat=xlsread('STD Norm in'");
outnormmat=xlsread('STD Norm out');

$Perform Normalization

intrain = mmnorm(innormmat, intrain);
outtrain = mmnorm (outnormmat,outtrain);
intest = mmnorm (innormmat, intest) ;
outtest = mmnorm(outnormmat,outtest);

Figure 4-8 Matlab Data Input and Normalization

The next portion of the program defines the network structure and parameters for the genetic
algorithm. These parameters can be adjusted to find structure and genetic algorithm parameters that

generate the best model weights for the lowest MSE. Figure 4-9 shows this portion of the program.

32

$Define Neural Network Structure

% [MSE, err,maxer,out]= neurnet (inA,outA,llw,1llc,12w,12c,o0lw,layln,lay2n);
LIN = 20; gnumber of neurons in layer 1
IL2N = 15; snumber of neurons in layer 2
nLlw = LIN * size(intrain,2); snumber of layer 1 weights

nLlc = LIN; snumber of layer 1 constants
nlL2w = L2N*LIN; gnumber of layer 2 weights

nlL2c = L2N; $number of layer 2 constants
nOLw = L2N; snumber of output layer weights
nOLc = 1;

Totw = nLlw+nLlc+nL2w+nL2c+nOLw+nOLc; $total number of weights
nin = size(intrain,2);

%Set Genetic Algorithm parameters

mutation = .1; %amount of mutation in genetic algorithm

pop = 750; $population (number of sets of weights)

numpar = 225; snumber of parents to use to generate children
generations = 750; $number of generations

$Generate inital weights from -1 to 1
w = (rand(pop,Totw)-.5)*2;

Figure 4-9 Matlab Neural Network Model Structure and Genetic algorithm parameters

The previously discussed neural network and genetic algorithm programs are utilized in the main neural
network program training routine. An additional program was written to convert the weight matrix to a
form more easily used by the neural network. This code can be seen in Figure 4-10 and the Neural

Network Training portion of the main program can be seen in Figure 4-11.

function [laylw, laylc, lay2w, lay2c, outw]=expweights(w,lln,12n,numins)
a=lln*numins; %$Range for layer 1 weights
b=a+1; gmin for layer 1 constants
c=a+lln; %$max for layer 1 constants
d=c+1; gmin for layer 2 weights
e=c+11ln*12n; tmax for layer 2 weights
f=e+l; %$min for layer 2 constants
g=e+12n; %max for layer 2 constants
h=g+1; gmin for output layer weights
i=size(w,2); %max for output layer weights
laylw= w(ra); $layer 1 weights
laylc=w(b:c); %layer 1 constants

lay2w=w (d:e) ; $layer 2 weights

lay2c= w(:g); $layer 2 constants
outw=w(h:1); soutput layer weights

outc=1; soutput layer Constant

end

Figure 4-10 Matlab Weight Conversion
33

%$Training

= zeros(l,generations);

$for each generation

for j = l:generations
% calculate the error for each parent
mse=zeros (l,size(w,1)); %$Initialize mse
error=zeros (size(w,1),size(intrain,1l)); %Initialize error
maxer=zeros (l,size(w,1)); %$Initialize maxer
out = zeros(size(w,1),size(intrain,1)); %Initialize out
parfor k = l:size(w,1); $For each parent weight

$Convert Weights for NN program
(11w, 1llc, 12w, 1l2c, outw,outc]=expweights(w(k,:),L1N,L2N,nin);
$Calculate the mse for the parent
[mse (k), error(k,:), maxer (k),out(k,:)] =
neurnet (intrain,outtrain,llw,llc, 12w, 12c,outw,outc, LIN, L2N) ;
end

$capture best MSE

MSE (j) = min (mse);

% find the best weights
parent=zeros (numpar, Totw) ;

for kk = l:numpar; sfor one to the number of parents
keep = find(mse == min(mse)); %find the location of minimum error
parent (kk, :) = w(keep(l),:); $Store the parent with minimum error
mse (keep) = 10000000; $maximize error for that parent

end

%$Generate new weights
w = genalg(parent,mutation,generations, j,pop);

Figure 4-11 Matlab Neural Network Training program

The training routine will repeat and output the MSE for each generation. The best set of weights will be

the parent with the lowest MSE from the final generation. The MSE is the primary metric for how well

the model is performing. In order to find the best model, the outputs of models with similar MSE values

will need to be looked at. Two models can have similar MSE values but very different trends and

histograms. The histogram of the raw errors between the plant and the models and plots of the model

outputs vs. the actual plant output were generated and reviewed to look for undesired results. Matlab

code was also written to generate the histograms and plots to compare the plant output to the

regression model output and the neural network model output. For the Matlab code written for testing,

see appendix B.

34

4.4 Neural Network Testing

To determine which genetic algorithm parameters and neural network structure generate the best

results, a testing matrix was generated. The testing parameters are listed in Table 4-1. Each test was

run using 750 generations.

Table 4-1 Neural Network Testing Parameters

Parameter Value 1 Value 2 Value 3
GA Mutation 10% 15% 20%
GA Parents 30% of Population 40% of Population N/A
GA Mutation Function Constant 25% Linear Decay Function Cosine Decay Function
NN Layer 2 Nodes 10 15 N/A

The MSE and neural network weights were captured for each test run. The MSE values for each set of

test parameters were averaged to determine which genetic algorithm parameters produced the best

results. The averaged MSE for each parameter can be seen in Table 4-2. The Cosine mutation decay

function with 10% population mutation and 30% of the population being used as parents provided the

best results. The complete results can be seen in appendix C.

Table 4-2 Neural Network Genetic Algorithm Parameter Performance

Mutation Decay Function

Constant | Linear Cosine

MSE (°F%) | 3.151 2.967 2.932
Mutation %

10 20 30

MSE (°F?) | 2.902 3.026 3.125
Parents
30% 40%
MSE (°F>) | 3.008 3.027

35

The optimum parameters highlighted in Table 4-2 were used to test each of the neural network
structures with ten and fifteen and hidden layer nodes each an additional four times. The MSE for each
structure was averaged to determine the optimal number of hidden nodes in the neural network. The
averaged MSE along with the top three MSE values for each structure can be seen in Table 4-3. The top
three MSE values using fifteen hidden layer nodes are all better than the best MSE value using ten
neural network nodes. Fourteen of the forty four tests that were performed provided MSE values less

than the 2.909 MSE value that the regression model provided with the same input data.

Table 4-3 Neural Network Results with Varied Hidden Layer Nodes

Hidden Average MSE MSE 1 MSE 2 MSE 3

Nodes (°F?) (°F?) (°F?) (°F?)
10 3.043 2.688 2.739 2.774
15 2.915 2.429 2.496 2.584

The performance of the two neural networks that generated the lowest MSE was compared with the
performance of the regression model. The percentages of output values for the three best error ranges
were calculated along with the percentage of errors above +/- 5.5 degrees F for each model and can be
seen in Table 4-4. Beyond +/- 2.5 F the error percentages for each model are all within .3%. The Neural
Network Model with the MSE of 2.496 has over 8% more errors at the +/- .5 range than either of the

other two models.

Table 4-4 Model Error Percentages

Error Range (F) +/-.5 +/-1.5 +/-2.5 >+/-5.5
Regression % 43.32% | 84.37% | 93.14% 1.66%
NN MSE 2.429 % 42.47% | 84.85% | 93.14% 1.36%
NN MSE 2.496 % 51.38% | 86.24% | 92.93% 1.43%

36

Histograms were generated for all three models. These histograms can be seen in Figure 4-12. The
histograms of the regression model and the neural network model with the lowest MSE appear similar.
The neural network model with the second lowest MSE has a noticeably larger number of errors that are

less than +/- .5 degree F from the actual plant output.

Regression Model MSE 2.909 Neural Network Model MSE 2.429 Neural Network Model MSE 2.496
1600 : : : 1600 : v : 1600 : T :
1400 - . 1400 - . 1400
1200 1200 1200
1000 1000 1000
€ = €
> > >
@] Q Q
O goo © 800 © 800
° ° o
L i i
600 600 600
400 400 400
200 200 200
0 - 0 y 0
-10 0 10 -10 0 10 -10 0 10
Error (Degrees F) Error (Degrees F) Error (Degrees F)

Figure 4-12 Model Output Error Histograms

The R? value was calculated for both neural network model sand the regression model using the testing
data set. The R? value for the regression model that was generated using the data for data point
selection was 92.30%. Re-calculating the R* value for the regression model using the larger testing data
set resulted in an R® value of 92.10. The neural network models both had a better R* value than the

regression model. The MSE and R’ values for all three models can be seen in Table 4-5.

37

Table 4-5 MSE and R* Values for Regression and NN Models

Parameter Regression Model NN Model NN Model (Second
(Lowest MSE) Lowest MSE)
MSE (°F?) 2.909 2.429 2.496
R? (%) 92.100 92.940 93.150

Data was collected from 9/1/2013 12:00PM to 9/2/2013 12:00 PM in one minute intervals, a period

outside of the original dataset. All three of the model outputs for that timeframe were plotted against

the plant output for the same timeframe and can be seen in Figure 4-13.

Intrex Differential Temperature

144

L42

140

138

L36

134

132

L30

=_

128 i
¥
126
12:05 PM 3:05 PM 6:05 PM 9:05 PM 12:05 AM 3:05 AM 9:05 AM 12:00 PM
Plant Out Regression Model Out NN (MSE 2.429) Model Out NN (MSE 2.496) Model Out

Figure 4-13 Intrex Plant Differential Temperature vs. Intrex Model Differential Temperatures

38

When looking at Figure 4-13 it appears that all of the model outputs are very similar over the 24 hour
period. In order to be able to differentiate between the models, the timeframe from 6:05 AM to 12:00
PM on 9/2/13 was looked at in Figure 4-14. In the 130F to 135F operating range, both the regression
model and the neural network (MSE 2.496) model trend the plant output very closely. The other neural
network model appears to have constant -0.5 degree offset. Above 140F both neural networks are

closer than the regression model.

After a comparison of MSE and R” values for the regression model and two neural network models as
well as the histograms and trends, the neural network model with the MSE of 2.496 was selected for use
with the model predictive controller. The neural network model with the MSE of 2.496 will be
programmed into the DCS and act as the model for the model predictive controller. A trend from the
same time period as that in Figure 4-14 was generated with the other neural network model removed
and can be seen in Figure 4-15. It should be noted that even though the regression model does perform
with accuracy close to that of the neural networks, for the given data set the regression model is not
going to improve any further but the neural network model may be further optimized by altering the

neural network structure or tuning algorithm.

39

Intrex Differential Temperature

Intrex Differential Temperature

144

143 - Plant Out [l

r ,«J Regression Model Out -
1421 /) J NN (MSE 2.429) Model Out []
141 fM | NN (MSE 2.496) Model Out |-
140

139 - /
Y

o AN
S0
z v§

135 f
!

o

124 k
133 - N :J'f \\\
132 |-/ _ped Al papall ™ | ‘
N T g x
130 - VN \\VJM Kﬂ N4]
129 - i\ \\ /// \\« %
- \v/ AR

T
=

128

127

6:05 AM 9:05 AM 12:00 PM

Figure 4-14 Performance of Regression and Both Neural Network Models

144

143 Plant Out il
L I Regression Model Out

142 - I NN (MSE 2.496) Model Out []

141 TR

140 oM
139 |- / M

g -
sl N
- / VAR

135 \
vl y X
133 |- N ol \

132 |- /A el VL | oz NI
2y gl :
| V i,

130 - s \ 7 /\ /
129 - \d S

128

127
6:05 AM 9:05 AM 12:00 PM

Figure 4-15 Performance of Regression Model and Best Neural Network Model

40

Chapter 5 : Controller Optimization Algorithm

Many optimization algorithms, sometimes referred to as cost function minimization algorithms, have
been used for a model predictive controller. Mathematical Optimization Methods such as the Newton-
Rapshon optimization algorithm proposed by Soloway and Haley (22) are common in model predictive
control. An extended dynamic matrix control algorithm using a neural network as a non-linear
prediction model was proposed by Draeger, Engell, and Ranke. (11) Advanced stochastic optimization
methods such as the genetic algorithm optimization proposed by Yu and Zhu have also been researched.
(23) The choice of which method to use will depend largely on the required system performance and the
system resources that are available to implement the controller. In the case of the controller for this
project, there are limited resources to work with but the rate of response does not have to be extremely

fast as the overall plant process response is on the order of minutes.

5.1 Optimization Algorithm Operation

One of the goals of this project is to program the neural network model predictive controller directly
into the plant DCS. Both the mathematical and advanced stochastic methods referenced above require
programming capabilities and/or computational resources beyond what can be practically programmed
into the plant DCS used for this project. The optimization algorithm for this controller uses a simple

stochastic approach. The optimization algorithm generates completely random combinations of intrex

41

airflows using a linear congruential random number generator which will be discussed in more detail in
section 5-2. Each combination is applied to the neural network model as it is generated along with the
other current plant parameters. The error for the current airflows is compared with the stored previous
best error. If the current airflow error is better than the previous, the new airflows become the output
of the optimization algorithm. Once every 60 seconds the stored best airflows are re-applied to the
model and the error value is updated. This is required to compensate for changing plant conditions. A

block diagram of the optimization algorithm can be seen in Figure 5-1.

None of the airflows that are stored as a result of having the lowest error are reused to generate the
next set of airflows as they would be in a learning algorithm such as a genetic algorithm or particle
swarm optimization. This would require the collection of a number of results before the output could
be updated. Each collection would require one complete module scan. The typical scan time of the DCS
used for this project is 250ms. It can be increased to some degree but will be limited by the amount of
other logic in the control module. The time required for a learning algorithm will severely slow the
optimization algorithm.

Saved Air Flow

Ar?zalllog ;ignal New In 0; Transfer Optimization
setpPoint ——01 777 Digital Signal Random In1_| Switch Algorithm
Alr Flow _SML' 0, out=in0 "] Output Air
+ i P 1, out=inl Flow
[}
d 5 Error '
- |
Ll [}
[}
[}
Process Saved Low Error |
Variable :
A 4 H
N0l Transfer If new error :
N In1 [Switch [Out better than {'
F==== » —i » ==
| SW, 0, out=in0 Saved, h
' OR » 1 out=inl output = 1 '
| o 1
1Minute | | : '
Pulse ' 1
. |
D e e o e e e e e 1

Figure 5-1 Optimization Algorithm Block Diagram

42

To ensure the set point of the controller remains at a realizable value, the minimum and maximum
capabilities of the plant are also calculated. The setpoint for the controller is limited by these
capabilities. The error signals for the minimum and maximum capabilities are also updated every 60
seconds to compensate for changing plant process variables. The block diagram for the optimization
algorithm in Figure 5-1 is the same as the ones used to calculate the minimum and maximum plant
capabilities. To calculate the maximum intrex capabilities, the set point is set at 300F, a point above any
that will ever be reached. To calculate the minimum intrex capabilities, the set point is set at OF, a point

below any that will ever be achieved.

5.2 Linear Congruential Random Number Generator

In order to generate the random numbers for the optimization algorithm multiple linear congruential
random number generators (RNG’s) were programmed into the DCS. The linear congruential RNG is a
common random number generator that can be implemented using DCS function codes and does not

require a lot of memory.

The equation for the linear congruential RNG can be seen in equation 5-1. The “m” is the modulus and

o _ 7w
C

must be greater than 0. The “a” is the multiplier and the is the increment value, both of which must
be between 0 and the value of “m”. The initial X, is the seed value or previous value. The maximum
period of the RNG will be defined by the modulus value m in the equation. In order to achieve the

maximum period, c and m must be relatively prime, a-1 must be divisible by all prime factors of m, and

a-1 must be a multiple of 4 if m is a multiple of 4.

43

Equation 5-1: Linear Congruential Random Number Generator.

Xne1 = (aX, + c)Mod m

The RNG used for the optimization algorithm can be seen in equation 5-2. The values for the equation
were selected to provide a full period of numbers from 0 to 99. The random number generator will
generate numbers from 0 to 99. An example of the RNG output with a seed value of zero can be seen in

Figure 5-2.

Equation 5-2: Linear RNG for Generating numbers from 0 to 99

Xpe1 = (21 X X,, + 7)Mod 100

100 - ° °
V- e o °

80 - o . ® .

70 ° °

60 ° ° °

50 o L e °
40 ©°® ° °
30+ ° °® °
20+ o0 ° °
104 i e ® °

hd r r r r r r I @@ r
0 10 20 30 40 50 60 70 80 90 100

0

Figure 5-2 Linear Congruential Random Number Generator Output

There are five RNG’s used for the optimization algorithm. Each RNG is seeded at different times using
the internal DCS clock. One RNG is seeded every 13 seconds. The value of the seed is the sum of the
current minute and second of the DCS clock scaled from zero to 100. An example of 40 iterations of the
five RNG’s can be seen in Figure 5-3. The five values on each line represent the percentage of each

airflow value that will be used as an input for the neural network.

44

Figure 5-3 Output From all 5 Random Number Generators

The RNG outputs are each scaled to an acceptable airflow range before going to the neural network.
The ranges should be limited to values for which data has been collected and used for neural network
tuning. Having values outside of the tuning dataset can result in unpredictable operation. The
minimum and maximum airflow values for the output of the optimization algorithm can be seen in Table

5-1.

Table 5-1 Optimization Algorithm Min/Max Values

Parameter Minimum | Maximum
Cell A1 Air Flow 500 3000
Cell A2/A3 Air Flow 500 3000
SUC Air Flow 0 2000
DNLG Air Flow 2000 4000
UPLG Air Flow 3000 9000

45

Chapter 6 : Distributed Control System (DCS) Integration

6.1 DCS Function Codes and Logic Structure

The DCS utilized for this project is an ABB Symphony Harmony Infi-90 system. The DCS controller
module used in this project is a BRC300 Bridge Controller module. The programming software used to
program the controller is ABB Composer with Automation Architect. In order to program the DCS,
function codes are tied together and conFigured to perform control functions. Function code operation

and configuration instructions can be found in the ABB Function Code Application Manual. (13)

Function codes are saved as “blocks” in the controller. The BRC300 can hold 9999 blocks. Each block is
assigned a block number. The blocks are scanned in order of the block number. In most applications of
this type of DCS, the time for one complete scan of the DCS blocks is set to 250ms. This number is

adjustable but is limited by the capabilities of the controller and amount of control logic.

For most DCS applications, the plant response is much slower than the DCS scan time making the order
in which the blocks execute somewhat unimportant. Most digital signals are held for at least a second
giving the processor multiple scans to read the value and react. For this project, there will be many
signals that change with each scan making the order in which the blocks scan critical for proper
operation. The flow chart in Figure 6-1 shows the order of operation for the DCS logic for this project

with numbers representing the order in which each set of blocks is scanned.

46

DCS CONTROLLER

Timing
Functions

(@)

v

Random
Number
Generator
Seeding
3

v

Random
Number
Generator

()

Random
Number
Generator
Constants

&)

v

Verification Min
Max Signal
Select

(6)

PLANT

4

Inputs from the

Plant —
(5)

v

A

Verification
Control Signal
Select

@)

v

NN Control
Model

©

v

Min/Max
Calculation
(10)

Model
(8)

v

Optimization
Controller
(11)

Controller
Output Signal
Selection
(12)

PLANT

NN Verification

A

Figure 6-1 DCS Logic Order of Operation

47

6.2 DCS Timing Signals and Scan time

For this controller, there will be functions which will not operate on every module scan. These functions
will be triggered by timing signals. There are three functions that will operate periodically which will be
discussed later in more detail. Timing signals are generated using the internal DCS clock. A one scan
pulse is generated at 20 seconds, one at 40 seconds, and one at 59 seconds using the seconds from the
DCS clock. The “memory” function code acts like an S/R flip flop. When the seconds value for the clock
is at one of the above values, the S/R is set. The digital time delay function code (TD-DIG) has a higher
block number than the S/R so the output of the S/R will provide a “1” to the input of the TD-DIG. The
TD-DIG will immediately provide a “1” to the “reset” on the S/R block so that on the next scan, the

output of the S/R will go to “0”. The logic for the one pulse scans can be seen in Figure 6-2.

)

it (90) i

zo T

XENEC HINUTE
wFe P T B —— e NN.51.1
4
z T
SEC
=t N.51.1
RELS
" il

z5

b

zt

4
B)
=
ONE SCAN NINUTE PULSE

gt === HM. 53,1
v | WM.52.1 WM.52.1 HM.52.1
14 1 MH.52.1 HM.52.1
35 0.2% 13 3 MINUTE PULSE
. Lpwfmorelgyg — -~ m

-

_——— — — === HH. 54,1

[

\
PELEIR 1 ﬁ g (3 l_%l p_p1s 125
Ll s T L [T i Ei} T2]
gt lF ﬂ o |
;
\
|

M. 54.1 NN, 54.1 NH. 54.1
WM. 55.1 NH. 54.1

5218

40 ‘

M. 54.1 NN, 54.1 NH. 54.1
WH.55.1 NN, 54.1

J
Gl HL

[T
52 0.5

Figure 6-2 DCS Logic for timing signals

48

The default scan time of the controller module is 250ms. With a 250ms scan time, all blocks will be
scanned four times each second. This will provide the optimization algorithm, to be discussed in more
detail in section 6-9, with four different airflow input combinations per second. With these settings, the
processor utilization of the BRC300 controller was less 10% so the scan time was adjusted to 100ms by
using the segment control function code. This allowed for ten different input combinations of airflows
per second. With these settings, the processor utilization was still less than 10%. Even though the
processor utilization was less than 10%, the scan time was left at 100ms to leave room for future

expansion.

6.3 DCS Random Number Generation

The random number generators will provide random inputs to the neural network for determining
optimum airflow values. Five random number generators are utilized for this project. They will provide
random airflow values for:

1) Intrex cell Al airflow,

N

Intrex cell A2/A3 airflow,

W

)
)
) Intrex startup channel airflow,
) Intrex down leg airflow and

)

5) Intrex up leg airflow.

Each random number generator will be seeded separately at different times.

The seeding of the random number generators is done using the DCS clock. The seed is the sum of the
clock seconds and minutes values scaled from 0 to 99. One random number generator is seeded every
13 seconds. This is accomplished using S/R function codes and TD-DIG function codes. The first S/R

block will be set when the controller starts. The S/R block provides a “1” to two TD-DIG blocks. One TD-

49

DIG block sends a pulse to the associated RNG to force it to seed and the other will wait 13 seconds and
then reset the S/R for the associated RNG seed and set the S/R for the next RNG seed. This will continue

for each RNG and then repeat. The DCS logic for seeding the random number generators can be seen in

Figure 6-3.

==]—i—"'(u e el 261

wmrag.1 WM.50.1 WL a7.1

21 0.2313%
24 0.22132 a8l

Figure 6-3 DCS Logic for Random Number Generator Seeding

50

The random number generators will use the seeds from the seed logic and the equation for a linear
congruent number generator from equation 5-2 to generate random numbers. The benefits of using the
linear congruential random number generator are that they do not require a lot of system resources and
that they can be implemented using DCS function codes. The disadvantage is that there is not a
dedicated DCS function code for modulus or rounding which is required for the linear congruential

random number generator.

In order to get a rounded value, a series of multiplexer function codes were used. The multiplexer will
round the input select value in order to select an input. The multiplexers were combined to generate a
multiplexer with 100 inputs with a constant from 0 — 99 attached to each input. When the value to be
rounded is used as the input to the multiplexer, the rounded value is generated at the output. The logic

for the linear congruential random number generator can be seen in Figure 6-4.

To Rounding
Logic

Figure 6-4 DCS Logic for Random Number Generation

51

6.4 DCS Signal Inputs and preprocessing

The ABB infi-90 DCS has a multi-level communication structure. The top level of communications is the
plant loop. Process Control Units (PCU’s) communicate with each other over the plant loop. In some
cases, multiple loops can be tied together so PCU’s can communicate with PCU’s on other loops. The
PCU’s on a loop each have a loop address and a unique PCU address. Each PCU contains one or more
controller modules and a communication module that ties the controllers to the loop. The controllers
and communication modules communicate with each other using a communications bus called
controlway. Each communication and control module in a PCU has a distinct controlway address. If a
controller has associated field input modules, it communicates with those modules over an I/0

expander bus.

Since the controller for this project is being tied into a pre-existing control system, the controller inputs
will come from other controllers over the DCS communication system and not directly from field inputs.
Input signals are brought into the controller from modules in other PCU’s using analog loop input (Al/L)
function codes. The Al/L function code uses the PCU address, control module controlway address and
function code block number for the analog output function code (AO/L) in the PCU where the signal

originates.

Once the signals are brought into the controller that will be used for the neural network, they are
checked for validity and averaged where averaging is used. Any signals that are found to have bad
quality resulting from communications or instrument failure will automatically be removed from any
average that they are calculated into. An on/off block was also added so a signal could be “forced” out

of the average if it was not indicated as bad quality but still was not reading correctly. If one of the non

52

redundant inputs or all of a redundant set of inputs go to bad quality or are forced out using the on/off

block, the neural network model will become invalid and the logic will trigger a bad quality alarm that

will automatically bypass the neural network controller. This will also occur if all of the signals for an

averaged input go bad quality or are forced out of the average. The bypass logic will be discussed

further in section 6-10.

The signals are normalized using equation 3-5 with the same standard deviations and averages that

were used for normalization in the model development. Any signals that utilize delayed values also have

the five minute delay values generated. Figure 6-5 shows the above functions programmed into the DCS

using DCS function codes for the average freeboard signal. The normalized signals are tied to the inputs

of the neural network model.

AT/L

AVERAGE

T
52 2257
sz 7

AT/L

FURNACE D/E &
{511 e
— ?E
Bl

OH/OFF

51 0

PR L

FURNALE D/EB
{m.82.1 Js ot

5L 4
32 2387
sz 7

AT/L
p— FURNACE D/R ¢

r

TSR

OH/OFF

ET

(17}

7841 q T (144 51 ¥ (16} N AVE FE, o)
TETT 3) ToaT T

TR LS NORMALIZED AVERAGE

(DI

m.ZZ.1
NN.19.1
m.25.1
.91

jm Rt

b e

TSTQ

OH/OFF

51 0

.20, 1

m.zl.l

mr.zs.l
mm.17.1
m.ze.l
m.Z3.1
w111
mr.le.l

Figure 6-5 DCS Logic for Signal Input and Preprocessing

53

NN _AVG FB NORM, » (l\m.lﬁl.l)
E65T

M. 24,1
M. 18.1
MN.13.1
w101
L2701
M. 15,1

The only signal that utilized a time delay was the total fuel flow. The time delayed value of the fuel flow
was generated using a “Delay” function code. The Delay function code was set up to delay the total fuel
flow by five minutes and sample every two seconds. The logic for the time delayed fuel flow input can

be seen in Figure 6-6.

T AT _‘
¥D.27.1 TOTAT, S0LIT0 FUEL FLOW NN TOTAL S0LID FUEL FLOW Py
- €50 (26 [™

1
z (R

a1 4 Z
=2 197 3
= e £}

TSTY

1174 Gl gl o gy |(L5) WY TOTAL SOLID FUEL FLOW NORE, o
6561 6571 -

OH/OFF

]

PYSTHTAT 30LTD FUEL FLOW HORM -5

.2z, 1 . 28,1 m.24.1

NN.19.1 NN.17.1 nm.18.1
—————— e O U0 (e

MN.9.1 mL 231 0.1

M. Z0.1 mLiiil m.27.1
MN.Z1.1 mL 161 Wm.15.1
m.1z.1

Figure 6-6 DCS Logic for time delayed inputs

6.5 DCS Minimum/Maximum Intrex Differential Temperature Airflow Verification Signal Selection

The controller will calculate the minimum and maximum intrex differential temperature that can be
achieved by manipulating the airflows. The method of determining these values will be discussed in
section 6-8. These values will be reapplied to the input of the neural network control model once every

60 seconds to re-verify the values.

Each air flow signal has a set of selection logic. The output from the associated random number

generator (0-99) is converted to an airflow value. The value is then transferred to the input of an

54

“analog transfer” function code. Under normal operation this signal is passed through the analog
transfer block and then passes through a second analog transfer block on to the control airflow
verification signal selection logic. The first analog transfer is switched to the airflow values that are
currently saved as those that generate the lowest intrex differential temperature for a single scan by the
timing signal that pulses at 40 seconds. Under this condition, those values will be passed to the input of
the neural network models. The second analog transfer is switched to the airflow values that are
currently saved as those that generate the highest intrex differential temperature for a single scan by
the timing signal that pulses at 20 seconds. Under this condition, those values will be passed to the
input of the neural network models. The min/max switching logic for the intrex Al cell airflow can be

seen in Figure 6-7.

A
(154 21
WG PRMELOUT o pong el
) $—> EECI £-4 (9 NN FSH AL MINMAR ATR FLGW /o —co
f e A @ w5z,
A | s o r
=0 [T
‘ ‘ 55 0
51 500 ‘ ‘
@N_55_l NN F:H-I 21 AIR FLOW MIN TEMP ‘ |
N 1.1 ONE_SCAN MINUTE PULSE MIN | }
|
@N.ss_l i Fﬂ-l A1 ATR FLOW MAX TEMP |

ONE AN MINUTE PULSE MAX
WN.1.1

Figure 6-7 DCS Logic for Min/Max Intrex Differential Temperature Airflow Verification Signal Selection

6.6 DCS Control Airflow Verification Signal Selection

The controller will calculate the airflows required to achieve the operator entered intrex differential
temperature set point. The method of determining these values will be discussed in section 6-9. These
values will be reapplied to the input of the neural network control model once every 60 seconds to re-

verify the values.

55

Each air flow signal has a set of selection logic that uses the output of the min/max selection logic and
the control airflow signal as inputs to an analog transfer function code. Under normal operation the
signal from the min/max airflow selection logic is passed through the analog transfer function code. The
analog transfer is switched to the currently saved control airflow values for a single scan by the timing
signal that pulses at 59 seconds. The value that is passed through the analog transfer is then normalized
using the same normalization parameters used in model development. The normalized airflows are
used as inputs for the neural network control model discussed in section 6-7. The control airflow

switching logic for the intrex A1l cell airflow can be seen in Figure 6-8.

1 30
& A0/L {eoﬁ NN FSH Al ATR FLOW c'rkL¢ N —_—)

uN.53.1 ny.55.1

NN FSH Al MINMAX AIR FLOUW Flg | 84 3750
54,1 3« I IEN 1 . &5 ams0
5 176% T L s o
NN FSH Al REC ATR FLOW b §7 1
m.53.1 | s o

3 1
4 -1z91.9

. 17, NN FSH Al AIR FLOW CTRL NOI
= {7g§ MN.M.I

W.22.1 mWL28.1 mwm.24.1
§F.18.1 ENL.IT.1 NN.18.1
@; T E WN.25.1 EN.26.1 mn.13.1
B N WH.9.1 EN.23.1 WN.10.1
o NN.20.1 WNL.I1.1 mW.27.1
§p.21.1 WNL16.1 NF.15.1

mr.12.1

Figure 6-8 DCS Control Airflow Verification Signal Selection

6.7 DCS Neural Network Model Logic

The Neural Network model predictive controller has two neural network models. The first model, the
verification model, is used to verify model accuracy and uses all inputs from the plant. The second
model, the control model, uses inputs from the plant and the intrex airflow inputs from the control
airflow signal selection logic in Figure 6-8. Each model has the same model structure as the neural

network model generated in Matlab.

56

Each input into the neural network nodes in each layer is applied to a two-input summing function code.
This function code has a programmable gain for each input which is where the neural network weights
will be programmed. The outputs of each of the summing nodes are summed together with each other
as well as with the node constant. That value is then passed on to a tan sigmoid activation function.
The equation for the tan sigmoid activation function can be seen in equation 4-1. A single input layer

node for the verification neural network model can be seen in Figure 6-9.

W PSH L1 WOODE 1 #iQp

WEIGHTS

2 AZ A1 RIR PLOW MOR

aH AZ A3 RIR PLOW MOR
4 -0.0040232

2H A2 A2 AIR PLOW MORid

CONSTANT

2H AVZ SUC ATR FLOW WoR | 93 -0 0086277 [EPY
24 0.0052743 2

HYPERBOIC TANGET ACTIVATICN FUNCTTION

91 0.00023941

2 DVLE RIR PLOW MORi

2H UPLE RIR PLOW MR

MW FgH CELL AE AVZ TEME MR
C)nr.:.l #

aH CELL Rhh BOZ TENE MORH ST.0031148

34 -0.28346

2 DVLE MOZ TERE MOR

SH UPLE RS TERE WOR -0.0161332

-0.035081

aH AUZ ST IV TEWE MOR

23 0.13438
24 0.0020137

= PURWACE EED TEwE WOR | 93 0.011873

24 -0.0013176

MW LEMESIONE FLOW WOh
ki

=93 0.004E53
24 0.0061482

Figure 6-9 DCS Verification Neural Network Model Layer 1 Node

57

The input layers for the neural networks each have twenty nodes. In order to reduce the number of
controller blocks required to implement the neural network models, common inputs are shared for the
layer 1 logic. The only inputs that are not shared between the verification neural network model and
the control neural network model are the intrex air flows. A single input layer node for the control

neural network model can be seen in Figure 6-10.

aH CELL AE RIS TEME WRid
aH CELL AR RVIZ TEME WoRid BEaTI
IR
gH UBLZ AVS TEWE HORM Shoaela
TN
(14
T
ZH BT STwi T TEE MORE
W TQEAL ER MR a1 woesLel
AT
MOk
[T NYTIT]
TRECRTITITEE
{1y
EER L]
2H A1 ATR FLOW CTRL WoRid

2H RIFRI ATH PLOK CERL MREAs v ve:mle-nog
W -w i ig-0ng

CONSTANT

GH R2rAI AIR FLOW CIRL WOR
12

NI LT

2H SuC AIR PLOW CTRL MOR#

TN T L)
M vnrig-nog . FTEN

2H OWLE ATR FLOW CTRL WoRii

SH UELE TR FLOK CTRL WORH 31 & vevimgib-nng

s wenLagk-n1n

HYPERBOIC TANGET ACTIVATTION FUNCTION

Figure 6-10 DCS Control Neural Network Model Layer 1 Node

58

Every output value from the layer 1 nodes is used as an input values for each of the layer 2 nodes for the
same model. The layer 2 nodes for the verification and control neural network models are independent
and do no share any input or output values. Each model has fifteen layer 2 nodes. The layer 2 nodes for
both models have the same structure. A layer 2 node for the verification neural network model can be

seen in Figure 6-11.

WEIGHTS

GH L1 WODE 1 &0D QU

CONSTANT

{mr.11.1 : (2
2 7 EL]

21 D.0276E7 W ESH L2 MODE 1 000U
1
T (14 T (1%

gH L1 WODE & 800 Q%3 -0, 0010213
34 0.0076901

(w_u_l g L1 WODE 5 A0 QuT
g L1 WODE 6 mdD Of®3I -0.00056303
{1401 ¢ 24 -0.026594
SH L1 MODE 7 0D OuT
WH.15.1 B

GH L1 WODE 2 ®0D Q%22 -0, 00224332
1 24 0.13804

HYFERBOIC TANGET ACTIVATICH FUNCTICHN

(w_”_l g L1 WODE 3 w0 QuI
g L1 WODE 10 Wab §ua= -0, 0032002

{nr.22.1 ? 24 5.66572-00%
i L1 WODE 11 0b

(18,1 :

GH L1 WODE 12 wab

{W.!l.l SH L1 WODE 13 wab

GH L1 WODE 14 oD

24 -0.082287

GH L1 WODE 15 wab
(221 gy

GH L1 WODE 16 wab

Jufz p.op13vrE
24 -0.084112

GH L1 WODE 17 walb

quI 0.023883
24 -0.00011268

gH L1l WOUE 13 walb

ZH L1 WODE 13 wab
(271 d

GH L1 WODE 20 wab

JUf2 0.00013302
24 4.45822-00%

Figure 6-11 Verification Neural Network Model Layer 2 Node

59

The outputs from the fifteen layer 2 nodes are each used as an input to the output layer node. There is
no tan-sigmoid activation function on the output layer nodes. The output values are un-normalized by
reversing equation 3-5 and using the same standard deviation and average values used for
normalization. The output layer for the verification model provides a value for the intrex differential
temperature that is compared with the plant intrex differential temperature. The difference between
the verification model output and the plant value for intrex differential temperature is calculated and
passed to the control model. The output node for the verification neural network model can be seen in

Figure 6-12.

LE3 I
24zl THTRIIINI0 10IE_Tae
TRENESC: TWTREX & M 0T D01

WEIGHTS

31 -3.3208e-006

N TS TRMF IKCREAIE HOEM ALy (15 HH TSH MODEL TEEOE, .
CONSTANT =~ (mra S 4 D R st)

33 6.3373 EERE
Era] 24 13154

W F3j Li NOIE ¢ MOD OUT

53 -p.011612
s

INVERSE NORMALIZATION

W F3jf L HOOE 4 MOD 0UT

[Lay
F33:

L]

M F3Y Li NOIE ? MOD OUT

33 -p.32862
s 017213

W F3jf L HODE 3 MOD 00T

I FIj Li BODE 10 MOD OUT | ez -n.1s4z6

24 0.24676

W FIf Li RO 1i BOD OUT

M F3j Li NOIE 14 BOD 00T

ca -p.27%34

WA F3j L BODE 15 MOD 00T

MN.43.L
(15
ﬂ‘ o

53 0.3303
sa 1

Figure 6-12 DCS Verification Neural Network Model Output Node

60

The verification model error value is added to the output of the last summing block in the Control model
output node so the error signal of the control neural network can be properly calculated. This function
will not compensate for a poorly performing model. It is only meant to fine tune the controller by a few
degrees. If the verification model error signal is large, it will have a greater impact on the control model
output than the intrex airflows that are being tested and the controller will not function properly. The
control neural network model output node provides values to be used for calculating minimum and
maximum controller capabilities as well as for calculating the optimum intrex airflows required to meet
the operator entered setpoint for intrex differential temperature. The control neural network output

node can be seen in Figure 6-13.

@_“l) T3 AL FRRIR

CONSTANT

INVERSE NORMALIZATION

IHRIRE
prebrsd

&2 -0.011812
24 0.40316

51 023428
s -n.0017322

BN FSY Li NOLE 15 CTEL OUT

M43

115)

ﬂ‘i L ¥ s

FEREIETTH
541

Figure 6-13 DCS Verification Neural Network Model Output Node

61

Each Neural network model contains 751 weights and constants. Manually entering these numbers
would be very time consuming and one wrong entry will make the model malfunction. In order to
ensure that the weights and constants were entered properly, they were exported from Matlab into an
excel spreadsheet. The DCS Control Logic was exported into an access database. The block numbers for
the weights and constants were ordered in groups so each group of weights and constants could be
copied and pasted from the excel spreadsheet into the access database. The weights and constants
were pasted into the access database and then the updated access database was imported back into the

DCS which applied all of the weights and constants to the neural network models.

6.8 DCS Intrex Differential Temperature Minimum/Maximum Capability Calculations

In order to determine the minimum intrex differential temperature that can be achieved using the
model predictive controller, the error between the output value of control model and zero set point is
calculated. The current error is compared with the saved best error value. If the current error is better
than the previously saved error, it will be stored along with the control model output and the airflows

that provide the minimum intrex differential temperature will be updated.

One potential problem that arrives from this configuration is that when the plant parameters change in
a way that causes the error to increase, a better error may not be possible and the past error is no
longer relevant. In order to overcome this problem, the stored airflows that provide the minimum
intrex differential temperature are reapplied to the model once every 60 seconds and the associated
error value is updated. This is accomplished in a single scan using the single scan pulse that activates
when the DCS clock is at 40 seconds. The logic for selecting the airflow values that generate the

minimum intrex differential temperature can be seen in Figure 6-14.

62

WM FSH Al AIR FLOJ MIN, TE
HH.E54.1
1
MH F 41 ATR FLOW CTRL 2] 2
(m.s2.1 # 3 T ;sjﬁ‘}
- — &
‘ s.F=H AZ/A3 ATR FLOW MIN, TE
‘ uEER £ 5 e (im 541]
I gy
NN FEH AZ/A3 AIR FLOW CTEL (31,
. se.1 £ T EERr
s 3
MN-FS5H SUC ATR FLOW MIN TE
‘ =2 w541)
NN F3H SUC AIR FLOW CTEL | &
ZTaeEss = B
‘];';I l=TSH DNLG ATR FLOI MIN, TE:
‘ 4 }E NN.54.1)]
\ 1
(NN,SZ,I NN F3H DHLG ATR FLOW CTRL g 1 [
su o3
‘ ¥N FSH UPLG ATR FLOY MIN, TEMR
‘ (. 54 1
| g
e 1 NN F3H UPLC AIL FLOW CTRL 4 P EETY
(2} &L 115y -52- T B FEIT
L | oo [k o
T a3
21 O £z -1 ‘ R
Fr
WN F3H CTEL OO Sl (150
@.44.2 = {1 T 0 |
@ \
o1 Gl 124
g-pw] ADAPT et |
él m \
el 2] #3 @ CURRENT ERROR
E— |
| “ \
o0
‘ 5
ONE SCAN MINUTE PULSE " - -
eyt il el] o
o= TRGWEKE : 13W_FSH_BIN0T
L 3= L EIST ERROR *[3Ew | mmse esenaemrs b
@N T M SEANTUR PULEE :153 FER BN |
T 4 41 53 0 i i3 WM FSH MIN, TE
4§ 4 AOD/L HH.53.1

&2
sz
2
3
s
a7

2
am

Figure 6-14 DCS Calculation of the Airflow Values for Minimum Intrex Differential Temperature

In order to determine the maximum intrex differential temperature that can be achieved using the

model predictive controller, the error between the output value of control model and set point of 300 is

calculated. The current error value is used to capture the airflows and error associated with the airflows

required for the maximum intrex differential temperature in the same manner as that used for the

minimum intrex differential temperature. The error and airflows for the maximum intrex differential

temperature are verified once a minute by the single scan pulse that activates when the DCS clock is at

20 seconds. The logic for selecting the airflow values that generate the maximum intrex differential

temperature can be seen in Figure 6-15.

63

NM FEH Al ATR FLOW MAX, TEI
3 SR o 54,1

NN FGH Al AIR FLOW CTRL B 190y

w5z 1 E T

I
s s
| o SNN FSH AZ/A3 AIR FLOW TE
‘ e 2y oS4, 1
I g
EN FGH AZ/A3 ATR FLOV CTRL E PR N
. sz. L E 3506

‘ e 3

s3 3 NN FE8H 3UC AIR FLOW TE!
‘ NM_54.1

L g
N FEH SUC AR FLOW CTRL PRI
HN.52.1 E Scilh

53 s NN FSH DNLG AIR FLOW MaX TEMP.
-

MM_E4.1

NN FGH DNLG ATE FLOF CTRL
ez ¥ — <
| a5
| £ 3 NN FSH UPLG ALY PLOW MAX,TEMR o "
I g
b il 'ﬁé T |4k F— NN FGH UPLG AR FLOW CTRL | }sg T [k
T FEaY a5
MM F3H CTRLLOUL =1, (15 Fr e 3
HN.44.2 & e IR e ‘
e \
a1 |
31 (za)
g EDAPT |k ‘
B \
22 ! CURRENT ERROR |
+ T ——
IAEIBSC. Pon w CRERELE T
23 |
T

1 3 N FEH TE
Gl nosn ;5 MN.53.1

2 amm
€3 aom

Figure 6-15 DCS Calculation of the Airflow Values for Maximum Intrex Differential Temperature

6.9 DCS Control Optimization

This controller will allow the operator to enter a setpoint for the desired intrex differential temperature.
The setpoint is compared with the minimum and maximum capabilities of the controller. If the setpoint
falls outside of the range that the controller is capable of controlling to, the closest value to the setpoint
within the range will be selected as the setpoint and an alarm will be issued to alert the operator. The
setpoint is compared to the control model output in order to generate an error signal. The current error
is compared with the saved best error value. If the current error is better than the previously saved

error, it will be stored along with the control model output and the airflows that provide the intrex

64

differential temperature closest to the setpoint will be updated. The portion of the logic used for

selecting a setpoint can be seen in Figure 6-16.

~yHH FRH MAX TEMP 1 [zd
[mw.55.1) ﬂ{ + ﬁ | ADEET '9?55&
1 22 2566
(11 22 2
P = [FEFE
q-'
TACWRNE : LUWESH_DT_SP e TREMANE : 1MWESH_OT_SF_H-L
IREZODESC: FSH WW DIFF IEn SE IRGOESC: FSH WW 0 SP OUT OF LIIIS
[lgﬂ
£ =)
S puirEnzET 155 LTS HY /L ; DofL (25
E B L 3 356
[zl L
S1 0 82 0 52 1
23 140 832 0
22 1210
24 120 ﬁ;# o
e 353']!1
-
“wHH FEH MIN TEMP B 1, =L
(msr.ss.l i—,‘!{ T 4 ADEPT Lrp

22 ZI388
22 2

Figure 6-16 DCS Controller Setpoint Selection

As with the min/max error calculations there is the potential problem that when the plant parameters
change in a way that causes the error to increase, a better error may not be possible and the past error
is no longer relevant. This problem is overcome by reapplying the stored airflows that provide the
lowest error between intrex differential temperature and the setpoint to the control model once every
60 seconds and updating the associated error value. This is accomplished in a single scan using the
single scan pulse that activates when the DCS clock is at 59 seconds. The logic for selecting the airflow
values that generate the minimum error between intrex differential temperature and the setpoint can
be seen in Figure 6-17. The logic also contains a dead band that is set to +/- .25 degrees F. This is to

prevent the airflows from changing unnecessarily.

65

.55, | g

k4 J

n,

i
B

R —— g

e

oo
.
=
oo 5
T |1
""a': el H
3
T 9 ehe Wi 'an i Ful saver[14L
o o
=
moma, pe_rp_o
T S e or o
3 3 i 51
P E I ik) i WDNG B
.11
3 ;
e = 5 L bu-HIE
5 £l 2 _ 4 —
= .] 71
:I‘ ; o 1aa
51 T 113 [
{if_iﬂ.“.! , il FEE TTEL TIIT 1i it
o
g
: 11
ﬁﬂh E 1% 3 i
-
o
oo 4
b
3
1 11
) g Pl e B
TR ¥ i
ELLL =1 -] TRCRD, _TDETE T
& T S T
EII] T
| = i san |12
i WIAOFE BOLAT) i = n
L] e T I0T i = n
- . — . - ™ -
R st o = N
-t _ = | o o o o TROOIIC A4 TT CTEL OT oUT
i san |12
a
=
oo
=
=
o
e —
| o TROITIE 4 TTC RI FIE AT
-
CER A PR 8 MR PLM CTRL 2+ RS IEW il san L3y & PSE A3 FDC a:nm@
] - - &EET
o -
=3 =
o s
= o
| 2
oo oz, s
o T oy v
N
CER A PRE A3143 MIR ELOW CTHL 2+ [P IEW FIN pere I mrmathama:nm@
L &EET
o .
=3 =
o o
= o
| :
moma, oo .
o T e ae R o
N
CER A PR 400 MR FLON CTRL -2+ [P IEW il s (L34 B9 PLE 500 BT IR PR o
1 WA 561
o oa -
=3 =
o s
= o
| 2
oo N ———
o T, o e o
N
CER A PR WG I FLOM CTEL -2+ [P IEW I P IE TR N BT N EW v
&EET
o oa .
=3 =
o oan
= an
| :
moma, iroans e).
. T e B i
N
————. 1% P5E DELG AIE FLOW CTRL 7 5 : 5 @ PSE DELG FD AR
CER - ! 5__{ L AL gl sopn L2 P 52
&EET
o oa -
=3 =
o
= =

Figure 6-17 DCS Control Optimization Logic

66

6.10 DCS Controller Output Signal Selection

The current logic for the intrex airflows uses curves that apply a specific airflow setpoint to a PID
controller for specific unit loads. The logic already contains a transfer switch that was installed
previously. A “remote control memory” (RCM) function code is used to allow the operator to switch
back and forth between the new neural network control and the airflow curves that are already
installed. In order for the operator to be able to turn on the neural network controls, at least one input
signal for each neural network input must be good quality. If all of the input signals for any neural
network input go bad quality, the neural network will automatically turn off. The logic for selecting the

neural network controller can be seen in Figure 6-18.

NN FSH CELL AB AV¥G TEMP B
mr.2.l s o _

NN A FBE BQ .
— o _— o

Tacvse
1 45

(.41 y U TQZAL SOLID FUEL FLOW EQ & . 033 7 & = DO/ Engéﬁf — e {)

ek — <

- " ReM oz
s
i :
NN _HEAT INEUT B i
nw.7.1 mEER
oo

Figure 6-18 DCS Neural Network Controller On/Off Logic

67

In addition to intrex differential temperature, it is very important to maintain ash flow through the
intrex. If the ash flow through the intrex stops, the ash will continue to build up in the cyclone. Without
the circulation of ash through the hot loop, effective heat transfer cannot take place and the unit will
have to come off line. In order to prevent cyclone plugging, a flush function was added to the airflow
selection logic. There are five pressure indications in the inlet of the intrex. When the pressure
indications are negative intrex ash flow is good. When all of the pressure indications are positive intrex
ash flow is poor. The flush sequence will increase all of the airflow values until the pressure indications
show that the intrex ash flow has improved. The flush will last no less than five minutes. The flush
sequence will take place if four of the five pressure indications are positive for 30 seconds, all five or the
pressure indications are positive, or four of the pressure indications read a pressure greater than 5” of
water. The DCS logic for flushing the intrex can be seen in Figure 6-19.

X 1L
Lol min |
AT/ R
@_63_2 FSH SFAL POT DNLG PRES © 5 e A

\

\
S0 e ‘ ﬂ'

\

\

\

o —
| [
el =)

\

H//T

:‘
~
v
]
B
3
o
g
E
g
:
=
o
\
\

3roelsr i1
LS N
s Ll H//T
u—rx—| iz
F5H GEAL BOT DNLG PRES A4)
{Fr.g0.2 iy T

Sl 5T

TzeT T

o
v Sl H//T

T ATl |
Fr.60.2 FSH GEAT POT DNLG PIEN PRES 5w

35747(26] 5 o

3t s "
g — —
o | H//T
EI7—L_|
@ SEAL POT DNLG PFES E e

&gl 1/1

51 ¢
sr 2158
sz 9

\

\

\

\

I

\

\

\

(12

‘ Gl nym [0 T
\ peaa
\

\

\

I

[

\

\

\

TD-DI6

Figure 6-19 DCS Intrex Flush Logic

68

The output of the flush logic will stay active for at least five minutes once it is activated before it the

system will switch back to normal control. This is to prevent system instability that may result from the

plugged cyclone detection turning on and off if the system is operating near the threshold. To increase

stability, a lag function was also added to keep the airflows from changing too rapidly. The lag blocks

are set to allow the airflows to reach 63% of their change in value in 10 seconds and 99% of their change

in value in 50 seconds. This logic can be seen in Figure 6-20 along with the AO/L blocks that will be used

as the inputs into the live system.

TAGNAME: 1NN FSH A1AF_OUT

TAGDESC: NI F3H A1 ATR FLOW OUT
“\ NN F3H 4l REC ATR FLOT 51
@N.SE.I A f ;3 [190y legl pif L3lg Gl ansn LL20L P
| €l ESE A o« 3IF T ™ 36T ™
" (2] T l
3607 | 32 o @z 10 a0
] 7 22 0
@1 zs00 | a4 =000
25 2750
| a6 -1o TAGHAME: 1MN FSH ALAZAF_OUT
TAGDEZC: NN F2H Az/he ATR FLOW OUT
@N a1 " NN FSH AZ/A3 REC ATR FLOW | 51 | ol
.53, P 0 1«4 NP NV PR H| RSP 0% Bl a0/ [0
Py oy EIY oy { 3t:3 T
47 g 2l
i 121 | T
360F | # 0 @ 10 #= 0
35 0 %2 0 =2 0
%1 2500 | 34 2000
| TAFNAME : mrmﬁcﬁyso
TAGDE3C: NN F3H FLOW OUT
‘\NN E5g SUC REC AR FLOW | 51 o
NN.33.1
(u 5« [CTINP T R TR IR IR 1} s
13 ZLI 51« 3L ¥ -
i 12 T
3609 | 4 o 2 10 = 0
#s o #4 0 2 0
%1 2000 | 34 2000
35 2750
| s 1o TAGNAME: 1MN_FPSH DNLGAF_OUT
TAGDEZC: NN FZH DNLG ATR FLOW QUT
@Nsal “\ NN EsuDNI.GREcm:RFI.UW | 51 o] 1
A i o T 190, gl F(t 13, Sl A0/T 130
1T LI 14 L] il 362
A 121 T
61T | 22 0 2 10 =z o
#s o #4 0 2 0
[pp— | 21 4000
| TAGHAME: .'I.I\INFSHSSL ST
TAGDEZE: NN PeH PLOW OUT
NN FSH UPLG BEC ATR FIOW | &1 |
. 531 i i0:¢1-« [N T VAR (RO T R [o
1T LI -4 KA L 32
A (2 T
61T | 22 0 2 10 sz D
as o s o 0
[— | 24 go00
#5 s000
| 26 -10
—— | a7 1
T_ EE——
TD-DI&E 135 —_

362 |

Figure 6-20 DCS Neural Network Controller Output to Plant Logic

69

Chapter 7 : Testing and Results

In order to verify that the neural network model was functioning properly in the DCS, the output of the
verification neural network model was compared to the actual intrex differential temperature. A DCS
trend was generated to compare the model performance to the plant. The largest deviation between
the signals reached nearly 2.5 degrees F during a time that the actual intrex differential temperature
was climbing rapidly. The deviation between the signals was less than 0.5 degrees F for the majority of
the timeframe. The neural network model tracks the live plant with enough accuracy for the neural
network model predictive controller to function properly. The trend of the plant intrex differential

temperature and the verification Neural Network Model can be seen in Figure 7-1.

To verify the operating range of the neural network, the minimum and maximum intrex differential
temperatures generated by the controller were compared to the plant intrex differential temperature.
A DCS trend was generated to verify the neural network model predictive controller had a sufficient
controllable range. The results show that under most circumstances the controller will have the ability
to control the intrex temperature within a range of 5 degrees F. This is sufficient for the purposes of this
project and can be beneficial to the plant. The range may be increased by performing additional airflow
testing and using that data to re-tune the neural network. A trend of the plant intrex differential

temperature vs. the minimum and maximum ranges of the controller can be seen in Figure 7-2.

70

147
14?7

Intrex DT = —
Model Out =

=
130,
07:30:00 08:56:42 TU.2|3.38 11:50:23 131711
03/29/2013 09/28/2013 03/29/2013 09/29/2013 09/28/2013
Figure 7-1 Intrex Differential Temperature vs. Verification Neural Network Model Output
147
14 Intrex DT = s—
Min Temp
Max Temp s—
13?\
137"

126&
128

07:30:00 05:56:48 10:23:36 11:50:23 13171
08/28/203 09/29/2013 08/29/203 08/29/2013 08/29/201%

Figure 7-2 Neural Network Control Min/Max Capabilities vs. Intrex Differential Temperature

71

It can be seen in Figures 7-1 and 7-2 that the plant intrex differential temperature is continuously
changing. With this temperature continuously changing, the main steam attemperator valves have to
continuously modulate to try to control main steam temperature. If the intrex differential temperature

was constant, the control of the main steam temperature would be more stable.

The set point for the neural network model predictive controller was set to 136 degrees F and left at
that state for approximately 90 minutes. During this time, the actual intrex temperature was compared
with the output of the neural network control model. The control model is the model that the
optimization algorithm applies random airflows to in order to try to reach the operator entered intrex
differential temperature. Figure 7-3 shows the output of the actual intrex differential temperature, the
neural network control model output and the airflow values that would be applied to keep the neural

network control model output at the set point.

138
138
300

. Intrex DT == Set Point A2/A3 Air Flow = DNLG Air Flow=——
m§ Control DT === Al Air Flow SUC Air Flow === UPLG Air Flow

131

08:58:56 05:21:41 09:44:26 10:07:11 10:29.56
10/01/2013 10/071/2013 10/01/2013 10/01/2013 10/0/2013

Figure 7-3 Intrex Differential temperature vs. Controller Model Output and Optimized Air Flows

72

It can be seen in Figure 7-3 that the controller optimization algorithm continuously modulates the intrex
airflows for the controller model to keep the output of the controller model at the 136 degree F
setpoint. The controller model output is able to be controlled to within +/-.1 degrees F for the majority
of the time period. The maximum deviation was approximately -0.5 degrees F at approximately 9:10
AM. This was the result of the plant parameters changing to the point that the maximum controllable
temperature fell below the setpoint for a short time. Another timeframe of approximately 90 minutes
with a setpoint of 33 degrees F is plotted in Figure 7-4. During this timeframe it can be seen that the
controller setpoint is often higher than the maximum controllable temperature and the neural network
controller model output trends below the setpoint during these circumstances. With a setpoint near the
edge of the controllable range, the output is less stable than that seen in Figure 7-3 but the system will

still control to the setpoint when able.

Intrex DT === Set Point A2/A3 Air Flow DNLG Air Flow:
Control DT === A1l Air Flow SUC Air Flow === UPLG Air Flow

A\

/

020523 03:27:34 03:45 46 04:03:58 04:22.10
10/0/2003 10/01/2013 10/01/2013 104012013 104072003

Figure 7-4 Intrex Differential Temperature vs. Controller Model Output and Optimized Air Flows with
Controller Setpoint near The Edge of The Controllable Range

73

In addition to the stability of the controller, it is also important to look at the response. A series of step
changes were made to the intrex differential temperature setpoint over a timeframe of approximately
90 minutes. The typical response time was found to be less than 60 seconds with the airflows reacting
very rapidly to achieve the new setpoint. The overshoot was typically low but the controller does not
have any programming that will prevent overshoot in the control model. This was considered before
the programming was done and if overshoot had been an issue, logic would have been added to limit
the overshoot by allowing only airflows with better errors on the same side of the setpoint as the
current output to be used. The controller output airflows are sufficiently damped and the recovery from
overshoot is quick enough that the additional overshoot protection was not deemed necessary. There is
still the potential for deviation where the setpoint is outside of the controllable range. Figure 7-5 shows
the series of step responses that were made. The airflows shown are the undamped signals within the

controller. Figure 7-6 shows a closer view of approximately the first half of the step response sequence.

138 3000
138 2600

3001 8500

[
131
131

06:55.02 07:21:46 07:44:31 080716 08:30:01
10/014203 10/0142012 10/01/2013 10/01/2012 10/01/2013

Figure 7-5 Neural Network Model Predictive Controller Step Response

74

138
138
3001

135

135%

1500

0
131§
13

06:55:02 07:21:46 07:44:31
1040142013 1040142013 10/0142013

Figure 7-6 Neural Network Model Predictive Controller magnified Step Response

In order to tie the airflows setpoints from the neural network model predictive controller to the live
plant, a unit outage will be required after which point a unit startup would be required to perform
testing. No unit outage followed by a unit startup is scheduled within the timeframe of this project. The
original intent was to manually input the airflow setpoints to match the output of the neural network
controller. From the Figures above it can be seen that the airflows have to constantly adjust to maintain
a temperature. At the time of the test, the plant airflows were at constant values. With this it can be
seen how much the intrex differential temperature changes due to other plant parameters. The airflows
cannot be set quickly enough manually to properly show controller performance.

75

Chapter 8 Conclusions and Areas of Future Work

8.1 Conclusions

This project has shown that a neural network model can be utilized to successfully model an intrex
superheater in a circulating fluidized boiler with enough accuracy to be utilized for model predictive
control. When compared to the regression model, the neural network model had better performance.
The additional performance comes with additional costs in time and complexity. Training the neural
network in Matlab required days of testing where Minitab was able to provide a regression model
almost instantly. The neural network model required fifty pages of DCS logic to implement where the
regression model would have only required one page. If accuracy is the primary objective, the neural

network model is preferred even with the greater time and resource requirements.

The use of the linear congruential random number generator was found to work very well for the
optimization algorithm. The majority of the resources used for the random number generators were
required for performing number rounding. Of the six pages of logic required to implement the five
random number generators, approximately five pages were dedicated to rounding. The remaining logic

was easily implemented in the DCS and required little system resources.

The optimization algorithm as a whole had response times much better than those required and much

better than what was anticipated at the start of this project. A controller scan time of 100ms was found

76

to be more than sufficient for the purposes of this project. The system stability was also much better
than expected when the controller setpoint was within the range of the controller. The range of the

controller was on the low end of what was expected but is still sufficient to be beneficial.

8.2 Areas of Future work

In order to determine which system variables to use for inputs into the neural network, a stepwise linear
regression was used. This method provided sufficient results but may have eliminated other variables
that did not have a linear relationship. Any such variables would not have been useful for a linear
regression model but may have been useful for the neural network model and may have provided a
more accurate neural network model. Future research should include alternate methods of selecting

which system variables to use for inputs into the neural network model.

The neural network module utilized for the model predictive controller was tuned using a genetic
algorithm. The genetic algorithm has many parameters that can be adjusted to alter how it finds
optimal weights for the neural network. The ability of the genetic algorithm to find the optimal weights
depends on the size of the population, number of parents in the population and the manner in which
the population is mutated. This project showed three different methods of mutation with the cosine
decay mutation function providing the most accurate results. With further research into the genetic
algorithm parameters, it is believed that a better neural network model may be possible. There are also

other stochastic optimization algorithms such as particle swarm that may provide different results.

Neural network structures with ten and fifteen hidden layer nodes were tested to determine which

provided the best results. Between these two structures, the neural network with fifteen hidden layers

77

provided better results. There are many other combinations of layer one and layer two nodes that
could be tested to find the optimum structure for this application. When the structure of the neural
network changes, the number of weights changes. With different population sizes, different genetic
algorithm parameters will likely be required for different neural network structures to find the optimum

weights.

For the purposes of this project, the neural network model predictive controller was programmed into
the DCS using pre-defined function codes. In general, the vast majority of DCS programming is done
using function codes and any engineer or technician who works with a DCS system on regular basis will
be familiar with the function codes associated with their DCS system. The DCS system for this project
does have the ability to accept code programmed using C. This is typically only done by the DCS
manufacturer for specialized applications and very little documentation is available on the topic. Future
research should include a neural network model predictive controller programmed into the DCS using C
instead of function codes. This would likely require less controller resources as the C programming
language is more flexible than the pre-defined function blocks which would allow the programming to

be done more efficiently.

In addition to the intrex, there are other systems within the CFB which can benefit from a neural
network model predictive controller such as the one implemented in this project. There is little to no
direct measurement of the properties of the bed material throughout the CFB hot loop. Neural network
model predictive controllers may also prove beneficial to other control loops that are directly or
indirectly impacted by the properties of the bed material. Future work may include neural network
model predictive control of combustor bed level, fuel distribution and limestone distribution as well as

numerous other processes within the CFB control system.

78

Appendix A - Minitab Stepwise Regression Results

Stepwise Regression: intrex a TEMP IN versus Avg Al AF, Avg A2 AF, ...

Alpha-to-Enter: 0.05 Alpha-to-Remove: 0.05

Response is intrex a TEMP INCREASE on 25 predictors, with N = 5886

Step 1 2 3 4 5
Constant 95.47 881.56 947.16 937.86 924.68
Avg Al AF 0.00518 0.00097 0.00124 0.00120 0.00107
T-Value 11.35 4.62 8.31 8.05 7.23
P-Value 0.000 0.000 0.000 0.000 0.000
Avg A2 AF -0.00290 -0.00331 -0.00184 -0.00165 -0.00160
T-Value -3.55 -8.89 -6.92 -6.19 -6.05
P-Value 0.000 0.000 0.000 0.000 0.000
Avg A3 AF -0.00090 0.00204 0.00076 0.00069 0.00059
T-Value -1.30 8.40 3.37 3.07 2.65
P-Value 0.193 0.000 0.001 0.002 0.008
Avg SUC AF -0.00324 -0.00039 -0.00031 =-0.00009 -0.00015
T-Value -14.44 -3.74 -4.19 -1.12 -1.87
P-Value 0.000 0.000 0.000 0.201 0.0061
DNLG AF 0.01147 0.00159 0.00044 0.00044 0.00035
T-Value 11.01 3.33 1.28 1.30 1.04
P-Value 0.000 0.001 0.201 0.195 0.298
UPLG AF 0.00129 0.00012 -0.00002 -0.00002 0.00008
T-Value 12.35 2.57 -0.61 -0.72 2.18
P-Value 0.000 0.010 0.543 0.472 0.029
STM IN TE -0.8688 -0.9401 -0.9283 -0.9247
T-Value -150.18 -221.97 -209.39 -209.01
P-Value 0.000 0.000 0.000 0.000
Main stm deviation 0.6851 0.6796 0.6728
T-Value 75.29 74.93 74.39
P-Value 0.000 0.000 0.000
AVG FB -0.166 -0.239
T-Value -8.45 -11.24
P-Value 0.000 0.000
Cell AB Ave Temp 0.00642
T-Value 8.78
P-Value 0.000
Heat in

T-Value

P-Value

S 5.87 2.67 1.90 1.89 1.88
R-Sqg 14.01 82.22 90.95 91.06 91.17
R-Sqg(adj) 13.92 82.20 90.94 91.05 91.16

79

6
869.75

0.00105
7.29
0.000

-0.00101
-3.90
0.000

0.00053
2.46
0.014

0.00025
3.15
0.002

0.00094
2.86
0.004

-0.00029
-7.16
0.000

-0.8833
-183.35
0.000

0.6348
70.48
0.000

-0.178
-8.55
0.000

0.02614
20.76
0.000

-0.00607
-18.96
0.000

1.83
91.68
91.67

Step
Constant

Avg Al AF
T-Value
P-Value

Avg A2 AF
T-Value
P-Value

Avg A3 AF
T-Value
P-Value

Avg SUC AF
T-Value
P-Value

DNLG AF
T-Value
P-Value

UPLG AF
T-Value
P-Value

STM IN TE
T-Value
P-Value

Main stm deviation

T-Value
P-Value

AVG FB
T-Value
P-Value

Cell AB Ave Temp

T-Value
P-Value

Heat in
T-Value
P-Value

Total PA
T-Value
P-Value

Cell AA Ave Temp

T-Value
P-vValue

Steam Flow
T-Value
P-vValue

AVG FB Temp
T-Value
P-Value

7
852.4

0.00112
7.83
0.000

-0.00097
-3.81
0.000

0.00064
2.99
0.003

0.00025
3.19
0.001

0.00112
3.44
0.001

-0.00026
-6.67
0.000

-0.8727
-179.68
0.000

0.6255
69.92
0.000

-0.229
-10.85
0.000

0.0306
23.43
0.000

-0.00972
-21.59
0.000

0.00670
11.41
0.000

8
833.0

0.00113
8.03
0.000

-0.00081
-3.21
0.001

0.00080
3.75
0.000

0.00019
2.53
0.011

0.00090
2.79
0.005

-0.00012
-2.86
0.004

-0.8567
-170.69
0.000

0.6075
67.46
0.000

-0.316
-14.17
0.000

0.0243
17.25
0.000

-0.01166
-24.35
0.000

0.00647
11.12
0.000

0.0126
11.06
0.000

811.5

0.00117
8.37
0.000

-0.00083
-3.30
0.001

0.00097
4.57
0.000

0.00027
3.51
0.000

0.00095
2.94
0.003

-0.00013
-3.16
0.002

-0.8443
-162.96
0.000

0.6018
67.09
0.000

-0.283
-12.55
0.000

0.0286
19.28
0.000

-0.00499
-5.57
0.000

0.00759
12.83
0.000

0.0164
13.50
0.000

-0.0110

-8.79
0.000

80

10
806.9

0.00117
8.32
0.000

-0.00087
-3.47
0.001

0.00097
4.56
0.000

0.00031
4.07
0.000

0.00084
2.63
0.009

-0.00014
-3.47
0.001

-0.8331
-148.60
0.000

0.5970
66.34
0.000

-0.312
-13.47
0.000

0.0330
19.35
0.000

-0.00566
-6.27
0.000

0.00610
9.28
0.000

0.0170
14.00
0.000

-0.0093
-7.23
0.000

-0.0076
-5.18
0.000

11
808.9

0.00118
8.42
0.000

-0.00083
-3.32
0.001

0.00093
4.39
0.000

0.00032
4.16
0.000

0.00089
2.717
0.006

-0.00013
-3.22
0.001

-0.8324
-148.78
0.000

0.5952
66.25
0.000

-0.320
-13.79
0.000

0.0328
19.26
0.000

-0.00437
-4.69
0.000

0.00610
9.31
0.000

0.0179
14.60
0.000

-0.0105
-8.05
0.000

-0.0102
-6.59
0.000

12
807.1

0.00130
9.17
0.000

-0.00093
-3.72
0.000

0.00099
4.70
0.000

0.00031
3.99
0.000

0.00081
2.53
0.011

-0.00012
-2.88
0.004

-0.8348
-149.06
0.000

0.5930
66.08
0.000

-0.306
-13.17
0.000

0.0281
14.66
0.000

-0.00448
-4.81
0.000

0.00595
9.09
0.000

0.0150
11.23
0.000

-0.0108
-8.25
0.000

-0.0109
-7.01
0.000

Limestne Flow
T-Value
P-Value

UPLEG TEMP
T-Value
P-Value

S
R-Sqg
R-Sqg(adj)

Step
Constant

Avg Al AF
T-Value
P-Value

Avg A2 AF
T-Value
P-Value

Avg A3 AF
T-Value
P-Value

Avg SUC AF
T-Value
P-Value

DNLG AF
T-Value
P-Value

UPLG AF
T-Value
P-Value

STM IN TE
T-Value
P-Value

Main stm deviation

T-Value
P-Value

AVG FB
T-Value
P-Value

Cell AB Ave Temp

T-Value
P-Value

Heat in
T-Value
P-Value

Total PA
T-Value

1.81
91.86
91.85

13
805.0

.00130
9.21
0.000

.00086
-3.38
0.001

.00101
4.76
0.000

.00036
4.53
0.000

.00085
2.66
0.008

.00012
-2.87
0.004

0.8351
149.14
0.000

0.5926
66.06
0.000

-0.298
-12.67
0.000

0.0295
14.76
0.000

.00451
-4.84
0.000

.00600
9.17

-0.

1.79
92.03
92.01

14
802.9

.00129
9.13
0.000

00085
-3.34
0.001

.00101
4.76
0.000

.00040
4.85
0.000

.00085
2.66
0.008

.00011
-2.57
0.010

0.8341
148.41
0.000

0.5915
65.85
0.000

-0.316
-12.59
0.000

0.0292
14.58
0.000

.00480
-5.10
0.000

.00615
9.34

-0.

1.78
92.13
92.11

15
805.1

.00128
9.06
0.000

00084
-3.32
0.001

.00100
4.72
0.000

.00040
4.87
0.000

.00082
2.56
0.011

.00010
-2.49
0.013

0.8355
147.68
0.000

0.5920
65.90
0.000

-0.324
-12.78
0.000

0.0284
13.94
0.000

.00482
-5.12
0.000

.00557
7.81

81

1.77
92.17
92.15

-0.0072
-5.25
0.000

1.77
92.21
92.18

-0.0075
-5.49
0.000

0.0109
5.28
0.000

1.76
92.24
92.22

P-Value

Cell AA Ave
T-Value
P-Value

Steam Flow
T-Value
P-Value

AVG FB Temp
T-Value
P-Value

Limestne Flow

T-Value
P-Value

UPLEG TEMP
T-Value
P-Value

DNLG Temp
T-Value
P-Value

AVG BED
T-Value
P-Value

TOT FUEL -5
T-Value
P-Value

S
R-Sqg
R-Sq(adj)

0.000

0.0152
11.36
0.000

Temp

-0.0113
-8.53
0.000

-0.0074
-3.55
0.000

-0.0079
-5.73
0.000

0.0129
5.82
0.000

-0.0051
-2.46
0.014

1.76
92.25
92.23

0.000

0.0155
11.50
0.000

-0.0111
-8.37
0.000

-0.0079
-3.73
0.000

-0.0077
-5.59
0.000

0.0134
6.02
0.000

-0.0047
-2.25
0.025

0.030
2.05
0.040

1.76
92.26
92.23

0.000

0.0154
11.45
0.000

-0.0118
-8.64
0.000

-0.0081
-3.86
0.000

-0.0092
-5.94
0.000

0.0140
6.25
0.000

-0.0049
-2.33
0.020

0.032
2.21
0.027

0.0148
2.13
0.033

1.76

92.26
92.24

82

Appendix B — Matlab Code for Model Development

B-1 Matlab Code to Calculate Neural Network Model Output

function [MSE,err,maxer,out]=

neurnet (inA,outA,llw,1llc, 12w, 12c,0lw,0lc,layln,lay2n)

o\

Network Structure

o° o oe

o° oo

layln defines the number of neurons in the input layer. lay2n defines
the number of neurons in the second layer.
always be 1 neuron. Weights will be applied before the summing blocks
for each neuron. Constants will be added at each summing block.

The output of each neuron will pass through an activation function

The output layer will

SInputs:

% inA = input data set (variables in different columns)
% outA = expected output for each input
% 1llw = layer 1 weights

% 1llc = layer 1 constants

% 12w = layer 2 weights

% 12c = layer 2 counstants

% olw = output layer weights

% olc = output layer constant

% layln = number of first layer neurons
% lay2n = number of second layer neurons
%O0utputs:

o

MSE = Mean square error
= raw error values
maxer = maximum error
neural net output

o

(]

=

-
|

o

oe
(@]
o
ot
Il

out = zeros(l,size(inA,1));
weightsl=reshape (llw,size(inA,2),layln);
llc=repmat (llc,size(inA,1),1);
laylout = (inA*weightsl)+1llc;
laylout 2./ (l+exp (-2.*laylout))-1;
weights2=reshape (12w, layln, lay2n);
lay2out = laylout*weights2;
12c=repmat (12c,size(inA,1),1);
lay2out = lay2out+l2c;

lay2out = 2./ (l+exp(-2*lay2out))-1;
weightsout=transpose (olw) ;

out = lay2out*weightsout+olc;

err = OutA-out;

maxer = max(err);
MSE = mean|((err) .”2);
end

83

$Initialize Weight Matrix
%reshape weight matrix
%Create 11 constant matrix
%$layer 1 summing node

%$layer 1 activation function
$reshape weight matrix
$layer 2 summing node part 1
%$create 12 constant matrix
$layer 2 summing node part2
%$layer 2 activation function
%transpose out weights
Soutput summing node
%calculate error

%$find maximum error
scalculate MSE

B-2 Matlab Code for Genetic Algorithm Population Generation

function w = genalg(parents,mut, totgen, gen, pop)

$Inputs
% Parents = matrix of parent weights
% mut = mutation
% totgen = total number of generations
% gen = current generation number
% pop = Size of population to generate
%$0utputs
% w = weighs
numc = pop - size(parents,l); gnumber of children to generate
% make children
w = zeros (numc, size (parents,2));
parfor i = l:numc $for the number of children
% generate 2x1 matrix of ints from 1l:number of parents
x = randi (size (parents,1),2,1);
% generate lxnumber of weights matrix of ints from 1:2

y = randi(2,1,size(parents,?2));

convert 2's to 1 and 1's to 0 to select first parent
pl=y-1;

convert 2's to 0 to select second parent
p2=abs(y-2);

combine parts frome each parent for each weight

oe

oe

o

w(i,:)=pl(l,:).*parents(x(1l),:)+p2(1l,:) .*parents(x(2),:);
end
% mutate children
% determine which weights will be mutated
mutloc = randi (numc*size (parents,2),1,ceil (mut*numc*size (parents,2)));
% mutation varies from 50% to 10% as the generation number is increased
$mutation = .4* (totgen-gen)/totgen+.1 ;
% mutation decays from 60% to 10% with an added cosine function
mutation =(.4* (totgen-gen)/totgen+.1)+.1* ((totgen-

gen) /totgen) *cos (20*gen/totgen*pi) ;
Constant Mutation of 25%

oe

gmutation = .25;
% determine the amount of mutation for each weight (-1:1 * mutation)
mutmul = (l1-(rand(l,length(mutloc)) *2)*mutation);
% generate an empty matrix for the new children
mutmat = ones (numc,size (parents,?2));
for 1 = l:length(mutloc) $for each mutation
mutmat (mutloc(i)) = mutmul(i); S$fill in the mutation matrix
end
w =W .* mutmat; %generate new children

% make population of parents and children
w = cat(l,parents,w);
end

84

B-3 Matlab Code for Data Normalization
function [normdatal]= mmnorm (normmat,data)

This function will take in data and an associated normalization matrix
(normmat) containing the mean and standard deviation of the data set

o° oo

% and perform normalization. The normalized data will be returned.

normdata = zeros(size(data,l),size(data,2)); $Initialize the matrix

x=normmat (1, :); $Get mean for each variable

y=normmat (2, :); $Get SD for each variable

parfor i=l:size(data,?2) $Normalize the data
normdata(:,1i) = ((data(:,1)-x(i)))/y(i);

end

end

function [normdatal= immnorm (normmat,data)

oe

This function will take in data and an associated normalization matrix
(normmat) containg the mean and standard deviation of the data set and

oe

% perform inverse normalization. The un-normalized data will be returned.

normdata = zeros (size(data,l),size(data,?2)); $Initialize the matrix

x=normmat (1, :); %$Get mean for each variable

y=normmat (2, :); %$Get SD for each variable

parfor i=l:size(data,?2) %$Un-Normalize the data
normdata(:,1i) = ((data(:,1)*y(1)))+x(1);

end

end

85

B-4 Matlab Code for Neural Network Model Training and Testing

%Nerual Network Model Program
clear

%get training data
intrain = xlsread('Training Data in2');
outtrain = xlsread('Training Data out2');

%get testing data
intest = xlsread('Testing Data in2');
outtest = xlsread('Testing Data out2'");

$Get normalization Matrix
innormmat=xlsread('STD Norm in'");
outnormmat=xlsread('STD Norm out');

$Perform Normalization

intrain = mmnorm(innormmat, intrain);
outtrain = mmnorm (outnormmat,outtrain);
intest = mmnorm(innormmat, intest);
outtest = mmnorm(outnormmat,outtest);

%$Define Neural Network Structure
% [MSE, err,maxer,out]= neurnet (inA,outA,llw,1llc,12w,12c,o0lw,layln,lay2n);

LIN = 20; number of neurons in layer 1
L2N = 15; $number of neurons in layer 2
nLlw = LIN * size(intrain,?2); $number of layer 1 weights

nLlc = LIN; Snumber of layer 1 constants
nL2w = L2N*L1N; Snumber of layer 2 weights

nL2c = L2N; Snumber of layer 2 constants
nOLw = L2N; snumber of output layer weights
nOLc = 1;

Totw = nLlw+nLlc+nL2w+nL2c+nOLw+nOLc; $total number of weights
nin = size(intrain,?2);

%Set Genetic Algorithm parameters

mutation = .1; %amount of mutation in genetic algorithm
pop = 750; Spopulation (number of sets of weights)
numpar = 225; snumber of parents to use to generate
children

generations = 750; Snumber of generations

%Generate inital weights from -1 to 1

w = (rand(pop, Totw)-.5)*2;

$load ('C:\Documents and Settings\I&C ENGINEER\Desktop\NOl Intrex A NN\MATLAB
Final\Test Weights\Test07.mat")

Sw=weightout;

$Training

MSE = zeros (l,generations);
%$for each generation

86

for j = l:generations

[

% calculate the error for each parent

mse=zeros (1,size(w,1)); %$Initialize mse
error=zeros (size(w,1l),size(intrain,l)); %$Initialize error
maxer=zeros (1l,size(w,1l)); $Initialize maxer

out = zeros(size(w,1),size(intrain,1l)); %Initialize out

parfor k = l:size(w,1); $For each parent weight

%Convert Weights for NN program
(11w, 1llc, 12w, 1l2c, outw,outc]=expweights(w(k,:),L1N,L2N,nin);
%Calculate the mse for the parent
[mse (k), error(k,:), maxer (k),out(k,:)] =
neurnet (intrain,outtrain,llw,llc, 12w, 12c,outw,outc, LIN, L2N) ;
end

%capture best MSE

MSE(j) = min (mse);

% find the best weights
parent=zeros (numpar, Totw) ;

for kk = l:numpar; %$for one to the number of parents
keep = find(mse == min(mse)); %find the location of minimum error
parent (kk, :) = w(keep(1l),:); %$Store the parent with minimum

error

mse (keep) = 10000000; $maximize error for that parent

end

%Generate new weights

w = genalg(parent,mutation,generations, j,pop);

end

%$Plot the MSE

Figure ('Name', '"MSE', "numbertitle', 'off', 'color','w")
plot (MSE)

%Capture the weight with the lowest MSE

weightout = parent(l,:);

%$Training Verification

%Generate Intrex Output using best weights and training data

[l1lw, 1llc, 12w, 1l2c, outw,outc]=expweights(weightout,LlN,L2N,nin);
[msetr, errortr, maxertr,outtr] =

neurnet (intrain,outtrain,llw,1llc, 12w, 12c,outw,outc, L1IN, L2N) ;

outtrn= immnorm(outnormmat, outtr);

%Get Actual intrex differential temperature

outtrainx = xlsread('Training Data out2');

%$Plot the training output data vs the NN output with the best weights
Figure ('Name', 'Training Verification', "numbertitle', 'off', 'color','w'")
plot (outtrainx)

hold on

plot (outtrn, 'r'")

$Testing

%Generate Intrex Output using best weights and testing data

(11w, 1llc, 12w, 1l2c, outw,outc]=expweights (weightout,L1N,L2N,size (intest,2));
[msetst, errortst, maxertst,outtst] =

neurnet (intest, outtest, 1llw,1llc, 12w, 12c, outw,outc, LIN, L2N) ;

outtst= immnorm(outnormmat,outtst);

%Get Actual intrex differential temperature

87

outtstx = xlsread('Testing Data out2');

%$Plot the testing output data vs the NN output with the best weights
Figure ('Name', 'Testing Verification', "'numbertitle', 'off', 'color','w'")
plot (outtstx)

hold on

plot (outtst, 'r'")

%Calculate Regression output

intestx=xlsread('Testing Data In2'"); %$Get Input Data
re=xlsread('regresscon'); %$Get regression coefficients

regtesta=transpose (intestx) ;
regtesta (21, :)=1;
regouta=re*regtesta; %Caclulate output of regression model

plot (regouta, 'g')

%Calculate MSE for regression and NN models
regmse=mean ((outtstx-transpose (regouta)) .”2)
nnmse=mean ((outtstx-outtst) .*2)

%$Plot Regression Error Histogram

Figure ('Name', 'Regression Error Histogram', 'numbertitle','off', 'color','w')
hold on

E=outtstx-transpose (regouta) ; %Calculate Raw testing error
range=round (min (E)) :1:round (max (E)) ; %Determine the error range

hist (E, range) %$Plot error histogram
teststdr=std(E) ; $calculate error standard deviation
testmeanr=mean (E) ; $calculate error mean

%$Training data error

Figure ('Name', 'Training Error Histogram', 'numbertitle', 'off', 'color','w'")
hold on

E=outtrainx-outtrn; %Caclulate Raw training error
range=round (min(E)) :1:round (max (E)); %determine the error range

hist (E, range) %$Plot error histogram
trainstd=std(E) ; %$calculate error standard deviation
trainmean=mean (E) ; $calculate error mean

clear E range

%$Testing data error

Figure ('Name', 'Testing Error Histogram', 'numbertitle', 'off', 'color','w')
hold on

E=outtstx-outtst; %Calculate Raw testing error
range=round (min (E)) :1:round (max (E)); %Determine the error range

h42=hist (E, range) ; %$Plot error histogram
teststd=std (E) ; %$calculate error standard deviation
testmean=mean (E) ; %$calculate error mean

%get testing data

intestlm = xlsread('Testing Data in Imin');
outtestlm = xlsread('Testing Data out Imin'");
intestlmx=intestlm;

intestlm = mmnorm(innormmat, intestlm);
outtestlm = mmnorm(outnormmat, outtestlm);

88

%Generate Intrex Output using best weights and testing data

[l1lw, 1llc, 12w, 1l2c, outw,outc]=expweights(weightout,L1N,L2N,size(intest,2));
[msetstlm, errortst, maxertst,outtstlm] =

neurnet (intestlm, outtestlm, 11w, 1llc, 12w, 12c, outw,outc, LIN, L2N) ;

outtstlm= immnorm (outnormmat,outtstlm);

%Get Actual intrex differential temperature

outtstxlm = xlsread('Testing Data out Imin'");

%$Plot the testing output data vs the NN output with the best weights
Figure ('Name', 'Testing 1 min Verification', 'numbertitle', 'off', 'color','w')
plot (outtstxlm, 'g')

hold on

plot (outtstlm, 'm'")

re=xlsread('regresscon');
regtest=transpose (intestlmx) ;
regtest (21, :)=1;
regout=re*regtest;

plot (regout, 'b') ;

89

Appendix C — Neural Network Testing Results

All tests performed with a population of 750

Test # Parents [L2 Nodes |Decay % Mut MSE STD Mean
1225 (30%) 10|None(25%) 10 3.198 1.7866] -0.0837
2(225 (30%) 10|None(25%) 15 3.1486 1.7709 0.1161
3(225 (30%) 10|None(25%) 20 3.1458 1.7739] -0.0062
4(225 (30%) 10(Linear 10 2.9768 1.7256 0.0016
5(225 (30%) 10|Linear 15 2.8604 1.691 0.0429
6(225 (30%) 10|Linear 20 2.9528 1.7183] -0.0357
71225 (30%) 10|Cosine 10 2.6875 1.6383 0.0666
8(225 (30%) 10(Cosine 15 3.0278 1.7385 0.0801
9(225 (30%) 10|Cosine 20 3.3537 1.8314 0.0272

10]225 (30%) 15|None(25%) 10 2.9695 1.708] -0.2309
11{225 (30%) 15(None(25%) 15 3.0335 1.742 0.0125
121225 (30%) 15|None(25%) 20 3.0268 1.7395] -0.0447
131225 (30%) 15(Linear 10 2.8601 1.6901| -0.0675
141225 (30%) 15(Linear 15 3.094 1.7592| -0.0145
15]225 (30%) 15(Linear 20 3.2209 1.7946] -0.0389
16]225 (30%) 15|Cosine 10 2.496 1.5785| -0.0722
171225 (30%) 15(Cosine 15 2.8213 1.6799] 0.01114
181225 (30%) 15|Cosine 20 3.2687 1.8083| 0.000217
19(300 (40%) 10{None(25%) 10 3.3289 1.812| -0.2162
20(300 (40%) 10|None(25%) 15 3.3397 1.806] -0.2803
21|300 (40%) 10{None(25%) 20 3.1988 1.788] -0.0539
221300 (40%) 10(Linear 10 2.9628 1.7173| -0.1206
23|300 (40%) 10|Linear 15 2.9203 1.7091| -0.0128
241300 (40%) 10(Linear 20 3.1373 1.7715] -0.0109
25300 (40%) 10|Cosine 10 2.7738 1.6657| -0.0096
26|300 (40%) 10|Cosine 15 2.9907 1.7301 0.0693
27|300 (40%) 10(Cosine 20 3.146 1.779] -0.0123
28]300 (40%) 15(None(25%) 10 3.1005 1.7554| -0.1417
29|300 (40%) 15|None(25%) 15 3.2298 1.7956 0.0823
30(300 (40%) 15|None(25%) 20 3.0855 1.7561 0.0521
31300 (40%) 15|Linear 10 2.7674 1.6457 -0.245
32300 (40%) 15(Linear 15 2.8389 1.6848| -0.0347
331300 (40%) 15|Linear 20 3.048 1.7564| -0.0152
34(300 (40%) 15(Cosine 10 2.6993 1.6431 0.0233
35300 (40%) 15|Cosine 15 3.0085 1.7348| -0.0092
36(300 (40%) 15(Cosine 20 2.9145 1.7073] -0.1385

90

Appendix D — DCS Logic for Neural Network Model Predictive Controller Implementation

D-1 DCS Timing Logic and Executive blocks

3 WEHQMU [) az »z e [BT at T 1 [13 H 9 ® z
a1 S0 WIOHD CI5ND : n_!mn.nlll — S — =1
= WHIZ mRITI
a meieny
P — 1
T #329us [T TLIME TEINE I 000K
T #I71
0T IR
¥ ondd
€ 007

0 TATE T ot 1

TR
Toegam

s R

Teomn Toeson

TR
TREam

s R

TRECHR TURETRE

e
TozsiAR

T
T

ﬂ. 1
T Fz\wnaznw

_
C b i I._I

INDmES TOMERDD pmas

ADIIWADINT TOMIKDD IRDEES

M I ATOI0H

H A SUTNHITA
00EDdd f¥dil ATI0H
JIONLAN THHOAN 22830 NOTLTUNOTINDD

0T +¥INdoW 0 <nod ¢€0 +d0O0T

"
_. e

1EAI0TE TN INITAT

(2142079 TOILNOD INTR9TS

a1

+EL-

i8]

2 [t 2 5z] 2z

3 21 [T] [l v

91

D-2 DCS Input Logic
Intrex Cell AB Average Bed Temperature

| vooe =
o
WAIE 10
CLOE 2
A1) PSE AR A2 TEHE SEETTY Wl Ghexti 1
n ™ oo,

kS = ez o e,

e, E-4 i .
CROEWS

92

Intrex Cell AA Average Bed Temperature

| v 3
o
WALE 30
CLOF 3
O FEE A8 AU TOHE ELTTY T I
1} r Erim
® = e —
= e [—— — — — —
CROEWS

93

Intrex Upleg and Downleg Temperatures, Total Solid Fuel Flow

mmmlum?m.-__{-:} "

mm:umm?un=£:}
ar

| Loe =

Gl

HALE 11

LI |

LXINIE PRE OFL AAD FTA TIMEE, TOTAL FULL FLOM RELTTI ® shesti
W i} - [Erit

= i
— E [
CTERTLIT

%94

Intrex Cell A1, A2, and A3 Average Air Flows

a a
' '
4TI e W1 RIR T
g wana
t TR X i
mLana waara i
- — _mTmLNCh MER Bkl |
TR RT = 1)
WAL IR
a0
' o1 o e 2 v e, {: '
WORANLIADD NVIRNGD
" n
1 [
a3
R
o3z
" n
TR R TR R
w3
o Tt e 3 wan e
i i
" n
a H
2 2
a H
at at]
a a
| voge = -
B A
WA 11
[naFT]
SO0 PSE CTLL 1R PLORE SETTT) St
x 1] - Ericn
i E
e EE Qo o . — — —
CROERS 1 f c 1" N " i " a

95

Intrex Average Startup Channel, Downleg, and Upleg air flows

| v 3
o
WALE 30
CLOF &
OIS PRE §OC, ALG, WA DFLC AR FLOMS AMAD ETW Td TOME SETTTI W shesti 1
n [~ QT
L B
x — JSITFRCT I TR
= e [— —
CROEWS 3 '

96

Average Furnace Freeboard, Heat input, Furnace Bed Temperature and Intrex Differential Temperature

| Loe 2
ik
WALE 11
LG 1
1006 BWE FE, TOTAL AIR, EDMT T4EOT, KOO TOHE, 450 FSE 0T SETTTH & Ewetp 3
n [~ T
L B
kS = e
o E-4i .
ChOEWS

97

Main Steam Flow, Furnace Bed Level, Primary Air Flow, Total Limestone Flow and Main Steam
Temperature Deviation

BEE

*| vage =
BD
HALE 31
cLor
0017 FEE STW FLOMW, ELO LVL, BA, LIWDSTA FLY, WAIA ETWH 0T EELTTI [l Shaty 1
“ oo
w 1} here warcrs
= LN E—
— Ed f——
CROIEWS

98

D-3 DCS Neural Network Model Logic

Model Verification and Control Neural Networks Layer 1 Node 1. *Only the first node of the layer is
shown since only the weights and constants differ for the remaining 19 nodes.

HYPERROIC TRWEZEY RCTIIVAIION FUMCIION

a s
m dabdad 11

F: uns e non o o | o wassmninen
e bl by 1 1

a

LOE 3

B o

HALE 11

CLOF &

1011 L8 A BOLEL LAIER 1 @OLE) SETTT) WA Shesti 3
L 1} heee. i

= Tz TR,
- Ep o o
CROEWS 3 ' c \ " a " i " a

Model Verification Neural Network Layer 2 Node 1. *Only the first node of the layer is shown since only
the weights and constants differ for the remaining 14 nodes.

CONSIRNI

' T3 = ot ~ S HYPERRQIC IAWEEI RCITVAIION FUMCIION '

| voae 3 -
BD A
HALE 31
L0728
100 FSE R WOOCL LAITE 2 Q00) LMITE 2 WILCL [l Shesti 1
™ o,
1|0 L vy
- s
— E [——

CROEWS El [l [[l [1 " [" an

100

Control Verification Neural Network Layer 2 Node 1. *Only the first node of the layer is shown since only
the weights and constants differ for the remaining 14 nodes.

CONSIRHT

' e z e~ ama HYPERRQIC IAWGEI ACIIVAIION FUHCIION '

| Loae 3 -
B0y
WALE 31
CLOf 1%
1021 FSE & WOOCL LAIIE ¢ H00E 1 LAYEE 3 AT W Steety 2
|1 —
I~ Cho,.T. 5o
2|0 L vy
i e
— 4 [Rmp——

101

Model Verification Neural Network Output Node

CONSIRWT

e s i @ﬂ I —

IHVERSE HORMARLIZRIIOW

i ag
I I
' uoe 2 -

Ca: il

HALE 10

CLOF 0

L1 1IE FRE &1 WOLEL OOTECT LAYEE SLT I WALCL OOTECT LAITR W Ewmati)
1 I} - T

= e
— Bt [P —
CROEWS f , f 0 N W N B ar

102

Control Neural Network Output Node.

2

LOGE 3
BT

(LI IEL

HALE 10
CLOF 14

CONSIRNT

OOATROL OOTEOT LA1TR

INVERSE HOFMARLITRIIOH

i)

Ehewti 1

1Y PEE A HOLTL OOTEIT LWJTE @OLT 1
| i —

I~ oo,
o p e,
— e rReT 1 T iR
e oz arr. oo .,
CROEWE] ! " 1 " i " a

2

103

D-4 DCS Random Number Generation Logic

Random Number Generator Rounding Constant Blocks

¥

¥

H

H

E
] v
;;UE

a1
'
a1
'
a1
E]
a1

H H H H
poC e -

H

¥

Ll Ll

H 3 ¥

H E

u L L L L
R "R 'R R R
U§§U§

&

H
H

H

H

.?U.*?

i

¥

¥

¥

i

H
s

Bly gy sl g fy ¢
v v v v
v Sl S e

G A A

#
i

H ifg & g &
i - -
g -0 == == = [& =@ - |u

j

|

;

| Loce =

el

WAL 11

CLOF a5

130 RAS COHETAATS SETTTH W Ehesti 1
% [} - rares

= L
e g [P ——
CROEWS [

104

Random Number Generator 1. *Only the first random number generator is shown since only the seed
input and output connections differ for the other 4 random number generators.

131

&

s

EE R E L
11an1hiiky
EEEEE R L
L1111M11kL

3

{"’L --.-..

LN .-- =

.
EE ‘=l = | EE
- ' -
e ad
Goran i 2
£ il
G £E

B
1

:aﬂ.la.l .

e e

F‘
I

IFLL

P

EEEEEE L
La1RARL

EEEEEEL
LAlLlLl

e - :
:aﬂ.la.l
[

ZOO1E] RS 1 EETTTI) Eraati 1

CROEWS E] [l 3 [l " 1 " e " 2l

105

Random Number Generator Seed Logic

HADE 11
CLOF 51
1056 Rl ELCED EELTT) WA Eheeti 1
I ™ o,

kS i e —
= E oo, o
CROEWS]

106

D-5 DCS Optimization Logic

Optimization Algorithm Air Flow Input Signal Normalization

) P s TR A s Rie T .
fany ELTE M EE A mm
1 Ll A e
\ '
= WA ma
WA e
c — K
B v [l oor s v i o e
L s anE
e so0 Tt ra IR uraRe miE T Eal
- ¥
\ — ot 7 w13 o e ram | . '
st i 4 T paina w1 v
o g wrm now N
AT At
ML L
" W L N
oA s were
WaE0 AR weana
ML L aEa
W a3 maaa
WAL AL e
. WA L "
e R
. WAL IR weiEa
— E-NER w0 E BTN}
1l rana B3 M0 TG IUC MR TaOn a1
" "
— sot 751 me wnaes: min T
s o 55w = rar
— o g wiam max
It - I
3
i .
o auaal :
i WAL L
AL IR erEa
.
" "
1 " oo o mos v gy
s e
—————— oy T A s i T
a| s 5 "
s st T mas e T
i1 T maE ik o o g
% o :mEulmm - n.a
. a3 .
e
" R "
M Az mna
AL L
WAL IR rEa
o
M a
o4 7t s i T g
s ARE
G st T A urss Rk T
* faanyHLT s e mn H
— - - mmm:m:nmm?m KE
—_—— a3 g AT
e L
WaE0 AR A
n N E-REN] E NI} a
WAL L e
AL IR erEa
.
| Lone = -
uc i |
H&OE 30
CLOF 52
S0 QPTIH]ANTION OOATROL JABCTE EETTTI ikl Elitd 1
1} heee. .
x = rreres T
= B o, o
CROENS 2 \ . \ " 2 \ e " 0

107

Optimization Algorithm Controller Airflow Selection

| vooe =
ol
WA 31
CLOF 52
01143 QPTIHIINTIGA CRATRILE RELTTI W ety 1
.- o
w 1} here warcers
= s ——
- Eed e ——
CROIEWS

108

Random Number Generator Output Signal Conversion to Air Flow Values

| ok 3
WAIE 31
CLF S
12 QPTIHIAKNTIG OGRTRAL WIA-HA JAROTS EELTTI T
[~ oo,
1l 1} kem [Tt
= et
Ei f———

71az,
CADEWS

109

Optimization Algorithim Minimum/Maximim Controller Capability Air Flow Selection

w |0 hers rarc
— T e Tie

110

Intrex Flush Logic and Controller Output Signal Conditioning

= COA0,) o [3z 3 e 0z (B a1 v 7T 3 0 g ¥ z
il *OK WEZTUD 360D so or[] = - - = —
= KT DT3RS
~| it o
D3 0|
_—
T #9308 i TITHE IITTIE A0S W AEd 050T00E
95 #1170
0T |{I¥RH
Fonid
£ 001
T T 1 a0 mnnasm
T Tod iwm SeY av T
[aulsaﬂngmi
— EmnTEaT AT

ety S G

FBpTa wIT oM DTan WEd KR

TR

Ty

s

111

Bibliography

1. [Online] http://en.wikipedia.org/wiki/Fluidized_bed_combustion.

2. The JEA Large-Scale CFB Combustion Demonstration Project. National Energy Technology Laboratory.
[Online] 2003.
http://www.netl.doe.gov/technologies/coalpower/cctc/topicalreports/pdfs/topical22.pdf.

3. Kang, John and Thomas, Frank. JEA Increases Power Output Through Efficiency Improvements.
Power. October, 2011, Vol. 155, 10.

4. Kang, John, et al. Reducing Ash Agglomeration in JEA's CFB Boilers. Power. October, 2012, Vol. 156,
10.

5. Intelligent coordinated control of circulating fluidized bed boiler-turbine unit. Li, Xiao-Feng, Chen, Shi-
He and Zhong, Qing. Toronto : IEEE, 2010. 2010 Annual Meeting of the North American Fuzzy
Information Processing Society (NAFIPS). pp. 1-7. ISBN 978-1-4244-7859-0 .

6. Neural network predictor of a circulating fluidized bed. Davari, A., Macha, S. and Sankar, R. Athens :
IEEE, 2001. Proceedings of the 33rd Southeastern Symposium on System Theory. pp. 355-357. ISBN 0-
7803-6661-1 .

7. IEE Colloquium on "Genetic Algorithms for Control Systems Engineering'. London : IEEE, 1993. Digest
No. 1993/130.

8. Genetic Approach to Pole Placement in Linear State Space Systems. Cassell, Arnold and Choi, Chiu.
Jacksonville, FL : s.n., March 2012. Proceedings of the 44th IEEE Southeastern Symposium on System
Theory. pp. 24-29.

9. Barnard, E and Wessels, L.F.A. Extrapolation and Interpolation in Neural Network Classifiers. IEEE
Control Systems Magazine. October 1992, Vol. 12, 4.

10. Samad, T and Annaswamy, AM. The Impact of Control Technology. s.l. : IEEE Control Systems

Society, 2011.

112

11. Draeger, Andreas, Engell, Sebastian and Ranke, Horst. Model Predictive Control Using Neural
Networks. IEEE Control Systems magazine. October 1995, Vol. 15, 5.

12. Nguyen, Derrick and Widrow, Bernard. Neural Networks for Self-Learning Control Systems. IEEE
Control Systems magazine. April 1990, Vol. 10, 3.

13. ABB. Composer for Harmony Function Code Application Manual. WBPEEUI210504E0_V1/V2. 2005.
14. Montgomery, Rugner, Hubele. Engineering Statistics. New York : John Wiley & Sons, 2004.

15. Sola, J. and Sevilla, J. Importance of input data normalization for the application of neural networks
to complex industrial problems. IEEE Transactions on Nuclear Science. June 1997, Vol. 44, 2.

16. Multilayer Feedforward Networks are Universal Approximators. Hornik, Stinchcombe, White. 5,
Oxford, UK : Elsevier Science Ltd., 1989, Neual Networks, Vol. 2, pp. 359-366.

17. Richards, J.A. and Jia, X. Remote Sensing Digital Image Analysis. 5th Edition. New York : Springer-
Verlag, 2005.

18. Leverington, David. A Basic Introduction to Feedforward Backpropagation Neural Networks.
Tennessee Tech University. [Online] 2009.
http://www.webpages.ttu.edu/dleverin/neural_network/neural_networks.html.

19. Gallant, S.I. Neural Network Learning and Expert Systems. Cambridge : MIT Press, 1993.

20. Smith, Steven W. The Scientist's and Engineers Guide to Digital Signal Processing. San Diego :
California Technical Publishing, 1997. 0-9660176-3-3.

21. D. J. Krusienski, W. K. Jenkins. Design and Performance of Adaptive Systems Based on Structured
Stochastic Optimization Strategies. IEEE CIRCUITS AND SYSTEMS MAGAZINE. First Quarter 2005, 2005,
pp. 8-20.

22. Neural Generalized Predictive Control, A Newton Raphson Implementation. Soloway, Donald and
Haley, Pamela J. Dearborn : IEEE, 1996. Proceedings of the 1996 IEEE International Symposium on

Intelligent Control. 0-7803-2978-3 .

113

23. Neural Network Model Predictive Control with Genetic Algorithm Optimization and Its Application to
Turbofan Engine Starting. Yu, Bo and Zhu, Jihong. s.I. : IEEE Computer Society, 2010. Proceedings of the
2010 Second International Conference on Intelligent Human-Machine Systems and Cybernetics - Volume

02.ISBN 978-0-7695-4151-8.

114

VITA

David Graduated from the State University of New York at Morrisville in the spring of 1999 with an
associates in applied science in Electrical Engineering Technology. He worked a summer internship at
Marquardt Switches in Cazenovia New York as a manufacturing engineering intern after which time he
worked nearly a year for Ametek Rotron in Woodstock New York as a technician performing root cause

analysis on the failure of electronically commutated DC motors.

David moved to Jacksonville in late 2000 and started working for AT&T Broadband, later Comcast, as a
communications technician. He began attending classes part time at the University of North Florida in
the spring of 2002 and continued work and school until he graduated from UNF in December 2007 with

a Bachelors of Science Degree in Electrical Engineering with a minor in Mathematics.

In January 2008 David began pursuing his Masters of Science in Electrical Engineering from the
University of North Florida. In February 2008 he began working at JEA’s Northside Generating Station as
a controls engineer with the instrumentation and process controls group. David received his
Professional Engineering license from the state of Florida in January 2013 and his Six Sigma Green Belt
Process Improvement Certification in May 2013. David is scheduled to receive his Master of Science in

Electrical Engineering from the University of North Florida in December of 2013.

115

	UNF Digital Commons
	2013

	Neural Network Based Control of Integrated Recycle Heat Exchanger Superheaters in Circulating Fluidized Bed Boilers
	David D. Biruk
	Suggested Citation

	Title Page

	Table of Contents

	List of Figures

	List of Tables

	Abstract

	Chapter 1: Introduction to the Circulating Fluidized Bed (CFB)
Boiler
	1.1 CFB Background
	1.2 CFB Steam generation and superheat
	1.3 CFB Hot Loop
	1.4 Current Intrex Control configuration
	1.5 Organization of Thesis

	Chapter 2:
Overview of the Neural Network Model Predictive Controller
	2.1 System Considerations for Neural Network Model Predictive Controllers
	2.2 Neural Network Model Predictive Control Structure

	Chapter 3 : Data Collection and Pre-Processing
	3.1 Data Point Selection
	3.2 Dataset Reduction by Stepwise Regression
	3.3 Data normalization

	Chapter 4 : Neural Network Modeling
	4.1 Neural Network Model Structure
	4.2 Neural Network Training Algorithm

	4.3 Neural Network Training and Testing Programs
	4.4 Neural Network Testing

	Chapter 5 : Controller Optimization Algorithm
	5.1 Optimization Algorithm Operation
	5.2 Linear Congruential Random Number Generator

	Chapter 6 : Distributed Control System (DCS) Integration
	6.1 DCS Function Codes and Logic Structure
	6.2 DCS Timing Signals and Scan time
	6.3 DCS Random Number Generation
	6.4 DCS Signal Inputs and preprocessing
	6.5 DCS Minimum/Maximum Intrex Differential Temperature Airflow Verification Signal Selection
	6.6 DCS Control Airflow Verification Signal Selection
	6.7 DCS Neural Network Model Logic
	6.8 DCS Intrex Differential Temperature Minimum/Maximum Capability Calculations
	6.9 DCS Control Optimization
	6.10 DCS Controller Output Signal Selection

	Chapter 7 : Testing and Results
	Chapter 8 Conclusions and Areas of Future Work
	8.1 Conclusions
	8.2 Areas of Future work

	Appendix A - Minitab Stepwise Regression Results
	Appendix B - Matlab Code for Model Development
	B-1 Matlab Code to Calculate Neural Network Model Output
	B-2 Matlab Code for Genetic Algorithm Population Generation
	B-3 Matlab Code for Data Normalization
	B-4 Matlab Code for Neural Network Model Training and Testing

	Appendix C - Neural Network Testing Results
	Appendix D - DCS Logic for Neural Network Model Predictive Controller Implementation
	D-1 DCS Timing Logic and Executive blocks
	D-2 DCS Input Logic
	D-3 DCS Neural Network Model Logic
	D-4 DCS Random Number Generation Logic
	D-5 DCS Optimization Logic

	Bibliography

